gpu.c: fix typo in comment
[ppcg.git] / gpu.c
bloba6d0b69bc1bbee81c3d9d3f83615a0200bfef597
1 /*
2 * Copyright 2010-2011 INRIA Saclay
3 * Copyright 2012-2013 Ecole Normale Superieure
5 * Use of this software is governed by the MIT license
7 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
8 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
9 * 91893 Orsay, France
10 * and Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France
13 #include <assert.h>
14 #include <stdlib.h>
15 #include <string.h>
17 #include <isl/polynomial.h>
18 #include <isl/union_set.h>
19 #include <isl/aff.h>
20 #include <isl/ilp.h>
21 #include <isl/flow.h>
22 #include <isl/band.h>
23 #include <isl/schedule.h>
24 #include <isl/options.h>
25 #include <isl/ast_build.h>
27 #include "cpu.h"
28 #include "gpu.h"
29 #include "schedule.h"
30 #include "ppcg_options.h"
31 #include "print.h"
33 /* The fields stride and shift only contain valid information
34 * if shift != NULL.
35 * If so, they express that current index is such that if you add shift,
36 * then the result is always a multiple of stride.
37 * Let D represent the initial shared_len dimensions of the computed schedule.
38 * The spaces of "lb" and "shift" are of the form
40 * D -> [b]
42 struct gpu_array_bound {
43 isl_val *size;
44 isl_aff *lb;
46 isl_val *stride;
47 isl_aff *shift;
50 /* A tile of an array.
52 * n is the dimension of the array.
53 * bound is an array of size "n" representing the lower bound
54 * and size for each index.
56 * tiling maps a tile in the global array to the corresponding
57 * shared/private memory tile and is of the form
59 * { [D[i] -> A[a]] -> T[(a + shift(i))/stride - lb(i)] }
61 * where D represents the initial shared_len dimensions
62 * of the computed schedule.
64 struct gpu_array_tile {
65 int n;
66 struct gpu_array_bound *bound;
67 isl_multi_aff *tiling;
70 struct gpu_array_info;
72 /* A group of array references in a kernel that should be handled together.
73 * If private_tile is not NULL, then it is mapped to registers.
74 * Otherwise, if shared_tile is not NULL, it is mapped to shared memory.
75 * Otherwise, it is accessed from global memory.
77 struct gpu_array_ref_group {
78 /* The references in this group access this array. */
79 struct gpu_array_info *array;
80 /* Position of this group in the list of reference groups of array. */
81 int nr;
83 /* The following fields are use during the construction of the groups.
84 * access is the combined access relation relative to the shared
85 * memory tiling. In particular, the domain of the map corresponds
86 * to the first shared_len dimensions of the computed schedule.
87 * write is set if any access in the group is a write.
88 * exact_write is set if all writes are definite writes.
89 * slice is set if there is at least one access in the group
90 * that refers to more than one element
92 isl_map *access;
93 int write;
94 int exact_write;
95 int slice;
97 /* The shared memory tile, NULL if none. */
98 struct gpu_array_tile *shared_tile;
100 /* The private memory tile, NULL if none. */
101 struct gpu_array_tile *private_tile;
103 /* References in this group; point to elements of a linked list. */
104 int n_ref;
105 struct gpu_stmt_access **refs;
107 /* Last shared memory tile dimension that affects tile of this group. */
108 int last_shared;
111 struct gpu_gen {
112 isl_ctx *ctx;
113 struct ppcg_options *options;
115 /* Callback for printing of AST in appropriate format. */
116 __isl_give isl_printer *(*print)(__isl_take isl_printer *p,
117 struct gpu_prog *prog, __isl_keep isl_ast_node *tree,
118 struct gpu_types *types, void *user);
119 void *print_user;
121 struct gpu_prog *prog;
122 /* The generated AST. */
123 isl_ast_node *tree;
125 /* The sequence of types for which a definition has been printed. */
126 struct gpu_types types;
128 /* User specified tile, grid and block sizes for each kernel */
129 isl_union_map *sizes;
131 /* Effectively used tile, grid and block sizes for each kernel */
132 isl_union_map *used_sizes;
134 /* Identifier of current kernel. */
135 int kernel_id;
136 /* Pointer to the current kernel. */
137 struct ppcg_kernel *kernel;
138 /* Does the computed schedule exhibit any parallelism? */
139 int any_parallelism;
141 /* First tile dimension. */
142 int tile_first;
143 /* Number of tile dimensions. */
144 int tile_len;
145 /* Number of initial parallel loops among tile dimensions. */
146 int n_parallel;
148 /* Number of dimensions determining shared memory. */
149 int shared_len;
151 /* Number of rows in the untiled schedule. */
152 int untiled_len;
153 /* Number of rows in the tiled schedule. */
154 int tiled_len;
155 /* Number of rows in schedule after tiling/wrapping over threads. */
156 int thread_tiled_len;
158 /* Global untiled schedule. */
159 isl_union_map *sched;
160 /* Local (per kernel launch) tiled schedule. */
161 isl_union_map *tiled_sched;
162 /* Local schedule per shared memory tile loop iteration. */
163 isl_union_map *local_sched;
165 /* Local tiled schedule projected onto the shared tile loops and
166 * the loops that will be wrapped over the threads,
167 * with all shared tile loops parametrized.
169 isl_union_map *shared_sched;
170 /* Projects out the loops that will be wrapped over the threads
171 * from shared_sched.
173 isl_union_map *shared_proj;
175 /* A map that takes the range of shared_sched as input,
176 * wraps the appropriate loops over the threads and then projects
177 * out these loops.
179 isl_map *privatization;
181 /* The array reference group corresponding to copy_sched. */
182 struct gpu_array_ref_group *copy_group;
184 /* Is any array in the current kernel marked force_private? */
185 int any_force_private;
187 /* First loop to unroll (or -1 if none) in the current part of the
188 * schedule.
190 int first_unroll;
192 int n_grid;
193 int n_block;
194 /* Note: in the input file, the sizes of the grid and the blocks
195 * are specified in the order x, y, z, but internally, the sizes
196 * are stored in reverse order, so that the last element always
197 * refers to the x dimension.
199 int grid_dim[2];
200 int block_dim[3];
201 int *tile_size;
204 /* Print the name of the local copy of a given group of array references.
206 static __isl_give isl_printer *print_array_name(__isl_take isl_printer *p,
207 struct gpu_array_ref_group *group)
209 int global = 0;
211 if (group->private_tile)
212 p = isl_printer_print_str(p, "private_");
213 else if (group->shared_tile)
214 p = isl_printer_print_str(p, "shared_");
215 else
216 global = 1;
217 p = isl_printer_print_str(p, group->array->name);
218 if (!global && group->array->n_group > 1) {
219 p = isl_printer_print_str(p, "_");
220 p = isl_printer_print_int(p, group->nr);
223 return p;
226 /* Collect all references to the given array and store pointers to them
227 * in array->refs.
229 * If the array contains structures, then there is no need to collect
230 * the references since we will not be computing any reference groups.
232 static void collect_references(struct gpu_prog *prog,
233 struct gpu_array_info *array)
235 int i;
236 int n;
238 if (array->has_compound_element)
239 return;
241 n = 0;
242 for (i = 0; i < prog->n_stmts; ++i) {
243 struct gpu_stmt *stmt = &prog->stmts[i];
244 struct gpu_stmt_access *access;
246 for (access = stmt->accesses; access; access = access->next) {
247 const char *name;
248 name = isl_map_get_tuple_name(access->access,
249 isl_dim_out);
250 if (name && !strcmp(array->name, name))
251 n++;
255 array->n_ref = n;
256 array->refs = isl_alloc_array(prog->ctx, struct gpu_stmt_access *, n);
257 assert(array->refs);
259 n = 0;
260 for (i = 0; i < prog->n_stmts; ++i) {
261 struct gpu_stmt *stmt = &prog->stmts[i];
262 struct gpu_stmt_access *access;
264 for (access = stmt->accesses; access; access = access->next) {
265 const char *name;
266 name = isl_map_get_tuple_name(access->access,
267 isl_dim_out);
268 if (!name || strcmp(array->name, name))
269 continue;
271 array->refs[n++] = access;
276 /* Create a gpu_array_tile for an array of dimension "n_index".
278 static struct gpu_array_tile *create_tile(isl_ctx *ctx, int n_index)
280 int i;
281 struct gpu_array_tile *tile;
283 tile = isl_calloc_type(ctx, struct gpu_array_tile);
284 assert(tile);
286 tile->n = n_index;
288 tile->bound = isl_alloc_array(ctx, struct gpu_array_bound, n_index);
289 assert(tile->bound);
291 for (i = 0; i < n_index; ++i) {
292 tile->bound[i].size = NULL;
293 tile->bound[i].lb = NULL;
294 tile->bound[i].stride = NULL;
295 tile->bound[i].shift = NULL;
298 return tile;
301 static void *free_tile(struct gpu_array_tile *tile)
303 int j;
305 if (!tile)
306 return NULL;
308 for (j = 0; j < tile->n; ++j) {
309 isl_val_free(tile->bound[j].size);
310 isl_val_free(tile->bound[j].stride);
311 isl_aff_free(tile->bound[j].lb);
312 isl_aff_free(tile->bound[j].shift);
314 free(tile->bound);
315 isl_multi_aff_free(tile->tiling);
316 free(tile);
318 return NULL;
321 static struct pet_array *find_array(struct ppcg_scop *scop,
322 __isl_keep isl_set *accessed)
324 int i;
325 isl_id *id;
327 id = isl_set_get_tuple_id(accessed);
329 for (i = 0; i < scop->pet->n_array; ++i) {
330 isl_id *id_i;
332 id_i = isl_set_get_tuple_id(scop->pet->arrays[i]->extent);
333 isl_id_free(id_i);
334 if (id == id_i)
335 break;
337 isl_id_free(id);
339 return i < scop->pet->n_array ? scop->pet->arrays[i] : NULL;
342 /* Compute and return the extent of "array", taking into account the set of
343 * accessed elements.
345 * In particular, the extent in the outer dimension is taken
346 * from "accessed", while then extent in the remaing dimensions
347 * are taken from array->extent.
349 * The extent in the outer dimension cannot be taken from array->extent
350 * because that may be unbounded. Furthermore, even if it is bounded,
351 * it may be larger than the piece of the array that is being accessed.
353 static __isl_give isl_set *compute_extent(struct pet_array *array,
354 __isl_keep isl_set *accessed)
356 int n_index;
357 isl_id *id;
358 isl_set *outer;
359 isl_set *extent;
361 extent = isl_set_copy(array->extent);
363 n_index = isl_set_dim(accessed, isl_dim_set);
364 if (n_index == 0)
365 return extent;
367 extent = isl_set_project_out(extent, isl_dim_set, 0, 1);
368 outer = isl_set_copy(accessed);
369 outer = isl_set_project_out(outer, isl_dim_set, 1, n_index - 1);
370 extent = isl_set_flat_product(outer, extent);
371 id = isl_set_get_tuple_id(accessed);
372 extent = isl_set_set_tuple_id(extent, id);
374 return extent;
377 /* Is the array "array" being extracted a read-only scalar?
379 * That is, is "array" a scalar that is never possibly written to.
380 * An array containing structures is never considered to be a scalar.
382 static int is_read_only_scalar(struct gpu_array_info *array,
383 struct gpu_prog *prog)
385 isl_set *space;
386 isl_union_map *write;
387 int empty;
389 if (array->has_compound_element)
390 return 0;
391 if (array->n_index != 0)
392 return 0;
394 write = isl_union_map_copy(prog->may_write);
395 space = isl_set_universe(isl_space_copy(array->space));
396 write = isl_union_map_intersect_range(write,
397 isl_union_set_from_set(space));
398 empty = isl_union_map_is_empty(write);
399 isl_union_map_free(write);
401 return empty;
404 /* Compute bounds on the host arrays based on the accessed elements
405 * and collect all references to the array.
407 * If the array is zero-dimensional and does not contain structures,
408 * i.e., if the array is a scalar, we check whether it is read-only.
410 static int extract_array_info(__isl_take isl_set *array, void *user)
412 int i;
413 struct gpu_prog *prog = (struct gpu_prog *)user;
414 const char *name;
415 int n_index;
416 isl_pw_aff **bounds;
417 struct pet_array *pa;
418 struct gpu_array_info *info;
419 isl_set *extent;
421 info = &prog->array[prog->n_array];
422 prog->n_array++;
424 n_index = isl_set_dim(array, isl_dim_set);
425 name = isl_set_get_tuple_name(array);
426 bounds = isl_alloc_array(isl_set_get_ctx(array),
427 isl_pw_aff *, n_index);
428 if (!bounds)
429 goto error;
431 info->space = isl_set_get_space(array);
432 info->name = strdup(name);
433 info->n_index = n_index;
434 info->bound = bounds;
435 info->linearize = prog->scop->options->linearize_device_arrays;
437 pa = find_array(prog->scop, array);
438 if (!pa)
439 isl_die(isl_set_get_ctx(array), isl_error_internal,
440 "unable to find array in scop", goto error);
442 info->type = strdup(pa->element_type);
443 info->size = pa->element_size;
444 info->local = pa->declared && !pa->exposed;
445 info->has_compound_element = pa->element_is_record;
446 info->read_only_scalar = is_read_only_scalar(info, prog);
448 extent = compute_extent(pa, array);
449 info->extent = extent;
450 for (i = 0; i < n_index; ++i) {
451 isl_set *dom;
452 isl_local_space *ls;
453 isl_aff *one;
454 isl_pw_aff *bound;
456 dom = isl_set_copy(extent);
457 dom = isl_set_project_out(dom, isl_dim_set, i + 1,
458 n_index - (i + 1));
459 dom = isl_set_project_out(dom, isl_dim_set, 0, i);
460 if (!isl_set_dim_has_upper_bound(dom, isl_dim_set, 0)) {
461 fprintf(stderr, "unable to determine extent of '%s' "
462 "in dimension %d\n", info->name, i);
463 dom = isl_set_free(dom);
465 bound = isl_set_dim_max(dom, 0);
466 dom = isl_pw_aff_domain(isl_pw_aff_copy(bound));
467 ls = isl_local_space_from_space(isl_set_get_space(dom));
468 one = isl_aff_zero_on_domain(ls);
469 one = isl_aff_add_constant_si(one, 1);
470 bound = isl_pw_aff_add(bound, isl_pw_aff_alloc(dom, one));
471 bound = isl_pw_aff_gist(bound, isl_set_copy(prog->context));
473 bounds[i] = bound;
474 if (!isl_pw_aff_is_cst(bound))
475 info->linearize = 1;
478 collect_references(prog, info);
480 isl_set_free(array);
481 return 0;
482 error:
483 isl_set_free(array);
484 return -1;
487 /* Remove independence from the order constraints "order" on array "array".
488 * Since the pairs of iterations in the filter relation of an independence
489 * are guaranteed to be completely independent by the user, there is
490 * no need to ensure that live ranges are ordered along thong pairs.
491 * We make an exception for local variables, though, as the independence
492 * guarantee does not apply to those.
494 * The order constraints are used in two places.
495 * Those on scalars are used in check_scalar_live_ranges to check if
496 * we need to force the scalar to be private. Any non-local scalar
497 * should not be forced scalar if it only appears in independent loops.
498 * Those on non-scalars are added to the coincidence constraints
499 * in compute_schedule because we do not support any array expansion.
500 * Accesses to non-local arrays should not prevent a loop from being
501 * considered coincident so we should indeed remove those constraints
502 * from the order constraints.
504 static __isl_give isl_union_map *remove_independences(struct gpu_prog *prog,
505 struct gpu_array_info *array, __isl_take isl_union_map *order)
507 int i;
509 for (i = 0; i < prog->scop->pet->n_independence; ++i) {
510 struct pet_independence *pi = prog->scop->pet->independences[i];
511 if (isl_union_set_contains(pi->local, array->space))
512 continue;
514 order = isl_union_map_subtract(order,
515 isl_union_map_copy(pi->filter));
518 return order;
521 /* For each array in "prog", store the (untagged) order dependences
522 * derived from the array in array->dep_order.
523 * In particular, consider all references that access the given array
524 * and take the order dependences that have one of these references
525 * as source. (Since an order dependence relates two references to
526 * the same array, the target of these order dependences will also
527 * be one of these references.)
528 * Additionally, store the union of these array->dep_order relations
529 * for all non-scalar arrays in prog->array_order.
531 void collect_order_dependences(struct gpu_prog *prog)
533 int i;
534 isl_space *space;
535 isl_union_map *accesses;
537 space = isl_union_map_get_space(prog->read);
538 prog->array_order = isl_union_map_empty(space);
540 accesses = isl_union_map_copy(prog->scop->tagged_reads);
541 accesses = isl_union_map_union(accesses,
542 isl_union_map_copy(prog->scop->tagged_may_writes));
543 accesses = isl_union_map_universe(accesses);
544 accesses = isl_union_map_apply_range(accesses,
545 isl_union_map_copy(prog->to_outer));
547 for (i = 0; i < prog->n_array; ++i) {
548 struct gpu_array_info *array = &prog->array[i];
549 isl_set *set;
550 isl_union_set *uset;
551 isl_union_map *order;
553 set = isl_set_universe(isl_space_copy(array->space));
554 uset = isl_union_set_from_set(set);
555 uset = isl_union_map_domain(
556 isl_union_map_intersect_range(isl_union_map_copy(accesses),
557 uset));
558 order = isl_union_map_copy(prog->scop->tagged_dep_order);
559 order = isl_union_map_intersect_domain(order, uset);
560 order = isl_union_map_zip(order);
561 order = isl_union_set_unwrap(isl_union_map_domain(order));
562 order = remove_independences(prog, array, order);
563 array->dep_order = order;
565 if (gpu_array_is_scalar(array))
566 continue;
568 prog->array_order = isl_union_map_union(prog->array_order,
569 isl_union_map_copy(array->dep_order));
572 isl_union_map_free(accesses);
575 /* Construct a gpu_array_info for each array possibly accessed by "prog" and
576 * collect them in prog->array.
578 * If there are any member accesses involved, then they are first mapped
579 * to the outer arrays of structs.
581 * If we are allowing live range reordering, then also set
582 * the dep_order field. Otherwise leave it NULL.
584 static int collect_array_info(struct gpu_prog *prog)
586 int r;
587 isl_union_set *arrays;
589 arrays = isl_union_map_range(isl_union_map_copy(prog->read));
590 arrays = isl_union_set_union(arrays,
591 isl_union_map_range(isl_union_map_copy(prog->may_write)));
593 arrays = isl_union_set_apply(arrays,
594 isl_union_map_copy(prog->to_outer));
596 arrays = isl_union_set_coalesce(arrays);
598 prog->n_array = isl_union_set_n_set(arrays);
599 prog->array = isl_calloc_array(prog->ctx,
600 struct gpu_array_info, prog->n_array);
601 assert(prog->array);
602 prog->n_array = 0;
603 r = isl_union_set_foreach_set(arrays, &extract_array_info, prog);
604 isl_union_set_free(arrays);
606 if (prog->scop->options->live_range_reordering)
607 collect_order_dependences(prog);
609 return r;
612 static void free_array_info(struct gpu_prog *prog)
614 int i, j;
616 for (i = 0; i < prog->n_array; ++i) {
617 int n_index = prog->array[i].n_index;
618 free(prog->array[i].type);
619 free(prog->array[i].name);
620 for (j = 0; j < n_index; ++j)
621 isl_pw_aff_free(prog->array[i].bound[j]);
622 isl_space_free(prog->array[i].space);
623 isl_set_free(prog->array[i].extent);
624 free(prog->array[i].bound);
625 free(prog->array[i].refs);
626 isl_union_map_free(prog->array[i].dep_order);
628 free(prog->array);
631 /* Check if a gpu array is a scalar. A scalar is a value that is not stored
632 * as an array or through a pointer reference, but as a single data element.
633 * At the moment, scalars are represented as zero-dimensional arrays.
634 * A zero-dimensional array containing structures is not considered
635 * to be a scalar.
637 int gpu_array_is_scalar(struct gpu_array_info *array)
639 return !array->has_compound_element && array->n_index == 0;
642 /* Is "array" a read-only scalar?
644 int gpu_array_is_read_only_scalar(struct gpu_array_info *array)
646 return array->read_only_scalar;
649 /* Return the set of parameter values for which the array has a positive
650 * size in all dimensions.
651 * If the sizes are only valid for some parameter values, then those
652 * constraints are also taken into account.
654 __isl_give isl_set *gpu_array_positive_size_guard(struct gpu_array_info *array)
656 int i;
657 isl_space *space;
658 isl_set *guard;
660 space = isl_space_params(isl_space_copy(array->space));
661 guard = isl_set_universe(space);
663 for (i = 0; i < array->n_index; ++i) {
664 isl_pw_aff *bound;
665 isl_set *guard_i, *zero;
667 bound = isl_pw_aff_copy(array->bound[i]);
668 guard_i = isl_pw_aff_nonneg_set(isl_pw_aff_copy(bound));
669 zero = isl_pw_aff_zero_set(bound);
670 guard_i = isl_set_subtract(guard_i, zero);
671 guard = isl_set_intersect(guard, guard_i);
674 return guard;
677 /* Internal data structure for extract_size_of_type.
678 * "type" specifies the name of the space that we want to extract.
679 * "res" is used to store the subset of that space.
681 struct ppcg_extract_size_data {
682 const char *type;
683 isl_set *res;
686 /* This function is called for each set in a union_set.
687 * If the name of the set matches data->type, we store the
688 * set in data->res.
690 static int extract_size_of_type(__isl_take isl_set *size, void *user)
692 struct ppcg_extract_size_data *data = user;
693 const char *name;
695 name = isl_set_get_tuple_name(size);
696 if (name && !strcmp(name, data->type)) {
697 data->res = size;
698 return -1;
701 isl_set_free(size);
702 return 0;
705 /* Given a union map { kernel[i] -> *[...] },
706 * return the range in the space called "type" for the kernel with
707 * sequence number "id".
709 static __isl_give isl_set *extract_sizes(__isl_keep isl_union_map *sizes,
710 const char *type, int id)
712 isl_space *space;
713 isl_set *dom;
714 isl_union_set *local_sizes;
715 struct ppcg_extract_size_data data = { type, NULL };
717 if (!sizes)
718 return NULL;
720 space = isl_union_map_get_space(sizes);
721 space = isl_space_set_from_params(space);
722 space = isl_space_add_dims(space, isl_dim_set, 1);
723 space = isl_space_set_tuple_name(space, isl_dim_set, "kernel");
724 dom = isl_set_universe(space);
725 dom = isl_set_fix_si(dom, isl_dim_set, 0, id);
727 local_sizes = isl_union_set_apply(isl_union_set_from_set(dom),
728 isl_union_map_copy(sizes));
729 isl_union_set_foreach_set(local_sizes, &extract_size_of_type, &data);
730 isl_union_set_free(local_sizes);
731 return data.res;
734 /* Given a singleton set, extract the first (at most *len) elements
735 * of the single integer tuple into *sizes and update *len if needed.
737 static void read_sizes_from_set(__isl_take isl_set *set, int *sizes, int *len)
739 int i;
740 int dim;
742 if (!set)
743 return;
745 dim = isl_set_dim(set, isl_dim_set);
746 if (dim < *len)
747 *len = dim;
749 for (i = 0; i < *len; ++i) {
750 isl_val *v;
752 v = isl_set_plain_get_val_if_fixed(set, isl_dim_set, i);
753 assert(v);
755 sizes[i] = isl_val_get_num_si(v);
756 isl_val_free(v);
759 isl_set_free(set);
762 /* Add the map { kernel[id] -> type[sizes] } to gen->used_sizes,
763 * if the option debug->dump_sizes is set.
765 static void set_used_sizes(struct gpu_gen *gen, const char *type, int id,
766 int *sizes, int len)
768 int i;
769 isl_space *space;
770 isl_map *map;
772 if (!gen->options->debug->dump_sizes)
773 return;
775 space = isl_union_map_get_space(gen->used_sizes);
776 space = isl_space_set_from_params(space);
777 space = isl_space_add_dims(space, isl_dim_set, 1);
778 space = isl_space_set_tuple_name(space, isl_dim_set, "kernel");
779 space = isl_space_from_domain(space);
780 space = isl_space_add_dims(space, isl_dim_out, len);
781 space = isl_space_set_tuple_name(space, isl_dim_out, type);
783 map = isl_map_universe(space);
784 map = isl_map_fix_si(map, isl_dim_in, 0, id);
785 for (i = 0; i < len; ++i)
786 map = isl_map_fix_si(map, isl_dim_out, i, sizes[i]);
788 gen->used_sizes = isl_union_map_add_map(gen->used_sizes, map);
791 /* Extract user specified "tile" sizes from the "sizes" command line option,
792 * defaulting to option->tile_size in each dimension.
793 * Add the effectively used sizes to gen->used_sizes.
795 static void read_tile_sizes(struct gpu_gen *gen)
797 int n;
798 isl_set *size;
800 gen->tile_size = isl_alloc_array(gen->ctx, int, gen->tile_len);
801 assert(gen->tile_size);
802 for (n = 0; n < gen->tile_len; ++n)
803 gen->tile_size[n] = gen->options->tile_size;
805 size = extract_sizes(gen->sizes, "tile", gen->kernel_id);
806 read_sizes_from_set(size, gen->tile_size, &gen->tile_len);
807 set_used_sizes(gen, "tile", gen->kernel_id,
808 gen->tile_size, gen->tile_len);
810 if (gen->n_parallel > gen->tile_len)
811 gen->n_parallel = gen->tile_len;
814 /* Extract user specified "block" sizes from the "sizes" command line option,
815 * after filling in some potentially useful defaults.
816 * Add the effectively used sizes to gen->used_sizes.
818 static void read_block_sizes(struct gpu_gen *gen)
820 int n;
821 isl_set *size;
823 n = gen->n_parallel;
824 gen->n_block = (n <= 3) ? n : 3;
825 switch (gen->n_block) {
826 case 1:
827 gen->block_dim[0] = 512;
828 break;
829 case 2:
830 gen->block_dim[0] = 32;
831 gen->block_dim[1] = 16;
832 break;
833 default:
834 gen->block_dim[0] = 32;
835 gen->block_dim[1] = 4;
836 gen->block_dim[2] = 4;
837 break;
840 size = extract_sizes(gen->sizes, "block", gen->kernel_id);
841 read_sizes_from_set(size, gen->block_dim, &gen->n_block);
842 set_used_sizes(gen, "block", gen->kernel_id,
843 gen->block_dim, gen->n_block);
846 /* Extract user specified "grid" sizes from the "sizes" command line option,
847 * after filling in some potentially useful defaults.
848 * Add the effectively used sizes to gen->used_sizes.
850 static void read_grid_sizes(struct gpu_gen *gen)
852 int n = gen->n_parallel;
853 isl_set *size;
855 gen->n_grid = (n <= 2) ? n : 2;
856 switch (gen->n_grid) {
857 case 1:
858 gen->grid_dim[0] = 32768;
859 break;
860 default:
861 gen->grid_dim[0] = 256;
862 gen->grid_dim[1] = 256;
863 break;
866 size = extract_sizes(gen->sizes, "grid", gen->kernel_id);
867 read_sizes_from_set(size, gen->grid_dim, &gen->n_grid);
868 set_used_sizes(gen, "grid", gen->kernel_id, gen->grid_dim, gen->n_grid);
871 /* Extract user specified sizes from the "sizes" command line option
872 * after filling in some potentially useful defaults.
874 static void read_sizes(struct gpu_gen *gen)
876 read_tile_sizes(gen);
877 read_block_sizes(gen);
878 read_grid_sizes(gen);
881 static void *free_stmts(struct gpu_stmt *stmts, int n)
883 int i;
885 if (!stmts)
886 return NULL;
888 for (i = 0; i < n; ++i) {
889 struct gpu_stmt_access *access, *next;
891 for (access = stmts[i].accesses; access; access = next) {
892 next = access->next;
893 isl_id_free(access->ref_id);
894 isl_map_free(access->access);
895 isl_map_free(access->tagged_access);
896 free(access);
899 isl_id_free(stmts[i].id);
901 free(stmts);
903 return NULL;
906 /* Construct a map from a domain of dimensionality "len"
907 * to a domain of dimensionality "len" + "tile_len" that tiles
908 * the "tile_len" coordinates starting at "first".
909 * In particular, [s_i] -> [s_i / tile_size[i], s_i % tile_size[i]].
910 * "dim" prescribes the parameters.
912 static __isl_give isl_map *tile(__isl_take isl_space *dim, int len,
913 int first, int tile_len, int *tile_size)
915 int i;
916 isl_basic_map *bmap;
917 isl_constraint *c;
918 isl_local_space *ls;
920 dim = isl_space_add_dims(dim, isl_dim_in, len);
921 dim = isl_space_add_dims(dim, isl_dim_out, len + tile_len);
922 bmap = isl_basic_map_universe(isl_space_copy(dim));
923 ls = isl_local_space_from_space(dim);
925 for (i = 0; i < len - tile_len; ++i) {
926 int j = i < first ? i : i + tile_len;
927 int k = i < first ? i : i + 2 * tile_len;
929 c = isl_equality_alloc(isl_local_space_copy(ls));
930 c = isl_constraint_set_coefficient_si(c, isl_dim_in, j, -1);
931 c = isl_constraint_set_coefficient_si(c, isl_dim_out, k, 1);
932 bmap = isl_basic_map_add_constraint(bmap, c);
935 for (i = 0; i < tile_len; ++i) {
936 c = isl_equality_alloc(isl_local_space_copy(ls));
937 c = isl_constraint_set_coefficient_si(c, isl_dim_in,
938 first + i, -1);
939 c = isl_constraint_set_coefficient_si(c, isl_dim_out,
940 first + i, tile_size[i]);
941 c = isl_constraint_set_coefficient_si(c, isl_dim_out,
942 first + i + tile_len, 1);
943 bmap = isl_basic_map_add_constraint(bmap, c);
945 c = isl_inequality_alloc(isl_local_space_copy(ls));
946 c = isl_constraint_set_coefficient_si(c, isl_dim_out,
947 first + i + tile_len, 1);
948 bmap = isl_basic_map_add_constraint(bmap, c);
950 c = isl_inequality_alloc(isl_local_space_copy(ls));
951 c = isl_constraint_set_coefficient_si(c, isl_dim_out,
952 first + i + tile_len, -1);
953 c = isl_constraint_set_constant_si(c, tile_size[i] - 1);
954 bmap = isl_basic_map_add_constraint(bmap, c);
957 isl_local_space_free(ls);
959 return isl_map_from_basic_map(bmap);
962 /* Construct a map from a domain of dimensionality "len"
963 * to a domain of dimensionality "len" + "wrap_len" that "wraps"
964 * the "wrap_len" coordinates starting at "first" according to "wrap_size".
965 * In particular, [s_i] -> [s_i, s_i % wrap_size[i]].
966 * To do so, we need extra variables corresponding to [s_i / wrap_size[i]],
967 * that are projected out at the end.
968 * "dim" prescribes the parameters.
970 static __isl_give isl_map *wrap(__isl_take isl_space *dim, int len,
971 int first, int wrap_len, int *wrap_size)
973 int i;
974 isl_basic_map *bmap;
975 isl_constraint *c;
976 isl_local_space *ls;
978 dim = isl_space_add_dims(dim, isl_dim_in, len);
979 dim = isl_space_add_dims(dim, isl_dim_out, len + 2 * wrap_len);
980 bmap = isl_basic_map_universe(isl_space_copy(dim));
981 ls = isl_local_space_from_space(dim);
983 for (i = 0; i < len; ++i) {
984 int k = i < first + wrap_len ? i : i + 2 * wrap_len;
986 c = isl_equality_alloc(isl_local_space_copy(ls));
987 c = isl_constraint_set_coefficient_si(c, isl_dim_in, i, -1);
988 c = isl_constraint_set_coefficient_si(c, isl_dim_out, k, 1);
989 bmap = isl_basic_map_add_constraint(bmap, c);
992 for (i = 0; i < wrap_len; ++i) {
993 c = isl_equality_alloc(isl_local_space_copy(ls));
994 c = isl_constraint_set_coefficient_si(c, isl_dim_out,
995 first + i, -1);
996 c = isl_constraint_set_coefficient_si(c, isl_dim_out,
997 first + wrap_len + i, 1);
998 c = isl_constraint_set_coefficient_si(c, isl_dim_out,
999 first + 2 * wrap_len + i, wrap_size[i]);
1000 bmap = isl_basic_map_add_constraint(bmap, c);
1002 c = isl_inequality_alloc(isl_local_space_copy(ls));
1003 c = isl_constraint_set_coefficient_si(c, isl_dim_out,
1004 first + wrap_len + i, 1);
1005 bmap = isl_basic_map_add_constraint(bmap, c);
1007 c = isl_inequality_alloc(isl_local_space_copy(ls));
1008 c = isl_constraint_set_coefficient_si(c, isl_dim_out,
1009 first + wrap_len + i, -1);
1010 c = isl_constraint_set_constant_si(c, wrap_size[i] - 1);
1011 bmap = isl_basic_map_add_constraint(bmap, c);
1014 isl_local_space_free(ls);
1016 bmap = isl_basic_map_project_out(bmap, isl_dim_out,
1017 first + 2 * wrap_len, wrap_len);
1019 return isl_map_from_basic_map(bmap);
1022 /* Add "n" parameters named prefix%d.
1024 static __isl_give isl_set *add_params( __isl_take isl_set *set,
1025 int n, const char *prefix)
1027 int i;
1028 unsigned nparam;
1029 char name[20];
1031 nparam = isl_set_dim(set, isl_dim_param);
1032 set = isl_set_add_dims(set, isl_dim_param, n);
1034 for (i = 0; i < n; ++i) {
1035 snprintf(name, sizeof(name), "%s%d", prefix, i);
1036 set = isl_set_set_dim_name(set, isl_dim_param,
1037 nparam + i, name);
1040 return set;
1043 /* Equate the "n" dimensions of "set" starting at "first" to
1044 * freshly created parameters named prefix%d.
1046 static __isl_give isl_set *parametrize(__isl_take isl_set *set,
1047 int first, int n, const char *prefix)
1049 int i;
1050 unsigned nparam;
1052 nparam = isl_set_dim(set, isl_dim_param);
1054 set = add_params(set, n, prefix);
1056 for (i = 0; i < n; ++i)
1057 set = isl_set_equate(set, isl_dim_param, nparam + i,
1058 isl_dim_set, first + i);
1060 return set;
1063 /* Given a parameter space "space", create a set of dimension "len"
1064 * of which the "n" dimensions starting at "first" are equated to
1065 * freshly created parameters named prefix%d.
1067 static __isl_give isl_set *parametrization(__isl_take isl_space *space,
1068 int len, int first, int n, const char *prefix)
1070 isl_set *set;
1072 space = isl_space_set_from_params(space);
1073 space = isl_space_add_dims(space, isl_dim_set, len);
1074 set = isl_set_universe(space);
1076 return parametrize(set, first, n, prefix);
1079 /* Tile the B loops over the tile sizes and then tile/wrap
1080 * the T1 loops over the blocks.
1082 static __isl_give isl_union_map *tile_schedule(struct gpu_gen *gen,
1083 __isl_take isl_union_map *sched)
1085 isl_space *dim;
1086 isl_map *tiling, *block_tiling;
1088 dim = isl_union_map_get_space(sched);
1089 tiling = tile(isl_space_copy(dim), gen->untiled_len,
1090 gen->tile_first, gen->tile_len, gen->tile_size);
1092 if (gen->options->wrap)
1093 block_tiling = wrap(dim, gen->untiled_len + gen->tile_len,
1094 gen->tile_first, gen->n_grid, gen->grid_dim);
1095 else
1096 block_tiling = tile(dim, gen->untiled_len + gen->tile_len,
1097 gen->tile_first, gen->n_grid, gen->grid_dim);
1099 gen->tiled_len = gen->untiled_len + gen->tile_len + gen->n_grid;
1101 tiling = isl_map_apply_range(tiling, block_tiling);
1103 sched = isl_union_map_apply_range(sched,
1104 isl_union_map_from_map(tiling));
1106 gen->shared_len = gen->tile_first + gen->tile_len + gen->n_grid;
1108 return sched;
1111 /* Equate the "T1P" iterators in the tiled schedule "sched"
1112 * to the block dimensions.
1114 static __isl_give isl_union_map *parametrize_tiled_schedule(
1115 struct gpu_gen *gen, __isl_take isl_union_map *sched)
1117 isl_space *dim;
1118 isl_set *par;
1120 dim = isl_union_map_get_space(sched);
1121 par = parametrization(dim, gen->tiled_len,
1122 gen->tile_first + gen->n_grid, gen->n_grid, "b");
1123 sched = isl_union_map_intersect_range(sched,
1124 isl_union_set_from_set(par));
1126 return sched;
1129 /* Tile/wrap the P1 loops over the threads.
1131 static __isl_give isl_union_map *thread_tile_schedule(struct gpu_gen *gen,
1132 __isl_take isl_union_map *sched)
1134 isl_space *dim;
1135 isl_map *tiling;
1136 isl_set *par;
1138 dim = isl_union_map_get_space(sched);
1140 if (gen->options->wrap)
1141 tiling = wrap(isl_space_copy(dim), gen->tiled_len,
1142 gen->shared_len, gen->n_block, gen->block_dim);
1143 else
1144 tiling = tile(isl_space_copy(dim), gen->tiled_len,
1145 gen->shared_len, gen->n_block, gen->block_dim);
1146 gen->thread_tiled_len = gen->tiled_len + gen->n_block;
1148 sched = isl_union_map_apply_range(sched,
1149 isl_union_map_from_map(tiling));
1151 par = parametrization(dim, gen->thread_tiled_len,
1152 gen->tile_first + gen->tile_len + gen->n_grid + gen->n_block,
1153 gen->n_block, "t");
1154 sched = isl_union_map_intersect_range(sched,
1155 isl_union_set_from_set(par));
1157 gen->shared_len = gen->tile_first + gen->tile_len + gen->n_grid;
1159 return sched;
1162 /* If the user asked for it, scale the shared memory tile loops
1163 * (T1T and T2) of "sched" by gen->tile_size[i].
1164 * If we are not performing "wrapping", then additionally scale the T1P
1165 * loops by gen->grid_dim[i].
1167 static __isl_give isl_union_map *scale_tile_loops(struct gpu_gen *gen,
1168 __isl_take isl_union_map *sched)
1170 int i;
1171 isl_space *dim;
1172 isl_basic_map *scale;
1173 isl_constraint *c;
1174 isl_local_space *ls;
1176 if (!gen->options->scale_tile_loops)
1177 return sched;
1179 dim = isl_union_map_get_space(sched);
1180 dim = isl_space_add_dims(dim, isl_dim_in, gen->tiled_len);
1181 dim = isl_space_add_dims(dim, isl_dim_out, gen->tiled_len);
1182 scale = isl_basic_map_universe(isl_space_copy(dim));
1183 ls = isl_local_space_from_space(dim);
1185 for (i = 0; i < gen->tiled_len; ++i) {
1186 int f = 1;
1188 if (i >= gen->tile_first && i < gen->tile_first + gen->n_grid) {
1189 f = gen->tile_size[i - gen->tile_first];
1190 if (!gen->options->wrap)
1191 f *= gen->grid_dim[i - gen->tile_first];
1192 } else if (i >= gen->tile_first + gen->n_grid &&
1193 i < gen->tile_first + gen->n_grid + gen->tile_len) {
1194 f = gen->tile_size[i - (gen->tile_first + gen->n_grid)];
1197 c = isl_equality_alloc(isl_local_space_copy(ls));
1198 c = isl_constraint_set_coefficient_si(c, isl_dim_in, i, f);
1199 c = isl_constraint_set_coefficient_si(c, isl_dim_out, i, -1);
1200 scale = isl_basic_map_add_constraint(scale, c);
1203 isl_local_space_free(ls);
1205 sched = isl_union_map_apply_range(sched,
1206 isl_union_map_from_map(isl_map_from_basic_map(scale)));
1208 return sched;
1211 /* If we are not performing "wrapping" and if the user asked for it,
1212 * scale the thread tile loops (P1T) of "sched" by gen->block_dim[i].
1214 static __isl_give isl_union_map *scale_thread_tile_loops(struct gpu_gen *gen,
1215 __isl_take isl_union_map *sched)
1217 int i;
1218 isl_space *dim;
1219 isl_basic_map *scale;
1220 isl_constraint *c;
1221 isl_local_space *ls;
1223 if (gen->options->wrap)
1224 return sched;
1225 if (!gen->options->scale_tile_loops)
1226 return sched;
1228 dim = isl_union_map_get_space(sched);
1229 dim = isl_space_add_dims(dim, isl_dim_in, gen->thread_tiled_len);
1230 dim = isl_space_add_dims(dim, isl_dim_out, gen->thread_tiled_len);
1231 scale = isl_basic_map_universe(isl_space_copy(dim));
1232 ls = isl_local_space_from_space(dim);
1234 for (i = 0; i < gen->thread_tiled_len; ++i) {
1235 int f = 1;
1237 if (i >= gen->shared_len &&
1238 i < gen->shared_len + gen->n_block)
1239 f = gen->block_dim[i - gen->shared_len];
1241 c = isl_equality_alloc(isl_local_space_copy(ls));
1242 c = isl_constraint_set_coefficient_si(c, isl_dim_in, i, f);
1243 c = isl_constraint_set_coefficient_si(c, isl_dim_out, i, -1);
1244 scale = isl_basic_map_add_constraint(scale, c);
1247 isl_local_space_free(ls);
1249 sched = isl_union_map_apply_range(sched,
1250 isl_union_map_from_map(isl_map_from_basic_map(scale)));
1252 return sched;
1255 /* If we are not performing "wrapping" and if the user asked for it,
1256 * scale the "n_tile" loops starting at "first" of "sched" by gen->block_dim[i].
1258 static __isl_give isl_union_map *scale_access_tile_loops(struct gpu_gen *gen,
1259 __isl_take isl_union_map *sched, int len, int first, int n_tile)
1261 int i;
1262 isl_space *dim;
1263 isl_basic_map *scale;
1264 isl_constraint *c;
1265 isl_local_space *ls;
1267 if (gen->options->wrap)
1268 return sched;
1269 if (!gen->options->scale_tile_loops)
1270 return sched;
1272 dim = isl_union_map_get_space(sched);
1273 dim = isl_space_add_dims(dim, isl_dim_in, len);
1274 dim = isl_space_add_dims(dim, isl_dim_out, len);
1275 scale = isl_basic_map_universe(isl_space_copy(dim));
1276 ls = isl_local_space_from_space(dim);
1278 for (i = 0; i < len; ++i) {
1279 int f = 1;
1281 if (i >= first && i < first + n_tile)
1282 f = gen->kernel->block_dim[i - first];
1284 c = isl_equality_alloc(isl_local_space_copy(ls));
1285 c = isl_constraint_set_coefficient_si(c, isl_dim_in, i, f);
1286 c = isl_constraint_set_coefficient_si(c, isl_dim_out, i, -1);
1287 scale = isl_basic_map_add_constraint(scale, c);
1290 isl_local_space_free(ls);
1292 sched = isl_union_map_apply_range(sched,
1293 isl_union_map_from_map(isl_map_from_basic_map(scale)));
1295 return sched;
1298 /* Add "len" parameters p[i] called prefix%d,
1299 * with bounds to 0 <= p[i] < size[i].
1301 __isl_give isl_set *add_bounded_parameters(__isl_take isl_set *set,
1302 int len, int *size, const char *prefix)
1304 int i;
1305 unsigned nparam;
1306 isl_space *dim;
1307 isl_basic_set *bset;
1308 isl_constraint *c;
1309 isl_local_space *ls;
1310 char name[20];
1312 nparam = isl_set_dim(set, isl_dim_param);
1313 set = isl_set_add_dims(set, isl_dim_param, len);
1315 for (i = 0; i < len; ++i) {
1316 snprintf(name, sizeof(name), "%s%d", prefix, i);
1317 set = isl_set_set_dim_name(set, isl_dim_param,
1318 nparam + i, name);
1321 dim = isl_set_get_space(set);
1322 bset = isl_basic_set_universe(isl_space_copy(dim));
1323 ls = isl_local_space_from_space(dim);
1325 for (i = 0; i < len; ++i) {
1326 c = isl_inequality_alloc(isl_local_space_copy(ls));
1327 c = isl_constraint_set_coefficient_si(c, isl_dim_param,
1328 nparam + i, 1);
1329 bset = isl_basic_set_add_constraint(bset, c);
1331 c = isl_inequality_alloc(isl_local_space_copy(ls));
1332 c = isl_constraint_set_coefficient_si(c, isl_dim_param,
1333 nparam + i, -1);
1334 c = isl_constraint_set_constant_si(c, size[i] - 1);
1335 bset = isl_basic_set_add_constraint(bset, c);
1338 isl_local_space_free(ls);
1340 return isl_set_intersect(set, isl_set_from_basic_set(bset));
1343 /* Add "len" parameters p[i] called prefix%d and intersect "set"
1344 * with
1346 * { : 0 <= p[i] < size[i] }
1348 * or an overapproximation.
1350 static __isl_give isl_set *add_bounded_parameters_dynamic(
1351 __isl_take isl_set *set, __isl_keep isl_multi_pw_aff *size,
1352 const char *prefix)
1354 int i, len;
1355 unsigned nparam;
1356 isl_space *space;
1357 isl_local_space *ls;
1358 char name[20];
1360 len = isl_multi_pw_aff_dim(size, isl_dim_out);
1361 nparam = isl_set_dim(set, isl_dim_param);
1362 set = isl_set_add_dims(set, isl_dim_param, len);
1364 for (i = 0; i < len; ++i) {
1365 snprintf(name, sizeof(name), "%s%d", prefix, i);
1366 set = isl_set_set_dim_name(set, isl_dim_param,
1367 nparam + i, name);
1370 space = isl_space_params(isl_set_get_space(set));
1371 ls = isl_local_space_from_space(space);
1372 for (i = 0; i < len; ++i) {
1373 isl_pw_aff *param, *size_i, *zero;
1374 isl_set *bound;
1376 param = isl_pw_aff_var_on_domain(isl_local_space_copy(ls),
1377 isl_dim_param, nparam + i);
1379 size_i = isl_multi_pw_aff_get_pw_aff(size, i);
1380 bound = isl_pw_aff_lt_set(isl_pw_aff_copy(param), size_i);
1381 bound = isl_set_from_basic_set(isl_set_simple_hull(bound));
1382 set = isl_set_intersect_params(set, bound);
1384 zero = isl_pw_aff_zero_on_domain(isl_local_space_copy(ls));
1385 bound = isl_pw_aff_ge_set(param, zero);
1386 set = isl_set_intersect_params(set, bound);
1388 isl_local_space_free(ls);
1390 return set;
1393 /* Construct a map from an access to group->array to the corresponding
1394 * shared/private memory tile.
1395 * The map is of the form
1397 * { [D[i] -> A[a]] -> T[t] }
1399 * where D represents the initial shared_len dimensions
1400 * of the computed schedule.
1402 static __isl_give isl_map *shift_access(struct gpu_array_ref_group *group)
1404 struct gpu_array_tile *tile;
1405 isl_multi_aff *tiling;
1407 tile = group->private_tile;
1408 if (!tile)
1409 tile = group->shared_tile;
1411 tiling = isl_multi_aff_copy(tile->tiling);
1413 return isl_map_from_multi_aff(tiling);
1416 /* Does "map" have an obviously fixed value at variable "pos" of "type"?
1418 static int map_plain_is_fixed(isl_map *map, enum isl_dim_type type,
1419 unsigned pos)
1421 isl_val *v;
1422 int fixed;
1424 v = isl_map_plain_get_val_if_fixed(map, type, pos);
1425 if (!v)
1426 return -1;
1427 fixed = isl_val_is_int(v);
1428 isl_val_free(v);
1430 return fixed;
1433 /* Given a schedule that iterates over all elements in a piece of an array,
1434 * perform tiling/wrapping over the threads.
1436 * In particular, we tile the final iterators so that the final thread
1437 * dimension runs over the final array dimension.
1438 * However, if those final iterators have only a single iteration,
1439 * we try to tile earlier iterators instead.
1441 static __isl_give isl_map *tile_access_schedule(struct gpu_gen *gen,
1442 __isl_take isl_map *sched)
1444 isl_space *dim;
1445 isl_union_map *usched;
1446 isl_map *tiling;
1447 isl_set *par;
1448 unsigned nvar = isl_map_dim(sched, isl_dim_out);
1449 int n_tile;
1450 int first;
1452 n_tile = gen->kernel->n_block;
1453 if (n_tile > nvar) {
1454 int i;
1455 sched = isl_map_insert_dims(sched,
1456 isl_dim_out, 0, n_tile - nvar);
1457 for (i = 0; i < n_tile - nvar; ++i)
1458 sched = isl_map_fix_si(sched, isl_dim_out, i, 0);
1459 nvar = n_tile;
1462 first = nvar - n_tile;
1464 for (; first > 0; first --)
1465 if (!map_plain_is_fixed(sched, isl_dim_out, first + n_tile - 1))
1466 break;
1468 dim = isl_map_get_space(sched);
1469 dim = isl_space_params(dim);
1470 if (gen->options->wrap)
1471 tiling = wrap(isl_space_copy(dim), nvar, first,
1472 n_tile, gen->kernel->block_dim);
1473 else
1474 tiling = tile(isl_space_copy(dim), nvar, first,
1475 n_tile, gen->kernel->block_dim);
1476 sched = isl_map_apply_range(sched, tiling);
1478 par = parametrization(dim, nvar + n_tile, first + n_tile, n_tile, "t");
1479 sched = isl_map_intersect_range(sched, par);
1481 usched = isl_union_map_from_map(sched);
1482 usched = scale_access_tile_loops(gen, usched, nvar + n_tile,
1483 first, n_tile);
1484 sched = isl_map_from_union_map(usched);
1486 return sched;
1489 /* Return the union of all read (read = 1) and/or write (write = 1)
1490 * access relations in the group.
1492 static __isl_give isl_union_map *group_access_relation(
1493 struct gpu_array_ref_group *group, int read, int write)
1495 int i;
1496 isl_union_map *access;
1498 access = isl_union_map_empty(isl_map_get_space(group->access));
1499 for (i = 0; i < group->n_ref; ++i) {
1500 isl_map *map_i;
1502 if (!((read && group->refs[i]->read) ||
1503 (write && group->refs[i]->write)))
1504 continue;
1505 map_i = isl_map_copy(group->refs[i]->access);
1506 access = isl_union_map_union(access,
1507 isl_union_map_from_map(map_i));
1510 return access;
1513 /* Return the union of all tagged access relations in the group.
1515 static __isl_give isl_union_map *group_tagged_access_relation(
1516 struct gpu_array_ref_group *group)
1518 int i;
1519 isl_union_map *access;
1521 access = isl_union_map_empty(isl_map_get_space(group->access));
1522 for (i = 0; i < group->n_ref; ++i) {
1523 isl_map *map_i;
1525 map_i = isl_map_copy(group->refs[i]->tagged_access);
1526 access = isl_union_map_union(access,
1527 isl_union_map_from_map(map_i));
1530 return access;
1533 /* Return the extent of "array", recomputed from the bounds.
1534 * The recomputed extent may be simpler than the original extent.
1536 static __isl_give isl_set *array_extent(struct gpu_array_info *array)
1538 int i;
1539 isl_id *id;
1540 isl_space *space;
1541 isl_local_space *ls;
1542 isl_set *extent;
1544 id = isl_set_get_tuple_id(array->extent);
1545 space = isl_set_get_space(array->extent);
1546 extent = isl_set_universe(isl_space_copy(space));
1547 ls = isl_local_space_from_space(space);
1548 for (i = 0; i < array->n_index; ++i) {
1549 isl_pw_aff *bound;
1550 isl_aff *aff;
1551 isl_pw_aff *index;
1552 isl_set *lt;
1554 extent = isl_set_lower_bound_si(extent, isl_dim_set, i, 0);
1556 aff = isl_aff_var_on_domain(isl_local_space_copy(ls),
1557 isl_dim_set, i);
1558 index = isl_pw_aff_from_aff(aff);
1559 bound = isl_pw_aff_copy(array->bound[i]);
1560 bound = isl_pw_aff_from_range(bound);
1561 bound = isl_pw_aff_add_dims(bound, isl_dim_in, array->n_index);
1562 bound = isl_pw_aff_set_tuple_id(bound, isl_dim_in,
1563 isl_id_copy(id));
1564 lt = isl_pw_aff_lt_set(index, bound);
1565 extent = isl_set_intersect(extent, lt);
1567 isl_local_space_free(ls);
1568 isl_id_free(id);
1570 return extent;
1573 /* Return a map from the first shared_len dimensions of the computed
1574 * schedule to the array tile in
1575 * global memory that corresponds to the shared memory copy.
1577 * In particular, return a map
1579 * { D[i] -> A[a] }
1581 * with constraints
1583 * tile_offset(i) <= a <= tile_offset(i) + tile_size - 1 (1)
1585 * and
1587 * 0 <= a <= array_size - 1 (2)
1589 * Note that if some stride has been detected (i.e., when
1590 * group->shared_tile->bound[i].shift is set), then a in (1) refers
1591 * to the shifted and scaled down version.
1593 * Constraints (1) are obtained by mapping the size constraints on the
1594 * shared/private memory tile back to the access relation.
1595 * Constraints (2) are obtained from the (recomputed) extent.
1597 static __isl_give isl_map *group_tile(struct gpu_array_ref_group *group)
1599 int i;
1600 int n_index = group->array->n_index;
1601 isl_map *tile;
1602 isl_space *space;
1603 isl_set *local;
1604 isl_set *extent;
1606 space = isl_multi_aff_get_space(group->shared_tile->tiling);
1607 space = isl_space_range(space);
1608 local = isl_set_universe(space);
1609 for (i = 0; i < n_index; ++i) {
1610 isl_val *bound;
1612 local = isl_set_lower_bound_si(local, isl_dim_set, i, 0);
1613 bound = isl_val_copy(group->shared_tile->bound[i].size);
1614 bound = isl_val_sub_ui(bound, 1);
1615 local = isl_set_upper_bound_val(local, isl_dim_set, i, bound);
1617 local = isl_set_preimage_multi_aff(local,
1618 isl_multi_aff_copy(group->shared_tile->tiling));
1619 tile = isl_set_unwrap(local);
1620 extent = array_extent(group->array);
1621 tile = isl_map_intersect_range(tile, extent);
1623 return tile;
1626 /* Given a mapping "iterator_map" from the AST schedule to a domain,
1627 * return the corresponding mapping from the AST schedule to
1628 * to the first shared_len dimensions of the schedule computed by PPCG.
1630 static __isl_give isl_pw_multi_aff *compute_sched_to_shared(struct gpu_gen *gen,
1631 __isl_take isl_pw_multi_aff *iterator_map)
1633 isl_union_map *umap;
1634 isl_space *space;
1635 isl_map *map, *sched;;
1637 space = isl_space_range(isl_pw_multi_aff_get_space(iterator_map));
1638 space = isl_space_from_domain(space);
1639 space = isl_space_add_dims(space, isl_dim_out, gen->shared_len);
1641 umap = isl_union_map_copy(gen->shared_sched);
1642 umap = isl_union_map_apply_range(umap,
1643 isl_union_map_copy(gen->shared_proj));
1644 map = isl_union_map_extract_map(umap, space);
1645 isl_union_map_free(umap);
1647 sched = isl_map_preimage_domain_pw_multi_aff(map, iterator_map);
1648 sched = isl_map_detect_equalities(sched);
1650 return isl_pw_multi_aff_from_map(sched);
1653 /* Set unroll[j] if the input dimension j is involved in
1654 * the index expression represented by ma.
1656 static int check_unroll(__isl_take isl_set *set, __isl_take isl_multi_aff *ma,
1657 void *user)
1659 int i, j;
1660 int n_in = isl_multi_aff_dim(ma, isl_dim_in);
1661 int n_out = isl_multi_aff_dim(ma, isl_dim_out);
1662 int *unroll = user;
1664 for (i = 0; i < n_out; ++i) {
1665 isl_aff *aff;
1667 aff = isl_multi_aff_get_aff(ma, i);
1668 for (j = 0; j < n_in; ++j)
1669 if (isl_aff_involves_dims(aff, isl_dim_in, j, 1))
1670 unroll[j] = 1;
1671 isl_aff_free(aff);
1674 isl_set_free(set);
1675 isl_multi_aff_free(ma);
1676 return 0;
1679 /* Given an array pos mapping input dimensions to the corresponding
1680 * output dimension, construct the corresponding map.
1682 static __isl_give isl_map *permutation(__isl_take isl_space *dim,
1683 int *pos, int len)
1685 int i;
1686 isl_constraint *c;
1687 isl_basic_map *bmap;
1688 isl_local_space *ls;
1690 dim = isl_space_add_dims(dim, isl_dim_in, len);
1691 dim = isl_space_add_dims(dim, isl_dim_out, len);
1692 bmap = isl_basic_map_universe(isl_space_copy(dim));
1693 ls = isl_local_space_from_space(dim);
1695 for (i = 0; i < len; ++i) {
1696 c = isl_equality_alloc(isl_local_space_copy(ls));
1697 c = isl_constraint_set_coefficient_si(c, isl_dim_in, i,
1698 -1);
1699 c = isl_constraint_set_coefficient_si(c, isl_dim_out, pos[i],
1701 bmap = isl_basic_map_add_constraint(bmap, c);
1703 isl_local_space_free(ls);
1705 return isl_map_from_basic_map(bmap);
1708 /* Remove the private tiles from all array reference groups,
1709 * except for the groups of arrays that are marked force_private.
1711 static void remove_private_tiles(struct gpu_gen *gen)
1713 int i, j;
1715 for (i = 0; i < gen->prog->n_array; ++i) {
1716 struct gpu_array_info *array = &gen->prog->array[i];
1718 if (array->force_private)
1719 continue;
1721 for (j = 0; j < array->n_group; ++j) {
1722 struct gpu_array_ref_group *group = array->groups[j];
1724 group->private_tile = free_tile(group->private_tile);
1729 /* Find all loops involved in any of the index expressions for any of
1730 * the private accesses, move them innermost and then mark them as
1731 * requiring unrolling by setting gen->first_unroll.
1732 * The loops involved should all be parallel because of the checks
1733 * we performed in check_private_group_access. Moving them innermost
1734 * is therefore a valid transformation.
1736 * If any of the arrays are marked force_private, however, then
1737 * those loops may not be parallel with respect to the marked arrays.
1738 * If any of the loops would have to be moved innermost for the
1739 * (non forced) private accesses and if there are any force_private
1740 * arrays, then we revert the decision to map the selected arrays
1741 * to private memory. An alternative solution would be to expand
1742 * the force_private arrays.
1744 * Loops up to gen->shared_len are generated before the mapping to
1745 * threads is applied. They should therefore be ignored.
1747 * We compute the hidden equalities of the schedule first
1748 * since we will need them in our calls to isl_pw_multi_aff_from_map
1749 * and because we want to make sure that the same equalities
1750 * are also available to the code generator.
1752 static __isl_give isl_union_map *interchange_for_unroll(struct gpu_gen *gen,
1753 __isl_take isl_union_map *sched)
1755 int i, j;
1756 int unroll[gen->thread_tiled_len];
1757 int perm[gen->thread_tiled_len];
1758 isl_space *dim;
1759 isl_map *permute;
1760 int len = gen->shared_len + gen->n_parallel + gen->n_block;
1762 gen->first_unroll = -1;
1764 sched = isl_union_map_detect_equalities(sched);
1765 for (i = 0; i < gen->thread_tiled_len; ++i)
1766 unroll[i] = 0;
1767 for (i = 0; i < gen->prog->n_array; ++i) {
1768 struct gpu_array_info *array = &gen->prog->array[i];
1770 for (j = 0; j < array->n_group; ++j) {
1771 isl_union_map *access;
1772 isl_map *acc;
1773 isl_pw_multi_aff *pma;
1775 if (!array->groups[j]->private_tile)
1776 continue;
1778 access = group_access_relation(array->groups[j], 1, 1);
1779 access = isl_union_map_apply_domain(access,
1780 isl_union_map_copy(sched));
1782 acc = isl_map_from_union_map(access);
1783 pma = isl_pw_multi_aff_from_map(acc);
1784 isl_pw_multi_aff_foreach_piece(pma,
1785 &check_unroll, unroll);
1787 isl_pw_multi_aff_free(pma);
1791 for (i = gen->shared_len; i < len; ++i)
1792 if (unroll[i])
1793 break;
1795 if (i >= len)
1796 return sched;
1798 for (i = len; i < gen->thread_tiled_len; ++i)
1799 if (unroll[i])
1800 return sched;
1802 if (gen->any_force_private) {
1803 remove_private_tiles(gen);
1804 return sched;
1807 j = 0;
1808 for (i = 0; i < gen->shared_len; ++i)
1809 perm[i] = j++;
1810 for (i = gen->shared_len; i < gen->thread_tiled_len; ++i)
1811 if (!unroll[i])
1812 perm[i] = j++;
1813 gen->first_unroll = j - gen->shared_len;
1814 for (i = gen->shared_len; i < len; ++i)
1815 if (unroll[i])
1816 perm[i] = j++;
1818 dim = isl_union_map_get_space(sched);
1819 permute = permutation(dim, perm, gen->thread_tiled_len);
1820 sched = isl_union_map_apply_range(sched,
1821 isl_union_map_from_map(permute));
1823 return sched;
1826 /* Given a constraint
1828 * a(p,i) + j = g f(e)
1830 * or -a(p,i) - j = g f(e) if sign < 0,
1831 * store a(p,i) in bound->shift and g (stride) in bound->stride.
1832 * a(p,i) is assumed to be an expression in only the parameters
1833 * and the input dimensions.
1835 static void extract_stride(__isl_keep isl_constraint *c,
1836 struct gpu_array_bound *bound, __isl_keep isl_val *stride, int sign)
1838 int i;
1839 isl_val *v;
1840 isl_space *space;
1841 unsigned nparam;
1842 unsigned nvar;
1843 isl_aff *aff;
1845 isl_val_free(bound->stride);
1846 bound->stride = isl_val_copy(stride);
1848 space = isl_constraint_get_space(c);
1849 space = isl_space_domain(space);
1851 nparam = isl_space_dim(space, isl_dim_param);
1852 nvar = isl_space_dim(space, isl_dim_set);
1854 v = isl_constraint_get_constant_val(c);
1855 if (sign < 0)
1856 v = isl_val_neg(v);
1857 aff = isl_aff_zero_on_domain(isl_local_space_from_space(space));
1858 aff = isl_aff_set_constant_val(aff, v);
1860 for (i = 0; i < nparam; ++i) {
1861 if (!isl_constraint_involves_dims(c, isl_dim_param, i, 1))
1862 continue;
1863 v = isl_constraint_get_coefficient_val(c, isl_dim_param, i);
1864 if (sign < 0)
1865 v = isl_val_neg(v);
1866 aff = isl_aff_add_coefficient_val(aff, isl_dim_param, i, v);
1869 for (i = 0; i < nvar; ++i) {
1870 if (!isl_constraint_involves_dims(c, isl_dim_in, i, 1))
1871 continue;
1872 v = isl_constraint_get_coefficient_val(c, isl_dim_in, i);
1873 if (sign < 0)
1874 v = isl_val_neg(v);
1875 aff = isl_aff_add_coefficient_val(aff, isl_dim_in, i, v);
1878 bound->shift = aff;
1881 /* Given an equality constraint of a map with a single output dimension j,
1882 * check if the constraint is of the form
1884 * a(p,i) + j = g f(e)
1886 * with a(p,i) an expression in the parameters and input dimensions
1887 * and f(e) an expression in the existentially quantified variables.
1888 * If so, and if g is larger than any such g from a previously considered
1889 * constraint, then call extract_stride to record the stride information
1890 * in bound.
1892 static int check_stride_constraint(__isl_take isl_constraint *c, void *user)
1894 int i;
1895 isl_ctx *ctx;
1896 isl_val *v;
1897 unsigned n_div;
1898 struct gpu_array_bound *bound = user;
1900 ctx = isl_constraint_get_ctx(c);
1901 n_div = isl_constraint_dim(c, isl_dim_div);
1902 v = isl_constraint_get_coefficient_val(c, isl_dim_out, 0);
1904 if (n_div && (isl_val_is_one(v) || isl_val_is_negone(v))) {
1905 int s = isl_val_sgn(v);
1906 isl_val *stride = isl_val_zero(ctx);
1908 isl_val_free(v);
1909 for (i = 0; i < n_div; ++i) {
1910 v = isl_constraint_get_coefficient_val(c,
1911 isl_dim_div, i);
1912 stride = isl_val_gcd(stride, v);
1914 if (!isl_val_is_zero(stride) &&
1915 isl_val_gt(stride, bound->stride))
1916 extract_stride(c, bound, stride, s);
1918 isl_val_free(stride);
1919 } else
1920 isl_val_free(v);
1922 isl_constraint_free(c);
1923 return 0;
1926 /* Given contraints on an array index i, check if we can find
1927 * a shift a(p) and a stride g such that
1929 * a(p) + i = 0 mod g
1931 * If so, record the information in bound and apply the mapping
1932 * i -> (i + a(p))/g to the array index in bounds and return
1933 * the new constraints.
1934 * If not, simply return the original constraints.
1936 * If bounds is a subset of the space
1938 * D -> i
1940 * then the bound recorded in bound->shift is of the form
1942 * D -> s(D)
1944 * with s(D) equal to a(p) above.
1945 * Next, we construct a mapping of the form
1947 * [D -> i] -> [D -> (i + S(D))/g]
1949 * This mapping is computed as follows.
1950 * We first introduce "i" in the domain through precomposition
1951 * with [D -> i] -> D obtaining
1953 * [D -> i] -> s(D)
1955 * Adding [D -> i] -> i produces
1957 * [D -> i] -> i + s(D)
1959 * and the domain product with [D -> i] -> D yields
1961 * [D -> i] -> [D -> i + s(D)]
1963 * Composition with [D -> i] -> [D -> i/g] gives the desired result.
1965 static __isl_give isl_basic_map *check_stride(struct gpu_array_bound *bound,
1966 __isl_take isl_basic_map *bounds)
1968 isl_space *space;
1969 isl_basic_map *hull;
1970 isl_basic_map *shift, *id, *bmap, *scale;
1971 isl_basic_set *bset;
1972 isl_aff *aff;
1974 bound->stride = NULL;
1976 hull = isl_basic_map_affine_hull(isl_basic_map_copy(bounds));
1978 isl_basic_map_foreach_constraint(hull, &check_stride_constraint, bound);
1980 isl_basic_map_free(hull);
1982 if (!bound->stride)
1983 return bounds;
1985 shift = isl_basic_map_from_aff(isl_aff_copy(bound->shift));
1986 space = isl_basic_map_get_space(bounds);
1987 bmap = isl_basic_map_domain_map(isl_basic_map_universe(space));
1988 shift = isl_basic_map_apply_range(bmap, shift);
1989 space = isl_basic_map_get_space(bounds);
1990 id = isl_basic_map_range_map(isl_basic_map_universe(space));
1991 shift = isl_basic_map_sum(id, shift);
1992 space = isl_basic_map_get_space(bounds);
1993 id = isl_basic_map_domain_map(isl_basic_map_universe(space));
1994 shift = isl_basic_map_range_product(id, shift);
1996 space = isl_space_domain(isl_basic_map_get_space(bounds));
1997 id = isl_basic_map_identity(isl_space_map_from_set(space));
1998 space = isl_space_range(isl_basic_map_get_space(bounds));
1999 aff = isl_aff_zero_on_domain(isl_local_space_from_space(space));
2000 aff = isl_aff_add_coefficient_si(aff, isl_dim_in, 0, 1);
2001 aff = isl_aff_scale_down_val(aff, isl_val_copy(bound->stride));
2002 scale = isl_basic_map_from_aff(aff);
2003 scale = isl_basic_map_product(id, scale);
2005 bmap = isl_basic_map_apply_range(shift, scale);
2006 bset = isl_basic_set_apply(isl_basic_map_wrap(bounds), bmap);
2007 bounds = isl_basic_set_unwrap(bset);
2009 return bounds;
2012 /* Data used in compute_array_dim_size and compute_size_in_direction.
2014 * pos is the position of the variable representing the array index,
2015 * i.e., the variable for which want to compute the size. This variable
2016 * is also the last variable in the set.
2018 struct gpu_size_info {
2019 isl_basic_set *bset;
2020 struct gpu_array_bound *bound;
2021 int pos;
2024 /* Given a constraint from the basic set describing the bounds on
2025 * an array index, check if it is a lower bound, say m i >= b(x), and,
2026 * if so, check whether the expression "i - ceil(b(x)/m) + 1" has a constant
2027 * upper bound. If so, and if this bound is smaller than any bound
2028 * derived from earlier constraints, set the size to this bound on
2029 * the expression and the lower bound to ceil(b(x)/m).
2031 static int compute_size_in_direction(__isl_take isl_constraint *c, void *user)
2033 struct gpu_size_info *size = user;
2034 unsigned nparam;
2035 unsigned n_div;
2036 isl_val *v;
2037 isl_aff *aff;
2038 isl_aff *lb;
2040 nparam = isl_basic_set_dim(size->bset, isl_dim_param);
2041 n_div = isl_constraint_dim(c, isl_dim_div);
2043 if (isl_constraint_involves_dims(c, isl_dim_div, 0, n_div) ||
2044 !isl_constraint_is_lower_bound(c, isl_dim_set, size->pos)) {
2045 isl_constraint_free(c);
2046 return 0;
2049 aff = isl_constraint_get_bound(c, isl_dim_set, size->pos);
2050 aff = isl_aff_ceil(aff);
2052 lb = isl_aff_copy(aff);
2054 aff = isl_aff_neg(aff);
2055 aff = isl_aff_add_coefficient_si(aff, isl_dim_in, size->pos, 1);
2057 v = isl_basic_set_max_val(size->bset, aff);
2058 isl_aff_free(aff);
2060 if (isl_val_is_int(v)) {
2061 v = isl_val_add_ui(v, 1);
2062 if (!size->bound->size || isl_val_lt(v, size->bound->size)) {
2063 isl_val_free(size->bound->size);
2064 size->bound->size = isl_val_copy(v);
2065 lb = isl_aff_drop_dims(lb, isl_dim_in, size->pos, 1);
2066 isl_aff_free(size->bound->lb);
2067 size->bound->lb = isl_aff_copy(lb);
2070 isl_val_free(v);
2071 isl_aff_free(lb);
2073 isl_constraint_free(c);
2075 return 0;
2078 /* Given a basic map "bounds" that maps parameters and input dimensions
2079 * to a single output dimension, look for an expression in the parameters
2080 * and input dimensions such that the range of the output dimension shifted
2081 * by this expression is a constant.
2083 * In particular, we currently only consider lower bounds on the output
2084 * dimension as candidate expressions.
2086 static int compute_array_dim_size(struct gpu_array_bound *bound,
2087 __isl_take isl_basic_map *bounds)
2089 struct gpu_size_info size;
2091 bounds = isl_basic_map_detect_equalities(bounds);
2092 bounds = check_stride(bound, bounds);
2094 bound->size = NULL;
2095 bound->lb = NULL;
2097 size.bound = bound;
2098 size.pos = isl_basic_map_dim(bounds, isl_dim_in);
2099 size.bset = isl_basic_map_wrap(bounds);
2100 size.bset = isl_basic_set_flatten(size.bset);
2101 size.bset = isl_set_simple_hull(isl_basic_set_compute_divs(size.bset));
2102 isl_basic_set_foreach_constraint(size.bset, &compute_size_in_direction,
2103 &size);
2104 isl_basic_set_free(size.bset);
2106 return bound->size ? 0 : -1;
2109 /* Check if we can find a memory tile for the given array
2110 * based on the given accesses, and if so, put the results in "tile".
2112 * We project the accesses on each index in turn and look for a parametric
2113 * offset such that the size is constant.
2115 static int can_tile(__isl_keep isl_map *access, struct gpu_array_tile *tile)
2117 int i;
2119 for (i = 0; i < tile->n; ++i) {
2120 isl_map *access_i;
2121 isl_basic_map *hull;
2123 access_i = isl_map_copy(access);
2124 access_i = isl_map_project_out(access_i, isl_dim_out, 0, i);
2125 access_i = isl_map_project_out(access_i, isl_dim_out,
2126 1, tile->n - (i + 1));
2127 access_i = isl_map_compute_divs(access_i);
2128 hull = isl_map_simple_hull(access_i);
2129 if (compute_array_dim_size(&tile->bound[i], hull) < 0)
2130 return 0;
2133 return 1;
2136 /* Construct a map with input the shared tile loops and the loops that
2137 * will be wrapped around the threads that relates these later loops
2138 * to the thread indices and then projects them out.
2140 static __isl_give isl_map *compute_privatization(struct gpu_gen *gen)
2142 isl_map *priv;
2143 isl_map *tiling;
2144 isl_map *proj;
2145 isl_set *par;
2146 isl_space *dim;
2148 dim = isl_union_map_get_space(gen->shared_sched);
2150 if (gen->options->wrap)
2151 tiling = wrap(isl_space_copy(dim), gen->shared_len + gen->n_block,
2152 gen->shared_len, gen->n_block, gen->block_dim);
2153 else
2154 tiling = tile(isl_space_copy(dim), gen->shared_len + gen->n_block,
2155 gen->shared_len, gen->n_block, gen->block_dim);
2157 priv = tiling;
2159 par = parametrization(dim, gen->shared_len + 2 * gen->n_block,
2160 gen->tile_first + gen->tile_len + gen->n_grid + gen->n_block,
2161 gen->n_block, "t");
2163 priv = isl_map_align_params(priv, isl_set_get_space(par));
2164 priv = isl_map_intersect_range(priv, par);
2166 dim = isl_map_get_space(priv);
2167 dim = isl_space_drop_dims(dim, isl_dim_in, 0, isl_space_dim(dim, isl_dim_in));
2168 dim = isl_space_drop_dims(dim, isl_dim_out, 0, isl_space_dim(dim, isl_dim_out));
2169 proj = projection(dim, gen->shared_len + 2 * gen->n_block,
2170 gen->shared_len);
2172 priv = isl_map_apply_range(priv, proj);
2174 return priv;
2177 /* Construct a map from domain_dim to domain_dim that increments
2178 * the dimension at position "pos" and leaves all other dimensions
2179 * constant.
2181 static __isl_give isl_map *next(__isl_take isl_space *domain_dim, int pos)
2183 int i;
2184 int len = isl_space_dim(domain_dim, isl_dim_set);
2185 isl_space *dim;
2186 isl_basic_map *next;
2187 isl_local_space *ls;
2189 dim = isl_space_map_from_set(domain_dim);
2190 next = isl_basic_map_universe(isl_space_copy(dim));
2191 ls = isl_local_space_from_space(dim);
2193 for (i = 0; i < len; ++i) {
2194 isl_constraint *c;
2196 c = isl_equality_alloc(isl_local_space_copy(ls));
2197 c = isl_constraint_set_coefficient_si(c, isl_dim_in, i, 1);
2198 c = isl_constraint_set_coefficient_si(c, isl_dim_out, i, -1);
2199 if (i == pos)
2200 c = isl_constraint_set_constant_si(c, 1);
2201 next = isl_basic_map_add_constraint(next, c);
2204 isl_local_space_free(ls);
2206 return isl_map_from_basic_map(next);
2209 /* Check if the given access is coalesced.
2210 * That is, check whether incrementing the dimension that will get
2211 * wrapped over the last thread index results in incrementing
2212 * the last array index.
2214 * This function is only called for access relations without reuse and
2215 * kernels with at least one block dimension.
2217 static int access_is_coalesced(struct gpu_gen *gen,
2218 __isl_keep isl_union_map *access)
2220 isl_space *dim;
2221 isl_map *access_map;
2222 isl_map *next_thread_x;
2223 isl_map *next_element;
2224 isl_map *map;
2225 int coalesced;
2227 access = isl_union_map_copy(access);
2228 access = isl_union_map_apply_domain(access,
2229 isl_union_map_copy(gen->tiled_sched));
2230 access_map = isl_map_from_union_map(access);
2232 dim = isl_map_get_space(access_map);
2233 dim = isl_space_domain(dim);
2234 next_thread_x = next(dim, gen->shared_len + gen->n_block - 1);
2236 dim = isl_map_get_space(access_map);
2237 dim = isl_space_range(dim);
2238 next_element = next(dim, isl_space_dim(dim, isl_dim_set) - 1);
2240 map = isl_map_apply_domain(next_thread_x, isl_map_copy(access_map));
2241 map = isl_map_apply_range(map, access_map);
2243 coalesced = isl_map_is_subset(map, next_element);
2245 isl_map_free(next_element);
2246 isl_map_free(map);
2248 return coalesced;
2251 /* Given an access relation in terms of the first gen->shared_len + gen->n_block
2252 * dimensions of the computed schedule, check if it is bijective for
2253 * fixed values of the first gen->shared_len dimensions.
2254 * We perform this check by equating these dimensions to parameters.
2256 static int access_is_bijective(struct gpu_gen *gen, __isl_keep isl_map *access)
2258 int res;
2259 isl_set *par;
2260 isl_space *space;
2262 access = isl_map_copy(access);
2263 space = isl_space_params(isl_map_get_space(access));
2264 par = parametrization(space, gen->shared_len + gen->n_block,
2265 0, gen->shared_len, "s");
2266 access = isl_map_intersect_domain(access, par);
2267 res = isl_map_is_bijective(access);
2268 isl_map_free(access);
2270 return res;
2273 /* Look for the last shared tile loop that affects the offset of "tile"
2274 * and return the result.
2275 * If there is no such loop, then return the index of the loop
2276 * before the first shared tile loop, in particular gen->tile_first - 1.
2278 static int compute_tile_last_shared(struct gpu_gen *gen,
2279 struct gpu_array_tile *tile)
2281 int i, j;
2283 for (j = gen->shared_len - 1; j >= gen->tile_first; --j) {
2284 for (i = 0; i < tile->n; ++i) {
2285 isl_aff *lb;
2286 isl_aff *shift;
2288 lb = tile->bound[i].lb;
2289 if (isl_aff_involves_dims(lb, isl_dim_in, j, 1))
2290 break;
2292 shift = tile->bound[i].shift;
2293 if (!shift)
2294 continue;
2295 if (isl_aff_involves_dims(shift, isl_dim_in, j, 1))
2296 break;
2298 if (i < tile->n)
2299 break;
2302 return j;
2305 /* Look for the last shared tile loop that affects the offset of the
2306 * shared or private tile and store the result in group->last_shared.
2307 * If there is no such loop, then group->last_shared is set to a value
2308 * before the first shared tile loop, in particular gen->tile_first - 1.
2309 * If there is no tile defined on the array reference group,
2310 * then set group->last_shared to gen->shared_len - 1.
2312 static void set_last_shared(struct gpu_gen *gen,
2313 struct gpu_array_ref_group *group)
2315 struct gpu_array_tile *tile;
2317 group->last_shared = gen->shared_len - 1;
2319 tile = group->private_tile;
2320 if (!tile)
2321 tile = group->shared_tile;
2322 if (!tile)
2323 return;
2325 group->last_shared = compute_tile_last_shared(gen, tile);
2328 /* Compute the size of the tile specified by "tile"
2329 * in number of elements and return the result.
2331 static __isl_give isl_val *tile_size(isl_ctx *ctx, struct gpu_array_tile *tile)
2333 int i;
2334 isl_val *size;
2336 size = isl_val_one(ctx);
2338 for (i = 0; i < tile->n; ++i)
2339 size = isl_val_mul(size, isl_val_copy(tile->bound[i].size));
2341 return size;
2344 /* If max_shared_memory is not set to infinity (-1), then make
2345 * sure that the total amount of shared memory required by the
2346 * array reference groups mapped to shared memory is no larger
2347 * than this maximum.
2349 * We apply a greedy approach and discard (keep in global memory)
2350 * those groups that would result in a total memory size that
2351 * is larger than the maximum.
2353 * This function should be called after any function that may
2354 * affect the decision on whether to place a reference group
2355 * in private, shared or global memory.
2357 static void check_shared_memory_bound(struct gpu_gen *gen)
2359 int i, j;
2360 isl_val *left, *size;
2362 if (gen->options->max_shared_memory < 0)
2363 return;
2365 left = isl_val_int_from_si(gen->ctx, gen->options->max_shared_memory);
2367 for (i = 0; i < gen->prog->n_array; ++i) {
2368 struct gpu_array_info *array = &gen->prog->array[i];
2370 for (j = 0; j < array->n_group; ++j) {
2371 struct gpu_array_ref_group *group;
2373 group = array->groups[j];
2374 if (group->private_tile)
2375 continue;
2376 if (!group->shared_tile)
2377 continue;
2379 size = tile_size(gen->ctx, group->shared_tile);
2380 size = isl_val_mul_ui(size, array->size);
2382 if (isl_val_le(size, left)) {
2383 left = isl_val_sub(left, size);
2384 continue;
2386 isl_val_free(size);
2388 group->shared_tile = free_tile(group->shared_tile);
2392 isl_val_free(left);
2395 /* Given a description of an array tile "tile" and the "space"
2397 * { D -> A }
2399 * where D represents the first shared_len schedule dimensions
2400 * and A represents the array, construct an isl_multi_aff
2402 * { [D[i] -> A[a]] -> A'[a'] }
2404 * with A' a scaled down copy of A according to the shifts and strides
2405 * in "tile". In particular,
2407 * a' = (a + shift(i))/stride
2409 * "insert_array" represents
2411 * { [D -> A] -> D }
2413 * and is used to insert A into the domain of functions that only
2414 * reference D.
2416 static __isl_give isl_multi_aff *strided_tile(
2417 struct gpu_array_tile *tile, __isl_keep isl_space *space,
2418 __isl_keep isl_multi_aff *insert_array)
2420 int i;
2421 isl_ctx *ctx;
2422 isl_multi_aff *shift;
2423 isl_multi_val *stride;
2424 isl_space *space2;
2425 isl_local_space *ls;
2426 isl_multi_aff *tiling;
2428 ctx = isl_space_get_ctx(space);
2429 space2 = isl_space_domain(isl_space_copy(space));
2430 ls = isl_local_space_from_space(space2);
2431 space2 = isl_space_range(isl_space_copy(space));
2432 stride = isl_multi_val_zero(space2);
2433 shift = isl_multi_aff_zero(isl_space_copy(space));
2435 for (i = 0; i < tile->n; ++i) {
2436 struct gpu_array_bound *bound = &tile->bound[i];
2437 isl_val *stride_i;
2438 isl_aff *shift_i;
2440 if (tile->bound[i].shift) {
2441 stride_i = isl_val_copy(bound->stride);
2442 shift_i = isl_aff_copy(bound->shift);
2443 } else {
2444 stride_i = isl_val_one(ctx);
2445 shift_i = isl_aff_zero_on_domain(
2446 isl_local_space_copy(ls));
2449 stride = isl_multi_val_set_val(stride, i, stride_i);
2450 shift = isl_multi_aff_set_aff(shift, i, shift_i);
2452 isl_local_space_free(ls);
2454 shift = isl_multi_aff_pullback_multi_aff(shift,
2455 isl_multi_aff_copy(insert_array));
2457 tiling = isl_multi_aff_range_map(isl_space_copy(space));
2458 tiling = isl_multi_aff_add(tiling, shift);
2459 tiling = isl_multi_aff_scale_down_multi_val(tiling, stride);
2461 return tiling;
2464 /* Compute a tiling for the array reference group "group".
2466 * The tiling is of the form
2468 * { [D[i] -> A[a]] -> T[t] }
2470 * where D represents the first shared_len schedule dimensions,
2471 * A represents the global array and T represents the shared or
2472 * private memory tile. The name of T is the name of the local
2473 * array.
2475 * If there is any stride in the accesses, then the mapping is
2477 * t = (a + shift(i))/stride - lb(i)
2479 * otherwise, it is simply
2481 * t = a - lb(i)
2483 static void compute_group_tiling(struct gpu_array_ref_group *group)
2485 int i;
2486 struct gpu_array_tile *tile;
2487 struct gpu_array_info *array = group->array;
2488 isl_space *space;
2489 isl_multi_aff *tiling, *lb, *insert_array;
2490 isl_printer *p;
2491 char *local_name;
2493 tile = group->private_tile;
2494 if (!tile)
2495 tile = group->shared_tile;
2496 if (!tile)
2497 return;
2499 space = isl_map_get_space(group->access);
2500 insert_array = isl_multi_aff_domain_map(isl_space_copy(space));
2502 for (i = 0; i < tile->n; ++i)
2503 if (tile->bound[i].shift)
2504 break;
2506 if (i < tile->n)
2507 tiling = strided_tile(tile, space, insert_array);
2508 else
2509 tiling = isl_multi_aff_range_map(isl_space_copy(space));
2511 lb = isl_multi_aff_zero(space);
2512 for (i = 0; i < tile->n; ++i) {
2513 isl_aff *lb_i = isl_aff_copy(tile->bound[i].lb);
2514 lb = isl_multi_aff_set_aff(lb, i, lb_i);
2516 lb = isl_multi_aff_pullback_multi_aff(lb, insert_array);
2518 tiling = isl_multi_aff_sub(tiling, lb);
2520 p = isl_printer_to_str(isl_multi_aff_get_ctx(tiling));
2521 p = print_array_name(p, group);
2522 local_name = isl_printer_get_str(p);
2523 isl_printer_free(p);
2524 tiling = isl_multi_aff_set_tuple_name(tiling, isl_dim_out, local_name);
2525 free(local_name);
2527 tile->tiling = tiling;
2530 /* Compute a tiling for all the array reference groups.
2532 static void compute_group_tilings(struct gpu_gen *gen)
2534 int i, j;
2536 for (i = 0; i < gen->prog->n_array; ++i) {
2537 struct gpu_array_info *array = &gen->prog->array[i];
2539 for (j = 0; j < array->n_group; ++j)
2540 compute_group_tiling(array->groups[j]);
2544 /* Fill up the groups array with singleton groups, i.e., one group
2545 * per reference, initializing the array, access, write, n_ref and refs fields.
2546 * In particular the access field is initialized to the scheduled
2547 * access relation of the array reference.
2549 * Return the number of elements initialized, i.e., the number of
2550 * active references in the current kernel.
2552 static int populate_array_references(struct gpu_array_info *array,
2553 __isl_keep isl_union_map *sched, struct gpu_array_ref_group **groups)
2555 int i;
2556 int n;
2557 isl_ctx *ctx = isl_union_map_get_ctx(sched);
2559 n = 0;
2560 for (i = 0; i < array->n_ref; ++i) {
2561 isl_union_map *umap;
2562 isl_map *map;
2563 struct gpu_array_ref_group *group;
2564 struct gpu_stmt_access *access = array->refs[i];
2566 map = isl_map_copy(access->access);
2567 umap = isl_union_map_from_map(map);
2568 umap = isl_union_map_apply_domain(umap,
2569 isl_union_map_copy(sched));
2571 if (isl_union_map_is_empty(umap)) {
2572 isl_union_map_free(umap);
2573 continue;
2576 map = isl_map_from_union_map(umap);
2577 map = isl_map_detect_equalities(map);
2579 group = isl_calloc_type(ctx, struct gpu_array_ref_group);
2580 assert(group);
2581 group->array = array;
2582 group->access = map;
2583 group->write = access->write;
2584 group->exact_write = access->exact_write;
2585 group->slice = access->n_index < array->n_index;
2586 group->refs = &array->refs[i];
2587 group->n_ref = 1;
2589 groups[n++] = group;
2592 return n;
2595 /* If group->n_ref == 1, then group->refs was set by
2596 * populate_array_references to point directly into
2597 * group->array->refs and should not be freed.
2598 * If group->n_ref > 1, then group->refs was set by join_groups
2599 * to point to a newly allocated array.
2601 static void free_array_ref_group(struct gpu_array_ref_group *group)
2603 if (!group)
2604 return;
2605 free_tile(group->shared_tile);
2606 free_tile(group->private_tile);
2607 isl_map_free(group->access);
2608 if (group->n_ref > 1)
2609 free(group->refs);
2610 free(group);
2613 /* Given a map where the input dimensions represent the tile loops,
2614 * eliminate the innermost of those that have a fixed value
2615 * until we reach one that does not (obviously) have a fixed value.
2617 static __isl_give isl_map *eliminate_fixed_inner_loops(
2618 __isl_take isl_map *access)
2620 int i, n;
2622 n = isl_map_dim(access, isl_dim_in);
2624 for (i = n - 1; i >= 0; --i) {
2625 if (!map_plain_is_fixed(access, isl_dim_in, i))
2626 break;
2627 access = isl_map_eliminate(access, isl_dim_in, i, 1);
2629 return access;
2632 /* Check if the access relations of group1 and group2 overlap within
2633 * the innermost loop. In particular, ignore any inner dimension
2634 * with a fixed value.
2635 * The copying to and from shared memory will be performed within
2636 * the innermost actual loop so we are only allowed to consider
2637 * the dimensions up to that innermost loop while checking whether
2638 * two access relations overlap.
2640 static int accesses_overlap(struct gpu_array_ref_group *group1,
2641 struct gpu_array_ref_group *group2)
2643 int empty;
2644 isl_map *access1, *access2;
2646 access1 = isl_map_copy(group1->access);
2647 access1 = eliminate_fixed_inner_loops(access1);
2648 access2 = isl_map_copy(group2->access);
2649 access2 = eliminate_fixed_inner_loops(access2);
2650 access1 = isl_map_intersect(access1, access2);
2651 empty = isl_map_is_empty(access1);
2652 isl_map_free(access1);
2654 return !empty;
2657 /* Combine the given two groups into a single group, containing
2658 * the references of both groups.
2660 static struct gpu_array_ref_group *join_groups(
2661 struct gpu_array_ref_group *group1,
2662 struct gpu_array_ref_group *group2)
2664 int i;
2665 isl_ctx *ctx;
2666 struct gpu_array_ref_group *group;
2668 ctx = isl_map_get_ctx(group1->access);
2669 group = isl_calloc_type(ctx, struct gpu_array_ref_group);
2670 assert(group);
2671 group->array = group1->array;
2672 group->access = isl_map_union(isl_map_copy(group1->access),
2673 isl_map_copy(group2->access));
2674 group->write = group1->write || group2->write;
2675 group->exact_write = group1->exact_write && group2->exact_write;
2676 group->slice = group1->slice || group2->slice;
2677 group->n_ref = group1->n_ref + group2->n_ref;
2678 group->refs = isl_alloc_array(ctx, struct gpu_stmt_access *,
2679 group->n_ref);
2680 assert(group->refs);
2681 for (i = 0; i < group1->n_ref; ++i)
2682 group->refs[i] = group1->refs[i];
2683 for (i = 0; i < group2->n_ref; ++i)
2684 group->refs[group1->n_ref + i] = group2->refs[i];
2686 return group;
2689 /* Combine the given two groups into a single group and free
2690 * the original two groups.
2692 static struct gpu_array_ref_group *join_groups_and_free(
2693 struct gpu_array_ref_group *group1,
2694 struct gpu_array_ref_group *group2)
2696 struct gpu_array_ref_group *group;
2698 group = join_groups(group1, group2);
2699 free_array_ref_group(group1);
2700 free_array_ref_group(group2);
2701 return group;
2704 /* Report that the array reference group with the given access relation
2705 * is not mapped to shared memory in the given kernel because
2706 * it does not exhibit any reuse and is considered to be coalesced.
2708 static void report_no_reuse_and_coalesced(struct ppcg_kernel *kernel,
2709 __isl_keep isl_union_map *access)
2711 isl_ctx *ctx;
2712 isl_printer *p;
2714 ctx = isl_union_map_get_ctx(access);
2715 p = isl_printer_to_file(ctx, stdout);
2716 p = isl_printer_print_str(p, "Array reference group ");
2717 p = isl_printer_print_union_map(p, access);
2718 p = isl_printer_print_str(p,
2719 " not considered for mapping to shared memory in kernel");
2720 p = isl_printer_print_int(p, kernel->id);
2721 p = isl_printer_print_str(p,
2722 " because it exhibits no reuse and is considered to be coalesced");
2723 p = isl_printer_end_line(p);
2724 isl_printer_free(p);
2727 /* Compute the private and/or shared memory tiles for the array
2728 * reference group "group" of array "array".
2729 * Return 0 on success and -1 on error.
2731 * If the array is a read-only scalar or if the user requested
2732 * not to use shared or private memory, then we do not need to do anything.
2734 * If any reference in the reference group accesses more than one element,
2735 * then we would have to make sure that the layout in shared memory
2736 * is the same as that in global memory. Since we do not handle this yet
2737 * (and it may not even be possible), we refuse to map to private or
2738 * shared memory in such cases.
2740 * If the array group involves any may writes (that are not must writes),
2741 * then we would have to make sure that we load the data into shared/private
2742 * memory first in case the data is not written by the kernel
2743 * (but still written back out to global memory).
2744 * Since we don't have any such mechanism at the moment, we don't
2745 * compute shared/private tiles for groups involving may writes.
2747 * We only try to compute a shared memory tile if there is any reuse
2748 * or if the access is not coalesced.
2750 * For computing a private memory tile, we also require that there is
2751 * some reuse. Moreover, we require that the access is private
2752 * to the thread. That is, we check that any given array element
2753 * is only accessed by a single thread.
2754 * We compute an access relation that maps the shared tile loop iterators
2755 * and the shared point loop iterators that will be wrapped over the
2756 * threads to the array elements.
2757 * We actually check that those iterators that will be wrapped
2758 * partition the array space. This check is stricter than necessary
2759 * since several iterations may be mapped onto the same thread
2760 * and then they could be allowed to access the same memory elements,
2761 * but our check does not allow this situation.
2763 * We also check that the index expression only depends on parallel
2764 * loops. That way, we can move those loops innermost and unroll them.
2765 * Again, we use a test that is stricter than necessary.
2766 * We actually check whether the index expression only depends
2767 * on the iterators that are wrapped over the threads.
2768 * These are necessarily parallel, but there may be more parallel loops.
2770 * Combining the injectivity of the first test with the single-valuedness
2771 * of the second test, we simply test for bijectivity.
2773 * If the array is marked force_private, then we bypass all checks
2774 * and assume we can (and should) use registers.
2776 * If it turns out we can (or have to) use registers, we compute
2777 * the private memory tile size using can_tile, after introducing a dependence
2778 * on the thread indices.
2780 static int compute_group_bounds_core(struct gpu_gen *gen,
2781 struct gpu_array_ref_group *group)
2783 isl_ctx *ctx = isl_space_get_ctx(group->array->space);
2784 isl_union_map *access;
2785 int n_index = group->array->n_index;
2786 int no_reuse, coalesced;
2787 isl_map *acc;
2788 int force_private = group->array->force_private;
2789 int use_shared = gen->options->use_shared_memory && gen->n_block > 0;
2790 int use_private = force_private || gen->options->use_private_memory;
2792 if (!use_shared && !use_private)
2793 return 0;
2794 if (gpu_array_is_read_only_scalar(group->array))
2795 return 0;
2796 if (!force_private && !group->exact_write)
2797 return 0;
2798 if (group->slice)
2799 return 0;
2801 access = group_access_relation(group, 1, 1);
2802 no_reuse = isl_union_map_is_injective(access);
2803 if (use_shared && no_reuse)
2804 coalesced = access_is_coalesced(gen, access);
2806 if (gen->options->debug->verbose && use_shared && no_reuse && coalesced)
2807 report_no_reuse_and_coalesced(gen->kernel, access);
2809 if (use_shared && (!no_reuse || !coalesced)) {
2810 group->shared_tile = create_tile(ctx, group->array->n_index);
2811 if (!can_tile(group->access, group->shared_tile))
2812 group->shared_tile = free_tile(group->shared_tile);
2815 if (!force_private && (!use_private || no_reuse)) {
2816 isl_union_map_free(access);
2817 return 0;
2820 access = isl_union_map_apply_domain(access,
2821 isl_union_map_copy(gen->shared_sched));
2823 acc = isl_map_from_union_map(access);
2825 if (!force_private && !access_is_bijective(gen, acc)) {
2826 isl_map_free(acc);
2827 return 0;
2830 group->private_tile = create_tile(gen->ctx, n_index);
2831 acc = isl_map_apply_domain(acc, isl_map_copy(gen->privatization));
2832 if (!can_tile(acc, group->private_tile))
2833 group->private_tile = free_tile(group->private_tile);
2835 isl_map_free(acc);
2837 if (force_private && !group->private_tile)
2838 isl_die(ctx, isl_error_internal,
2839 "unable to map array reference group to registers",
2840 return -1);
2842 return 0;
2845 /* Compute the private and/or shared memory tiles for the array
2846 * reference group "group" of array "array" and set last_shared.
2847 * Return 0 on success and -1 on error.
2849 static int compute_group_bounds(struct gpu_gen *gen,
2850 struct gpu_array_ref_group *group)
2852 if (compute_group_bounds_core(gen, group) < 0)
2853 return -1;
2854 set_last_shared(gen, group);
2856 return 0;
2859 /* If two groups have overlapping access relations (as determined by
2860 * the "overlap" function) and if one of them involves a write,
2861 * then merge the two groups into one.
2862 * If "compute_bounds" is set, then call compute_group_bounds
2863 * on the merged groups.
2865 * Return the updated number of groups.
2866 * Return -1 on error.
2868 static int group_writes(struct gpu_gen *gen,
2869 int n, struct gpu_array_ref_group **groups,
2870 int (*overlap)(struct gpu_array_ref_group *group1,
2871 struct gpu_array_ref_group *group2), int compute_bounds)
2873 int i, j;
2875 for (i = 0; i < n; ++i) {
2876 for (j = n - 1; j > i; --j) {
2877 if (!groups[i]->write && !groups[j]->write)
2878 continue;
2880 if (!overlap(groups[i], groups[j]))
2881 continue;
2883 groups[i] = join_groups_and_free(groups[i], groups[j]);
2884 if (compute_bounds &&
2885 compute_group_bounds(gen, groups[i]) < 0)
2886 return -1;
2887 if (j != n - 1)
2888 groups[j] = groups[n - 1];
2889 groups[n - 1] = NULL;
2890 n--;
2894 return n;
2897 /* If two groups have overlapping access relations (within the innermost
2898 * loop) and if one of them involves a write, then merge the two groups
2899 * into one.
2901 * Return the updated number of groups.
2903 static int group_overlapping_writes(struct gpu_gen *gen,
2904 int n, struct gpu_array_ref_group **groups)
2906 return group_writes(gen, n, groups, &accesses_overlap, 0);
2909 /* Check if the access relations of group1 and group2 overlap within
2910 * the outermost min(group1->last_shared, group2->last_shared) loops.
2912 static int last_shared_accesses_overlap(struct gpu_array_ref_group *group1,
2913 struct gpu_array_ref_group *group2)
2915 int last_shared;
2916 int dim;
2917 int empty;
2918 isl_map *map_i, *map_j, *map;
2920 last_shared = group1->last_shared;
2921 if (group2->last_shared < last_shared)
2922 last_shared = group2->last_shared;
2923 map_i = isl_map_copy(group1->access);
2924 dim = isl_map_dim(map_i, isl_dim_in);
2925 map_i = isl_map_eliminate(map_i, isl_dim_in,
2926 last_shared + 1, dim - (last_shared + 1));
2927 map_j = isl_map_copy(group2->access);
2928 map_j = isl_map_eliminate(map_j, isl_dim_in,
2929 last_shared + 1, dim - (last_shared + 1));
2930 map = isl_map_intersect(map_i, map_j);
2931 empty = isl_map_is_empty(map);
2932 isl_map_free(map);
2934 return !empty;
2937 /* If two groups have overlapping access relations (within the outer
2938 * last_shared loops) and if one of them involves a write,
2939 * then merge the two groups into one.
2941 * Return the updated number of groups.
2943 static int group_last_shared_overlapping_writes(struct gpu_gen *gen, int n,
2944 struct gpu_array_ref_group **groups)
2946 return group_writes(gen, n, groups, &last_shared_accesses_overlap, 1);
2949 /* Is the size of the tile specified by "tile" smaller than the sum of
2950 * the sizes of the tiles specified by "tile1" and "tile2"?
2952 static int smaller_tile(isl_ctx *ctx, struct gpu_array_tile *tile,
2953 struct gpu_array_tile *tile1, struct gpu_array_tile *tile2)
2955 int smaller;
2956 isl_val *size, *size1, *size2;
2958 size = tile_size(ctx, tile);
2959 size1 = tile_size(ctx, tile1);
2960 size2 = tile_size(ctx, tile2);
2962 size = isl_val_sub(size, size1);
2963 size = isl_val_sub(size, size2);
2964 smaller = isl_val_is_neg(size);
2966 isl_val_free(size);
2968 return smaller;
2971 /* Given an initial grouping of array references and shared memory tiles
2972 * for each group that allows for a shared memory tile, merge two groups
2973 * if both have a shared memory tile, the merged group also has
2974 * a shared memory tile and the size of the tile for the merge group
2975 * is smaller than the sum of the tile sizes of the individual groups.
2977 * If merging two groups decreases the "last_shared" dimension of
2978 * one or both of the two groups, then we need to check for overlapping
2979 * writes again.
2981 * Return the number of groups after merging.
2982 * Return -1 on error.
2984 static int group_common_shared_memory_tile(struct gpu_gen *gen,
2985 struct gpu_array_info *array, int n,
2986 struct gpu_array_ref_group **groups)
2988 int i, j;
2989 int recompute_overlap = 0;
2990 isl_ctx *ctx = isl_space_get_ctx(array->space);
2992 for (i = 0; i < n; ++i) {
2993 if (!groups[i]->shared_tile)
2994 continue;
2995 for (j = n - 1; j > i; --j) {
2996 isl_map *map;
2997 int empty;
2998 struct gpu_array_ref_group *group;
3000 if (!groups[j]->shared_tile)
3001 continue;
3003 map = isl_map_intersect(isl_map_copy(groups[i]->access),
3004 isl_map_copy(groups[j]->access));
3005 empty = isl_map_is_empty(map);
3006 isl_map_free(map);
3008 if (empty)
3009 continue;
3011 group = join_groups(groups[i], groups[j]);
3012 if (compute_group_bounds(gen, group) < 0) {
3013 free_array_ref_group(group);
3014 return -1;
3016 if (!group->shared_tile ||
3017 !smaller_tile(ctx, group->shared_tile,
3018 groups[i]->shared_tile,
3019 groups[j]->shared_tile)) {
3020 free_array_ref_group(group);
3021 continue;
3024 if (group->last_shared < groups[i]->last_shared ||
3025 group->last_shared < groups[j]->last_shared)
3026 recompute_overlap = 1;
3027 free_array_ref_group(groups[i]);
3028 free_array_ref_group(groups[j]);
3029 groups[i] = group;
3030 if (j != n - 1)
3031 groups[j] = groups[n - 1];
3032 n--;
3036 if (recompute_overlap)
3037 n = group_last_shared_overlapping_writes(gen, n, groups);
3038 return n;
3041 /* Set array->n_group and array->groups to n and groups.
3043 * Additionally, set the "nr" field of each group
3044 * and the "group" field of each reference in each group.
3046 static void set_array_groups(struct gpu_array_info *array,
3047 int n, struct gpu_array_ref_group **groups)
3049 int i, j;
3051 array->n_group = n;
3052 array->groups = groups;
3054 for (i = 0; i < n; ++i) {
3055 groups[i]->nr = i;
3057 for (j = 0; j < groups[i]->n_ref; ++j)
3058 groups[i]->refs[j]->group = i;
3062 /* Group array references that should be considered together when
3063 * deciding whether to access them from private, shared or global memory.
3064 * Return -1 on error.
3066 * In particular, if two array references overlap and if one of them
3067 * is a write, then the two references are grouped together.
3068 * We first perform an initial grouping based only on the access relation.
3069 * After computing shared and private memory tiles, we check for
3070 * overlapping writes again, but this time taking into account
3071 * the "last_shared" property.
3073 * Furthermore, if two groups admit a shared memory tile and if the
3074 * combination of the two also admits a shared memory tile, we merge
3075 * the two groups.
3077 * If the array contains structures, then there is no need to compute
3078 * reference groups since we do not map such arrays to private or shared
3079 * memory.
3081 static int group_array_references(struct gpu_gen *gen,
3082 struct gpu_array_info *array, __isl_keep isl_union_map *sched)
3084 int i;
3085 int n;
3086 isl_ctx *ctx = isl_union_map_get_ctx(sched);
3087 struct gpu_array_ref_group **groups;
3089 if (array->has_compound_element)
3090 return 0;
3092 groups = isl_calloc_array(ctx, struct gpu_array_ref_group *,
3093 array->n_ref);
3094 if (!groups)
3095 return -1;
3097 n = populate_array_references(array, sched, groups);
3099 n = group_overlapping_writes(gen, n, groups);
3101 for (i = 0; i < n; ++i)
3102 if (compute_group_bounds(gen, groups[i]) < 0)
3103 n = -1;
3105 n = group_last_shared_overlapping_writes(gen, n, groups);
3107 n = group_common_shared_memory_tile(gen, array, n, groups);
3109 set_array_groups(array, n, groups);
3111 if (n >= 0)
3112 return 0;
3114 for (i = 0; i < array->n_ref; ++i)
3115 free_array_ref_group(groups[i]);
3116 return -1;
3119 /* Take tiled_sched, project it onto the shared tile loops and
3120 * the loops that will be wrapped over the threads and
3121 * store the result in gen->shared_sched.
3122 * Also compute a projection that projects out the loops that will be
3123 * wrapped over the threads and store this projection in gen->shared_proj.
3125 static void compute_shared_sched(struct gpu_gen *gen)
3127 isl_space *dim;
3128 isl_map *proj;
3129 isl_set *par;
3130 isl_union_map *sched;
3132 sched = isl_union_map_copy(gen->tiled_sched);
3134 dim = isl_union_map_get_space(sched);
3135 proj = projection(dim, gen->tiled_len, gen->shared_len + gen->n_block);
3136 sched = isl_union_map_apply_range(sched, isl_union_map_from_map(proj));
3138 dim = isl_union_map_get_space(sched);
3139 proj = projection(dim, gen->shared_len + gen->n_block, gen->shared_len);
3141 gen->shared_sched = sched;
3142 gen->shared_proj = isl_union_map_from_map(proj);
3145 /* For each scalar in the input program, check if there are any
3146 * order dependences active inside the current kernel, within
3147 * the same iteration of the host schedule.
3148 * If so, mark the scalar as force_private so that it will be
3149 * mapped to a register.
3151 static void check_scalar_live_ranges(struct gpu_gen *gen)
3153 int i;
3154 isl_map *proj;
3155 isl_union_map *sched;
3156 isl_union_set *domain;
3157 isl_union_map *same_host_iteration;
3159 gen->any_force_private = 0;
3161 if (!gen->options->live_range_reordering)
3162 return;
3164 sched = gen->shared_sched;
3165 sched = isl_union_map_universe(isl_union_map_copy(sched));
3166 domain = isl_union_map_domain(sched);
3168 sched = isl_union_map_copy(gen->sched);
3169 proj = projection(isl_union_map_get_space(sched),
3170 gen->untiled_len, gen->tile_first);
3171 sched = isl_union_map_apply_range(sched, isl_union_map_from_map(proj));
3172 same_host_iteration = isl_union_map_apply_range(sched,
3173 isl_union_map_reverse(isl_union_map_copy(sched)));
3175 for (i = 0; i < gen->prog->n_array; ++i) {
3176 struct gpu_array_info *array = &gen->prog->array[i];
3177 isl_union_map *order;
3179 array->force_private = 0;
3180 if (array->n_index != 0)
3181 continue;
3182 order = isl_union_map_copy(array->dep_order);
3183 order = isl_union_map_intersect_domain(order,
3184 isl_union_set_copy(domain));
3185 order = isl_union_map_intersect_range(order,
3186 isl_union_set_copy(domain));
3187 order = isl_union_map_intersect(order,
3188 isl_union_map_copy(same_host_iteration));
3189 if (!isl_union_map_is_empty(order)) {
3190 array->force_private = 1;
3191 gen->any_force_private = 1;
3193 isl_union_map_free(order);
3196 isl_union_map_free(same_host_iteration);
3197 isl_union_set_free(domain);
3200 /* Group references of all arrays in the program.
3202 static int group_references(struct gpu_gen *gen)
3204 int i;
3205 int r = 0;
3206 isl_union_map *sched;
3208 sched = isl_union_map_apply_range(isl_union_map_copy(gen->shared_sched),
3209 isl_union_map_copy(gen->shared_proj));
3211 for (i = 0; i < gen->prog->n_array; ++i) {
3212 r = group_array_references(gen, &gen->prog->array[i], sched);
3213 if (r < 0)
3214 break;
3217 isl_union_map_free(sched);
3219 return r;
3222 /* Free all array information that is local to the current kernel.
3224 static void free_local_array_info(struct gpu_gen *gen)
3226 int i, j;
3228 for (i = 0; i < gen->prog->n_array; ++i) {
3229 struct gpu_array_info *array = &gen->prog->array[i];
3231 for (j = 0; j < array->n_group; ++j)
3232 free_array_ref_group(array->groups[j]);
3233 free(array->groups);
3237 /* Compute the size of a bounding box around the origin and "set",
3238 * where "set" is assumed to contain only non-negative elements.
3239 * In particular, compute the maximal value of "set" in each direction
3240 * and add one.
3242 static __isl_give isl_multi_pw_aff *extract_size(__isl_take isl_set *set,
3243 __isl_keep isl_set *context)
3245 int i, n;
3246 isl_multi_pw_aff *mpa;
3248 n = isl_set_dim(set, isl_dim_set);
3249 mpa = isl_multi_pw_aff_zero(isl_set_get_space(set));
3250 for (i = 0; i < n; ++i) {
3251 isl_space *space;
3252 isl_aff *one;
3253 isl_pw_aff *bound;
3255 bound = isl_set_dim_max(isl_set_copy(set), i);
3256 bound = isl_pw_aff_coalesce(bound);
3257 bound = isl_pw_aff_gist(bound, isl_set_copy(context));
3259 space = isl_pw_aff_get_domain_space(bound);
3260 one = isl_aff_zero_on_domain(isl_local_space_from_space(space));
3261 one = isl_aff_add_constant_si(one, 1);
3262 bound = isl_pw_aff_add(bound, isl_pw_aff_from_aff(one));
3263 mpa = isl_multi_pw_aff_set_pw_aff(mpa, i, bound);
3265 isl_set_free(set);
3267 return mpa;
3270 /* Compute the effective grid size as a list of the sizes in each dimension.
3272 * The grid size specified by the user or set by default
3273 * in read_grid_sizes() and applied in tile_schedule(),
3274 * may be too large for the given code in the sense that
3275 * it may contain blocks that don't need to execute anything.
3276 * We therefore don't return this grid size, but instead the
3277 * smallest grid size that ensures that all blocks that actually
3278 * execute code are included in the grid.
3280 * We first extract a description of the grid, i.e., the possible values
3281 * of the block ids, from gen->tiled_sched.
3282 * The block ids are parameters in gen->tiled_sched.
3283 * We simply need to change them into set dimensions.
3285 * Then, for each block dimension, we compute the maximal value of the block id
3286 * and add one.
3288 static __isl_give isl_multi_pw_aff *extract_grid_size(struct gpu_gen *gen,
3289 struct ppcg_kernel *kernel)
3291 int i;
3292 isl_set *grid;
3294 grid = isl_union_map_params(isl_union_map_copy(gen->tiled_sched));
3295 grid = isl_set_from_params(grid);
3296 grid = isl_set_add_dims(grid, isl_dim_set, gen->n_grid);
3297 for (i = 0; i < gen->n_grid; ++i) {
3298 int pos;
3299 char name[20];
3301 snprintf(name, sizeof(name), "b%d", i);
3302 pos = isl_set_find_dim_by_name(grid, isl_dim_param, name);
3303 assert(pos >= 0);
3304 grid = isl_set_equate(grid, isl_dim_param, pos, isl_dim_set, i);
3305 grid = isl_set_project_out(grid, isl_dim_param, pos, 1);
3308 return extract_size(grid, kernel->context);
3311 /* Compute the size of a fixed bounding box around the origin and "set",
3312 * where "set" is assumed to contain only non-negative elements,
3313 * and store the results in "size".
3314 * In particular, compute the maximal value of "set" in each direction
3315 * and add one.
3317 static void extract_fixed_size(__isl_take isl_set *set, int *size)
3319 int i, n;
3320 isl_local_space *ls;
3321 isl_aff *obj;
3323 n = isl_set_dim(set, isl_dim_set);
3324 ls = isl_local_space_from_space(isl_set_get_space(set));
3325 obj = isl_aff_zero_on_domain(ls);
3326 for (i = 0; i < n; ++i) {
3327 isl_val *max;
3329 obj = isl_aff_set_coefficient_si(obj, isl_dim_in, i, 1);
3330 max = isl_set_max_val(set, obj);
3331 size[i] = isl_val_get_num_si(max) + 1;
3332 isl_val_free(max);
3333 obj = isl_aff_set_coefficient_si(obj, isl_dim_in, i, 0);
3335 isl_aff_free(obj);
3336 isl_set_free(set);
3339 /* Compute the effective block size as a list of the sizes in each dimension
3340 * and store the sizes in kernel->block_dim.
3342 * The block size specified by the user or set by default
3343 * in read_block_sizes() and applied in thread_tile_schedule(),
3344 * may be too large for the given code in the sense that
3345 * it may contain threads that don't need to execute anything.
3346 * We therefore don't store this block size in kernel->block_dim,
3347 * but instead the smallest block size that ensures that all threads
3348 * that actually execute code are included in the block.
3350 * The current implementation eliminates all parameters, ensuring
3351 * that the size is a fixed constant in each dimension.
3352 * In principle we could also compute parametric sizes.
3353 * We would have to make sure to project out all b%d and t%d parameters,
3354 * however.
3356 static void extract_block_size(struct gpu_gen *gen, struct ppcg_kernel *kernel)
3358 int i;
3359 int nparam;
3360 isl_set *block;
3361 isl_multi_pw_aff *mpa;
3363 block = isl_union_map_params(isl_union_map_copy(gen->local_sched));
3364 block = isl_set_from_params(block);
3365 block = isl_set_add_dims(block, isl_dim_set, gen->n_block);
3366 kernel->n_block = gen->n_block;
3367 for (i = 0; i < gen->n_block; ++i) {
3368 int pos;
3369 char name[20];
3371 snprintf(name, sizeof(name), "t%d", i);
3372 pos = isl_set_find_dim_by_name(block, isl_dim_param, name);
3373 assert(pos >= 0);
3374 block = isl_set_equate(block, isl_dim_param, pos,
3375 isl_dim_set, i);
3377 nparam = isl_set_dim(block, isl_dim_param);
3378 block = isl_set_project_out(block, isl_dim_param, 0, nparam);
3380 extract_fixed_size(block, kernel->block_dim);
3383 void ppcg_kernel_free(void *user)
3385 struct ppcg_kernel *kernel = user;
3386 int i;
3388 if (!kernel)
3389 return;
3391 isl_multi_pw_aff_free(kernel->grid_size);
3392 isl_set_free(kernel->context);
3393 isl_union_set_free(kernel->arrays);
3394 isl_space_free(kernel->space);
3395 isl_ast_node_free(kernel->tree);
3397 for (i = 0; i < kernel->n_array; ++i)
3398 isl_pw_aff_list_free(kernel->array[i].bound);
3399 free(kernel->array);
3401 for (i = 0; i < kernel->n_var; ++i) {
3402 free(kernel->var[i].name);
3403 isl_vec_free(kernel->var[i].size);
3405 free(kernel->var);
3407 free(kernel);
3410 static void create_kernel_var(isl_ctx *ctx, struct gpu_array_ref_group *group,
3411 struct ppcg_kernel_var *var)
3413 int j;
3414 struct gpu_array_tile *tile;
3415 isl_printer *p;
3416 char *name;
3418 var->array = group->array;
3420 tile = group->private_tile;
3421 var->type = ppcg_access_private;
3422 if (!tile) {
3423 tile = group->shared_tile;
3424 var->type = ppcg_access_shared;
3427 p = isl_printer_to_str(ctx);
3428 p = print_array_name(p, group);
3429 var->name = isl_printer_get_str(p);
3430 isl_printer_free(p);
3432 var->size = isl_vec_alloc(ctx, group->array->n_index);
3434 for (j = 0; j < group->array->n_index; ++j)
3435 var->size = isl_vec_set_element_val(var->size, j,
3436 isl_val_copy(tile->bound[j].size));
3439 static void create_kernel_vars(struct gpu_gen *gen, struct ppcg_kernel *kernel)
3441 int i, j, n;
3443 n = 0;
3444 for (i = 0; i < gen->prog->n_array; ++i) {
3445 struct gpu_array_info *array = &gen->prog->array[i];
3447 for (j = 0; j < array->n_group; ++j) {
3448 struct gpu_array_ref_group *group = array->groups[j];
3449 if (group->private_tile || group->shared_tile)
3450 ++n;
3454 kernel->n_var = n;
3455 kernel->var = isl_calloc_array(gen->ctx, struct ppcg_kernel_var, n);
3456 assert(kernel->var);
3458 n = 0;
3459 for (i = 0; i < gen->prog->n_array; ++i) {
3460 struct gpu_array_info *array = &gen->prog->array[i];
3462 for (j = 0; j < array->n_group; ++j) {
3463 struct gpu_array_ref_group *group = array->groups[j];
3464 if (!group->private_tile && !group->shared_tile)
3465 continue;
3466 create_kernel_var(gen->ctx, group, &kernel->var[n]);
3467 ++n;
3472 /* The sizes of the arrays on the host that have been computed by
3473 * extract_array_info may depend on the parameters. Use the extra
3474 * constraints on the parameters that are valid at "host_domain"
3475 * to simplify these expressions and store the results in kernel->array.
3477 * We only need these localized bounds for arrays that are accessed
3478 * by the current kernel. If we have found at least one reference group
3479 * then the array is accessed by the kernel. If the array has compound
3480 * elements then we skipped the construction of array reference groups.
3482 static void localize_bounds(struct gpu_gen *gen, struct ppcg_kernel *kernel,
3483 __isl_keep isl_set *host_domain)
3485 int i, j;
3486 isl_set *context;
3488 kernel->array = isl_calloc_array(gen->ctx,
3489 struct gpu_local_array_info, gen->prog->n_array);
3490 assert(kernel->array);
3491 kernel->n_array = gen->prog->n_array;
3493 context = isl_set_copy(host_domain);
3494 context = isl_set_params(context);
3496 for (i = 0; i < gen->prog->n_array; ++i) {
3497 struct gpu_array_info *array = &gen->prog->array[i];
3498 isl_pw_aff_list *local;
3500 if (array->n_group == 0 && !array->has_compound_element)
3501 continue;
3503 local = isl_pw_aff_list_alloc(gen->ctx, array->n_index);
3505 for (j = 0; j < array->n_index; ++j) {
3506 isl_pw_aff *pwaff;
3508 pwaff = isl_pw_aff_copy(array->bound[j]);
3509 pwaff = isl_pw_aff_gist(pwaff, isl_set_copy(context));
3510 local = isl_pw_aff_list_add(local, pwaff);
3513 kernel->array[i].n_index = array->n_index;
3514 kernel->array[i].bound = local;
3516 isl_set_free(context);
3519 /* Find the element in gen->stmt that has the given "id".
3520 * Return NULL if no such gpu_stmt can be found.
3522 static struct gpu_stmt *find_stmt(struct gpu_prog *prog, __isl_keep isl_id *id)
3524 int i;
3526 for (i = 0; i < prog->n_stmts; ++i) {
3527 if (id == prog->stmts[i].id)
3528 break;
3531 return i < prog->n_stmts ? &prog->stmts[i] : NULL;
3534 /* Set gen->tile_len and gen->n_parallel to those of the statement
3535 * affected by the first map (part of the schedule)
3536 * on which this function is called.
3537 * Because of the way the schedule is constructed, the other statements
3538 * in the list, if any, should have the same values for these properties.
3540 static int extract_tile_len(__isl_take isl_map *map, void *user)
3542 struct gpu_gen *gen = (struct gpu_gen *) user;
3543 isl_id *id;
3544 struct gpu_stmt *stmt;
3546 id = isl_map_get_tuple_id(map, isl_dim_in);
3547 stmt = find_stmt(gen->prog, id);
3548 isl_id_free(id);
3550 isl_map_free(map);
3552 if (!stmt)
3553 isl_die(gen->ctx, isl_error_unknown,
3554 "statement not found", return -1);
3556 gen->tile_len = stmt->tile_len;
3557 gen->n_parallel = stmt->n_parallel;
3559 return -1;
3562 void ppcg_kernel_stmt_free(void *user)
3564 int i;
3565 struct ppcg_kernel_stmt *stmt = user;
3567 if (!stmt)
3568 return;
3570 switch (stmt->type) {
3571 case ppcg_kernel_copy:
3572 isl_ast_expr_free(stmt->u.c.index);
3573 isl_ast_expr_free(stmt->u.c.local_index);
3574 break;
3575 case ppcg_kernel_domain:
3576 isl_id_to_ast_expr_free(stmt->u.d.ref2expr);
3577 break;
3578 case ppcg_kernel_sync:
3579 break;
3582 free(stmt);
3585 /* Set the options of "context" to
3587 * { space -> [x] : x >= first }
3589 static __isl_give isl_ast_build *set_unroll(
3590 __isl_take isl_ast_build *build, __isl_take isl_space *space,
3591 int first)
3593 isl_ctx *ctx;
3594 isl_map *unroll;
3595 isl_union_map *opt;
3597 ctx = isl_ast_build_get_ctx(build);
3599 space = isl_space_from_domain(space);
3600 space = isl_space_add_dims(space, isl_dim_out, 1);
3601 space = isl_space_set_tuple_name(space, isl_dim_out, "unroll");
3602 unroll = isl_map_universe(space);
3603 unroll = isl_map_lower_bound_si(unroll, isl_dim_out, 0, first);
3604 opt = isl_union_map_from_map(unroll);
3606 build = isl_ast_build_set_options(build, opt);
3608 return build;
3611 /* Return a list of isl_ids of the form "prefix%d".
3613 static __isl_give isl_id_list *generate_names(isl_ctx *ctx,
3614 int n, const char *prefix)
3616 int i;
3617 char name[10];
3618 isl_id_list *names;
3620 names = isl_id_list_alloc(ctx, n);
3621 for (i = 0; i < n; ++i) {
3622 isl_id *id;
3624 snprintf(name, sizeof(name), "%s%d", prefix, i);
3625 id = isl_id_alloc(ctx, name, NULL);
3626 names = isl_id_list_add(names, id);
3629 return names;
3632 /* Extend the schedule "schedule" with the part of "extension"
3633 * starting at "first" up to "len".
3635 static __isl_give isl_union_map *extend_schedule(
3636 __isl_take isl_union_map *schedule,
3637 __isl_take isl_union_map *extension, int first, int len)
3639 isl_space *space;
3640 isl_map *proj;
3641 isl_union_map *umap;
3642 isl_set *set;
3644 space = isl_union_map_get_space(schedule);
3645 space = isl_space_set_from_params(space);
3646 space = isl_space_add_dims(space, isl_dim_set, len);
3647 proj = isl_set_identity(isl_set_universe(space));
3648 proj = isl_map_project_out(proj, isl_dim_out, 0, first);
3649 extension = isl_union_map_apply_range(extension,
3650 isl_union_map_from_map(proj));
3652 schedule = isl_union_map_range_product(schedule, extension);
3654 return schedule;
3657 /* Return the gpu_stmt_access in the list "accesses" that corresponds
3658 * to "ref_id".
3660 static struct gpu_stmt_access *find_access(struct gpu_stmt_access *accesses,
3661 __isl_keep isl_id *ref_id)
3663 struct gpu_stmt_access *access;
3665 for (access = accesses; access; access = access->next)
3666 if (access->ref_id == ref_id)
3667 return access;
3669 return NULL;
3672 /* Return the index of the array called "name" in the list of arrays.
3674 static int find_array_index(struct gpu_gen *gen, const char *name)
3676 int i;
3678 for (i = 0; i < gen->prog->n_array; ++i)
3679 if (!strcmp(name, gen->prog->array[i].name))
3680 return i;
3682 return -1;
3685 /* Internal data structure for the index and AST expression transformation
3686 * callbacks for pet_stmt_build_ast_exprs.
3688 * "accesses" is the list of gpu_stmt_access in the statement.
3689 * "iterator_map" expresses the statement iterators in terms of
3690 * the AST loop iterators.
3691 * "sched2shared" expresses the first shared_len dimensions of
3692 * the computed schedule in terms of the AST loop iterators.
3694 * The following fields are set in transform_index and used in transform_expr.
3695 * "array" is the array that is being accessed.
3696 * "global" is set if the global array is accessed (rather than
3697 * shared/private memory).
3698 * "local_array" refers to information on the array specialized
3699 * to the current kernel.
3701 struct ppcg_transform_data {
3702 struct gpu_gen *gen;
3703 struct gpu_stmt_access *accesses;
3704 isl_pw_multi_aff *iterator_map;
3705 isl_pw_multi_aff *sched2shared;
3707 struct gpu_array_info *array;
3708 int global;
3709 struct gpu_local_array_info *local_array;
3712 /* Return the name of the outer array (of structs) accessed by "access".
3714 static const char *get_outer_array_name(__isl_keep isl_map *access)
3716 isl_space *space;
3717 const char *name;
3719 space = isl_space_range(isl_map_get_space(access));
3720 while (space && isl_space_is_wrapping(space))
3721 space = isl_space_domain(isl_space_unwrap(space));
3722 name = isl_space_get_tuple_name(space, isl_dim_set);
3723 isl_space_free(space);
3725 return name;
3728 /* Index transformation callback for pet_stmt_build_ast_exprs.
3730 * "index" expresses the array indices in terms of statement iterators
3732 * We first reformulate "index" in terms of the AST loop iterators.
3733 * Then we check if we are accessing the global array or
3734 * a shared/private copy. In the former case, we simply return
3735 * the updated index. If "index" is an affine expression rather
3736 * than an array access, then we also return the updated index here.
3738 * If no reference groups have been computed for the array,
3739 * then we can only be accessing the global array.
3741 * Otherwise, we apply the tiling to the index.
3742 * This tiling is of the form
3744 * [D -> A] -> T
3746 * The index is of the form
3748 * L -> A
3750 * We update the tiling to refer to the AST loop iterators
3752 * [L -> A] -> T
3754 * and modify index to keep track of those iterators
3756 * L -> [L -> A]
3758 * Combining these two yields a tiled index expression in terms
3759 * of the AST loop iterators
3761 * L -> T
3763 static __isl_give isl_multi_pw_aff *transform_index(
3764 __isl_take isl_multi_pw_aff *index, __isl_keep isl_id *ref_id,
3765 void *user)
3767 struct ppcg_transform_data *data = user;
3768 struct gpu_stmt_access *access;
3769 struct gpu_array_ref_group *group;
3770 struct gpu_array_tile *tile;
3771 isl_pw_multi_aff *iterator_map;
3772 int i;
3773 const char *name;
3774 isl_space *space;
3775 isl_multi_pw_aff *tiling;
3776 isl_pw_multi_aff *pma;
3777 isl_multi_pw_aff *mpa;
3779 data->array = NULL;
3781 iterator_map = isl_pw_multi_aff_copy(data->iterator_map);
3782 index = isl_multi_pw_aff_pullback_pw_multi_aff(index, iterator_map);
3784 access = find_access(data->accesses, ref_id);
3785 if (!access)
3786 return index;
3787 if (!isl_map_has_tuple_name(access->access, isl_dim_out))
3788 return index;
3790 name = get_outer_array_name(access->access);
3791 i = find_array_index(data->gen, name);
3792 if (i < 0)
3793 isl_die(isl_multi_pw_aff_get_ctx(index), isl_error_internal,
3794 "cannot find array",
3795 return isl_multi_pw_aff_free(index));
3796 data->array = &data->gen->prog->array[i];
3797 data->local_array = &data->gen->kernel->array[i];
3799 if (access->group < 0) {
3800 data->global = 1;
3801 return index;
3804 group = data->array->groups[access->group];
3805 tile = group->private_tile;
3806 if (!tile)
3807 tile = group->shared_tile;
3808 data->global = !tile;
3809 if (!tile)
3810 return index;
3812 space = isl_space_range(isl_multi_pw_aff_get_space(index));
3813 space = isl_space_map_from_set(space);
3814 pma = isl_pw_multi_aff_identity(space);
3815 pma = isl_pw_multi_aff_product(
3816 isl_pw_multi_aff_copy(data->sched2shared), pma);
3817 tiling = isl_multi_pw_aff_from_multi_aff(
3818 isl_multi_aff_copy(tile->tiling));
3819 tiling = isl_multi_pw_aff_pullback_pw_multi_aff(tiling, pma);
3821 space = isl_space_domain(isl_multi_pw_aff_get_space(index));
3822 space = isl_space_map_from_set(space);
3823 mpa = isl_multi_pw_aff_identity(space);
3824 index = isl_multi_pw_aff_range_product(mpa, index);
3825 index = isl_multi_pw_aff_pullback_multi_pw_aff(tiling, index);
3827 return index;
3830 /* Dereference "expr" by adding an index [0].
3831 * The original "expr" is assumed not to have any indices.
3833 * If "expr" is a member access, then the dereferencing needs
3834 * to be applied to the structure argument of this member access.
3836 static __isl_give isl_ast_expr *dereference(__isl_take isl_ast_expr *expr)
3838 isl_ctx *ctx;
3839 isl_ast_expr *res;
3840 isl_ast_expr_list *list;
3842 if (isl_ast_expr_get_op_type(expr) == isl_ast_op_member) {
3843 isl_ast_expr *arg;
3845 arg = isl_ast_expr_get_op_arg(expr, 0);
3846 arg = dereference(arg);
3847 expr = isl_ast_expr_set_op_arg(expr, 0, arg);
3849 return expr;
3852 ctx = isl_ast_expr_get_ctx(expr);
3853 res = isl_ast_expr_from_val(isl_val_zero(ctx));
3854 list = isl_ast_expr_list_from_ast_expr(res);
3855 res = isl_ast_expr_get_op_arg(expr, 0);
3856 res = isl_ast_expr_access(res, list);
3857 isl_ast_expr_free(expr);
3859 return res;
3862 /* Linearize the index expression "expr" based on the array bounds
3863 * of "array".
3865 * That is, transform expression
3867 * A[i_0][i_1]...[i_n]
3869 * to
3871 * A[(..((i_0 * b_1 + i_1) ... ) * b_n + i_n]
3873 * where b_0, b_1, ..., b_n are the bounds on the array.
3875 * If the base of "expr" is a member access, then the linearization needs
3876 * to be applied to the structure argument of this member access.
3878 * In the base case, if "expr" has no arguments (other than the name of
3879 * the array), then we are passing an entire array to a function.
3880 * In this case, there is nothing to linearize.
3881 * Note that at this point an expression with no arguments can
3882 * only be an entire array because the scalar case and
3883 * the case of single struct are handled by the caller.
3885 * If the number of specified index expressions in "expr"
3886 * is smaller than the dimension of the accessed array,
3887 * then the missing i_j also do not appear in the linearized expression.
3888 * Furthermore, since such an expression does not refer to a single
3889 * element while the default linearized expression would refer to
3890 * a single element, we return the expression
3892 * A + (..((i_0 * b_1 + i_1) ... ) * b_n]
3894 * instead. Note that because of the special case handling above,
3895 * we can assume here that here that there is at least one index expression.
3897 __isl_give isl_ast_expr *gpu_local_array_info_linearize_index(
3898 struct gpu_local_array_info *array, __isl_take isl_ast_expr *expr)
3900 int i, n;
3901 isl_ctx *ctx;
3902 isl_set *context;
3903 isl_ast_expr *arg0;
3904 isl_ast_expr *res;
3905 isl_ast_expr_list *list;
3906 isl_ast_build *build;
3908 arg0 = isl_ast_expr_get_op_arg(expr, 0);
3909 if (isl_ast_expr_get_type(arg0) == isl_ast_expr_op &&
3910 isl_ast_expr_get_op_type(arg0) == isl_ast_op_member) {
3911 isl_ast_expr *arg;
3913 arg = isl_ast_expr_get_op_arg(arg0, 0);
3914 arg = gpu_local_array_info_linearize_index(array, arg);
3915 arg0 = isl_ast_expr_set_op_arg(arg0, 0, arg);
3916 expr = isl_ast_expr_set_op_arg(expr, 0, arg0);
3918 return expr;
3920 isl_ast_expr_free(arg0);
3922 if (isl_ast_expr_get_op_n_arg(expr) == 1)
3923 return expr;
3925 ctx = isl_ast_expr_get_ctx(expr);
3926 context = isl_set_universe(isl_space_params_alloc(ctx, 0));
3927 build = isl_ast_build_from_context(context);
3929 n = isl_ast_expr_get_op_n_arg(expr);
3930 res = isl_ast_expr_get_op_arg(expr, 1);
3931 for (i = 1; i < array->n_index; ++i) {
3932 isl_pw_aff *bound_i;
3933 isl_ast_expr *expr_i;
3935 bound_i = isl_pw_aff_list_get_pw_aff(array->bound, i);
3936 expr_i = isl_ast_build_expr_from_pw_aff(build, bound_i);
3937 res = isl_ast_expr_mul(res, expr_i);
3939 if (i + 1 >= n)
3940 continue;
3941 expr_i = isl_ast_expr_get_op_arg(expr, i + 1);
3942 res = isl_ast_expr_add(res, expr_i);
3945 isl_ast_build_free(build);
3947 if (1 + array->n_index > n) {
3948 res = isl_ast_expr_add(isl_ast_expr_get_op_arg(expr, 0), res);
3949 } else {
3950 list = isl_ast_expr_list_from_ast_expr(res);
3951 res = isl_ast_expr_get_op_arg(expr, 0);
3952 res = isl_ast_expr_access(res, list);
3955 isl_ast_expr_free(expr);
3957 return res;
3960 /* AST expression transformation callback for pet_stmt_build_ast_exprs.
3962 * If the AST expression refers to a global scalar that is not
3963 * a read-only scalar, then its address was passed to the kernel and
3964 * we need to dereference it.
3966 * If the AST expression refers to an access to a global array,
3967 * then we linearize the access exploiting the bounds in data->local_array.
3969 static __isl_give isl_ast_expr *transform_expr(__isl_take isl_ast_expr *expr,
3970 __isl_keep isl_id *id, void *user)
3972 struct ppcg_transform_data *data = user;
3974 if (!data->array)
3975 return expr;
3976 if (gpu_array_is_read_only_scalar(data->array))
3977 return expr;
3978 if (!data->global)
3979 return expr;
3980 if (data->array->n_index == 0)
3981 return dereference(expr);
3982 if (!data->array->linearize)
3983 return expr;
3985 return gpu_local_array_info_linearize_index(data->local_array, expr);
3988 /* This function is called for each instance of a user statement
3989 * in the kernel.
3991 * We attach a struct ppcg_kernel_stmt to the "node", containing
3992 * a computed AST expression for each access.
3993 * These AST expressions are computed from iterator_map,
3994 * which expresses the domain
3995 * elements in terms of the generated loops, and sched2shared,
3996 * which expresses the first shared_len dimensions of the schedule
3997 * computed by PPCG in terms of the generated loops.
3999 static __isl_give isl_ast_node *at_each_domain(__isl_take isl_ast_node *node,
4000 __isl_keep isl_ast_build *build, void *user)
4002 struct ppcg_transform_data data;
4003 struct gpu_gen *gen = (struct gpu_gen *) user;
4004 struct ppcg_kernel_stmt *stmt;
4005 isl_id *id;
4006 isl_pw_multi_aff *sched2shared;
4007 isl_map *map;
4008 isl_pw_multi_aff *iterator_map;
4009 isl_ast_expr *expr, *arg;
4010 isl_union_map *schedule;
4011 int i, n;
4013 stmt = isl_calloc_type(gen->ctx, struct ppcg_kernel_stmt);
4014 if (!stmt)
4015 return isl_ast_node_free(node);
4017 expr = isl_ast_node_user_get_expr(node);
4018 arg = isl_ast_expr_get_op_arg(expr, 0);
4019 id = isl_ast_expr_get_id(arg);
4021 schedule = isl_ast_build_get_schedule(build);
4022 map = isl_map_reverse(isl_map_from_union_map(schedule));
4023 iterator_map = isl_pw_multi_aff_from_map(map);
4024 sched2shared = compute_sched_to_shared(gen,
4025 isl_pw_multi_aff_copy(iterator_map));
4027 stmt->type = ppcg_kernel_domain;
4028 stmt->u.d.stmt = find_stmt(gen->prog, id);
4029 if (!stmt->u.d.stmt)
4030 goto error;
4032 data.gen = gen;
4033 data.accesses = stmt->u.d.stmt->accesses;
4034 data.iterator_map = iterator_map;
4035 data.sched2shared = sched2shared;
4036 stmt->u.d.ref2expr = pet_stmt_build_ast_exprs(stmt->u.d.stmt->stmt,
4037 build, &transform_index, &data,
4038 &transform_expr, &data);
4040 isl_id_free(id);
4041 isl_pw_multi_aff_free(iterator_map);
4042 isl_pw_multi_aff_free(sched2shared);
4043 isl_ast_expr_free(arg);
4044 isl_ast_expr_free(expr);
4046 id = isl_id_alloc(gen->ctx, NULL, stmt);
4047 id = isl_id_set_free_user(id, &ppcg_kernel_stmt_free);
4048 return isl_ast_node_set_annotation(node, id);
4049 error:
4050 isl_id_free(id);
4051 isl_pw_multi_aff_free(iterator_map);
4052 ppcg_kernel_stmt_free(stmt);
4053 isl_pw_multi_aff_free(sched2shared);
4054 return isl_ast_node_free(node);
4057 /* This function is called when code has been generated for the shared
4058 * tile loops. The "schedule" refers only to the original statements.
4060 * We extend the schedule with that part of gen->local_sched that hasn't
4061 * been taken into account yet. This introduces parameters referring
4062 * to thread ids in the schedule, so we add them (with the appropriate
4063 * bounds to the context as well).
4064 * Finally, we set the appropriate unrolling options
4065 * if gen->first_unroll is set.
4067 static __isl_give isl_ast_node *create_domain_leaf(
4068 __isl_take isl_union_map *schedule, __isl_take isl_ast_build *build,
4069 void *user)
4071 struct gpu_gen *gen = (struct gpu_gen *) user;
4072 isl_space *space;
4073 isl_union_map *sched;
4074 isl_ast_node *tree;
4075 isl_set *set;
4076 isl_id_list *iterators;
4077 int n;
4079 schedule = extend_schedule(schedule,
4080 isl_union_map_copy(gen->local_sched),
4081 gen->shared_len, gen->thread_tiled_len);
4083 space = isl_ast_build_get_schedule_space(build);
4084 set = isl_set_universe(space);
4085 set = add_bounded_parameters(set, gen->kernel->n_block,
4086 gen->kernel->block_dim, "t");
4087 build = isl_ast_build_restrict(build, set);
4089 n = gen->thread_tiled_len - gen->shared_len;
4091 if (gen->first_unroll >= 0) {
4092 space = isl_space_set_alloc(gen->ctx, 0, n);
4093 build = set_unroll(build, space, gen->first_unroll);
4095 iterators = generate_names(gen->ctx, n, "c");
4096 build = isl_ast_build_set_iterators(build, iterators);
4097 build = isl_ast_build_set_at_each_domain(build, &at_each_domain, gen);
4098 tree = isl_ast_build_ast_from_schedule(build, schedule);
4099 isl_ast_build_free(build);
4101 return tree;
4104 /* This function is called for each statement node in the AST of the code
4105 * for copying to or from shared/private memory.
4106 * Attach a pointer to a ppcg_kernel_stmt representing the copy
4107 * statement to the node.
4108 * The statement name is "read" or "write", depending on whether we are
4109 * reading from global memory or writing to global memory.
4110 * The name of the T space is {shared,private}_<array>.
4112 * The schedule is of the form
4114 * type[A -> T] -> L
4116 * where A refers to a piece of an array and T to the corresponding
4117 * shifted tile. We split this schedule into mappings L -> A and L -> T
4118 * and store the corresponding expressions in stmt->index and stmt->local_index,
4119 * where stmt points to the ppcg_kernel_stmt that is attached to the node.
4121 static __isl_give isl_ast_node *attach_copy_stmt(__isl_take isl_ast_node *node,
4122 __isl_keep isl_ast_build *build, void *user)
4124 struct gpu_gen *gen = (struct gpu_gen *) user;
4125 struct ppcg_kernel_stmt *stmt;
4126 isl_id *id;
4127 isl_ast_expr *expr;
4128 isl_space *space;
4129 isl_map *access, *local_access, *map;
4130 isl_pw_multi_aff *pma;
4131 const char *type;
4132 int array_index;
4134 stmt = isl_calloc_type(gen->ctx, struct ppcg_kernel_stmt);
4135 if (!stmt)
4136 return isl_ast_node_free(node);
4138 access = isl_map_from_union_map(isl_ast_build_get_schedule(build));
4139 type = isl_map_get_tuple_name(access, isl_dim_in);
4140 stmt->u.c.read = !strcmp(type, "read");
4141 access = isl_map_reverse(access);
4142 space = isl_space_unwrap(isl_space_range(isl_map_get_space(access)));
4143 local_access = isl_map_copy(access);
4145 map = isl_map_domain_map(isl_map_universe(isl_space_copy(space)));
4146 id = isl_map_get_tuple_id(access, isl_dim_out);
4147 map = isl_map_set_tuple_id(map, isl_dim_in, id);
4148 access = isl_map_apply_range(access, map);
4149 pma = isl_pw_multi_aff_from_map(access);
4150 expr = isl_ast_build_access_from_pw_multi_aff(build, pma);
4151 stmt->u.c.index = expr;
4153 map = isl_map_range_map(isl_map_universe(space));
4154 id = isl_map_get_tuple_id(local_access, isl_dim_out);
4155 map = isl_map_set_tuple_id(map, isl_dim_in, id);
4156 local_access = isl_map_apply_range(local_access, map);
4157 pma = isl_pw_multi_aff_from_map(local_access);
4158 expr = isl_ast_build_access_from_pw_multi_aff(build, pma);
4159 stmt->u.c.local_index = expr;
4161 stmt->u.c.array = gen->copy_group->array;
4162 array_index = stmt->u.c.array - gen->prog->array;
4163 stmt->u.c.local_array = &gen->kernel->array[array_index];
4164 stmt->type = ppcg_kernel_copy;
4166 id = isl_id_alloc(gen->ctx, NULL, stmt);
4167 id = isl_id_set_free_user(id, &ppcg_kernel_stmt_free);
4168 return isl_ast_node_set_annotation(node, id);
4171 /* Given a schedule of the form
4173 * [S -> A] -> L
4175 * (with S the first shared_len dimensions of the computed schedule,
4176 * A the array and L the schedule correponding to the generated loops),
4177 * indicating where to copy the array elements that need to be copied,
4178 * construct code for performing the copying.
4180 * "group" is the array reference group that is being copied
4181 * "type" is either "read" or "write"
4182 * private is set if copying needs to be performed to/from registers
4184 * We first construct a mapping to a shifted tile of the array,
4186 * [S -> A] -> T(S,A) (1)
4188 * If private is set, then we also use this mapping as a schedule
4189 * (which is already thread-specific and will be completely unrolled).
4190 * Otherwise, we wrap/tile the range over the threads.
4191 * The result is
4193 * [S -> A] -> T'(S,A)
4195 * Combined with the given schedule, we have
4197 * [S -> A] -> [L -> T'(S,A)] (2)
4199 * From the shifted tile mapping, we construct a mapping
4201 * [S -> A] -> [A -> T(S,A)]
4203 * and apply it to the schedule (2), obtaining
4205 * [A -> T(S(L),A)] -> [L -> T'(S(L),A)]
4207 * Note that we can project out S because it is uniquely defined by L.
4209 static __isl_give isl_ast_node *copy_access(struct gpu_gen *gen,
4210 __isl_take isl_map *sched,
4211 const char *type, struct gpu_array_ref_group *group,
4212 __isl_take isl_ast_build *build, int private)
4214 isl_space *space;
4215 isl_ast_node *tree;
4216 isl_map *schedule, *shift, *map;
4217 isl_set *set;
4218 isl_id_list *iterators;
4219 int n;
4221 shift = shift_access(group);
4223 schedule = isl_map_copy(shift);
4224 schedule = isl_map_reset_tuple_id(schedule, isl_dim_out);
4225 if (!private)
4226 schedule = tile_access_schedule(gen, schedule);
4228 n = isl_map_dim(schedule, isl_dim_out);
4229 set = isl_set_universe(isl_ast_build_get_schedule_space(build));
4230 set = add_bounded_parameters(set, gen->kernel->n_block,
4231 gen->kernel->block_dim, "t");
4233 schedule = isl_map_range_product(sched, schedule);
4235 space = isl_space_domain(isl_map_get_space(shift));
4236 map = isl_map_range_map(isl_map_universe(isl_space_unwrap(space)));
4237 map = isl_map_range_product(map, shift);
4239 schedule = isl_map_apply_domain(schedule, map);
4241 schedule = isl_map_set_tuple_name(schedule, isl_dim_in, type);
4243 build = isl_ast_build_restrict(build, set);
4245 gen->copy_group = group;
4247 if (private) {
4248 space = isl_space_range(isl_map_get_space(schedule));
4249 space = isl_space_range(isl_space_unwrap(space));
4250 build = set_unroll(build, space, 0);
4252 iterators = generate_names(gen->ctx, n, "c");
4253 build = isl_ast_build_set_iterators(build, iterators);
4254 build = isl_ast_build_set_at_each_domain(build, &attach_copy_stmt, gen);
4255 tree = isl_ast_build_ast_from_schedule(build,
4256 isl_union_map_from_map(schedule));
4257 isl_ast_build_free(build);
4259 return tree;
4262 /* Return code for reading into or writing from shared memory
4263 * the given array reference group.
4265 * If we are performing a read from global memory to shared memory and
4266 * if the array involved is not a scalar, then we copy
4267 * the entire tile to shared memory. This may result in some extra
4268 * elements getting copied, but it should lead to simpler code
4269 * (which means that fewer registers may be needed) and less divergence.
4271 * Otherwise, we only copy the elements that will be read or have been written
4272 * in the kernel.
4275 * The input "sched" is of the form.
4277 * type[S -> A] -> L
4279 * with S the first shared_len dimensions of the computed schedule,
4280 * A the array and L the schedule correponding to the generated loops.
4282 * We first drop "type",
4284 * [S -> A] -> L
4286 * If the above conditions are satisfied, we project out A,
4287 * resulting in
4289 * S -> L
4291 * and then introduce the group tile [S -> T], resulting in
4293 * [S -> T] -> L
4295 static __isl_give isl_ast_node *copy_group_shared_accesses(
4296 struct gpu_gen *gen, struct gpu_array_ref_group *group,
4297 __isl_take isl_map *sched, __isl_take isl_ast_build *build)
4299 const char *type;
4300 int read;
4301 isl_union_map *access;
4303 type = isl_map_get_tuple_name(sched, isl_dim_in);
4304 read = !strcmp(type, "read");
4306 sched = isl_map_reset_tuple_id(sched, isl_dim_in);
4308 if (read && !gpu_array_is_scalar(group->array)) {
4309 isl_space *space;
4310 isl_map *map;
4312 space = isl_space_domain(isl_map_get_space(sched));
4313 space = isl_space_unwrap(space);
4314 map = isl_map_domain_map(isl_map_universe(space));
4315 sched = isl_map_apply_domain(sched, map);
4317 map = group_tile(group);
4318 map = isl_map_reverse(isl_map_domain_map(map));
4319 sched = isl_map_apply_domain(sched, map);
4322 return copy_access(gen, sched, type, group, build, 0);
4325 /* Return code for reading into or writing from private memory
4326 * the given array reference group.
4328 * Let S be the first shared_len dimensions of the computed schedule,
4329 * D the iteration domains, A the array and L the schedule correponding
4330 * to the generated loops.
4331 * "sched" is of the form
4333 * type[S -> A] -> L
4335 * where type is either "read" or "write".
4336 * We apply the privatization D -> S(t), with t the thread ids,
4337 * to the access relation D -> A to obtain the privatized access relation
4339 * S(t) -> A
4341 * We drop the type from "sched" and intersect with the privatized access
4342 * relation to obtain
4344 * [S(t) -> A] -> L
4346 static __isl_give isl_ast_node *copy_group_private_accesses(
4347 struct gpu_gen *gen, struct gpu_array_ref_group *group,
4348 __isl_take isl_map *sched, __isl_take isl_ast_build *build)
4350 const char *type;
4351 int read;
4352 isl_union_map *priv;
4353 isl_union_map *access;
4354 isl_map *access_map;
4356 type = isl_map_get_tuple_name(sched, isl_dim_in);
4357 read = !strcmp(type, "read");
4359 priv = isl_union_map_from_map(isl_map_copy(gen->privatization));
4360 priv = isl_union_map_apply_range(isl_union_map_copy(gen->shared_sched),
4361 priv);
4363 access = group_access_relation(group, read, !read);
4364 access = isl_union_map_apply_domain(access, priv);
4365 access_map = isl_map_from_union_map(access);
4367 sched = isl_map_reset_tuple_id(sched, isl_dim_in);
4368 sched = isl_map_intersect_domain(sched, isl_map_wrap(access_map));
4370 return copy_access(gen, sched, type, group, build, 1);
4373 /* Return code for reading into or writing from shared or private memory.
4375 * "schedule" is of the form
4377 * type[S -> A] -> L
4379 * with S be the first shared_len dimensions of the computed schedule,
4380 * A the array and L the schedule correponding to the generated loops.
4381 * The array reference group is attached to "type".
4383 static __isl_give isl_ast_node *create_access_leaf(
4384 struct gpu_gen *gen, __isl_take isl_map *schedule,
4385 __isl_take isl_ast_build *build)
4387 struct gpu_array_ref_group *group;
4388 isl_id *id;
4390 id = isl_map_get_tuple_id(schedule, isl_dim_in);
4391 group = isl_id_get_user(id);
4392 isl_id_free(id);
4394 if (group->private_tile)
4395 return copy_group_private_accesses(gen, group, schedule,
4396 build);
4397 else
4398 return copy_group_shared_accesses(gen, group, schedule,
4399 build);
4402 /* Create a domain node representing a synchronization.
4404 static __isl_give isl_ast_node *create_sync_leaf(
4405 struct gpu_gen *gen, __isl_take isl_map *schedule,
4406 __isl_take isl_ast_build *build)
4408 struct ppcg_kernel_stmt *stmt;
4409 isl_id *id;
4410 isl_space *space;
4411 isl_ast_node *node;
4412 isl_ast_expr *expr;
4414 isl_map_free(schedule);
4416 stmt = isl_calloc_type(gen->ctx, struct ppcg_kernel_stmt);
4417 if (!stmt)
4418 return NULL;
4420 stmt->type = ppcg_kernel_sync;
4422 space = isl_ast_build_get_schedule_space(build);
4423 space = isl_space_from_domain(space);
4424 space = isl_space_set_tuple_name(space, isl_dim_out, "sync");
4425 expr = isl_ast_build_call_from_pw_multi_aff(build,
4426 isl_pw_multi_aff_from_multi_aff(isl_multi_aff_zero(space)));
4427 node = isl_ast_node_alloc_user(expr);
4428 isl_ast_build_free(build);
4430 id = isl_id_alloc(gen->ctx, NULL, stmt);
4431 id = isl_id_set_free_user(id, &ppcg_kernel_stmt_free);
4432 return isl_ast_node_set_annotation(node, id);
4435 /* This function is called during the code generation at the point
4436 * where the schedule domain element is completely determined by
4437 * the generated code. The input schedule contains the original
4438 * statements as well as synchronization and copy "statements".
4439 * The latter are scheduled at different points than any of the original
4440 * statements, so they will only arrive here in isolation.
4442 * If the current schedule only refers to a single statement,
4443 * we check if it is a copy or synchronization statement and
4444 * call the appropriate functions.
4445 * Otherwise, we assume we are dealing with the original statements
4446 * and we call create_domain_leaf.
4448 static __isl_give isl_ast_node *create_kernel_leaf(
4449 __isl_take isl_ast_build *build, void *user)
4451 struct gpu_gen *gen = (struct gpu_gen *) user;
4452 isl_map *map;
4453 isl_union_map *schedule;
4454 const char *name;
4456 schedule = isl_ast_build_get_schedule(build);
4458 if (isl_union_map_n_map(schedule) != 1)
4459 return create_domain_leaf(schedule, build, user);
4461 map = isl_map_from_union_map(schedule);
4462 name = isl_map_get_tuple_name(map, isl_dim_in);
4463 if (!strcmp(name, "read") || !strcmp(name, "write"))
4464 return create_access_leaf(gen, map, build);
4465 if (!strcmp(name, "sync"))
4466 return create_sync_leaf(gen, map, build);
4468 return create_domain_leaf(isl_union_map_from_map(map), build, user);
4471 /* Mark all odd schedule dimensions as "atomic" (when the even dimensions
4472 * have value 0) and all even schedule dimensions as "unroll".
4474 * That is, the options look as follows
4476 * { [0, b, 0, d, ..., 0] -> atomic[i] : exists a : i = 2 a + 1;
4477 * [a, b, c, d, ..., z] -> unroll[i] : exists a : i = 2 a }
4479 * The even positions are used to be able to schedule copying blocks
4480 * and synchronization before or after each level of the shared memory
4481 * tile loops and we want to make sure that code for these is generated
4482 * separately (within each level).
4484 static __isl_give isl_ast_build *set_atomic_and_unroll(
4485 __isl_take isl_ast_build *build,
4486 __isl_take isl_space *space, int sched_len)
4488 isl_ctx *ctx;
4489 isl_map *map;
4490 isl_constraint *c;
4491 isl_union_map *opt;
4492 isl_local_space *ls;
4493 int i, n;
4495 ctx = isl_ast_build_get_ctx(build);
4497 space = isl_space_params(space);
4498 space = isl_space_add_dims(space, isl_dim_set, sched_len);
4499 space = isl_space_from_domain(space);
4500 space = isl_space_add_dims(space, isl_dim_out, 2);
4501 map = isl_map_universe(isl_space_copy(space));
4502 for (i = 0; i < sched_len; i += 2)
4503 map = isl_map_fix_si(map, isl_dim_in, i, 0);
4504 ls = isl_local_space_from_space(isl_map_get_space(map));
4505 c = isl_equality_alloc(ls);
4506 c = isl_constraint_set_coefficient_si(c, isl_dim_out, 0, 1);
4507 c = isl_constraint_set_coefficient_si(c, isl_dim_out, 1, 2);
4508 c = isl_constraint_set_constant_si(c, 1);
4509 map = isl_map_add_constraint(map, c);
4510 map = isl_map_project_out(map, isl_dim_out, 1, 1);
4511 map = isl_map_set_tuple_name(map, isl_dim_out, "atomic");
4512 opt = isl_union_map_from_map(map);
4514 map = isl_map_universe(space);
4515 ls = isl_local_space_from_space(isl_map_get_space(map));
4516 c = isl_equality_alloc(ls);
4517 c = isl_constraint_set_coefficient_si(c, isl_dim_out, 0, 1);
4518 c = isl_constraint_set_coefficient_si(c, isl_dim_out, 1, 2);
4519 map = isl_map_add_constraint(map, c);
4520 map = isl_map_project_out(map, isl_dim_out, 1, 1);
4521 map = isl_map_set_tuple_name(map, isl_dim_out, "unroll");
4522 opt = isl_union_map_add_map(opt, map);
4524 build = isl_ast_build_set_options(build, opt);
4526 return build;
4529 /* Return a map that maps a space of dimension gen->shared_len
4530 * to its last dimensions starting at gen->tile_first.
4531 * The range is of dimension
4533 * 2 * (gen->shared_len - gen->tile_first) + 1
4535 * The input dimensions are mapped to the odd dimensions in the output,
4536 * while the even dimensions (except 2*pos) are fixed to 0.
4537 * Output dimension 2*pos (if pos >= 0) is fixed to "val".
4538 * If pos >= 0, then only the pos first dimensions starting at gen->tile_first
4539 * are mapped to the output. The remaining input dimensions are projected
4540 * out and the corresponding output dimensions are fixed to 0.
4542 static __isl_give isl_map *insert_even(struct gpu_gen *gen,
4543 __isl_take isl_space *space, int pos, int val)
4545 int i, n;
4546 isl_map *proj;
4548 space = isl_space_set_from_params(space);
4549 space = isl_space_add_dims(space, isl_dim_set, gen->shared_len);
4550 space = isl_space_map_from_set(space);
4551 proj = isl_map_identity(space);
4552 proj = isl_map_project_out(proj, isl_dim_out, 0, gen->tile_first);
4553 n = gen->shared_len - gen->tile_first;
4554 for (i = 0; i <= n; ++i) {
4555 proj = isl_map_insert_dims(proj, isl_dim_out, 2 * i, 1);
4556 if (i == pos)
4557 proj = isl_map_fix_si(proj, isl_dim_out, 2 * i, val);
4558 else
4559 proj = isl_map_fix_si(proj, isl_dim_out, 2 * i, 0);
4562 if (pos < 0)
4563 return proj;
4565 proj = isl_map_eliminate(proj, isl_dim_in, gen->tile_first + pos,
4566 gen->shared_len - (gen->tile_first + pos));
4567 for (i = pos; i < n; ++i)
4568 proj = isl_map_fix_si(proj, isl_dim_out, 2 * i + 1, 0);
4570 return proj;
4573 /* Given the AST context schedule "schedule" and the mapping from
4574 * domains to the shared tile loops "shared_sched", add a schedule
4575 * for a synchronization operation at position "val" of loop level "pos".
4577 * schedule is of the form
4579 * D -> L
4581 * (with D the iteration domains and L the already generated loops),
4582 * while shared_sched is of the form
4584 * D -> S
4586 * We combine them into
4588 * L -> S
4590 * apply a mapping
4592 * [s_0,...] -> [0,s_{tile_first},0,..., val, 0, 0, ... 0]
4594 * and use the result as a schedule for "sync".
4596 static __isl_give isl_union_map *add_sync_schedule(struct gpu_gen *gen,
4597 __isl_take isl_union_map *res, __isl_keep isl_union_map *schedule,
4598 __isl_keep isl_union_map *shared_sched, int pos, int val)
4600 isl_space *space;
4601 isl_map *proj, *map;
4603 shared_sched = isl_union_map_copy(shared_sched);
4604 schedule = isl_union_map_copy(schedule);
4606 space = isl_union_map_get_space(shared_sched);
4607 schedule = isl_union_map_apply_domain(shared_sched, schedule);
4608 map = isl_map_from_union_map(schedule);
4610 proj = insert_even(gen, space, pos, val);
4611 map = isl_map_apply_range(map, proj);
4612 map = isl_map_from_range(isl_map_wrap(map));
4613 map = isl_map_set_tuple_name(map, isl_dim_in, "sync");
4615 res = isl_union_map_add_map(res, map);
4617 return res;
4620 /* Given a set of wrapped references "ref", return the corresponding
4621 * access relations based on the tagged access relations "tagged".
4623 * The elements of "ref" are of the form
4625 * [D -> R]
4627 * with D an iteration domains and R a reference.
4628 * The elements of "tagged" are of the form
4630 * [D -> R] -> A
4632 * with A an array.
4634 * Extend "tagged" to include the iteration domain in the range, i.e.,
4636 * [D -> R] -> [D -> A]
4638 * apply the result to "ref" and then unwrap the resulting set
4639 * to obtain relations of the form
4641 * D -> A
4643 static __isl_give isl_union_map *wrapped_reference_to_access(
4644 __isl_take isl_union_set *ref, __isl_take isl_union_map *tagged)
4646 isl_union_map *tag2access;
4648 tag2access = isl_union_map_copy(tagged);
4649 tag2access = isl_union_map_universe(tag2access);
4650 tag2access = isl_union_set_unwrap(isl_union_map_domain(tag2access));
4651 tag2access = isl_union_map_domain_map(tag2access);
4652 tag2access = isl_union_map_range_product(tag2access, tagged);
4654 ref = isl_union_set_coalesce(ref);
4655 ref = isl_union_set_apply(ref, tag2access);
4657 return isl_union_set_unwrap(ref);
4660 /* Given an access relation "access" from "group", remove those reads
4661 * if ("read" is 1) or writes (if "read" is 0) that are only needed to
4662 * communicate data within the same iteration of the last_shared dimension
4663 * of the group.
4665 * If the access is a read then it is necessarily an element of
4667 * live_in union (range flow)
4669 * where live_in and flow may be overapproximations.
4670 * If the access is a write then it is necessarily an element of
4672 * live_out union (domain flow)
4674 * In both cases, the access relation is also a subset of
4675 * the group access relation.
4677 * Essentially, we compute the intersection of "access" with either
4679 * live_in union (range non-local-flow)
4681 * or
4683 * live_out union (domain non-local-flow)
4685 * We first construct a relation "local"
4687 * [[D -> R] -> [D' -> R']]
4689 * of pairs of domain iterations accessing the reference group
4690 * and references in the group that are scheduled to the same iteration
4691 * of the last_shared dimension.
4693 * If this relation does not intersect the dataflow dependences,
4694 * then there is nothing we can possibly remove and we simply
4695 * return the input.
4697 * Otherwise, we remove the "local" dataflow dependences from
4698 * the set of all dataflow dependences.
4699 * Note that if the potential dataflow dependences are an overapproximation
4700 * of the actual dataflow dependences, then the result remains an
4701 * overapproximation of the non-local dataflow dependences.
4702 * Copying to/from global memory is only needed for the references
4703 * in the domain/range of the result or for accesses that are live out/in
4704 * for the entire scop.
4706 * We therefore map the domain/range of the "external" relation
4707 * to the corresponding access relation and take the union with
4708 * the live out/in relation.
4710 static __isl_give isl_union_map *remove_local_accesses(struct gpu_gen *gen,
4711 struct gpu_array_ref_group *group, __isl_take isl_union_map *access,
4712 int read)
4714 int empty;
4715 isl_union_map *tagger;
4716 isl_union_set *domain;
4717 isl_space *space;
4718 isl_union_map *sched, *local, *tagged, *external;
4719 isl_union_set *tag_set;
4720 isl_map *proj;
4722 if (isl_union_map_is_empty(access))
4723 return access;
4725 tagged = group_tagged_access_relation(group);
4727 sched = isl_union_map_copy(gen->sched);
4729 space = isl_union_map_get_space(sched);
4730 proj = projection(space, gen->untiled_len, group->last_shared + 1);
4731 sched = isl_union_map_apply_range(sched, isl_union_map_from_map(proj));
4733 tagger = isl_union_map_copy(gen->prog->scop->tagger);
4734 domain = isl_union_map_domain(isl_union_map_copy(tagged));
4735 tagger = isl_union_map_intersect_range(tagger, domain);
4736 sched = isl_union_map_apply_domain(sched, tagger);
4738 local = isl_union_map_apply_range(sched,
4739 isl_union_map_reverse(isl_union_map_copy(sched)));
4740 local = isl_union_map_intersect(local,
4741 isl_union_map_copy(gen->prog->scop->tagged_dep_flow));
4743 empty = isl_union_map_is_empty(local);
4744 if (empty < 0 || empty) {
4745 isl_union_map_free(tagged);
4746 isl_union_map_free(local);
4747 if (empty < 0)
4748 return isl_union_map_free(access);
4749 return access;
4752 external = isl_union_map_copy(gen->prog->scop->tagged_dep_flow);
4753 external = isl_union_map_intersect_params(external,
4754 isl_set_copy(gen->prog->scop->context));
4755 external = isl_union_map_subtract(external, local);
4757 if (read) {
4758 tag_set = isl_union_map_range(external);
4759 external = wrapped_reference_to_access(tag_set, tagged);
4760 external = isl_union_map_union(external,
4761 isl_union_map_copy(gen->prog->scop->live_in));
4762 } else {
4763 tag_set = isl_union_map_domain(external);
4764 external = wrapped_reference_to_access(tag_set, tagged);
4765 external = isl_union_map_union(external,
4766 isl_union_map_copy(gen->prog->scop->live_out));
4769 access = isl_union_map_intersect(access, external);
4771 return access;
4774 /* Given the AST context schedule "schedule" and the mapping from
4775 * domains to the shared tile loops "shared_sched", add a schedule
4776 * for copying an array reference group to/from shared/private memory.
4777 * "read" is set if data should be copied from global memory
4778 * to shared/private memory.
4779 * "k" represents the current group
4780 * "s" is the total number of groups
4782 * We schedule an operation before or after the innermost loop
4783 * of "shared_sched" that affects the tile of the array reference group.
4785 * schedule is of the form
4787 * D -> L
4789 * (with D the iteration domains and L the already generated loops),
4790 * while shared_sched is of the form
4792 * D -> S
4794 * We first compute the access relation for the reference group
4796 * D -> A
4798 * and remove from this access relation those reads or writes
4799 * that only needed to communicate data within the same iteration
4800 * of the last_shared dimension of the group.
4801 * We then combine what is left with shared_sched into
4803 * D -> [S -> A]
4805 * If this results in an empty relation, no copying needs to be performed
4806 * at this point.
4807 * Otherwise, we invert the relation and combine it with "schedule" into
4809 * [S -> A] -> L
4811 * The actual additional piece of the schedule is obtained from combining
4813 * [S -> A] -> S
4815 * with a mapping
4817 * [s_0,...] -> [0,s_{tile_first},0,..., val, 0, 0, ... 0]
4819 * The position of "val" corresponds to the innermost loop that affects
4820 * the tile and the value indicates where the copying is scheduled
4821 * with respect to the actual kernel code (at value 0).
4822 * Reads are schedule before the code, writes to global memory from
4823 * private memory are scheduled at values 1 to s, writes to global
4824 * memory from shared memory are scheduled at values s + 2 to 2 * s + 1.
4826 * If we are scheduling a read from global memory to shared memory,
4827 * we insert a synchronization before the kernel code (at the innermost
4828 * level).
4829 * If we are scheduling a write to global memory, then we add
4830 * a synchronization after all writes (at value 2 *s + 2).
4831 * However, there is no need for a synchronization after the outermost loop.
4832 * A write to global memory from private memory at the innermost level
4833 * does not require a synchronization, because it is covered by
4834 * the synchronization after the kernel inserted by body_schedule.
4836 static __isl_give isl_union_map *add_group_schedule(struct gpu_gen *gen,
4837 __isl_take isl_union_map *res, __isl_keep isl_union_map *schedule,
4838 __isl_keep isl_union_map *shared_sched,
4839 struct gpu_array_ref_group *group, int read, int k, int s)
4841 int n;
4842 int pos, val;
4843 isl_space *space;
4844 isl_union_map *access;
4845 isl_map *map, *proj, *access_map;
4846 isl_id *id;
4848 access = group_access_relation(group, read, !read);
4849 access = remove_local_accesses(gen, group, access, read);
4850 access = isl_union_map_range_product(isl_union_map_copy(shared_sched),
4851 access);
4853 if (isl_union_map_is_empty(access)) {
4854 isl_union_map_free(access);
4855 return res;
4858 access = isl_union_map_reverse(access);
4859 access = isl_union_map_apply_range(access,
4860 isl_union_map_copy(schedule));
4861 access_map = isl_map_from_union_map(access);
4863 space = isl_space_copy(group->array->space);
4864 space = isl_space_from_range(space);
4865 space = isl_space_add_dims(space, isl_dim_in, gen->shared_len);
4866 map = isl_map_domain_map(isl_map_universe(space));
4868 space = isl_union_map_get_space(schedule);
4869 pos = group->last_shared + 1 - gen->tile_first;
4870 assert(pos >= 0);
4871 if (read)
4872 val = -2 - k;
4873 else if (group->private_tile)
4874 val = 1 + k;
4875 else
4876 val = 1 + s + 1 + k;
4877 proj = insert_even(gen, space, pos, val);
4878 map = isl_map_apply_range(map, proj);
4880 access_map = isl_map_range_product(access_map, map);
4882 id = isl_id_alloc(gen->ctx, read ? "read" : "write", group);
4883 access_map = isl_map_set_tuple_id(access_map, isl_dim_in, id);
4885 res = isl_union_map_add_map(res, access_map);
4887 n = gen->shared_len - gen->tile_first;
4888 if (read) {
4889 if (!group->private_tile)
4890 res = add_sync_schedule(gen, res, schedule,
4891 shared_sched, n, -1);
4892 } else {
4893 if (pos == 0)
4894 return res;
4895 if (pos == n && group->private_tile)
4896 return res;
4897 res = add_sync_schedule(gen, res, schedule, shared_sched,
4898 pos, 2 * s + 2);
4901 return res;
4904 /* Return a schedule for the shared tile loops based on the current
4905 * AST context schedule.
4907 * We create a "shared_sched" that maps the domains to the first
4908 * shared_len dimensions of the computed schedule, project out the
4909 * first tile_first dimensions (as these are already covered by
4910 * the host code) and insert "statement-level" dimensions at even
4911 * positions so that we can schedule copy blocks and synchronization
4912 * before/after each level.
4914 * In particular, copy blocks are inserted inside the innermost
4915 * level that affect the tile. For the copying to global memory,
4916 * those from private memory are scheduled before those from shared
4917 * memory such that synchronization can be inserted between the two
4918 * at the innermost level.
4919 * Synchronization is inserted at the innermost level before the
4920 * actual kernel code if there is any copying from global memory
4921 * to shared memory. It is inserted unconditionally at the innermost
4922 * level after the actual kernel code and the copying to global memory
4923 * from private memory (if any). Finally, it is inserted after
4924 * any copying to global memory, except at the outermost level
4925 * and at the innermost level if there is no copying from shared
4926 * memory. The copying from private memory is covered by the unconditional
4927 * synchronization at the innermost level.
4929 static __isl_give isl_union_map *body_schedule(struct gpu_gen *gen,
4930 __isl_take isl_union_map *schedule)
4932 isl_space *space;
4933 isl_union_map *res;
4934 isl_union_map *shared_sched;
4935 isl_union_map *sched;
4936 isl_map *proj, *map;
4937 int i, j, k, s;
4939 shared_sched = isl_union_map_copy(gen->tiled_sched);
4940 proj = projection(isl_union_map_get_space(shared_sched),
4941 gen->tiled_len, gen->shared_len);
4942 shared_sched = isl_union_map_apply_range(shared_sched,
4943 isl_union_map_from_map(proj));
4944 space = isl_union_map_get_space(shared_sched);
4945 proj = insert_even(gen, space, -1, 0);
4946 sched = isl_union_map_apply_range(isl_union_map_copy(shared_sched),
4947 isl_union_map_from_map(proj));
4949 res = isl_union_map_range_product(isl_union_map_copy(schedule), sched);
4951 s = 0;
4952 for (i = 0; i < gen->prog->n_array; ++i)
4953 s += gen->prog->array[i].n_group;
4955 k = 0;
4956 for (i = 0; i < gen->prog->n_array; ++i) {
4957 struct gpu_array_info *array = &gen->prog->array[i];
4959 for (j = 0; j < array->n_group; ++j) {
4960 struct gpu_array_ref_group *group;
4962 group = array->groups[j];
4963 if (!group->private_tile && !group->shared_tile)
4964 continue;
4965 res = add_group_schedule(gen, res, schedule,
4966 shared_sched, group, 0, k, s);
4967 res = add_group_schedule(gen, res, schedule,
4968 shared_sched, group, 1, k, s);
4969 ++k;
4973 res = add_sync_schedule(gen, res, schedule, shared_sched,
4974 gen->shared_len - gen->tile_first, 1 + s);
4976 isl_union_map_free(shared_sched);
4977 isl_union_map_free(schedule);
4979 return res;
4982 /* Generate code for "kernel" in the given "context".
4984 * We first generate code for the shared tile loops (T1T, T1P and T2)
4985 * in a context that includes the block ids.
4986 * Within each iteration of these loops an additional code generation
4987 * is performed (within create_kernel_leaf) for the rest of the schedule
4988 * in a context that includes the thread ids.
4990 static __isl_give isl_ast_node *generate_kernel(struct gpu_gen *gen,
4991 __isl_keep isl_ast_build *build, __isl_keep isl_set *host_domain,
4992 __isl_keep isl_multi_pw_aff *grid_size)
4994 isl_space *space;
4995 isl_set *set;
4996 isl_id_list *iterators;
4997 isl_union_map *schedule;
4998 isl_ast_node *tree;
4999 int sched_len;
5001 schedule = isl_ast_build_get_schedule(build);
5003 build = isl_ast_build_copy(build);
5004 build = isl_ast_build_restrict(build, isl_set_copy(host_domain));
5005 space = isl_ast_build_get_schedule_space(build);
5006 set = isl_set_universe(isl_space_copy(space));
5007 set = add_bounded_parameters_dynamic(set, grid_size, "b");
5008 build = isl_ast_build_restrict(build, set);
5010 schedule = body_schedule(gen, schedule);
5012 sched_len = 2 * (gen->shared_len - gen->tile_first) + 1;
5014 build = set_atomic_and_unroll(build, space, sched_len);
5015 iterators = generate_names(gen->ctx, sched_len, "g");
5016 build = isl_ast_build_set_iterators(build, iterators);
5017 build = isl_ast_build_set_create_leaf(build, &create_kernel_leaf, gen);
5018 tree = isl_ast_build_ast_from_schedule(build, schedule);
5019 isl_ast_build_free(build);
5021 return tree;
5024 /* Attach "id" to the given node.
5026 static __isl_give isl_ast_node *attach_id(__isl_take isl_ast_node *node,
5027 __isl_keep isl_ast_build *build, void *user)
5029 isl_id *id = user;
5031 node = isl_ast_node_set_annotation(node, id);
5033 return node;
5036 /* Construct an AST node for performing a kernel launch and attach
5037 * the information about the kernel to that node.
5039 * The kernel AST has been constructed in the context of the range
5040 * of "schedule". In particular, the grid size has been computed
5041 * in the context. We therefore still need to make sure that these
5042 * constraints are expressed in the code. We do this by creating a schedule
5044 * kernel[] -> [S -> []]
5046 * where S is the schedule domain, i.e., the range of "schedule".
5047 * The AST generation will then create a single call surrounded by
5048 * all the condition in "S" that have not been expressed yet.
5050 * The kernel information is attached to this node in attach_id.
5052 static __isl_give isl_ast_node *construct_launch(
5053 __isl_take isl_ast_build *build, __isl_take isl_union_map *schedule,
5054 __isl_take struct ppcg_kernel *kernel)
5056 isl_id *id;
5057 isl_ctx *ctx;
5058 isl_union_set *domain;
5059 isl_set *set;
5060 isl_map *map;
5061 isl_ast_node *node;
5063 ctx = isl_ast_build_get_ctx(build);
5065 id = isl_id_alloc(ctx, NULL, kernel);
5066 id = isl_id_set_free_user(id, &ppcg_kernel_free);
5068 domain = isl_union_map_range(schedule);
5069 set = isl_set_from_union_set(domain);
5070 map = isl_map_from_domain(set);
5071 map = isl_map_from_range(isl_map_wrap(map));
5072 map = isl_map_set_tuple_name(map, isl_dim_in, "kernel");
5073 schedule = isl_union_map_from_map(map);
5075 build = isl_ast_build_set_at_each_domain(build, &attach_id, id);
5076 node = isl_ast_build_ast_from_schedule(build, schedule);
5077 isl_ast_build_free(build);
5079 return node;
5082 /* This function is called for each leaf in the AST of the host code.
5083 * We first specialize the schedule to the site of the leaf, compute
5084 * the size of shared memory and then construct the body of the host code
5085 * and the associated kernel.
5087 * The necessary information for printing the kernel launch is
5088 * stored in a struct ppcg_kernel and attached to the leaf node
5089 * created to represent the launch.
5091 static __isl_give isl_ast_node *create_host_leaf(
5092 __isl_take isl_ast_build *build, void *user)
5094 struct gpu_gen *gen = (struct gpu_gen *) user;
5095 isl_id *id;
5096 isl_ast_node *node;
5097 struct ppcg_kernel *kernel;
5098 isl_set *host_domain;
5099 isl_union_map *schedule;
5100 isl_union_map *local_sched;
5101 isl_union_map *access;
5102 isl_union_set *domain;
5103 int i;
5105 schedule = isl_ast_build_get_schedule(build);
5107 isl_union_map_foreach_map(schedule, &extract_tile_len, gen);
5108 read_sizes(gen);
5110 domain = isl_union_map_domain(isl_union_map_copy(schedule));
5112 local_sched = isl_union_map_copy(gen->sched);
5113 local_sched = isl_union_map_intersect_domain(local_sched, domain);
5114 access = isl_union_map_union(isl_union_map_copy(gen->prog->read),
5115 isl_union_map_copy(gen->prog->may_write));
5116 access = isl_union_map_apply_domain(access,
5117 isl_union_map_copy(local_sched));
5119 gen->tiled_sched = tile_schedule(gen, local_sched);
5120 gen->tiled_sched = parametrize_tiled_schedule(gen, gen->tiled_sched);
5121 gen->tiled_sched = scale_tile_loops(gen, gen->tiled_sched);
5123 gen->local_sched = isl_union_map_copy(gen->tiled_sched);
5124 gen->local_sched = thread_tile_schedule(gen, gen->local_sched);
5125 gen->local_sched = scale_thread_tile_loops(gen, gen->local_sched);
5127 kernel = gen->kernel = isl_calloc_type(gen->ctx, struct ppcg_kernel);
5128 if (!kernel)
5129 goto error;
5131 kernel->id = gen->kernel_id++;
5132 kernel->context = isl_union_map_params(isl_union_map_copy(schedule));
5133 kernel->grid_size = extract_grid_size(gen, kernel);
5134 extract_block_size(gen, kernel);
5135 kernel->arrays = isl_union_map_range(access);
5136 kernel->arrays = isl_union_set_apply(kernel->arrays,
5137 isl_union_map_copy(gen->prog->to_outer));
5138 kernel->space = isl_ast_build_get_schedule_space(build);
5140 compute_shared_sched(gen);
5141 gen->privatization = compute_privatization(gen);
5142 check_scalar_live_ranges(gen);
5143 if (group_references(gen) < 0)
5144 schedule = isl_union_map_free(schedule);
5145 host_domain = isl_set_from_union_set(isl_union_map_range(
5146 isl_union_map_copy(schedule)));
5147 localize_bounds(gen, kernel, host_domain);
5149 gen->local_sched = interchange_for_unroll(gen, gen->local_sched);
5150 check_shared_memory_bound(gen);
5151 compute_group_tilings(gen);
5153 kernel->tree = generate_kernel(gen, build, host_domain,
5154 kernel->grid_size);
5155 create_kernel_vars(gen, kernel);
5157 free_local_array_info(gen);
5158 isl_map_free(gen->privatization);
5159 isl_union_map_free(gen->local_sched);
5160 isl_union_map_free(gen->tiled_sched);
5161 isl_union_map_free(gen->shared_sched);
5162 isl_union_map_free(gen->shared_proj);
5163 isl_set_free(host_domain);
5164 free(gen->tile_size);
5166 node = construct_launch(build, schedule, kernel);
5168 return node;
5169 error:
5170 isl_union_map_free(schedule);
5171 return NULL;
5174 /* Use isl to generate code for the outer gen->tile_first loops
5175 * of the global schedule in gen->sched, resulting in the host code.
5176 * Within each iteration of this partial schedule, i.e., for each kernel
5177 * launch, create_host_leaf takes care of generating the kernel code.
5179 static __isl_give isl_ast_node *generate_host_code(struct gpu_gen *gen)
5181 isl_ast_build *build;
5182 isl_ast_node *tree;
5183 isl_union_map *sched;
5184 isl_map *proj;
5185 isl_id_list *iterators;
5187 sched = isl_union_map_copy(gen->sched);
5188 proj = projection(isl_union_map_get_space(sched),
5189 gen->untiled_len, gen->tile_first);
5190 sched = isl_union_map_apply_range(sched, isl_union_map_from_map(proj));
5192 isl_options_set_ast_build_group_coscheduled(gen->ctx, 1);
5193 build = isl_ast_build_from_context(isl_set_copy(gen->prog->context));
5194 iterators = generate_names(gen->ctx, gen->tile_first, "h");
5195 build = isl_ast_build_set_iterators(build, iterators);
5196 build = isl_ast_build_set_create_leaf(build, &create_host_leaf, gen);
5197 tree = isl_ast_build_ast_from_schedule(build, sched);
5198 isl_ast_build_free(build);
5200 return tree;
5203 __isl_give isl_union_map *extract_sizes_from_str(isl_ctx *ctx, const char *str)
5205 if (!str)
5206 return NULL;
5207 return isl_union_map_read_from_str(ctx, str);
5210 /* Information about the outermost tilable bands in the forest of bands.
5212 * tile_len and n_parallel are only sets on band_info structures
5213 * that correspond to outermost bands. For other bands (in particular,
5214 * ancestors of the outermost bands), n_parallal is set to 0.
5216 * prefix is the (padded) schedule leading up to the outermost tilable bands.
5218 * tile_first is the number of schedule dimensions in prefix.
5220 * suffix is the schedule of the outermost tilable bands and their descendants.
5222 struct band_info {
5223 struct gpu_gen *gen;
5224 int tile_first;
5225 int tile_len;
5226 int n_parallel;
5227 isl_union_map *prefix;
5228 isl_union_map *suffix;
5231 /* Set tile_len and n_parallel of the statement to that of
5232 * their outermost band, recorded in the band_info.
5234 static int set_stmt_tile_len(__isl_take isl_map *map, void *user)
5236 struct band_info *info = user;
5237 struct gpu_stmt *stmt;
5238 isl_id *id;
5240 id = isl_map_get_tuple_id(map, isl_dim_in);
5241 stmt = find_stmt(info->gen->prog, id);
5242 isl_id_free(id);
5244 stmt->tile_len = info->tile_len;
5245 stmt->n_parallel = info->n_parallel;
5247 isl_map_free(map);
5249 return 0;
5252 static void list_select_outer_band(struct gpu_gen *gen,
5253 __isl_take isl_band_list *list, int pos, struct band_info *list_info);
5255 /* Check if this band has any parallel loops. If so, take it as
5256 * the outermost tilable band. If not, continue looking for the
5257 * outermost tilable band in the children of the current band.
5259 static void band_select_outer_band(struct gpu_gen *gen,
5260 __isl_take isl_band *band, int pos, struct band_info *info)
5262 int n = isl_band_n_member(band);
5263 int n_parallel;
5265 for (n_parallel = 0; n_parallel < n; ++n_parallel)
5266 if (!isl_band_member_is_coincident(band, n_parallel))
5267 break;
5269 info->n_parallel = n_parallel;
5270 if (n_parallel) {
5271 gen->any_parallelism = 1;
5272 info->gen = gen;
5273 info->tile_first = pos;
5274 info->tile_len = n;
5275 info->prefix = isl_band_get_prefix_schedule(band);
5276 info->suffix = isl_union_map_flat_range_product(
5277 isl_band_get_partial_schedule(band),
5278 isl_band_get_suffix_schedule(band));
5279 isl_union_map_foreach_map(info->prefix,
5280 &set_stmt_tile_len, info);
5281 } else if (isl_band_has_children(band)) {
5282 isl_band_list *children;
5283 children = isl_band_get_children(band);
5284 list_select_outer_band(gen, children, pos + n, info);
5285 } else {
5286 info->gen = gen;
5287 info->tile_first = pos + n;
5288 info->tile_len = 0;
5289 info->prefix = isl_union_map_flat_range_product(
5290 isl_band_get_prefix_schedule(band),
5291 isl_band_get_partial_schedule(band));
5292 info->suffix = isl_band_get_suffix_schedule(band);
5293 isl_union_map_foreach_map(info->prefix,
5294 &set_stmt_tile_len, info);
5297 isl_band_free(band);
5300 /* Comparison function that returns a non-zero value for band_infos
5301 * with different tile_len fields or different n_parallel fields.
5303 static int cmp_band(const void *p1, const void *p2)
5305 const struct band_info *info1 = p1;
5306 const struct band_info *info2 = p2;
5308 if (info1->tile_len != info2->tile_len)
5309 return info1->tile_len - info2->tile_len;
5311 return info1->n_parallel - info2->n_parallel;
5314 /* Extend "umap" with coordinates with fixed value "val"
5315 * to a total length of "dst_len", assuming the original dimension is "src_len".
5317 static __isl_give isl_union_map *extend_range(
5318 __isl_take isl_union_map *umap, int src_len, int dst_len, int val)
5320 isl_space *dim;
5321 isl_map *map;
5322 int i;
5324 dim = isl_union_map_get_space(umap);
5325 map = isl_map_reverse(projection(dim, dst_len, src_len));
5326 for (i = src_len; i < dst_len; ++i)
5327 map = isl_map_fix_si(map, isl_dim_out, i, val);
5329 umap = isl_union_map_apply_range(umap, isl_union_map_from_map(map));
5331 return umap;
5334 /* Group bands with the same values for tile_len and n_parallel.
5335 * The prefix schedule is then extended with a fixed coordinate that
5336 * is different for each such group.
5337 * Note that the actual values for this coordinate are not important.
5338 * The bands have already been effectively separated at a higher level
5339 * or they are independent and may be executed in parallel.
5340 * The list of band_info has been sorted before this functions is called.
5342 static void separate_bands(struct band_info *info, int n)
5344 int i;
5345 int j = 0;
5347 for (i = 0; i < n; ++i) {
5348 int l = info[i].tile_first;
5350 if (i &&
5351 (info[i].tile_len != info[i - 1].tile_len ||
5352 info[i].n_parallel != info[i - 1].n_parallel))
5353 j++;
5355 info[i].prefix = extend_range(info[i].prefix,
5356 l, l + 1, j);
5357 info[i].tile_first = l + 1;
5361 /* Select the outermost bands in the elements of the list, align
5362 * their prefix schedules, separate bands with different values
5363 * for tile_len and/or n_parallel and then combine the resulting
5364 * prefix and suffix schedules into a single pair of prefix and
5365 * suffix schedules for the entire list.
5367 static void list_select_outer_band(struct gpu_gen *gen,
5368 __isl_take isl_band_list *list, int pos, struct band_info *list_info)
5370 isl_band *band;
5371 int i;
5372 int n = isl_band_list_n_band(list);
5373 isl_ctx *ctx = isl_band_list_get_ctx(list);
5374 struct band_info *info;
5375 int max_tile_first;
5376 isl_union_map *prefix;
5377 isl_union_map *suffix;
5379 assert(n >= 1);
5380 info = isl_calloc_array(ctx, struct band_info, n);
5381 assert(info);
5383 max_tile_first = 0;
5384 for (i = 0; i < n; ++i) {
5385 band = isl_band_list_get_band(list, i);
5386 band_select_outer_band(gen, band, pos, &info[i]);
5387 if (info[i].tile_first > max_tile_first)
5388 max_tile_first = info[i].tile_first;
5391 for (i = 0; i < n; ++i) {
5392 if (info[i].tile_first == max_tile_first)
5393 continue;
5394 info[i].prefix = extend_range(info[i].prefix,
5395 info[i].tile_first, max_tile_first, 0);
5396 info[i].tile_first = max_tile_first;
5399 qsort(info, n, sizeof(struct band_info), &cmp_band);
5401 for (i = 0; i < n - 1; ++i)
5402 if (info[i].tile_len != info[i + 1].tile_len ||
5403 info[i].n_parallel != info[i + 1].n_parallel)
5404 break;
5406 if (i < n -1)
5407 separate_bands(info, n);
5409 prefix = info[0].prefix;
5410 suffix = info[0].suffix;
5412 for (i = 1; i < n; ++i) {
5413 prefix = isl_union_map_union(prefix, info[i].prefix);
5414 suffix = isl_union_map_union(suffix, info[i].suffix);
5417 list_info->tile_first = info[0].tile_first;
5418 list_info->tile_len = -1;
5419 list_info->prefix = prefix;
5420 list_info->suffix = suffix;
5422 isl_band_list_free(list);
5423 free(info);
5426 /* Select the outermost tilable band that (by construction)
5427 * has at least one parallel loop.
5428 * The starting position of the aligned band is stored in the pair
5429 * gen->tile_first.
5430 * The sizes and number of parallel loops may be different in different
5431 * parts of the band forest and are therefore stored in the gpu_stmts.
5433 * Return the complete schedule, with the tilable bands aligned
5434 * at gen->tile_first and padded with zero, if needed.
5436 static __isl_give isl_union_map *select_outer_tilable_band(struct gpu_gen *gen,
5437 __isl_keep isl_schedule *schedule)
5439 isl_band_list *list;
5440 struct band_info info;
5442 gen->n_parallel = 0;
5443 gen->tile_len = -1;
5445 list = isl_schedule_get_band_forest(schedule);
5447 if (isl_band_list_n_band(list) == 0) {
5448 isl_band_list_free(list);
5449 return isl_schedule_get_map(schedule);
5452 list_select_outer_band(gen, list, 0, &info);
5454 gen->tile_first = info.tile_first;
5455 info.suffix = align_range(info.suffix);
5457 return isl_union_map_flat_range_product(info.prefix, info.suffix);
5460 /* Set gen->untiled_len to the number of scheduling dimensions
5461 * for the schedule of the first domain.
5462 * We assume here that this number is the same for all domains.
5464 static int set_untiled_len(__isl_take isl_map *map, void *user)
5466 unsigned *untiled_len = user;
5468 *untiled_len = isl_map_dim(map, isl_dim_out);
5470 isl_map_free(map);
5471 return -1;
5474 /* Compute an appropriate schedule based on the accesses in
5475 * gen->read and gen->write.
5477 * We use the dependences in gen->prog->scop to compute
5478 * a schedule that has a parallel loop in each tilable band.
5479 * Finally, we select the outermost tilable band.
5481 * If live range reordering is allowed, then we need to make sure
5482 * that live ranges on arrays are not run in parallel since doing
5483 * so would require array expansion. We therefore add the array
5484 * order dependences to the coincidence dependences. Non-zero array
5485 * order dependences will then prevent a schedule dimension from being
5486 * considered parallel.
5487 * Live ranges derived from scalars are allowed to be run in parallel
5488 * since we force the scalars to be mapped to private memory in
5489 * check_scalar_live_ranges.
5490 * If live range reordering is allowed, then the false dependences
5491 * are not added to the validity constraints as that would prevent
5492 * reordering. Instead, the external false dependences that enforce that reads
5493 * from potentially live-in data precede any later write and
5494 * that writes of potentially live-out data follow any other earlier write
5495 * are added to the validity and the coincidence constraints.
5496 * The false dependences are still added to the proximity constraints
5497 * for consistency with the case where live range reordering is not allowed.
5498 * The coincidence constraints then consist of flow dependences,
5499 * exernal false dependences and array order dependences.
5500 * The independences can be filtered out from the first two sets.
5501 * They have already been filtered out from the array order dependences
5502 * on a per array basis in collect_order_dependences.
5503 * There is no need for a per array handling of the other two sets
5504 * as there should be no flow or external false dependence on local
5505 * variables that can be filtered out.
5507 static void compute_schedule(struct gpu_gen *gen)
5509 isl_union_set *domain;
5510 isl_union_map *dep_raw, *dep;
5511 isl_union_map *validity, *proximity, *coincidence;
5512 isl_union_map *sched;
5513 isl_schedule_constraints *sc;
5514 isl_schedule *schedule;
5516 domain = isl_union_set_copy(gen->prog->scop->domain);
5517 domain = isl_union_set_intersect_params(domain,
5518 isl_set_copy(gen->prog->scop->context));
5519 sc = isl_schedule_constraints_on_domain(isl_union_set_copy(domain));
5520 if (gen->options->live_range_reordering) {
5521 sc = isl_schedule_constraints_set_conditional_validity(sc,
5522 isl_union_map_copy(gen->prog->scop->tagged_dep_flow),
5523 isl_union_map_copy(gen->prog->scop->tagged_dep_order));
5524 proximity = isl_union_map_copy(gen->prog->scop->dep_flow);
5525 validity = isl_union_map_copy(proximity);
5526 validity = isl_union_map_union(validity,
5527 isl_union_map_copy(gen->prog->scop->dep_external));
5528 proximity = isl_union_map_union(proximity,
5529 isl_union_map_copy(gen->prog->scop->dep_false));
5530 coincidence = isl_union_map_copy(validity);
5531 coincidence = isl_union_map_subtract(coincidence,
5532 isl_union_map_copy(gen->prog->scop->independence));
5533 coincidence = isl_union_map_union(coincidence,
5534 isl_union_map_copy(gen->prog->array_order));
5535 } else {
5536 dep_raw = isl_union_map_copy(gen->prog->scop->dep_flow);
5537 dep = isl_union_map_copy(gen->prog->scop->dep_false);
5538 dep = isl_union_map_union(dep, dep_raw);
5539 dep = isl_union_map_coalesce(dep);
5540 proximity = isl_union_map_copy(dep);
5541 coincidence = isl_union_map_copy(dep);
5542 validity = dep;
5544 sc = isl_schedule_constraints_set_validity(sc, validity);
5545 sc = isl_schedule_constraints_set_coincidence(sc, coincidence);
5546 sc = isl_schedule_constraints_set_proximity(sc, proximity);
5548 if (gen->options->debug->dump_schedule_constraints)
5549 isl_schedule_constraints_dump(sc);
5550 schedule = isl_schedule_constraints_compute_schedule(sc);
5551 if (gen->options->debug->dump_schedule)
5552 isl_schedule_dump(schedule);
5554 sched = select_outer_tilable_band(gen, schedule);
5556 isl_union_map_foreach_map(sched, &set_untiled_len, &gen->untiled_len);
5557 sched = isl_union_map_intersect_domain(sched, domain);
5558 gen->sched = sched;
5560 isl_schedule_free(schedule);
5563 /* Compute the sets of outer array elements that need to be copied in and out.
5565 * In particular, for each array that is possibly written anywhere in
5566 * gen->prog and that is visible outside the corresponding scop,
5567 * we copy out its entire extent.
5569 * Any array elements that is read without first being written needs
5570 * to be copied in. Furthermore, if there are any array elements that
5571 * are copied out, but that may not be written inside gen->prog, then
5572 * they also need to be copied in to ensure that the value after execution
5573 * is the same as the value before execution.
5574 * In case the array elements are structures, we need to take into
5575 * account that all members of the structures need to be written
5576 * by gen->prog before we can avoid copying the data structure in.
5578 * While computing the set of array elements that are copied out but
5579 * not necessarily written, we intersect both sets with the context.
5580 * This helps in those cases where the arrays are declared with a fixed size,
5581 * while the accesses are parametric and the context assigns a fixed value
5582 * to the parameters.
5584 * If an element from a local array is read without first being written,
5585 * then there is no point in copying it in since it cannot have been
5586 * written prior to the scop. Warn about the uninitialized read instead.
5588 static void compute_copy_in_and_out(struct gpu_gen *gen)
5590 int i;
5591 isl_union_set *local;
5592 isl_union_set *may_write, *must_write;
5593 isl_union_set *copy_in, *copy_out;
5594 isl_union_set *not_written;
5595 isl_union_map *uninitialized;
5596 isl_union_map *local_uninitialized;
5598 must_write = isl_union_map_range(
5599 isl_union_map_copy(gen->prog->must_write));
5600 must_write = isl_union_set_intersect_params(must_write,
5601 isl_set_copy(gen->prog->context));
5602 may_write = isl_union_map_range(
5603 isl_union_map_copy(gen->prog->may_write));
5604 may_write = isl_union_set_intersect_params(may_write,
5605 isl_set_copy(gen->prog->context));
5606 may_write = isl_union_set_universe(may_write);
5607 may_write = isl_union_set_apply(may_write,
5608 isl_union_map_copy(gen->prog->to_outer));
5609 copy_out = isl_union_set_empty(isl_union_set_get_space(may_write));
5610 local = isl_union_set_copy(copy_out);
5612 for (i = 0; i < gen->prog->n_array; ++i) {
5613 isl_space *space;
5614 isl_set *write_i;
5615 int empty;
5617 space = isl_space_copy(gen->prog->array[i].space);
5619 if (gen->prog->array[i].local) {
5620 isl_set *set;
5622 set = isl_set_universe(space);
5623 local = isl_union_set_add_set(local, set);
5624 continue;
5627 write_i = isl_union_set_extract_set(may_write, space);
5628 empty = isl_set_plain_is_empty(write_i);
5629 isl_set_free(write_i);
5630 if (empty)
5631 continue;
5633 write_i = isl_set_copy(gen->prog->array[i].extent);
5634 copy_out = isl_union_set_add_set(copy_out, write_i);
5636 isl_union_set_free(may_write);
5638 copy_out = isl_union_set_intersect_params(copy_out,
5639 isl_set_copy(gen->prog->context));
5641 gen->prog->copy_out = isl_union_set_copy(copy_out);
5643 copy_out = isl_union_set_apply(copy_out,
5644 isl_union_map_copy(gen->prog->to_inner));
5645 not_written = isl_union_set_subtract(copy_out, must_write);
5647 uninitialized = isl_union_map_copy(gen->prog->scop->live_in);
5648 local_uninitialized = isl_union_map_copy(uninitialized);
5650 local = isl_union_set_apply(local,
5651 isl_union_map_copy(gen->prog->to_inner));
5652 local_uninitialized = isl_union_map_intersect_range(local_uninitialized,
5653 local);
5654 if (!isl_union_map_is_empty(local_uninitialized)) {
5655 fprintf(stderr,
5656 "possibly uninitialized reads (not copied in):\n");
5657 isl_union_map_dump(local_uninitialized);
5659 uninitialized = isl_union_map_subtract(uninitialized,
5660 local_uninitialized);
5661 copy_in = isl_union_map_range(uninitialized);
5662 copy_in = isl_union_set_union(copy_in, not_written);
5663 copy_in = isl_union_set_apply(copy_in,
5664 isl_union_map_copy(gen->prog->to_outer));
5666 gen->prog->copy_in = copy_in;
5669 /* Internal data structure for extract_access.
5670 * "next_access" points to the end of a linked list that is extended
5671 * by extract_access.
5672 * "single_expression" is set if the access expressions belong to
5673 * an expression statement (i.e., a statement without internal control).
5674 * "any_to_outer" maps all intermediate arrays to their outer arrays.
5676 struct ppcg_extract_access_data {
5677 struct gpu_stmt_access **next_access;
5678 int single_expression;
5679 isl_union_map *any_to_outer;
5682 /* Extract a gpu_stmt_access from "expr", append it to the list
5683 * that ends in *data->next_access and update the end of the list.
5684 * If the access expression performs a write, then it is considered
5685 * exact only if it appears in a single expression statement and
5686 * if its may access relation is equal to its must access relation.
5688 * The combined set of may accesses may be union if member accesses
5689 * are involved, but the entire set is derived from a single reference and
5690 * therefore from a single index expression. These accesses therefore
5691 * all map to the same outer array.
5693 static int extract_access(__isl_keep pet_expr *expr, void *user)
5695 struct ppcg_extract_access_data *data = user;
5696 isl_union_map *may, *tagged;
5697 struct gpu_stmt_access *access;
5698 isl_ctx *ctx;
5699 isl_multi_pw_aff *index;
5701 may = pet_expr_access_get_may_read(expr);
5702 may = isl_union_map_union(may, pet_expr_access_get_may_write(expr));
5703 may = isl_union_map_apply_range(may,
5704 isl_union_map_copy(data->any_to_outer));
5705 ctx = isl_union_map_get_ctx(may);
5706 access = isl_alloc_type(ctx, struct gpu_stmt_access);
5707 assert(access);
5708 access->next = NULL;
5709 access->read = pet_expr_access_is_read(expr);
5710 access->write = pet_expr_access_is_write(expr);
5711 tagged = pet_expr_access_get_tagged_may_read(expr);
5712 tagged = isl_union_map_union(tagged,
5713 pet_expr_access_get_tagged_may_write(expr));
5714 tagged = isl_union_map_apply_range(tagged,
5715 isl_union_map_copy(data->any_to_outer));
5716 access->tagged_access = isl_map_from_union_map(tagged);
5717 if (!access->write) {
5718 access->exact_write = 1;
5719 } else if (!data->single_expression) {
5720 access->exact_write = 0;
5721 } else {
5722 isl_union_map *must;
5723 must = pet_expr_access_get_must_write(expr);
5724 access->exact_write = isl_union_map_is_equal(must, may);
5725 isl_union_map_free(must);
5727 access->access = isl_map_from_union_map(may);
5728 index = pet_expr_access_get_index(expr);
5729 access->n_index = isl_multi_pw_aff_dim(index, isl_dim_out);
5730 isl_multi_pw_aff_free(index);
5731 access->ref_id = pet_expr_access_get_ref_id(expr);
5732 access->group = -1;
5734 *data->next_access = access;
5735 data->next_access = &(*data->next_access)->next;
5737 return 0;
5740 /* Construct a linked list of gpu_stmt_access objects,
5741 * one for each access expression in the statement body.
5742 * "any_to_outer" maps all intermediate arrays to their outer arrays.
5744 static void pet_stmt_extract_accesses(struct gpu_stmt *stmt,
5745 __isl_keep isl_union_map *any_to_outer)
5747 struct ppcg_extract_access_data data;
5749 stmt->accesses = NULL;
5750 data.next_access = &stmt->accesses;
5751 data.single_expression =
5752 pet_tree_get_type(stmt->stmt->body) == pet_tree_expr;
5753 data.any_to_outer = any_to_outer;
5754 pet_tree_foreach_access_expr(stmt->stmt->body, &extract_access, &data);
5757 /* Return an array of gpu_stmt representing the statements in "scop".
5759 static struct gpu_stmt *extract_stmts(isl_ctx *ctx, struct ppcg_scop *scop,
5760 __isl_keep isl_set *context, __isl_keep isl_union_map *any_to_outer)
5762 int i;
5763 struct gpu_stmt *stmts;
5765 stmts = isl_calloc_array(ctx, struct gpu_stmt, scop->pet->n_stmt);
5766 if (!stmts)
5767 return NULL;
5769 for (i = 0; i < scop->pet->n_stmt; ++i) {
5770 struct gpu_stmt *s = &stmts[i];
5772 s->id = isl_set_get_tuple_id(scop->pet->stmts[i]->domain);
5773 s->stmt = scop->pet->stmts[i];
5774 pet_stmt_extract_accesses(s, any_to_outer);
5777 return stmts;
5780 /* Callback for ppcg_print_guarded that calls the callback for generate_gpu.
5782 static __isl_give isl_printer *print_gpu(__isl_take isl_printer *p, void *user)
5784 struct gpu_gen *gen = user;
5786 return gen->print(p, gen->prog, gen->tree, &gen->types,
5787 gen->print_user);
5790 /* Generate CUDA code for "scop" and print it to "p".
5791 * After generating an AST for the transformed scop as explained below,
5792 * we call "gen->print" to print the AST in the desired output format
5793 * to "p".
5795 * If it turns out that it does not make sense to generate GPU code,
5796 * then we generate CPU code instead.
5798 * The GPU code is generated in a context where at least one
5799 * statement instance is executed. The corresponding guard (if any) is printed
5800 * around the entire generated GPU code, except for the declaration
5801 * of the arrays that are visible outside of the scop and that therefore
5802 * cannot be declared inside the body of any possible guard.
5804 * We first compute a schedule that respects the dependences
5805 * of the original program and select the outermost band
5806 * of tilable dimensions that has at least one parallel loop.
5807 * We then have three blocks of dimensions
5809 * H B G
5811 * The tilable band "B" is first tiled according to "tile" sizes, resulting
5812 * in
5814 * H T P G
5816 * For each iteration of the T loop and for each array, we compute
5817 * the array elements accessed by that iteration, construct a rectangular
5818 * box around it and shift it to the origin. The result is used
5819 * as shared memory for the array.
5821 * We then split off at most 2 parallel loops from the T loops and
5822 * at most 3 parallel loops from the P loops
5824 * H T1 T2 P1 P2 G
5826 * The T1/P1 loops are then tiled or "wrapped" over the blocks/threads,
5827 * according to "grid"/"block" sizes.
5829 * H T1T T1P T2 P1T P1P P2 G
5831 * Finally, the T1P and P1P iterators are equated to the block and
5832 * thread dimensions respectively and so are effectively removed.
5833 * The H loops are run on the host. The T1T, T2, P1T, P2 and G loops
5834 * are run on the GPU.
5836 * Code is generated in three stages. We first generate code for the
5837 * host (the H loops), with iterators h%d. Then, for each leaf node
5838 * of the resulting AST, we generate code for the shared loops (up to
5839 * and including T2), with iterators g%d and after equating the H loops
5840 * to h%d parameters and the T1P loops to the block dimensions.
5841 * Finally, we generate code for the remaining loops in a similar fashion.
5843 static __isl_give isl_printer *generate(__isl_take isl_printer *p,
5844 struct gpu_gen *gen, struct ppcg_scop *scop,
5845 struct ppcg_options *options)
5847 struct gpu_prog *prog;
5848 isl_ctx *ctx;
5849 isl_set *context, *guard;
5851 if (!scop)
5852 return isl_printer_free(p);
5854 ctx = isl_printer_get_ctx(p);
5855 prog = gpu_prog_alloc(ctx, scop);
5856 if (!prog)
5857 return isl_printer_free(p);
5859 context = isl_set_copy(prog->context);
5860 guard = isl_union_set_params(isl_union_set_copy(prog->scop->domain));
5861 prog->context = isl_set_intersect(prog->context, isl_set_copy(guard));
5863 gen->prog = prog;
5864 gen->any_parallelism = 0;
5865 compute_schedule(gen);
5867 if (!gen->any_parallelism) {
5868 isl_set_free(context);
5869 isl_set_free(guard);
5870 p = print_cpu(p, scop, options);
5871 } else {
5872 compute_copy_in_and_out(gen);
5873 gen->tree = generate_host_code(gen);
5874 p = ppcg_print_exposed_declarations(p, prog->scop);
5875 p = ppcg_print_guarded(p, guard, context, &print_gpu, gen);
5876 isl_ast_node_free(gen->tree);
5879 isl_union_map_free(gen->sched);
5881 gpu_prog_free(prog);
5883 return p;
5886 /* Wrapper around generate for use as a ppcg_transform callback.
5888 static __isl_give isl_printer *generate_wrap(__isl_take isl_printer *p,
5889 struct ppcg_scop *scop, void *user)
5891 struct gpu_gen *gen = user;
5893 return generate(p, gen, scop, gen->options);
5896 /* Transform the code in the file called "input" by replacing
5897 * all scops by corresponding GPU code and write the results to "out".
5899 int generate_gpu(isl_ctx *ctx, const char *input, FILE *out,
5900 struct ppcg_options *options,
5901 __isl_give isl_printer *(*print)(__isl_take isl_printer *p,
5902 struct gpu_prog *prog, __isl_keep isl_ast_node *tree,
5903 struct gpu_types *types, void *user), void *user)
5905 struct gpu_gen gen;
5906 int r;
5907 int i;
5909 gen.ctx = ctx;
5910 gen.sizes = extract_sizes_from_str(ctx, options->sizes);
5911 gen.options = options;
5912 gen.kernel_id = 0;
5913 gen.print = print;
5914 gen.print_user = user;
5915 gen.types.n = 0;
5916 gen.types.name = NULL;
5918 if (options->debug->dump_sizes) {
5919 isl_space *space = isl_space_params_alloc(ctx, 0);
5920 gen.used_sizes = isl_union_map_empty(space);
5923 r = ppcg_transform(ctx, input, out, options, &generate_wrap, &gen);
5925 if (options->debug->dump_sizes) {
5926 isl_union_map_dump(gen.used_sizes);
5927 isl_union_map_free(gen.used_sizes);
5930 isl_union_map_free(gen.sizes);
5931 for (i = 0; i < gen.types.n; ++i)
5932 free(gen.types.name[i]);
5933 free(gen.types.name);
5935 return r;
5938 struct gpu_prog *gpu_prog_alloc(isl_ctx *ctx, struct ppcg_scop *scop)
5940 struct gpu_prog *prog;
5941 isl_space *space;
5942 isl_map *id;
5944 if (!scop)
5945 return NULL;
5947 prog = isl_calloc_type(ctx, struct gpu_prog);
5948 assert(prog);
5950 prog->ctx = ctx;
5951 prog->scop = scop;
5952 prog->context = isl_set_copy(scop->context);
5953 prog->n_stmts = scop->pet->n_stmt;
5954 prog->any_to_outer = pet_scop_compute_outer_to_any(scop->pet);
5955 prog->any_to_outer = isl_union_map_reverse(prog->any_to_outer);
5956 space = isl_union_map_get_space(prog->any_to_outer);
5957 space = isl_space_set_from_params(space);
5958 space = isl_space_add_dims(space, isl_dim_set, 1);
5959 space = isl_space_map_from_set(space);
5960 id = isl_map_identity(space);
5961 prog->any_to_outer = isl_union_map_add_map(prog->any_to_outer, id);
5962 prog->stmts = extract_stmts(ctx, scop,
5963 prog->context, prog->any_to_outer);
5964 prog->read = isl_union_map_copy(scop->reads);
5965 prog->may_write = isl_union_map_copy(scop->may_writes);
5966 prog->must_write = isl_union_map_copy(scop->must_writes);
5967 prog->to_inner = pet_scop_compute_outer_to_inner(scop->pet);
5968 prog->to_outer = isl_union_map_copy(prog->to_inner);
5969 prog->to_outer = isl_union_map_reverse(prog->to_outer);
5971 if (!prog->stmts)
5972 return gpu_prog_free(prog);
5974 if (collect_array_info(prog) < 0)
5975 return gpu_prog_free(prog);
5977 return prog;
5980 void *gpu_prog_free(struct gpu_prog *prog)
5982 if (!prog)
5983 return NULL;
5984 free_array_info(prog);
5985 free_stmts(prog->stmts, prog->n_stmts);
5986 isl_union_map_free(prog->any_to_outer);
5987 isl_union_map_free(prog->to_outer);
5988 isl_union_map_free(prog->to_inner);
5989 isl_union_set_free(prog->copy_in);
5990 isl_union_set_free(prog->copy_out);
5991 isl_union_map_free(prog->read);
5992 isl_union_map_free(prog->may_write);
5993 isl_union_map_free(prog->must_write);
5994 isl_union_map_free(prog->array_order);
5995 isl_set_free(prog->context);
5996 free(prog);
5997 return NULL;