gpu.c: read_sizes_from_set: use isl_val
[ppcg.git] / gpu.c
blob0049f85580b7b5f798636e51df1aaaa875e77352
1 /*
2 * Copyright 2010-2011 INRIA Saclay
3 * Copyright 2012 Ecole Normale Superieure
5 * Use of this software is governed by the GNU LGPLv2.1 license
7 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
8 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
9 * 91893 Orsay, France
10 * and Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France
13 #include <assert.h>
14 #include <stdlib.h>
16 #include <isl/polynomial.h>
17 #include <isl/union_set.h>
18 #include <isl/aff.h>
19 #include <isl/ilp.h>
20 #include <isl/flow.h>
21 #include <isl/band.h>
22 #include <isl/schedule.h>
23 #include <isl/options.h>
24 #include <isl/ast_build.h>
26 #include "gpu.h"
27 #include "schedule.h"
28 #include "ppcg_options.h"
30 /* The fields stride, shift and shift_map only contain valid information
31 * if shift != NULL.
32 * If so, they express that current index is such that if you add shift,
33 * then the result is always a multiple of stride.
34 * shift_map contains the mapping
36 * i -> (i + shift)/stride
38 * Let D represent the initial shared_len dimensions of the computed schedule.
39 * The spaces of "lb" and "shift" are of the form
41 * D -> [b]
43 * "shift_map" is of the form
45 * [D -> i] -> [D -> (i + shift(D))/stride]
47 struct gpu_array_bound {
48 isl_val *size;
49 isl_aff *lb;
51 isl_val *stride;
52 isl_aff *shift;
53 isl_basic_map *shift_map;
56 /* A tile of an array.
58 * n is the dimension of the array.
59 * bound is an array of size "n" representing the lower bound
60 * and size for each index.
62 struct gpu_array_tile {
63 int n;
64 struct gpu_array_bound *bound;
67 struct gpu_array_info;
69 /* A group of array references in a kernel that should be handled together.
70 * If private_tile is not NULL, then it is mapped to registers.
71 * Otherwise, if shared_tile is not NULL, it is mapped to shared memory.
72 * Otherwise, it is accessed from global memory.
74 struct gpu_array_ref_group {
75 /* The references in this group access this array. */
76 struct gpu_array_info *array;
77 /* Position of this group in the list of reference groups of array. */
78 int nr;
80 /* The following fields are use during the construction of the groups.
81 * access is the combined access relation relative to the shared
82 * memory tiling. In particular, the domain of the map corresponds
83 * to the first shared_len dimensions of the computed schedule.
84 * write is set if any access in the group is a write.
86 isl_map *access;
87 int write;
89 /* The shared memory tile, NULL if none. */
90 struct gpu_array_tile *shared_tile;
92 /* The private memory tile, NULL if none. */
93 struct gpu_array_tile *private_tile;
95 /* References in this group; point to elements of a linked list. */
96 int n_ref;
97 struct gpu_stmt_access **refs;
99 /* Last shared memory tile dimension that affects tile of this group. */
100 int last_shared;
103 struct gpu_gen {
104 isl_ctx *ctx;
105 struct ppcg_options *options;
107 struct gpu_prog *prog;
109 /* tile, grid and block sizes for each kernel */
110 isl_union_map *sizes;
112 /* Identifier of current kernel. */
113 int kernel_id;
114 /* Pointer to the current kernel. */
115 struct ppcg_kernel *kernel;
117 /* First tile dimension. */
118 int tile_first;
119 /* Number of tile dimensions. */
120 int tile_len;
121 /* Number of initial parallel loops among tile dimensions. */
122 int n_parallel;
124 /* Number of dimensions determining shared memory. */
125 int shared_len;
127 /* Number of rows in the untiled schedule. */
128 int untiled_len;
129 /* Number of rows in the tiled schedule. */
130 int tiled_len;
131 /* Number of rows in schedule after tiling/wrapping over threads. */
132 int thread_tiled_len;
134 /* Global untiled schedule. */
135 isl_union_map *sched;
136 /* Local (per kernel launch) tiled schedule. */
137 isl_union_map *tiled_sched;
138 /* Local schedule per shared memory tile loop iteration. */
139 isl_union_map *local_sched;
141 /* Local tiled schedule projected onto the shared tile loops and
142 * the loops that will be wrapped over the threads,
143 * with all shared tile loops parametrized.
145 isl_union_map *shared_sched;
146 /* Projects out the loops that will be wrapped over the threads
147 * from shared_sched.
149 isl_union_map *shared_proj;
151 /* A map that takes the range of shared_sched as input,
152 * wraps the appropriate loops over the threads and then projects
153 * out these loops.
155 isl_map *privatization;
157 /* A map from the shared memory tile loops and the thread indices
158 * (as parameters) to the set of accessed memory elements that
159 * will be accessed through private copies.
161 isl_union_map *private_access;
163 /* The schedule for the current private/shared access
164 * (within print_private_access or print_shared_access).
166 isl_map *copy_sched;
167 /* The array reference group corresponding to copy_sched. */
168 struct gpu_array_ref_group *copy_group;
170 /* First loop to unroll (or -1 if none) in the current part of the
171 * schedule.
173 int first_unroll;
175 int n_grid;
176 int n_block;
177 /* Note: in the input file, the sizes of the grid and the blocks
178 * are specified in the order x, y, z, but internally, the sizes
179 * are stored in reverse order, so that the last element always
180 * refers to the x dimension.
182 int grid_dim[2];
183 int block_dim[3];
184 int *tile_size;
187 /* Print the name of the local copy of a given group of array references.
189 static __isl_give isl_printer *print_array_name(__isl_take isl_printer *p,
190 struct gpu_array_ref_group *group)
192 int global = 0;
194 if (group->private_tile)
195 p = isl_printer_print_str(p, "private_");
196 else if (group->shared_tile)
197 p = isl_printer_print_str(p, "shared_");
198 else
199 global = 1;
200 p = isl_printer_print_str(p, group->array->name);
201 if (!global && group->array->n_group > 1) {
202 p = isl_printer_print_str(p, "_");
203 p = isl_printer_print_int(p, group->nr);
206 return p;
209 /* Collect all references to the given array and store pointers to them
210 * in array->refs.
212 static void collect_references(struct gpu_prog *prog,
213 struct gpu_array_info *array)
215 int i;
216 int n;
218 n = 0;
219 for (i = 0; i < prog->n_stmts; ++i) {
220 struct gpu_stmt *stmt = &prog->stmts[i];
221 struct gpu_stmt_access *access;
223 for (access = stmt->accesses; access; access = access->next) {
224 const char *name;
225 name = isl_map_get_tuple_name(access->access,
226 isl_dim_out);
227 if (name && !strcmp(array->name, name))
228 n++;
232 array->n_ref = n;
233 array->refs = isl_alloc_array(prog->ctx, struct gpu_stmt_access *, n);
234 assert(array->refs);
236 n = 0;
237 for (i = 0; i < prog->n_stmts; ++i) {
238 struct gpu_stmt *stmt = &prog->stmts[i];
239 struct gpu_stmt_access *access;
241 for (access = stmt->accesses; access; access = access->next) {
242 const char *name;
243 name = isl_map_get_tuple_name(access->access,
244 isl_dim_out);
245 if (!name || strcmp(array->name, name))
246 continue;
248 array->refs[n++] = access;
253 /* Create a gpu_array_tile for an array of dimension "n_index".
255 static struct gpu_array_tile *create_tile(isl_ctx *ctx, int n_index)
257 int i;
258 struct gpu_array_tile *tile;
260 tile = isl_calloc_type(ctx, struct gpu_array_tile);
261 assert(tile);
263 tile->n = n_index;
265 tile->bound = isl_alloc_array(ctx, struct gpu_array_bound, n_index);
266 assert(tile->bound);
268 for (i = 0; i < n_index; ++i) {
269 tile->bound[i].size = NULL;
270 tile->bound[i].lb = NULL;
271 tile->bound[i].stride = NULL;
272 tile->bound[i].shift = NULL;
273 tile->bound[i].shift_map = NULL;
276 return tile;
279 static void *free_tile(struct gpu_array_tile *tile)
281 int j;
283 if (!tile)
284 return NULL;
286 for (j = 0; j < tile->n; ++j) {
287 isl_val_free(tile->bound[j].size);
288 isl_val_free(tile->bound[j].stride);
289 isl_aff_free(tile->bound[j].lb);
290 isl_aff_free(tile->bound[j].shift);
291 isl_basic_map_free(tile->bound[j].shift_map);
293 free(tile->bound);
294 free(tile);
296 return NULL;
299 static struct pet_array *find_array(struct ppcg_scop *scop,
300 __isl_keep isl_set *accessed)
302 int i;
303 isl_id *id;
305 id = isl_set_get_tuple_id(accessed);
307 for (i = 0; i < scop->n_array; ++i) {
308 isl_id *id_i;
310 id_i = isl_set_get_tuple_id(scop->arrays[i]->extent);
311 isl_id_free(id_i);
312 if (id == id_i)
313 break;
315 isl_id_free(id);
317 return i < scop->n_array ? scop->arrays[i] : NULL;
320 /* Compute and return the extent of "array", taking into account the set of
321 * accessed elements.
323 * In particular, the extent in the outer dimension is taken
324 * from "accessed", while then extent in the remaing dimensions
325 * are taken from array->extent.
327 * The extent in the outer dimension cannot be taken from array->extent
328 * because that may be unbounded. Furthermore, even if it is bounded,
329 * it may be larger than the piece of the array that is being accessed.
331 static __isl_give isl_set *compute_extent(struct pet_array *array,
332 __isl_keep isl_set *accessed)
334 int n_index;
335 isl_id *id;
336 isl_set *outer;
337 isl_set *extent;
339 extent = isl_set_copy(array->extent);
341 n_index = isl_set_dim(accessed, isl_dim_set);
342 if (n_index == 0)
343 return extent;
345 extent = isl_set_project_out(extent, isl_dim_set, 0, 1);
346 outer = isl_set_copy(accessed);
347 outer = isl_set_project_out(outer, isl_dim_set, 1, n_index - 1);
348 extent = isl_set_flat_product(outer, extent);
349 id = isl_set_get_tuple_id(accessed);
350 extent = isl_set_set_tuple_id(extent, id);
352 return extent;
355 /* Compute bounds on the host arrays based on the accessed elements
356 * and collect all references to the array.
358 * If the array is zero-dimensional, i.e., a scalar, we check
359 * whether it is read-only.
361 static int extract_array_info(__isl_take isl_set *array, void *user)
363 int i;
364 struct gpu_prog *prog = (struct gpu_prog *)user;
365 const char *name;
366 int n_index;
367 isl_pw_aff **bounds;
368 struct pet_array *pa;
369 isl_set *extent;
371 n_index = isl_set_dim(array, isl_dim_set);
372 name = isl_set_get_tuple_name(array);
373 bounds = isl_alloc_array(isl_set_get_ctx(array),
374 isl_pw_aff *, n_index);
375 assert(bounds);
376 prog->array[prog->n_array].dim = isl_set_get_space(array);
377 prog->array[prog->n_array].name = strdup(name);
378 prog->array[prog->n_array].n_index = n_index;
379 prog->array[prog->n_array].bound = bounds;
381 pa = find_array(prog->scop, array);
382 assert(pa);
384 prog->array[prog->n_array].type = strdup(pa->element_type);
385 prog->array[prog->n_array].size = pa->element_size;
386 prog->array[prog->n_array].local = pa->declared && !pa->exposed;
388 if (n_index == 0) {
389 isl_set *space;
390 isl_union_map *write;
391 int empty;
393 write = isl_union_map_copy(prog->write);
394 space = isl_set_universe(isl_set_get_space(array));
395 write = isl_union_map_intersect_range(write,
396 isl_union_set_from_set(space));
397 empty = isl_union_map_is_empty(write);
398 isl_union_map_free(write);
400 prog->array[prog->n_array].read_only = empty;
403 extent = compute_extent(pa, array);
404 for (i = 0; i < n_index; ++i) {
405 isl_set *dom;
406 isl_local_space *ls;
407 isl_aff *one;
408 isl_pw_aff *bound;
410 bound = isl_set_dim_max(isl_set_copy(extent), i);
411 assert(bound);
412 dom = isl_pw_aff_domain(isl_pw_aff_copy(bound));
413 ls = isl_local_space_from_space(isl_set_get_space(dom));
414 one = isl_aff_zero_on_domain(ls);
415 one = isl_aff_add_constant_si(one, 1);
416 bound = isl_pw_aff_add(bound, isl_pw_aff_alloc(dom, one));
417 bound = isl_pw_aff_gist(bound, isl_set_copy(prog->context));
419 bounds[i] = bound;
421 prog->array[prog->n_array].extent = extent;
423 collect_references(prog, &prog->array[prog->n_array]);
425 prog->n_array++;
427 isl_set_free(array);
428 return 0;
431 void collect_array_info(struct gpu_prog *prog)
433 isl_union_set *arrays;
435 arrays = isl_union_map_range(isl_union_map_copy(prog->read));
436 arrays = isl_union_set_union(arrays,
437 isl_union_map_range(isl_union_map_copy(prog->write)));
438 arrays = isl_union_set_coalesce(arrays);
440 prog->n_array = isl_union_set_n_set(arrays);
441 prog->array = isl_alloc_array(prog->ctx,
442 struct gpu_array_info, prog->n_array);
443 assert(prog->array);
444 prog->n_array = 0;
445 isl_union_set_foreach_set(arrays, &extract_array_info, prog);
446 isl_union_set_free(arrays);
449 static void free_array_info(struct gpu_prog *prog)
451 int i, j;
453 for (i = 0; i < prog->n_array; ++i) {
454 int n_index = prog->array[i].n_index;
455 free(prog->array[i].type);
456 free(prog->array[i].name);
457 for (j = 0; j < n_index; ++j)
458 isl_pw_aff_free(prog->array[i].bound[j]);
459 isl_space_free(prog->array[i].dim);
460 isl_set_free(prog->array[i].extent);
461 free(prog->array[i].bound);
462 free(prog->array[i].refs);
464 free(prog->array);
467 /* Check if a gpu array is a scalar. A scalar is a value that is not stored
468 * as an array or through a pointer reference, but as single data element. At
469 * the moment, scalars are represented as zero dimensional arrays.
471 int gpu_array_is_scalar(struct gpu_array_info *array)
473 return (array->n_index == 0);
476 /* Is "array" a read-only scalar?
478 int gpu_array_is_read_only_scalar(struct gpu_array_info *array)
480 return gpu_array_is_scalar(array) && array->read_only;
483 /* Internal data structure for extract_size_of_type.
484 * "type" specifies the name of the space that we want to extract.
485 * "res" is used to store the subset of that space.
487 struct ppcg_extract_size_data {
488 const char *type;
489 isl_set *res;
492 /* This function is called for each set in a union_set.
493 * If the name of the set matches data->type, we store the
494 * set in data->res.
496 static int extract_size_of_type(__isl_take isl_set *size, void *user)
498 struct ppcg_extract_size_data *data = user;
499 const char *name;
501 name = isl_set_get_tuple_name(size);
502 if (name && !strcmp(name, data->type)) {
503 data->res = size;
504 return -1;
507 isl_set_free(size);
508 return 0;
511 /* Given a union map { kernel[i] -> *[...] },
512 * return the range in the space called "type" for the kernel with
513 * sequence number "id".
515 static __isl_give isl_set *extract_sizes(__isl_keep isl_union_map *sizes,
516 const char *type, int id)
518 isl_space *space;
519 isl_set *dom;
520 isl_union_set *local_sizes;
521 struct ppcg_extract_size_data data = { type, NULL };
523 if (!sizes)
524 return NULL;
526 space = isl_union_map_get_space(sizes);
527 space = isl_space_set_from_params(space);
528 space = isl_space_add_dims(space, isl_dim_set, 1);
529 space = isl_space_set_tuple_name(space, isl_dim_set, "kernel");
530 dom = isl_set_universe(space);
531 dom = isl_set_fix_si(dom, isl_dim_set, 0, id);
533 local_sizes = isl_union_set_apply(isl_union_set_from_set(dom),
534 isl_union_map_copy(sizes));
535 isl_union_set_foreach_set(local_sizes, &extract_size_of_type, &data);
536 isl_union_set_free(local_sizes);
537 return data.res;
540 /* Given a singleton set, extract the first (at most *len) elements
541 * of the single integer tuple into *sizes and update *len if needed.
543 static void read_sizes_from_set(__isl_take isl_set *set, int *sizes, int *len)
545 int i;
546 int dim;
548 if (!set)
549 return;
551 dim = isl_set_dim(set, isl_dim_set);
552 if (dim < *len)
553 *len = dim;
555 for (i = 0; i < *len; ++i) {
556 isl_val *v;
558 v = isl_set_plain_get_val_if_fixed(set, isl_dim_set, i);
559 assert(v);
561 sizes[i] = isl_val_get_num_si(v);
562 isl_val_free(v);
565 isl_set_free(set);
568 /* Extract user specified "tile" sizes from the "sizes" command line option,
569 * defaulting to option->tile_size in each dimension.
571 static void read_tile_sizes(struct gpu_gen *gen)
573 int n;
574 isl_set *size;
576 gen->tile_size = isl_alloc_array(gen->ctx, int, gen->tile_len);
577 assert(gen->tile_size);
578 for (n = 0; n < gen->tile_len; ++n)
579 gen->tile_size[n] = gen->options->tile_size;
581 size = extract_sizes(gen->sizes, "tile", gen->kernel_id);
582 read_sizes_from_set(size, gen->tile_size, &gen->tile_len);
584 if (gen->n_parallel > gen->tile_len)
585 gen->n_parallel = gen->tile_len;
588 /* Extract user specified "block" sizes from the "sizes" command line option,
589 * after filling in some potentially useful defaults.
591 static void read_block_sizes(struct gpu_gen *gen)
593 int n;
594 isl_set *size;
596 n = gen->n_parallel;
597 gen->n_block = (n <= 3) ? n : 3;
598 switch (gen->n_block) {
599 case 1:
600 gen->block_dim[0] = 512;
601 break;
602 case 2:
603 gen->block_dim[0] = 32;
604 gen->block_dim[1] = 16;
605 break;
606 default:
607 gen->block_dim[0] = 32;
608 gen->block_dim[1] = 4;
609 gen->block_dim[2] = 4;
610 break;
613 size = extract_sizes(gen->sizes, "block", gen->kernel_id);
614 read_sizes_from_set(size, gen->block_dim, &gen->n_block);
617 /* Extract user specified "grid" sizes from the "sizes" command line option,
618 * after filling in some potentially useful defaults.
620 static void read_grid_sizes(struct gpu_gen *gen)
622 int n = gen->n_parallel;
623 isl_set *size;
625 gen->n_grid = (n <= 2) ? n : 2;
626 switch (gen->n_grid) {
627 case 1:
628 gen->grid_dim[0] = 32768;
629 break;
630 default:
631 gen->grid_dim[0] = 256;
632 gen->grid_dim[1] = 256;
633 break;
636 size = extract_sizes(gen->sizes, "grid", gen->kernel_id);
637 read_sizes_from_set(size, gen->grid_dim, &gen->n_grid);
640 /* Extract user specified sizes from the "sizes" command line option
641 * after filling in some potentially useful defaults.
643 static void read_sizes(struct gpu_gen *gen)
645 read_tile_sizes(gen);
646 read_block_sizes(gen);
647 read_grid_sizes(gen);
650 static void free_stmts(struct gpu_stmt *stmts, int n)
652 int i;
654 for (i = 0; i < n; ++i) {
655 struct gpu_stmt_access *access, *next;
657 for (access = stmts[i].accesses; access; access = next) {
658 next = access->next;
659 isl_map_free(access->access);
660 free(access);
663 isl_id_free(stmts[i].id);
665 free(stmts);
668 void clear_gpu_gen(struct gpu_gen *gen)
670 isl_union_map_free(gen->sizes);
671 isl_union_map_free(gen->sched);
674 /* Construct a map from a domain of dimensionality "len"
675 * to a domain of dimensionality "len" + "tile_len" that tiles
676 * the "tile_len" coordinates starting at "first".
677 * In particular, [s_i] -> [s_i / tile_size[i], s_i % tile_size[i]].
678 * "dim" prescribes the parameters.
680 static __isl_give isl_map *tile(__isl_take isl_space *dim, int len,
681 int first, int tile_len, int *tile_size)
683 int i;
684 isl_basic_map *bmap;
685 isl_constraint *c;
686 isl_local_space *ls;
688 dim = isl_space_add_dims(dim, isl_dim_in, len);
689 dim = isl_space_add_dims(dim, isl_dim_out, len + tile_len);
690 bmap = isl_basic_map_universe(isl_space_copy(dim));
691 ls = isl_local_space_from_space(dim);
693 for (i = 0; i < len - tile_len; ++i) {
694 int j = i < first ? i : i + tile_len;
695 int k = i < first ? i : i + 2 * tile_len;
697 c = isl_equality_alloc(isl_local_space_copy(ls));
698 c = isl_constraint_set_coefficient_si(c, isl_dim_in, j, -1);
699 c = isl_constraint_set_coefficient_si(c, isl_dim_out, k, 1);
700 bmap = isl_basic_map_add_constraint(bmap, c);
703 for (i = 0; i < tile_len; ++i) {
704 c = isl_equality_alloc(isl_local_space_copy(ls));
705 c = isl_constraint_set_coefficient_si(c, isl_dim_in,
706 first + i, -1);
707 c = isl_constraint_set_coefficient_si(c, isl_dim_out,
708 first + i, tile_size[i]);
709 c = isl_constraint_set_coefficient_si(c, isl_dim_out,
710 first + i + tile_len, 1);
711 bmap = isl_basic_map_add_constraint(bmap, c);
713 c = isl_inequality_alloc(isl_local_space_copy(ls));
714 c = isl_constraint_set_coefficient_si(c, isl_dim_out,
715 first + i + tile_len, 1);
716 bmap = isl_basic_map_add_constraint(bmap, c);
718 c = isl_inequality_alloc(isl_local_space_copy(ls));
719 c = isl_constraint_set_coefficient_si(c, isl_dim_out,
720 first + i + tile_len, -1);
721 c = isl_constraint_set_constant_si(c, tile_size[i] - 1);
722 bmap = isl_basic_map_add_constraint(bmap, c);
725 isl_local_space_free(ls);
727 return isl_map_from_basic_map(bmap);
730 /* Construct a map from a domain of dimensionality "len"
731 * to a domain of dimensionality "len" + "wrap_len" that "wraps"
732 * the "wrap_len" coordinates starting at "first" according to "wrap_size".
733 * In particular, [s_i] -> [s_i, s_i % wrap_size[i]].
734 * To do so, we need extra variables corresponding to [s_i / wrap_size[i]],
735 * that are projected out at the end.
736 * "dim" prescribes the parameters.
738 static __isl_give isl_map *wrap(__isl_take isl_space *dim, int len,
739 int first, int wrap_len, int *wrap_size)
741 int i;
742 isl_basic_map *bmap;
743 isl_constraint *c;
744 isl_local_space *ls;
746 dim = isl_space_add_dims(dim, isl_dim_in, len);
747 dim = isl_space_add_dims(dim, isl_dim_out, len + 2 * wrap_len);
748 bmap = isl_basic_map_universe(isl_space_copy(dim));
749 ls = isl_local_space_from_space(dim);
751 for (i = 0; i < len; ++i) {
752 int k = i < first + wrap_len ? i : i + 2 * wrap_len;
754 c = isl_equality_alloc(isl_local_space_copy(ls));
755 c = isl_constraint_set_coefficient_si(c, isl_dim_in, i, -1);
756 c = isl_constraint_set_coefficient_si(c, isl_dim_out, k, 1);
757 bmap = isl_basic_map_add_constraint(bmap, c);
760 for (i = 0; i < wrap_len; ++i) {
761 c = isl_equality_alloc(isl_local_space_copy(ls));
762 c = isl_constraint_set_coefficient_si(c, isl_dim_out,
763 first + i, -1);
764 c = isl_constraint_set_coefficient_si(c, isl_dim_out,
765 first + wrap_len + i, 1);
766 c = isl_constraint_set_coefficient_si(c, isl_dim_out,
767 first + 2 * wrap_len + i, wrap_size[i]);
768 bmap = isl_basic_map_add_constraint(bmap, c);
770 c = isl_inequality_alloc(isl_local_space_copy(ls));
771 c = isl_constraint_set_coefficient_si(c, isl_dim_out,
772 first + wrap_len + i, 1);
773 bmap = isl_basic_map_add_constraint(bmap, c);
775 c = isl_inequality_alloc(isl_local_space_copy(ls));
776 c = isl_constraint_set_coefficient_si(c, isl_dim_out,
777 first + wrap_len + i, -1);
778 c = isl_constraint_set_constant_si(c, wrap_size[i] - 1);
779 bmap = isl_basic_map_add_constraint(bmap, c);
782 isl_local_space_free(ls);
784 bmap = isl_basic_map_project_out(bmap, isl_dim_out,
785 first + 2 * wrap_len, wrap_len);
787 return isl_map_from_basic_map(bmap);
790 /* Add "n" parameters named prefix%d.
792 static __isl_give isl_set *add_params( __isl_take isl_set *set,
793 int n, const char *prefix)
795 int i;
796 unsigned nparam;
797 char name[20];
799 nparam = isl_set_dim(set, isl_dim_param);
800 set = isl_set_add_dims(set, isl_dim_param, n);
802 for (i = 0; i < n; ++i) {
803 snprintf(name, sizeof(name), "%s%d", prefix, i);
804 set = isl_set_set_dim_name(set, isl_dim_param,
805 nparam + i, name);
808 return set;
811 /* Equate the "n" dimensions of "set" starting at "first" to
812 * freshly created parameters named prefix%d.
814 static __isl_give isl_set *parametrize(__isl_take isl_set *set,
815 int first, int n, const char *prefix)
817 int i;
818 unsigned nparam;
820 nparam = isl_set_dim(set, isl_dim_param);
822 set = add_params(set, n, prefix);
824 for (i = 0; i < n; ++i)
825 set = isl_set_equate(set, isl_dim_param, nparam + i,
826 isl_dim_set, first + i);
828 return set;
831 /* Given a parameter space "space", create a set of dimension "len"
832 * of which the "n" dimensions starting at "first" are equated to
833 * freshly created parameters named prefix%d.
835 static __isl_give isl_set *parametrization(__isl_take isl_space *space,
836 int len, int first, int n, const char *prefix)
838 isl_set *set;
840 space = isl_space_set_from_params(space);
841 space = isl_space_add_dims(space, isl_dim_set, len);
842 set = isl_set_universe(space);
844 return parametrize(set, first, n, prefix);
847 /* Tile the B loops over the tile sizes and then tile/wrap
848 * the T1 loops over the blocks.
850 static __isl_give isl_union_map *tile_schedule(struct gpu_gen *gen,
851 __isl_take isl_union_map *sched)
853 isl_space *dim;
854 isl_map *tiling, *block_tiling;
856 dim = isl_union_map_get_space(sched);
857 tiling = tile(isl_space_copy(dim), gen->untiled_len,
858 gen->tile_first, gen->tile_len, gen->tile_size);
860 if (gen->options->wrap)
861 block_tiling = wrap(dim, gen->untiled_len + gen->tile_len,
862 gen->tile_first, gen->n_grid, gen->grid_dim);
863 else
864 block_tiling = tile(dim, gen->untiled_len + gen->tile_len,
865 gen->tile_first, gen->n_grid, gen->grid_dim);
867 gen->tiled_len = gen->untiled_len + gen->tile_len + gen->n_grid;
869 tiling = isl_map_apply_range(tiling, block_tiling);
871 sched = isl_union_map_apply_range(sched,
872 isl_union_map_from_map(tiling));
874 gen->shared_len = gen->tile_first + gen->tile_len + gen->n_grid;
876 return sched;
879 /* Equate the "T1P" iterators in the tiled schedule "sched"
880 * to the block dimensions.
882 static __isl_give isl_union_map *parametrize_tiled_schedule(
883 struct gpu_gen *gen, __isl_take isl_union_map *sched)
885 isl_space *dim;
886 isl_set *par;
888 dim = isl_union_map_get_space(sched);
889 par = parametrization(dim, gen->tiled_len,
890 gen->tile_first + gen->n_grid, gen->n_grid, "b");
891 sched = isl_union_map_intersect_range(sched,
892 isl_union_set_from_set(par));
894 return sched;
897 /* Tile/wrap the P1 loops over the threads.
899 static __isl_give isl_union_map *thread_tile_schedule(struct gpu_gen *gen,
900 __isl_take isl_union_map *sched)
902 isl_space *dim;
903 isl_map *tiling;
904 isl_set *par;
906 dim = isl_union_map_get_space(sched);
908 if (gen->options->wrap)
909 tiling = wrap(isl_space_copy(dim), gen->tiled_len,
910 gen->shared_len, gen->n_block, gen->block_dim);
911 else
912 tiling = tile(isl_space_copy(dim), gen->tiled_len,
913 gen->shared_len, gen->n_block, gen->block_dim);
914 gen->thread_tiled_len = gen->tiled_len + gen->n_block;
916 sched = isl_union_map_apply_range(sched,
917 isl_union_map_from_map(tiling));
919 par = parametrization(dim, gen->thread_tiled_len,
920 gen->tile_first + gen->tile_len + gen->n_grid + gen->n_block,
921 gen->n_block, "t");
922 sched = isl_union_map_intersect_range(sched,
923 isl_union_set_from_set(par));
925 gen->shared_len = gen->tile_first + gen->tile_len + gen->n_grid;
927 return sched;
930 /* If the user asked for it, scale the shared memory tile loops
931 * (T1T and T2) of "sched" by gen->tile_size[i].
932 * If we are not performing "wrapping", then additionally scale the T1P
933 * loops by gen->grid_dim[i].
935 static __isl_give isl_union_map *scale_tile_loops(struct gpu_gen *gen,
936 __isl_take isl_union_map *sched)
938 int i;
939 isl_space *dim;
940 isl_basic_map *scale;
941 isl_constraint *c;
942 isl_local_space *ls;
944 if (!gen->options->scale_tile_loops)
945 return sched;
947 dim = isl_union_map_get_space(sched);
948 dim = isl_space_add_dims(dim, isl_dim_in, gen->tiled_len);
949 dim = isl_space_add_dims(dim, isl_dim_out, gen->tiled_len);
950 scale = isl_basic_map_universe(isl_space_copy(dim));
951 ls = isl_local_space_from_space(dim);
953 for (i = 0; i < gen->tiled_len; ++i) {
954 int f = 1;
956 if (i >= gen->tile_first && i < gen->tile_first + gen->n_grid) {
957 f = gen->tile_size[i - gen->tile_first];
958 if (!gen->options->wrap)
959 f *= gen->grid_dim[i - gen->tile_first];
960 } else if (i >= gen->tile_first + gen->n_grid &&
961 i < gen->tile_first + gen->n_grid + gen->tile_len) {
962 f = gen->tile_size[i - (gen->tile_first + gen->n_grid)];
965 c = isl_equality_alloc(isl_local_space_copy(ls));
966 c = isl_constraint_set_coefficient_si(c, isl_dim_in, i, f);
967 c = isl_constraint_set_coefficient_si(c, isl_dim_out, i, -1);
968 scale = isl_basic_map_add_constraint(scale, c);
971 isl_local_space_free(ls);
973 sched = isl_union_map_apply_range(sched,
974 isl_union_map_from_map(isl_map_from_basic_map(scale)));
976 return sched;
979 /* If we are not performing "wrapping" and if the user asked for it,
980 * scale the thread tile loops (P1T) of "sched" by gen->block_dim[i].
982 static __isl_give isl_union_map *scale_thread_tile_loops(struct gpu_gen *gen,
983 __isl_take isl_union_map *sched)
985 int i;
986 isl_space *dim;
987 isl_basic_map *scale;
988 isl_constraint *c;
989 isl_local_space *ls;
991 if (gen->options->wrap)
992 return sched;
993 if (!gen->options->scale_tile_loops)
994 return sched;
996 dim = isl_union_map_get_space(sched);
997 dim = isl_space_add_dims(dim, isl_dim_in, gen->thread_tiled_len);
998 dim = isl_space_add_dims(dim, isl_dim_out, gen->thread_tiled_len);
999 scale = isl_basic_map_universe(isl_space_copy(dim));
1000 ls = isl_local_space_from_space(dim);
1002 for (i = 0; i < gen->thread_tiled_len; ++i) {
1003 int f = 1;
1005 if (i >= gen->shared_len &&
1006 i < gen->shared_len + gen->n_block)
1007 f = gen->block_dim[i - gen->shared_len];
1009 c = isl_equality_alloc(isl_local_space_copy(ls));
1010 c = isl_constraint_set_coefficient_si(c, isl_dim_in, i, f);
1011 c = isl_constraint_set_coefficient_si(c, isl_dim_out, i, -1);
1012 scale = isl_basic_map_add_constraint(scale, c);
1015 isl_local_space_free(ls);
1017 sched = isl_union_map_apply_range(sched,
1018 isl_union_map_from_map(isl_map_from_basic_map(scale)));
1020 return sched;
1023 /* If we are not performing "wrapping" and if the user asked for it,
1024 * scale the "n_tile" loops starting at "first" of "sched" by gen->block_dim[i].
1026 static __isl_give isl_union_map *scale_access_tile_loops(struct gpu_gen *gen,
1027 __isl_take isl_union_map *sched, int len, int first, int n_tile)
1029 int i;
1030 isl_space *dim;
1031 isl_basic_map *scale;
1032 isl_constraint *c;
1033 isl_local_space *ls;
1035 if (gen->options->wrap)
1036 return sched;
1037 if (!gen->options->scale_tile_loops)
1038 return sched;
1040 dim = isl_union_map_get_space(sched);
1041 dim = isl_space_add_dims(dim, isl_dim_in, len);
1042 dim = isl_space_add_dims(dim, isl_dim_out, len);
1043 scale = isl_basic_map_universe(isl_space_copy(dim));
1044 ls = isl_local_space_from_space(dim);
1046 for (i = 0; i < len; ++i) {
1047 int f = 1;
1049 if (i >= first && i < first + n_tile)
1050 f = gen->block_dim[i - first];
1052 c = isl_equality_alloc(isl_local_space_copy(ls));
1053 c = isl_constraint_set_coefficient_si(c, isl_dim_in, i, f);
1054 c = isl_constraint_set_coefficient_si(c, isl_dim_out, i, -1);
1055 scale = isl_basic_map_add_constraint(scale, c);
1058 isl_local_space_free(ls);
1060 sched = isl_union_map_apply_range(sched,
1061 isl_union_map_from_map(isl_map_from_basic_map(scale)));
1063 return sched;
1066 /* Add "len" parameters p[i] called prefix%d,
1067 * with bounds to 0 <= p[i] < size[i].
1069 __isl_give isl_set *add_bounded_parameters(__isl_take isl_set *set,
1070 int len, int *size, const char *prefix)
1072 int i;
1073 unsigned nparam;
1074 isl_space *dim;
1075 isl_basic_set *bset;
1076 isl_constraint *c;
1077 isl_local_space *ls;
1078 char name[20];
1080 nparam = isl_set_dim(set, isl_dim_param);
1081 set = isl_set_add_dims(set, isl_dim_param, len);
1083 for (i = 0; i < len; ++i) {
1084 snprintf(name, sizeof(name), "%s%d", prefix, i);
1085 set = isl_set_set_dim_name(set, isl_dim_param,
1086 nparam + i, name);
1089 dim = isl_set_get_space(set);
1090 bset = isl_basic_set_universe(isl_space_copy(dim));
1091 ls = isl_local_space_from_space(dim);
1093 for (i = 0; i < len; ++i) {
1094 c = isl_inequality_alloc(isl_local_space_copy(ls));
1095 c = isl_constraint_set_coefficient_si(c, isl_dim_param,
1096 nparam + i, 1);
1097 bset = isl_basic_set_add_constraint(bset, c);
1099 c = isl_inequality_alloc(isl_local_space_copy(ls));
1100 c = isl_constraint_set_coefficient_si(c, isl_dim_param,
1101 nparam + i, -1);
1102 c = isl_constraint_set_constant_si(c, size[i] - 1);
1103 bset = isl_basic_set_add_constraint(bset, c);
1106 isl_local_space_free(ls);
1108 return isl_set_intersect(set, isl_set_from_basic_set(bset));
1111 /* Add "len" parameters p[i] called prefix%d,
1112 * with bounds to 0 <= p[i] < size[i].
1114 static __isl_give isl_set *add_bounded_parameters_dynamic(
1115 __isl_take isl_set *set, __isl_keep isl_multi_pw_aff *size,
1116 const char *prefix)
1118 int i, len;
1119 unsigned nparam;
1120 isl_space *space;
1121 isl_local_space *ls;
1122 char name[20];
1124 len = isl_multi_pw_aff_dim(size, isl_dim_out);
1125 nparam = isl_set_dim(set, isl_dim_param);
1126 set = isl_set_add_dims(set, isl_dim_param, len);
1128 for (i = 0; i < len; ++i) {
1129 snprintf(name, sizeof(name), "%s%d", prefix, i);
1130 set = isl_set_set_dim_name(set, isl_dim_param,
1131 nparam + i, name);
1134 space = isl_space_params(isl_set_get_space(set));
1135 ls = isl_local_space_from_space(space);
1136 for (i = 0; i < len; ++i) {
1137 isl_pw_aff *param, *size_i, *zero;
1138 isl_set *bound;
1140 param = isl_pw_aff_var_on_domain(isl_local_space_copy(ls),
1141 isl_dim_param, nparam + i);
1143 size_i = isl_multi_pw_aff_get_pw_aff(size, i);
1144 bound = isl_pw_aff_lt_set(isl_pw_aff_copy(param), size_i);
1145 set = isl_set_intersect_params(set, bound);
1147 zero = isl_pw_aff_zero_on_domain(isl_local_space_copy(ls));
1148 bound = isl_pw_aff_ge_set(param, zero);
1149 set = isl_set_intersect_params(set, bound);
1151 isl_local_space_free(ls);
1153 return set;
1156 /* Given a mapping "sched" of the form
1158 * [D -> A] -> [D -> T(A)]
1160 * apply the mapping encoded in tile->bound[i].shift_map
1161 * to the range of "sched".
1162 * The mappings in tile->bound[i].shift_map are of the form
1164 * [D -> a] -> [D -> s(D,a)]
1166 * We first compose them with a mapping
1168 * [D -> v] -> v
1170 * (If tile->bound[i].shift_map is not set, then it is assumed to be
1171 * an identity mapping and then we use this second mapping instead.)
1172 * This results in
1174 * [D -> a] -> s(D,a)
1176 * We precompose them with a projection on the i th dimension to obtain
1178 * [D -> T] -> s(D,T)
1180 * and collect these into
1182 * [D -> T] -> S(D,T)
1184 * Introducing D in the range yields
1186 * [D -> T] -> [D -> S(D,T)]
1188 * and application to "sched" yields
1190 * [D -> A] -> [D -> S(D,T(A))]
1192 static __isl_give isl_map *pre_shift(__isl_take isl_map *sched,
1193 struct gpu_array_tile *tile)
1195 int i;
1196 isl_ctx *ctx = isl_map_get_ctx(sched);
1197 isl_space *space, *space2;
1198 isl_basic_map *def;
1199 isl_map *map, *id, *pre_shift;
1201 space = isl_space_range(isl_map_get_space(sched));
1202 space2 = isl_space_from_domain(isl_space_copy(space));
1203 pre_shift = isl_map_universe(space2);
1204 space = isl_space_domain(isl_space_unwrap(space));
1205 id = isl_map_identity(isl_space_map_from_set(isl_space_copy(space)));
1206 space = isl_space_from_domain(space);
1207 space = isl_space_add_dims(space, isl_dim_out, 1);
1208 def = isl_basic_map_range_map(isl_basic_map_universe(space));
1210 for (i = 0; i < tile->n; ++i) {
1211 isl_basic_map *bmap, *drop;
1212 isl_map *proj;
1214 space = isl_space_alloc(ctx, 0, tile->n, tile->n);
1215 proj = isl_map_identity(space);
1216 proj = isl_map_project_out(proj, isl_dim_out,
1217 i + 1, tile->n - (i + 1));
1218 proj = isl_map_project_out(proj, isl_dim_out, 0, i);
1219 proj = isl_map_product(isl_map_copy(id), proj);
1221 if (!tile->bound[i].shift_map)
1222 bmap = isl_basic_map_copy(def);
1223 else {
1224 bmap = isl_basic_map_copy(tile->bound[i].shift_map);
1225 bmap = isl_basic_map_apply_range(bmap,
1226 isl_basic_map_copy(def));
1229 map = isl_map_from_basic_map(bmap);
1230 map = isl_map_apply_range(proj, map);
1231 pre_shift = isl_map_flat_range_product(pre_shift, map);
1234 isl_map_free(id);
1235 isl_basic_map_free(def);
1237 space = isl_space_domain(isl_map_get_space(pre_shift));
1238 map = isl_map_domain_map(isl_map_universe(isl_space_unwrap(space)));
1239 pre_shift = isl_map_range_product(map, pre_shift);
1241 sched = isl_map_apply_range(sched, pre_shift);
1243 return sched;
1246 /* Given an access relation to a tile of an array, construct a map that
1247 * maps each element in the space of the access relation
1248 * to a copy of the tile shifted to the origin
1249 * (based on the lower bounds in group->private_tile or group->shared_tile).
1250 * If any of the indices is strided, then
1251 * {private,shared}_tile->bound[i].shift_map is applied to the index first.
1252 * The domain space of the resulting map is that of access "access",
1253 * while the range space is anonymous.
1254 * The resulting map only encodes the mapping to the shift tile and
1255 * not the constraints of "access".
1257 * Let the space of the access relation be
1259 * D -> A
1261 * We first construct an identity relation on a wrapped copy of this space,
1262 * except that it strips off the name of array
1264 * [D -> A] -> [D -> T(A)] (1)
1266 * The bounds in tile->bound[i].lb are of the form
1268 * D -> b(D)
1270 * We collect them into
1272 * D -> B(D)
1274 * and then transform them into
1276 * [D -> T] -> T - B(D) (2)
1278 * Combining those two mappings (1) and (2) yields
1280 * [D -> A] -> T(A) - B(D)
1282 * If there are any strides, then (1) is first transformed into (1')
1284 * [D -> A] -> [D -> T'(A)] (1')
1286 * by a call to pre_shift.
1288 static __isl_give isl_map *shift_access(__isl_take isl_map *access,
1289 struct gpu_array_ref_group *group)
1291 int i;
1292 isl_space *space;
1293 isl_map *id1, *id2;
1294 isl_map *map;
1295 isl_map *shift;
1296 isl_map *sched;
1297 struct gpu_array_tile *tile;
1298 int n_index = group->array->n_index;
1300 tile = group->private_tile;
1301 if (!tile)
1302 tile = group->shared_tile;
1304 space = isl_space_domain(isl_map_get_space(access));
1305 space = isl_space_map_from_set(space);
1306 id1 = isl_map_identity(space);
1307 space = isl_space_range(isl_map_get_space(access));
1308 space = isl_space_map_from_set(space);
1309 space = isl_space_set_tuple_name(space, isl_dim_out, NULL);
1310 id2 = isl_map_identity(space);
1311 sched = isl_map_product(id1, id2);
1313 space = isl_space_unwrap(isl_space_range(isl_map_get_space(sched)));
1314 space = isl_space_from_domain(isl_space_domain(space));
1315 shift = isl_map_universe(space);
1316 for (i = 0; i < n_index; ++i) {
1317 map = isl_map_from_aff(isl_aff_copy(tile->bound[i].lb));
1318 shift = isl_map_flat_range_product(shift, map);
1321 space = isl_space_unwrap(isl_space_range(isl_map_get_space(sched)));
1322 map = isl_map_universe(space);
1323 id1 = isl_map_range_map(isl_map_copy(map));
1324 map = isl_map_domain_map(map);
1325 shift = isl_map_neg(shift);
1326 shift = isl_map_apply_range(map, shift);
1327 shift = isl_map_sum(id1, shift);
1329 for (i = 0; i < n_index; ++i)
1330 if (tile->bound[i].shift_map)
1331 break;
1333 if (i < n_index)
1334 sched = pre_shift(sched, tile);
1336 sched = isl_map_apply_range(sched, shift);
1338 isl_map_free(access);
1340 return sched;
1343 /* Given a schedule that iterates over all elements in a piece of an array,
1344 * perform tiling/wrapping over the threads.
1346 * In particular, we tile the final iterators so that the final thread
1347 * dimension runs over the final array dimension.
1348 * However, if those final iterators have only a single iteration,
1349 * we try to tile earlier iterators instead.
1351 static __isl_give isl_map *tile_access_schedule(struct gpu_gen *gen,
1352 __isl_take isl_map *sched)
1354 isl_space *dim;
1355 isl_union_map *usched;
1356 isl_map *tiling;
1357 isl_set *par;
1358 unsigned nvar = isl_map_dim(sched, isl_dim_out);
1359 int n_tile;
1360 int first;
1362 n_tile = gen->n_block;
1363 if (n_tile > nvar) {
1364 int i;
1365 sched = isl_map_insert_dims(sched,
1366 isl_dim_out, 0, n_tile - nvar);
1367 for (i = 0; i < n_tile - nvar; ++i)
1368 sched = isl_map_fix_si(sched, isl_dim_out, i, 0);
1369 nvar = n_tile;
1372 first = nvar - n_tile;
1374 for (; first > 0; first --)
1375 if (!isl_map_plain_is_fixed(sched, isl_dim_out,
1376 first + n_tile - 1, NULL))
1377 break;
1379 dim = isl_map_get_space(sched);
1380 dim = isl_space_params(dim);
1381 if (gen->options->wrap)
1382 tiling = wrap(isl_space_copy(dim), nvar, first,
1383 n_tile, gen->block_dim);
1384 else
1385 tiling = tile(isl_space_copy(dim), nvar, first,
1386 n_tile, gen->block_dim);
1387 sched = isl_map_apply_range(sched, tiling);
1389 par = parametrization(dim, nvar + n_tile, first + n_tile, n_tile, "t");
1390 sched = isl_map_intersect_range(sched, par);
1392 usched = isl_union_map_from_map(sched);
1393 usched = scale_access_tile_loops(gen, usched, nvar + n_tile,
1394 first, n_tile);
1395 sched = isl_map_from_union_map(usched);
1397 return sched;
1400 /* Given an index expression "pa" into a tile of an array, adjust the expression
1401 * to a shift of the tile to the origin
1402 * (based on the lower bounds in "bound".
1403 * If the index is strided, then we first add
1404 * bound->shift and divide by bound->stride.
1405 * In the end, we compute the gist with respect to "domain".
1407 * All of the input expression "pa", the set "domain" and
1408 * the output are expressed in terms of the AST schedule domain.
1409 * The expressions in "bound" are expressed
1410 * in terms of the first shared_len dimensions of the schedule computed by PPCG.
1411 * The mapping "sched2shared" maps the former domain to the latter domain.
1413 static __isl_give isl_pw_aff *shift_index(__isl_take isl_pw_aff *pa,
1414 struct gpu_array_info *array,
1415 struct gpu_array_bound *bound, __isl_take isl_set *domain,
1416 __isl_take isl_map *sched2shared)
1418 isl_map *map;
1419 isl_pw_aff *tmp;
1420 isl_pw_multi_aff *pma;
1422 if (bound->shift) {
1423 map = isl_map_from_aff(isl_aff_copy(bound->shift));
1424 map = isl_map_apply_range(isl_map_copy(sched2shared), map);
1425 pma = isl_pw_multi_aff_from_map(map);
1426 tmp = isl_pw_multi_aff_get_pw_aff(pma, 0);
1427 isl_pw_multi_aff_free(pma);
1428 pa = isl_pw_aff_add(pa, tmp);
1429 pa = isl_pw_aff_scale_down_val(pa, isl_val_copy(bound->stride));
1433 map = isl_map_from_aff(isl_aff_copy(bound->lb));
1434 map = isl_map_apply_range(sched2shared, map);
1435 pma = isl_pw_multi_aff_from_map(map);
1436 tmp = isl_pw_multi_aff_get_pw_aff(pma, 0);
1437 isl_pw_multi_aff_free(pma);
1438 pa = isl_pw_aff_sub(pa, tmp);
1439 pa = isl_pw_aff_coalesce(pa);
1440 pa = isl_pw_aff_gist(pa, domain);
1442 return pa;
1445 /* Return the union of all read (read = 1) and/or write (write = 1)
1446 * access relations in the group.
1448 static __isl_give isl_union_map *group_access_relation(
1449 struct gpu_array_ref_group *group, int read, int write)
1451 int i;
1452 isl_union_map *access;
1454 access = isl_union_map_empty(isl_map_get_space(group->access));
1455 for (i = 0; i < group->n_ref; ++i) {
1456 isl_map *map_i;
1458 if (!((read && group->refs[i]->read) ||
1459 (write && group->refs[i]->write)))
1460 continue;
1461 map_i = isl_map_copy(group->refs[i]->access);
1462 access = isl_union_map_union(access,
1463 isl_union_map_from_map(map_i));
1466 return access;
1469 /* Return a map from the first shared_len dimensions of the computed
1470 * schedule to the values of the given index "i"
1471 * of the elements in the array tile in global memory that corresponds
1472 * to the shared memory copy.
1473 * In particular, if a is the index, then the range of the map
1475 * { D -> [a] }
1477 * is constrained as follows
1479 * tile_offset(D) <= a <= tile_offset(D) + tile_size - 1 (1)
1481 * and
1483 * 0 <= a <= array_size - 1 (2)
1486 * Note that if some stride has been detected (i.e., when
1487 * group->shared_tile->bound[i].shift is set), then offset and size (i.e.,
1488 * constraints (1)) apply to the shifted and scaled down copy of the tile.
1489 * These constraints therefore have to be mapped back to the original
1490 * array space using the inverse of the shift_map.
1492 static __isl_give isl_map *group_tile_dim(struct gpu_array_ref_group *group,
1493 int i)
1495 isl_aff *aff;
1496 isl_space *space;
1497 isl_map *map, *tile, *gt;
1498 isl_set *bound;
1500 map = isl_map_from_aff(isl_aff_copy(group->shared_tile->bound[i].lb));
1501 space = isl_space_range(isl_map_get_space(map));
1502 map = isl_map_apply_range(map, isl_map_lex_le(isl_space_copy(space)));
1503 tile = map;
1505 aff = isl_aff_copy(group->shared_tile->bound[i].lb);
1506 aff = isl_aff_add_constant_val(aff,
1507 isl_val_copy(group->shared_tile->bound[i].size));
1508 map = isl_map_from_aff(aff);
1509 gt = isl_map_lex_gt(space);
1510 map = isl_map_apply_range(map, isl_map_copy(gt));
1511 tile = isl_map_intersect(tile, map);
1513 if (group->shared_tile->bound[i].shift) {
1514 isl_basic_map *shift;
1515 shift = isl_basic_map_copy(group->shared_tile->bound[i].shift_map);
1516 shift = isl_basic_map_reverse(shift);
1517 tile = isl_set_unwrap(isl_set_apply(isl_map_wrap(tile),
1518 isl_map_from_basic_map(shift)));
1521 tile = isl_map_lower_bound_si(tile, isl_dim_out, 0, 0);
1523 bound = isl_set_from_pw_aff(isl_pw_aff_copy(group->array->bound[i]));
1524 bound = isl_set_apply(bound, gt);
1525 tile = isl_map_intersect_range(tile, bound);
1527 return tile;
1530 /* Return a map from the first shared_len dimensions of the computed
1531 * schedule to the array tile in
1532 * global memory that corresponds to the shared memory copy.
1534 static __isl_give isl_map *group_tile(struct gpu_array_ref_group *group)
1536 int i;
1537 int n_index = group->array->n_index;
1538 isl_map *tile;
1540 tile = group_tile_dim(group, 0);
1541 for (i = 1; i < n_index; ++i) {
1542 isl_map *tile_i;
1544 tile_i = group_tile_dim(group, i);
1545 tile = isl_map_flat_range_product(tile, tile_i);
1548 tile = isl_map_set_tuple_name(tile, isl_dim_out, group->array->name);
1550 return tile;
1553 /* Given a mapping "sched" from the AST schedule to a domain,
1554 * return the corresponding mapping from the AST schedule to
1555 * to the first shared_len dimensions of the schedule computed by PPCG.
1557 static __isl_give isl_map *compute_sched_to_shared(struct gpu_gen *gen,
1558 __isl_take isl_map *sched)
1560 isl_union_map *umap;
1561 isl_space *space;
1562 isl_map *map;
1564 space = isl_space_range(isl_map_get_space(sched));
1565 space = isl_space_from_domain(space);
1566 space = isl_space_add_dims(space, isl_dim_out, gen->shared_len);
1568 umap = isl_union_map_copy(gen->shared_sched);
1569 umap = isl_union_map_apply_range(umap,
1570 isl_union_map_copy(gen->shared_proj));
1571 map = isl_union_map_extract_map(umap, space);
1572 isl_union_map_free(umap);
1574 sched = isl_map_apply_range(sched, map);
1575 sched = isl_map_detect_equalities(sched);
1577 return sched;
1580 /* Set unroll[j] if the input dimension j is involved in
1581 * the index expression represented by ma.
1583 static int check_unroll(__isl_take isl_set *set, __isl_take isl_multi_aff *ma,
1584 void *user)
1586 int i, j;
1587 int n_in = isl_multi_aff_dim(ma, isl_dim_in);
1588 int n_out = isl_multi_aff_dim(ma, isl_dim_out);
1589 int *unroll = user;
1591 for (i = 0; i < n_out; ++i) {
1592 isl_aff *aff;
1594 aff = isl_multi_aff_get_aff(ma, i);
1595 for (j = 0; j < n_in; ++j)
1596 if (isl_aff_involves_dims(aff, isl_dim_in, j, 1))
1597 unroll[j] = 1;
1598 isl_aff_free(aff);
1601 isl_set_free(set);
1602 isl_multi_aff_free(ma);
1603 return 0;
1606 /* Given an array pos mapping input dimensions to the corresponding
1607 * output dimension, construct the corresponding map.
1609 static __isl_give isl_map *permutation(__isl_take isl_space *dim,
1610 int *pos, int len)
1612 int i;
1613 isl_constraint *c;
1614 isl_basic_map *bmap;
1615 isl_local_space *ls;
1617 dim = isl_space_add_dims(dim, isl_dim_in, len);
1618 dim = isl_space_add_dims(dim, isl_dim_out, len);
1619 bmap = isl_basic_map_universe(isl_space_copy(dim));
1620 ls = isl_local_space_from_space(dim);
1622 for (i = 0; i < len; ++i) {
1623 c = isl_equality_alloc(isl_local_space_copy(ls));
1624 c = isl_constraint_set_coefficient_si(c, isl_dim_in, i,
1625 -1);
1626 c = isl_constraint_set_coefficient_si(c, isl_dim_out, pos[i],
1628 bmap = isl_basic_map_add_constraint(bmap, c);
1630 isl_local_space_free(ls);
1632 return isl_map_from_basic_map(bmap);
1635 /* Find all loops involved in any of the index expressions for any of
1636 * the private accesses, move them innermost and then mark them as
1637 * requiring unrolling by setting gen->first_unroll.
1638 * The loops involved should all be parallel because of the checks
1639 * we performed in check_private_group_access. Moving them innermost
1640 * is therefore a valid transformation.
1642 * Loops up to gen->shared_len are generated before the mapping to
1643 * threads is applied. They should therefore be ignored.
1645 * We compute the hidden equalities of the schedule first
1646 * since we will need them in our calls to isl_pw_multi_aff_from_map
1647 * and because we want to make sure that the same equalities
1648 * are also available to the code generator.
1650 static __isl_give isl_union_map *interchange_for_unroll(struct gpu_gen *gen,
1651 __isl_take isl_union_map *sched)
1653 int i, j;
1654 int unroll[gen->thread_tiled_len];
1655 int perm[gen->thread_tiled_len];
1656 isl_space *dim;
1657 isl_map *permute;
1658 int len = gen->shared_len + gen->n_parallel + gen->n_block;
1660 gen->first_unroll = -1;
1662 sched = isl_union_map_detect_equalities(sched);
1663 for (i = 0; i < gen->thread_tiled_len; ++i)
1664 unroll[i] = 0;
1665 for (i = 0; i < gen->prog->n_array; ++i) {
1666 struct gpu_array_info *array = &gen->prog->array[i];
1668 for (j = 0; j < array->n_group; ++j) {
1669 isl_union_map *access;
1670 isl_map *acc;
1671 isl_pw_multi_aff *pma;
1673 if (!array->groups[j]->private_tile)
1674 continue;
1676 access = group_access_relation(array->groups[j], 1, 1);
1677 access = isl_union_map_apply_domain(access,
1678 isl_union_map_copy(sched));
1680 acc = isl_map_from_union_map(access);
1681 pma = isl_pw_multi_aff_from_map(acc);
1682 isl_pw_multi_aff_foreach_piece(pma,
1683 &check_unroll, unroll);
1685 isl_pw_multi_aff_free(pma);
1689 for (i = gen->shared_len; i < len; ++i)
1690 if (unroll[i])
1691 break;
1693 if (i >= len)
1694 return sched;
1696 for (i = len; i < gen->thread_tiled_len; ++i)
1697 if (unroll[i])
1698 return sched;
1700 j = 0;
1701 for (i = 0; i < gen->shared_len; ++i)
1702 perm[i] = j++;
1703 for (i = gen->shared_len; i < gen->thread_tiled_len; ++i)
1704 if (!unroll[i])
1705 perm[i] = j++;
1706 gen->first_unroll = j - gen->shared_len;
1707 for (i = gen->shared_len; i < len; ++i)
1708 if (unroll[i])
1709 perm[i] = j++;
1711 dim = isl_union_map_get_space(sched);
1712 permute = permutation(dim, perm, gen->thread_tiled_len);
1713 sched = isl_union_map_apply_range(sched,
1714 isl_union_map_from_map(permute));
1716 return sched;
1719 /* Given a constraint
1721 * a(p,i) + j = g f(e)
1723 * or -a(p,i) - j = g f(e) if sign < 0,
1724 * store a(p,i) in bound->shift and g (stride) in bound->stride.
1725 * a(p,i) is assumed to be an expression in only the parameters
1726 * and the input dimensions.
1728 static void extract_stride(__isl_keep isl_constraint *c,
1729 struct gpu_array_bound *bound, __isl_keep isl_val *stride, int sign)
1731 int i;
1732 isl_int v;
1733 isl_space *space;
1734 unsigned nparam;
1735 unsigned nvar;
1736 isl_aff *aff;
1738 isl_val_free(bound->stride);
1739 bound->stride = isl_val_copy(stride);
1741 space = isl_constraint_get_space(c);
1742 space = isl_space_domain(space);
1744 nparam = isl_space_dim(space, isl_dim_param);
1745 nvar = isl_space_dim(space, isl_dim_set);
1747 isl_int_init(v);
1749 isl_constraint_get_constant(c, &v);
1750 if (sign < 0)
1751 isl_int_neg(v, v);
1752 aff = isl_aff_zero_on_domain(isl_local_space_from_space(space));
1753 aff = isl_aff_set_constant(aff, v);
1755 for (i = 0; i < nparam; ++i) {
1756 isl_constraint_get_coefficient(c, isl_dim_param, i, &v);
1757 if (isl_int_is_zero(v))
1758 continue;
1759 if (sign < 0)
1760 isl_int_neg(v, v);
1761 aff = isl_aff_add_coefficient(aff, isl_dim_param, i, v);
1764 for (i = 0; i < nvar; ++i) {
1765 isl_constraint_get_coefficient(c, isl_dim_in, i, &v);
1766 if (isl_int_is_zero(v))
1767 continue;
1768 if (sign < 0)
1769 isl_int_neg(v, v);
1770 aff = isl_aff_add_coefficient(aff, isl_dim_in, i, v);
1773 isl_int_clear(v);
1775 bound->shift = aff;
1778 /* Given an equality constraint of a map with a single output dimension j,
1779 * check if the constraint is of the form
1781 * a(p,i) + j = g f(e)
1783 * with a(p,i) an expression in the parameters and input dimensions
1784 * and f(e) an expression in the existentially quantified variables.
1785 * If so, and if g is larger than any such g from a previously considered
1786 * constraint, then call extract_stride to record the stride information
1787 * in bound.
1789 static int check_stride_constraint(__isl_take isl_constraint *c, void *user)
1791 int i;
1792 isl_ctx *ctx;
1793 isl_val *v;
1794 unsigned n_div;
1795 struct gpu_array_bound *bound = user;
1797 ctx = isl_constraint_get_ctx(c);
1798 n_div = isl_constraint_dim(c, isl_dim_div);
1799 v = isl_constraint_get_coefficient_val(c, isl_dim_out, 0);
1801 if (n_div && (isl_val_is_one(v) || isl_val_is_negone(v))) {
1802 int s = isl_val_sgn(v);
1803 isl_val *stride = isl_val_zero(ctx);
1805 isl_val_free(v);
1806 for (i = 0; i < n_div; ++i) {
1807 v = isl_constraint_get_coefficient_val(c,
1808 isl_dim_div, i);
1809 stride = isl_val_gcd(stride, v);
1811 if (!isl_val_is_zero(stride) &&
1812 isl_val_gt(stride, bound->stride))
1813 extract_stride(c, bound, stride, s);
1815 isl_val_free(stride);
1816 } else
1817 isl_val_free(v);
1819 isl_constraint_free(c);
1820 return 0;
1823 /* Given contraints on an array index i, check if we can find
1824 * a shift a(p) and a stride g such that
1826 * a(p) + i = 0 mod g
1828 * If so, record the information in bound and apply the mapping
1829 * i -> (i + a(p))/g to the array index in bounds and return
1830 * the new constraints.
1831 * If not, simply return the original constraints.
1833 * If bounds is a subset of the space
1835 * D -> i
1837 * then the bound recorded in bound->shift is of the form
1839 * D -> s(D)
1841 * with s(D) equal to a(p) above.
1842 * The mapping recorded in bound->shift_map is of the form
1844 * [D -> i] -> [D -> (i + S(D))/g]
1846 * This mapping is computed as follows.
1847 * We first introduce "i" in the domain through precomposition
1848 * with [D -> i] -> D obtaining
1850 * [D -> i] -> s(D)
1852 * Adding [D -> i] -> i produces
1854 * [D -> i] -> i + s(D)
1856 * and the domain product with [D -> i] -> D yields
1858 * [D -> i] -> [D -> i + s(D)]
1860 * Composition with [D -> i] -> [D -> i/g] gives the desired result.
1862 static __isl_give isl_basic_map *check_stride(struct gpu_array_bound *bound,
1863 __isl_take isl_basic_map *bounds)
1865 isl_space *space;
1866 isl_basic_map *hull;
1867 isl_basic_map *shift, *id, *bmap, *scale;
1868 isl_basic_set *bset;
1869 isl_aff *aff;
1871 bound->stride = NULL;
1873 hull = isl_basic_map_affine_hull(isl_basic_map_copy(bounds));
1875 isl_basic_map_foreach_constraint(hull, &check_stride_constraint, bound);
1877 isl_basic_map_free(hull);
1879 if (!bound->stride)
1880 return bounds;
1882 shift = isl_basic_map_from_aff(isl_aff_copy(bound->shift));
1883 space = isl_basic_map_get_space(bounds);
1884 bmap = isl_basic_map_domain_map(isl_basic_map_universe(space));
1885 shift = isl_basic_map_apply_range(bmap, shift);
1886 space = isl_basic_map_get_space(bounds);
1887 id = isl_basic_map_range_map(isl_basic_map_universe(space));
1888 shift = isl_basic_map_sum(id, shift);
1889 space = isl_basic_map_get_space(bounds);
1890 id = isl_basic_map_domain_map(isl_basic_map_universe(space));
1891 shift = isl_basic_map_range_product(id, shift);
1893 space = isl_space_domain(isl_basic_map_get_space(bounds));
1894 id = isl_basic_map_identity(isl_space_map_from_set(space));
1895 space = isl_space_range(isl_basic_map_get_space(bounds));
1896 aff = isl_aff_zero_on_domain(isl_local_space_from_space(space));
1897 aff = isl_aff_add_coefficient_si(aff, isl_dim_in, 0, 1);
1898 aff = isl_aff_scale_down_val(aff, isl_val_copy(bound->stride));
1899 scale = isl_basic_map_from_aff(aff);
1900 scale = isl_basic_map_product(id, scale);
1902 bound->shift_map = isl_basic_map_apply_range(shift, scale);
1903 bmap = isl_basic_map_copy(bound->shift_map);
1904 bset = isl_basic_set_apply(isl_basic_map_wrap(bounds), bmap);
1905 bounds = isl_basic_set_unwrap(bset);
1907 return bounds;
1910 /* Data used in compute_array_dim_size and compute_size_in_direction.
1912 * pos is the position of the variable representing the array index,
1913 * i.e., the variable for which want to compute the size. This variable
1914 * is also the last variable in the set.
1916 struct gpu_size_info {
1917 isl_basic_set *bset;
1918 struct gpu_array_bound *bound;
1919 int pos;
1922 /* Given a constraint from the basic set describing the bounds on
1923 * an array index, check if it is a lower bound, say m i >= b(x), and,
1924 * if so, check whether the expression "i - ceil(b(x)/m) + 1" has a constant
1925 * upper bound. If so, and if this bound is smaller than any bound
1926 * derived from earlier constraints, set the size to this bound on
1927 * the expression and the lower bound to ceil(b(x)/m).
1929 static int compute_size_in_direction(__isl_take isl_constraint *c, void *user)
1931 struct gpu_size_info *size = user;
1932 unsigned nparam;
1933 unsigned n_div;
1934 isl_val *v;
1935 isl_aff *aff;
1936 isl_aff *lb;
1938 nparam = isl_basic_set_dim(size->bset, isl_dim_param);
1939 n_div = isl_constraint_dim(c, isl_dim_div);
1941 if (isl_constraint_involves_dims(c, isl_dim_div, 0, n_div) ||
1942 !isl_constraint_is_lower_bound(c, isl_dim_set, size->pos)) {
1943 isl_constraint_free(c);
1944 return 0;
1947 aff = isl_constraint_get_bound(c, isl_dim_set, size->pos);
1948 aff = isl_aff_ceil(aff);
1950 lb = isl_aff_copy(aff);
1952 aff = isl_aff_neg(aff);
1953 aff = isl_aff_add_coefficient_si(aff, isl_dim_in, size->pos, 1);
1955 v = isl_basic_set_max_val(size->bset, aff);
1956 isl_aff_free(aff);
1958 if (isl_val_is_int(v)) {
1959 v = isl_val_add_ui(v, 1);
1960 if (!size->bound->size || isl_val_lt(v, size->bound->size)) {
1961 isl_val_free(size->bound->size);
1962 size->bound->size = isl_val_copy(v);
1963 lb = isl_aff_drop_dims(lb, isl_dim_in, size->pos, 1);
1964 isl_aff_free(size->bound->lb);
1965 size->bound->lb = isl_aff_copy(lb);
1968 isl_val_free(v);
1969 isl_aff_free(lb);
1971 isl_constraint_free(c);
1973 return 0;
1976 /* Given a basic map "bounds" that maps parameters and input dimensions
1977 * to a single output dimension, look for an expression in the parameters
1978 * and input dimensions such that the range of the output dimension shifted
1979 * by this expression is a constant.
1981 * In particular, we currently only consider lower bounds on the output
1982 * dimension as candidate expressions.
1984 static int compute_array_dim_size(struct gpu_array_bound *bound,
1985 __isl_take isl_basic_map *bounds)
1987 struct gpu_size_info size;
1989 bounds = isl_basic_map_detect_equalities(bounds);
1990 bounds = check_stride(bound, bounds);
1992 bound->size = NULL;
1993 bound->lb = NULL;
1995 size.bound = bound;
1996 size.pos = isl_basic_map_dim(bounds, isl_dim_in);
1997 size.bset = isl_basic_map_wrap(bounds);
1998 size.bset = isl_basic_set_flatten(size.bset);
1999 size.bset = isl_set_simple_hull(isl_basic_set_compute_divs(size.bset));
2000 isl_basic_set_foreach_constraint(size.bset, &compute_size_in_direction,
2001 &size);
2002 isl_basic_set_free(size.bset);
2004 return bound->size ? 0 : -1;
2007 /* Check if we can find a memory tile for the given array
2008 * based on the given accesses, and if so, put the results in "tile".
2010 * We project the accesses on each index in turn and look for a parametric
2011 * offset such that the size is constant.
2013 static int can_tile(__isl_keep isl_map *access, struct gpu_array_tile *tile)
2015 int i;
2017 for (i = 0; i < tile->n; ++i) {
2018 isl_map *access_i;
2019 isl_basic_map *hull;
2021 access_i = isl_map_copy(access);
2022 access_i = isl_map_project_out(access_i, isl_dim_out, 0, i);
2023 access_i = isl_map_project_out(access_i, isl_dim_out,
2024 1, tile->n - (i + 1));
2025 access_i = isl_map_compute_divs(access_i);
2026 hull = isl_map_simple_hull(access_i);
2027 if (compute_array_dim_size(&tile->bound[i], hull) < 0)
2028 return 0;
2031 return 1;
2034 /* Construct a map with input the shared tile loops and the loops that
2035 * will be wrapped around the threads that relates these later loops
2036 * to the thread indices and then projects them out.
2038 static __isl_give isl_map *compute_privatization(struct gpu_gen *gen)
2040 isl_map *priv;
2041 isl_map *tiling;
2042 isl_map *proj;
2043 isl_set *par;
2044 isl_space *dim;
2046 dim = isl_union_map_get_space(gen->shared_sched);
2048 if (gen->options->wrap)
2049 tiling = wrap(isl_space_copy(dim), gen->shared_len + gen->n_block,
2050 gen->shared_len, gen->n_block, gen->block_dim);
2051 else
2052 tiling = tile(isl_space_copy(dim), gen->shared_len + gen->n_block,
2053 gen->shared_len, gen->n_block, gen->block_dim);
2055 priv = tiling;
2057 par = parametrization(dim, gen->shared_len + 2 * gen->n_block,
2058 gen->tile_first + gen->tile_len + gen->n_grid + gen->n_block,
2059 gen->n_block, "t");
2061 priv = isl_map_align_params(priv, isl_set_get_space(par));
2062 priv = isl_map_intersect_range(priv, par);
2064 dim = isl_map_get_space(priv);
2065 dim = isl_space_drop_dims(dim, isl_dim_in, 0, isl_space_dim(dim, isl_dim_in));
2066 dim = isl_space_drop_dims(dim, isl_dim_out, 0, isl_space_dim(dim, isl_dim_out));
2067 proj = projection(dim, gen->shared_len + 2 * gen->n_block,
2068 gen->shared_len);
2070 priv = isl_map_apply_range(priv, proj);
2072 return priv;
2075 /* Construct a map from domain_dim to domain_dim that increments
2076 * the dimension at position "pos" and leaves all other dimensions
2077 * constant.
2079 static __isl_give isl_map *next(__isl_take isl_space *domain_dim, int pos)
2081 int i;
2082 int len = isl_space_dim(domain_dim, isl_dim_set);
2083 isl_space *dim;
2084 isl_basic_map *next;
2085 isl_local_space *ls;
2087 dim = isl_space_map_from_set(domain_dim);
2088 next = isl_basic_map_universe(isl_space_copy(dim));
2089 ls = isl_local_space_from_space(dim);
2091 for (i = 0; i < len; ++i) {
2092 isl_constraint *c;
2094 c = isl_equality_alloc(isl_local_space_copy(ls));
2095 c = isl_constraint_set_coefficient_si(c, isl_dim_in, i, 1);
2096 c = isl_constraint_set_coefficient_si(c, isl_dim_out, i, -1);
2097 if (i == pos)
2098 c = isl_constraint_set_constant_si(c, 1);
2099 next = isl_basic_map_add_constraint(next, c);
2102 isl_local_space_free(ls);
2104 return isl_map_from_basic_map(next);
2107 /* Check if the given access is coalesced.
2108 * That is, check whether incrementing the dimension that will get
2109 * wrapped over the last thread index results in incrementing
2110 * the last array index.
2112 * This function is only called for access relations without reuse.
2114 static int access_is_coalesced(struct gpu_gen *gen,
2115 __isl_keep isl_union_map *access)
2117 isl_space *dim;
2118 isl_map *access_map;
2119 isl_map *next_thread_x;
2120 isl_map *next_element;
2121 isl_map *map;
2122 int coalesced;
2124 access = isl_union_map_copy(access);
2125 access = isl_union_map_apply_domain(access,
2126 isl_union_map_copy(gen->tiled_sched));
2127 access_map = isl_map_from_union_map(access);
2129 dim = isl_map_get_space(access_map);
2130 dim = isl_space_domain(dim);
2131 next_thread_x = next(dim, gen->shared_len + gen->n_block - 1);
2133 dim = isl_map_get_space(access_map);
2134 dim = isl_space_range(dim);
2135 next_element = next(dim, isl_space_dim(dim, isl_dim_set) - 1);
2137 map = isl_map_apply_domain(next_thread_x, isl_map_copy(access_map));
2138 map = isl_map_apply_range(map, access_map);
2140 coalesced = isl_map_is_subset(map, next_element);
2142 isl_map_free(next_element);
2143 isl_map_free(map);
2145 return coalesced;
2148 /* Given an access relation in terms of the first gen->shared_len + gen->n_block
2149 * dimensions of the computed schedule, check if it is bijective for
2150 * fixed values of the first gen->shared_len dimensions.
2151 * We perform this check by equating these dimensions to parameters.
2153 static int access_is_bijective(struct gpu_gen *gen, __isl_keep isl_map *access)
2155 int res;
2156 isl_set *par;
2157 isl_space *space;
2159 access = isl_map_copy(access);
2160 space = isl_space_params(isl_map_get_space(access));
2161 par = parametrization(space, gen->shared_len + gen->n_block,
2162 0, gen->shared_len, "s");
2163 access = isl_map_intersect_domain(access, par);
2164 res = isl_map_is_bijective(access);
2165 isl_map_free(access);
2167 return res;
2170 /* Look for the last shared tile loop that affects the offset of "tile"
2171 * and return the result.
2172 * If there is no such loop, then return the index of the loop
2173 * before the first shared tile loop, in particular gen->tile_first - 1.
2175 static int compute_tile_last_shared(struct gpu_gen *gen,
2176 struct gpu_array_tile *tile)
2178 int i, j;
2180 for (j = gen->shared_len - 1; j >= gen->tile_first; --j) {
2181 for (i = 0; i < tile->n; ++i) {
2182 isl_aff *lb;
2183 isl_aff *shift;
2185 lb = tile->bound[i].lb;
2186 if (isl_aff_involves_dims(lb, isl_dim_in, j, 1))
2187 break;
2189 shift = tile->bound[i].shift;
2190 if (!shift)
2191 continue;
2192 if (isl_aff_involves_dims(shift, isl_dim_in, j, 1))
2193 break;
2195 if (i < tile->n)
2196 break;
2199 return j;
2202 /* Look for the last shared tile loop that affects the offset of the
2203 * shared or private tile and store the result in group->last_shared.
2204 * If there is no such loop, then group->last_shared is set to a value
2205 * before the first shared tile loop, in particular gen->tile_first - 1.
2206 * If there is no tile defined on the array reference group,
2207 * then set group->last_shared to gen->shared_len - 1.
2209 static void set_last_shared(struct gpu_gen *gen,
2210 struct gpu_array_ref_group *group)
2212 struct gpu_array_tile *tile;
2214 group->last_shared = gen->shared_len - 1;
2216 tile = group->private_tile;
2217 if (!tile)
2218 tile = group->shared_tile;
2219 if (!tile)
2220 return;
2222 group->last_shared = compute_tile_last_shared(gen, tile);
2225 /* Compute a privatized copy of all access relations from reference groups that
2226 * are mapped to private memory and store the result in gen->privatization.
2228 static void compute_private_access(struct gpu_gen *gen)
2230 int i, j;
2231 isl_union_map *private;
2233 if (!gen->options->use_private_memory)
2234 return;
2236 private = isl_union_map_empty(isl_union_map_get_space(gen->shared_sched));
2238 for (i = 0; i < gen->prog->n_array; ++i) {
2239 struct gpu_array_info *array = &gen->prog->array[i];
2241 if (gpu_array_is_read_only_scalar(array))
2242 continue;
2244 for (j = 0; j < array->n_group; ++j) {
2245 if (!array->groups[j]->private_tile)
2246 continue;
2248 private = isl_union_map_union(private,
2249 group_access_relation(array->groups[j], 1, 1));
2253 if (isl_union_map_is_empty(private))
2254 isl_union_map_free(private);
2255 else {
2256 isl_union_map *priv;
2258 private = isl_union_map_apply_domain(private,
2259 isl_union_map_copy(gen->shared_sched));
2260 priv = isl_union_map_from_map(isl_map_copy(gen->privatization));
2261 private = isl_union_map_apply_domain(private, priv);
2262 gen->private_access = private;
2266 /* Compute the size of the tile specified by "tile"
2267 * in number of elements and return the result.
2269 static __isl_give isl_val *tile_size(isl_ctx *ctx, struct gpu_array_tile *tile)
2271 int i;
2272 isl_val *size;
2274 size = isl_val_one(ctx);
2276 for (i = 0; i < tile->n; ++i)
2277 size = isl_val_mul(size, isl_val_copy(tile->bound[i].size));
2279 return size;
2282 /* If max_shared_memory is not set to infinity (-1), then make
2283 * sure that the total amount of shared memory required by the
2284 * array reference groups mapped to shared memory is no larger
2285 * than this maximum.
2287 * We apply a greedy approach and discard (keep in global memory)
2288 * those groups that would result in a total memory size that
2289 * is larger than the maximum.
2291 static void check_shared_memory_bound(struct gpu_gen *gen)
2293 int i, j;
2294 isl_val *left, *size;
2296 if (gen->options->max_shared_memory < 0)
2297 return;
2299 left = isl_val_int_from_si(gen->ctx, gen->options->max_shared_memory);
2301 for (i = 0; i < gen->prog->n_array; ++i) {
2302 struct gpu_array_info *array = &gen->prog->array[i];
2304 for (j = 0; j < array->n_group; ++j) {
2305 struct gpu_array_ref_group *group;
2307 group = array->groups[j];
2308 if (!group->shared_tile)
2309 continue;
2311 size = tile_size(gen->ctx, group->shared_tile);
2312 size = isl_val_mul_ui(size, array->size);
2314 if (isl_val_le(size, left)) {
2315 left = isl_val_sub(left, size);
2316 continue;
2318 isl_val_free(size);
2320 group->shared_tile = free_tile(group->shared_tile);
2324 isl_val_free(left);
2327 /* Fill up the groups array with singleton groups, i.e., one group
2328 * per reference, initializing the array, access, write, n_ref and refs fields.
2329 * In particular the access field is initialized to the scheduled
2330 * access relation of the array reference.
2332 * Return the number of elements initialized, i.e., the number of
2333 * active references in the current kernel.
2335 static int populate_array_references(struct gpu_array_info *array,
2336 __isl_keep isl_union_map *sched, struct gpu_array_ref_group **groups)
2338 int i;
2339 int n;
2340 isl_ctx *ctx = isl_union_map_get_ctx(sched);
2342 n = 0;
2343 for (i = 0; i < array->n_ref; ++i) {
2344 isl_union_map *umap;
2345 isl_map *map;
2346 struct gpu_array_ref_group *group;
2347 struct gpu_stmt_access *access = array->refs[i];
2349 map = isl_map_copy(access->access);
2350 umap = isl_union_map_from_map(map);
2351 umap = isl_union_map_apply_domain(umap,
2352 isl_union_map_copy(sched));
2354 if (isl_union_map_is_empty(umap)) {
2355 isl_union_map_free(umap);
2356 continue;
2359 map = isl_map_from_union_map(umap);
2360 map = isl_map_detect_equalities(map);
2362 group = isl_calloc_type(ctx, struct gpu_array_ref_group);
2363 assert(group);
2364 group->array = array;
2365 group->access = map;
2366 group->write = access->write;
2367 group->refs = &array->refs[i];
2368 group->n_ref = 1;
2370 groups[n++] = group;
2373 return n;
2376 /* If group->n_ref == 1, then group->refs was set by
2377 * populate_array_references to point directly into
2378 * group->array->refs and should not be freed.
2379 * If group->n_ref > 1, then group->refs was set by join_groups
2380 * to point to a newly allocated array.
2382 static void free_array_ref_group(struct gpu_array_ref_group *group)
2384 if (!group)
2385 return;
2386 free_tile(group->shared_tile);
2387 free_tile(group->private_tile);
2388 isl_map_free(group->access);
2389 if (group->n_ref > 1)
2390 free(group->refs);
2391 free(group);
2394 /* Given a map where the input dimensions represent the tile loops,
2395 * eliminate the innermost of those that have a fixed value
2396 * until we reach one that does not (obviously) have a fixed value.
2398 static __isl_give isl_map *eliminate_fixed_inner_loops(
2399 __isl_take isl_map *access)
2401 int i, n;
2403 n = isl_map_dim(access, isl_dim_in);
2405 for (i = n - 1; i >= 0; --i) {
2406 if (!isl_map_plain_is_fixed(access, isl_dim_in, i, NULL))
2407 break;
2408 access = isl_map_eliminate(access, isl_dim_in, i, 1);
2410 return access;
2413 /* Check if the access relations of group1 and group2 overlap within
2414 * the innermost loop. In particular, ignore any inner dimension
2415 * with a fixed value.
2416 * The copying to and from shared memory will be performed within
2417 * the innermost actual loop so we are only allowed to consider
2418 * the dimensions up to that innermost loop while checking whether
2419 * two access relations overlap.
2421 static int accesses_overlap(struct gpu_array_ref_group *group1,
2422 struct gpu_array_ref_group *group2)
2424 int empty;
2425 isl_map *access1, *access2;
2427 access1 = isl_map_copy(group1->access);
2428 access1 = eliminate_fixed_inner_loops(access1);
2429 access2 = isl_map_copy(group2->access);
2430 access2 = eliminate_fixed_inner_loops(access2);
2431 access1 = isl_map_intersect(access1, access2);
2432 empty = isl_map_is_empty(access1);
2433 isl_map_free(access1);
2435 return !empty;
2438 /* Combine the given two groups into a single group, containing
2439 * the references of both groups.
2441 static struct gpu_array_ref_group *join_groups(
2442 struct gpu_array_ref_group *group1,
2443 struct gpu_array_ref_group *group2)
2445 int i;
2446 isl_ctx *ctx;
2447 struct gpu_array_ref_group *group;
2449 ctx = isl_map_get_ctx(group1->access);
2450 group = isl_calloc_type(ctx, struct gpu_array_ref_group);
2451 assert(group);
2452 group->array = group1->array;
2453 group->access = isl_map_union(isl_map_copy(group1->access),
2454 isl_map_copy(group2->access));
2455 group->write = group1->write || group2->write;
2456 group->n_ref = group1->n_ref + group2->n_ref;
2457 group->refs = isl_alloc_array(ctx, struct gpu_stmt_access *,
2458 group->n_ref);
2459 assert(group->refs);
2460 for (i = 0; i < group1->n_ref; ++i)
2461 group->refs[i] = group1->refs[i];
2462 for (i = 0; i < group2->n_ref; ++i)
2463 group->refs[group1->n_ref + i] = group2->refs[i];
2465 return group;
2468 /* Combine the given two groups into a single group and free
2469 * the original two groups.
2471 static struct gpu_array_ref_group *join_groups_and_free(
2472 struct gpu_array_ref_group *group1,
2473 struct gpu_array_ref_group *group2)
2475 struct gpu_array_ref_group *group;
2477 group = join_groups(group1, group2);
2478 free_array_ref_group(group1);
2479 free_array_ref_group(group2);
2480 return group;
2483 /* Compute the private and/or shared memory tiles for the array
2484 * reference group "group" of array "array".
2486 * If the array is a read-only scalar or if the user requested
2487 * not to use shared or private memory, then we do not need to do anything.
2489 * We only try to compute a shared memory tile if there is any reuse
2490 * or if the access is not coalesced.
2492 * For computing a private memory tile, we also require that there is
2493 * some reuse. Moreover, we require that the access is private
2494 * to the thread. That is, we check that any given array element
2495 * is only accessed by a single thread.
2496 * We compute an access relation that maps the shared tile loop iterators
2497 * and the shared point loop iterators that will be wrapped over the
2498 * threads to the array elements.
2499 * We actually check that those iterators that will be wrapped
2500 * partition the array space. This check is stricter than necessary
2501 * since several iterations may be mapped onto the same thread
2502 * and then they could be allowed to access the same memory elements,
2503 * but our check does not allow this situation.
2505 * We also check that the index expression only depends on parallel
2506 * loops. That way, we can move those loops innermost and unroll them.
2507 * Again, we use a test that is stricter than necessary.
2508 * We actually check whether the index expression only depends
2509 * on the iterators that are wrapped over the threads.
2510 * These are necessarily parallel, but there may be more parallel loops.
2512 * Combining the injectivity of the first test with the single-valuedness
2513 * of the second test, we simply test for bijectivity.
2515 * If it turns out we can use registers, we compute the private memory
2516 * tile size using can_tile, after introducing a dependence
2517 * on the thread indices.
2519 static void compute_group_bounds_core(struct gpu_gen *gen,
2520 struct gpu_array_ref_group *group)
2522 isl_ctx *ctx = isl_space_get_ctx(group->array->dim);
2523 isl_union_map *access;
2524 int n_index = group->array->n_index;
2525 int no_reuse;
2526 isl_map *acc;
2527 int use_shared = gen->options->use_shared_memory;
2528 int use_private = gen->options->use_private_memory;
2530 if (!use_shared && !use_private)
2531 return;
2532 if (gpu_array_is_read_only_scalar(group->array))
2533 return;
2535 access = group_access_relation(group, 1, 1);
2536 no_reuse = isl_union_map_is_injective(access);
2538 if (use_shared && (!no_reuse || !access_is_coalesced(gen, access))) {
2539 group->shared_tile = create_tile(ctx, group->array->n_index);
2540 if (!can_tile(group->access, group->shared_tile))
2541 group->shared_tile = free_tile(group->shared_tile);
2544 if (!use_private || no_reuse) {
2545 isl_union_map_free(access);
2546 return;
2549 access = isl_union_map_apply_domain(access,
2550 isl_union_map_copy(gen->shared_sched));
2552 acc = isl_map_from_union_map(access);
2554 if (!access_is_bijective(gen, acc)) {
2555 isl_map_free(acc);
2556 return;
2559 group->private_tile = create_tile(gen->ctx, n_index);
2560 acc = isl_map_apply_domain(acc, isl_map_copy(gen->privatization));
2561 if (!can_tile(acc, group->private_tile))
2562 group->private_tile = free_tile(group->private_tile);
2564 isl_map_free(acc);
2567 /* Compute the private and/or shared memory tiles for the array
2568 * reference group "group" of array "array" and set last_shared.
2570 static void compute_group_bounds(struct gpu_gen *gen,
2571 struct gpu_array_ref_group *group)
2573 compute_group_bounds_core(gen, group);
2574 set_last_shared(gen, group);
2577 /* If two groups have overlapping access relations (as determined by
2578 * the "overlap" function) and if one of them involves a write,
2579 * then merge the two groups into one.
2580 * If "compute_bounds" is set, then call compute_group_bounds
2581 * on the merged groups.
2583 * Return the updated number of groups.
2585 static int group_writes(struct gpu_gen *gen,
2586 int n, struct gpu_array_ref_group **groups,
2587 int (*overlap)(struct gpu_array_ref_group *group1,
2588 struct gpu_array_ref_group *group2), int compute_bounds)
2590 int i, j;
2592 for (i = 0; i < n; ++i) {
2593 for (j = n - 1; j > i; --j) {
2594 if (!groups[i]->write && !groups[j]->write)
2595 continue;
2597 if (!overlap(groups[i], groups[j]))
2598 continue;
2600 groups[i] = join_groups_and_free(groups[i], groups[j]);
2601 if (compute_bounds)
2602 compute_group_bounds(gen, groups[i]);
2603 if (j != n - 1)
2604 groups[j] = groups[n - 1];
2605 n--;
2609 return n;
2612 /* If two groups have overlapping access relations (within the innermost
2613 * loop) and if one of them involves a write, then merge the two groups
2614 * into one.
2616 * Return the updated number of groups.
2618 static int group_overlapping_writes(struct gpu_gen *gen,
2619 int n, struct gpu_array_ref_group **groups)
2621 return group_writes(gen, n, groups, &accesses_overlap, 0);
2624 /* Check if the access relations of group1 and group2 overlap within
2625 * the outermost min(group1->last_shared, group2->last_shared) loops.
2627 static int last_shared_accesses_overlap(struct gpu_array_ref_group *group1,
2628 struct gpu_array_ref_group *group2)
2630 int last_shared;
2631 int dim;
2632 int empty;
2633 isl_map *map_i, *map_j, *map;
2635 last_shared = group1->last_shared;
2636 if (group2->last_shared < last_shared)
2637 last_shared = group2->last_shared;
2638 map_i = isl_map_copy(group1->access);
2639 dim = isl_map_dim(map_i, isl_dim_in);
2640 map_i = isl_map_eliminate(map_i, isl_dim_in,
2641 last_shared + 1, dim - (last_shared + 1));
2642 map_j = isl_map_copy(group2->access);
2643 map_j = isl_map_eliminate(map_j, isl_dim_in,
2644 last_shared + 1, dim - (last_shared + 1));
2645 map = isl_map_intersect(map_i, map_j);
2646 empty = isl_map_is_empty(map);
2647 isl_map_free(map);
2649 return !empty;
2652 /* If two groups have overlapping access relations (within the outer
2653 * last_shared loops) and if one of them involves a write,
2654 * then merge the two groups into one.
2656 * Return the updated number of groups.
2658 static int group_last_shared_overlapping_writes(struct gpu_gen *gen, int n,
2659 struct gpu_array_ref_group **groups)
2661 return group_writes(gen, n, groups, &last_shared_accesses_overlap, 1);
2664 /* Is the size of the tile specified by "tile" smaller than the sum of
2665 * the sizes of the tiles specified by "tile1" and "tile2"?
2667 static int smaller_tile(isl_ctx *ctx, struct gpu_array_tile *tile,
2668 struct gpu_array_tile *tile1, struct gpu_array_tile *tile2)
2670 int smaller;
2671 isl_val *size, *size1, *size2;
2673 size = tile_size(ctx, tile);
2674 size1 = tile_size(ctx, tile1);
2675 size2 = tile_size(ctx, tile2);
2677 size = isl_val_sub(size, size1);
2678 size = isl_val_sub(size, size2);
2679 smaller = isl_val_is_neg(size);
2681 isl_val_free(size);
2683 return smaller;
2686 /* Given an initial grouping of array references and shared memory tiles
2687 * for each group that allows for a shared memory tile, merge two groups
2688 * if both have a shared memory tile, the merged group also has
2689 * a shared memory tile and the size of the tile for the merge group
2690 * is smaller than the sum of the tile sizes of the individual groups.
2692 * If merging two groups decreases the "last_shared" dimension of
2693 * one or both of the two groups, then we need to check for overlapping
2694 * writes again.
2696 * Return the number of groups after merging.
2698 static int group_common_shared_memory_tile(struct gpu_gen *gen,
2699 struct gpu_array_info *array, int n,
2700 struct gpu_array_ref_group **groups)
2702 int i, j;
2703 int recompute_overlap = 0;
2704 isl_ctx *ctx = isl_space_get_ctx(array->dim);
2706 for (i = 0; i < n; ++i) {
2707 if (!groups[i]->shared_tile)
2708 continue;
2709 for (j = n - 1; j > i; --j) {
2710 isl_map *map;
2711 int empty;
2712 struct gpu_array_ref_group *group;
2714 if (!groups[j]->shared_tile)
2715 continue;
2717 map = isl_map_intersect(isl_map_copy(groups[i]->access),
2718 isl_map_copy(groups[j]->access));
2719 empty = isl_map_is_empty(map);
2720 isl_map_free(map);
2722 if (empty)
2723 continue;
2725 group = join_groups(groups[i], groups[j]);
2726 compute_group_bounds(gen, group);
2727 if (!group->shared_tile ||
2728 !smaller_tile(ctx, group->shared_tile,
2729 groups[i]->shared_tile,
2730 groups[j]->shared_tile)) {
2731 free_array_ref_group(group);
2732 continue;
2735 if (group->last_shared < groups[i]->last_shared ||
2736 group->last_shared < groups[j]->last_shared)
2737 recompute_overlap = 1;
2738 free_array_ref_group(groups[i]);
2739 free_array_ref_group(groups[j]);
2740 groups[i] = group;
2741 if (j != n - 1)
2742 groups[j] = groups[n - 1];
2743 n--;
2747 if (recompute_overlap)
2748 n = group_last_shared_overlapping_writes(gen, n, groups);
2749 return n;
2752 /* Set array->n_group and array->groups to n and groups.
2754 * Additionally, set the "nr" field of each group
2755 * and the "group" field of each reference in each group.
2757 static void set_array_groups(struct gpu_array_info *array,
2758 int n, struct gpu_array_ref_group **groups)
2760 int i, j;
2762 array->n_group = n;
2763 array->groups = groups;
2765 for (i = 0; i < n; ++i) {
2766 groups[i]->nr = i;
2768 for (j = 0; j < groups[i]->n_ref; ++j)
2769 groups[i]->refs[j]->group = i;
2773 /* Group array references that should be considered together when
2774 * deciding whether to access them from private, shared or global memory.
2776 * In particular, if two array references overlap and if one of them
2777 * is a write, then the two references are grouped together.
2778 * We first perform an initial grouping based only on the access relation.
2779 * After computing shared and private memory tiles, we check for
2780 * overlapping writes again, but this time taking into account
2781 * the "last_shared" property.
2783 * Furthermore, if two groups admit a shared memory tile and if the
2784 * combination of the two also admits a shared memory tile, we merge
2785 * the two groups.
2787 static void group_array_references(struct gpu_gen *gen,
2788 struct gpu_array_info *array, __isl_keep isl_union_map *sched)
2790 int i;
2791 int n;
2792 isl_ctx *ctx = isl_union_map_get_ctx(sched);
2793 struct gpu_array_ref_group **groups;
2795 groups = isl_calloc_array(ctx, struct gpu_array_ref_group *,
2796 array->n_ref);
2797 assert(groups);
2799 n = populate_array_references(array, sched, groups);
2801 n = group_overlapping_writes(gen, n, groups);
2803 for (i = 0; i < n; ++i)
2804 compute_group_bounds(gen, groups[i]);
2806 n = group_last_shared_overlapping_writes(gen, n, groups);
2808 n = group_common_shared_memory_tile(gen, array, n, groups);
2810 set_array_groups(array, n, groups);
2813 /* Take tiled_sched, project it onto the shared tile loops and
2814 * the loops that will be wrapped over the threads and
2815 * store the result in gen->shared_sched.
2816 * Also compute a projection that projects out the loops that will be
2817 * wrapped over the threads and store this projection in gen->shared_proj.
2819 static void compute_shared_sched(struct gpu_gen *gen)
2821 isl_space *dim;
2822 isl_map *proj;
2823 isl_set *par;
2824 isl_union_map *sched;
2826 sched = isl_union_map_copy(gen->tiled_sched);
2828 dim = isl_union_map_get_space(sched);
2829 proj = projection(dim, gen->tiled_len, gen->shared_len + gen->n_block);
2830 sched = isl_union_map_apply_range(sched, isl_union_map_from_map(proj));
2832 dim = isl_union_map_get_space(sched);
2833 proj = projection(dim, gen->shared_len + gen->n_block, gen->shared_len);
2835 gen->shared_sched = sched;
2836 gen->shared_proj = isl_union_map_from_map(proj);
2839 /* Group references of all arrays in the program.
2841 static void group_references(struct gpu_gen *gen)
2843 int i;
2844 isl_union_map *sched;
2846 sched = isl_union_map_apply_range(isl_union_map_copy(gen->shared_sched),
2847 isl_union_map_copy(gen->shared_proj));
2849 for (i = 0; i < gen->prog->n_array; ++i)
2850 group_array_references(gen, &gen->prog->array[i], sched);
2852 isl_union_map_free(sched);
2855 /* Free all array information that is local to the current kernel.
2857 static void free_local_array_info(struct gpu_gen *gen)
2859 int i, j;
2861 for (i = 0; i < gen->prog->n_array; ++i) {
2862 struct gpu_array_info *array = &gen->prog->array[i];
2864 for (j = 0; j < array->n_group; ++j)
2865 free_array_ref_group(array->groups[j]);
2866 free(array->groups);
2870 /* Compute the effective grid size as a list of the sizes in each dimension.
2872 * The grid size specified by the user or set by default
2873 * in read_grid_sizes() and applied in tile_schedule(),
2874 * may be too large for the given code in the sense that
2875 * it may contain blocks that don't need to execute anything.
2876 * We therefore don't return this grid size, but instead the
2877 * smallest grid size that ensures that all blocks that actually
2878 * execute code are included in the grid.
2880 * We first extract a description of the grid, i.e., the possible values
2881 * of the block ids, from gen->tiled_sched.
2882 * The block ids are parameters in gen->tiled_sched.
2883 * We simply need to change them into set dimensions.
2885 * Then, for each block dimension, we compute the maximal value of the block id
2886 * and add one.
2888 static __isl_give isl_multi_pw_aff *extract_grid_size(struct gpu_gen *gen,
2889 struct ppcg_kernel *kernel)
2891 int i;
2892 isl_set *grid;
2893 isl_multi_pw_aff *mpa;
2895 grid = isl_union_map_params(isl_union_map_copy(gen->tiled_sched));
2896 grid = isl_set_from_params(grid);
2897 grid = isl_set_add_dims(grid, isl_dim_set, gen->n_grid);
2898 for (i = 0; i < gen->n_grid; ++i) {
2899 int pos;
2900 char name[20];
2902 snprintf(name, sizeof(name), "b%d", i);
2903 pos = isl_set_find_dim_by_name(grid, isl_dim_param, name);
2904 assert(pos >= 0);
2905 grid = isl_set_equate(grid, isl_dim_param, pos, isl_dim_set, i);
2906 grid = isl_set_project_out(grid, isl_dim_param, pos, 1);
2909 mpa = isl_multi_pw_aff_zero(isl_set_get_space(grid));
2910 for (i = 0; i < gen->n_grid; ++i) {
2911 isl_space *space;
2912 isl_aff *one;
2913 isl_pw_aff *bound;
2915 bound = isl_set_dim_max(isl_set_copy(grid), i);
2916 bound = isl_pw_aff_coalesce(bound);
2917 bound = isl_pw_aff_gist(bound, isl_set_copy(kernel->context));
2919 space = isl_pw_aff_get_domain_space(bound);
2920 one = isl_aff_zero_on_domain(isl_local_space_from_space(space));
2921 one = isl_aff_add_constant_si(one, 1);
2922 bound = isl_pw_aff_add(bound, isl_pw_aff_from_aff(one));
2923 mpa = isl_multi_pw_aff_set_pw_aff(mpa, i, bound);
2925 isl_set_free(grid);
2927 return mpa;
2930 void ppcg_kernel_free(void *user)
2932 struct ppcg_kernel *kernel = user;
2933 int i;
2935 if (!kernel)
2936 return;
2938 isl_multi_pw_aff_free(kernel->grid_size);
2939 isl_set_free(kernel->context);
2940 isl_union_set_free(kernel->arrays);
2941 isl_space_free(kernel->space);
2942 isl_ast_node_free(kernel->tree);
2944 for (i = 0; i < kernel->n_array; ++i)
2945 isl_pw_aff_list_free(kernel->array[i].bound);
2946 free(kernel->array);
2948 for (i = 0; i < kernel->n_var; ++i) {
2949 free(kernel->var[i].name);
2950 isl_vec_free(kernel->var[i].size);
2952 free(kernel->var);
2954 free(kernel);
2957 static void create_kernel_var(isl_ctx *ctx, struct gpu_array_ref_group *group,
2958 struct ppcg_kernel_var *var)
2960 int j;
2961 struct gpu_array_tile *tile;
2962 isl_printer *p;
2963 char *name;
2965 var->array = group->array;
2967 tile = group->private_tile;
2968 var->type = ppcg_access_private;
2969 if (!tile) {
2970 tile = group->shared_tile;
2971 var->type = ppcg_access_shared;
2974 p = isl_printer_to_str(ctx);
2975 p = print_array_name(p, group);
2976 var->name = isl_printer_get_str(p);
2977 isl_printer_free(p);
2979 var->size = isl_vec_alloc(ctx, group->array->n_index);
2981 for (j = 0; j < group->array->n_index; ++j)
2982 var->size = isl_vec_set_element_val(var->size, j,
2983 isl_val_copy(tile->bound[j].size));
2986 static void create_kernel_vars(struct gpu_gen *gen, struct ppcg_kernel *kernel)
2988 int i, j, n;
2990 n = 0;
2991 for (i = 0; i < gen->prog->n_array; ++i) {
2992 struct gpu_array_info *array = &gen->prog->array[i];
2994 for (j = 0; j < array->n_group; ++j) {
2995 struct gpu_array_ref_group *group = array->groups[j];
2996 if (group->private_tile || group->shared_tile)
2997 ++n;
3001 kernel->n_var = n;
3002 kernel->var = isl_calloc_array(gen->ctx, struct ppcg_kernel_var, n);
3003 assert(kernel->var);
3005 n = 0;
3006 for (i = 0; i < gen->prog->n_array; ++i) {
3007 struct gpu_array_info *array = &gen->prog->array[i];
3009 for (j = 0; j < array->n_group; ++j) {
3010 struct gpu_array_ref_group *group = array->groups[j];
3011 if (!group->private_tile && !group->shared_tile)
3012 continue;
3013 create_kernel_var(gen->ctx, group, &kernel->var[n]);
3014 ++n;
3019 /* The sizes of the arrays on the host that have been computed by
3020 * extract_array_info may depend on the parameters. Use the extra
3021 * constraints on the parameters that are valid at "host_domain"
3022 * to simplify these expressions and store the results in kernel->array.
3024 static void localize_bounds(struct gpu_gen *gen, struct ppcg_kernel *kernel,
3025 __isl_keep isl_set *host_domain)
3027 int i, j;
3028 isl_set *context;
3030 kernel->array = isl_calloc_array(gen->ctx,
3031 struct gpu_local_array_info, gen->prog->n_array);
3032 assert(kernel->array);
3033 kernel->n_array = gen->prog->n_array;
3035 context = isl_set_copy(host_domain);
3036 context = isl_set_params(context);
3038 for (i = 0; i < gen->prog->n_array; ++i) {
3039 struct gpu_array_info *array = &gen->prog->array[i];
3040 isl_pw_aff_list *local;
3042 if (array->n_group == 0)
3043 continue;
3045 local = isl_pw_aff_list_alloc(gen->ctx, array->n_index);
3047 for (j = 0; j < array->n_index; ++j) {
3048 isl_pw_aff *pwaff;
3050 pwaff = isl_pw_aff_copy(array->bound[j]);
3051 pwaff = isl_pw_aff_gist(pwaff, isl_set_copy(context));
3052 local = isl_pw_aff_list_add(local, pwaff);
3055 kernel->array[i].bound = local;
3057 isl_set_free(context);
3060 /* Find the element in gen->stmt that has the given "id".
3061 * Return NULL if no such gpu_stmt can be found.
3063 static struct gpu_stmt *find_stmt(struct gpu_prog *prog, __isl_keep isl_id *id)
3065 int i;
3067 for (i = 0; i < prog->n_stmts; ++i) {
3068 if (id == prog->stmts[i].id)
3069 break;
3072 return i < prog->n_stmts ? &prog->stmts[i] : NULL;
3075 /* Set gen->tile_len and gen->n_parallel to those of the statement
3076 * affected by the first map (part of the schedule)
3077 * on which this function is called.
3078 * Because of the way the schedule is constructed, the other statements
3079 * in the list, if any, should have the same values for these properties.
3081 static int extract_tile_len(__isl_take isl_map *map, void *user)
3083 struct gpu_gen *gen = (struct gpu_gen *) user;
3084 isl_id *id;
3085 struct gpu_stmt *stmt;
3087 id = isl_map_get_tuple_id(map, isl_dim_in);
3088 stmt = find_stmt(gen->prog, id);
3089 isl_id_free(id);
3091 isl_map_free(map);
3093 if (!stmt)
3094 isl_die(gen->ctx, isl_error_unknown,
3095 "statement not found", return -1);
3097 gen->tile_len = stmt->tile_len;
3098 gen->n_parallel = stmt->n_parallel;
3100 return -1;
3103 void ppcg_kernel_stmt_free(void *user)
3105 int i;
3106 struct ppcg_kernel_stmt *stmt = user;
3108 if (!stmt)
3109 return;
3111 switch (stmt->type) {
3112 case ppcg_kernel_copy:
3113 isl_ast_expr_free(stmt->u.c.index);
3114 isl_ast_expr_free(stmt->u.c.local_index);
3115 break;
3116 case ppcg_kernel_domain:
3117 for (i = 0; i < stmt->u.d.n_access; ++i) {
3118 isl_ast_expr_list_free(stmt->u.d.access[i].index);
3119 free(stmt->u.d.access[i].local_name);
3121 free(stmt->u.d.access);
3122 break;
3123 case ppcg_kernel_sync:
3124 break;
3127 free(stmt);
3130 /* Set the options of "context" to
3132 * { space -> [x] : x >= first }
3134 static __isl_give isl_ast_build *set_unroll(
3135 __isl_take isl_ast_build *build, __isl_take isl_space *space,
3136 int first)
3138 isl_ctx *ctx;
3139 isl_map *unroll;
3140 isl_union_map *opt;
3142 ctx = isl_ast_build_get_ctx(build);
3144 space = isl_space_from_domain(space);
3145 space = isl_space_add_dims(space, isl_dim_out, 1);
3146 space = isl_space_set_tuple_name(space, isl_dim_out, "unroll");
3147 unroll = isl_map_universe(space);
3148 unroll = isl_map_lower_bound_si(unroll, isl_dim_out, 0, first);
3149 opt = isl_union_map_from_map(unroll);
3151 build = isl_ast_build_set_options(build, opt);
3153 return build;
3156 /* Return a list of isl_ids of the form "prefix%d".
3158 static __isl_give isl_id_list *generate_names(isl_ctx *ctx,
3159 int n, const char *prefix)
3161 int i;
3162 char name[10];
3163 isl_id_list *names;
3165 names = isl_id_list_alloc(ctx, n);
3166 for (i = 0; i < n; ++i) {
3167 isl_id *id;
3169 snprintf(name, sizeof(name), "%s%d", prefix, i);
3170 id = isl_id_alloc(ctx, name, NULL);
3171 names = isl_id_list_add(names, id);
3174 return names;
3177 /* Extend the schedule "schedule" with the part of "extension"
3178 * starting at "first" up to "len".
3180 static __isl_give isl_union_map *extend_schedule(
3181 __isl_take isl_union_map *schedule,
3182 __isl_take isl_union_map *extension, int first, int len)
3184 isl_space *space;
3185 isl_map *proj;
3186 isl_union_map *umap;
3187 isl_set *set;
3189 space = isl_union_map_get_space(schedule);
3190 space = isl_space_set_from_params(space);
3191 space = isl_space_add_dims(space, isl_dim_set, len);
3192 proj = isl_set_identity(isl_set_universe(space));
3193 proj = isl_map_project_out(proj, isl_dim_out, 0, first);
3194 extension = isl_union_map_apply_range(extension,
3195 isl_union_map_from_map(proj));
3197 schedule = isl_union_map_range_product(schedule, extension);
3199 return schedule;
3202 /* This function is called for each access to an array in each instance
3203 * in the kernel of some statement in the original code.
3204 * Replace that access by an access to global, shared or private memory
3205 * and store the results in *kernel_access.
3207 * Since the array in shared or private memory is just
3208 * a shifted copy of part of the original array, we simply need
3209 * to subtract the lower bound, which was computed in can_tile.
3210 * If any of the indices is strided, then we first add
3211 * shared_tile->bound[i].shift and divide by shared_tile->bound[i].stride.
3213 * If the given array is accessed directly from global memory,
3214 * we don't need to perform any shifting and simply simplify
3215 * the expression in the context of the domain instead.
3217 * If the array space (range of access) has no name, then we are
3218 * accessing an iterator in the original program.
3220 * The input stmt_access->access relation maps the iteration domain
3221 * of the current statement to an array element.
3222 * The first step is to reformulate
3223 * this access relation in terms of the loop iterators of the generated
3224 * code through precomposition with gen->stmt_it.
3226 * The expressions in "tile" are formulated in terms of the first
3227 * gen->shared_len dimensions of the computed schedule using the mapping
3228 * sched2shared which maps the loop iterators to these dimensions.
3230 static void compute_index_expression(struct gpu_gen *gen,
3231 struct ppcg_kernel_access *kernel_access,
3232 struct gpu_stmt_access *stmt_access, __isl_keep isl_map *stmt_it,
3233 __isl_keep isl_map *sched2shared, __isl_keep isl_ast_build *build)
3235 isl_map *access;
3236 isl_pw_multi_aff *pma;
3237 int i;
3238 unsigned n_index;
3239 struct gpu_array_tile *tile = NULL;
3241 if (isl_map_has_tuple_name(stmt_access->access, isl_dim_out)) {
3242 int i;
3243 const char *name;
3244 struct gpu_array_ref_group *group;
3245 isl_printer *p;
3247 name = isl_map_get_tuple_name(stmt_access->access, isl_dim_out);
3249 for (i = 0; i < gen->prog->n_array; ++i) {
3250 if (strcmp(name, gen->prog->array[i].name))
3251 continue;
3252 kernel_access->array = &gen->prog->array[i];
3253 kernel_access->local_array = &gen->kernel->array[i];
3255 assert(kernel_access->array);
3256 group = kernel_access->array->groups[stmt_access->group];
3257 p = isl_printer_to_str(gen->ctx);
3258 p = print_array_name(p, group);
3259 kernel_access->local_name = isl_printer_get_str(p);
3260 isl_printer_free(p);
3261 tile = group->private_tile;
3262 kernel_access->type = ppcg_access_private;
3263 if (!tile) {
3264 tile = group->shared_tile;
3265 kernel_access->type = ppcg_access_shared;
3268 if (!tile)
3269 kernel_access->type = ppcg_access_global;
3271 n_index = isl_map_dim(stmt_access->access, isl_dim_out);
3272 kernel_access->index = isl_ast_expr_list_alloc(gen->ctx, n_index);
3274 if (n_index == 0)
3275 return;
3277 access = isl_map_copy(stmt_access->access);
3278 access = isl_map_apply_range(isl_map_copy(stmt_it), access);
3279 pma = isl_pw_multi_aff_from_map(access);
3280 pma = isl_pw_multi_aff_coalesce(pma);
3282 for (i = 0; i < n_index; ++i) {
3283 isl_set *domain;
3284 isl_pw_aff *index;
3285 isl_ast_expr *expr;
3287 index = isl_pw_multi_aff_get_pw_aff(pma, i);
3289 if (!kernel_access->array) {
3290 } else if (!tile) {
3291 domain = isl_map_domain(isl_map_copy(stmt_it));
3292 index = isl_pw_aff_coalesce(index);
3293 index = isl_pw_aff_gist(index, domain);
3294 } else {
3295 domain = isl_map_domain(isl_map_copy(stmt_it));
3296 index = shift_index(index, kernel_access->array,
3297 &tile->bound[i], domain,
3298 isl_map_copy(sched2shared));
3301 expr = isl_ast_build_expr_from_pw_aff(build, index);
3303 kernel_access->index = isl_ast_expr_list_add(
3304 kernel_access->index, expr);
3307 isl_pw_multi_aff_free(pma);
3310 /* This function is called for each instance of a user statement
3311 * in the kernel.
3313 * We attach a struct ppcg_kernel_stmt to the "node", containing
3314 * local information about the accesses.
3315 * This information is computed from stmt_it, which expresses the domain
3316 * elements in terms of the generated loops, and sched2shared,
3317 * which expresses the first shared_len dimensions of the schedule
3318 * computed by PPCG in terms of the generated loops.
3320 static __isl_give isl_ast_node *at_each_domain(__isl_take isl_ast_node *node,
3321 __isl_keep isl_ast_build *build, void *user)
3323 struct gpu_gen *gen = (struct gpu_gen *) user;
3324 struct ppcg_kernel_stmt *stmt;
3325 isl_id *id;
3326 isl_map *stmt_it, *sched2shared;
3327 isl_ast_expr *expr, *arg;
3328 isl_union_map *schedule;
3329 int i, n;
3330 struct gpu_stmt_access *access;
3332 stmt = isl_calloc_type(gen->ctx, struct ppcg_kernel_stmt);
3333 if (!stmt)
3334 return isl_ast_node_free(node);
3336 expr = isl_ast_node_user_get_expr(node);
3337 arg = isl_ast_expr_get_op_arg(expr, 0);
3338 id = isl_ast_expr_get_id(arg);
3340 schedule = isl_ast_build_get_schedule(build);
3341 stmt_it = isl_map_reverse(isl_map_from_union_map(schedule));
3342 sched2shared = compute_sched_to_shared(gen, isl_map_copy(stmt_it));
3344 stmt->type = ppcg_kernel_domain;
3345 stmt->u.d.stmt = find_stmt(gen->prog, id);
3346 if (!stmt->u.d.stmt)
3347 goto error;
3349 n = 0;
3350 for (access = stmt->u.d.stmt->accesses; access; access = access->next)
3351 ++n;
3353 stmt->u.d.access = isl_calloc_array(gen->ctx,
3354 struct ppcg_kernel_access, n);
3355 if (!stmt->u.d.access)
3356 goto error;
3358 stmt->u.d.n_access = n;
3360 access = stmt->u.d.stmt->accesses;
3361 for (i = 0; i < n; ++i, access = access->next) {
3362 compute_index_expression(gen, &stmt->u.d.access[i], access,
3363 stmt_it, sched2shared, build);
3366 isl_id_free(id);
3367 isl_map_free(stmt_it);
3368 isl_map_free(sched2shared);
3369 isl_ast_expr_free(arg);
3370 isl_ast_expr_free(expr);
3372 id = isl_id_alloc(gen->ctx, NULL, stmt);
3373 id = isl_id_set_free_user(id, &ppcg_kernel_stmt_free);
3374 return isl_ast_node_set_annotation(node, id);
3375 error:
3376 isl_id_free(id);
3377 isl_map_free(stmt_it);
3378 ppcg_kernel_stmt_free(stmt);
3379 isl_map_free(sched2shared);
3380 return isl_ast_node_free(node);
3383 /* This function is called when code has been generated for the shared
3384 * tile loops. The "schedule" refers only to the original statements.
3386 * We extend the schedule with that part of gen->local_sched that hasn't
3387 * been taken into account yet. This introduces parameters referring
3388 * to thread ids in the schedule, so we add them (with the appropriate
3389 * bounds to the context as well).
3390 * Finally, we set the appropriate unrolling options
3391 * if gen->first_unroll is set.
3393 static __isl_give isl_ast_node *create_domain_leaf(
3394 __isl_take isl_union_map *schedule, __isl_take isl_ast_build *build,
3395 void *user)
3397 struct gpu_gen *gen = (struct gpu_gen *) user;
3398 isl_space *space;
3399 isl_union_map *sched;
3400 isl_ast_node *tree;
3401 isl_set *set;
3402 isl_id_list *iterators;
3403 int n;
3405 schedule = extend_schedule(schedule,
3406 isl_union_map_copy(gen->local_sched),
3407 gen->shared_len, gen->thread_tiled_len);
3409 space = isl_ast_build_get_schedule_space(build);
3410 set = isl_set_universe(space);
3411 set = add_bounded_parameters(set, gen->n_block, gen->block_dim, "t");
3412 build = isl_ast_build_restrict(build, set);
3414 n = gen->thread_tiled_len - gen->shared_len;
3416 if (gen->first_unroll >= 0) {
3417 space = isl_space_set_alloc(gen->ctx, 0, n);
3418 build = set_unroll(build, space, gen->first_unroll);
3420 iterators = generate_names(gen->ctx, n, "c");
3421 build = isl_ast_build_set_iterators(build, iterators);
3422 build = isl_ast_build_set_at_each_domain(build, &at_each_domain, gen);
3423 tree = isl_ast_build_ast_from_schedule(build, schedule);
3424 isl_ast_build_free(build);
3426 return tree;
3429 /* This function is called for each statement node in the AST of the code
3430 * for copying to or from shared/private memory.
3431 * Attach a pointer to a ppcg_kernel_stmt representing the copy
3432 * statement to the node.
3433 * The statement name is {read,write}_{shared,private}_<array>.
3435 * The schedule is of the form
3437 * [A -> T] -> L
3439 * where A refers to a piece of an array and T to the corresponding
3440 * shifted tile. We split this schedule into mappings L -> A and L -> T
3441 * and store the corresponding expressions in stmt->index and stmt->local_index,
3442 * where stmt points to the ppcg_kernel_stmt that is attached to the node.
3444 static __isl_give isl_ast_node *attach_copy_stmt(__isl_take isl_ast_node *node,
3445 __isl_keep isl_ast_build *build, void *user)
3447 struct gpu_gen *gen = (struct gpu_gen *) user;
3448 struct ppcg_kernel_stmt *stmt;
3449 isl_id *id;
3450 isl_ast_expr *expr;
3451 isl_space *space;
3452 isl_map *access, *local_access, *map;
3453 isl_pw_multi_aff *pma;
3454 const char *name;
3455 int array_index;
3457 stmt = isl_calloc_type(gen->ctx, struct ppcg_kernel_stmt);
3458 if (!stmt)
3459 return isl_ast_node_free(node);
3461 access = isl_map_from_union_map(isl_ast_build_get_schedule(build));
3462 name = isl_map_get_tuple_name(access, isl_dim_in);
3463 stmt->u.c.read = !strncmp(name, "read", 4);
3464 access = isl_map_reverse(access);
3465 space = isl_space_unwrap(isl_space_range(isl_map_get_space(access)));
3466 local_access = isl_map_copy(access);
3468 map = isl_map_domain_map(isl_map_universe(isl_space_copy(space)));
3469 id = isl_map_get_tuple_id(access, isl_dim_out);
3470 map = isl_map_set_tuple_id(map, isl_dim_in, id);
3471 access = isl_map_apply_range(access, map);
3472 pma = isl_pw_multi_aff_from_map(access);
3473 expr = isl_ast_build_call_from_pw_multi_aff(build, pma);
3474 stmt->u.c.index = expr;
3476 map = isl_map_range_map(isl_map_universe(space));
3477 id = isl_map_get_tuple_id(local_access, isl_dim_out);
3478 map = isl_map_set_tuple_id(map, isl_dim_in, id);
3479 local_access = isl_map_apply_range(local_access, map);
3480 pma = isl_pw_multi_aff_from_map(local_access);
3481 expr = isl_ast_build_call_from_pw_multi_aff(build, pma);
3482 stmt->u.c.local_index = expr;
3484 stmt->u.c.array = gen->copy_group->array;
3485 array_index = stmt->u.c.array - gen->prog->array;
3486 stmt->u.c.local_array = &gen->kernel->array[array_index];
3487 stmt->type = ppcg_kernel_copy;
3489 id = isl_id_alloc(gen->ctx, NULL, stmt);
3490 id = isl_id_set_free_user(id, &ppcg_kernel_stmt_free);
3491 return isl_ast_node_set_annotation(node, id);
3494 /* Given a schedule of the form
3496 * [S -> A] -> L
3498 * (with S the first shared_len dimensions of the computed schedule,
3499 * A the array and L the schedule correponding to the generated loops),
3500 * indicating where the copying the array elements that need to be copied,
3501 * construct code for performing the copying.
3503 * "group" is the array reference group that is being copied
3504 * "type" is either "read" or "write"
3505 * private is set if copying needs to be performed to/from registers
3507 * We first construct a mapping to a shifted tile of the array,
3509 * [S -> A] -> T(S,A) (1)
3511 * If private is set, then we also use this mapping as a schedule
3512 * (which is already thread-specific and will be completely unrolled).
3513 * Otherwise, we wrap/tile the range over the threads.
3514 * The result is
3516 * [S -> A] -> T'(S,A)
3518 * Combined with the given schedule, we have
3520 * [S -> A] -> [L -> T'(S,A)] (2)
3522 * From the shifted tile mapping, we construct a mapping
3524 * [S -> A] -> [A -> T(S,A)]
3526 * and apply it to the schedule (2), obtaining
3528 * [A -> T(S(L),A)] -> [L -> T'(S(L),A)]
3530 * Note that we can project out S because it is uniquely defined by L.
3532 static __isl_give isl_ast_node *copy_access(struct gpu_gen *gen,
3533 __isl_take isl_map *sched,
3534 const char *type, struct gpu_array_ref_group *group,
3535 __isl_take isl_ast_build *build, int private)
3537 const char *array_name;
3538 const char *mem = private ? "private" : "shared";
3539 char *name;
3540 isl_space *space;
3541 isl_ast_node *tree;
3542 isl_map *schedule, *shift, *map;
3543 isl_set *set;
3544 isl_id_list *iterators;
3545 int n;
3547 shift = isl_set_unwrap(isl_map_domain(isl_map_copy(sched)));
3548 array_name = isl_map_get_tuple_name(shift, isl_dim_out);
3549 shift = shift_access(shift, group);
3551 schedule = isl_map_copy(shift);
3552 if (!private)
3553 schedule = tile_access_schedule(gen, schedule);
3555 n = isl_map_dim(schedule, isl_dim_out);
3556 set = isl_set_universe(isl_ast_build_get_schedule_space(build));
3557 set = add_bounded_parameters(set, gen->n_block, gen->block_dim, "t");
3559 schedule = isl_map_range_product(sched, schedule);
3561 assert(array_name);
3562 name = isl_alloc_array(gen->ctx, char,
3563 strlen(type) + sizeof("_private_") + strlen(array_name) + 20);
3564 if (group->array->n_group > 1)
3565 sprintf(name, "%s_%s_%s_%d", type, mem, array_name, group->nr);
3566 else
3567 sprintf(name, "%s_%s_%s", type, mem, array_name);
3568 shift = isl_map_set_tuple_name(shift,
3569 isl_dim_out, name + strlen(type) + 1);
3571 space = isl_space_domain(isl_map_get_space(shift));
3572 map = isl_map_range_map(isl_map_universe(isl_space_unwrap(space)));
3573 map = isl_map_range_product(map, shift);
3575 schedule = isl_map_apply_domain(schedule, map);
3577 schedule = isl_map_set_tuple_name(schedule, isl_dim_in, name);
3578 free(name);
3580 build = isl_ast_build_restrict(build, set);
3582 gen->copy_group = group;
3584 if (private) {
3585 space = isl_space_range(isl_map_get_space(schedule));
3586 space = isl_space_range(isl_space_unwrap(space));
3587 build = set_unroll(build, space, 0);
3589 iterators = generate_names(gen->ctx, n, "c");
3590 build = isl_ast_build_set_iterators(build, iterators);
3591 build = isl_ast_build_set_at_each_domain(build, &attach_copy_stmt, gen);
3592 tree = isl_ast_build_ast_from_schedule(build,
3593 isl_union_map_from_map(schedule));
3594 isl_ast_build_free(build);
3596 return tree;
3599 /* Return code for reading into or writing from shared memory
3600 * the given array reference group.
3602 * If we are performing a read from global memory to shared memory and
3603 * if the array involved is not a scalar, then we copy
3604 * the entire tile to shared memory. This may result in some extra
3605 * elements getting copied, but it should lead to simpler code
3606 * (which means that fewer registers may be needed) and less divergence.
3608 * Otherwise, we only copy the elements that will be read or have been written
3609 * in the kernel.
3612 * The input "sched" is of the form.
3614 * type[S -> A] -> L
3616 * with S the first shared_len dimensions of the computed schedule,
3617 * A the array and L the schedule correponding to the generated loops.
3619 * We first drop "type",
3621 * [S -> A] -> L
3623 * If the above conditions are satisfied, we project out A,
3624 * resulting in
3626 * S -> L
3628 * and then introduce the group tile [S -> T], resulting in
3630 * [S -> T] -> L
3632 static __isl_give isl_ast_node *copy_group_shared_accesses(
3633 struct gpu_gen *gen, struct gpu_array_ref_group *group,
3634 __isl_take isl_map *sched, __isl_take isl_ast_build *build)
3636 const char *type;
3637 int read;
3638 isl_union_map *access;
3640 type = isl_map_get_tuple_name(sched, isl_dim_in);
3641 read = !strcmp(type, "read");
3643 sched = isl_map_reset_tuple_id(sched, isl_dim_in);
3645 if (read && group->array->n_index > 0) {
3646 isl_space *space;
3647 isl_map *map;
3649 space = isl_space_domain(isl_map_get_space(sched));
3650 space = isl_space_unwrap(space);
3651 map = isl_map_domain_map(isl_map_universe(space));
3652 sched = isl_map_apply_domain(sched, map);
3654 map = group_tile(group);
3655 map = isl_map_reverse(isl_map_domain_map(map));
3656 sched = isl_map_apply_domain(sched, map);
3659 return copy_access(gen, sched, type, group, build, 0);
3662 /* Return code for reading into or writing from private memory
3663 * the given array reference group.
3665 * Let S be the first shared_len dimensions of the computed schedule,
3666 * D the iteration domains, A the array and L the schedule correponding
3667 * to the generated loops.
3668 * "sched" is of the form
3670 * type[S -> A] -> L
3672 * where type is either "read" or "write".
3673 * We apply the privatization D -> S(t), with t the thread ids,
3674 * to the access relation D -> A to obtain the privatized access relation
3676 * S(t) -> A
3678 * We drop the type from "sched" and intersect with the privatized access
3679 * relation to obtain
3681 * [S(t) -> A] -> L
3683 static __isl_give isl_ast_node *copy_group_private_accesses(
3684 struct gpu_gen *gen, struct gpu_array_ref_group *group,
3685 __isl_take isl_map *sched, __isl_take isl_ast_build *build)
3687 const char *type;
3688 int read;
3689 isl_union_map *priv;
3690 isl_union_map *access;
3691 isl_map *access_map;
3693 type = isl_map_get_tuple_name(sched, isl_dim_in);
3694 read = !strcmp(type, "read");
3696 priv = isl_union_map_from_map(isl_map_copy(gen->privatization));
3697 priv = isl_union_map_apply_range(isl_union_map_copy(gen->shared_sched),
3698 priv);
3700 access = group_access_relation(group, read, !read);
3701 access = isl_union_map_apply_domain(access, priv);
3702 access_map = isl_map_from_union_map(access);
3704 sched = isl_map_reset_tuple_id(sched, isl_dim_in);
3705 sched = isl_map_intersect_domain(sched, isl_map_wrap(access_map));
3707 return copy_access(gen, sched, type, group, build, 1);
3710 /* Return code for reading into or writing from shared or private memory.
3712 * "schedule" is of the form
3714 * type[S -> A] -> L
3716 * with S be the first shared_len dimensions of the computed schedule,
3717 * A the array and L the schedule correponding to the generated loops.
3718 * The array reference group is attached to "type".
3720 static __isl_give isl_ast_node *create_access_leaf(
3721 struct gpu_gen *gen, __isl_take isl_map *schedule,
3722 __isl_take isl_ast_build *build)
3724 struct gpu_array_ref_group *group;
3725 isl_id *id;
3727 id = isl_map_get_tuple_id(schedule, isl_dim_in);
3728 group = isl_id_get_user(id);
3729 isl_id_free(id);
3731 if (group->private_tile)
3732 return copy_group_private_accesses(gen, group, schedule,
3733 build);
3734 else
3735 return copy_group_shared_accesses(gen, group, schedule,
3736 build);
3739 /* Create a domain node representing a synchronization.
3741 static __isl_give isl_ast_node *create_sync_leaf(
3742 struct gpu_gen *gen, __isl_take isl_map *schedule,
3743 __isl_take isl_ast_build *build)
3745 struct ppcg_kernel_stmt *stmt;
3746 isl_id *id;
3747 isl_space *space;
3748 isl_ast_node *node;
3749 isl_ast_expr *expr;
3751 isl_map_free(schedule);
3753 stmt = isl_calloc_type(gen->ctx, struct ppcg_kernel_stmt);
3754 if (!stmt)
3755 return NULL;
3757 stmt->type = ppcg_kernel_sync;
3759 space = isl_ast_build_get_schedule_space(build);
3760 space = isl_space_from_domain(space);
3761 space = isl_space_set_tuple_name(space, isl_dim_out, "sync");
3762 expr = isl_ast_build_call_from_pw_multi_aff(build,
3763 isl_pw_multi_aff_from_multi_aff(isl_multi_aff_zero(space)));
3764 node = isl_ast_node_alloc_user(expr);
3765 isl_ast_build_free(build);
3767 id = isl_id_alloc(gen->ctx, NULL, stmt);
3768 id = isl_id_set_free_user(id, &ppcg_kernel_stmt_free);
3769 return isl_ast_node_set_annotation(node, id);
3772 /* This function is called during the code generation at the point
3773 * where the schedule domain element is completely determined by
3774 * the generated code. The input schedule contains the original
3775 * statements as well as synchronization and copy "statements".
3776 * The latter are scheduled at different points than any of the original
3777 * statements, so they will only arrive here in isolation.
3779 * If the current schedule only refers to a single statement,
3780 * we check if it is a copy or synchronization statement and
3781 * call the appropriate functions.
3782 * Otherwise, we assume we are dealing with the original statements
3783 * and we call create_domain_leaf.
3785 static __isl_give isl_ast_node *create_kernel_leaf(
3786 __isl_take isl_ast_build *build, void *user)
3788 struct gpu_gen *gen = (struct gpu_gen *) user;
3789 isl_map *map;
3790 isl_union_map *schedule;
3791 const char *name;
3793 schedule = isl_ast_build_get_schedule(build);
3795 if (isl_union_map_n_map(schedule) != 1)
3796 return create_domain_leaf(schedule, build, user);
3798 map = isl_map_from_union_map(schedule);
3799 name = isl_map_get_tuple_name(map, isl_dim_in);
3800 if (!strcmp(name, "read") || !strcmp(name, "write"))
3801 return create_access_leaf(gen, map, build);
3802 if (!strcmp(name, "sync"))
3803 return create_sync_leaf(gen, map, build);
3805 return create_domain_leaf(isl_union_map_from_map(map), build, user);
3808 /* Mark all odd schedule dimensions as "atomic" (when the even dimensions
3809 * have value 0) and all even schedule dimensions as "unroll".
3811 * That is, the options look as follows
3813 * { [0, b, 0, d, ..., 0] -> atomic[i] : exists a : i = 2 a + 1;
3814 * [a, b, c, d, ..., z] -> unroll[i] : exists a : i = 2 a }
3816 * The even positions are used to be able to schedule copying blocks
3817 * and synchronization before or after each level of the shared memory
3818 * tile loops and we want to make sure that code for these is generated
3819 * separately (within each level).
3821 static __isl_give isl_ast_build *set_atomic_and_unroll(
3822 __isl_take isl_ast_build *build,
3823 __isl_take isl_space *space, int sched_len)
3825 isl_ctx *ctx;
3826 isl_map *map;
3827 isl_constraint *c;
3828 isl_union_map *opt;
3829 isl_local_space *ls;
3830 int i, n;
3832 ctx = isl_ast_build_get_ctx(build);
3834 space = isl_space_params(space);
3835 space = isl_space_add_dims(space, isl_dim_set, sched_len);
3836 space = isl_space_from_domain(space);
3837 space = isl_space_add_dims(space, isl_dim_out, 2);
3838 map = isl_map_universe(isl_space_copy(space));
3839 for (i = 0; i < sched_len; i += 2)
3840 map = isl_map_fix_si(map, isl_dim_in, i, 0);
3841 ls = isl_local_space_from_space(isl_map_get_space(map));
3842 c = isl_equality_alloc(ls);
3843 c = isl_constraint_set_coefficient_si(c, isl_dim_out, 0, 1);
3844 c = isl_constraint_set_coefficient_si(c, isl_dim_out, 1, 2);
3845 c = isl_constraint_set_constant_si(c, 1);
3846 map = isl_map_add_constraint(map, c);
3847 map = isl_map_project_out(map, isl_dim_out, 1, 1);
3848 map = isl_map_set_tuple_name(map, isl_dim_out, "atomic");
3849 opt = isl_union_map_from_map(map);
3851 map = isl_map_universe(space);
3852 ls = isl_local_space_from_space(isl_map_get_space(map));
3853 c = isl_equality_alloc(ls);
3854 c = isl_constraint_set_coefficient_si(c, isl_dim_out, 0, 1);
3855 c = isl_constraint_set_coefficient_si(c, isl_dim_out, 1, 2);
3856 map = isl_map_add_constraint(map, c);
3857 map = isl_map_project_out(map, isl_dim_out, 1, 1);
3858 map = isl_map_set_tuple_name(map, isl_dim_out, "unroll");
3859 opt = isl_union_map_add_map(opt, map);
3861 build = isl_ast_build_set_options(build, opt);
3863 return build;
3866 /* Return a map that maps a space of dimension gen->shared_len
3867 * to its last dimensions starting at gen->tile_first.
3868 * The range is of dimension
3870 * 2 * (gen->shared_len - gen->tile_first) + 1
3872 * The input dimensions are mapped to the odd dimensions in the output,
3873 * while the even dimensions (except 2*pos) are fixed to 0.
3874 * Output dimension 2*pos (if pos >= 0) is fixed to "val".
3875 * If pos >= 0, then only the pos first dimensions starting at gen->tile_first
3876 * are mapped to the output. The remaining input dimensions are projected
3877 * out and the corresponding output dimensions are fixed to 0.
3879 static __isl_give isl_map *insert_even(struct gpu_gen *gen,
3880 __isl_take isl_space *space, int pos, int val)
3882 int i, n;
3883 isl_map *proj;
3885 space = isl_space_set_from_params(space);
3886 space = isl_space_add_dims(space, isl_dim_set, gen->shared_len);
3887 space = isl_space_map_from_set(space);
3888 proj = isl_map_identity(space);
3889 proj = isl_map_project_out(proj, isl_dim_out, 0, gen->tile_first);
3890 n = gen->shared_len - gen->tile_first;
3891 for (i = 0; i <= n; ++i) {
3892 proj = isl_map_insert_dims(proj, isl_dim_out, 2 * i, 1);
3893 if (i == pos)
3894 proj = isl_map_fix_si(proj, isl_dim_out, 2 * i, val);
3895 else
3896 proj = isl_map_fix_si(proj, isl_dim_out, 2 * i, 0);
3899 if (pos < 0)
3900 return proj;
3902 proj = isl_map_eliminate(proj, isl_dim_in, gen->tile_first + pos,
3903 gen->shared_len - (gen->tile_first + pos));
3904 for (i = pos; i < n; ++i)
3905 proj = isl_map_fix_si(proj, isl_dim_out, 2 * i + 1, 0);
3907 return proj;
3910 /* Given the AST context schedule "schedule" and the mapping from
3911 * domains to the shared tile loops "shared_sched", add a schedule
3912 * for a synchronization operation at position "val" of loop level "pos".
3914 * schedule is of the form
3916 * D -> L
3918 * (with D the iteration domains and L the already generated loops),
3919 * while shared_sched is of the form
3921 * D -> S
3923 * We combine them into
3925 * L -> S
3927 * apply a mapping
3929 * [s_0,...] -> [0,s_{tile_first},0,..., val, 0, 0, ... 0]
3931 * and use the result as a schedule for "sync".
3933 static __isl_give isl_union_map *add_sync_schedule(struct gpu_gen *gen,
3934 __isl_take isl_union_map *res, __isl_keep isl_union_map *schedule,
3935 __isl_keep isl_union_map *shared_sched, int pos, int val)
3937 isl_space *space;
3938 isl_map *proj, *map;
3940 shared_sched = isl_union_map_copy(shared_sched);
3941 schedule = isl_union_map_copy(schedule);
3943 space = isl_union_map_get_space(shared_sched);
3944 schedule = isl_union_map_apply_domain(shared_sched, schedule);
3945 map = isl_map_from_union_map(schedule);
3947 proj = insert_even(gen, space, pos, val);
3948 map = isl_map_apply_range(map, proj);
3949 map = isl_map_from_range(isl_map_wrap(map));
3950 map = isl_map_set_tuple_name(map, isl_dim_in, "sync");
3952 res = isl_union_map_add_map(res, map);
3954 return res;
3957 /* Given the AST context schedule "schedule" and the mapping from
3958 * domains to the shared tile loops "shared_sched", add a schedule
3959 * for copying an array reference group to/from shared/private memory.
3960 * "read" is set if data should be copied from global memory
3961 * to shared/private memory.
3962 * "k" represents the current group
3963 * "s" is the total number of groups
3965 * We schedule an operation before or after the innermost loop
3966 * of "shared_sched" that affects the tile of the array reference group.
3968 * schedule is of the form
3970 * D -> L
3972 * (with D the iteration domains and L the already generated loops),
3973 * while shared_sched is of the form
3975 * D -> S
3977 * We first compute the access relation for the reference group
3979 * D -> A
3981 * and combine it with shared_sched into
3983 * D -> [S -> A]
3985 * If this results in an empty relation, no copying needs to be performed
3986 * at this point.
3987 * Otherwise, we invert the relation and combine it with "schedule" into
3989 * [S -> A] -> L
3991 * The actual additional piece of the schedule is obtained from combining
3993 * [S -> A] -> S
3995 * with a mapping
3997 * [s_0,...] -> [0,s_{tile_first},0,..., val, 0, 0, ... 0]
3999 * The position of "val" corresponds to the innermost loop that affects
4000 * the tile and the value indicates where the copying is scheduled
4001 * with respect to the actual kernel code (at value 0).
4002 * Reads are schedule before the code, writes to global memory from
4003 * private memory are scheduled at values 1 to s, writes to global
4004 * memory from shared memory are scheduled at values s + 2 to 2 * s + 1.
4006 * If we are scheduling a read from global memory to shared memory,
4007 * we insert a synchronization before the kernel code (at the innermost
4008 * level).
4009 * If we are scheduling a write to global memory, then we add
4010 * a synchronization after all writes (at value 2 *s + 2).
4011 * However, there is no need for a synchronization after the outermost loop.
4012 * A write to global memory from private memory at the innermost level
4013 * does not require a synchronization, because it is covered by
4014 * the synchronization after the kernel inserted by body_schedule.
4016 static __isl_give isl_union_map *add_group_schedule(struct gpu_gen *gen,
4017 __isl_take isl_union_map *res, __isl_keep isl_union_map *schedule,
4018 __isl_keep isl_union_map *shared_sched,
4019 struct gpu_array_ref_group *group, int read, int k, int s)
4021 int n;
4022 int pos, val;
4023 isl_space *space;
4024 isl_union_map *access;
4025 isl_map *map, *proj, *access_map;
4026 isl_id *id;
4028 access = group_access_relation(group, read, !read);
4029 access = isl_union_map_range_product(isl_union_map_copy(shared_sched),
4030 access);
4032 if (isl_union_map_is_empty(access)) {
4033 isl_union_map_free(access);
4034 return res;
4037 access = isl_union_map_reverse(access);
4038 access = isl_union_map_apply_range(access,
4039 isl_union_map_copy(schedule));
4040 access_map = isl_map_from_union_map(access);
4042 space = isl_space_copy(group->array->dim);
4043 space = isl_space_from_range(space);
4044 space = isl_space_add_dims(space, isl_dim_in, gen->shared_len);
4045 map = isl_map_domain_map(isl_map_universe(space));
4047 space = isl_union_map_get_space(schedule);
4048 pos = group->last_shared + 1 - gen->tile_first;
4049 assert(pos >= 0);
4050 if (read)
4051 val = -2 - k;
4052 else if (group->private_tile)
4053 val = 1 + k;
4054 else
4055 val = 1 + s + 1 + k;
4056 proj = insert_even(gen, space, pos, val);
4057 map = isl_map_apply_range(map, proj);
4059 access_map = isl_map_range_product(access_map, map);
4061 id = isl_id_alloc(gen->ctx, read ? "read" : "write", group);
4062 access_map = isl_map_set_tuple_id(access_map, isl_dim_in, id);
4064 res = isl_union_map_add_map(res, access_map);
4066 n = gen->shared_len - gen->tile_first;
4067 if (read) {
4068 if (!group->private_tile)
4069 res = add_sync_schedule(gen, res, schedule,
4070 shared_sched, n, -1);
4071 } else {
4072 if (pos == 0)
4073 return res;
4074 if (pos == n && group->private_tile)
4075 return res;
4076 res = add_sync_schedule(gen, res, schedule, shared_sched,
4077 pos, 2 * s + 2);
4080 return res;
4083 /* Return a schedule for the shared tile loops based on the current
4084 * AST context schedule.
4086 * We create a "shared_sched" that maps the domains to the first
4087 * shared_len dimensions of the computed schedule, project out the
4088 * first tile_first dimensions (as these are already covered by
4089 * the host code) and insert "statement-level" dimensions at even
4090 * positions so that we can schedule copy blocks and synchronization
4091 * before/after each level.
4093 * In particular, copy blocks are inserted inside the innermost
4094 * level that affect the tile. For the copying to global memory,
4095 * those from private memory are scheduled before those from shared
4096 * memory such that synchronization can be inserted between the two
4097 * at the innermost level.
4098 * Synchronization is inserted at the innermost level before the
4099 * actual kernel code if there is any copying from global memory
4100 * to shared memory. It is inserted unconditionally at the innermost
4101 * level after the actual kernel code and the copying to global memory
4102 * from private memory (if any). Finally, it is inserted after
4103 * any copying to global memory, except at the outermost level
4104 * and at the innermost level if there is no copying from shared
4105 * memory. The copying from private memory is covered by the unconditional
4106 * synchronization at the innermost level.
4108 static __isl_give isl_union_map *body_schedule(struct gpu_gen *gen,
4109 __isl_take isl_union_map *schedule)
4111 isl_space *space;
4112 isl_union_map *res;
4113 isl_union_map *shared_sched;
4114 isl_union_map *sched;
4115 isl_map *proj, *map;
4116 int i, j, k, s;
4118 shared_sched = isl_union_map_copy(gen->tiled_sched);
4119 proj = projection(isl_union_map_get_space(shared_sched),
4120 gen->tiled_len, gen->shared_len);
4121 shared_sched = isl_union_map_apply_range(shared_sched,
4122 isl_union_map_from_map(proj));
4123 space = isl_union_map_get_space(shared_sched);
4124 proj = insert_even(gen, space, -1, 0);
4125 sched = isl_union_map_apply_range(isl_union_map_copy(shared_sched),
4126 isl_union_map_from_map(proj));
4128 res = isl_union_map_range_product(isl_union_map_copy(schedule), sched);
4130 s = 0;
4131 for (i = 0; i < gen->prog->n_array; ++i)
4132 s += gen->prog->array[i].n_group;
4134 k = 0;
4135 for (i = 0; i < gen->prog->n_array; ++i) {
4136 struct gpu_array_info *array = &gen->prog->array[i];
4138 for (j = 0; j < array->n_group; ++j) {
4139 struct gpu_array_ref_group *group;
4141 group = array->groups[j];
4142 if (!group->private_tile && !group->shared_tile)
4143 continue;
4144 res = add_group_schedule(gen, res, schedule,
4145 shared_sched, group, 0, k, s);
4146 res = add_group_schedule(gen, res, schedule,
4147 shared_sched, group, 1, k, s);
4148 ++k;
4152 res = add_sync_schedule(gen, res, schedule, shared_sched,
4153 gen->shared_len - gen->tile_first, 1 + s);
4155 isl_union_map_free(shared_sched);
4156 isl_union_map_free(schedule);
4158 return res;
4161 /* Generate code for "kernel" in the given "context".
4163 * We first generate code for the shared tile loops (T1T, T1P and T2)
4164 * in a context that includes the block ids.
4165 * Within each iteration of these loops an additional code generation
4166 * is performed (within create_kernel_leaf) for the rest of the schedule
4167 * in a context that includes the thread ids.
4169 static __isl_give isl_ast_node *generate_kernel(struct gpu_gen *gen,
4170 __isl_keep isl_ast_build *build, __isl_keep isl_set *host_domain,
4171 __isl_keep isl_multi_pw_aff *grid_size)
4173 isl_space *space;
4174 isl_set *set;
4175 isl_id_list *iterators;
4176 isl_union_map *schedule;
4177 isl_ast_node *tree;
4178 int sched_len;
4180 schedule = isl_ast_build_get_schedule(build);
4182 build = isl_ast_build_copy(build);
4183 build = isl_ast_build_restrict(build, isl_set_copy(host_domain));
4184 space = isl_ast_build_get_schedule_space(build);
4185 set = isl_set_universe(isl_space_copy(space));
4186 set = add_bounded_parameters_dynamic(set, grid_size, "b");
4187 build = isl_ast_build_restrict(build, set);
4189 schedule = body_schedule(gen, schedule);
4191 sched_len = 2 * (gen->shared_len - gen->tile_first) + 1;
4193 build = set_atomic_and_unroll(build, space, sched_len);
4194 iterators = generate_names(gen->ctx, sched_len, "g");
4195 build = isl_ast_build_set_iterators(build, iterators);
4196 build = isl_ast_build_set_create_leaf(build, &create_kernel_leaf, gen);
4197 tree = isl_ast_build_ast_from_schedule(build, schedule);
4198 isl_ast_build_free(build);
4200 return tree;
4203 /* Attach "id" to the given node.
4205 static __isl_give isl_ast_node *attach_id(__isl_take isl_ast_node *node,
4206 __isl_keep isl_ast_build *build, void *user)
4208 isl_id *id = user;
4210 node = isl_ast_node_set_annotation(node, id);
4212 return node;
4215 /* Construct an AST node for performing a kernel launch and attach
4216 * the information about the kernel to that node.
4218 * The kernel AST has been constructed in the context of the range
4219 * of "schedule". In particular, the grid size has been computed
4220 * in the context. We therefore still need to make sure that these
4221 * constraints are expressed in the code. We do this by creating a schedule
4223 * kernel[] -> [S -> []]
4225 * where S is the schedule domain, i.e., the range of "schedule".
4226 * The AST generation will then create a single call surrounded by
4227 * all the condition in "S" that have not been expressed yet.
4229 * The kernel information is attached to this node in attach_id.
4231 static __isl_give isl_ast_node *construct_launch(
4232 __isl_take isl_ast_build *build, __isl_take isl_union_map *schedule,
4233 __isl_take struct ppcg_kernel *kernel)
4235 isl_id *id;
4236 isl_ctx *ctx;
4237 isl_union_set *domain;
4238 isl_set *set;
4239 isl_map *map;
4240 isl_ast_node *node;
4242 ctx = isl_ast_build_get_ctx(build);
4244 id = isl_id_alloc(ctx, NULL, kernel);
4245 id = isl_id_set_free_user(id, &ppcg_kernel_free);
4247 domain = isl_union_map_range(schedule);
4248 set = isl_set_from_union_set(domain);
4249 map = isl_map_from_domain(set);
4250 map = isl_map_from_range(isl_map_wrap(map));
4251 map = isl_map_set_tuple_name(map, isl_dim_in, "kernel");
4252 schedule = isl_union_map_from_map(map);
4254 build = isl_ast_build_set_at_each_domain(build, &attach_id, id);
4255 node = isl_ast_build_ast_from_schedule(build, schedule);
4256 isl_ast_build_free(build);
4258 return node;
4261 /* This function is called for each leaf in the AST of the host code.
4262 * We first specialize the schedule to the site of the leaf, compute
4263 * the size of shared memory and then construct the body of host code
4264 * and the associated kernel.
4266 * The necessary information for printing the kernel launch is
4267 * stored in a struct ppcg_kernel and attached to the leaf node
4268 * created to represent the launch.
4270 static __isl_give isl_ast_node *create_host_leaf(
4271 __isl_take isl_ast_build *build, void *user)
4273 struct gpu_gen *gen = (struct gpu_gen *) user;
4274 isl_id *id;
4275 isl_ast_node *node;
4276 struct ppcg_kernel *kernel;
4277 isl_set *host_domain;
4278 isl_union_map *schedule;
4279 isl_union_map *local_sched;
4280 isl_union_map *access;
4281 isl_union_set *domain;
4282 int i;
4284 schedule = isl_ast_build_get_schedule(build);
4286 isl_union_map_foreach_map(schedule, &extract_tile_len, gen);
4287 read_sizes(gen);
4289 domain = isl_union_map_domain(isl_union_map_copy(schedule));
4291 local_sched = isl_union_map_copy(gen->sched);
4292 local_sched = isl_union_map_intersect_domain(local_sched, domain);
4293 access = isl_union_map_union(isl_union_map_copy(gen->prog->read),
4294 isl_union_map_copy(gen->prog->write));
4295 access = isl_union_map_apply_domain(access,
4296 isl_union_map_copy(local_sched));
4298 gen->tiled_sched = tile_schedule(gen, local_sched);
4299 gen->tiled_sched = parametrize_tiled_schedule(gen, gen->tiled_sched);
4300 gen->tiled_sched = scale_tile_loops(gen, gen->tiled_sched);
4302 kernel = gen->kernel = isl_calloc_type(gen->ctx, struct ppcg_kernel);
4303 if (!kernel)
4304 goto error;
4306 kernel->id = gen->kernel_id++;
4307 kernel->n_block = gen->n_block;
4308 for (i = 0; i < gen->n_block; ++i)
4309 kernel->block_dim[i] = gen->block_dim[i];
4310 kernel->n_grid = gen->n_grid;
4311 for (i = 0; i < gen->n_grid; ++i)
4312 kernel->grid_dim[i] = gen->grid_dim[i];
4313 kernel->context = isl_union_map_params(isl_union_map_copy(schedule));
4314 kernel->grid_size = extract_grid_size(gen, kernel);
4315 kernel->arrays = isl_union_map_range(access);
4316 kernel->space = isl_ast_build_get_schedule_space(build);
4318 gen->local_sched = isl_union_map_copy(gen->tiled_sched);
4320 gen->local_sched = thread_tile_schedule(gen, gen->local_sched);
4321 gen->local_sched = scale_thread_tile_loops(gen, gen->local_sched);
4323 gen->private_access = NULL;
4324 compute_shared_sched(gen);
4325 gen->privatization = compute_privatization(gen);
4326 group_references(gen);
4327 compute_private_access(gen);
4328 check_shared_memory_bound(gen);
4329 host_domain = isl_set_from_union_set(isl_union_map_range(
4330 isl_union_map_copy(schedule)));
4331 localize_bounds(gen, kernel, host_domain);
4333 gen->local_sched = interchange_for_unroll(gen, gen->local_sched);
4335 kernel->tree = generate_kernel(gen, build, host_domain,
4336 kernel->grid_size);
4337 create_kernel_vars(gen, kernel);
4339 free_local_array_info(gen);
4340 isl_map_free(gen->privatization);
4341 isl_union_map_free(gen->private_access);
4342 isl_union_map_free(gen->local_sched);
4343 isl_union_map_free(gen->tiled_sched);
4344 isl_union_map_free(gen->shared_sched);
4345 isl_union_map_free(gen->shared_proj);
4346 isl_set_free(host_domain);
4347 free(gen->tile_size);
4349 node = construct_launch(build, schedule, kernel);
4351 return node;
4352 error:
4353 isl_union_map_free(schedule);
4354 return NULL;
4357 /* Use isl to generate code for the outer gen->tile_first loops
4358 * of the global schedule in gen->sched, resulting in the host code.
4359 * Within each iteration of this partial schedule, i.e., for each kernel
4360 * launch, create_host_leaf takes care of generating the kernel code.
4362 static __isl_give isl_ast_node *generate_host_code(struct gpu_gen *gen)
4364 isl_ast_build *build;
4365 isl_ast_node *tree;
4366 isl_union_map *sched;
4367 isl_map *proj;
4368 isl_id_list *iterators;
4370 sched = isl_union_map_copy(gen->sched);
4371 proj = projection(isl_union_map_get_space(sched),
4372 gen->untiled_len, gen->tile_first);
4373 sched = isl_union_map_apply_range(sched, isl_union_map_from_map(proj));
4375 isl_options_set_ast_build_group_coscheduled(gen->ctx, 1);
4376 build = isl_ast_build_from_context(isl_set_copy(gen->prog->context));
4377 iterators = generate_names(gen->ctx, gen->tile_first, "h");
4378 build = isl_ast_build_set_iterators(build, iterators);
4379 build = isl_ast_build_set_create_leaf(build, &create_host_leaf, gen);
4380 tree = isl_ast_build_ast_from_schedule(build, sched);
4381 isl_ast_build_free(build);
4383 return tree;
4386 __isl_give isl_union_map *extract_sizes_from_str(isl_ctx *ctx, const char *str)
4388 if (!str)
4389 return NULL;
4390 return isl_union_map_read_from_str(ctx, str);
4393 /* Information about the outermost tilable bands in the forest of bands.
4395 * tile_len and n_parallel are only sets on band_info structures
4396 * that correspond to outermost bands. For other bands (in particular,
4397 * ancestors of the outermost bands), n_parallal is set to 0.
4399 * prefix is the (padded) schedule leading up to the outermost tilable bands.
4401 * tile_first is the number of schedule dimensions in prefix.
4403 * suffix is the schedule of the outermost tilable bands and their descendants.
4405 struct band_info {
4406 struct gpu_gen *gen;
4407 int tile_first;
4408 int tile_len;
4409 int n_parallel;
4410 isl_union_map *prefix;
4411 isl_union_map *suffix;
4414 /* Set tile_len and n_parallel of the statement to that of
4415 * their outermost band, recorded in the band_info.
4417 static int set_stmt_tile_len(__isl_take isl_map *map, void *user)
4419 struct band_info *info = user;
4420 struct gpu_stmt *stmt;
4421 isl_id *id;
4423 id = isl_map_get_tuple_id(map, isl_dim_in);
4424 stmt = find_stmt(info->gen->prog, id);
4425 isl_id_free(id);
4427 stmt->tile_len = info->tile_len;
4428 stmt->n_parallel = info->n_parallel;
4430 isl_map_free(map);
4432 return 0;
4435 static void list_select_outer_band(struct gpu_gen *gen,
4436 __isl_take isl_band_list *list, int pos, struct band_info *list_info);
4438 /* Check if this band has any parallel loops. If so, take it as
4439 * the outermost tilable band. If not, continue looking for the
4440 * outermost tilable band in the children of the current band.
4442 static void band_select_outer_band(struct gpu_gen *gen,
4443 __isl_take isl_band *band, int pos, struct band_info *info)
4445 int n = isl_band_n_member(band);
4446 int n_parallel;
4448 for (n_parallel = 0; n_parallel < n; ++n_parallel)
4449 if (!isl_band_member_is_zero_distance(band, n_parallel))
4450 break;
4452 info->n_parallel = n_parallel;
4453 if (n_parallel) {
4454 info->gen = gen;
4455 info->tile_first = pos;
4456 info->tile_len = n;
4457 info->prefix = isl_band_get_prefix_schedule(band);
4458 info->suffix = isl_union_map_flat_range_product(
4459 isl_band_get_partial_schedule(band),
4460 isl_band_get_suffix_schedule(band));
4461 isl_union_map_foreach_map(info->prefix,
4462 &set_stmt_tile_len, info);
4463 } else if (isl_band_has_children(band)) {
4464 isl_band_list *children;
4465 children = isl_band_get_children(band);
4466 list_select_outer_band(gen, children, pos + n, info);
4467 } else {
4468 info->gen = gen;
4469 info->tile_first = pos + n;
4470 info->tile_len = 0;
4471 info->prefix = isl_union_map_flat_range_product(
4472 isl_band_get_prefix_schedule(band),
4473 isl_band_get_partial_schedule(band));
4474 info->suffix = isl_band_get_suffix_schedule(band);
4475 isl_union_map_foreach_map(info->prefix,
4476 &set_stmt_tile_len, info);
4479 isl_band_free(band);
4482 /* Comparison function that returns a non-zero value for band_infos
4483 * with different tile_len fields or different n_parallel fields.
4485 static int cmp_band(const void *p1, const void *p2)
4487 const struct band_info *info1 = p1;
4488 const struct band_info *info2 = p2;
4490 if (info1->tile_len != info2->tile_len)
4491 return info1->tile_len - info2->tile_len;
4493 return info1->n_parallel - info2->n_parallel;
4496 /* Extend "umap" with coordinates with fixed value "val"
4497 * to a total length of "dst_len", assuming the original dimension is "src_len".
4499 static __isl_give isl_union_map *extend_range(
4500 __isl_take isl_union_map *umap, int src_len, int dst_len, int val)
4502 isl_space *dim;
4503 isl_map *map;
4504 int i;
4506 dim = isl_union_map_get_space(umap);
4507 map = isl_map_reverse(projection(dim, dst_len, src_len));
4508 for (i = src_len; i < dst_len; ++i)
4509 map = isl_map_fix_si(map, isl_dim_out, i, val);
4511 umap = isl_union_map_apply_range(umap, isl_union_map_from_map(map));
4513 return umap;
4516 /* Group bands with the same values for tile_len and n_parallel.
4517 * The prefix schedule is then extended with a fixed coordinate that
4518 * is different for each such group.
4519 * Note that the actual values for this coordinate are not important.
4520 * The bands have already been effectively separated at a higher level
4521 * or they are independent and may be executed in parallel.
4522 * The list of band_info has been sorted before this functions is called.
4524 static void separate_bands(struct band_info *info, int n)
4526 int i;
4527 int j = 0;
4529 for (i = 0; i < n; ++i) {
4530 int l = info[i].tile_first;
4532 if (i &&
4533 (info[i].tile_len != info[i - 1].tile_len ||
4534 info[i].n_parallel != info[i - 1].n_parallel))
4535 j++;
4537 info[i].prefix = extend_range(info[i].prefix,
4538 l, l + 1, j);
4539 info[i].tile_first = l + 1;
4543 /* Select the outermost bands in the elements of the list, align
4544 * their prefix schedules, separate bands with different values
4545 * for tile_len and/or n_parallel and then combine the resulting
4546 * prefix and suffix schedules into a single pair of prefix and
4547 * suffix schedules for the entire list.
4549 static void list_select_outer_band(struct gpu_gen *gen,
4550 __isl_take isl_band_list *list, int pos, struct band_info *list_info)
4552 isl_band *band;
4553 int i;
4554 int n = isl_band_list_n_band(list);
4555 isl_ctx *ctx = isl_band_list_get_ctx(list);
4556 struct band_info *info;
4557 int max_tile_first;
4558 isl_union_map *prefix;
4559 isl_union_map *suffix;
4561 assert(n >= 1);
4562 info = isl_calloc_array(ctx, struct band_info, n);
4563 assert(info);
4565 max_tile_first = 0;
4566 for (i = 0; i < n; ++i) {
4567 band = isl_band_list_get_band(list, i);
4568 band_select_outer_band(gen, band, pos, &info[i]);
4569 if (info[i].tile_first > max_tile_first)
4570 max_tile_first = info[i].tile_first;
4573 for (i = 0; i < n; ++i) {
4574 if (info[i].tile_first == max_tile_first)
4575 continue;
4576 info[i].prefix = extend_range(info[i].prefix,
4577 info[i].tile_first, max_tile_first, 0);
4578 info[i].tile_first = max_tile_first;
4581 qsort(info, n, sizeof(struct band_info), &cmp_band);
4583 for (i = 0; i < n - 1; ++i)
4584 if (info[i].tile_len != info[i + 1].tile_len ||
4585 info[i].n_parallel != info[i + 1].n_parallel)
4586 break;
4588 if (i < n -1)
4589 separate_bands(info, n);
4591 prefix = info[0].prefix;
4592 suffix = info[0].suffix;
4594 for (i = 1; i < n; ++i) {
4595 prefix = isl_union_map_union(prefix, info[i].prefix);
4596 suffix = isl_union_map_union(suffix, info[i].suffix);
4599 list_info->tile_first = info[0].tile_first;
4600 list_info->tile_len = -1;
4601 list_info->prefix = prefix;
4602 list_info->suffix = suffix;
4604 isl_band_list_free(list);
4605 free(info);
4608 /* Select the outermost tilable band that (by construction)
4609 * has at least one parallel loop.
4610 * The starting position of the aligned band is stored in the pair
4611 * gen->tile_first.
4612 * The sizes and number of parallel loops may be different in different
4613 * parts of the band forest and are therefore stored in the gpu_stmts.
4615 * Return the complete schedule, with the tilable bands aligned
4616 * at gen->tile_first and padded with zero, if needed.
4618 static __isl_give isl_union_map *select_outer_tilable_band(struct gpu_gen *gen,
4619 __isl_keep isl_schedule *schedule)
4621 isl_band_list *list;
4622 struct band_info info;
4624 gen->n_parallel = 0;
4625 gen->tile_len = -1;
4627 list = isl_schedule_get_band_forest(schedule);
4629 list_select_outer_band(gen, list, 0, &info);
4631 gen->tile_first = info.tile_first;
4632 info.suffix = align_range(info.suffix);
4634 return isl_union_map_flat_range_product(info.prefix, info.suffix);
4637 /* Set gen->untiled_len to the number of scheduling dimensions
4638 * for the schedule of the first domain.
4639 * We assume here that this number is the same for all domains.
4641 static int set_untiled_len(__isl_take isl_map *map, void *user)
4643 unsigned *untiled_len = user;
4645 *untiled_len = isl_map_dim(map, isl_dim_out);
4647 isl_map_free(map);
4648 return -1;
4651 /* Compute an appropriate schedule based on the accesses in
4652 * gen->read and gen->write.
4654 * We use the dependences in gen->prog->scop to compute
4655 * a schedule that has a parallel loop in each tilable band.
4656 * Finally, we select the outermost tilable band.
4658 static void compute_schedule(struct gpu_gen *gen)
4660 isl_union_set *domain;
4661 isl_union_map *dep_raw, *dep;
4662 isl_union_map *sched;
4663 isl_schedule *schedule;
4665 dep_raw = isl_union_map_copy(gen->prog->scop->dep_flow);
4667 dep = isl_union_map_copy(gen->prog->scop->dep_false);
4668 dep = isl_union_map_union(dep, dep_raw);
4669 dep = isl_union_map_coalesce(dep);
4671 domain = isl_union_set_copy(gen->prog->scop->domain);
4672 domain = isl_union_set_intersect_params(domain,
4673 isl_set_copy(gen->prog->scop->context));
4674 schedule = isl_union_set_compute_schedule(isl_union_set_copy(domain),
4675 isl_union_map_copy(dep), dep);
4676 if (gen->options->debug->dump_schedule)
4677 isl_schedule_dump(schedule);
4679 sched = select_outer_tilable_band(gen, schedule);
4681 isl_union_map_foreach_map(sched, &set_untiled_len, &gen->untiled_len);
4682 sched = isl_union_map_intersect_domain(sched, domain);
4683 gen->sched = sched;
4685 isl_schedule_free(schedule);
4688 /* Compute the sets of array elements that need to be copied in and out.
4690 * In particular, for each array that is written anywhere in gen->prog and
4691 * that is visible outside the corresponding scop, we copy out its entire
4692 * extent.
4694 * Any array elements that is read without first being written needs
4695 * to be copied in. Furthermore, if there are any array elements that
4696 * are copied out, but that are not written inside gen->prog, then
4697 * they also need to be copied in to ensure that the value after execution
4698 * is the same as the value before execution.
4699 * While computing the set of array elements that
4700 * are copied out but not written, we intersect both sets with the context.
4701 * This helps in those cases where the arrays are declared with a fixed size,
4702 * while the accesses are parametric and the context assigns a fixed value
4703 * to the parameters.
4705 static void compute_copy_in_and_out(struct gpu_gen *gen)
4707 int i;
4708 isl_union_set *write;
4709 isl_union_set *copy_in, *copy_out;
4710 isl_union_set *not_written;
4711 isl_union_map *uninitialized;
4713 write = isl_union_map_range(isl_union_map_copy(gen->prog->write));
4714 write = isl_union_set_intersect_params(write,
4715 isl_set_copy(gen->prog->context));
4716 copy_out = isl_union_set_empty(isl_union_set_get_space(write));
4718 for (i = 0; i < gen->prog->n_array; ++i) {
4719 isl_space *space;
4720 isl_set *write_i;
4721 int empty;
4723 if (gen->prog->array[i].local)
4724 continue;
4726 space = isl_space_copy(gen->prog->array[i].dim);
4727 write_i = isl_union_set_extract_set(write, space);
4728 empty = isl_set_fast_is_empty(write_i);
4729 isl_set_free(write_i);
4730 if (empty)
4731 continue;
4733 write_i = isl_set_copy(gen->prog->array[i].extent);
4734 copy_out = isl_union_set_add_set(copy_out, write_i);
4737 copy_out = isl_union_set_intersect_params(copy_out,
4738 isl_set_copy(gen->prog->context));
4740 gen->prog->copy_out = isl_union_set_copy(copy_out);
4742 uninitialized = isl_union_map_copy(gen->prog->scop->live_in);
4743 copy_in = isl_union_map_range(uninitialized);
4745 not_written = isl_union_set_subtract(copy_out, write);
4746 copy_in = isl_union_set_union(copy_in, not_written);
4747 gen->prog->copy_in = copy_in;
4750 static struct gpu_stmt_access **expr_extract_access(struct pet_expr *expr,
4751 struct gpu_stmt_access **next_access)
4753 struct gpu_stmt_access *access;
4754 isl_ctx *ctx = isl_map_get_ctx(expr->acc.access);
4756 access = isl_alloc_type(ctx, struct gpu_stmt_access);
4757 assert(access);
4758 access->next = NULL;
4759 access->read = expr->acc.read;
4760 access->write = expr->acc.write;
4761 access->access = isl_map_copy(expr->acc.access);
4763 *next_access = access;
4764 next_access = &(*next_access)->next;
4765 return next_access;
4768 static struct gpu_stmt_access **expr_extract_accesses(struct pet_expr *expr,
4769 struct gpu_stmt_access **next_access)
4771 int i;
4773 for (i = 0; i < expr->n_arg; ++i)
4774 next_access = expr_extract_accesses(expr->args[i],
4775 next_access);
4777 if (expr->type == pet_expr_access)
4778 next_access = expr_extract_access(expr, next_access);
4780 return next_access;
4783 static void pet_stmt_extract_accesses(struct gpu_stmt *stmt)
4785 struct gpu_stmt_access **next_access = &stmt->accesses;
4787 stmt->accesses = NULL;
4788 expr_extract_accesses(stmt->body, next_access);
4791 /* Return an array of gpu_stmt representing the statements in "scop".
4793 static struct gpu_stmt *extract_stmts(isl_ctx *ctx, struct ppcg_scop *scop,
4794 __isl_keep isl_set *context)
4796 int i;
4797 struct gpu_stmt *stmts;
4799 stmts = isl_calloc_array(ctx, struct gpu_stmt, scop->n_stmt);
4800 assert(stmts);
4802 for (i = 0; i < scop->n_stmt; ++i) {
4803 struct gpu_stmt *s = &stmts[i];
4805 s->id = isl_set_get_tuple_id(scop->stmts[i]->domain);
4806 s->body = scop->stmts[i]->body;
4807 pet_stmt_extract_accesses(s);
4810 return stmts;
4813 /* Replace the scop in the "input" file by equivalent code
4814 * that uses the GPU. "scop" is assumed to correspond to this scop.
4816 * We first compute a schedule that respects the dependences
4817 * of the original program and select the outermost band
4818 * of tilable dimensions that has at least one parallel loop.
4819 * We then have three blocks of dimensions
4821 * H B G
4823 * The tilable band "B" is first tiled according to "tile" sizes, resulting
4824 * in
4826 * H T P G
4828 * For each iteration of the T loop and for each array, we compute
4829 * the array elements accessed by that iteration, construct a rectangular
4830 * box around it and shift it to the origin. The result is used
4831 * as shared memory for the array.
4833 * We then split off at most 2 parallel loops from the T loops and
4834 * at most 3 parallel loops from the P loops
4836 * H T1 T2 P1 P2 G
4838 * The T1/P1 loops are then tiled or "wrapped" over the blocks/threads,
4839 * according to "grid"/"block" sizes.
4841 * H T1T T1P T2 P1T P1P P2 G
4843 * Finally, the T1P and P1P iterators are equated to the block and
4844 * thread dimensions respectively and so are effectively removed.
4845 * The H loops are run on the host. The T1T, T2, P1T, P2 and G loops
4846 * are run on the GPU.
4848 * Code is generated in three stages. We first generate code for the
4849 * host (the H loops), with iterators h%d. Then, for each leaf node
4850 * of the resulting AST, we generate code for the shared loops (up to
4851 * and including T2), with iterators g%d and after equating the H loops
4852 * to h%d parameters and the T1P loops to the block dimensions.
4853 * Finally, we generate code for the remaining loops in a similar fashion.
4855 __isl_give isl_ast_node *generate_gpu(isl_ctx *ctx, struct gpu_prog *prog,
4856 struct ppcg_options *options)
4858 isl_union_map *sched;
4859 struct gpu_gen gen;
4860 isl_ast_node *tree;
4862 if (!prog)
4863 return NULL;
4865 gen.ctx = ctx;
4866 gen.prog = prog;
4867 gen.sizes = extract_sizes_from_str(ctx, options->sizes);
4868 gen.options = options;
4870 compute_schedule(&gen);
4871 compute_copy_in_and_out(&gen);
4873 gen.kernel_id = 0;
4874 tree = generate_host_code(&gen);
4876 clear_gpu_gen(&gen);
4878 return tree;
4881 struct gpu_prog *gpu_prog_alloc(isl_ctx *ctx, struct ppcg_scop *scop)
4883 struct gpu_prog *prog;
4885 if (!scop)
4886 return NULL;
4888 prog = isl_calloc_type(ctx, struct gpu_prog);
4889 assert(prog);
4891 prog->ctx = ctx;
4892 prog->scop = scop;
4893 prog->context = isl_set_copy(scop->context);
4894 prog->n_stmts = scop->n_stmt;
4895 prog->stmts = extract_stmts(ctx, scop, prog->context);
4896 prog->read = isl_union_map_copy(scop->reads);
4897 prog->write = isl_union_map_copy(scop->writes);
4899 collect_array_info(prog);
4901 return prog;
4904 void gpu_prog_free(struct gpu_prog *prog)
4906 if (!prog)
4907 return;
4908 free_array_info(prog);
4909 free_stmts(prog->stmts, prog->n_stmts);
4910 isl_union_set_free(prog->copy_in);
4911 isl_union_set_free(prog->copy_out);
4912 isl_union_map_free(prog->read);
4913 isl_union_map_free(prog->write);
4914 isl_set_free(prog->context);
4915 free(prog);