gpu.c: group_array_references: return -1 on error rather than aborting
[ppcg.git] / gpu.c
blob3ec912a80f9c1815000c1c7c15bbd24a86ae2b4c
1 /*
2 * Copyright 2010-2011 INRIA Saclay
3 * Copyright 2012-2013 Ecole Normale Superieure
5 * Use of this software is governed by the MIT license
7 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
8 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
9 * 91893 Orsay, France
10 * and Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France
13 #include <assert.h>
14 #include <stdlib.h>
15 #include <string.h>
17 #include <isl/polynomial.h>
18 #include <isl/union_set.h>
19 #include <isl/aff.h>
20 #include <isl/ilp.h>
21 #include <isl/flow.h>
22 #include <isl/band.h>
23 #include <isl/schedule.h>
24 #include <isl/options.h>
25 #include <isl/ast_build.h>
27 #include "cpu.h"
28 #include "gpu.h"
29 #include "schedule.h"
30 #include "ppcg_options.h"
31 #include "print.h"
33 /* The fields stride, shift and shift_map only contain valid information
34 * if shift != NULL.
35 * If so, they express that current index is such that if you add shift,
36 * then the result is always a multiple of stride.
37 * shift_map contains the mapping
39 * i -> (i + shift)/stride
41 * Let D represent the initial shared_len dimensions of the computed schedule.
42 * The spaces of "lb" and "shift" are of the form
44 * D -> [b]
46 * "shift_map" is of the form
48 * [D -> i] -> [D -> (i + shift(D))/stride]
50 struct gpu_array_bound {
51 isl_val *size;
52 isl_aff *lb;
54 isl_val *stride;
55 isl_aff *shift;
56 isl_basic_map *shift_map;
59 /* A tile of an array.
61 * n is the dimension of the array.
62 * bound is an array of size "n" representing the lower bound
63 * and size for each index.
65 * tiling maps a tile in the global array to the corresponding
66 * shared/private memory tile and is of the form
68 * { [D[i] -> A[a]] -> T[(a + shift(i))/stride - lb(i)] }
70 * where D represents the initial shared_len dimensions
71 * of the computed schedule.
73 struct gpu_array_tile {
74 int n;
75 struct gpu_array_bound *bound;
76 isl_multi_aff *tiling;
79 struct gpu_array_info;
81 /* A group of array references in a kernel that should be handled together.
82 * If private_tile is not NULL, then it is mapped to registers.
83 * Otherwise, if shared_tile is not NULL, it is mapped to shared memory.
84 * Otherwise, it is accessed from global memory.
86 struct gpu_array_ref_group {
87 /* The references in this group access this array. */
88 struct gpu_array_info *array;
89 /* Position of this group in the list of reference groups of array. */
90 int nr;
92 /* The following fields are use during the construction of the groups.
93 * access is the combined access relation relative to the shared
94 * memory tiling. In particular, the domain of the map corresponds
95 * to the first shared_len dimensions of the computed schedule.
96 * write is set if any access in the group is a write.
97 * exact_write is set if all writes are definite writes.
99 isl_map *access;
100 int write;
101 int exact_write;
103 /* The shared memory tile, NULL if none. */
104 struct gpu_array_tile *shared_tile;
106 /* The private memory tile, NULL if none. */
107 struct gpu_array_tile *private_tile;
109 /* References in this group; point to elements of a linked list. */
110 int n_ref;
111 struct gpu_stmt_access **refs;
113 /* Last shared memory tile dimension that affects tile of this group. */
114 int last_shared;
117 struct gpu_gen {
118 isl_ctx *ctx;
119 struct ppcg_options *options;
121 /* Callback for printing of AST in appropriate format. */
122 __isl_give isl_printer *(*print)(__isl_take isl_printer *p,
123 struct gpu_prog *prog, __isl_keep isl_ast_node *tree,
124 struct gpu_types *types, void *user);
125 void *print_user;
127 struct gpu_prog *prog;
128 /* The generated AST. */
129 isl_ast_node *tree;
131 /* The sequence of types for which a definition has been printed. */
132 struct gpu_types types;
134 /* tile, grid and block sizes for each kernel */
135 isl_union_map *sizes;
137 /* Identifier of current kernel. */
138 int kernel_id;
139 /* Pointer to the current kernel. */
140 struct ppcg_kernel *kernel;
141 /* Does the computed schedule exhibit any parallelism? */
142 int any_parallelism;
144 /* First tile dimension. */
145 int tile_first;
146 /* Number of tile dimensions. */
147 int tile_len;
148 /* Number of initial parallel loops among tile dimensions. */
149 int n_parallel;
151 /* Number of dimensions determining shared memory. */
152 int shared_len;
154 /* Number of rows in the untiled schedule. */
155 int untiled_len;
156 /* Number of rows in the tiled schedule. */
157 int tiled_len;
158 /* Number of rows in schedule after tiling/wrapping over threads. */
159 int thread_tiled_len;
161 /* Global untiled schedule. */
162 isl_union_map *sched;
163 /* Local (per kernel launch) tiled schedule. */
164 isl_union_map *tiled_sched;
165 /* Local schedule per shared memory tile loop iteration. */
166 isl_union_map *local_sched;
168 /* Local tiled schedule projected onto the shared tile loops and
169 * the loops that will be wrapped over the threads,
170 * with all shared tile loops parametrized.
172 isl_union_map *shared_sched;
173 /* Projects out the loops that will be wrapped over the threads
174 * from shared_sched.
176 isl_union_map *shared_proj;
178 /* A map that takes the range of shared_sched as input,
179 * wraps the appropriate loops over the threads and then projects
180 * out these loops.
182 isl_map *privatization;
184 /* A map from the shared memory tile loops and the thread indices
185 * (as parameters) to the set of accessed memory elements that
186 * will be accessed through private copies.
188 isl_union_map *private_access;
190 /* The schedule for the current private/shared access
191 * (within print_private_access or print_shared_access).
193 isl_map *copy_sched;
194 /* The array reference group corresponding to copy_sched. */
195 struct gpu_array_ref_group *copy_group;
197 /* First loop to unroll (or -1 if none) in the current part of the
198 * schedule.
200 int first_unroll;
202 int n_grid;
203 int n_block;
204 /* Note: in the input file, the sizes of the grid and the blocks
205 * are specified in the order x, y, z, but internally, the sizes
206 * are stored in reverse order, so that the last element always
207 * refers to the x dimension.
209 int grid_dim[2];
210 int block_dim[3];
211 int *tile_size;
214 /* Print the name of the local copy of a given group of array references.
216 static __isl_give isl_printer *print_array_name(__isl_take isl_printer *p,
217 struct gpu_array_ref_group *group)
219 int global = 0;
221 if (group->private_tile)
222 p = isl_printer_print_str(p, "private_");
223 else if (group->shared_tile)
224 p = isl_printer_print_str(p, "shared_");
225 else
226 global = 1;
227 p = isl_printer_print_str(p, group->array->name);
228 if (!global && group->array->n_group > 1) {
229 p = isl_printer_print_str(p, "_");
230 p = isl_printer_print_int(p, group->nr);
233 return p;
236 /* Collect all references to the given array and store pointers to them
237 * in array->refs.
239 * If the array contains structures, then there is no need to collect
240 * the references since we will not be computing any reference groups.
242 static void collect_references(struct gpu_prog *prog,
243 struct gpu_array_info *array)
245 int i;
246 int n;
248 if (array->has_compound_element)
249 return;
251 n = 0;
252 for (i = 0; i < prog->n_stmts; ++i) {
253 struct gpu_stmt *stmt = &prog->stmts[i];
254 struct gpu_stmt_access *access;
256 for (access = stmt->accesses; access; access = access->next) {
257 const char *name;
258 name = isl_map_get_tuple_name(access->access,
259 isl_dim_out);
260 if (name && !strcmp(array->name, name))
261 n++;
265 array->n_ref = n;
266 array->refs = isl_alloc_array(prog->ctx, struct gpu_stmt_access *, n);
267 assert(array->refs);
269 n = 0;
270 for (i = 0; i < prog->n_stmts; ++i) {
271 struct gpu_stmt *stmt = &prog->stmts[i];
272 struct gpu_stmt_access *access;
274 for (access = stmt->accesses; access; access = access->next) {
275 const char *name;
276 name = isl_map_get_tuple_name(access->access,
277 isl_dim_out);
278 if (!name || strcmp(array->name, name))
279 continue;
281 array->refs[n++] = access;
286 /* Create a gpu_array_tile for an array of dimension "n_index".
288 static struct gpu_array_tile *create_tile(isl_ctx *ctx, int n_index)
290 int i;
291 struct gpu_array_tile *tile;
293 tile = isl_calloc_type(ctx, struct gpu_array_tile);
294 assert(tile);
296 tile->n = n_index;
298 tile->bound = isl_alloc_array(ctx, struct gpu_array_bound, n_index);
299 assert(tile->bound);
301 for (i = 0; i < n_index; ++i) {
302 tile->bound[i].size = NULL;
303 tile->bound[i].lb = NULL;
304 tile->bound[i].stride = NULL;
305 tile->bound[i].shift = NULL;
306 tile->bound[i].shift_map = NULL;
309 return tile;
312 static void *free_tile(struct gpu_array_tile *tile)
314 int j;
316 if (!tile)
317 return NULL;
319 for (j = 0; j < tile->n; ++j) {
320 isl_val_free(tile->bound[j].size);
321 isl_val_free(tile->bound[j].stride);
322 isl_aff_free(tile->bound[j].lb);
323 isl_aff_free(tile->bound[j].shift);
324 isl_basic_map_free(tile->bound[j].shift_map);
326 free(tile->bound);
327 isl_multi_aff_free(tile->tiling);
328 free(tile);
330 return NULL;
333 static struct pet_array *find_array(struct ppcg_scop *scop,
334 __isl_keep isl_set *accessed)
336 int i;
337 isl_id *id;
339 id = isl_set_get_tuple_id(accessed);
341 for (i = 0; i < scop->n_array; ++i) {
342 isl_id *id_i;
344 id_i = isl_set_get_tuple_id(scop->arrays[i]->extent);
345 isl_id_free(id_i);
346 if (id == id_i)
347 break;
349 isl_id_free(id);
351 return i < scop->n_array ? scop->arrays[i] : NULL;
354 /* Compute and return the extent of "array", taking into account the set of
355 * accessed elements.
357 * In particular, the extent in the outer dimension is taken
358 * from "accessed", while then extent in the remaing dimensions
359 * are taken from array->extent.
361 * The extent in the outer dimension cannot be taken from array->extent
362 * because that may be unbounded. Furthermore, even if it is bounded,
363 * it may be larger than the piece of the array that is being accessed.
365 static __isl_give isl_set *compute_extent(struct pet_array *array,
366 __isl_keep isl_set *accessed)
368 int n_index;
369 isl_id *id;
370 isl_set *outer;
371 isl_set *extent;
373 extent = isl_set_copy(array->extent);
375 n_index = isl_set_dim(accessed, isl_dim_set);
376 if (n_index == 0)
377 return extent;
379 extent = isl_set_project_out(extent, isl_dim_set, 0, 1);
380 outer = isl_set_copy(accessed);
381 outer = isl_set_project_out(outer, isl_dim_set, 1, n_index - 1);
382 extent = isl_set_flat_product(outer, extent);
383 id = isl_set_get_tuple_id(accessed);
384 extent = isl_set_set_tuple_id(extent, id);
386 return extent;
389 /* Is the array "array" being extracted a read-only scalar?
391 * That is, is "array" a scalar that is never possibly written to.
392 * An array containing structures is never considered to be a scalar.
394 static int is_read_only_scalar(struct gpu_array_info *array,
395 struct gpu_prog *prog)
397 isl_set *space;
398 isl_union_map *write;
399 int empty;
401 if (array->has_compound_element)
402 return 0;
403 if (array->n_index != 0)
404 return 0;
406 write = isl_union_map_copy(prog->may_write);
407 space = isl_set_universe(isl_space_copy(array->space));
408 write = isl_union_map_intersect_range(write,
409 isl_union_set_from_set(space));
410 empty = isl_union_map_is_empty(write);
411 isl_union_map_free(write);
413 return empty;
416 /* Compute bounds on the host arrays based on the accessed elements
417 * and collect all references to the array.
419 * If the array is zero-dimensional and does not contain structures,
420 * i.e., if the array is a scalar, we check whether it is read-only.
422 static int extract_array_info(__isl_take isl_set *array, void *user)
424 int i;
425 struct gpu_prog *prog = (struct gpu_prog *)user;
426 const char *name;
427 int n_index;
428 isl_pw_aff **bounds;
429 struct pet_array *pa;
430 struct gpu_array_info *info;
431 isl_set *extent;
433 info = &prog->array[prog->n_array];
434 prog->n_array++;
436 n_index = isl_set_dim(array, isl_dim_set);
437 name = isl_set_get_tuple_name(array);
438 bounds = isl_alloc_array(isl_set_get_ctx(array),
439 isl_pw_aff *, n_index);
440 if (!bounds)
441 goto error;
443 info->space = isl_set_get_space(array);
444 info->name = strdup(name);
445 info->n_index = n_index;
446 info->bound = bounds;
447 info->linearize = prog->scop->options->linearize_device_arrays;
449 pa = find_array(prog->scop, array);
450 if (!pa)
451 isl_die(isl_set_get_ctx(array), isl_error_internal,
452 "unable to find array in scop", goto error);
454 info->type = strdup(pa->element_type);
455 info->size = pa->element_size;
456 info->local = pa->declared && !pa->exposed;
457 info->has_compound_element = pa->element_is_record;
458 info->read_only_scalar = is_read_only_scalar(info, prog);
460 extent = compute_extent(pa, array);
461 for (i = 0; i < n_index; ++i) {
462 isl_set *dom;
463 isl_local_space *ls;
464 isl_aff *one;
465 isl_pw_aff *bound;
467 bound = isl_set_dim_max(isl_set_copy(extent), i);
468 assert(bound);
469 dom = isl_pw_aff_domain(isl_pw_aff_copy(bound));
470 ls = isl_local_space_from_space(isl_set_get_space(dom));
471 one = isl_aff_zero_on_domain(ls);
472 one = isl_aff_add_constant_si(one, 1);
473 bound = isl_pw_aff_add(bound, isl_pw_aff_alloc(dom, one));
474 bound = isl_pw_aff_gist(bound, isl_set_copy(prog->context));
476 bounds[i] = bound;
477 if (!isl_pw_aff_is_cst(bound))
478 info->linearize = 1;
480 info->extent = extent;
482 collect_references(prog, info);
484 isl_set_free(array);
485 return 0;
486 error:
487 isl_set_free(array);
488 return -1;
491 /* Compute a mapping from all outer arrays (of structs) in scop
492 * to their innermost arrays.
494 * In particular, for each array of a primitive type, the result
495 * contains the identity mapping on that array.
496 * For each array involving member accesses, the result
497 * contains a mapping from the elements of the outer array of structs
498 * to all corresponding elements of the innermost nested arrays.
500 static __isl_give isl_union_map *compute_to_inner(struct ppcg_scop *scop)
502 int i;
503 isl_union_map *to_inner;
505 to_inner = isl_union_map_empty(isl_set_get_space(scop->context));
507 for (i = 0; i < scop->n_array; ++i) {
508 struct pet_array *array = scop->arrays[i];
509 isl_set *set;
510 isl_map *map;
512 if (array->element_is_record)
513 continue;
515 set = isl_set_copy(array->extent);
516 map = isl_set_identity(isl_set_copy(set));
518 while (set && isl_set_is_wrapping(set)) {
519 isl_id *id;
520 isl_map *wrapped;
522 id = isl_set_get_tuple_id(set);
523 wrapped = isl_set_unwrap(set);
524 wrapped = isl_map_domain_map(wrapped);
525 wrapped = isl_map_set_tuple_id(wrapped, isl_dim_in, id);
526 map = isl_map_apply_domain(map, wrapped);
527 set = isl_map_domain(isl_map_copy(map));
530 map = isl_map_gist_domain(map, set);
532 to_inner = isl_union_map_add_map(to_inner, map);
535 return to_inner;
538 /* Construct a gpu_array_info for each array possibly accessed by "prog" and
539 * collect them in prog->array.
541 * If there are any member accesses involved, then they are first mapped
542 * to the outer arrays of structs.
544 static int collect_array_info(struct gpu_prog *prog)
546 int r;
547 isl_union_set *arrays;
549 arrays = isl_union_map_range(isl_union_map_copy(prog->read));
550 arrays = isl_union_set_union(arrays,
551 isl_union_map_range(isl_union_map_copy(prog->may_write)));
553 arrays = isl_union_set_apply(arrays,
554 isl_union_map_copy(prog->to_outer));
556 arrays = isl_union_set_coalesce(arrays);
558 prog->n_array = isl_union_set_n_set(arrays);
559 prog->array = isl_calloc_array(prog->ctx,
560 struct gpu_array_info, prog->n_array);
561 assert(prog->array);
562 prog->n_array = 0;
563 r = isl_union_set_foreach_set(arrays, &extract_array_info, prog);
564 isl_union_set_free(arrays);
566 return r;
569 static void free_array_info(struct gpu_prog *prog)
571 int i, j;
573 for (i = 0; i < prog->n_array; ++i) {
574 int n_index = prog->array[i].n_index;
575 free(prog->array[i].type);
576 free(prog->array[i].name);
577 for (j = 0; j < n_index; ++j)
578 isl_pw_aff_free(prog->array[i].bound[j]);
579 isl_space_free(prog->array[i].space);
580 isl_set_free(prog->array[i].extent);
581 free(prog->array[i].bound);
582 free(prog->array[i].refs);
584 free(prog->array);
587 /* Check if a gpu array is a scalar. A scalar is a value that is not stored
588 * as an array or through a pointer reference, but as a single data element.
589 * At the moment, scalars are represented as zero-dimensional arrays.
590 * A zero-dimensional array containing structures is not considered
591 * to be a scalar.
593 int gpu_array_is_scalar(struct gpu_array_info *array)
595 return !array->has_compound_element && array->n_index == 0;
598 /* Is "array" a read-only scalar?
600 int gpu_array_is_read_only_scalar(struct gpu_array_info *array)
602 return array->read_only_scalar;
605 /* Internal data structure for extract_size_of_type.
606 * "type" specifies the name of the space that we want to extract.
607 * "res" is used to store the subset of that space.
609 struct ppcg_extract_size_data {
610 const char *type;
611 isl_set *res;
614 /* This function is called for each set in a union_set.
615 * If the name of the set matches data->type, we store the
616 * set in data->res.
618 static int extract_size_of_type(__isl_take isl_set *size, void *user)
620 struct ppcg_extract_size_data *data = user;
621 const char *name;
623 name = isl_set_get_tuple_name(size);
624 if (name && !strcmp(name, data->type)) {
625 data->res = size;
626 return -1;
629 isl_set_free(size);
630 return 0;
633 /* Given a union map { kernel[i] -> *[...] },
634 * return the range in the space called "type" for the kernel with
635 * sequence number "id".
637 static __isl_give isl_set *extract_sizes(__isl_keep isl_union_map *sizes,
638 const char *type, int id)
640 isl_space *space;
641 isl_set *dom;
642 isl_union_set *local_sizes;
643 struct ppcg_extract_size_data data = { type, NULL };
645 if (!sizes)
646 return NULL;
648 space = isl_union_map_get_space(sizes);
649 space = isl_space_set_from_params(space);
650 space = isl_space_add_dims(space, isl_dim_set, 1);
651 space = isl_space_set_tuple_name(space, isl_dim_set, "kernel");
652 dom = isl_set_universe(space);
653 dom = isl_set_fix_si(dom, isl_dim_set, 0, id);
655 local_sizes = isl_union_set_apply(isl_union_set_from_set(dom),
656 isl_union_map_copy(sizes));
657 isl_union_set_foreach_set(local_sizes, &extract_size_of_type, &data);
658 isl_union_set_free(local_sizes);
659 return data.res;
662 /* Given a singleton set, extract the first (at most *len) elements
663 * of the single integer tuple into *sizes and update *len if needed.
665 static void read_sizes_from_set(__isl_take isl_set *set, int *sizes, int *len)
667 int i;
668 int dim;
670 if (!set)
671 return;
673 dim = isl_set_dim(set, isl_dim_set);
674 if (dim < *len)
675 *len = dim;
677 for (i = 0; i < *len; ++i) {
678 isl_val *v;
680 v = isl_set_plain_get_val_if_fixed(set, isl_dim_set, i);
681 assert(v);
683 sizes[i] = isl_val_get_num_si(v);
684 isl_val_free(v);
687 isl_set_free(set);
690 /* Extract user specified "tile" sizes from the "sizes" command line option,
691 * defaulting to option->tile_size in each dimension.
693 static void read_tile_sizes(struct gpu_gen *gen)
695 int n;
696 isl_set *size;
698 gen->tile_size = isl_alloc_array(gen->ctx, int, gen->tile_len);
699 assert(gen->tile_size);
700 for (n = 0; n < gen->tile_len; ++n)
701 gen->tile_size[n] = gen->options->tile_size;
703 size = extract_sizes(gen->sizes, "tile", gen->kernel_id);
704 read_sizes_from_set(size, gen->tile_size, &gen->tile_len);
706 if (gen->n_parallel > gen->tile_len)
707 gen->n_parallel = gen->tile_len;
710 /* Extract user specified "block" sizes from the "sizes" command line option,
711 * after filling in some potentially useful defaults.
713 static void read_block_sizes(struct gpu_gen *gen)
715 int n;
716 isl_set *size;
718 n = gen->n_parallel;
719 gen->n_block = (n <= 3) ? n : 3;
720 switch (gen->n_block) {
721 case 1:
722 gen->block_dim[0] = 512;
723 break;
724 case 2:
725 gen->block_dim[0] = 32;
726 gen->block_dim[1] = 16;
727 break;
728 default:
729 gen->block_dim[0] = 32;
730 gen->block_dim[1] = 4;
731 gen->block_dim[2] = 4;
732 break;
735 size = extract_sizes(gen->sizes, "block", gen->kernel_id);
736 read_sizes_from_set(size, gen->block_dim, &gen->n_block);
739 /* Extract user specified "grid" sizes from the "sizes" command line option,
740 * after filling in some potentially useful defaults.
742 static void read_grid_sizes(struct gpu_gen *gen)
744 int n = gen->n_parallel;
745 isl_set *size;
747 gen->n_grid = (n <= 2) ? n : 2;
748 switch (gen->n_grid) {
749 case 1:
750 gen->grid_dim[0] = 32768;
751 break;
752 default:
753 gen->grid_dim[0] = 256;
754 gen->grid_dim[1] = 256;
755 break;
758 size = extract_sizes(gen->sizes, "grid", gen->kernel_id);
759 read_sizes_from_set(size, gen->grid_dim, &gen->n_grid);
762 /* Extract user specified sizes from the "sizes" command line option
763 * after filling in some potentially useful defaults.
765 static void read_sizes(struct gpu_gen *gen)
767 read_tile_sizes(gen);
768 read_block_sizes(gen);
769 read_grid_sizes(gen);
772 static void *free_stmts(struct gpu_stmt *stmts, int n)
774 int i;
776 if (!stmts)
777 return NULL;
779 for (i = 0; i < n; ++i) {
780 struct gpu_stmt_access *access, *next;
782 for (access = stmts[i].accesses; access; access = next) {
783 next = access->next;
784 isl_id_free(access->ref_id);
785 isl_map_free(access->access);
786 isl_map_free(access->tagged_access);
787 free(access);
790 isl_id_free(stmts[i].id);
792 free(stmts);
794 return NULL;
797 /* Construct a map from a domain of dimensionality "len"
798 * to a domain of dimensionality "len" + "tile_len" that tiles
799 * the "tile_len" coordinates starting at "first".
800 * In particular, [s_i] -> [s_i / tile_size[i], s_i % tile_size[i]].
801 * "dim" prescribes the parameters.
803 static __isl_give isl_map *tile(__isl_take isl_space *dim, int len,
804 int first, int tile_len, int *tile_size)
806 int i;
807 isl_basic_map *bmap;
808 isl_constraint *c;
809 isl_local_space *ls;
811 dim = isl_space_add_dims(dim, isl_dim_in, len);
812 dim = isl_space_add_dims(dim, isl_dim_out, len + tile_len);
813 bmap = isl_basic_map_universe(isl_space_copy(dim));
814 ls = isl_local_space_from_space(dim);
816 for (i = 0; i < len - tile_len; ++i) {
817 int j = i < first ? i : i + tile_len;
818 int k = i < first ? i : i + 2 * tile_len;
820 c = isl_equality_alloc(isl_local_space_copy(ls));
821 c = isl_constraint_set_coefficient_si(c, isl_dim_in, j, -1);
822 c = isl_constraint_set_coefficient_si(c, isl_dim_out, k, 1);
823 bmap = isl_basic_map_add_constraint(bmap, c);
826 for (i = 0; i < tile_len; ++i) {
827 c = isl_equality_alloc(isl_local_space_copy(ls));
828 c = isl_constraint_set_coefficient_si(c, isl_dim_in,
829 first + i, -1);
830 c = isl_constraint_set_coefficient_si(c, isl_dim_out,
831 first + i, tile_size[i]);
832 c = isl_constraint_set_coefficient_si(c, isl_dim_out,
833 first + i + tile_len, 1);
834 bmap = isl_basic_map_add_constraint(bmap, c);
836 c = isl_inequality_alloc(isl_local_space_copy(ls));
837 c = isl_constraint_set_coefficient_si(c, isl_dim_out,
838 first + i + tile_len, 1);
839 bmap = isl_basic_map_add_constraint(bmap, c);
841 c = isl_inequality_alloc(isl_local_space_copy(ls));
842 c = isl_constraint_set_coefficient_si(c, isl_dim_out,
843 first + i + tile_len, -1);
844 c = isl_constraint_set_constant_si(c, tile_size[i] - 1);
845 bmap = isl_basic_map_add_constraint(bmap, c);
848 isl_local_space_free(ls);
850 return isl_map_from_basic_map(bmap);
853 /* Construct a map from a domain of dimensionality "len"
854 * to a domain of dimensionality "len" + "wrap_len" that "wraps"
855 * the "wrap_len" coordinates starting at "first" according to "wrap_size".
856 * In particular, [s_i] -> [s_i, s_i % wrap_size[i]].
857 * To do so, we need extra variables corresponding to [s_i / wrap_size[i]],
858 * that are projected out at the end.
859 * "dim" prescribes the parameters.
861 static __isl_give isl_map *wrap(__isl_take isl_space *dim, int len,
862 int first, int wrap_len, int *wrap_size)
864 int i;
865 isl_basic_map *bmap;
866 isl_constraint *c;
867 isl_local_space *ls;
869 dim = isl_space_add_dims(dim, isl_dim_in, len);
870 dim = isl_space_add_dims(dim, isl_dim_out, len + 2 * wrap_len);
871 bmap = isl_basic_map_universe(isl_space_copy(dim));
872 ls = isl_local_space_from_space(dim);
874 for (i = 0; i < len; ++i) {
875 int k = i < first + wrap_len ? i : i + 2 * wrap_len;
877 c = isl_equality_alloc(isl_local_space_copy(ls));
878 c = isl_constraint_set_coefficient_si(c, isl_dim_in, i, -1);
879 c = isl_constraint_set_coefficient_si(c, isl_dim_out, k, 1);
880 bmap = isl_basic_map_add_constraint(bmap, c);
883 for (i = 0; i < wrap_len; ++i) {
884 c = isl_equality_alloc(isl_local_space_copy(ls));
885 c = isl_constraint_set_coefficient_si(c, isl_dim_out,
886 first + i, -1);
887 c = isl_constraint_set_coefficient_si(c, isl_dim_out,
888 first + wrap_len + i, 1);
889 c = isl_constraint_set_coefficient_si(c, isl_dim_out,
890 first + 2 * wrap_len + i, wrap_size[i]);
891 bmap = isl_basic_map_add_constraint(bmap, c);
893 c = isl_inequality_alloc(isl_local_space_copy(ls));
894 c = isl_constraint_set_coefficient_si(c, isl_dim_out,
895 first + wrap_len + i, 1);
896 bmap = isl_basic_map_add_constraint(bmap, c);
898 c = isl_inequality_alloc(isl_local_space_copy(ls));
899 c = isl_constraint_set_coefficient_si(c, isl_dim_out,
900 first + wrap_len + i, -1);
901 c = isl_constraint_set_constant_si(c, wrap_size[i] - 1);
902 bmap = isl_basic_map_add_constraint(bmap, c);
905 isl_local_space_free(ls);
907 bmap = isl_basic_map_project_out(bmap, isl_dim_out,
908 first + 2 * wrap_len, wrap_len);
910 return isl_map_from_basic_map(bmap);
913 /* Add "n" parameters named prefix%d.
915 static __isl_give isl_set *add_params( __isl_take isl_set *set,
916 int n, const char *prefix)
918 int i;
919 unsigned nparam;
920 char name[20];
922 nparam = isl_set_dim(set, isl_dim_param);
923 set = isl_set_add_dims(set, isl_dim_param, n);
925 for (i = 0; i < n; ++i) {
926 snprintf(name, sizeof(name), "%s%d", prefix, i);
927 set = isl_set_set_dim_name(set, isl_dim_param,
928 nparam + i, name);
931 return set;
934 /* Equate the "n" dimensions of "set" starting at "first" to
935 * freshly created parameters named prefix%d.
937 static __isl_give isl_set *parametrize(__isl_take isl_set *set,
938 int first, int n, const char *prefix)
940 int i;
941 unsigned nparam;
943 nparam = isl_set_dim(set, isl_dim_param);
945 set = add_params(set, n, prefix);
947 for (i = 0; i < n; ++i)
948 set = isl_set_equate(set, isl_dim_param, nparam + i,
949 isl_dim_set, first + i);
951 return set;
954 /* Given a parameter space "space", create a set of dimension "len"
955 * of which the "n" dimensions starting at "first" are equated to
956 * freshly created parameters named prefix%d.
958 static __isl_give isl_set *parametrization(__isl_take isl_space *space,
959 int len, int first, int n, const char *prefix)
961 isl_set *set;
963 space = isl_space_set_from_params(space);
964 space = isl_space_add_dims(space, isl_dim_set, len);
965 set = isl_set_universe(space);
967 return parametrize(set, first, n, prefix);
970 /* Tile the B loops over the tile sizes and then tile/wrap
971 * the T1 loops over the blocks.
973 static __isl_give isl_union_map *tile_schedule(struct gpu_gen *gen,
974 __isl_take isl_union_map *sched)
976 isl_space *dim;
977 isl_map *tiling, *block_tiling;
979 dim = isl_union_map_get_space(sched);
980 tiling = tile(isl_space_copy(dim), gen->untiled_len,
981 gen->tile_first, gen->tile_len, gen->tile_size);
983 if (gen->options->wrap)
984 block_tiling = wrap(dim, gen->untiled_len + gen->tile_len,
985 gen->tile_first, gen->n_grid, gen->grid_dim);
986 else
987 block_tiling = tile(dim, gen->untiled_len + gen->tile_len,
988 gen->tile_first, gen->n_grid, gen->grid_dim);
990 gen->tiled_len = gen->untiled_len + gen->tile_len + gen->n_grid;
992 tiling = isl_map_apply_range(tiling, block_tiling);
994 sched = isl_union_map_apply_range(sched,
995 isl_union_map_from_map(tiling));
997 gen->shared_len = gen->tile_first + gen->tile_len + gen->n_grid;
999 return sched;
1002 /* Equate the "T1P" iterators in the tiled schedule "sched"
1003 * to the block dimensions.
1005 static __isl_give isl_union_map *parametrize_tiled_schedule(
1006 struct gpu_gen *gen, __isl_take isl_union_map *sched)
1008 isl_space *dim;
1009 isl_set *par;
1011 dim = isl_union_map_get_space(sched);
1012 par = parametrization(dim, gen->tiled_len,
1013 gen->tile_first + gen->n_grid, gen->n_grid, "b");
1014 sched = isl_union_map_intersect_range(sched,
1015 isl_union_set_from_set(par));
1017 return sched;
1020 /* Tile/wrap the P1 loops over the threads.
1022 static __isl_give isl_union_map *thread_tile_schedule(struct gpu_gen *gen,
1023 __isl_take isl_union_map *sched)
1025 isl_space *dim;
1026 isl_map *tiling;
1027 isl_set *par;
1029 dim = isl_union_map_get_space(sched);
1031 if (gen->options->wrap)
1032 tiling = wrap(isl_space_copy(dim), gen->tiled_len,
1033 gen->shared_len, gen->n_block, gen->block_dim);
1034 else
1035 tiling = tile(isl_space_copy(dim), gen->tiled_len,
1036 gen->shared_len, gen->n_block, gen->block_dim);
1037 gen->thread_tiled_len = gen->tiled_len + gen->n_block;
1039 sched = isl_union_map_apply_range(sched,
1040 isl_union_map_from_map(tiling));
1042 par = parametrization(dim, gen->thread_tiled_len,
1043 gen->tile_first + gen->tile_len + gen->n_grid + gen->n_block,
1044 gen->n_block, "t");
1045 sched = isl_union_map_intersect_range(sched,
1046 isl_union_set_from_set(par));
1048 gen->shared_len = gen->tile_first + gen->tile_len + gen->n_grid;
1050 return sched;
1053 /* If the user asked for it, scale the shared memory tile loops
1054 * (T1T and T2) of "sched" by gen->tile_size[i].
1055 * If we are not performing "wrapping", then additionally scale the T1P
1056 * loops by gen->grid_dim[i].
1058 static __isl_give isl_union_map *scale_tile_loops(struct gpu_gen *gen,
1059 __isl_take isl_union_map *sched)
1061 int i;
1062 isl_space *dim;
1063 isl_basic_map *scale;
1064 isl_constraint *c;
1065 isl_local_space *ls;
1067 if (!gen->options->scale_tile_loops)
1068 return sched;
1070 dim = isl_union_map_get_space(sched);
1071 dim = isl_space_add_dims(dim, isl_dim_in, gen->tiled_len);
1072 dim = isl_space_add_dims(dim, isl_dim_out, gen->tiled_len);
1073 scale = isl_basic_map_universe(isl_space_copy(dim));
1074 ls = isl_local_space_from_space(dim);
1076 for (i = 0; i < gen->tiled_len; ++i) {
1077 int f = 1;
1079 if (i >= gen->tile_first && i < gen->tile_first + gen->n_grid) {
1080 f = gen->tile_size[i - gen->tile_first];
1081 if (!gen->options->wrap)
1082 f *= gen->grid_dim[i - gen->tile_first];
1083 } else if (i >= gen->tile_first + gen->n_grid &&
1084 i < gen->tile_first + gen->n_grid + gen->tile_len) {
1085 f = gen->tile_size[i - (gen->tile_first + gen->n_grid)];
1088 c = isl_equality_alloc(isl_local_space_copy(ls));
1089 c = isl_constraint_set_coefficient_si(c, isl_dim_in, i, f);
1090 c = isl_constraint_set_coefficient_si(c, isl_dim_out, i, -1);
1091 scale = isl_basic_map_add_constraint(scale, c);
1094 isl_local_space_free(ls);
1096 sched = isl_union_map_apply_range(sched,
1097 isl_union_map_from_map(isl_map_from_basic_map(scale)));
1099 return sched;
1102 /* If we are not performing "wrapping" and if the user asked for it,
1103 * scale the thread tile loops (P1T) of "sched" by gen->block_dim[i].
1105 static __isl_give isl_union_map *scale_thread_tile_loops(struct gpu_gen *gen,
1106 __isl_take isl_union_map *sched)
1108 int i;
1109 isl_space *dim;
1110 isl_basic_map *scale;
1111 isl_constraint *c;
1112 isl_local_space *ls;
1114 if (gen->options->wrap)
1115 return sched;
1116 if (!gen->options->scale_tile_loops)
1117 return sched;
1119 dim = isl_union_map_get_space(sched);
1120 dim = isl_space_add_dims(dim, isl_dim_in, gen->thread_tiled_len);
1121 dim = isl_space_add_dims(dim, isl_dim_out, gen->thread_tiled_len);
1122 scale = isl_basic_map_universe(isl_space_copy(dim));
1123 ls = isl_local_space_from_space(dim);
1125 for (i = 0; i < gen->thread_tiled_len; ++i) {
1126 int f = 1;
1128 if (i >= gen->shared_len &&
1129 i < gen->shared_len + gen->n_block)
1130 f = gen->block_dim[i - gen->shared_len];
1132 c = isl_equality_alloc(isl_local_space_copy(ls));
1133 c = isl_constraint_set_coefficient_si(c, isl_dim_in, i, f);
1134 c = isl_constraint_set_coefficient_si(c, isl_dim_out, i, -1);
1135 scale = isl_basic_map_add_constraint(scale, c);
1138 isl_local_space_free(ls);
1140 sched = isl_union_map_apply_range(sched,
1141 isl_union_map_from_map(isl_map_from_basic_map(scale)));
1143 return sched;
1146 /* If we are not performing "wrapping" and if the user asked for it,
1147 * scale the "n_tile" loops starting at "first" of "sched" by gen->block_dim[i].
1149 static __isl_give isl_union_map *scale_access_tile_loops(struct gpu_gen *gen,
1150 __isl_take isl_union_map *sched, int len, int first, int n_tile)
1152 int i;
1153 isl_space *dim;
1154 isl_basic_map *scale;
1155 isl_constraint *c;
1156 isl_local_space *ls;
1158 if (gen->options->wrap)
1159 return sched;
1160 if (!gen->options->scale_tile_loops)
1161 return sched;
1163 dim = isl_union_map_get_space(sched);
1164 dim = isl_space_add_dims(dim, isl_dim_in, len);
1165 dim = isl_space_add_dims(dim, isl_dim_out, len);
1166 scale = isl_basic_map_universe(isl_space_copy(dim));
1167 ls = isl_local_space_from_space(dim);
1169 for (i = 0; i < len; ++i) {
1170 int f = 1;
1172 if (i >= first && i < first + n_tile)
1173 f = gen->kernel->block_dim[i - first];
1175 c = isl_equality_alloc(isl_local_space_copy(ls));
1176 c = isl_constraint_set_coefficient_si(c, isl_dim_in, i, f);
1177 c = isl_constraint_set_coefficient_si(c, isl_dim_out, i, -1);
1178 scale = isl_basic_map_add_constraint(scale, c);
1181 isl_local_space_free(ls);
1183 sched = isl_union_map_apply_range(sched,
1184 isl_union_map_from_map(isl_map_from_basic_map(scale)));
1186 return sched;
1189 /* Add "len" parameters p[i] called prefix%d,
1190 * with bounds to 0 <= p[i] < size[i].
1192 __isl_give isl_set *add_bounded_parameters(__isl_take isl_set *set,
1193 int len, int *size, const char *prefix)
1195 int i;
1196 unsigned nparam;
1197 isl_space *dim;
1198 isl_basic_set *bset;
1199 isl_constraint *c;
1200 isl_local_space *ls;
1201 char name[20];
1203 nparam = isl_set_dim(set, isl_dim_param);
1204 set = isl_set_add_dims(set, isl_dim_param, len);
1206 for (i = 0; i < len; ++i) {
1207 snprintf(name, sizeof(name), "%s%d", prefix, i);
1208 set = isl_set_set_dim_name(set, isl_dim_param,
1209 nparam + i, name);
1212 dim = isl_set_get_space(set);
1213 bset = isl_basic_set_universe(isl_space_copy(dim));
1214 ls = isl_local_space_from_space(dim);
1216 for (i = 0; i < len; ++i) {
1217 c = isl_inequality_alloc(isl_local_space_copy(ls));
1218 c = isl_constraint_set_coefficient_si(c, isl_dim_param,
1219 nparam + i, 1);
1220 bset = isl_basic_set_add_constraint(bset, c);
1222 c = isl_inequality_alloc(isl_local_space_copy(ls));
1223 c = isl_constraint_set_coefficient_si(c, isl_dim_param,
1224 nparam + i, -1);
1225 c = isl_constraint_set_constant_si(c, size[i] - 1);
1226 bset = isl_basic_set_add_constraint(bset, c);
1229 isl_local_space_free(ls);
1231 return isl_set_intersect(set, isl_set_from_basic_set(bset));
1234 /* Add "len" parameters p[i] called prefix%d,
1235 * with bounds to 0 <= p[i] < size[i].
1237 static __isl_give isl_set *add_bounded_parameters_dynamic(
1238 __isl_take isl_set *set, __isl_keep isl_multi_pw_aff *size,
1239 const char *prefix)
1241 int i, len;
1242 unsigned nparam;
1243 isl_space *space;
1244 isl_local_space *ls;
1245 char name[20];
1247 len = isl_multi_pw_aff_dim(size, isl_dim_out);
1248 nparam = isl_set_dim(set, isl_dim_param);
1249 set = isl_set_add_dims(set, isl_dim_param, len);
1251 for (i = 0; i < len; ++i) {
1252 snprintf(name, sizeof(name), "%s%d", prefix, i);
1253 set = isl_set_set_dim_name(set, isl_dim_param,
1254 nparam + i, name);
1257 space = isl_space_params(isl_set_get_space(set));
1258 ls = isl_local_space_from_space(space);
1259 for (i = 0; i < len; ++i) {
1260 isl_pw_aff *param, *size_i, *zero;
1261 isl_set *bound;
1263 param = isl_pw_aff_var_on_domain(isl_local_space_copy(ls),
1264 isl_dim_param, nparam + i);
1266 size_i = isl_multi_pw_aff_get_pw_aff(size, i);
1267 bound = isl_pw_aff_lt_set(isl_pw_aff_copy(param), size_i);
1268 set = isl_set_intersect_params(set, bound);
1270 zero = isl_pw_aff_zero_on_domain(isl_local_space_copy(ls));
1271 bound = isl_pw_aff_ge_set(param, zero);
1272 set = isl_set_intersect_params(set, bound);
1274 isl_local_space_free(ls);
1276 return set;
1279 /* Construct a map from an access to group->array to the corresponding
1280 * shared/private memory tile.
1281 * The map is of the form
1283 * { [D[i] -> A[a]] -> T[t] }
1285 * where D represents the initial shared_len dimensions
1286 * of the computed schedule.
1288 static __isl_give isl_map *shift_access(struct gpu_array_ref_group *group)
1290 struct gpu_array_tile *tile;
1291 isl_multi_aff *tiling;
1293 tile = group->private_tile;
1294 if (!tile)
1295 tile = group->shared_tile;
1297 tiling = isl_multi_aff_copy(tile->tiling);
1299 return isl_map_from_multi_aff(tiling);
1302 /* Does "map" have an obviously fixed value at variable "pos" of "type"?
1304 static int map_plain_is_fixed(isl_map *map, enum isl_dim_type type,
1305 unsigned pos)
1307 isl_val *v;
1308 int fixed;
1310 v = isl_map_plain_get_val_if_fixed(map, type, pos);
1311 if (!v)
1312 return -1;
1313 fixed = isl_val_is_int(v);
1314 isl_val_free(v);
1316 return fixed;
1319 /* Given a schedule that iterates over all elements in a piece of an array,
1320 * perform tiling/wrapping over the threads.
1322 * In particular, we tile the final iterators so that the final thread
1323 * dimension runs over the final array dimension.
1324 * However, if those final iterators have only a single iteration,
1325 * we try to tile earlier iterators instead.
1327 static __isl_give isl_map *tile_access_schedule(struct gpu_gen *gen,
1328 __isl_take isl_map *sched)
1330 isl_space *dim;
1331 isl_union_map *usched;
1332 isl_map *tiling;
1333 isl_set *par;
1334 unsigned nvar = isl_map_dim(sched, isl_dim_out);
1335 int n_tile;
1336 int first;
1338 n_tile = gen->kernel->n_block;
1339 if (n_tile > nvar) {
1340 int i;
1341 sched = isl_map_insert_dims(sched,
1342 isl_dim_out, 0, n_tile - nvar);
1343 for (i = 0; i < n_tile - nvar; ++i)
1344 sched = isl_map_fix_si(sched, isl_dim_out, i, 0);
1345 nvar = n_tile;
1348 first = nvar - n_tile;
1350 for (; first > 0; first --)
1351 if (!map_plain_is_fixed(sched, isl_dim_out, first + n_tile - 1))
1352 break;
1354 dim = isl_map_get_space(sched);
1355 dim = isl_space_params(dim);
1356 if (gen->options->wrap)
1357 tiling = wrap(isl_space_copy(dim), nvar, first,
1358 n_tile, gen->kernel->block_dim);
1359 else
1360 tiling = tile(isl_space_copy(dim), nvar, first,
1361 n_tile, gen->kernel->block_dim);
1362 sched = isl_map_apply_range(sched, tiling);
1364 par = parametrization(dim, nvar + n_tile, first + n_tile, n_tile, "t");
1365 sched = isl_map_intersect_range(sched, par);
1367 usched = isl_union_map_from_map(sched);
1368 usched = scale_access_tile_loops(gen, usched, nvar + n_tile,
1369 first, n_tile);
1370 sched = isl_map_from_union_map(usched);
1372 return sched;
1375 /* Return the union of all read (read = 1) and/or write (write = 1)
1376 * access relations in the group.
1378 static __isl_give isl_union_map *group_access_relation(
1379 struct gpu_array_ref_group *group, int read, int write)
1381 int i;
1382 isl_union_map *access;
1384 access = isl_union_map_empty(isl_map_get_space(group->access));
1385 for (i = 0; i < group->n_ref; ++i) {
1386 isl_map *map_i;
1388 if (!((read && group->refs[i]->read) ||
1389 (write && group->refs[i]->write)))
1390 continue;
1391 map_i = isl_map_copy(group->refs[i]->access);
1392 access = isl_union_map_union(access,
1393 isl_union_map_from_map(map_i));
1396 return access;
1399 /* Return the union of all tagged access relations in the group.
1401 static __isl_give isl_union_map *group_tagged_access_relation(
1402 struct gpu_array_ref_group *group)
1404 int i;
1405 isl_union_map *access;
1407 access = isl_union_map_empty(isl_map_get_space(group->access));
1408 for (i = 0; i < group->n_ref; ++i) {
1409 isl_map *map_i;
1411 map_i = isl_map_copy(group->refs[i]->tagged_access);
1412 access = isl_union_map_union(access,
1413 isl_union_map_from_map(map_i));
1416 return access;
1419 /* Return the extent of "array", recomputed from the bounds.
1420 * The recomputed extent may be simpler than the original extent.
1422 static __isl_give isl_set *array_extent(struct gpu_array_info *array)
1424 int i;
1425 isl_id *id;
1426 isl_space *space;
1427 isl_local_space *ls;
1428 isl_set *extent;
1430 id = isl_set_get_tuple_id(array->extent);
1431 space = isl_set_get_space(array->extent);
1432 extent = isl_set_universe(isl_space_copy(space));
1433 ls = isl_local_space_from_space(space);
1434 for (i = 0; i < array->n_index; ++i) {
1435 isl_pw_aff *bound;
1436 isl_aff *aff;
1437 isl_pw_aff *index;
1438 isl_set *lt;
1440 extent = isl_set_lower_bound_si(extent, isl_dim_set, i, 0);
1442 aff = isl_aff_var_on_domain(isl_local_space_copy(ls),
1443 isl_dim_set, i);
1444 index = isl_pw_aff_from_aff(aff);
1445 bound = isl_pw_aff_copy(array->bound[i]);
1446 bound = isl_pw_aff_from_range(bound);
1447 bound = isl_pw_aff_add_dims(bound, isl_dim_in, array->n_index);
1448 bound = isl_pw_aff_set_tuple_id(bound, isl_dim_in,
1449 isl_id_copy(id));
1450 lt = isl_pw_aff_lt_set(index, bound);
1451 extent = isl_set_intersect(extent, lt);
1453 isl_local_space_free(ls);
1454 isl_id_free(id);
1456 return extent;
1459 /* Return a map from the first shared_len dimensions of the computed
1460 * schedule to the array tile in
1461 * global memory that corresponds to the shared memory copy.
1463 * In particular, return a map
1465 * { D[i] -> A[a] }
1467 * with constraints
1469 * tile_offset(i) <= a <= tile_offset(i) + tile_size - 1 (1)
1471 * and
1473 * 0 <= a <= array_size - 1 (2)
1475 * Note that if some stride has been detected (i.e., when
1476 * group->shared_tile->bound[i].shift is set), then a in (1) refers
1477 * to the shifted and scaled down version.
1479 * Constraints (1) are obtained by mapping the size constraints on the
1480 * shared/private memory tile back to the access relation.
1481 * Constraints (2) are obtained from the (recomputed) extent.
1483 static __isl_give isl_map *group_tile(struct gpu_array_ref_group *group)
1485 int i;
1486 int n_index = group->array->n_index;
1487 isl_map *tile;
1488 isl_space *space;
1489 isl_set *local;
1490 isl_set *extent;
1492 space = isl_multi_aff_get_space(group->shared_tile->tiling);
1493 space = isl_space_range(space);
1494 local = isl_set_universe(space);
1495 for (i = 0; i < n_index; ++i) {
1496 isl_val *bound;
1498 local = isl_set_lower_bound_si(local, isl_dim_set, i, 0);
1499 bound = isl_val_copy(group->shared_tile->bound[i].size);
1500 bound = isl_val_sub_ui(bound, 1);
1501 local = isl_set_upper_bound_val(local, isl_dim_set, i, bound);
1503 local = isl_set_preimage_multi_aff(local,
1504 isl_multi_aff_copy(group->shared_tile->tiling));
1505 tile = isl_set_unwrap(local);
1506 extent = array_extent(group->array);
1507 tile = isl_map_intersect_range(tile, extent);
1509 return tile;
1512 /* Given a mapping "iterator_map" from the AST schedule to a domain,
1513 * return the corresponding mapping from the AST schedule to
1514 * to the first shared_len dimensions of the schedule computed by PPCG.
1516 static __isl_give isl_pw_multi_aff *compute_sched_to_shared(struct gpu_gen *gen,
1517 __isl_take isl_pw_multi_aff *iterator_map)
1519 isl_union_map *umap;
1520 isl_space *space;
1521 isl_map *map, *sched;;
1523 space = isl_space_range(isl_pw_multi_aff_get_space(iterator_map));
1524 space = isl_space_from_domain(space);
1525 space = isl_space_add_dims(space, isl_dim_out, gen->shared_len);
1527 umap = isl_union_map_copy(gen->shared_sched);
1528 umap = isl_union_map_apply_range(umap,
1529 isl_union_map_copy(gen->shared_proj));
1530 map = isl_union_map_extract_map(umap, space);
1531 isl_union_map_free(umap);
1533 sched = isl_map_preimage_domain_pw_multi_aff(map, iterator_map);
1534 sched = isl_map_detect_equalities(sched);
1536 return isl_pw_multi_aff_from_map(sched);
1539 /* Set unroll[j] if the input dimension j is involved in
1540 * the index expression represented by ma.
1542 static int check_unroll(__isl_take isl_set *set, __isl_take isl_multi_aff *ma,
1543 void *user)
1545 int i, j;
1546 int n_in = isl_multi_aff_dim(ma, isl_dim_in);
1547 int n_out = isl_multi_aff_dim(ma, isl_dim_out);
1548 int *unroll = user;
1550 for (i = 0; i < n_out; ++i) {
1551 isl_aff *aff;
1553 aff = isl_multi_aff_get_aff(ma, i);
1554 for (j = 0; j < n_in; ++j)
1555 if (isl_aff_involves_dims(aff, isl_dim_in, j, 1))
1556 unroll[j] = 1;
1557 isl_aff_free(aff);
1560 isl_set_free(set);
1561 isl_multi_aff_free(ma);
1562 return 0;
1565 /* Given an array pos mapping input dimensions to the corresponding
1566 * output dimension, construct the corresponding map.
1568 static __isl_give isl_map *permutation(__isl_take isl_space *dim,
1569 int *pos, int len)
1571 int i;
1572 isl_constraint *c;
1573 isl_basic_map *bmap;
1574 isl_local_space *ls;
1576 dim = isl_space_add_dims(dim, isl_dim_in, len);
1577 dim = isl_space_add_dims(dim, isl_dim_out, len);
1578 bmap = isl_basic_map_universe(isl_space_copy(dim));
1579 ls = isl_local_space_from_space(dim);
1581 for (i = 0; i < len; ++i) {
1582 c = isl_equality_alloc(isl_local_space_copy(ls));
1583 c = isl_constraint_set_coefficient_si(c, isl_dim_in, i,
1584 -1);
1585 c = isl_constraint_set_coefficient_si(c, isl_dim_out, pos[i],
1587 bmap = isl_basic_map_add_constraint(bmap, c);
1589 isl_local_space_free(ls);
1591 return isl_map_from_basic_map(bmap);
1594 /* Find all loops involved in any of the index expressions for any of
1595 * the private accesses, move them innermost and then mark them as
1596 * requiring unrolling by setting gen->first_unroll.
1597 * The loops involved should all be parallel because of the checks
1598 * we performed in check_private_group_access. Moving them innermost
1599 * is therefore a valid transformation.
1601 * Loops up to gen->shared_len are generated before the mapping to
1602 * threads is applied. They should therefore be ignored.
1604 * We compute the hidden equalities of the schedule first
1605 * since we will need them in our calls to isl_pw_multi_aff_from_map
1606 * and because we want to make sure that the same equalities
1607 * are also available to the code generator.
1609 static __isl_give isl_union_map *interchange_for_unroll(struct gpu_gen *gen,
1610 __isl_take isl_union_map *sched)
1612 int i, j;
1613 int unroll[gen->thread_tiled_len];
1614 int perm[gen->thread_tiled_len];
1615 isl_space *dim;
1616 isl_map *permute;
1617 int len = gen->shared_len + gen->n_parallel + gen->n_block;
1619 gen->first_unroll = -1;
1621 sched = isl_union_map_detect_equalities(sched);
1622 for (i = 0; i < gen->thread_tiled_len; ++i)
1623 unroll[i] = 0;
1624 for (i = 0; i < gen->prog->n_array; ++i) {
1625 struct gpu_array_info *array = &gen->prog->array[i];
1627 for (j = 0; j < array->n_group; ++j) {
1628 isl_union_map *access;
1629 isl_map *acc;
1630 isl_pw_multi_aff *pma;
1632 if (!array->groups[j]->private_tile)
1633 continue;
1635 access = group_access_relation(array->groups[j], 1, 1);
1636 access = isl_union_map_apply_domain(access,
1637 isl_union_map_copy(sched));
1639 acc = isl_map_from_union_map(access);
1640 pma = isl_pw_multi_aff_from_map(acc);
1641 isl_pw_multi_aff_foreach_piece(pma,
1642 &check_unroll, unroll);
1644 isl_pw_multi_aff_free(pma);
1648 for (i = gen->shared_len; i < len; ++i)
1649 if (unroll[i])
1650 break;
1652 if (i >= len)
1653 return sched;
1655 for (i = len; i < gen->thread_tiled_len; ++i)
1656 if (unroll[i])
1657 return sched;
1659 j = 0;
1660 for (i = 0; i < gen->shared_len; ++i)
1661 perm[i] = j++;
1662 for (i = gen->shared_len; i < gen->thread_tiled_len; ++i)
1663 if (!unroll[i])
1664 perm[i] = j++;
1665 gen->first_unroll = j - gen->shared_len;
1666 for (i = gen->shared_len; i < len; ++i)
1667 if (unroll[i])
1668 perm[i] = j++;
1670 dim = isl_union_map_get_space(sched);
1671 permute = permutation(dim, perm, gen->thread_tiled_len);
1672 sched = isl_union_map_apply_range(sched,
1673 isl_union_map_from_map(permute));
1675 return sched;
1678 /* Given a constraint
1680 * a(p,i) + j = g f(e)
1682 * or -a(p,i) - j = g f(e) if sign < 0,
1683 * store a(p,i) in bound->shift and g (stride) in bound->stride.
1684 * a(p,i) is assumed to be an expression in only the parameters
1685 * and the input dimensions.
1687 static void extract_stride(__isl_keep isl_constraint *c,
1688 struct gpu_array_bound *bound, __isl_keep isl_val *stride, int sign)
1690 int i;
1691 isl_val *v;
1692 isl_space *space;
1693 unsigned nparam;
1694 unsigned nvar;
1695 isl_aff *aff;
1697 isl_val_free(bound->stride);
1698 bound->stride = isl_val_copy(stride);
1700 space = isl_constraint_get_space(c);
1701 space = isl_space_domain(space);
1703 nparam = isl_space_dim(space, isl_dim_param);
1704 nvar = isl_space_dim(space, isl_dim_set);
1706 v = isl_constraint_get_constant_val(c);
1707 if (sign < 0)
1708 v = isl_val_neg(v);
1709 aff = isl_aff_zero_on_domain(isl_local_space_from_space(space));
1710 aff = isl_aff_set_constant_val(aff, v);
1712 for (i = 0; i < nparam; ++i) {
1713 if (!isl_constraint_involves_dims(c, isl_dim_param, i, 1))
1714 continue;
1715 v = isl_constraint_get_coefficient_val(c, isl_dim_param, i);
1716 if (sign < 0)
1717 v = isl_val_neg(v);
1718 aff = isl_aff_add_coefficient_val(aff, isl_dim_param, i, v);
1721 for (i = 0; i < nvar; ++i) {
1722 if (!isl_constraint_involves_dims(c, isl_dim_in, i, 1))
1723 continue;
1724 v = isl_constraint_get_coefficient_val(c, isl_dim_in, i);
1725 if (sign < 0)
1726 v = isl_val_neg(v);
1727 aff = isl_aff_add_coefficient_val(aff, isl_dim_in, i, v);
1730 bound->shift = aff;
1733 /* Given an equality constraint of a map with a single output dimension j,
1734 * check if the constraint is of the form
1736 * a(p,i) + j = g f(e)
1738 * with a(p,i) an expression in the parameters and input dimensions
1739 * and f(e) an expression in the existentially quantified variables.
1740 * If so, and if g is larger than any such g from a previously considered
1741 * constraint, then call extract_stride to record the stride information
1742 * in bound.
1744 static int check_stride_constraint(__isl_take isl_constraint *c, void *user)
1746 int i;
1747 isl_ctx *ctx;
1748 isl_val *v;
1749 unsigned n_div;
1750 struct gpu_array_bound *bound = user;
1752 ctx = isl_constraint_get_ctx(c);
1753 n_div = isl_constraint_dim(c, isl_dim_div);
1754 v = isl_constraint_get_coefficient_val(c, isl_dim_out, 0);
1756 if (n_div && (isl_val_is_one(v) || isl_val_is_negone(v))) {
1757 int s = isl_val_sgn(v);
1758 isl_val *stride = isl_val_zero(ctx);
1760 isl_val_free(v);
1761 for (i = 0; i < n_div; ++i) {
1762 v = isl_constraint_get_coefficient_val(c,
1763 isl_dim_div, i);
1764 stride = isl_val_gcd(stride, v);
1766 if (!isl_val_is_zero(stride) &&
1767 isl_val_gt(stride, bound->stride))
1768 extract_stride(c, bound, stride, s);
1770 isl_val_free(stride);
1771 } else
1772 isl_val_free(v);
1774 isl_constraint_free(c);
1775 return 0;
1778 /* Given contraints on an array index i, check if we can find
1779 * a shift a(p) and a stride g such that
1781 * a(p) + i = 0 mod g
1783 * If so, record the information in bound and apply the mapping
1784 * i -> (i + a(p))/g to the array index in bounds and return
1785 * the new constraints.
1786 * If not, simply return the original constraints.
1788 * If bounds is a subset of the space
1790 * D -> i
1792 * then the bound recorded in bound->shift is of the form
1794 * D -> s(D)
1796 * with s(D) equal to a(p) above.
1797 * The mapping recorded in bound->shift_map is of the form
1799 * [D -> i] -> [D -> (i + S(D))/g]
1801 * This mapping is computed as follows.
1802 * We first introduce "i" in the domain through precomposition
1803 * with [D -> i] -> D obtaining
1805 * [D -> i] -> s(D)
1807 * Adding [D -> i] -> i produces
1809 * [D -> i] -> i + s(D)
1811 * and the domain product with [D -> i] -> D yields
1813 * [D -> i] -> [D -> i + s(D)]
1815 * Composition with [D -> i] -> [D -> i/g] gives the desired result.
1817 static __isl_give isl_basic_map *check_stride(struct gpu_array_bound *bound,
1818 __isl_take isl_basic_map *bounds)
1820 isl_space *space;
1821 isl_basic_map *hull;
1822 isl_basic_map *shift, *id, *bmap, *scale;
1823 isl_basic_set *bset;
1824 isl_aff *aff;
1826 bound->stride = NULL;
1828 hull = isl_basic_map_affine_hull(isl_basic_map_copy(bounds));
1830 isl_basic_map_foreach_constraint(hull, &check_stride_constraint, bound);
1832 isl_basic_map_free(hull);
1834 if (!bound->stride)
1835 return bounds;
1837 shift = isl_basic_map_from_aff(isl_aff_copy(bound->shift));
1838 space = isl_basic_map_get_space(bounds);
1839 bmap = isl_basic_map_domain_map(isl_basic_map_universe(space));
1840 shift = isl_basic_map_apply_range(bmap, shift);
1841 space = isl_basic_map_get_space(bounds);
1842 id = isl_basic_map_range_map(isl_basic_map_universe(space));
1843 shift = isl_basic_map_sum(id, shift);
1844 space = isl_basic_map_get_space(bounds);
1845 id = isl_basic_map_domain_map(isl_basic_map_universe(space));
1846 shift = isl_basic_map_range_product(id, shift);
1848 space = isl_space_domain(isl_basic_map_get_space(bounds));
1849 id = isl_basic_map_identity(isl_space_map_from_set(space));
1850 space = isl_space_range(isl_basic_map_get_space(bounds));
1851 aff = isl_aff_zero_on_domain(isl_local_space_from_space(space));
1852 aff = isl_aff_add_coefficient_si(aff, isl_dim_in, 0, 1);
1853 aff = isl_aff_scale_down_val(aff, isl_val_copy(bound->stride));
1854 scale = isl_basic_map_from_aff(aff);
1855 scale = isl_basic_map_product(id, scale);
1857 bound->shift_map = isl_basic_map_apply_range(shift, scale);
1858 bmap = isl_basic_map_copy(bound->shift_map);
1859 bset = isl_basic_set_apply(isl_basic_map_wrap(bounds), bmap);
1860 bounds = isl_basic_set_unwrap(bset);
1862 return bounds;
1865 /* Data used in compute_array_dim_size and compute_size_in_direction.
1867 * pos is the position of the variable representing the array index,
1868 * i.e., the variable for which want to compute the size. This variable
1869 * is also the last variable in the set.
1871 struct gpu_size_info {
1872 isl_basic_set *bset;
1873 struct gpu_array_bound *bound;
1874 int pos;
1877 /* Given a constraint from the basic set describing the bounds on
1878 * an array index, check if it is a lower bound, say m i >= b(x), and,
1879 * if so, check whether the expression "i - ceil(b(x)/m) + 1" has a constant
1880 * upper bound. If so, and if this bound is smaller than any bound
1881 * derived from earlier constraints, set the size to this bound on
1882 * the expression and the lower bound to ceil(b(x)/m).
1884 static int compute_size_in_direction(__isl_take isl_constraint *c, void *user)
1886 struct gpu_size_info *size = user;
1887 unsigned nparam;
1888 unsigned n_div;
1889 isl_val *v;
1890 isl_aff *aff;
1891 isl_aff *lb;
1893 nparam = isl_basic_set_dim(size->bset, isl_dim_param);
1894 n_div = isl_constraint_dim(c, isl_dim_div);
1896 if (isl_constraint_involves_dims(c, isl_dim_div, 0, n_div) ||
1897 !isl_constraint_is_lower_bound(c, isl_dim_set, size->pos)) {
1898 isl_constraint_free(c);
1899 return 0;
1902 aff = isl_constraint_get_bound(c, isl_dim_set, size->pos);
1903 aff = isl_aff_ceil(aff);
1905 lb = isl_aff_copy(aff);
1907 aff = isl_aff_neg(aff);
1908 aff = isl_aff_add_coefficient_si(aff, isl_dim_in, size->pos, 1);
1910 v = isl_basic_set_max_val(size->bset, aff);
1911 isl_aff_free(aff);
1913 if (isl_val_is_int(v)) {
1914 v = isl_val_add_ui(v, 1);
1915 if (!size->bound->size || isl_val_lt(v, size->bound->size)) {
1916 isl_val_free(size->bound->size);
1917 size->bound->size = isl_val_copy(v);
1918 lb = isl_aff_drop_dims(lb, isl_dim_in, size->pos, 1);
1919 isl_aff_free(size->bound->lb);
1920 size->bound->lb = isl_aff_copy(lb);
1923 isl_val_free(v);
1924 isl_aff_free(lb);
1926 isl_constraint_free(c);
1928 return 0;
1931 /* Given a basic map "bounds" that maps parameters and input dimensions
1932 * to a single output dimension, look for an expression in the parameters
1933 * and input dimensions such that the range of the output dimension shifted
1934 * by this expression is a constant.
1936 * In particular, we currently only consider lower bounds on the output
1937 * dimension as candidate expressions.
1939 static int compute_array_dim_size(struct gpu_array_bound *bound,
1940 __isl_take isl_basic_map *bounds)
1942 struct gpu_size_info size;
1944 bounds = isl_basic_map_detect_equalities(bounds);
1945 bounds = check_stride(bound, bounds);
1947 bound->size = NULL;
1948 bound->lb = NULL;
1950 size.bound = bound;
1951 size.pos = isl_basic_map_dim(bounds, isl_dim_in);
1952 size.bset = isl_basic_map_wrap(bounds);
1953 size.bset = isl_basic_set_flatten(size.bset);
1954 size.bset = isl_set_simple_hull(isl_basic_set_compute_divs(size.bset));
1955 isl_basic_set_foreach_constraint(size.bset, &compute_size_in_direction,
1956 &size);
1957 isl_basic_set_free(size.bset);
1959 return bound->size ? 0 : -1;
1962 /* Check if we can find a memory tile for the given array
1963 * based on the given accesses, and if so, put the results in "tile".
1965 * We project the accesses on each index in turn and look for a parametric
1966 * offset such that the size is constant.
1968 static int can_tile(__isl_keep isl_map *access, struct gpu_array_tile *tile)
1970 int i;
1972 for (i = 0; i < tile->n; ++i) {
1973 isl_map *access_i;
1974 isl_basic_map *hull;
1976 access_i = isl_map_copy(access);
1977 access_i = isl_map_project_out(access_i, isl_dim_out, 0, i);
1978 access_i = isl_map_project_out(access_i, isl_dim_out,
1979 1, tile->n - (i + 1));
1980 access_i = isl_map_compute_divs(access_i);
1981 hull = isl_map_simple_hull(access_i);
1982 if (compute_array_dim_size(&tile->bound[i], hull) < 0)
1983 return 0;
1986 return 1;
1989 /* Construct a map with input the shared tile loops and the loops that
1990 * will be wrapped around the threads that relates these later loops
1991 * to the thread indices and then projects them out.
1993 static __isl_give isl_map *compute_privatization(struct gpu_gen *gen)
1995 isl_map *priv;
1996 isl_map *tiling;
1997 isl_map *proj;
1998 isl_set *par;
1999 isl_space *dim;
2001 dim = isl_union_map_get_space(gen->shared_sched);
2003 if (gen->options->wrap)
2004 tiling = wrap(isl_space_copy(dim), gen->shared_len + gen->n_block,
2005 gen->shared_len, gen->n_block, gen->block_dim);
2006 else
2007 tiling = tile(isl_space_copy(dim), gen->shared_len + gen->n_block,
2008 gen->shared_len, gen->n_block, gen->block_dim);
2010 priv = tiling;
2012 par = parametrization(dim, gen->shared_len + 2 * gen->n_block,
2013 gen->tile_first + gen->tile_len + gen->n_grid + gen->n_block,
2014 gen->n_block, "t");
2016 priv = isl_map_align_params(priv, isl_set_get_space(par));
2017 priv = isl_map_intersect_range(priv, par);
2019 dim = isl_map_get_space(priv);
2020 dim = isl_space_drop_dims(dim, isl_dim_in, 0, isl_space_dim(dim, isl_dim_in));
2021 dim = isl_space_drop_dims(dim, isl_dim_out, 0, isl_space_dim(dim, isl_dim_out));
2022 proj = projection(dim, gen->shared_len + 2 * gen->n_block,
2023 gen->shared_len);
2025 priv = isl_map_apply_range(priv, proj);
2027 return priv;
2030 /* Construct a map from domain_dim to domain_dim that increments
2031 * the dimension at position "pos" and leaves all other dimensions
2032 * constant.
2034 static __isl_give isl_map *next(__isl_take isl_space *domain_dim, int pos)
2036 int i;
2037 int len = isl_space_dim(domain_dim, isl_dim_set);
2038 isl_space *dim;
2039 isl_basic_map *next;
2040 isl_local_space *ls;
2042 dim = isl_space_map_from_set(domain_dim);
2043 next = isl_basic_map_universe(isl_space_copy(dim));
2044 ls = isl_local_space_from_space(dim);
2046 for (i = 0; i < len; ++i) {
2047 isl_constraint *c;
2049 c = isl_equality_alloc(isl_local_space_copy(ls));
2050 c = isl_constraint_set_coefficient_si(c, isl_dim_in, i, 1);
2051 c = isl_constraint_set_coefficient_si(c, isl_dim_out, i, -1);
2052 if (i == pos)
2053 c = isl_constraint_set_constant_si(c, 1);
2054 next = isl_basic_map_add_constraint(next, c);
2057 isl_local_space_free(ls);
2059 return isl_map_from_basic_map(next);
2062 /* Check if the given access is coalesced.
2063 * That is, check whether incrementing the dimension that will get
2064 * wrapped over the last thread index results in incrementing
2065 * the last array index.
2067 * This function is only called for access relations without reuse.
2069 static int access_is_coalesced(struct gpu_gen *gen,
2070 __isl_keep isl_union_map *access)
2072 isl_space *dim;
2073 isl_map *access_map;
2074 isl_map *next_thread_x;
2075 isl_map *next_element;
2076 isl_map *map;
2077 int coalesced;
2079 access = isl_union_map_copy(access);
2080 access = isl_union_map_apply_domain(access,
2081 isl_union_map_copy(gen->tiled_sched));
2082 access_map = isl_map_from_union_map(access);
2084 dim = isl_map_get_space(access_map);
2085 dim = isl_space_domain(dim);
2086 next_thread_x = next(dim, gen->shared_len + gen->n_block - 1);
2088 dim = isl_map_get_space(access_map);
2089 dim = isl_space_range(dim);
2090 next_element = next(dim, isl_space_dim(dim, isl_dim_set) - 1);
2092 map = isl_map_apply_domain(next_thread_x, isl_map_copy(access_map));
2093 map = isl_map_apply_range(map, access_map);
2095 coalesced = isl_map_is_subset(map, next_element);
2097 isl_map_free(next_element);
2098 isl_map_free(map);
2100 return coalesced;
2103 /* Given an access relation in terms of the first gen->shared_len + gen->n_block
2104 * dimensions of the computed schedule, check if it is bijective for
2105 * fixed values of the first gen->shared_len dimensions.
2106 * We perform this check by equating these dimensions to parameters.
2108 static int access_is_bijective(struct gpu_gen *gen, __isl_keep isl_map *access)
2110 int res;
2111 isl_set *par;
2112 isl_space *space;
2114 access = isl_map_copy(access);
2115 space = isl_space_params(isl_map_get_space(access));
2116 par = parametrization(space, gen->shared_len + gen->n_block,
2117 0, gen->shared_len, "s");
2118 access = isl_map_intersect_domain(access, par);
2119 res = isl_map_is_bijective(access);
2120 isl_map_free(access);
2122 return res;
2125 /* Look for the last shared tile loop that affects the offset of "tile"
2126 * and return the result.
2127 * If there is no such loop, then return the index of the loop
2128 * before the first shared tile loop, in particular gen->tile_first - 1.
2130 static int compute_tile_last_shared(struct gpu_gen *gen,
2131 struct gpu_array_tile *tile)
2133 int i, j;
2135 for (j = gen->shared_len - 1; j >= gen->tile_first; --j) {
2136 for (i = 0; i < tile->n; ++i) {
2137 isl_aff *lb;
2138 isl_aff *shift;
2140 lb = tile->bound[i].lb;
2141 if (isl_aff_involves_dims(lb, isl_dim_in, j, 1))
2142 break;
2144 shift = tile->bound[i].shift;
2145 if (!shift)
2146 continue;
2147 if (isl_aff_involves_dims(shift, isl_dim_in, j, 1))
2148 break;
2150 if (i < tile->n)
2151 break;
2154 return j;
2157 /* Look for the last shared tile loop that affects the offset of the
2158 * shared or private tile and store the result in group->last_shared.
2159 * If there is no such loop, then group->last_shared is set to a value
2160 * before the first shared tile loop, in particular gen->tile_first - 1.
2161 * If there is no tile defined on the array reference group,
2162 * then set group->last_shared to gen->shared_len - 1.
2164 static void set_last_shared(struct gpu_gen *gen,
2165 struct gpu_array_ref_group *group)
2167 struct gpu_array_tile *tile;
2169 group->last_shared = gen->shared_len - 1;
2171 tile = group->private_tile;
2172 if (!tile)
2173 tile = group->shared_tile;
2174 if (!tile)
2175 return;
2177 group->last_shared = compute_tile_last_shared(gen, tile);
2180 /* Compute a privatized copy of all access relations from reference groups that
2181 * are mapped to private memory and store the result in gen->privatization.
2183 * Read-only scalars and arrays containing structures are not mapped
2184 * to private memory.
2186 static void compute_private_access(struct gpu_gen *gen)
2188 int i, j;
2189 isl_union_map *private;
2191 if (!gen->options->use_private_memory)
2192 return;
2194 private = isl_union_map_empty(isl_union_map_get_space(gen->shared_sched));
2196 for (i = 0; i < gen->prog->n_array; ++i) {
2197 struct gpu_array_info *array = &gen->prog->array[i];
2199 if (gpu_array_is_read_only_scalar(array))
2200 continue;
2201 if (array->has_compound_element)
2202 continue;
2204 for (j = 0; j < array->n_group; ++j) {
2205 if (!array->groups[j]->private_tile)
2206 continue;
2208 private = isl_union_map_union(private,
2209 group_access_relation(array->groups[j], 1, 1));
2213 if (isl_union_map_is_empty(private))
2214 isl_union_map_free(private);
2215 else {
2216 isl_union_map *priv;
2218 private = isl_union_map_apply_domain(private,
2219 isl_union_map_copy(gen->shared_sched));
2220 priv = isl_union_map_from_map(isl_map_copy(gen->privatization));
2221 private = isl_union_map_apply_domain(private, priv);
2222 gen->private_access = private;
2226 /* Compute the size of the tile specified by "tile"
2227 * in number of elements and return the result.
2229 static __isl_give isl_val *tile_size(isl_ctx *ctx, struct gpu_array_tile *tile)
2231 int i;
2232 isl_val *size;
2234 size = isl_val_one(ctx);
2236 for (i = 0; i < tile->n; ++i)
2237 size = isl_val_mul(size, isl_val_copy(tile->bound[i].size));
2239 return size;
2242 /* If max_shared_memory is not set to infinity (-1), then make
2243 * sure that the total amount of shared memory required by the
2244 * array reference groups mapped to shared memory is no larger
2245 * than this maximum.
2247 * We apply a greedy approach and discard (keep in global memory)
2248 * those groups that would result in a total memory size that
2249 * is larger than the maximum.
2251 static void check_shared_memory_bound(struct gpu_gen *gen)
2253 int i, j;
2254 isl_val *left, *size;
2256 if (gen->options->max_shared_memory < 0)
2257 return;
2259 left = isl_val_int_from_si(gen->ctx, gen->options->max_shared_memory);
2261 for (i = 0; i < gen->prog->n_array; ++i) {
2262 struct gpu_array_info *array = &gen->prog->array[i];
2264 for (j = 0; j < array->n_group; ++j) {
2265 struct gpu_array_ref_group *group;
2267 group = array->groups[j];
2268 if (group->private_tile)
2269 continue;
2270 if (!group->shared_tile)
2271 continue;
2273 size = tile_size(gen->ctx, group->shared_tile);
2274 size = isl_val_mul_ui(size, array->size);
2276 if (isl_val_le(size, left)) {
2277 left = isl_val_sub(left, size);
2278 continue;
2280 isl_val_free(size);
2282 group->shared_tile = free_tile(group->shared_tile);
2286 isl_val_free(left);
2289 /* Given a description of an array tile "tile" and the "space"
2291 * { D -> A }
2293 * where D represents the first shared_len schedule dimensions
2294 * and A represents the array, construct an isl_multi_aff
2296 * { [D[i] -> A[a]] -> A'[a'] }
2298 * with A' a scaled down copy of A according to the shifts and strides
2299 * in "tile". In particular,
2301 * a' = (a + shift(i))/stride
2303 * "insert_array" represents
2305 * { [D -> A] -> D }
2307 * and is used to insert A into the domain of functions that only
2308 * reference D.
2310 static __isl_give isl_multi_aff *strided_tile(
2311 struct gpu_array_tile *tile, __isl_keep isl_space *space,
2312 __isl_keep isl_multi_aff *insert_array)
2314 int i;
2315 isl_ctx *ctx;
2316 isl_multi_aff *shift;
2317 isl_multi_val *stride;
2318 isl_space *space2;
2319 isl_local_space *ls;
2320 isl_multi_aff *tiling;
2322 ctx = isl_space_get_ctx(space);
2323 space2 = isl_space_domain(isl_space_copy(space));
2324 ls = isl_local_space_from_space(space2);
2325 space2 = isl_space_range(isl_space_copy(space));
2326 stride = isl_multi_val_zero(space2);
2327 shift = isl_multi_aff_zero(isl_space_copy(space));
2329 for (i = 0; i < tile->n; ++i) {
2330 struct gpu_array_bound *bound = &tile->bound[i];
2331 isl_val *stride_i;
2332 isl_aff *shift_i;
2334 if (tile->bound[i].shift) {
2335 stride_i = isl_val_copy(bound->stride);
2336 shift_i = isl_aff_copy(bound->shift);
2337 } else {
2338 stride_i = isl_val_one(ctx);
2339 shift_i = isl_aff_zero_on_domain(
2340 isl_local_space_copy(ls));
2343 stride = isl_multi_val_set_val(stride, i, stride_i);
2344 shift = isl_multi_aff_set_aff(shift, i, shift_i);
2346 isl_local_space_free(ls);
2348 shift = isl_multi_aff_pullback_multi_aff(shift,
2349 isl_multi_aff_copy(insert_array));
2351 tiling = isl_multi_aff_range_map(isl_space_copy(space));
2352 tiling = isl_multi_aff_add(tiling, shift);
2353 tiling = isl_multi_aff_scale_down_multi_val(tiling, stride);
2355 return tiling;
2358 /* Compute a tiling for the array reference group "group".
2360 * The tiling is of the form
2362 * { [D[i] -> A[a]] -> T[t] }
2364 * where D represents the first shared_len schedule dimensions,
2365 * A represents the global array and T represents the shared or
2366 * private memory tile. The name of T is the name of the local
2367 * array.
2369 * If there is any stride in the accesses, then the mapping is
2371 * t = (a + shift(i))/stride - lb(i)
2373 * otherwise, it is simply
2375 * t = a - lb(i)
2377 static void compute_group_tiling(struct gpu_array_ref_group *group)
2379 int i;
2380 struct gpu_array_tile *tile;
2381 struct gpu_array_info *array = group->array;
2382 isl_space *space;
2383 isl_multi_aff *tiling, *lb, *insert_array;
2384 isl_printer *p;
2385 char *local_name;
2387 tile = group->private_tile;
2388 if (!tile)
2389 tile = group->shared_tile;
2390 if (!tile)
2391 return;
2393 space = isl_map_get_space(group->access);
2394 insert_array = isl_multi_aff_domain_map(isl_space_copy(space));
2396 for (i = 0; i < tile->n; ++i)
2397 if (tile->bound[i].shift)
2398 break;
2400 if (i < tile->n)
2401 tiling = strided_tile(tile, space, insert_array);
2402 else
2403 tiling = isl_multi_aff_range_map(isl_space_copy(space));
2405 lb = isl_multi_aff_zero(space);
2406 for (i = 0; i < tile->n; ++i) {
2407 isl_aff *lb_i = isl_aff_copy(tile->bound[i].lb);
2408 lb = isl_multi_aff_set_aff(lb, i, lb_i);
2410 lb = isl_multi_aff_pullback_multi_aff(lb, insert_array);
2412 tiling = isl_multi_aff_sub(tiling, lb);
2414 p = isl_printer_to_str(isl_multi_aff_get_ctx(tiling));
2415 p = print_array_name(p, group);
2416 local_name = isl_printer_get_str(p);
2417 isl_printer_free(p);
2418 tiling = isl_multi_aff_set_tuple_name(tiling, isl_dim_out, local_name);
2419 free(local_name);
2421 tile->tiling = tiling;
2424 /* Compute a tiling for all the array reference groups.
2426 static void compute_group_tilings(struct gpu_gen *gen)
2428 int i, j;
2430 for (i = 0; i < gen->prog->n_array; ++i) {
2431 struct gpu_array_info *array = &gen->prog->array[i];
2433 for (j = 0; j < array->n_group; ++j)
2434 compute_group_tiling(array->groups[j]);
2438 /* Fill up the groups array with singleton groups, i.e., one group
2439 * per reference, initializing the array, access, write, n_ref and refs fields.
2440 * In particular the access field is initialized to the scheduled
2441 * access relation of the array reference.
2443 * Return the number of elements initialized, i.e., the number of
2444 * active references in the current kernel.
2446 static int populate_array_references(struct gpu_array_info *array,
2447 __isl_keep isl_union_map *sched, struct gpu_array_ref_group **groups)
2449 int i;
2450 int n;
2451 isl_ctx *ctx = isl_union_map_get_ctx(sched);
2453 n = 0;
2454 for (i = 0; i < array->n_ref; ++i) {
2455 isl_union_map *umap;
2456 isl_map *map;
2457 struct gpu_array_ref_group *group;
2458 struct gpu_stmt_access *access = array->refs[i];
2460 map = isl_map_copy(access->access);
2461 umap = isl_union_map_from_map(map);
2462 umap = isl_union_map_apply_domain(umap,
2463 isl_union_map_copy(sched));
2465 if (isl_union_map_is_empty(umap)) {
2466 isl_union_map_free(umap);
2467 continue;
2470 map = isl_map_from_union_map(umap);
2471 map = isl_map_detect_equalities(map);
2473 group = isl_calloc_type(ctx, struct gpu_array_ref_group);
2474 assert(group);
2475 group->array = array;
2476 group->access = map;
2477 group->write = access->write;
2478 group->exact_write = access->exact_write;
2479 group->refs = &array->refs[i];
2480 group->n_ref = 1;
2482 groups[n++] = group;
2485 return n;
2488 /* If group->n_ref == 1, then group->refs was set by
2489 * populate_array_references to point directly into
2490 * group->array->refs and should not be freed.
2491 * If group->n_ref > 1, then group->refs was set by join_groups
2492 * to point to a newly allocated array.
2494 static void free_array_ref_group(struct gpu_array_ref_group *group)
2496 if (!group)
2497 return;
2498 free_tile(group->shared_tile);
2499 free_tile(group->private_tile);
2500 isl_map_free(group->access);
2501 if (group->n_ref > 1)
2502 free(group->refs);
2503 free(group);
2506 /* Given a map where the input dimensions represent the tile loops,
2507 * eliminate the innermost of those that have a fixed value
2508 * until we reach one that does not (obviously) have a fixed value.
2510 static __isl_give isl_map *eliminate_fixed_inner_loops(
2511 __isl_take isl_map *access)
2513 int i, n;
2515 n = isl_map_dim(access, isl_dim_in);
2517 for (i = n - 1; i >= 0; --i) {
2518 if (!map_plain_is_fixed(access, isl_dim_in, i))
2519 break;
2520 access = isl_map_eliminate(access, isl_dim_in, i, 1);
2522 return access;
2525 /* Check if the access relations of group1 and group2 overlap within
2526 * the innermost loop. In particular, ignore any inner dimension
2527 * with a fixed value.
2528 * The copying to and from shared memory will be performed within
2529 * the innermost actual loop so we are only allowed to consider
2530 * the dimensions up to that innermost loop while checking whether
2531 * two access relations overlap.
2533 static int accesses_overlap(struct gpu_array_ref_group *group1,
2534 struct gpu_array_ref_group *group2)
2536 int empty;
2537 isl_map *access1, *access2;
2539 access1 = isl_map_copy(group1->access);
2540 access1 = eliminate_fixed_inner_loops(access1);
2541 access2 = isl_map_copy(group2->access);
2542 access2 = eliminate_fixed_inner_loops(access2);
2543 access1 = isl_map_intersect(access1, access2);
2544 empty = isl_map_is_empty(access1);
2545 isl_map_free(access1);
2547 return !empty;
2550 /* Combine the given two groups into a single group, containing
2551 * the references of both groups.
2553 static struct gpu_array_ref_group *join_groups(
2554 struct gpu_array_ref_group *group1,
2555 struct gpu_array_ref_group *group2)
2557 int i;
2558 isl_ctx *ctx;
2559 struct gpu_array_ref_group *group;
2561 ctx = isl_map_get_ctx(group1->access);
2562 group = isl_calloc_type(ctx, struct gpu_array_ref_group);
2563 assert(group);
2564 group->array = group1->array;
2565 group->access = isl_map_union(isl_map_copy(group1->access),
2566 isl_map_copy(group2->access));
2567 group->write = group1->write || group2->write;
2568 group->exact_write = group1->exact_write && group2->exact_write;
2569 group->n_ref = group1->n_ref + group2->n_ref;
2570 group->refs = isl_alloc_array(ctx, struct gpu_stmt_access *,
2571 group->n_ref);
2572 assert(group->refs);
2573 for (i = 0; i < group1->n_ref; ++i)
2574 group->refs[i] = group1->refs[i];
2575 for (i = 0; i < group2->n_ref; ++i)
2576 group->refs[group1->n_ref + i] = group2->refs[i];
2578 return group;
2581 /* Combine the given two groups into a single group and free
2582 * the original two groups.
2584 static struct gpu_array_ref_group *join_groups_and_free(
2585 struct gpu_array_ref_group *group1,
2586 struct gpu_array_ref_group *group2)
2588 struct gpu_array_ref_group *group;
2590 group = join_groups(group1, group2);
2591 free_array_ref_group(group1);
2592 free_array_ref_group(group2);
2593 return group;
2596 /* Compute the private and/or shared memory tiles for the array
2597 * reference group "group" of array "array".
2599 * If the array is a read-only scalar or if the user requested
2600 * not to use shared or private memory, then we do not need to do anything.
2602 * If the array group involves any may writes (that are not must writes),
2603 * then we would have to make sure that we load the data into shared/private
2604 * memory first in case the data is not written by the kernel
2605 * (but still written back out to global memory).
2606 * Since we don't have any such mechanism at the moment, we don't
2607 * compute shared/private tiles for groups involving may writes.
2609 * We only try to compute a shared memory tile if there is any reuse
2610 * or if the access is not coalesced.
2612 * For computing a private memory tile, we also require that there is
2613 * some reuse. Moreover, we require that the access is private
2614 * to the thread. That is, we check that any given array element
2615 * is only accessed by a single thread.
2616 * We compute an access relation that maps the shared tile loop iterators
2617 * and the shared point loop iterators that will be wrapped over the
2618 * threads to the array elements.
2619 * We actually check that those iterators that will be wrapped
2620 * partition the array space. This check is stricter than necessary
2621 * since several iterations may be mapped onto the same thread
2622 * and then they could be allowed to access the same memory elements,
2623 * but our check does not allow this situation.
2625 * We also check that the index expression only depends on parallel
2626 * loops. That way, we can move those loops innermost and unroll them.
2627 * Again, we use a test that is stricter than necessary.
2628 * We actually check whether the index expression only depends
2629 * on the iterators that are wrapped over the threads.
2630 * These are necessarily parallel, but there may be more parallel loops.
2632 * Combining the injectivity of the first test with the single-valuedness
2633 * of the second test, we simply test for bijectivity.
2635 * If it turns out we can use registers, we compute the private memory
2636 * tile size using can_tile, after introducing a dependence
2637 * on the thread indices.
2639 static void compute_group_bounds_core(struct gpu_gen *gen,
2640 struct gpu_array_ref_group *group)
2642 isl_ctx *ctx = isl_space_get_ctx(group->array->space);
2643 isl_union_map *access;
2644 int n_index = group->array->n_index;
2645 int no_reuse;
2646 isl_map *acc;
2647 int use_shared = gen->options->use_shared_memory;
2648 int use_private = gen->options->use_private_memory;
2650 if (!use_shared && !use_private)
2651 return;
2652 if (gpu_array_is_read_only_scalar(group->array))
2653 return;
2654 if (!group->exact_write)
2655 return;
2657 access = group_access_relation(group, 1, 1);
2658 no_reuse = isl_union_map_is_injective(access);
2660 if (use_shared && (!no_reuse || !access_is_coalesced(gen, access))) {
2661 group->shared_tile = create_tile(ctx, group->array->n_index);
2662 if (!can_tile(group->access, group->shared_tile))
2663 group->shared_tile = free_tile(group->shared_tile);
2666 if (!use_private || no_reuse) {
2667 isl_union_map_free(access);
2668 return;
2671 access = isl_union_map_apply_domain(access,
2672 isl_union_map_copy(gen->shared_sched));
2674 acc = isl_map_from_union_map(access);
2676 if (!access_is_bijective(gen, acc)) {
2677 isl_map_free(acc);
2678 return;
2681 group->private_tile = create_tile(gen->ctx, n_index);
2682 acc = isl_map_apply_domain(acc, isl_map_copy(gen->privatization));
2683 if (!can_tile(acc, group->private_tile))
2684 group->private_tile = free_tile(group->private_tile);
2686 isl_map_free(acc);
2689 /* Compute the private and/or shared memory tiles for the array
2690 * reference group "group" of array "array" and set last_shared.
2692 static void compute_group_bounds(struct gpu_gen *gen,
2693 struct gpu_array_ref_group *group)
2695 compute_group_bounds_core(gen, group);
2696 set_last_shared(gen, group);
2699 /* If two groups have overlapping access relations (as determined by
2700 * the "overlap" function) and if one of them involves a write,
2701 * then merge the two groups into one.
2702 * If "compute_bounds" is set, then call compute_group_bounds
2703 * on the merged groups.
2705 * Return the updated number of groups.
2707 static int group_writes(struct gpu_gen *gen,
2708 int n, struct gpu_array_ref_group **groups,
2709 int (*overlap)(struct gpu_array_ref_group *group1,
2710 struct gpu_array_ref_group *group2), int compute_bounds)
2712 int i, j;
2714 for (i = 0; i < n; ++i) {
2715 for (j = n - 1; j > i; --j) {
2716 if (!groups[i]->write && !groups[j]->write)
2717 continue;
2719 if (!overlap(groups[i], groups[j]))
2720 continue;
2722 groups[i] = join_groups_and_free(groups[i], groups[j]);
2723 if (compute_bounds)
2724 compute_group_bounds(gen, groups[i]);
2725 if (j != n - 1)
2726 groups[j] = groups[n - 1];
2727 n--;
2731 return n;
2734 /* If two groups have overlapping access relations (within the innermost
2735 * loop) and if one of them involves a write, then merge the two groups
2736 * into one.
2738 * Return the updated number of groups.
2740 static int group_overlapping_writes(struct gpu_gen *gen,
2741 int n, struct gpu_array_ref_group **groups)
2743 return group_writes(gen, n, groups, &accesses_overlap, 0);
2746 /* Check if the access relations of group1 and group2 overlap within
2747 * the outermost min(group1->last_shared, group2->last_shared) loops.
2749 static int last_shared_accesses_overlap(struct gpu_array_ref_group *group1,
2750 struct gpu_array_ref_group *group2)
2752 int last_shared;
2753 int dim;
2754 int empty;
2755 isl_map *map_i, *map_j, *map;
2757 last_shared = group1->last_shared;
2758 if (group2->last_shared < last_shared)
2759 last_shared = group2->last_shared;
2760 map_i = isl_map_copy(group1->access);
2761 dim = isl_map_dim(map_i, isl_dim_in);
2762 map_i = isl_map_eliminate(map_i, isl_dim_in,
2763 last_shared + 1, dim - (last_shared + 1));
2764 map_j = isl_map_copy(group2->access);
2765 map_j = isl_map_eliminate(map_j, isl_dim_in,
2766 last_shared + 1, dim - (last_shared + 1));
2767 map = isl_map_intersect(map_i, map_j);
2768 empty = isl_map_is_empty(map);
2769 isl_map_free(map);
2771 return !empty;
2774 /* If two groups have overlapping access relations (within the outer
2775 * last_shared loops) and if one of them involves a write,
2776 * then merge the two groups into one.
2778 * Return the updated number of groups.
2780 static int group_last_shared_overlapping_writes(struct gpu_gen *gen, int n,
2781 struct gpu_array_ref_group **groups)
2783 return group_writes(gen, n, groups, &last_shared_accesses_overlap, 1);
2786 /* Is the size of the tile specified by "tile" smaller than the sum of
2787 * the sizes of the tiles specified by "tile1" and "tile2"?
2789 static int smaller_tile(isl_ctx *ctx, struct gpu_array_tile *tile,
2790 struct gpu_array_tile *tile1, struct gpu_array_tile *tile2)
2792 int smaller;
2793 isl_val *size, *size1, *size2;
2795 size = tile_size(ctx, tile);
2796 size1 = tile_size(ctx, tile1);
2797 size2 = tile_size(ctx, tile2);
2799 size = isl_val_sub(size, size1);
2800 size = isl_val_sub(size, size2);
2801 smaller = isl_val_is_neg(size);
2803 isl_val_free(size);
2805 return smaller;
2808 /* Given an initial grouping of array references and shared memory tiles
2809 * for each group that allows for a shared memory tile, merge two groups
2810 * if both have a shared memory tile, the merged group also has
2811 * a shared memory tile and the size of the tile for the merge group
2812 * is smaller than the sum of the tile sizes of the individual groups.
2814 * If merging two groups decreases the "last_shared" dimension of
2815 * one or both of the two groups, then we need to check for overlapping
2816 * writes again.
2818 * Return the number of groups after merging.
2820 static int group_common_shared_memory_tile(struct gpu_gen *gen,
2821 struct gpu_array_info *array, int n,
2822 struct gpu_array_ref_group **groups)
2824 int i, j;
2825 int recompute_overlap = 0;
2826 isl_ctx *ctx = isl_space_get_ctx(array->space);
2828 for (i = 0; i < n; ++i) {
2829 if (!groups[i]->shared_tile)
2830 continue;
2831 for (j = n - 1; j > i; --j) {
2832 isl_map *map;
2833 int empty;
2834 struct gpu_array_ref_group *group;
2836 if (!groups[j]->shared_tile)
2837 continue;
2839 map = isl_map_intersect(isl_map_copy(groups[i]->access),
2840 isl_map_copy(groups[j]->access));
2841 empty = isl_map_is_empty(map);
2842 isl_map_free(map);
2844 if (empty)
2845 continue;
2847 group = join_groups(groups[i], groups[j]);
2848 compute_group_bounds(gen, group);
2849 if (!group->shared_tile ||
2850 !smaller_tile(ctx, group->shared_tile,
2851 groups[i]->shared_tile,
2852 groups[j]->shared_tile)) {
2853 free_array_ref_group(group);
2854 continue;
2857 if (group->last_shared < groups[i]->last_shared ||
2858 group->last_shared < groups[j]->last_shared)
2859 recompute_overlap = 1;
2860 free_array_ref_group(groups[i]);
2861 free_array_ref_group(groups[j]);
2862 groups[i] = group;
2863 if (j != n - 1)
2864 groups[j] = groups[n - 1];
2865 n--;
2869 if (recompute_overlap)
2870 n = group_last_shared_overlapping_writes(gen, n, groups);
2871 return n;
2874 /* Set array->n_group and array->groups to n and groups.
2876 * Additionally, set the "nr" field of each group
2877 * and the "group" field of each reference in each group.
2879 static void set_array_groups(struct gpu_array_info *array,
2880 int n, struct gpu_array_ref_group **groups)
2882 int i, j;
2884 array->n_group = n;
2885 array->groups = groups;
2887 for (i = 0; i < n; ++i) {
2888 groups[i]->nr = i;
2890 for (j = 0; j < groups[i]->n_ref; ++j)
2891 groups[i]->refs[j]->group = i;
2895 /* Group array references that should be considered together when
2896 * deciding whether to access them from private, shared or global memory.
2897 * Return -1 on error.
2899 * In particular, if two array references overlap and if one of them
2900 * is a write, then the two references are grouped together.
2901 * We first perform an initial grouping based only on the access relation.
2902 * After computing shared and private memory tiles, we check for
2903 * overlapping writes again, but this time taking into account
2904 * the "last_shared" property.
2906 * Furthermore, if two groups admit a shared memory tile and if the
2907 * combination of the two also admits a shared memory tile, we merge
2908 * the two groups.
2910 * If the array contains structures, then there is no need to compute
2911 * reference groups since we do not map such arrays to private or shared
2912 * memory.
2914 static int group_array_references(struct gpu_gen *gen,
2915 struct gpu_array_info *array, __isl_keep isl_union_map *sched)
2917 int i;
2918 int n;
2919 isl_ctx *ctx = isl_union_map_get_ctx(sched);
2920 struct gpu_array_ref_group **groups;
2922 if (array->has_compound_element)
2923 return 0;
2925 groups = isl_calloc_array(ctx, struct gpu_array_ref_group *,
2926 array->n_ref);
2927 if (!groups)
2928 return -1;
2930 n = populate_array_references(array, sched, groups);
2932 n = group_overlapping_writes(gen, n, groups);
2934 for (i = 0; i < n; ++i)
2935 compute_group_bounds(gen, groups[i]);
2937 n = group_last_shared_overlapping_writes(gen, n, groups);
2939 n = group_common_shared_memory_tile(gen, array, n, groups);
2941 set_array_groups(array, n, groups);
2943 return 0;
2946 /* Take tiled_sched, project it onto the shared tile loops and
2947 * the loops that will be wrapped over the threads and
2948 * store the result in gen->shared_sched.
2949 * Also compute a projection that projects out the loops that will be
2950 * wrapped over the threads and store this projection in gen->shared_proj.
2952 static void compute_shared_sched(struct gpu_gen *gen)
2954 isl_space *dim;
2955 isl_map *proj;
2956 isl_set *par;
2957 isl_union_map *sched;
2959 sched = isl_union_map_copy(gen->tiled_sched);
2961 dim = isl_union_map_get_space(sched);
2962 proj = projection(dim, gen->tiled_len, gen->shared_len + gen->n_block);
2963 sched = isl_union_map_apply_range(sched, isl_union_map_from_map(proj));
2965 dim = isl_union_map_get_space(sched);
2966 proj = projection(dim, gen->shared_len + gen->n_block, gen->shared_len);
2968 gen->shared_sched = sched;
2969 gen->shared_proj = isl_union_map_from_map(proj);
2972 /* Group references of all arrays in the program.
2974 static int group_references(struct gpu_gen *gen)
2976 int i;
2977 int r = 0;
2978 isl_union_map *sched;
2980 sched = isl_union_map_apply_range(isl_union_map_copy(gen->shared_sched),
2981 isl_union_map_copy(gen->shared_proj));
2983 for (i = 0; i < gen->prog->n_array; ++i) {
2984 r = group_array_references(gen, &gen->prog->array[i], sched);
2985 if (r < 0)
2986 break;
2989 isl_union_map_free(sched);
2991 return r;
2994 /* Free all array information that is local to the current kernel.
2996 static void free_local_array_info(struct gpu_gen *gen)
2998 int i, j;
3000 for (i = 0; i < gen->prog->n_array; ++i) {
3001 struct gpu_array_info *array = &gen->prog->array[i];
3003 for (j = 0; j < array->n_group; ++j)
3004 free_array_ref_group(array->groups[j]);
3005 free(array->groups);
3009 /* Compute the size of a bounding box around the origin and "set",
3010 * where "set" is assumed to contain only non-negative elements.
3011 * In particular, compute the maximal value of "set" in each direction
3012 * and add one.
3014 static __isl_give isl_multi_pw_aff *extract_size(__isl_take isl_set *set,
3015 __isl_keep isl_set *context)
3017 int i, n;
3018 isl_multi_pw_aff *mpa;
3020 n = isl_set_dim(set, isl_dim_set);
3021 mpa = isl_multi_pw_aff_zero(isl_set_get_space(set));
3022 for (i = 0; i < n; ++i) {
3023 isl_space *space;
3024 isl_aff *one;
3025 isl_pw_aff *bound;
3027 bound = isl_set_dim_max(isl_set_copy(set), i);
3028 bound = isl_pw_aff_coalesce(bound);
3029 bound = isl_pw_aff_gist(bound, isl_set_copy(context));
3031 space = isl_pw_aff_get_domain_space(bound);
3032 one = isl_aff_zero_on_domain(isl_local_space_from_space(space));
3033 one = isl_aff_add_constant_si(one, 1);
3034 bound = isl_pw_aff_add(bound, isl_pw_aff_from_aff(one));
3035 mpa = isl_multi_pw_aff_set_pw_aff(mpa, i, bound);
3037 isl_set_free(set);
3039 return mpa;
3042 /* Compute the effective grid size as a list of the sizes in each dimension.
3044 * The grid size specified by the user or set by default
3045 * in read_grid_sizes() and applied in tile_schedule(),
3046 * may be too large for the given code in the sense that
3047 * it may contain blocks that don't need to execute anything.
3048 * We therefore don't return this grid size, but instead the
3049 * smallest grid size that ensures that all blocks that actually
3050 * execute code are included in the grid.
3052 * We first extract a description of the grid, i.e., the possible values
3053 * of the block ids, from gen->tiled_sched.
3054 * The block ids are parameters in gen->tiled_sched.
3055 * We simply need to change them into set dimensions.
3057 * Then, for each block dimension, we compute the maximal value of the block id
3058 * and add one.
3060 static __isl_give isl_multi_pw_aff *extract_grid_size(struct gpu_gen *gen,
3061 struct ppcg_kernel *kernel)
3063 int i;
3064 isl_set *grid;
3066 grid = isl_union_map_params(isl_union_map_copy(gen->tiled_sched));
3067 grid = isl_set_from_params(grid);
3068 grid = isl_set_add_dims(grid, isl_dim_set, gen->n_grid);
3069 for (i = 0; i < gen->n_grid; ++i) {
3070 int pos;
3071 char name[20];
3073 snprintf(name, sizeof(name), "b%d", i);
3074 pos = isl_set_find_dim_by_name(grid, isl_dim_param, name);
3075 assert(pos >= 0);
3076 grid = isl_set_equate(grid, isl_dim_param, pos, isl_dim_set, i);
3077 grid = isl_set_project_out(grid, isl_dim_param, pos, 1);
3080 return extract_size(grid, kernel->context);
3083 /* Compute the size of a fixed bounding box around the origin and "set",
3084 * where "set" is assumed to contain only non-negative elements,
3085 * and store the results in "size".
3086 * In particular, compute the maximal value of "set" in each direction
3087 * and add one.
3089 static void extract_fixed_size(__isl_take isl_set *set, int *size)
3091 int i, n;
3092 isl_local_space *ls;
3093 isl_aff *obj;
3095 n = isl_set_dim(set, isl_dim_set);
3096 ls = isl_local_space_from_space(isl_set_get_space(set));
3097 obj = isl_aff_zero_on_domain(ls);
3098 for (i = 0; i < n; ++i) {
3099 isl_val *max;
3101 obj = isl_aff_set_coefficient_si(obj, isl_dim_in, i, 1);
3102 max = isl_set_max_val(set, obj);
3103 size[i] = isl_val_get_num_si(max) + 1;
3104 isl_val_free(max);
3105 obj = isl_aff_set_coefficient_si(obj, isl_dim_in, i, 0);
3107 isl_aff_free(obj);
3108 isl_set_free(set);
3111 /* Compute the effective block size as a list of the sizes in each dimension
3112 * and store the sizes in kernel->block_dim.
3114 * The block size specified by the user or set by default
3115 * in read_block_sizes() and applied in thread_tile_schedule(),
3116 * may be too large for the given code in the sense that
3117 * it may contain threads that don't need to execute anything.
3118 * We therefore don't store this block size in kernel->block_dim,
3119 * but instead the smallest block size that ensures that all threads
3120 * that actually execute code are included in the block.
3122 * The current implementation eliminates all parameters, ensuring
3123 * that the size is a fixed constant in each dimension.
3124 * In principle we could also compute parametric sizes.
3125 * We would have to make sure to project out all b%d and t%d parameters,
3126 * however.
3128 static void extract_block_size(struct gpu_gen *gen, struct ppcg_kernel *kernel)
3130 int i;
3131 int nparam;
3132 isl_set *block;
3133 isl_multi_pw_aff *mpa;
3135 block = isl_union_map_params(isl_union_map_copy(gen->local_sched));
3136 block = isl_set_from_params(block);
3137 block = isl_set_add_dims(block, isl_dim_set, gen->n_block);
3138 kernel->n_block = gen->n_block;
3139 for (i = 0; i < gen->n_block; ++i) {
3140 int pos;
3141 char name[20];
3143 snprintf(name, sizeof(name), "t%d", i);
3144 pos = isl_set_find_dim_by_name(block, isl_dim_param, name);
3145 assert(pos >= 0);
3146 block = isl_set_equate(block, isl_dim_param, pos,
3147 isl_dim_set, i);
3149 nparam = isl_set_dim(block, isl_dim_param);
3150 block = isl_set_project_out(block, isl_dim_param, 0, nparam);
3152 extract_fixed_size(block, kernel->block_dim);
3155 void ppcg_kernel_free(void *user)
3157 struct ppcg_kernel *kernel = user;
3158 int i;
3160 if (!kernel)
3161 return;
3163 isl_multi_pw_aff_free(kernel->grid_size);
3164 isl_set_free(kernel->context);
3165 isl_union_set_free(kernel->arrays);
3166 isl_space_free(kernel->space);
3167 isl_ast_node_free(kernel->tree);
3169 for (i = 0; i < kernel->n_array; ++i)
3170 isl_pw_aff_list_free(kernel->array[i].bound);
3171 free(kernel->array);
3173 for (i = 0; i < kernel->n_var; ++i) {
3174 free(kernel->var[i].name);
3175 isl_vec_free(kernel->var[i].size);
3177 free(kernel->var);
3179 free(kernel);
3182 static void create_kernel_var(isl_ctx *ctx, struct gpu_array_ref_group *group,
3183 struct ppcg_kernel_var *var)
3185 int j;
3186 struct gpu_array_tile *tile;
3187 isl_printer *p;
3188 char *name;
3190 var->array = group->array;
3192 tile = group->private_tile;
3193 var->type = ppcg_access_private;
3194 if (!tile) {
3195 tile = group->shared_tile;
3196 var->type = ppcg_access_shared;
3199 p = isl_printer_to_str(ctx);
3200 p = print_array_name(p, group);
3201 var->name = isl_printer_get_str(p);
3202 isl_printer_free(p);
3204 var->size = isl_vec_alloc(ctx, group->array->n_index);
3206 for (j = 0; j < group->array->n_index; ++j)
3207 var->size = isl_vec_set_element_val(var->size, j,
3208 isl_val_copy(tile->bound[j].size));
3211 static void create_kernel_vars(struct gpu_gen *gen, struct ppcg_kernel *kernel)
3213 int i, j, n;
3215 n = 0;
3216 for (i = 0; i < gen->prog->n_array; ++i) {
3217 struct gpu_array_info *array = &gen->prog->array[i];
3219 for (j = 0; j < array->n_group; ++j) {
3220 struct gpu_array_ref_group *group = array->groups[j];
3221 if (group->private_tile || group->shared_tile)
3222 ++n;
3226 kernel->n_var = n;
3227 kernel->var = isl_calloc_array(gen->ctx, struct ppcg_kernel_var, n);
3228 assert(kernel->var);
3230 n = 0;
3231 for (i = 0; i < gen->prog->n_array; ++i) {
3232 struct gpu_array_info *array = &gen->prog->array[i];
3234 for (j = 0; j < array->n_group; ++j) {
3235 struct gpu_array_ref_group *group = array->groups[j];
3236 if (!group->private_tile && !group->shared_tile)
3237 continue;
3238 create_kernel_var(gen->ctx, group, &kernel->var[n]);
3239 ++n;
3244 /* The sizes of the arrays on the host that have been computed by
3245 * extract_array_info may depend on the parameters. Use the extra
3246 * constraints on the parameters that are valid at "host_domain"
3247 * to simplify these expressions and store the results in kernel->array.
3249 * We only need these localized bounds for arrays that are accessed
3250 * by the current kernel. If we have found at least one reference group
3251 * then the array is accessed by the kernel. If the array has compound
3252 * elements then we skipped the construction of array reference groups.
3254 static void localize_bounds(struct gpu_gen *gen, struct ppcg_kernel *kernel,
3255 __isl_keep isl_set *host_domain)
3257 int i, j;
3258 isl_set *context;
3260 kernel->array = isl_calloc_array(gen->ctx,
3261 struct gpu_local_array_info, gen->prog->n_array);
3262 assert(kernel->array);
3263 kernel->n_array = gen->prog->n_array;
3265 context = isl_set_copy(host_domain);
3266 context = isl_set_params(context);
3268 for (i = 0; i < gen->prog->n_array; ++i) {
3269 struct gpu_array_info *array = &gen->prog->array[i];
3270 isl_pw_aff_list *local;
3272 if (array->n_group == 0 && !array->has_compound_element)
3273 continue;
3275 local = isl_pw_aff_list_alloc(gen->ctx, array->n_index);
3277 for (j = 0; j < array->n_index; ++j) {
3278 isl_pw_aff *pwaff;
3280 pwaff = isl_pw_aff_copy(array->bound[j]);
3281 pwaff = isl_pw_aff_gist(pwaff, isl_set_copy(context));
3282 local = isl_pw_aff_list_add(local, pwaff);
3285 kernel->array[i].bound = local;
3287 isl_set_free(context);
3290 /* Find the element in gen->stmt that has the given "id".
3291 * Return NULL if no such gpu_stmt can be found.
3293 static struct gpu_stmt *find_stmt(struct gpu_prog *prog, __isl_keep isl_id *id)
3295 int i;
3297 for (i = 0; i < prog->n_stmts; ++i) {
3298 if (id == prog->stmts[i].id)
3299 break;
3302 return i < prog->n_stmts ? &prog->stmts[i] : NULL;
3305 /* Set gen->tile_len and gen->n_parallel to those of the statement
3306 * affected by the first map (part of the schedule)
3307 * on which this function is called.
3308 * Because of the way the schedule is constructed, the other statements
3309 * in the list, if any, should have the same values for these properties.
3311 static int extract_tile_len(__isl_take isl_map *map, void *user)
3313 struct gpu_gen *gen = (struct gpu_gen *) user;
3314 isl_id *id;
3315 struct gpu_stmt *stmt;
3317 id = isl_map_get_tuple_id(map, isl_dim_in);
3318 stmt = find_stmt(gen->prog, id);
3319 isl_id_free(id);
3321 isl_map_free(map);
3323 if (!stmt)
3324 isl_die(gen->ctx, isl_error_unknown,
3325 "statement not found", return -1);
3327 gen->tile_len = stmt->tile_len;
3328 gen->n_parallel = stmt->n_parallel;
3330 return -1;
3333 void ppcg_kernel_stmt_free(void *user)
3335 int i;
3336 struct ppcg_kernel_stmt *stmt = user;
3338 if (!stmt)
3339 return;
3341 switch (stmt->type) {
3342 case ppcg_kernel_copy:
3343 isl_ast_expr_free(stmt->u.c.index);
3344 isl_ast_expr_free(stmt->u.c.local_index);
3345 break;
3346 case ppcg_kernel_domain:
3347 isl_id_to_ast_expr_free(stmt->u.d.ref2expr);
3348 break;
3349 case ppcg_kernel_sync:
3350 break;
3353 free(stmt);
3356 /* Set the options of "context" to
3358 * { space -> [x] : x >= first }
3360 static __isl_give isl_ast_build *set_unroll(
3361 __isl_take isl_ast_build *build, __isl_take isl_space *space,
3362 int first)
3364 isl_ctx *ctx;
3365 isl_map *unroll;
3366 isl_union_map *opt;
3368 ctx = isl_ast_build_get_ctx(build);
3370 space = isl_space_from_domain(space);
3371 space = isl_space_add_dims(space, isl_dim_out, 1);
3372 space = isl_space_set_tuple_name(space, isl_dim_out, "unroll");
3373 unroll = isl_map_universe(space);
3374 unroll = isl_map_lower_bound_si(unroll, isl_dim_out, 0, first);
3375 opt = isl_union_map_from_map(unroll);
3377 build = isl_ast_build_set_options(build, opt);
3379 return build;
3382 /* Return a list of isl_ids of the form "prefix%d".
3384 static __isl_give isl_id_list *generate_names(isl_ctx *ctx,
3385 int n, const char *prefix)
3387 int i;
3388 char name[10];
3389 isl_id_list *names;
3391 names = isl_id_list_alloc(ctx, n);
3392 for (i = 0; i < n; ++i) {
3393 isl_id *id;
3395 snprintf(name, sizeof(name), "%s%d", prefix, i);
3396 id = isl_id_alloc(ctx, name, NULL);
3397 names = isl_id_list_add(names, id);
3400 return names;
3403 /* Extend the schedule "schedule" with the part of "extension"
3404 * starting at "first" up to "len".
3406 static __isl_give isl_union_map *extend_schedule(
3407 __isl_take isl_union_map *schedule,
3408 __isl_take isl_union_map *extension, int first, int len)
3410 isl_space *space;
3411 isl_map *proj;
3412 isl_union_map *umap;
3413 isl_set *set;
3415 space = isl_union_map_get_space(schedule);
3416 space = isl_space_set_from_params(space);
3417 space = isl_space_add_dims(space, isl_dim_set, len);
3418 proj = isl_set_identity(isl_set_universe(space));
3419 proj = isl_map_project_out(proj, isl_dim_out, 0, first);
3420 extension = isl_union_map_apply_range(extension,
3421 isl_union_map_from_map(proj));
3423 schedule = isl_union_map_range_product(schedule, extension);
3425 return schedule;
3428 /* Return the gpu_stmt_access in the list "accesses" that corresponds
3429 * to "ref_id".
3431 static struct gpu_stmt_access *find_access(struct gpu_stmt_access *accesses,
3432 __isl_keep isl_id *ref_id)
3434 struct gpu_stmt_access *access;
3436 for (access = accesses; access; access = access->next)
3437 if (access->ref_id == ref_id)
3438 return access;
3440 return NULL;
3443 /* Return the index of the array called "name" in the list of arrays.
3445 static int find_array_index(struct gpu_gen *gen, const char *name)
3447 int i;
3449 for (i = 0; i < gen->prog->n_array; ++i)
3450 if (!strcmp(name, gen->prog->array[i].name))
3451 return i;
3453 return -1;
3456 /* Internal data structure for the index and AST expression transformation
3457 * callbacks for pet_stmt_build_ast_exprs.
3459 * "accesses" is the list of gpu_stmt_access in the statement.
3460 * "iterator_map" expresses the statement iterators in terms of
3461 * the AST loop iterators.
3462 * "sched2shared" expresses the first shared_len dimensions of
3463 * the computed schedule in terms of the AST loop iterators.
3465 * The following fields are set in transform_index and used in transform_expr.
3466 * "array" is the array that is being accessed.
3467 * "global" is set if the global array is accessed (rather than
3468 * shared/private memory).
3469 * "local_array" refers to information on the array specialized
3470 * to the current kernel.
3472 struct ppcg_transform_data {
3473 struct gpu_gen *gen;
3474 struct gpu_stmt_access *accesses;
3475 isl_pw_multi_aff *iterator_map;
3476 isl_pw_multi_aff *sched2shared;
3478 struct gpu_array_info *array;
3479 int global;
3480 struct gpu_local_array_info *local_array;
3483 /* Return the name of the outer array (of structs) accessed by "access".
3485 static const char *get_outer_array_name(__isl_keep isl_map *access)
3487 isl_space *space;
3488 const char *name;
3490 space = isl_space_range(isl_map_get_space(access));
3491 while (space && isl_space_is_wrapping(space))
3492 space = isl_space_domain(isl_space_unwrap(space));
3493 name = isl_space_get_tuple_name(space, isl_dim_set);
3494 isl_space_free(space);
3496 return name;
3499 /* Index transformation callback for pet_stmt_build_ast_exprs.
3501 * "index" expresses the array indices in terms of statement iterators
3503 * We first reformulate "index" in terms of the AST loop iterators.
3504 * Then we check if we are accessing the global array or
3505 * a shared/private copy. In the former case, we simply return
3506 * the updated index. If "index" is an affine expression rather
3507 * than an array access, then we also return the updated index here.
3509 * If no reference groups have been computed for the array,
3510 * then we can only be accessing the global array.
3512 * Otherwise, we apply the tiling to the index.
3513 * This tiling is of the form
3515 * [D -> A] -> T
3517 * The index is of the form
3519 * L -> A
3521 * We update the tiling to refer to the AST loop iteratos
3523 * [L -> A] -> T
3525 * and modify index to keep track of those iterators
3527 * L -> [L -> A]
3529 * Combining these two yields a tiled index expression in terms
3530 * of the AST loop iterators
3532 * L -> T
3534 static __isl_give isl_multi_pw_aff *transform_index(
3535 __isl_take isl_multi_pw_aff *index, __isl_keep isl_id *ref_id,
3536 void *user)
3538 struct ppcg_transform_data *data = user;
3539 struct gpu_stmt_access *access;
3540 struct gpu_array_ref_group *group;
3541 struct gpu_array_tile *tile;
3542 isl_pw_multi_aff *iterator_map;
3543 int i;
3544 const char *name;
3545 isl_space *space;
3546 isl_multi_pw_aff *tiling;
3547 isl_pw_multi_aff *pma;
3548 isl_multi_pw_aff *mpa;
3550 data->array = NULL;
3552 iterator_map = isl_pw_multi_aff_copy(data->iterator_map);
3553 index = isl_multi_pw_aff_pullback_pw_multi_aff(index, iterator_map);
3555 access = find_access(data->accesses, ref_id);
3556 if (!access)
3557 return index;
3558 if (!isl_map_has_tuple_name(access->access, isl_dim_out))
3559 return index;
3561 name = get_outer_array_name(access->access);
3562 i = find_array_index(data->gen, name);
3563 if (i < 0)
3564 isl_die(isl_multi_pw_aff_get_ctx(index), isl_error_internal,
3565 "cannot find array",
3566 return isl_multi_pw_aff_free(index));
3567 data->array = &data->gen->prog->array[i];
3568 data->local_array = &data->gen->kernel->array[i];
3570 if (access->group < 0) {
3571 data->global = 1;
3572 return index;
3575 group = data->array->groups[access->group];
3576 tile = group->private_tile;
3577 if (!tile)
3578 tile = group->shared_tile;
3579 data->global = !tile;
3580 if (!tile)
3581 return index;
3583 space = isl_space_range(isl_multi_pw_aff_get_space(index));
3584 space = isl_space_map_from_set(space);
3585 pma = isl_pw_multi_aff_identity(space);
3586 pma = isl_pw_multi_aff_product(
3587 isl_pw_multi_aff_copy(data->sched2shared), pma);
3588 tiling = isl_multi_pw_aff_from_multi_aff(
3589 isl_multi_aff_copy(tile->tiling));
3590 tiling = isl_multi_pw_aff_pullback_pw_multi_aff(tiling, pma);
3592 space = isl_space_domain(isl_multi_pw_aff_get_space(index));
3593 space = isl_space_map_from_set(space);
3594 mpa = isl_multi_pw_aff_identity(space);
3595 index = isl_multi_pw_aff_range_product(mpa, index);
3596 index = isl_multi_pw_aff_pullback_multi_pw_aff(tiling, index);
3598 return index;
3601 /* Dereference "expr" by adding an index [0].
3602 * The original "expr" is assumed not to have any indices.
3604 * If "expr" is a member access, then the dereferencing needs
3605 * to be applied to the structure argument of this member access.
3607 static __isl_give isl_ast_expr *dereference(__isl_take isl_ast_expr *expr)
3609 isl_ctx *ctx;
3610 isl_ast_expr *res;
3611 isl_ast_expr_list *list;
3613 if (isl_ast_expr_get_op_type(expr) == isl_ast_op_member) {
3614 isl_ast_expr *arg;
3616 arg = isl_ast_expr_get_op_arg(expr, 0);
3617 arg = dereference(arg);
3618 expr = isl_ast_expr_set_op_arg(expr, 0, arg);
3620 return expr;
3623 ctx = isl_ast_expr_get_ctx(expr);
3624 res = isl_ast_expr_from_val(isl_val_zero(ctx));
3625 list = isl_ast_expr_list_from_ast_expr(res);
3626 res = isl_ast_expr_get_op_arg(expr, 0);
3627 res = isl_ast_expr_access(res, list);
3628 isl_ast_expr_free(expr);
3630 return res;
3633 /* Linearize the index expression "expr" based on the array bounds
3634 * of "array".
3636 * That is, transform expression
3638 * A[i_0][i_1]...[i_n]
3640 * to
3642 * A[(..((i_0 * b_1 + i_1) ... ) * b_n + i_n]
3644 * where b_0, b_1, ..., b_n are the bounds on the array.
3646 * If the base of "expr" is a member access, then the linearization needs
3647 * to be applied to the structure argument of this member access.
3649 __isl_give isl_ast_expr *gpu_local_array_info_linearize_index(
3650 struct gpu_local_array_info *array, __isl_take isl_ast_expr *expr)
3652 int i, n;
3653 isl_ctx *ctx;
3654 isl_set *context;
3655 isl_ast_expr *arg0;
3656 isl_ast_expr *res;
3657 isl_ast_expr_list *list;
3658 isl_ast_build *build;
3660 arg0 = isl_ast_expr_get_op_arg(expr, 0);
3661 if (isl_ast_expr_get_type(arg0) == isl_ast_expr_op &&
3662 isl_ast_expr_get_op_type(arg0) == isl_ast_op_member) {
3663 isl_ast_expr *arg;
3665 arg = isl_ast_expr_get_op_arg(arg0, 0);
3666 arg = gpu_local_array_info_linearize_index(array, arg);
3667 arg0 = isl_ast_expr_set_op_arg(arg0, 0, arg);
3668 expr = isl_ast_expr_set_op_arg(expr, 0, arg0);
3670 return expr;
3672 isl_ast_expr_free(arg0);
3674 ctx = isl_ast_expr_get_ctx(expr);
3675 context = isl_set_universe(isl_space_params_alloc(ctx, 0));
3676 build = isl_ast_build_from_context(context);
3678 n = isl_ast_expr_get_op_n_arg(expr);
3679 res = isl_ast_expr_get_op_arg(expr, 1);
3680 for (i = 2; i < n; ++i) {
3681 isl_pw_aff *bound_i;
3682 isl_ast_expr *expr_i;
3684 bound_i = isl_pw_aff_list_get_pw_aff(array->bound, i - 1);
3685 expr_i = isl_ast_build_expr_from_pw_aff(build, bound_i);
3686 res = isl_ast_expr_mul(res, expr_i);
3687 expr_i = isl_ast_expr_get_op_arg(expr, i);
3688 res = isl_ast_expr_add(res, expr_i);
3691 isl_ast_build_free(build);
3693 list = isl_ast_expr_list_from_ast_expr(res);
3694 res = isl_ast_expr_get_op_arg(expr, 0);
3695 res = isl_ast_expr_access(res, list);
3697 isl_ast_expr_free(expr);
3699 return res;
3702 /* AST expression transformation callback for pet_stmt_build_ast_exprs.
3704 * If the AST expression refers to a global scalar that is not
3705 * a read-only scalar, then its address was passed to the kernel and
3706 * we need to dereference it.
3708 * If the AST expression refers to an access to a global array,
3709 * then we linearize the access exploiting the bounds in data->local_array.
3711 static __isl_give isl_ast_expr *transform_expr(__isl_take isl_ast_expr *expr,
3712 __isl_keep isl_id *id, void *user)
3714 struct ppcg_transform_data *data = user;
3716 if (!data->array)
3717 return expr;
3718 if (gpu_array_is_read_only_scalar(data->array))
3719 return expr;
3720 if (!data->global)
3721 return expr;
3722 if (data->array->n_index == 0)
3723 return dereference(expr);
3724 if (!data->array->linearize)
3725 return expr;
3727 return gpu_local_array_info_linearize_index(data->local_array, expr);
3730 /* This function is called for each instance of a user statement
3731 * in the kernel.
3733 * We attach a struct ppcg_kernel_stmt to the "node", containing
3734 * a computed AST expression for each access.
3735 * These AST expressions are computed from iterator_map,
3736 * which expresses the domain
3737 * elements in terms of the generated loops, and sched2shared,
3738 * which expresses the first shared_len dimensions of the schedule
3739 * computed by PPCG in terms of the generated loops.
3741 static __isl_give isl_ast_node *at_each_domain(__isl_take isl_ast_node *node,
3742 __isl_keep isl_ast_build *build, void *user)
3744 struct ppcg_transform_data data;
3745 struct gpu_gen *gen = (struct gpu_gen *) user;
3746 struct ppcg_kernel_stmt *stmt;
3747 isl_id *id;
3748 isl_pw_multi_aff *sched2shared;
3749 isl_map *map;
3750 isl_pw_multi_aff *iterator_map;
3751 isl_ast_expr *expr, *arg;
3752 isl_union_map *schedule;
3753 int i, n;
3754 struct gpu_stmt_access *access;
3756 stmt = isl_calloc_type(gen->ctx, struct ppcg_kernel_stmt);
3757 if (!stmt)
3758 return isl_ast_node_free(node);
3760 expr = isl_ast_node_user_get_expr(node);
3761 arg = isl_ast_expr_get_op_arg(expr, 0);
3762 id = isl_ast_expr_get_id(arg);
3764 schedule = isl_ast_build_get_schedule(build);
3765 map = isl_map_reverse(isl_map_from_union_map(schedule));
3766 iterator_map = isl_pw_multi_aff_from_map(map);
3767 sched2shared = compute_sched_to_shared(gen,
3768 isl_pw_multi_aff_copy(iterator_map));
3770 stmt->type = ppcg_kernel_domain;
3771 stmt->u.d.stmt = find_stmt(gen->prog, id);
3772 if (!stmt->u.d.stmt)
3773 goto error;
3775 data.gen = gen;
3776 data.accesses = stmt->u.d.stmt->accesses;
3777 data.iterator_map = iterator_map;
3778 data.sched2shared = sched2shared;
3779 stmt->u.d.ref2expr = pet_stmt_build_ast_exprs(stmt->u.d.stmt->stmt,
3780 build, &transform_index, &data,
3781 &transform_expr, &data);
3783 isl_id_free(id);
3784 isl_pw_multi_aff_free(iterator_map);
3785 isl_pw_multi_aff_free(sched2shared);
3786 isl_ast_expr_free(arg);
3787 isl_ast_expr_free(expr);
3789 id = isl_id_alloc(gen->ctx, NULL, stmt);
3790 id = isl_id_set_free_user(id, &ppcg_kernel_stmt_free);
3791 return isl_ast_node_set_annotation(node, id);
3792 error:
3793 isl_id_free(id);
3794 isl_pw_multi_aff_free(iterator_map);
3795 ppcg_kernel_stmt_free(stmt);
3796 isl_pw_multi_aff_free(sched2shared);
3797 return isl_ast_node_free(node);
3800 /* This function is called when code has been generated for the shared
3801 * tile loops. The "schedule" refers only to the original statements.
3803 * We extend the schedule with that part of gen->local_sched that hasn't
3804 * been taken into account yet. This introduces parameters referring
3805 * to thread ids in the schedule, so we add them (with the appropriate
3806 * bounds to the context as well).
3807 * Finally, we set the appropriate unrolling options
3808 * if gen->first_unroll is set.
3810 static __isl_give isl_ast_node *create_domain_leaf(
3811 __isl_take isl_union_map *schedule, __isl_take isl_ast_build *build,
3812 void *user)
3814 struct gpu_gen *gen = (struct gpu_gen *) user;
3815 isl_space *space;
3816 isl_union_map *sched;
3817 isl_ast_node *tree;
3818 isl_set *set;
3819 isl_id_list *iterators;
3820 int n;
3822 schedule = extend_schedule(schedule,
3823 isl_union_map_copy(gen->local_sched),
3824 gen->shared_len, gen->thread_tiled_len);
3826 space = isl_ast_build_get_schedule_space(build);
3827 set = isl_set_universe(space);
3828 set = add_bounded_parameters(set, gen->kernel->n_block,
3829 gen->kernel->block_dim, "t");
3830 build = isl_ast_build_restrict(build, set);
3832 n = gen->thread_tiled_len - gen->shared_len;
3834 if (gen->first_unroll >= 0) {
3835 space = isl_space_set_alloc(gen->ctx, 0, n);
3836 build = set_unroll(build, space, gen->first_unroll);
3838 iterators = generate_names(gen->ctx, n, "c");
3839 build = isl_ast_build_set_iterators(build, iterators);
3840 build = isl_ast_build_set_at_each_domain(build, &at_each_domain, gen);
3841 tree = isl_ast_build_ast_from_schedule(build, schedule);
3842 isl_ast_build_free(build);
3844 return tree;
3847 /* This function is called for each statement node in the AST of the code
3848 * for copying to or from shared/private memory.
3849 * Attach a pointer to a ppcg_kernel_stmt representing the copy
3850 * statement to the node.
3851 * The statement name is "read" or "write", depending on whether we are
3852 * reading from global memory or writing to global memory.
3853 * The name of the T space is {shared,private}_<array>.
3855 * The schedule is of the form
3857 * type[A -> T] -> L
3859 * where A refers to a piece of an array and T to the corresponding
3860 * shifted tile. We split this schedule into mappings L -> A and L -> T
3861 * and store the corresponding expressions in stmt->index and stmt->local_index,
3862 * where stmt points to the ppcg_kernel_stmt that is attached to the node.
3864 static __isl_give isl_ast_node *attach_copy_stmt(__isl_take isl_ast_node *node,
3865 __isl_keep isl_ast_build *build, void *user)
3867 struct gpu_gen *gen = (struct gpu_gen *) user;
3868 struct ppcg_kernel_stmt *stmt;
3869 isl_id *id;
3870 isl_ast_expr *expr;
3871 isl_space *space;
3872 isl_map *access, *local_access, *map;
3873 isl_pw_multi_aff *pma;
3874 const char *type;
3875 int array_index;
3877 stmt = isl_calloc_type(gen->ctx, struct ppcg_kernel_stmt);
3878 if (!stmt)
3879 return isl_ast_node_free(node);
3881 access = isl_map_from_union_map(isl_ast_build_get_schedule(build));
3882 type = isl_map_get_tuple_name(access, isl_dim_in);
3883 stmt->u.c.read = !strcmp(type, "read");
3884 access = isl_map_reverse(access);
3885 space = isl_space_unwrap(isl_space_range(isl_map_get_space(access)));
3886 local_access = isl_map_copy(access);
3888 map = isl_map_domain_map(isl_map_universe(isl_space_copy(space)));
3889 id = isl_map_get_tuple_id(access, isl_dim_out);
3890 map = isl_map_set_tuple_id(map, isl_dim_in, id);
3891 access = isl_map_apply_range(access, map);
3892 pma = isl_pw_multi_aff_from_map(access);
3893 expr = isl_ast_build_access_from_pw_multi_aff(build, pma);
3894 stmt->u.c.index = expr;
3896 map = isl_map_range_map(isl_map_universe(space));
3897 id = isl_map_get_tuple_id(local_access, isl_dim_out);
3898 map = isl_map_set_tuple_id(map, isl_dim_in, id);
3899 local_access = isl_map_apply_range(local_access, map);
3900 pma = isl_pw_multi_aff_from_map(local_access);
3901 expr = isl_ast_build_access_from_pw_multi_aff(build, pma);
3902 stmt->u.c.local_index = expr;
3904 stmt->u.c.array = gen->copy_group->array;
3905 array_index = stmt->u.c.array - gen->prog->array;
3906 stmt->u.c.local_array = &gen->kernel->array[array_index];
3907 stmt->type = ppcg_kernel_copy;
3909 id = isl_id_alloc(gen->ctx, NULL, stmt);
3910 id = isl_id_set_free_user(id, &ppcg_kernel_stmt_free);
3911 return isl_ast_node_set_annotation(node, id);
3914 /* Given a schedule of the form
3916 * [S -> A] -> L
3918 * (with S the first shared_len dimensions of the computed schedule,
3919 * A the array and L the schedule correponding to the generated loops),
3920 * indicating where to copy the array elements that need to be copied,
3921 * construct code for performing the copying.
3923 * "group" is the array reference group that is being copied
3924 * "type" is either "read" or "write"
3925 * private is set if copying needs to be performed to/from registers
3927 * We first construct a mapping to a shifted tile of the array,
3929 * [S -> A] -> T(S,A) (1)
3931 * If private is set, then we also use this mapping as a schedule
3932 * (which is already thread-specific and will be completely unrolled).
3933 * Otherwise, we wrap/tile the range over the threads.
3934 * The result is
3936 * [S -> A] -> T'(S,A)
3938 * Combined with the given schedule, we have
3940 * [S -> A] -> [L -> T'(S,A)] (2)
3942 * From the shifted tile mapping, we construct a mapping
3944 * [S -> A] -> [A -> T(S,A)]
3946 * and apply it to the schedule (2), obtaining
3948 * [A -> T(S(L),A)] -> [L -> T'(S(L),A)]
3950 * Note that we can project out S because it is uniquely defined by L.
3952 static __isl_give isl_ast_node *copy_access(struct gpu_gen *gen,
3953 __isl_take isl_map *sched,
3954 const char *type, struct gpu_array_ref_group *group,
3955 __isl_take isl_ast_build *build, int private)
3957 isl_space *space;
3958 isl_ast_node *tree;
3959 isl_map *schedule, *shift, *map;
3960 isl_set *set;
3961 isl_id_list *iterators;
3962 int n;
3964 shift = shift_access(group);
3966 schedule = isl_map_copy(shift);
3967 schedule = isl_map_reset_tuple_id(schedule, isl_dim_out);
3968 if (!private)
3969 schedule = tile_access_schedule(gen, schedule);
3971 n = isl_map_dim(schedule, isl_dim_out);
3972 set = isl_set_universe(isl_ast_build_get_schedule_space(build));
3973 set = add_bounded_parameters(set, gen->kernel->n_block,
3974 gen->kernel->block_dim, "t");
3976 schedule = isl_map_range_product(sched, schedule);
3978 space = isl_space_domain(isl_map_get_space(shift));
3979 map = isl_map_range_map(isl_map_universe(isl_space_unwrap(space)));
3980 map = isl_map_range_product(map, shift);
3982 schedule = isl_map_apply_domain(schedule, map);
3984 schedule = isl_map_set_tuple_name(schedule, isl_dim_in, type);
3986 build = isl_ast_build_restrict(build, set);
3988 gen->copy_group = group;
3990 if (private) {
3991 space = isl_space_range(isl_map_get_space(schedule));
3992 space = isl_space_range(isl_space_unwrap(space));
3993 build = set_unroll(build, space, 0);
3995 iterators = generate_names(gen->ctx, n, "c");
3996 build = isl_ast_build_set_iterators(build, iterators);
3997 build = isl_ast_build_set_at_each_domain(build, &attach_copy_stmt, gen);
3998 tree = isl_ast_build_ast_from_schedule(build,
3999 isl_union_map_from_map(schedule));
4000 isl_ast_build_free(build);
4002 return tree;
4005 /* Return code for reading into or writing from shared memory
4006 * the given array reference group.
4008 * If we are performing a read from global memory to shared memory and
4009 * if the array involved is not a scalar, then we copy
4010 * the entire tile to shared memory. This may result in some extra
4011 * elements getting copied, but it should lead to simpler code
4012 * (which means that fewer registers may be needed) and less divergence.
4014 * Otherwise, we only copy the elements that will be read or have been written
4015 * in the kernel.
4018 * The input "sched" is of the form.
4020 * type[S -> A] -> L
4022 * with S the first shared_len dimensions of the computed schedule,
4023 * A the array and L the schedule correponding to the generated loops.
4025 * We first drop "type",
4027 * [S -> A] -> L
4029 * If the above conditions are satisfied, we project out A,
4030 * resulting in
4032 * S -> L
4034 * and then introduce the group tile [S -> T], resulting in
4036 * [S -> T] -> L
4038 static __isl_give isl_ast_node *copy_group_shared_accesses(
4039 struct gpu_gen *gen, struct gpu_array_ref_group *group,
4040 __isl_take isl_map *sched, __isl_take isl_ast_build *build)
4042 const char *type;
4043 int read;
4044 isl_union_map *access;
4046 type = isl_map_get_tuple_name(sched, isl_dim_in);
4047 read = !strcmp(type, "read");
4049 sched = isl_map_reset_tuple_id(sched, isl_dim_in);
4051 if (read && !gpu_array_is_scalar(group->array)) {
4052 isl_space *space;
4053 isl_map *map;
4055 space = isl_space_domain(isl_map_get_space(sched));
4056 space = isl_space_unwrap(space);
4057 map = isl_map_domain_map(isl_map_universe(space));
4058 sched = isl_map_apply_domain(sched, map);
4060 map = group_tile(group);
4061 map = isl_map_reverse(isl_map_domain_map(map));
4062 sched = isl_map_apply_domain(sched, map);
4065 return copy_access(gen, sched, type, group, build, 0);
4068 /* Return code for reading into or writing from private memory
4069 * the given array reference group.
4071 * Let S be the first shared_len dimensions of the computed schedule,
4072 * D the iteration domains, A the array and L the schedule correponding
4073 * to the generated loops.
4074 * "sched" is of the form
4076 * type[S -> A] -> L
4078 * where type is either "read" or "write".
4079 * We apply the privatization D -> S(t), with t the thread ids,
4080 * to the access relation D -> A to obtain the privatized access relation
4082 * S(t) -> A
4084 * We drop the type from "sched" and intersect with the privatized access
4085 * relation to obtain
4087 * [S(t) -> A] -> L
4089 static __isl_give isl_ast_node *copy_group_private_accesses(
4090 struct gpu_gen *gen, struct gpu_array_ref_group *group,
4091 __isl_take isl_map *sched, __isl_take isl_ast_build *build)
4093 const char *type;
4094 int read;
4095 isl_union_map *priv;
4096 isl_union_map *access;
4097 isl_map *access_map;
4099 type = isl_map_get_tuple_name(sched, isl_dim_in);
4100 read = !strcmp(type, "read");
4102 priv = isl_union_map_from_map(isl_map_copy(gen->privatization));
4103 priv = isl_union_map_apply_range(isl_union_map_copy(gen->shared_sched),
4104 priv);
4106 access = group_access_relation(group, read, !read);
4107 access = isl_union_map_apply_domain(access, priv);
4108 access_map = isl_map_from_union_map(access);
4110 sched = isl_map_reset_tuple_id(sched, isl_dim_in);
4111 sched = isl_map_intersect_domain(sched, isl_map_wrap(access_map));
4113 return copy_access(gen, sched, type, group, build, 1);
4116 /* Return code for reading into or writing from shared or private memory.
4118 * "schedule" is of the form
4120 * type[S -> A] -> L
4122 * with S be the first shared_len dimensions of the computed schedule,
4123 * A the array and L the schedule correponding to the generated loops.
4124 * The array reference group is attached to "type".
4126 static __isl_give isl_ast_node *create_access_leaf(
4127 struct gpu_gen *gen, __isl_take isl_map *schedule,
4128 __isl_take isl_ast_build *build)
4130 struct gpu_array_ref_group *group;
4131 isl_id *id;
4133 id = isl_map_get_tuple_id(schedule, isl_dim_in);
4134 group = isl_id_get_user(id);
4135 isl_id_free(id);
4137 if (group->private_tile)
4138 return copy_group_private_accesses(gen, group, schedule,
4139 build);
4140 else
4141 return copy_group_shared_accesses(gen, group, schedule,
4142 build);
4145 /* Create a domain node representing a synchronization.
4147 static __isl_give isl_ast_node *create_sync_leaf(
4148 struct gpu_gen *gen, __isl_take isl_map *schedule,
4149 __isl_take isl_ast_build *build)
4151 struct ppcg_kernel_stmt *stmt;
4152 isl_id *id;
4153 isl_space *space;
4154 isl_ast_node *node;
4155 isl_ast_expr *expr;
4157 isl_map_free(schedule);
4159 stmt = isl_calloc_type(gen->ctx, struct ppcg_kernel_stmt);
4160 if (!stmt)
4161 return NULL;
4163 stmt->type = ppcg_kernel_sync;
4165 space = isl_ast_build_get_schedule_space(build);
4166 space = isl_space_from_domain(space);
4167 space = isl_space_set_tuple_name(space, isl_dim_out, "sync");
4168 expr = isl_ast_build_call_from_pw_multi_aff(build,
4169 isl_pw_multi_aff_from_multi_aff(isl_multi_aff_zero(space)));
4170 node = isl_ast_node_alloc_user(expr);
4171 isl_ast_build_free(build);
4173 id = isl_id_alloc(gen->ctx, NULL, stmt);
4174 id = isl_id_set_free_user(id, &ppcg_kernel_stmt_free);
4175 return isl_ast_node_set_annotation(node, id);
4178 /* This function is called during the code generation at the point
4179 * where the schedule domain element is completely determined by
4180 * the generated code. The input schedule contains the original
4181 * statements as well as synchronization and copy "statements".
4182 * The latter are scheduled at different points than any of the original
4183 * statements, so they will only arrive here in isolation.
4185 * If the current schedule only refers to a single statement,
4186 * we check if it is a copy or synchronization statement and
4187 * call the appropriate functions.
4188 * Otherwise, we assume we are dealing with the original statements
4189 * and we call create_domain_leaf.
4191 static __isl_give isl_ast_node *create_kernel_leaf(
4192 __isl_take isl_ast_build *build, void *user)
4194 struct gpu_gen *gen = (struct gpu_gen *) user;
4195 isl_map *map;
4196 isl_union_map *schedule;
4197 const char *name;
4199 schedule = isl_ast_build_get_schedule(build);
4201 if (isl_union_map_n_map(schedule) != 1)
4202 return create_domain_leaf(schedule, build, user);
4204 map = isl_map_from_union_map(schedule);
4205 name = isl_map_get_tuple_name(map, isl_dim_in);
4206 if (!strcmp(name, "read") || !strcmp(name, "write"))
4207 return create_access_leaf(gen, map, build);
4208 if (!strcmp(name, "sync"))
4209 return create_sync_leaf(gen, map, build);
4211 return create_domain_leaf(isl_union_map_from_map(map), build, user);
4214 /* Mark all odd schedule dimensions as "atomic" (when the even dimensions
4215 * have value 0) and all even schedule dimensions as "unroll".
4217 * That is, the options look as follows
4219 * { [0, b, 0, d, ..., 0] -> atomic[i] : exists a : i = 2 a + 1;
4220 * [a, b, c, d, ..., z] -> unroll[i] : exists a : i = 2 a }
4222 * The even positions are used to be able to schedule copying blocks
4223 * and synchronization before or after each level of the shared memory
4224 * tile loops and we want to make sure that code for these is generated
4225 * separately (within each level).
4227 static __isl_give isl_ast_build *set_atomic_and_unroll(
4228 __isl_take isl_ast_build *build,
4229 __isl_take isl_space *space, int sched_len)
4231 isl_ctx *ctx;
4232 isl_map *map;
4233 isl_constraint *c;
4234 isl_union_map *opt;
4235 isl_local_space *ls;
4236 int i, n;
4238 ctx = isl_ast_build_get_ctx(build);
4240 space = isl_space_params(space);
4241 space = isl_space_add_dims(space, isl_dim_set, sched_len);
4242 space = isl_space_from_domain(space);
4243 space = isl_space_add_dims(space, isl_dim_out, 2);
4244 map = isl_map_universe(isl_space_copy(space));
4245 for (i = 0; i < sched_len; i += 2)
4246 map = isl_map_fix_si(map, isl_dim_in, i, 0);
4247 ls = isl_local_space_from_space(isl_map_get_space(map));
4248 c = isl_equality_alloc(ls);
4249 c = isl_constraint_set_coefficient_si(c, isl_dim_out, 0, 1);
4250 c = isl_constraint_set_coefficient_si(c, isl_dim_out, 1, 2);
4251 c = isl_constraint_set_constant_si(c, 1);
4252 map = isl_map_add_constraint(map, c);
4253 map = isl_map_project_out(map, isl_dim_out, 1, 1);
4254 map = isl_map_set_tuple_name(map, isl_dim_out, "atomic");
4255 opt = isl_union_map_from_map(map);
4257 map = isl_map_universe(space);
4258 ls = isl_local_space_from_space(isl_map_get_space(map));
4259 c = isl_equality_alloc(ls);
4260 c = isl_constraint_set_coefficient_si(c, isl_dim_out, 0, 1);
4261 c = isl_constraint_set_coefficient_si(c, isl_dim_out, 1, 2);
4262 map = isl_map_add_constraint(map, c);
4263 map = isl_map_project_out(map, isl_dim_out, 1, 1);
4264 map = isl_map_set_tuple_name(map, isl_dim_out, "unroll");
4265 opt = isl_union_map_add_map(opt, map);
4267 build = isl_ast_build_set_options(build, opt);
4269 return build;
4272 /* Return a map that maps a space of dimension gen->shared_len
4273 * to its last dimensions starting at gen->tile_first.
4274 * The range is of dimension
4276 * 2 * (gen->shared_len - gen->tile_first) + 1
4278 * The input dimensions are mapped to the odd dimensions in the output,
4279 * while the even dimensions (except 2*pos) are fixed to 0.
4280 * Output dimension 2*pos (if pos >= 0) is fixed to "val".
4281 * If pos >= 0, then only the pos first dimensions starting at gen->tile_first
4282 * are mapped to the output. The remaining input dimensions are projected
4283 * out and the corresponding output dimensions are fixed to 0.
4285 static __isl_give isl_map *insert_even(struct gpu_gen *gen,
4286 __isl_take isl_space *space, int pos, int val)
4288 int i, n;
4289 isl_map *proj;
4291 space = isl_space_set_from_params(space);
4292 space = isl_space_add_dims(space, isl_dim_set, gen->shared_len);
4293 space = isl_space_map_from_set(space);
4294 proj = isl_map_identity(space);
4295 proj = isl_map_project_out(proj, isl_dim_out, 0, gen->tile_first);
4296 n = gen->shared_len - gen->tile_first;
4297 for (i = 0; i <= n; ++i) {
4298 proj = isl_map_insert_dims(proj, isl_dim_out, 2 * i, 1);
4299 if (i == pos)
4300 proj = isl_map_fix_si(proj, isl_dim_out, 2 * i, val);
4301 else
4302 proj = isl_map_fix_si(proj, isl_dim_out, 2 * i, 0);
4305 if (pos < 0)
4306 return proj;
4308 proj = isl_map_eliminate(proj, isl_dim_in, gen->tile_first + pos,
4309 gen->shared_len - (gen->tile_first + pos));
4310 for (i = pos; i < n; ++i)
4311 proj = isl_map_fix_si(proj, isl_dim_out, 2 * i + 1, 0);
4313 return proj;
4316 /* Given the AST context schedule "schedule" and the mapping from
4317 * domains to the shared tile loops "shared_sched", add a schedule
4318 * for a synchronization operation at position "val" of loop level "pos".
4320 * schedule is of the form
4322 * D -> L
4324 * (with D the iteration domains and L the already generated loops),
4325 * while shared_sched is of the form
4327 * D -> S
4329 * We combine them into
4331 * L -> S
4333 * apply a mapping
4335 * [s_0,...] -> [0,s_{tile_first},0,..., val, 0, 0, ... 0]
4337 * and use the result as a schedule for "sync".
4339 static __isl_give isl_union_map *add_sync_schedule(struct gpu_gen *gen,
4340 __isl_take isl_union_map *res, __isl_keep isl_union_map *schedule,
4341 __isl_keep isl_union_map *shared_sched, int pos, int val)
4343 isl_space *space;
4344 isl_map *proj, *map;
4346 shared_sched = isl_union_map_copy(shared_sched);
4347 schedule = isl_union_map_copy(schedule);
4349 space = isl_union_map_get_space(shared_sched);
4350 schedule = isl_union_map_apply_domain(shared_sched, schedule);
4351 map = isl_map_from_union_map(schedule);
4353 proj = insert_even(gen, space, pos, val);
4354 map = isl_map_apply_range(map, proj);
4355 map = isl_map_from_range(isl_map_wrap(map));
4356 map = isl_map_set_tuple_name(map, isl_dim_in, "sync");
4358 res = isl_union_map_add_map(res, map);
4360 return res;
4363 /* Given a set of wrapped references "ref", return the corresponding
4364 * access relations based on the tagged access relations "tagged".
4366 * The elements of "ref" are of the form
4368 * [D -> R]
4370 * with D an iteration domains and R a reference.
4371 * The elements of "tagged" are of the form
4373 * [D -> R] -> A
4375 * with A an array.
4377 * Extend "tagged" to include the iteration domain in the range, i.e.,
4379 * [D -> R] -> [D -> A]
4381 * apply the result to "ref" and then unwrap the resulting set
4382 * to obtain relations of the form
4384 * D -> A
4386 static __isl_give isl_union_map *wrapped_reference_to_access(
4387 __isl_take isl_union_set *ref, __isl_take isl_union_map *tagged)
4389 isl_union_map *tag2access;
4391 tag2access = isl_union_map_copy(tagged);
4392 tag2access = isl_union_map_universe(tag2access);
4393 tag2access = isl_union_set_unwrap(isl_union_map_domain(tag2access));
4394 tag2access = isl_union_map_domain_map(tag2access);
4395 tag2access = isl_union_map_range_product(tag2access, tagged);
4397 ref = isl_union_set_coalesce(ref);
4398 ref = isl_union_set_apply(ref, tag2access);
4400 return isl_union_set_unwrap(ref);
4403 /* Given an access relation "access" from "group", remove those reads
4404 * if ("read" is 1) or writes (if "read" is 0) that are only needed to
4405 * communicate data within the same iteration of the last_shared dimension
4406 * of the group.
4408 * If the access is a read then it is necessarily an element of
4410 * live_in union (range flow)
4412 * where live_in and flow may be overapproximations.
4413 * If the access is a write then it is necessarily an element of
4415 * live_out union (domain flow)
4417 * In both cases, the access relation is also a subset of
4418 * the group access relation.
4420 * Essentially, we compute the intersection of "access" with either
4422 * live_in union (range non-local-flow)
4424 * or
4426 * live_out union (domain non-local-flow)
4428 * We first construct a relation "local"
4430 * [[D -> R] -> [D' -> R']]
4432 * of pairs of domain iterations accessing the reference group
4433 * and references in the group that are scheduled to the same iteration
4434 * of the last_shared dimension.
4436 * If this relation does not intersect the dataflow dependences,
4437 * then there is nothing we can possibly remove and we simply
4438 * return the input.
4440 * Otherwise, we remove the "local" dataflow dependences from
4441 * the set of all dataflow dependences.
4442 * Note that if the potential dataflow dependences are an overapproximation
4443 * of the actual dataflow dependences, then the result remains an
4444 * overapproximation of the non-local dataflow dependences.
4445 * Copying to/from global memory is only needed for the references
4446 * in the domain/range of the result or for accesses that are live out/in
4447 * for the entire scop.
4449 * We therefore map the domain/range of the "external" relation
4450 * to the corresponding access relation and take the union with
4451 * the live out/in relation.
4453 static __isl_give isl_union_map *remove_local_accesses(struct gpu_gen *gen,
4454 struct gpu_array_ref_group *group, __isl_take isl_union_map *access,
4455 int read)
4457 int empty;
4458 isl_union_map *tagger;
4459 isl_union_set *domain;
4460 isl_space *space;
4461 isl_union_map *sched, *local, *tagged, *external;
4462 isl_union_set *tag_set;
4463 isl_map *proj;
4465 if (isl_union_map_is_empty(access))
4466 return access;
4468 tagged = group_tagged_access_relation(group);
4470 sched = isl_union_map_copy(gen->sched);
4472 space = isl_union_map_get_space(sched);
4473 proj = projection(space, gen->untiled_len, group->last_shared + 1);
4474 sched = isl_union_map_apply_range(sched, isl_union_map_from_map(proj));
4476 tagger = isl_union_map_copy(gen->prog->scop->tagger);
4477 domain = isl_union_map_domain(isl_union_map_copy(tagged));
4478 tagger = isl_union_map_intersect_range(tagger, domain);
4479 sched = isl_union_map_apply_domain(sched, tagger);
4481 local = isl_union_map_apply_range(sched,
4482 isl_union_map_reverse(isl_union_map_copy(sched)));
4483 local = isl_union_map_intersect(local,
4484 isl_union_map_copy(gen->prog->scop->tagged_dep_flow));
4486 empty = isl_union_map_is_empty(local);
4487 if (empty < 0 || empty) {
4488 isl_union_map_free(tagged);
4489 isl_union_map_free(local);
4490 if (empty < 0)
4491 return isl_union_map_free(access);
4492 return access;
4495 external = isl_union_map_copy(gen->prog->scop->tagged_dep_flow);
4496 external = isl_union_map_intersect_params(external,
4497 isl_set_copy(gen->prog->scop->context));
4498 external = isl_union_map_subtract(external, local);
4500 if (read) {
4501 tag_set = isl_union_map_range(external);
4502 external = wrapped_reference_to_access(tag_set, tagged);
4503 external = isl_union_map_union(external,
4504 isl_union_map_copy(gen->prog->scop->live_in));
4505 } else {
4506 tag_set = isl_union_map_domain(external);
4507 external = wrapped_reference_to_access(tag_set, tagged);
4508 external = isl_union_map_union(external,
4509 isl_union_map_copy(gen->prog->scop->live_out));
4512 access = isl_union_map_intersect(access, external);
4514 return access;
4517 /* Given the AST context schedule "schedule" and the mapping from
4518 * domains to the shared tile loops "shared_sched", add a schedule
4519 * for copying an array reference group to/from shared/private memory.
4520 * "read" is set if data should be copied from global memory
4521 * to shared/private memory.
4522 * "k" represents the current group
4523 * "s" is the total number of groups
4525 * We schedule an operation before or after the innermost loop
4526 * of "shared_sched" that affects the tile of the array reference group.
4528 * schedule is of the form
4530 * D -> L
4532 * (with D the iteration domains and L the already generated loops),
4533 * while shared_sched is of the form
4535 * D -> S
4537 * We first compute the access relation for the reference group
4539 * D -> A
4541 * and remove from this access relation those reads or writes
4542 * that only needed to communicate data within the same iteration
4543 * of the last_shared dimension of the group.
4544 * We then combine what is left with shared_sched into
4546 * D -> [S -> A]
4548 * If this results in an empty relation, no copying needs to be performed
4549 * at this point.
4550 * Otherwise, we invert the relation and combine it with "schedule" into
4552 * [S -> A] -> L
4554 * The actual additional piece of the schedule is obtained from combining
4556 * [S -> A] -> S
4558 * with a mapping
4560 * [s_0,...] -> [0,s_{tile_first},0,..., val, 0, 0, ... 0]
4562 * The position of "val" corresponds to the innermost loop that affects
4563 * the tile and the value indicates where the copying is scheduled
4564 * with respect to the actual kernel code (at value 0).
4565 * Reads are schedule before the code, writes to global memory from
4566 * private memory are scheduled at values 1 to s, writes to global
4567 * memory from shared memory are scheduled at values s + 2 to 2 * s + 1.
4569 * If we are scheduling a read from global memory to shared memory,
4570 * we insert a synchronization before the kernel code (at the innermost
4571 * level).
4572 * If we are scheduling a write to global memory, then we add
4573 * a synchronization after all writes (at value 2 *s + 2).
4574 * However, there is no need for a synchronization after the outermost loop.
4575 * A write to global memory from private memory at the innermost level
4576 * does not require a synchronization, because it is covered by
4577 * the synchronization after the kernel inserted by body_schedule.
4579 static __isl_give isl_union_map *add_group_schedule(struct gpu_gen *gen,
4580 __isl_take isl_union_map *res, __isl_keep isl_union_map *schedule,
4581 __isl_keep isl_union_map *shared_sched,
4582 struct gpu_array_ref_group *group, int read, int k, int s)
4584 int n;
4585 int pos, val;
4586 isl_space *space;
4587 isl_union_map *access;
4588 isl_map *map, *proj, *access_map;
4589 isl_id *id;
4591 access = group_access_relation(group, read, !read);
4592 access = remove_local_accesses(gen, group, access, read);
4593 access = isl_union_map_range_product(isl_union_map_copy(shared_sched),
4594 access);
4596 if (isl_union_map_is_empty(access)) {
4597 isl_union_map_free(access);
4598 return res;
4601 access = isl_union_map_reverse(access);
4602 access = isl_union_map_apply_range(access,
4603 isl_union_map_copy(schedule));
4604 access_map = isl_map_from_union_map(access);
4606 space = isl_space_copy(group->array->space);
4607 space = isl_space_from_range(space);
4608 space = isl_space_add_dims(space, isl_dim_in, gen->shared_len);
4609 map = isl_map_domain_map(isl_map_universe(space));
4611 space = isl_union_map_get_space(schedule);
4612 pos = group->last_shared + 1 - gen->tile_first;
4613 assert(pos >= 0);
4614 if (read)
4615 val = -2 - k;
4616 else if (group->private_tile)
4617 val = 1 + k;
4618 else
4619 val = 1 + s + 1 + k;
4620 proj = insert_even(gen, space, pos, val);
4621 map = isl_map_apply_range(map, proj);
4623 access_map = isl_map_range_product(access_map, map);
4625 id = isl_id_alloc(gen->ctx, read ? "read" : "write", group);
4626 access_map = isl_map_set_tuple_id(access_map, isl_dim_in, id);
4628 res = isl_union_map_add_map(res, access_map);
4630 n = gen->shared_len - gen->tile_first;
4631 if (read) {
4632 if (!group->private_tile)
4633 res = add_sync_schedule(gen, res, schedule,
4634 shared_sched, n, -1);
4635 } else {
4636 if (pos == 0)
4637 return res;
4638 if (pos == n && group->private_tile)
4639 return res;
4640 res = add_sync_schedule(gen, res, schedule, shared_sched,
4641 pos, 2 * s + 2);
4644 return res;
4647 /* Return a schedule for the shared tile loops based on the current
4648 * AST context schedule.
4650 * We create a "shared_sched" that maps the domains to the first
4651 * shared_len dimensions of the computed schedule, project out the
4652 * first tile_first dimensions (as these are already covered by
4653 * the host code) and insert "statement-level" dimensions at even
4654 * positions so that we can schedule copy blocks and synchronization
4655 * before/after each level.
4657 * In particular, copy blocks are inserted inside the innermost
4658 * level that affect the tile. For the copying to global memory,
4659 * those from private memory are scheduled before those from shared
4660 * memory such that synchronization can be inserted between the two
4661 * at the innermost level.
4662 * Synchronization is inserted at the innermost level before the
4663 * actual kernel code if there is any copying from global memory
4664 * to shared memory. It is inserted unconditionally at the innermost
4665 * level after the actual kernel code and the copying to global memory
4666 * from private memory (if any). Finally, it is inserted after
4667 * any copying to global memory, except at the outermost level
4668 * and at the innermost level if there is no copying from shared
4669 * memory. The copying from private memory is covered by the unconditional
4670 * synchronization at the innermost level.
4672 static __isl_give isl_union_map *body_schedule(struct gpu_gen *gen,
4673 __isl_take isl_union_map *schedule)
4675 isl_space *space;
4676 isl_union_map *res;
4677 isl_union_map *shared_sched;
4678 isl_union_map *sched;
4679 isl_map *proj, *map;
4680 int i, j, k, s;
4682 shared_sched = isl_union_map_copy(gen->tiled_sched);
4683 proj = projection(isl_union_map_get_space(shared_sched),
4684 gen->tiled_len, gen->shared_len);
4685 shared_sched = isl_union_map_apply_range(shared_sched,
4686 isl_union_map_from_map(proj));
4687 space = isl_union_map_get_space(shared_sched);
4688 proj = insert_even(gen, space, -1, 0);
4689 sched = isl_union_map_apply_range(isl_union_map_copy(shared_sched),
4690 isl_union_map_from_map(proj));
4692 res = isl_union_map_range_product(isl_union_map_copy(schedule), sched);
4694 s = 0;
4695 for (i = 0; i < gen->prog->n_array; ++i)
4696 s += gen->prog->array[i].n_group;
4698 k = 0;
4699 for (i = 0; i < gen->prog->n_array; ++i) {
4700 struct gpu_array_info *array = &gen->prog->array[i];
4702 for (j = 0; j < array->n_group; ++j) {
4703 struct gpu_array_ref_group *group;
4705 group = array->groups[j];
4706 if (!group->private_tile && !group->shared_tile)
4707 continue;
4708 res = add_group_schedule(gen, res, schedule,
4709 shared_sched, group, 0, k, s);
4710 res = add_group_schedule(gen, res, schedule,
4711 shared_sched, group, 1, k, s);
4712 ++k;
4716 res = add_sync_schedule(gen, res, schedule, shared_sched,
4717 gen->shared_len - gen->tile_first, 1 + s);
4719 isl_union_map_free(shared_sched);
4720 isl_union_map_free(schedule);
4722 return res;
4725 /* Generate code for "kernel" in the given "context".
4727 * We first generate code for the shared tile loops (T1T, T1P and T2)
4728 * in a context that includes the block ids.
4729 * Within each iteration of these loops an additional code generation
4730 * is performed (within create_kernel_leaf) for the rest of the schedule
4731 * in a context that includes the thread ids.
4733 static __isl_give isl_ast_node *generate_kernel(struct gpu_gen *gen,
4734 __isl_keep isl_ast_build *build, __isl_keep isl_set *host_domain,
4735 __isl_keep isl_multi_pw_aff *grid_size)
4737 isl_space *space;
4738 isl_set *set;
4739 isl_id_list *iterators;
4740 isl_union_map *schedule;
4741 isl_ast_node *tree;
4742 int sched_len;
4744 schedule = isl_ast_build_get_schedule(build);
4746 build = isl_ast_build_copy(build);
4747 build = isl_ast_build_restrict(build, isl_set_copy(host_domain));
4748 space = isl_ast_build_get_schedule_space(build);
4749 set = isl_set_universe(isl_space_copy(space));
4750 set = add_bounded_parameters_dynamic(set, grid_size, "b");
4751 build = isl_ast_build_restrict(build, set);
4753 schedule = body_schedule(gen, schedule);
4755 sched_len = 2 * (gen->shared_len - gen->tile_first) + 1;
4757 build = set_atomic_and_unroll(build, space, sched_len);
4758 iterators = generate_names(gen->ctx, sched_len, "g");
4759 build = isl_ast_build_set_iterators(build, iterators);
4760 build = isl_ast_build_set_create_leaf(build, &create_kernel_leaf, gen);
4761 tree = isl_ast_build_ast_from_schedule(build, schedule);
4762 isl_ast_build_free(build);
4764 return tree;
4767 /* Attach "id" to the given node.
4769 static __isl_give isl_ast_node *attach_id(__isl_take isl_ast_node *node,
4770 __isl_keep isl_ast_build *build, void *user)
4772 isl_id *id = user;
4774 node = isl_ast_node_set_annotation(node, id);
4776 return node;
4779 /* Construct an AST node for performing a kernel launch and attach
4780 * the information about the kernel to that node.
4782 * The kernel AST has been constructed in the context of the range
4783 * of "schedule". In particular, the grid size has been computed
4784 * in the context. We therefore still need to make sure that these
4785 * constraints are expressed in the code. We do this by creating a schedule
4787 * kernel[] -> [S -> []]
4789 * where S is the schedule domain, i.e., the range of "schedule".
4790 * The AST generation will then create a single call surrounded by
4791 * all the condition in "S" that have not been expressed yet.
4793 * The kernel information is attached to this node in attach_id.
4795 static __isl_give isl_ast_node *construct_launch(
4796 __isl_take isl_ast_build *build, __isl_take isl_union_map *schedule,
4797 __isl_take struct ppcg_kernel *kernel)
4799 isl_id *id;
4800 isl_ctx *ctx;
4801 isl_union_set *domain;
4802 isl_set *set;
4803 isl_map *map;
4804 isl_ast_node *node;
4806 ctx = isl_ast_build_get_ctx(build);
4808 id = isl_id_alloc(ctx, NULL, kernel);
4809 id = isl_id_set_free_user(id, &ppcg_kernel_free);
4811 domain = isl_union_map_range(schedule);
4812 set = isl_set_from_union_set(domain);
4813 map = isl_map_from_domain(set);
4814 map = isl_map_from_range(isl_map_wrap(map));
4815 map = isl_map_set_tuple_name(map, isl_dim_in, "kernel");
4816 schedule = isl_union_map_from_map(map);
4818 build = isl_ast_build_set_at_each_domain(build, &attach_id, id);
4819 node = isl_ast_build_ast_from_schedule(build, schedule);
4820 isl_ast_build_free(build);
4822 return node;
4825 /* This function is called for each leaf in the AST of the host code.
4826 * We first specialize the schedule to the site of the leaf, compute
4827 * the size of shared memory and then construct the body of the host code
4828 * and the associated kernel.
4830 * The necessary information for printing the kernel launch is
4831 * stored in a struct ppcg_kernel and attached to the leaf node
4832 * created to represent the launch.
4834 static __isl_give isl_ast_node *create_host_leaf(
4835 __isl_take isl_ast_build *build, void *user)
4837 struct gpu_gen *gen = (struct gpu_gen *) user;
4838 isl_id *id;
4839 isl_ast_node *node;
4840 struct ppcg_kernel *kernel;
4841 isl_set *host_domain;
4842 isl_union_map *schedule;
4843 isl_union_map *local_sched;
4844 isl_union_map *access;
4845 isl_union_set *domain;
4846 int i;
4848 schedule = isl_ast_build_get_schedule(build);
4850 isl_union_map_foreach_map(schedule, &extract_tile_len, gen);
4851 read_sizes(gen);
4853 domain = isl_union_map_domain(isl_union_map_copy(schedule));
4855 local_sched = isl_union_map_copy(gen->sched);
4856 local_sched = isl_union_map_intersect_domain(local_sched, domain);
4857 access = isl_union_map_union(isl_union_map_copy(gen->prog->read),
4858 isl_union_map_copy(gen->prog->may_write));
4859 access = isl_union_map_apply_domain(access,
4860 isl_union_map_copy(local_sched));
4862 gen->tiled_sched = tile_schedule(gen, local_sched);
4863 gen->tiled_sched = parametrize_tiled_schedule(gen, gen->tiled_sched);
4864 gen->tiled_sched = scale_tile_loops(gen, gen->tiled_sched);
4866 gen->local_sched = isl_union_map_copy(gen->tiled_sched);
4867 gen->local_sched = thread_tile_schedule(gen, gen->local_sched);
4868 gen->local_sched = scale_thread_tile_loops(gen, gen->local_sched);
4870 kernel = gen->kernel = isl_calloc_type(gen->ctx, struct ppcg_kernel);
4871 if (!kernel)
4872 goto error;
4874 kernel->id = gen->kernel_id++;
4875 kernel->context = isl_union_map_params(isl_union_map_copy(schedule));
4876 kernel->grid_size = extract_grid_size(gen, kernel);
4877 extract_block_size(gen, kernel);
4878 kernel->arrays = isl_union_map_range(access);
4879 kernel->arrays = isl_union_set_apply(kernel->arrays,
4880 isl_union_map_copy(gen->prog->to_outer));
4881 kernel->space = isl_ast_build_get_schedule_space(build);
4883 gen->private_access = NULL;
4884 compute_shared_sched(gen);
4885 gen->privatization = compute_privatization(gen);
4886 if (group_references(gen) < 0)
4887 schedule = isl_union_map_free(schedule);
4888 compute_private_access(gen);
4889 check_shared_memory_bound(gen);
4890 compute_group_tilings(gen);
4891 host_domain = isl_set_from_union_set(isl_union_map_range(
4892 isl_union_map_copy(schedule)));
4893 localize_bounds(gen, kernel, host_domain);
4895 gen->local_sched = interchange_for_unroll(gen, gen->local_sched);
4897 kernel->tree = generate_kernel(gen, build, host_domain,
4898 kernel->grid_size);
4899 create_kernel_vars(gen, kernel);
4901 free_local_array_info(gen);
4902 isl_map_free(gen->privatization);
4903 isl_union_map_free(gen->private_access);
4904 isl_union_map_free(gen->local_sched);
4905 isl_union_map_free(gen->tiled_sched);
4906 isl_union_map_free(gen->shared_sched);
4907 isl_union_map_free(gen->shared_proj);
4908 isl_set_free(host_domain);
4909 free(gen->tile_size);
4911 node = construct_launch(build, schedule, kernel);
4913 return node;
4914 error:
4915 isl_union_map_free(schedule);
4916 return NULL;
4919 /* Use isl to generate code for the outer gen->tile_first loops
4920 * of the global schedule in gen->sched, resulting in the host code.
4921 * Within each iteration of this partial schedule, i.e., for each kernel
4922 * launch, create_host_leaf takes care of generating the kernel code.
4924 static __isl_give isl_ast_node *generate_host_code(struct gpu_gen *gen)
4926 isl_ast_build *build;
4927 isl_ast_node *tree;
4928 isl_union_map *sched;
4929 isl_map *proj;
4930 isl_id_list *iterators;
4932 sched = isl_union_map_copy(gen->sched);
4933 proj = projection(isl_union_map_get_space(sched),
4934 gen->untiled_len, gen->tile_first);
4935 sched = isl_union_map_apply_range(sched, isl_union_map_from_map(proj));
4937 isl_options_set_ast_build_group_coscheduled(gen->ctx, 1);
4938 build = isl_ast_build_from_context(isl_set_copy(gen->prog->context));
4939 iterators = generate_names(gen->ctx, gen->tile_first, "h");
4940 build = isl_ast_build_set_iterators(build, iterators);
4941 build = isl_ast_build_set_create_leaf(build, &create_host_leaf, gen);
4942 tree = isl_ast_build_ast_from_schedule(build, sched);
4943 isl_ast_build_free(build);
4945 return tree;
4948 __isl_give isl_union_map *extract_sizes_from_str(isl_ctx *ctx, const char *str)
4950 if (!str)
4951 return NULL;
4952 return isl_union_map_read_from_str(ctx, str);
4955 /* Information about the outermost tilable bands in the forest of bands.
4957 * tile_len and n_parallel are only sets on band_info structures
4958 * that correspond to outermost bands. For other bands (in particular,
4959 * ancestors of the outermost bands), n_parallal is set to 0.
4961 * prefix is the (padded) schedule leading up to the outermost tilable bands.
4963 * tile_first is the number of schedule dimensions in prefix.
4965 * suffix is the schedule of the outermost tilable bands and their descendants.
4967 struct band_info {
4968 struct gpu_gen *gen;
4969 int tile_first;
4970 int tile_len;
4971 int n_parallel;
4972 isl_union_map *prefix;
4973 isl_union_map *suffix;
4976 /* Set tile_len and n_parallel of the statement to that of
4977 * their outermost band, recorded in the band_info.
4979 static int set_stmt_tile_len(__isl_take isl_map *map, void *user)
4981 struct band_info *info = user;
4982 struct gpu_stmt *stmt;
4983 isl_id *id;
4985 id = isl_map_get_tuple_id(map, isl_dim_in);
4986 stmt = find_stmt(info->gen->prog, id);
4987 isl_id_free(id);
4989 stmt->tile_len = info->tile_len;
4990 stmt->n_parallel = info->n_parallel;
4992 isl_map_free(map);
4994 return 0;
4997 static void list_select_outer_band(struct gpu_gen *gen,
4998 __isl_take isl_band_list *list, int pos, struct band_info *list_info);
5000 /* Check if this band has any parallel loops. If so, take it as
5001 * the outermost tilable band. If not, continue looking for the
5002 * outermost tilable band in the children of the current band.
5004 static void band_select_outer_band(struct gpu_gen *gen,
5005 __isl_take isl_band *band, int pos, struct band_info *info)
5007 int n = isl_band_n_member(band);
5008 int n_parallel;
5010 for (n_parallel = 0; n_parallel < n; ++n_parallel)
5011 if (!isl_band_member_is_coincident(band, n_parallel))
5012 break;
5014 info->n_parallel = n_parallel;
5015 if (n_parallel) {
5016 gen->any_parallelism = 1;
5017 info->gen = gen;
5018 info->tile_first = pos;
5019 info->tile_len = n;
5020 info->prefix = isl_band_get_prefix_schedule(band);
5021 info->suffix = isl_union_map_flat_range_product(
5022 isl_band_get_partial_schedule(band),
5023 isl_band_get_suffix_schedule(band));
5024 isl_union_map_foreach_map(info->prefix,
5025 &set_stmt_tile_len, info);
5026 } else if (isl_band_has_children(band)) {
5027 isl_band_list *children;
5028 children = isl_band_get_children(band);
5029 list_select_outer_band(gen, children, pos + n, info);
5030 } else {
5031 info->gen = gen;
5032 info->tile_first = pos + n;
5033 info->tile_len = 0;
5034 info->prefix = isl_union_map_flat_range_product(
5035 isl_band_get_prefix_schedule(band),
5036 isl_band_get_partial_schedule(band));
5037 info->suffix = isl_band_get_suffix_schedule(band);
5038 isl_union_map_foreach_map(info->prefix,
5039 &set_stmt_tile_len, info);
5042 isl_band_free(band);
5045 /* Comparison function that returns a non-zero value for band_infos
5046 * with different tile_len fields or different n_parallel fields.
5048 static int cmp_band(const void *p1, const void *p2)
5050 const struct band_info *info1 = p1;
5051 const struct band_info *info2 = p2;
5053 if (info1->tile_len != info2->tile_len)
5054 return info1->tile_len - info2->tile_len;
5056 return info1->n_parallel - info2->n_parallel;
5059 /* Extend "umap" with coordinates with fixed value "val"
5060 * to a total length of "dst_len", assuming the original dimension is "src_len".
5062 static __isl_give isl_union_map *extend_range(
5063 __isl_take isl_union_map *umap, int src_len, int dst_len, int val)
5065 isl_space *dim;
5066 isl_map *map;
5067 int i;
5069 dim = isl_union_map_get_space(umap);
5070 map = isl_map_reverse(projection(dim, dst_len, src_len));
5071 for (i = src_len; i < dst_len; ++i)
5072 map = isl_map_fix_si(map, isl_dim_out, i, val);
5074 umap = isl_union_map_apply_range(umap, isl_union_map_from_map(map));
5076 return umap;
5079 /* Group bands with the same values for tile_len and n_parallel.
5080 * The prefix schedule is then extended with a fixed coordinate that
5081 * is different for each such group.
5082 * Note that the actual values for this coordinate are not important.
5083 * The bands have already been effectively separated at a higher level
5084 * or they are independent and may be executed in parallel.
5085 * The list of band_info has been sorted before this functions is called.
5087 static void separate_bands(struct band_info *info, int n)
5089 int i;
5090 int j = 0;
5092 for (i = 0; i < n; ++i) {
5093 int l = info[i].tile_first;
5095 if (i &&
5096 (info[i].tile_len != info[i - 1].tile_len ||
5097 info[i].n_parallel != info[i - 1].n_parallel))
5098 j++;
5100 info[i].prefix = extend_range(info[i].prefix,
5101 l, l + 1, j);
5102 info[i].tile_first = l + 1;
5106 /* Select the outermost bands in the elements of the list, align
5107 * their prefix schedules, separate bands with different values
5108 * for tile_len and/or n_parallel and then combine the resulting
5109 * prefix and suffix schedules into a single pair of prefix and
5110 * suffix schedules for the entire list.
5112 static void list_select_outer_band(struct gpu_gen *gen,
5113 __isl_take isl_band_list *list, int pos, struct band_info *list_info)
5115 isl_band *band;
5116 int i;
5117 int n = isl_band_list_n_band(list);
5118 isl_ctx *ctx = isl_band_list_get_ctx(list);
5119 struct band_info *info;
5120 int max_tile_first;
5121 isl_union_map *prefix;
5122 isl_union_map *suffix;
5124 assert(n >= 1);
5125 info = isl_calloc_array(ctx, struct band_info, n);
5126 assert(info);
5128 max_tile_first = 0;
5129 for (i = 0; i < n; ++i) {
5130 band = isl_band_list_get_band(list, i);
5131 band_select_outer_band(gen, band, pos, &info[i]);
5132 if (info[i].tile_first > max_tile_first)
5133 max_tile_first = info[i].tile_first;
5136 for (i = 0; i < n; ++i) {
5137 if (info[i].tile_first == max_tile_first)
5138 continue;
5139 info[i].prefix = extend_range(info[i].prefix,
5140 info[i].tile_first, max_tile_first, 0);
5141 info[i].tile_first = max_tile_first;
5144 qsort(info, n, sizeof(struct band_info), &cmp_band);
5146 for (i = 0; i < n - 1; ++i)
5147 if (info[i].tile_len != info[i + 1].tile_len ||
5148 info[i].n_parallel != info[i + 1].n_parallel)
5149 break;
5151 if (i < n -1)
5152 separate_bands(info, n);
5154 prefix = info[0].prefix;
5155 suffix = info[0].suffix;
5157 for (i = 1; i < n; ++i) {
5158 prefix = isl_union_map_union(prefix, info[i].prefix);
5159 suffix = isl_union_map_union(suffix, info[i].suffix);
5162 list_info->tile_first = info[0].tile_first;
5163 list_info->tile_len = -1;
5164 list_info->prefix = prefix;
5165 list_info->suffix = suffix;
5167 isl_band_list_free(list);
5168 free(info);
5171 /* Select the outermost tilable band that (by construction)
5172 * has at least one parallel loop.
5173 * The starting position of the aligned band is stored in the pair
5174 * gen->tile_first.
5175 * The sizes and number of parallel loops may be different in different
5176 * parts of the band forest and are therefore stored in the gpu_stmts.
5178 * Return the complete schedule, with the tilable bands aligned
5179 * at gen->tile_first and padded with zero, if needed.
5181 static __isl_give isl_union_map *select_outer_tilable_band(struct gpu_gen *gen,
5182 __isl_keep isl_schedule *schedule)
5184 isl_band_list *list;
5185 struct band_info info;
5187 gen->n_parallel = 0;
5188 gen->tile_len = -1;
5190 list = isl_schedule_get_band_forest(schedule);
5192 if (isl_band_list_n_band(list) == 0) {
5193 isl_band_list_free(list);
5194 return isl_schedule_get_map(schedule);
5197 list_select_outer_band(gen, list, 0, &info);
5199 gen->tile_first = info.tile_first;
5200 info.suffix = align_range(info.suffix);
5202 return isl_union_map_flat_range_product(info.prefix, info.suffix);
5205 /* Set gen->untiled_len to the number of scheduling dimensions
5206 * for the schedule of the first domain.
5207 * We assume here that this number is the same for all domains.
5209 static int set_untiled_len(__isl_take isl_map *map, void *user)
5211 unsigned *untiled_len = user;
5213 *untiled_len = isl_map_dim(map, isl_dim_out);
5215 isl_map_free(map);
5216 return -1;
5219 /* Compute an appropriate schedule based on the accesses in
5220 * gen->read and gen->write.
5222 * We use the dependences in gen->prog->scop to compute
5223 * a schedule that has a parallel loop in each tilable band.
5224 * Finally, we select the outermost tilable band.
5226 static void compute_schedule(struct gpu_gen *gen)
5228 isl_union_set *domain;
5229 isl_union_map *dep_raw, *dep;
5230 isl_union_map *sched;
5231 isl_schedule_constraints *sc;
5232 isl_schedule *schedule;
5234 dep_raw = isl_union_map_copy(gen->prog->scop->dep_flow);
5236 dep = isl_union_map_copy(gen->prog->scop->dep_false);
5237 dep = isl_union_map_union(dep, dep_raw);
5238 dep = isl_union_map_coalesce(dep);
5240 domain = isl_union_set_copy(gen->prog->scop->domain);
5241 domain = isl_union_set_intersect_params(domain,
5242 isl_set_copy(gen->prog->scop->context));
5243 sc = isl_schedule_constraints_on_domain(isl_union_set_copy(domain));
5244 sc = isl_schedule_constraints_set_validity(sc, isl_union_map_copy(dep));
5245 sc = isl_schedule_constraints_set_coincidence(sc,
5246 isl_union_map_copy(dep));
5247 sc = isl_schedule_constraints_set_proximity(sc, dep);
5249 if (gen->options->debug->dump_schedule_constraints)
5250 isl_schedule_constraints_dump(sc);
5251 schedule = isl_schedule_constraints_compute_schedule(sc);
5252 if (gen->options->debug->dump_schedule)
5253 isl_schedule_dump(schedule);
5255 sched = select_outer_tilable_band(gen, schedule);
5257 isl_union_map_foreach_map(sched, &set_untiled_len, &gen->untiled_len);
5258 sched = isl_union_map_intersect_domain(sched, domain);
5259 gen->sched = sched;
5261 isl_schedule_free(schedule);
5264 /* Compute the sets of outer array elements that need to be copied in and out.
5266 * In particular, for each array that is possibly written anywhere in
5267 * gen->prog and that is visible outside the corresponding scop,
5268 * we copy out its entire extent.
5270 * Any array elements that is read without first being written needs
5271 * to be copied in. Furthermore, if there are any array elements that
5272 * are copied out, but that may not be written inside gen->prog, then
5273 * they also need to be copied in to ensure that the value after execution
5274 * is the same as the value before execution.
5275 * In case the array elements are structures, we need to take into
5276 * account that all members of the structures need to be written
5277 * by gen->prog before we can avoid copying the data structure in.
5279 * While computing the set of array elements that are copied out but
5280 * not necessarily written, we intersect both sets with the context.
5281 * This helps in those cases where the arrays are declared with a fixed size,
5282 * while the accesses are parametric and the context assigns a fixed value
5283 * to the parameters.
5285 * If an element from a local array is read without first being written,
5286 * then there is no point in copying it in since it cannot have been
5287 * written prior to the scop. Warn about the uninitialized read instead.
5289 static void compute_copy_in_and_out(struct gpu_gen *gen)
5291 int i;
5292 isl_union_set *local;
5293 isl_union_set *may_write, *must_write;
5294 isl_union_set *copy_in, *copy_out;
5295 isl_union_set *not_written;
5296 isl_union_map *uninitialized;
5297 isl_union_map *local_uninitialized;
5299 must_write = isl_union_map_range(
5300 isl_union_map_copy(gen->prog->must_write));
5301 must_write = isl_union_set_intersect_params(must_write,
5302 isl_set_copy(gen->prog->context));
5303 may_write = isl_union_map_range(
5304 isl_union_map_copy(gen->prog->may_write));
5305 may_write = isl_union_set_intersect_params(may_write,
5306 isl_set_copy(gen->prog->context));
5307 may_write = isl_union_set_universe(may_write);
5308 may_write = isl_union_set_apply(may_write,
5309 isl_union_map_copy(gen->prog->to_outer));
5310 copy_out = isl_union_set_empty(isl_union_set_get_space(may_write));
5311 local = isl_union_set_copy(copy_out);
5313 for (i = 0; i < gen->prog->n_array; ++i) {
5314 isl_space *space;
5315 isl_set *write_i;
5316 int empty;
5318 space = isl_space_copy(gen->prog->array[i].space);
5320 if (gen->prog->array[i].local) {
5321 isl_set *set;
5323 set = isl_set_universe(space);
5324 local = isl_union_set_add_set(local, set);
5325 continue;
5328 write_i = isl_union_set_extract_set(may_write, space);
5329 empty = isl_set_fast_is_empty(write_i);
5330 isl_set_free(write_i);
5331 if (empty)
5332 continue;
5334 write_i = isl_set_copy(gen->prog->array[i].extent);
5335 copy_out = isl_union_set_add_set(copy_out, write_i);
5337 isl_union_set_free(may_write);
5339 copy_out = isl_union_set_intersect_params(copy_out,
5340 isl_set_copy(gen->prog->context));
5342 gen->prog->copy_out = isl_union_set_copy(copy_out);
5344 copy_out = isl_union_set_apply(copy_out,
5345 isl_union_map_copy(gen->prog->to_inner));
5346 not_written = isl_union_set_subtract(copy_out, must_write);
5348 uninitialized = isl_union_map_copy(gen->prog->scop->live_in);
5349 local_uninitialized = isl_union_map_copy(uninitialized);
5351 local = isl_union_set_apply(local,
5352 isl_union_map_copy(gen->prog->to_inner));
5353 local_uninitialized = isl_union_map_intersect_range(local_uninitialized,
5354 local);
5355 if (!isl_union_map_is_empty(local_uninitialized)) {
5356 fprintf(stderr,
5357 "possibly uninitialized reads (not copied in):\n");
5358 isl_union_map_dump(local_uninitialized);
5360 uninitialized = isl_union_map_subtract(uninitialized,
5361 local_uninitialized);
5362 copy_in = isl_union_map_range(uninitialized);
5363 copy_in = isl_union_set_union(copy_in, not_written);
5364 copy_in = isl_union_set_apply(copy_in,
5365 isl_union_map_copy(gen->prog->to_outer));
5367 gen->prog->copy_in = copy_in;
5370 /* Extract a gpu_stmt_access from "expr", append it to the list
5371 * that ends in *next_access and return the updated end of the list.
5373 static struct gpu_stmt_access **expr_extract_access(struct pet_expr *expr,
5374 struct gpu_stmt_access **next_access)
5376 struct gpu_stmt_access *access;
5377 isl_ctx *ctx = isl_map_get_ctx(expr->acc.access);
5379 access = isl_alloc_type(ctx, struct gpu_stmt_access);
5380 assert(access);
5381 access->next = NULL;
5382 access->read = expr->acc.read;
5383 access->write = expr->acc.write;
5384 access->access = pet_expr_access_get_may_access(expr);
5385 access->tagged_access = pet_expr_access_get_tagged_may_access(expr);
5386 access->exact_write = !expr->acc.write ||
5387 isl_map_is_equal(expr->acc.access, access->access);
5388 access->ref_id = isl_id_copy(expr->acc.ref_id);
5389 access->group = -1;
5391 *next_access = access;
5392 next_access = &(*next_access)->next;
5393 return next_access;
5396 static struct gpu_stmt_access **expr_extract_accesses(struct pet_expr *expr,
5397 struct gpu_stmt_access **next_access)
5399 int i;
5401 for (i = 0; i < expr->n_arg; ++i)
5402 next_access = expr_extract_accesses(expr->args[i],
5403 next_access);
5405 if (expr->type == pet_expr_access)
5406 next_access = expr_extract_access(expr, next_access);
5408 return next_access;
5411 static void pet_stmt_extract_accesses(struct gpu_stmt *stmt)
5413 struct gpu_stmt_access **next_access = &stmt->accesses;
5415 stmt->accesses = NULL;
5416 expr_extract_accesses(stmt->stmt->body, next_access);
5419 /* Return an array of gpu_stmt representing the statements in "scop".
5421 static struct gpu_stmt *extract_stmts(isl_ctx *ctx, struct ppcg_scop *scop,
5422 __isl_keep isl_set *context)
5424 int i;
5425 struct gpu_stmt *stmts;
5427 stmts = isl_calloc_array(ctx, struct gpu_stmt, scop->n_stmt);
5428 if (!stmts)
5429 return NULL;
5431 for (i = 0; i < scop->n_stmt; ++i) {
5432 struct gpu_stmt *s = &stmts[i];
5434 s->id = isl_set_get_tuple_id(scop->stmts[i]->domain);
5435 s->stmt = scop->stmts[i];
5436 pet_stmt_extract_accesses(s);
5439 return stmts;
5442 /* Callback for ppcg_print_guarded that calls the callback for generate_gpu.
5444 static __isl_give isl_printer *print_gpu(__isl_take isl_printer *p, void *user)
5446 struct gpu_gen *gen = user;
5448 return gen->print(p, gen->prog, gen->tree, &gen->types,
5449 gen->print_user);
5452 /* Generate CUDA code for "scop" and print it to "p".
5453 * After generating an AST for the transformed scop as explained below,
5454 * we call "gen->print" to print the AST in the desired output format
5455 * to "p".
5457 * If it turns out that it does not make sense to generate GPU code,
5458 * then we generate CPU code instead.
5460 * The GPU code is generated in a context where at least one
5461 * statement instance is executed. The corresponding guard (if any) is printed
5462 * around the entire generated GPU code, except for the declaration
5463 * of the arrays that are visible outside of the scop and that therefore
5464 * cannot be declared inside the body of any possible guard.
5466 * We first compute a schedule that respects the dependences
5467 * of the original program and select the outermost band
5468 * of tilable dimensions that has at least one parallel loop.
5469 * We then have three blocks of dimensions
5471 * H B G
5473 * The tilable band "B" is first tiled according to "tile" sizes, resulting
5474 * in
5476 * H T P G
5478 * For each iteration of the T loop and for each array, we compute
5479 * the array elements accessed by that iteration, construct a rectangular
5480 * box around it and shift it to the origin. The result is used
5481 * as shared memory for the array.
5483 * We then split off at most 2 parallel loops from the T loops and
5484 * at most 3 parallel loops from the P loops
5486 * H T1 T2 P1 P2 G
5488 * The T1/P1 loops are then tiled or "wrapped" over the blocks/threads,
5489 * according to "grid"/"block" sizes.
5491 * H T1T T1P T2 P1T P1P P2 G
5493 * Finally, the T1P and P1P iterators are equated to the block and
5494 * thread dimensions respectively and so are effectively removed.
5495 * The H loops are run on the host. The T1T, T2, P1T, P2 and G loops
5496 * are run on the GPU.
5498 * Code is generated in three stages. We first generate code for the
5499 * host (the H loops), with iterators h%d. Then, for each leaf node
5500 * of the resulting AST, we generate code for the shared loops (up to
5501 * and including T2), with iterators g%d and after equating the H loops
5502 * to h%d parameters and the T1P loops to the block dimensions.
5503 * Finally, we generate code for the remaining loops in a similar fashion.
5505 static __isl_give isl_printer *generate(__isl_take isl_printer *p,
5506 struct gpu_gen *gen, struct ppcg_scop *scop,
5507 struct ppcg_options *options)
5509 struct gpu_prog *prog;
5510 isl_ctx *ctx;
5511 isl_set *context, *guard;
5513 if (!scop)
5514 return isl_printer_free(p);
5516 ctx = isl_printer_get_ctx(p);
5517 prog = gpu_prog_alloc(ctx, scop);
5518 if (!prog)
5519 return isl_printer_free(p);
5521 context = isl_set_copy(prog->context);
5522 guard = isl_union_set_params(isl_union_set_copy(prog->scop->domain));
5523 prog->context = isl_set_intersect(prog->context, isl_set_copy(guard));
5525 gen->prog = prog;
5526 gen->any_parallelism = 0;
5527 compute_schedule(gen);
5529 if (!gen->any_parallelism) {
5530 isl_set_free(context);
5531 isl_set_free(guard);
5532 p = print_cpu(p, scop, options);
5533 } else {
5534 compute_copy_in_and_out(gen);
5535 gen->tree = generate_host_code(gen);
5536 p = ppcg_print_exposed_declarations(p, prog->scop);
5537 p = ppcg_print_guarded(p, guard, context, &print_gpu, gen);
5538 isl_ast_node_free(gen->tree);
5541 isl_union_map_free(gen->sched);
5543 gpu_prog_free(prog);
5545 return p;
5548 /* Wrapper around generate for use as a ppcg_transform callback.
5550 static __isl_give isl_printer *generate_wrap(__isl_take isl_printer *p,
5551 struct ppcg_scop *scop, void *user)
5553 struct gpu_gen *gen = user;
5555 return generate(p, gen, scop, gen->options);
5558 /* Transform the code in the file called "input" by replacing
5559 * all scops by corresponding GPU code and write the results to "out".
5561 int generate_gpu(isl_ctx *ctx, const char *input, FILE *out,
5562 struct ppcg_options *options,
5563 __isl_give isl_printer *(*print)(__isl_take isl_printer *p,
5564 struct gpu_prog *prog, __isl_keep isl_ast_node *tree,
5565 struct gpu_types *types, void *user), void *user)
5567 struct gpu_gen gen;
5568 int r;
5569 int i;
5571 gen.ctx = ctx;
5572 gen.sizes = extract_sizes_from_str(ctx, options->sizes);
5573 gen.options = options;
5574 gen.kernel_id = 0;
5575 gen.print = print;
5576 gen.print_user = user;
5577 gen.types.n = 0;
5578 gen.types.name = NULL;
5580 r = ppcg_transform(ctx, input, out, options, &generate_wrap, &gen);
5582 isl_union_map_free(gen.sizes);
5583 for (i = 0; i < gen.types.n; ++i)
5584 free(gen.types.name[i]);
5585 free(gen.types.name);
5587 return r;
5590 struct gpu_prog *gpu_prog_alloc(isl_ctx *ctx, struct ppcg_scop *scop)
5592 struct gpu_prog *prog;
5594 if (!scop)
5595 return NULL;
5597 prog = isl_calloc_type(ctx, struct gpu_prog);
5598 assert(prog);
5600 prog->ctx = ctx;
5601 prog->scop = scop;
5602 prog->context = isl_set_copy(scop->context);
5603 prog->n_stmts = scop->n_stmt;
5604 prog->stmts = extract_stmts(ctx, scop, prog->context);
5605 prog->read = isl_union_map_copy(scop->reads);
5606 prog->may_write = isl_union_map_copy(scop->may_writes);
5607 prog->must_write = isl_union_map_copy(scop->must_writes);
5608 prog->to_inner = compute_to_inner(scop);
5609 prog->to_outer = isl_union_map_copy(prog->to_inner);
5610 prog->to_outer = isl_union_map_reverse(prog->to_outer);
5612 if (!prog->stmts)
5613 return gpu_prog_free(prog);
5615 if (collect_array_info(prog) < 0)
5616 return gpu_prog_free(prog);
5618 return prog;
5621 void *gpu_prog_free(struct gpu_prog *prog)
5623 if (!prog)
5624 return NULL;
5625 free_array_info(prog);
5626 free_stmts(prog->stmts, prog->n_stmts);
5627 isl_union_map_free(prog->to_outer);
5628 isl_union_map_free(prog->to_inner);
5629 isl_union_set_free(prog->copy_in);
5630 isl_union_set_free(prog->copy_out);
5631 isl_union_map_free(prog->read);
5632 isl_union_map_free(prog->may_write);
5633 isl_union_map_free(prog->must_write);
5634 isl_set_free(prog->context);
5635 free(prog);
5636 return NULL;