add OpenCL test inputs to distribution
[ppcg.git] / gpu.c
blobdda8970cba00a8707193000b70546916aca0c123
1 /*
2 * Copyright 2010-2011 INRIA Saclay
3 * Copyright 2012-2013 Ecole Normale Superieure
5 * Use of this software is governed by the MIT license
7 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
8 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
9 * 91893 Orsay, France
10 * and Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France
13 #include <assert.h>
14 #include <stdlib.h>
15 #include <string.h>
17 #include <isl/polynomial.h>
18 #include <isl/union_set.h>
19 #include <isl/aff.h>
20 #include <isl/ilp.h>
21 #include <isl/flow.h>
22 #include <isl/band.h>
23 #include <isl/schedule.h>
24 #include <isl/options.h>
25 #include <isl/ast_build.h>
27 #include "cpu.h"
28 #include "gpu.h"
29 #include "schedule.h"
30 #include "ppcg_options.h"
31 #include "print.h"
33 /* The fields stride, shift and shift_map only contain valid information
34 * if shift != NULL.
35 * If so, they express that current index is such that if you add shift,
36 * then the result is always a multiple of stride.
37 * shift_map contains the mapping
39 * i -> (i + shift)/stride
41 * Let D represent the initial shared_len dimensions of the computed schedule.
42 * The spaces of "lb" and "shift" are of the form
44 * D -> [b]
46 * "shift_map" is of the form
48 * [D -> i] -> [D -> (i + shift(D))/stride]
50 struct gpu_array_bound {
51 isl_val *size;
52 isl_aff *lb;
54 isl_val *stride;
55 isl_aff *shift;
56 isl_basic_map *shift_map;
59 /* A tile of an array.
61 * n is the dimension of the array.
62 * bound is an array of size "n" representing the lower bound
63 * and size for each index.
65 * tiling maps a tile in the global array to the corresponding
66 * shared/private memory tile and is of the form
68 * { [D[i] -> A[a]] -> T[(a + shift(i))/stride - lb(i)] }
70 * where D represents the initial shared_len dimensions
71 * of the computed schedule.
73 struct gpu_array_tile {
74 int n;
75 struct gpu_array_bound *bound;
76 isl_multi_aff *tiling;
79 struct gpu_array_info;
81 /* A group of array references in a kernel that should be handled together.
82 * If private_tile is not NULL, then it is mapped to registers.
83 * Otherwise, if shared_tile is not NULL, it is mapped to shared memory.
84 * Otherwise, it is accessed from global memory.
86 struct gpu_array_ref_group {
87 /* The references in this group access this array. */
88 struct gpu_array_info *array;
89 /* Position of this group in the list of reference groups of array. */
90 int nr;
92 /* The following fields are use during the construction of the groups.
93 * access is the combined access relation relative to the shared
94 * memory tiling. In particular, the domain of the map corresponds
95 * to the first shared_len dimensions of the computed schedule.
96 * write is set if any access in the group is a write.
97 * exact_write is set if all writes are definite writes.
99 isl_map *access;
100 int write;
101 int exact_write;
103 /* The shared memory tile, NULL if none. */
104 struct gpu_array_tile *shared_tile;
106 /* The private memory tile, NULL if none. */
107 struct gpu_array_tile *private_tile;
109 /* References in this group; point to elements of a linked list. */
110 int n_ref;
111 struct gpu_stmt_access **refs;
113 /* Last shared memory tile dimension that affects tile of this group. */
114 int last_shared;
117 struct gpu_gen {
118 isl_ctx *ctx;
119 struct ppcg_options *options;
121 /* Callback for printing of AST in appropriate format. */
122 __isl_give isl_printer *(*print)(__isl_take isl_printer *p,
123 struct gpu_prog *prog, __isl_keep isl_ast_node *tree,
124 struct gpu_types *types, void *user);
125 void *print_user;
127 struct gpu_prog *prog;
128 /* The generated AST. */
129 isl_ast_node *tree;
131 /* The sequence of types for which a definition has been printed. */
132 struct gpu_types types;
134 /* tile, grid and block sizes for each kernel */
135 isl_union_map *sizes;
137 /* Identifier of current kernel. */
138 int kernel_id;
139 /* Pointer to the current kernel. */
140 struct ppcg_kernel *kernel;
141 /* Does the computed schedule exhibit any parallelism? */
142 int any_parallelism;
144 /* First tile dimension. */
145 int tile_first;
146 /* Number of tile dimensions. */
147 int tile_len;
148 /* Number of initial parallel loops among tile dimensions. */
149 int n_parallel;
151 /* Number of dimensions determining shared memory. */
152 int shared_len;
154 /* Number of rows in the untiled schedule. */
155 int untiled_len;
156 /* Number of rows in the tiled schedule. */
157 int tiled_len;
158 /* Number of rows in schedule after tiling/wrapping over threads. */
159 int thread_tiled_len;
161 /* Global untiled schedule. */
162 isl_union_map *sched;
163 /* Local (per kernel launch) tiled schedule. */
164 isl_union_map *tiled_sched;
165 /* Local schedule per shared memory tile loop iteration. */
166 isl_union_map *local_sched;
168 /* Local tiled schedule projected onto the shared tile loops and
169 * the loops that will be wrapped over the threads,
170 * with all shared tile loops parametrized.
172 isl_union_map *shared_sched;
173 /* Projects out the loops that will be wrapped over the threads
174 * from shared_sched.
176 isl_union_map *shared_proj;
178 /* A map that takes the range of shared_sched as input,
179 * wraps the appropriate loops over the threads and then projects
180 * out these loops.
182 isl_map *privatization;
184 /* A map from the shared memory tile loops and the thread indices
185 * (as parameters) to the set of accessed memory elements that
186 * will be accessed through private copies.
188 isl_union_map *private_access;
190 /* The schedule for the current private/shared access
191 * (within print_private_access or print_shared_access).
193 isl_map *copy_sched;
194 /* The array reference group corresponding to copy_sched. */
195 struct gpu_array_ref_group *copy_group;
197 /* Is any array in the current kernel marked force_private? */
198 int any_force_private;
200 /* First loop to unroll (or -1 if none) in the current part of the
201 * schedule.
203 int first_unroll;
205 int n_grid;
206 int n_block;
207 /* Note: in the input file, the sizes of the grid and the blocks
208 * are specified in the order x, y, z, but internally, the sizes
209 * are stored in reverse order, so that the last element always
210 * refers to the x dimension.
212 int grid_dim[2];
213 int block_dim[3];
214 int *tile_size;
217 /* Print the name of the local copy of a given group of array references.
219 static __isl_give isl_printer *print_array_name(__isl_take isl_printer *p,
220 struct gpu_array_ref_group *group)
222 int global = 0;
224 if (group->private_tile)
225 p = isl_printer_print_str(p, "private_");
226 else if (group->shared_tile)
227 p = isl_printer_print_str(p, "shared_");
228 else
229 global = 1;
230 p = isl_printer_print_str(p, group->array->name);
231 if (!global && group->array->n_group > 1) {
232 p = isl_printer_print_str(p, "_");
233 p = isl_printer_print_int(p, group->nr);
236 return p;
239 /* Collect all references to the given array and store pointers to them
240 * in array->refs.
242 * If the array contains structures, then there is no need to collect
243 * the references since we will not be computing any reference groups.
245 static void collect_references(struct gpu_prog *prog,
246 struct gpu_array_info *array)
248 int i;
249 int n;
251 if (array->has_compound_element)
252 return;
254 n = 0;
255 for (i = 0; i < prog->n_stmts; ++i) {
256 struct gpu_stmt *stmt = &prog->stmts[i];
257 struct gpu_stmt_access *access;
259 for (access = stmt->accesses; access; access = access->next) {
260 const char *name;
261 name = isl_map_get_tuple_name(access->access,
262 isl_dim_out);
263 if (name && !strcmp(array->name, name))
264 n++;
268 array->n_ref = n;
269 array->refs = isl_alloc_array(prog->ctx, struct gpu_stmt_access *, n);
270 assert(array->refs);
272 n = 0;
273 for (i = 0; i < prog->n_stmts; ++i) {
274 struct gpu_stmt *stmt = &prog->stmts[i];
275 struct gpu_stmt_access *access;
277 for (access = stmt->accesses; access; access = access->next) {
278 const char *name;
279 name = isl_map_get_tuple_name(access->access,
280 isl_dim_out);
281 if (!name || strcmp(array->name, name))
282 continue;
284 array->refs[n++] = access;
289 /* Create a gpu_array_tile for an array of dimension "n_index".
291 static struct gpu_array_tile *create_tile(isl_ctx *ctx, int n_index)
293 int i;
294 struct gpu_array_tile *tile;
296 tile = isl_calloc_type(ctx, struct gpu_array_tile);
297 assert(tile);
299 tile->n = n_index;
301 tile->bound = isl_alloc_array(ctx, struct gpu_array_bound, n_index);
302 assert(tile->bound);
304 for (i = 0; i < n_index; ++i) {
305 tile->bound[i].size = NULL;
306 tile->bound[i].lb = NULL;
307 tile->bound[i].stride = NULL;
308 tile->bound[i].shift = NULL;
309 tile->bound[i].shift_map = NULL;
312 return tile;
315 static void *free_tile(struct gpu_array_tile *tile)
317 int j;
319 if (!tile)
320 return NULL;
322 for (j = 0; j < tile->n; ++j) {
323 isl_val_free(tile->bound[j].size);
324 isl_val_free(tile->bound[j].stride);
325 isl_aff_free(tile->bound[j].lb);
326 isl_aff_free(tile->bound[j].shift);
327 isl_basic_map_free(tile->bound[j].shift_map);
329 free(tile->bound);
330 isl_multi_aff_free(tile->tiling);
331 free(tile);
333 return NULL;
336 static struct pet_array *find_array(struct ppcg_scop *scop,
337 __isl_keep isl_set *accessed)
339 int i;
340 isl_id *id;
342 id = isl_set_get_tuple_id(accessed);
344 for (i = 0; i < scop->n_array; ++i) {
345 isl_id *id_i;
347 id_i = isl_set_get_tuple_id(scop->arrays[i]->extent);
348 isl_id_free(id_i);
349 if (id == id_i)
350 break;
352 isl_id_free(id);
354 return i < scop->n_array ? scop->arrays[i] : NULL;
357 /* Compute and return the extent of "array", taking into account the set of
358 * accessed elements.
360 * In particular, the extent in the outer dimension is taken
361 * from "accessed", while then extent in the remaing dimensions
362 * are taken from array->extent.
364 * The extent in the outer dimension cannot be taken from array->extent
365 * because that may be unbounded. Furthermore, even if it is bounded,
366 * it may be larger than the piece of the array that is being accessed.
368 static __isl_give isl_set *compute_extent(struct pet_array *array,
369 __isl_keep isl_set *accessed)
371 int n_index;
372 isl_id *id;
373 isl_set *outer;
374 isl_set *extent;
376 extent = isl_set_copy(array->extent);
378 n_index = isl_set_dim(accessed, isl_dim_set);
379 if (n_index == 0)
380 return extent;
382 extent = isl_set_project_out(extent, isl_dim_set, 0, 1);
383 outer = isl_set_copy(accessed);
384 outer = isl_set_project_out(outer, isl_dim_set, 1, n_index - 1);
385 extent = isl_set_flat_product(outer, extent);
386 id = isl_set_get_tuple_id(accessed);
387 extent = isl_set_set_tuple_id(extent, id);
389 return extent;
392 /* Is the array "array" being extracted a read-only scalar?
394 * That is, is "array" a scalar that is never possibly written to.
395 * An array containing structures is never considered to be a scalar.
397 static int is_read_only_scalar(struct gpu_array_info *array,
398 struct gpu_prog *prog)
400 isl_set *space;
401 isl_union_map *write;
402 int empty;
404 if (array->has_compound_element)
405 return 0;
406 if (array->n_index != 0)
407 return 0;
409 write = isl_union_map_copy(prog->may_write);
410 space = isl_set_universe(isl_space_copy(array->space));
411 write = isl_union_map_intersect_range(write,
412 isl_union_set_from_set(space));
413 empty = isl_union_map_is_empty(write);
414 isl_union_map_free(write);
416 return empty;
419 /* Compute bounds on the host arrays based on the accessed elements
420 * and collect all references to the array.
422 * If the array is zero-dimensional and does not contain structures,
423 * i.e., if the array is a scalar, we check whether it is read-only.
425 static int extract_array_info(__isl_take isl_set *array, void *user)
427 int i;
428 struct gpu_prog *prog = (struct gpu_prog *)user;
429 const char *name;
430 int n_index;
431 isl_pw_aff **bounds;
432 struct pet_array *pa;
433 struct gpu_array_info *info;
434 isl_set *extent;
436 info = &prog->array[prog->n_array];
437 prog->n_array++;
439 n_index = isl_set_dim(array, isl_dim_set);
440 name = isl_set_get_tuple_name(array);
441 bounds = isl_alloc_array(isl_set_get_ctx(array),
442 isl_pw_aff *, n_index);
443 if (!bounds)
444 goto error;
446 info->space = isl_set_get_space(array);
447 info->name = strdup(name);
448 info->n_index = n_index;
449 info->bound = bounds;
450 info->linearize = prog->scop->options->linearize_device_arrays;
452 pa = find_array(prog->scop, array);
453 if (!pa)
454 isl_die(isl_set_get_ctx(array), isl_error_internal,
455 "unable to find array in scop", goto error);
457 info->type = strdup(pa->element_type);
458 info->size = pa->element_size;
459 info->local = pa->declared && !pa->exposed;
460 info->has_compound_element = pa->element_is_record;
461 info->read_only_scalar = is_read_only_scalar(info, prog);
463 extent = compute_extent(pa, array);
464 info->extent = extent;
465 for (i = 0; i < n_index; ++i) {
466 isl_set *dom;
467 isl_local_space *ls;
468 isl_aff *one;
469 isl_pw_aff *bound;
471 dom = isl_set_copy(extent);
472 dom = isl_set_project_out(dom, isl_dim_set, i + 1,
473 n_index - (i + 1));
474 dom = isl_set_project_out(dom, isl_dim_set, 0, i);
475 if (!isl_set_dim_has_upper_bound(dom, isl_dim_set, 0)) {
476 fprintf(stderr, "unable to determine extent of '%s' "
477 "in dimension %d\n", info->name, i);
478 dom = isl_set_free(dom);
480 bound = isl_set_dim_max(dom, 0);
481 dom = isl_pw_aff_domain(isl_pw_aff_copy(bound));
482 ls = isl_local_space_from_space(isl_set_get_space(dom));
483 one = isl_aff_zero_on_domain(ls);
484 one = isl_aff_add_constant_si(one, 1);
485 bound = isl_pw_aff_add(bound, isl_pw_aff_alloc(dom, one));
486 bound = isl_pw_aff_gist(bound, isl_set_copy(prog->context));
488 bounds[i] = bound;
489 if (!isl_pw_aff_is_cst(bound))
490 info->linearize = 1;
493 collect_references(prog, info);
495 isl_set_free(array);
496 return 0;
497 error:
498 isl_set_free(array);
499 return -1;
502 /* Compute a mapping from all outer arrays (of structs) in scop
503 * to their innermost arrays.
505 * In particular, for each array of a primitive type, the result
506 * contains the identity mapping on that array.
507 * For each array involving member accesses, the result
508 * contains a mapping from the elements of the outer array of structs
509 * to all corresponding elements of the innermost nested arrays.
511 static __isl_give isl_union_map *compute_to_inner(struct ppcg_scop *scop)
513 int i;
514 isl_union_map *to_inner;
516 to_inner = isl_union_map_empty(isl_set_get_space(scop->context));
518 for (i = 0; i < scop->n_array; ++i) {
519 struct pet_array *array = scop->arrays[i];
520 isl_set *set;
521 isl_map *map;
523 if (array->element_is_record)
524 continue;
526 set = isl_set_copy(array->extent);
527 map = isl_set_identity(isl_set_copy(set));
529 while (set && isl_set_is_wrapping(set)) {
530 isl_id *id;
531 isl_map *wrapped;
533 id = isl_set_get_tuple_id(set);
534 wrapped = isl_set_unwrap(set);
535 wrapped = isl_map_domain_map(wrapped);
536 wrapped = isl_map_set_tuple_id(wrapped, isl_dim_in, id);
537 map = isl_map_apply_domain(map, wrapped);
538 set = isl_map_domain(isl_map_copy(map));
541 map = isl_map_gist_domain(map, set);
543 to_inner = isl_union_map_add_map(to_inner, map);
546 return to_inner;
549 /* Remove independence from the order constraints "order" on array "array".
550 * Since the pairs of iterations in the filter relation of an independence
551 * are guaranteed to be completely independent by the user, there is
552 * no need to ensure that live ranges are ordered along thong pairs.
553 * We make an exception for local variables, though, as the independence
554 * guarantee does not apply to those.
556 * The order constraints are used in two places.
557 * Those on scalars are used in check_scalar_live_ranges to check if
558 * we need to force the scalar to be private. Any non-local scalar
559 * should not be forced scalar if it only appears in independent loops.
560 * Those on non-scalars are added to the coincidence constraints
561 * in compute_schedule because we do not support any array expansion.
562 * Accesses to non-local arrays should not prevent a loop from being
563 * considered coincident so we should indeed remove those constraints
564 * from the order constraints.
566 static __isl_give isl_union_map *remove_independences(struct gpu_prog *prog,
567 struct gpu_array_info *array, __isl_take isl_union_map *order)
569 int i;
571 for (i = 0; i < prog->scop->n_independence; ++i) {
572 struct pet_independence *pi = prog->scop->independences[i];
573 if (isl_union_set_contains(pi->local, array->space))
574 continue;
576 order = isl_union_map_subtract(order,
577 isl_union_map_copy(pi->filter));
580 return order;
583 /* For each array in "prog", store the (untagged) order dependences
584 * derived from the array in array->dep_order.
585 * In particular, consider all references that access the given array
586 * and take the order dependences that have one of these references
587 * as source. (Since an order dependence relates two references to
588 * the same array, the target of these order dependences will also
589 * be one of these references.)
590 * Additionally, store the union of these array->dep_order relations
591 * for all non-scalar arrays in prog->array_order.
593 void collect_order_dependences(struct gpu_prog *prog)
595 int i;
596 isl_space *space;
597 isl_union_map *accesses;
599 space = isl_union_map_get_space(prog->read);
600 prog->array_order = isl_union_map_empty(space);
602 accesses = isl_union_map_copy(prog->scop->tagged_reads);
603 accesses = isl_union_map_union(accesses,
604 isl_union_map_copy(prog->scop->tagged_may_writes));
605 accesses = isl_union_map_universe(accesses);
606 accesses = isl_union_map_apply_range(accesses,
607 isl_union_map_copy(prog->to_outer));
609 for (i = 0; i < prog->n_array; ++i) {
610 struct gpu_array_info *array = &prog->array[i];
611 isl_set *set;
612 isl_union_set *uset;
613 isl_union_map *order;
615 set = isl_set_universe(isl_space_copy(array->space));
616 uset = isl_union_set_from_set(set);
617 uset = isl_union_map_domain(
618 isl_union_map_intersect_range(isl_union_map_copy(accesses),
619 uset));
620 order = isl_union_map_copy(prog->scop->tagged_dep_order);
621 order = isl_union_map_intersect_domain(order, uset);
622 order = isl_union_map_zip(order);
623 order = isl_union_set_unwrap(isl_union_map_domain(order));
624 order = remove_independences(prog, array, order);
625 array->dep_order = order;
627 if (gpu_array_is_scalar(array))
628 continue;
630 prog->array_order = isl_union_map_union(prog->array_order,
631 isl_union_map_copy(array->dep_order));
634 isl_union_map_free(accesses);
637 /* Construct a gpu_array_info for each array possibly accessed by "prog" and
638 * collect them in prog->array.
640 * If there are any member accesses involved, then they are first mapped
641 * to the outer arrays of structs.
643 * If we are allowing live range reordering, then also set
644 * the dep_order field. Otherwise leave it NULL.
646 static int collect_array_info(struct gpu_prog *prog)
648 int r;
649 isl_union_set *arrays;
651 arrays = isl_union_map_range(isl_union_map_copy(prog->read));
652 arrays = isl_union_set_union(arrays,
653 isl_union_map_range(isl_union_map_copy(prog->may_write)));
655 arrays = isl_union_set_apply(arrays,
656 isl_union_map_copy(prog->to_outer));
658 arrays = isl_union_set_coalesce(arrays);
660 prog->n_array = isl_union_set_n_set(arrays);
661 prog->array = isl_calloc_array(prog->ctx,
662 struct gpu_array_info, prog->n_array);
663 assert(prog->array);
664 prog->n_array = 0;
665 r = isl_union_set_foreach_set(arrays, &extract_array_info, prog);
666 isl_union_set_free(arrays);
668 if (prog->scop->options->live_range_reordering)
669 collect_order_dependences(prog);
671 return r;
674 static void free_array_info(struct gpu_prog *prog)
676 int i, j;
678 for (i = 0; i < prog->n_array; ++i) {
679 int n_index = prog->array[i].n_index;
680 free(prog->array[i].type);
681 free(prog->array[i].name);
682 for (j = 0; j < n_index; ++j)
683 isl_pw_aff_free(prog->array[i].bound[j]);
684 isl_space_free(prog->array[i].space);
685 isl_set_free(prog->array[i].extent);
686 free(prog->array[i].bound);
687 free(prog->array[i].refs);
688 isl_union_map_free(prog->array[i].dep_order);
690 free(prog->array);
693 /* Check if a gpu array is a scalar. A scalar is a value that is not stored
694 * as an array or through a pointer reference, but as a single data element.
695 * At the moment, scalars are represented as zero-dimensional arrays.
696 * A zero-dimensional array containing structures is not considered
697 * to be a scalar.
699 int gpu_array_is_scalar(struct gpu_array_info *array)
701 return !array->has_compound_element && array->n_index == 0;
704 /* Is "array" a read-only scalar?
706 int gpu_array_is_read_only_scalar(struct gpu_array_info *array)
708 return array->read_only_scalar;
711 /* Return the set of parameter values for which the array has a positive
712 * size in all dimensions.
713 * If the sizes are only valid for some parameter values, then those
714 * constraints are also taken into account.
716 __isl_give isl_set *gpu_array_positive_size_guard(struct gpu_array_info *array)
718 int i;
719 isl_space *space;
720 isl_set *guard;
722 space = isl_space_params(isl_space_copy(array->space));
723 guard = isl_set_universe(space);
725 for (i = 0; i < array->n_index; ++i) {
726 isl_pw_aff *bound;
727 isl_set *guard_i, *zero;
729 bound = isl_pw_aff_copy(array->bound[i]);
730 guard_i = isl_pw_aff_nonneg_set(isl_pw_aff_copy(bound));
731 zero = isl_pw_aff_zero_set(bound);
732 guard_i = isl_set_subtract(guard_i, zero);
733 guard = isl_set_intersect(guard, guard_i);
736 return guard;
739 /* Internal data structure for extract_size_of_type.
740 * "type" specifies the name of the space that we want to extract.
741 * "res" is used to store the subset of that space.
743 struct ppcg_extract_size_data {
744 const char *type;
745 isl_set *res;
748 /* This function is called for each set in a union_set.
749 * If the name of the set matches data->type, we store the
750 * set in data->res.
752 static int extract_size_of_type(__isl_take isl_set *size, void *user)
754 struct ppcg_extract_size_data *data = user;
755 const char *name;
757 name = isl_set_get_tuple_name(size);
758 if (name && !strcmp(name, data->type)) {
759 data->res = size;
760 return -1;
763 isl_set_free(size);
764 return 0;
767 /* Given a union map { kernel[i] -> *[...] },
768 * return the range in the space called "type" for the kernel with
769 * sequence number "id".
771 static __isl_give isl_set *extract_sizes(__isl_keep isl_union_map *sizes,
772 const char *type, int id)
774 isl_space *space;
775 isl_set *dom;
776 isl_union_set *local_sizes;
777 struct ppcg_extract_size_data data = { type, NULL };
779 if (!sizes)
780 return NULL;
782 space = isl_union_map_get_space(sizes);
783 space = isl_space_set_from_params(space);
784 space = isl_space_add_dims(space, isl_dim_set, 1);
785 space = isl_space_set_tuple_name(space, isl_dim_set, "kernel");
786 dom = isl_set_universe(space);
787 dom = isl_set_fix_si(dom, isl_dim_set, 0, id);
789 local_sizes = isl_union_set_apply(isl_union_set_from_set(dom),
790 isl_union_map_copy(sizes));
791 isl_union_set_foreach_set(local_sizes, &extract_size_of_type, &data);
792 isl_union_set_free(local_sizes);
793 return data.res;
796 /* Given a singleton set, extract the first (at most *len) elements
797 * of the single integer tuple into *sizes and update *len if needed.
799 static void read_sizes_from_set(__isl_take isl_set *set, int *sizes, int *len)
801 int i;
802 int dim;
804 if (!set)
805 return;
807 dim = isl_set_dim(set, isl_dim_set);
808 if (dim < *len)
809 *len = dim;
811 for (i = 0; i < *len; ++i) {
812 isl_val *v;
814 v = isl_set_plain_get_val_if_fixed(set, isl_dim_set, i);
815 assert(v);
817 sizes[i] = isl_val_get_num_si(v);
818 isl_val_free(v);
821 isl_set_free(set);
824 /* Extract user specified "tile" sizes from the "sizes" command line option,
825 * defaulting to option->tile_size in each dimension.
827 static void read_tile_sizes(struct gpu_gen *gen)
829 int n;
830 isl_set *size;
832 gen->tile_size = isl_alloc_array(gen->ctx, int, gen->tile_len);
833 assert(gen->tile_size);
834 for (n = 0; n < gen->tile_len; ++n)
835 gen->tile_size[n] = gen->options->tile_size;
837 size = extract_sizes(gen->sizes, "tile", gen->kernel_id);
838 read_sizes_from_set(size, gen->tile_size, &gen->tile_len);
840 if (gen->n_parallel > gen->tile_len)
841 gen->n_parallel = gen->tile_len;
844 /* Extract user specified "block" sizes from the "sizes" command line option,
845 * after filling in some potentially useful defaults.
847 static void read_block_sizes(struct gpu_gen *gen)
849 int n;
850 isl_set *size;
852 n = gen->n_parallel;
853 gen->n_block = (n <= 3) ? n : 3;
854 switch (gen->n_block) {
855 case 1:
856 gen->block_dim[0] = 512;
857 break;
858 case 2:
859 gen->block_dim[0] = 32;
860 gen->block_dim[1] = 16;
861 break;
862 default:
863 gen->block_dim[0] = 32;
864 gen->block_dim[1] = 4;
865 gen->block_dim[2] = 4;
866 break;
869 size = extract_sizes(gen->sizes, "block", gen->kernel_id);
870 read_sizes_from_set(size, gen->block_dim, &gen->n_block);
873 /* Extract user specified "grid" sizes from the "sizes" command line option,
874 * after filling in some potentially useful defaults.
876 static void read_grid_sizes(struct gpu_gen *gen)
878 int n = gen->n_parallel;
879 isl_set *size;
881 gen->n_grid = (n <= 2) ? n : 2;
882 switch (gen->n_grid) {
883 case 1:
884 gen->grid_dim[0] = 32768;
885 break;
886 default:
887 gen->grid_dim[0] = 256;
888 gen->grid_dim[1] = 256;
889 break;
892 size = extract_sizes(gen->sizes, "grid", gen->kernel_id);
893 read_sizes_from_set(size, gen->grid_dim, &gen->n_grid);
896 /* Extract user specified sizes from the "sizes" command line option
897 * after filling in some potentially useful defaults.
899 static void read_sizes(struct gpu_gen *gen)
901 read_tile_sizes(gen);
902 read_block_sizes(gen);
903 read_grid_sizes(gen);
906 static void *free_stmts(struct gpu_stmt *stmts, int n)
908 int i;
910 if (!stmts)
911 return NULL;
913 for (i = 0; i < n; ++i) {
914 struct gpu_stmt_access *access, *next;
916 for (access = stmts[i].accesses; access; access = next) {
917 next = access->next;
918 isl_id_free(access->ref_id);
919 isl_map_free(access->access);
920 isl_map_free(access->tagged_access);
921 free(access);
924 isl_id_free(stmts[i].id);
926 free(stmts);
928 return NULL;
931 /* Construct a map from a domain of dimensionality "len"
932 * to a domain of dimensionality "len" + "tile_len" that tiles
933 * the "tile_len" coordinates starting at "first".
934 * In particular, [s_i] -> [s_i / tile_size[i], s_i % tile_size[i]].
935 * "dim" prescribes the parameters.
937 static __isl_give isl_map *tile(__isl_take isl_space *dim, int len,
938 int first, int tile_len, int *tile_size)
940 int i;
941 isl_basic_map *bmap;
942 isl_constraint *c;
943 isl_local_space *ls;
945 dim = isl_space_add_dims(dim, isl_dim_in, len);
946 dim = isl_space_add_dims(dim, isl_dim_out, len + tile_len);
947 bmap = isl_basic_map_universe(isl_space_copy(dim));
948 ls = isl_local_space_from_space(dim);
950 for (i = 0; i < len - tile_len; ++i) {
951 int j = i < first ? i : i + tile_len;
952 int k = i < first ? i : i + 2 * tile_len;
954 c = isl_equality_alloc(isl_local_space_copy(ls));
955 c = isl_constraint_set_coefficient_si(c, isl_dim_in, j, -1);
956 c = isl_constraint_set_coefficient_si(c, isl_dim_out, k, 1);
957 bmap = isl_basic_map_add_constraint(bmap, c);
960 for (i = 0; i < tile_len; ++i) {
961 c = isl_equality_alloc(isl_local_space_copy(ls));
962 c = isl_constraint_set_coefficient_si(c, isl_dim_in,
963 first + i, -1);
964 c = isl_constraint_set_coefficient_si(c, isl_dim_out,
965 first + i, tile_size[i]);
966 c = isl_constraint_set_coefficient_si(c, isl_dim_out,
967 first + i + tile_len, 1);
968 bmap = isl_basic_map_add_constraint(bmap, c);
970 c = isl_inequality_alloc(isl_local_space_copy(ls));
971 c = isl_constraint_set_coefficient_si(c, isl_dim_out,
972 first + i + tile_len, 1);
973 bmap = isl_basic_map_add_constraint(bmap, c);
975 c = isl_inequality_alloc(isl_local_space_copy(ls));
976 c = isl_constraint_set_coefficient_si(c, isl_dim_out,
977 first + i + tile_len, -1);
978 c = isl_constraint_set_constant_si(c, tile_size[i] - 1);
979 bmap = isl_basic_map_add_constraint(bmap, c);
982 isl_local_space_free(ls);
984 return isl_map_from_basic_map(bmap);
987 /* Construct a map from a domain of dimensionality "len"
988 * to a domain of dimensionality "len" + "wrap_len" that "wraps"
989 * the "wrap_len" coordinates starting at "first" according to "wrap_size".
990 * In particular, [s_i] -> [s_i, s_i % wrap_size[i]].
991 * To do so, we need extra variables corresponding to [s_i / wrap_size[i]],
992 * that are projected out at the end.
993 * "dim" prescribes the parameters.
995 static __isl_give isl_map *wrap(__isl_take isl_space *dim, int len,
996 int first, int wrap_len, int *wrap_size)
998 int i;
999 isl_basic_map *bmap;
1000 isl_constraint *c;
1001 isl_local_space *ls;
1003 dim = isl_space_add_dims(dim, isl_dim_in, len);
1004 dim = isl_space_add_dims(dim, isl_dim_out, len + 2 * wrap_len);
1005 bmap = isl_basic_map_universe(isl_space_copy(dim));
1006 ls = isl_local_space_from_space(dim);
1008 for (i = 0; i < len; ++i) {
1009 int k = i < first + wrap_len ? i : i + 2 * wrap_len;
1011 c = isl_equality_alloc(isl_local_space_copy(ls));
1012 c = isl_constraint_set_coefficient_si(c, isl_dim_in, i, -1);
1013 c = isl_constraint_set_coefficient_si(c, isl_dim_out, k, 1);
1014 bmap = isl_basic_map_add_constraint(bmap, c);
1017 for (i = 0; i < wrap_len; ++i) {
1018 c = isl_equality_alloc(isl_local_space_copy(ls));
1019 c = isl_constraint_set_coefficient_si(c, isl_dim_out,
1020 first + i, -1);
1021 c = isl_constraint_set_coefficient_si(c, isl_dim_out,
1022 first + wrap_len + i, 1);
1023 c = isl_constraint_set_coefficient_si(c, isl_dim_out,
1024 first + 2 * wrap_len + i, wrap_size[i]);
1025 bmap = isl_basic_map_add_constraint(bmap, c);
1027 c = isl_inequality_alloc(isl_local_space_copy(ls));
1028 c = isl_constraint_set_coefficient_si(c, isl_dim_out,
1029 first + wrap_len + i, 1);
1030 bmap = isl_basic_map_add_constraint(bmap, c);
1032 c = isl_inequality_alloc(isl_local_space_copy(ls));
1033 c = isl_constraint_set_coefficient_si(c, isl_dim_out,
1034 first + wrap_len + i, -1);
1035 c = isl_constraint_set_constant_si(c, wrap_size[i] - 1);
1036 bmap = isl_basic_map_add_constraint(bmap, c);
1039 isl_local_space_free(ls);
1041 bmap = isl_basic_map_project_out(bmap, isl_dim_out,
1042 first + 2 * wrap_len, wrap_len);
1044 return isl_map_from_basic_map(bmap);
1047 /* Add "n" parameters named prefix%d.
1049 static __isl_give isl_set *add_params( __isl_take isl_set *set,
1050 int n, const char *prefix)
1052 int i;
1053 unsigned nparam;
1054 char name[20];
1056 nparam = isl_set_dim(set, isl_dim_param);
1057 set = isl_set_add_dims(set, isl_dim_param, n);
1059 for (i = 0; i < n; ++i) {
1060 snprintf(name, sizeof(name), "%s%d", prefix, i);
1061 set = isl_set_set_dim_name(set, isl_dim_param,
1062 nparam + i, name);
1065 return set;
1068 /* Equate the "n" dimensions of "set" starting at "first" to
1069 * freshly created parameters named prefix%d.
1071 static __isl_give isl_set *parametrize(__isl_take isl_set *set,
1072 int first, int n, const char *prefix)
1074 int i;
1075 unsigned nparam;
1077 nparam = isl_set_dim(set, isl_dim_param);
1079 set = add_params(set, n, prefix);
1081 for (i = 0; i < n; ++i)
1082 set = isl_set_equate(set, isl_dim_param, nparam + i,
1083 isl_dim_set, first + i);
1085 return set;
1088 /* Given a parameter space "space", create a set of dimension "len"
1089 * of which the "n" dimensions starting at "first" are equated to
1090 * freshly created parameters named prefix%d.
1092 static __isl_give isl_set *parametrization(__isl_take isl_space *space,
1093 int len, int first, int n, const char *prefix)
1095 isl_set *set;
1097 space = isl_space_set_from_params(space);
1098 space = isl_space_add_dims(space, isl_dim_set, len);
1099 set = isl_set_universe(space);
1101 return parametrize(set, first, n, prefix);
1104 /* Tile the B loops over the tile sizes and then tile/wrap
1105 * the T1 loops over the blocks.
1107 static __isl_give isl_union_map *tile_schedule(struct gpu_gen *gen,
1108 __isl_take isl_union_map *sched)
1110 isl_space *dim;
1111 isl_map *tiling, *block_tiling;
1113 dim = isl_union_map_get_space(sched);
1114 tiling = tile(isl_space_copy(dim), gen->untiled_len,
1115 gen->tile_first, gen->tile_len, gen->tile_size);
1117 if (gen->options->wrap)
1118 block_tiling = wrap(dim, gen->untiled_len + gen->tile_len,
1119 gen->tile_first, gen->n_grid, gen->grid_dim);
1120 else
1121 block_tiling = tile(dim, gen->untiled_len + gen->tile_len,
1122 gen->tile_first, gen->n_grid, gen->grid_dim);
1124 gen->tiled_len = gen->untiled_len + gen->tile_len + gen->n_grid;
1126 tiling = isl_map_apply_range(tiling, block_tiling);
1128 sched = isl_union_map_apply_range(sched,
1129 isl_union_map_from_map(tiling));
1131 gen->shared_len = gen->tile_first + gen->tile_len + gen->n_grid;
1133 return sched;
1136 /* Equate the "T1P" iterators in the tiled schedule "sched"
1137 * to the block dimensions.
1139 static __isl_give isl_union_map *parametrize_tiled_schedule(
1140 struct gpu_gen *gen, __isl_take isl_union_map *sched)
1142 isl_space *dim;
1143 isl_set *par;
1145 dim = isl_union_map_get_space(sched);
1146 par = parametrization(dim, gen->tiled_len,
1147 gen->tile_first + gen->n_grid, gen->n_grid, "b");
1148 sched = isl_union_map_intersect_range(sched,
1149 isl_union_set_from_set(par));
1151 return sched;
1154 /* Tile/wrap the P1 loops over the threads.
1156 static __isl_give isl_union_map *thread_tile_schedule(struct gpu_gen *gen,
1157 __isl_take isl_union_map *sched)
1159 isl_space *dim;
1160 isl_map *tiling;
1161 isl_set *par;
1163 dim = isl_union_map_get_space(sched);
1165 if (gen->options->wrap)
1166 tiling = wrap(isl_space_copy(dim), gen->tiled_len,
1167 gen->shared_len, gen->n_block, gen->block_dim);
1168 else
1169 tiling = tile(isl_space_copy(dim), gen->tiled_len,
1170 gen->shared_len, gen->n_block, gen->block_dim);
1171 gen->thread_tiled_len = gen->tiled_len + gen->n_block;
1173 sched = isl_union_map_apply_range(sched,
1174 isl_union_map_from_map(tiling));
1176 par = parametrization(dim, gen->thread_tiled_len,
1177 gen->tile_first + gen->tile_len + gen->n_grid + gen->n_block,
1178 gen->n_block, "t");
1179 sched = isl_union_map_intersect_range(sched,
1180 isl_union_set_from_set(par));
1182 gen->shared_len = gen->tile_first + gen->tile_len + gen->n_grid;
1184 return sched;
1187 /* If the user asked for it, scale the shared memory tile loops
1188 * (T1T and T2) of "sched" by gen->tile_size[i].
1189 * If we are not performing "wrapping", then additionally scale the T1P
1190 * loops by gen->grid_dim[i].
1192 static __isl_give isl_union_map *scale_tile_loops(struct gpu_gen *gen,
1193 __isl_take isl_union_map *sched)
1195 int i;
1196 isl_space *dim;
1197 isl_basic_map *scale;
1198 isl_constraint *c;
1199 isl_local_space *ls;
1201 if (!gen->options->scale_tile_loops)
1202 return sched;
1204 dim = isl_union_map_get_space(sched);
1205 dim = isl_space_add_dims(dim, isl_dim_in, gen->tiled_len);
1206 dim = isl_space_add_dims(dim, isl_dim_out, gen->tiled_len);
1207 scale = isl_basic_map_universe(isl_space_copy(dim));
1208 ls = isl_local_space_from_space(dim);
1210 for (i = 0; i < gen->tiled_len; ++i) {
1211 int f = 1;
1213 if (i >= gen->tile_first && i < gen->tile_first + gen->n_grid) {
1214 f = gen->tile_size[i - gen->tile_first];
1215 if (!gen->options->wrap)
1216 f *= gen->grid_dim[i - gen->tile_first];
1217 } else if (i >= gen->tile_first + gen->n_grid &&
1218 i < gen->tile_first + gen->n_grid + gen->tile_len) {
1219 f = gen->tile_size[i - (gen->tile_first + gen->n_grid)];
1222 c = isl_equality_alloc(isl_local_space_copy(ls));
1223 c = isl_constraint_set_coefficient_si(c, isl_dim_in, i, f);
1224 c = isl_constraint_set_coefficient_si(c, isl_dim_out, i, -1);
1225 scale = isl_basic_map_add_constraint(scale, c);
1228 isl_local_space_free(ls);
1230 sched = isl_union_map_apply_range(sched,
1231 isl_union_map_from_map(isl_map_from_basic_map(scale)));
1233 return sched;
1236 /* If we are not performing "wrapping" and if the user asked for it,
1237 * scale the thread tile loops (P1T) of "sched" by gen->block_dim[i].
1239 static __isl_give isl_union_map *scale_thread_tile_loops(struct gpu_gen *gen,
1240 __isl_take isl_union_map *sched)
1242 int i;
1243 isl_space *dim;
1244 isl_basic_map *scale;
1245 isl_constraint *c;
1246 isl_local_space *ls;
1248 if (gen->options->wrap)
1249 return sched;
1250 if (!gen->options->scale_tile_loops)
1251 return sched;
1253 dim = isl_union_map_get_space(sched);
1254 dim = isl_space_add_dims(dim, isl_dim_in, gen->thread_tiled_len);
1255 dim = isl_space_add_dims(dim, isl_dim_out, gen->thread_tiled_len);
1256 scale = isl_basic_map_universe(isl_space_copy(dim));
1257 ls = isl_local_space_from_space(dim);
1259 for (i = 0; i < gen->thread_tiled_len; ++i) {
1260 int f = 1;
1262 if (i >= gen->shared_len &&
1263 i < gen->shared_len + gen->n_block)
1264 f = gen->block_dim[i - gen->shared_len];
1266 c = isl_equality_alloc(isl_local_space_copy(ls));
1267 c = isl_constraint_set_coefficient_si(c, isl_dim_in, i, f);
1268 c = isl_constraint_set_coefficient_si(c, isl_dim_out, i, -1);
1269 scale = isl_basic_map_add_constraint(scale, c);
1272 isl_local_space_free(ls);
1274 sched = isl_union_map_apply_range(sched,
1275 isl_union_map_from_map(isl_map_from_basic_map(scale)));
1277 return sched;
1280 /* If we are not performing "wrapping" and if the user asked for it,
1281 * scale the "n_tile" loops starting at "first" of "sched" by gen->block_dim[i].
1283 static __isl_give isl_union_map *scale_access_tile_loops(struct gpu_gen *gen,
1284 __isl_take isl_union_map *sched, int len, int first, int n_tile)
1286 int i;
1287 isl_space *dim;
1288 isl_basic_map *scale;
1289 isl_constraint *c;
1290 isl_local_space *ls;
1292 if (gen->options->wrap)
1293 return sched;
1294 if (!gen->options->scale_tile_loops)
1295 return sched;
1297 dim = isl_union_map_get_space(sched);
1298 dim = isl_space_add_dims(dim, isl_dim_in, len);
1299 dim = isl_space_add_dims(dim, isl_dim_out, len);
1300 scale = isl_basic_map_universe(isl_space_copy(dim));
1301 ls = isl_local_space_from_space(dim);
1303 for (i = 0; i < len; ++i) {
1304 int f = 1;
1306 if (i >= first && i < first + n_tile)
1307 f = gen->kernel->block_dim[i - first];
1309 c = isl_equality_alloc(isl_local_space_copy(ls));
1310 c = isl_constraint_set_coefficient_si(c, isl_dim_in, i, f);
1311 c = isl_constraint_set_coefficient_si(c, isl_dim_out, i, -1);
1312 scale = isl_basic_map_add_constraint(scale, c);
1315 isl_local_space_free(ls);
1317 sched = isl_union_map_apply_range(sched,
1318 isl_union_map_from_map(isl_map_from_basic_map(scale)));
1320 return sched;
1323 /* Add "len" parameters p[i] called prefix%d,
1324 * with bounds to 0 <= p[i] < size[i].
1326 __isl_give isl_set *add_bounded_parameters(__isl_take isl_set *set,
1327 int len, int *size, const char *prefix)
1329 int i;
1330 unsigned nparam;
1331 isl_space *dim;
1332 isl_basic_set *bset;
1333 isl_constraint *c;
1334 isl_local_space *ls;
1335 char name[20];
1337 nparam = isl_set_dim(set, isl_dim_param);
1338 set = isl_set_add_dims(set, isl_dim_param, len);
1340 for (i = 0; i < len; ++i) {
1341 snprintf(name, sizeof(name), "%s%d", prefix, i);
1342 set = isl_set_set_dim_name(set, isl_dim_param,
1343 nparam + i, name);
1346 dim = isl_set_get_space(set);
1347 bset = isl_basic_set_universe(isl_space_copy(dim));
1348 ls = isl_local_space_from_space(dim);
1350 for (i = 0; i < len; ++i) {
1351 c = isl_inequality_alloc(isl_local_space_copy(ls));
1352 c = isl_constraint_set_coefficient_si(c, isl_dim_param,
1353 nparam + i, 1);
1354 bset = isl_basic_set_add_constraint(bset, c);
1356 c = isl_inequality_alloc(isl_local_space_copy(ls));
1357 c = isl_constraint_set_coefficient_si(c, isl_dim_param,
1358 nparam + i, -1);
1359 c = isl_constraint_set_constant_si(c, size[i] - 1);
1360 bset = isl_basic_set_add_constraint(bset, c);
1363 isl_local_space_free(ls);
1365 return isl_set_intersect(set, isl_set_from_basic_set(bset));
1368 /* Add "len" parameters p[i] called prefix%d and intersect "set"
1369 * with
1371 * { : 0 <= p[i] < size[i] }
1373 * or an overapproximation.
1375 static __isl_give isl_set *add_bounded_parameters_dynamic(
1376 __isl_take isl_set *set, __isl_keep isl_multi_pw_aff *size,
1377 const char *prefix)
1379 int i, len;
1380 unsigned nparam;
1381 isl_space *space;
1382 isl_local_space *ls;
1383 char name[20];
1385 len = isl_multi_pw_aff_dim(size, isl_dim_out);
1386 nparam = isl_set_dim(set, isl_dim_param);
1387 set = isl_set_add_dims(set, isl_dim_param, len);
1389 for (i = 0; i < len; ++i) {
1390 snprintf(name, sizeof(name), "%s%d", prefix, i);
1391 set = isl_set_set_dim_name(set, isl_dim_param,
1392 nparam + i, name);
1395 space = isl_space_params(isl_set_get_space(set));
1396 ls = isl_local_space_from_space(space);
1397 for (i = 0; i < len; ++i) {
1398 isl_pw_aff *param, *size_i, *zero;
1399 isl_set *bound;
1401 param = isl_pw_aff_var_on_domain(isl_local_space_copy(ls),
1402 isl_dim_param, nparam + i);
1404 size_i = isl_multi_pw_aff_get_pw_aff(size, i);
1405 bound = isl_pw_aff_lt_set(isl_pw_aff_copy(param), size_i);
1406 bound = isl_set_from_basic_set(isl_set_simple_hull(bound));
1407 set = isl_set_intersect_params(set, bound);
1409 zero = isl_pw_aff_zero_on_domain(isl_local_space_copy(ls));
1410 bound = isl_pw_aff_ge_set(param, zero);
1411 set = isl_set_intersect_params(set, bound);
1413 isl_local_space_free(ls);
1415 return set;
1418 /* Construct a map from an access to group->array to the corresponding
1419 * shared/private memory tile.
1420 * The map is of the form
1422 * { [D[i] -> A[a]] -> T[t] }
1424 * where D represents the initial shared_len dimensions
1425 * of the computed schedule.
1427 static __isl_give isl_map *shift_access(struct gpu_array_ref_group *group)
1429 struct gpu_array_tile *tile;
1430 isl_multi_aff *tiling;
1432 tile = group->private_tile;
1433 if (!tile)
1434 tile = group->shared_tile;
1436 tiling = isl_multi_aff_copy(tile->tiling);
1438 return isl_map_from_multi_aff(tiling);
1441 /* Does "map" have an obviously fixed value at variable "pos" of "type"?
1443 static int map_plain_is_fixed(isl_map *map, enum isl_dim_type type,
1444 unsigned pos)
1446 isl_val *v;
1447 int fixed;
1449 v = isl_map_plain_get_val_if_fixed(map, type, pos);
1450 if (!v)
1451 return -1;
1452 fixed = isl_val_is_int(v);
1453 isl_val_free(v);
1455 return fixed;
1458 /* Given a schedule that iterates over all elements in a piece of an array,
1459 * perform tiling/wrapping over the threads.
1461 * In particular, we tile the final iterators so that the final thread
1462 * dimension runs over the final array dimension.
1463 * However, if those final iterators have only a single iteration,
1464 * we try to tile earlier iterators instead.
1466 static __isl_give isl_map *tile_access_schedule(struct gpu_gen *gen,
1467 __isl_take isl_map *sched)
1469 isl_space *dim;
1470 isl_union_map *usched;
1471 isl_map *tiling;
1472 isl_set *par;
1473 unsigned nvar = isl_map_dim(sched, isl_dim_out);
1474 int n_tile;
1475 int first;
1477 n_tile = gen->kernel->n_block;
1478 if (n_tile > nvar) {
1479 int i;
1480 sched = isl_map_insert_dims(sched,
1481 isl_dim_out, 0, n_tile - nvar);
1482 for (i = 0; i < n_tile - nvar; ++i)
1483 sched = isl_map_fix_si(sched, isl_dim_out, i, 0);
1484 nvar = n_tile;
1487 first = nvar - n_tile;
1489 for (; first > 0; first --)
1490 if (!map_plain_is_fixed(sched, isl_dim_out, first + n_tile - 1))
1491 break;
1493 dim = isl_map_get_space(sched);
1494 dim = isl_space_params(dim);
1495 if (gen->options->wrap)
1496 tiling = wrap(isl_space_copy(dim), nvar, first,
1497 n_tile, gen->kernel->block_dim);
1498 else
1499 tiling = tile(isl_space_copy(dim), nvar, first,
1500 n_tile, gen->kernel->block_dim);
1501 sched = isl_map_apply_range(sched, tiling);
1503 par = parametrization(dim, nvar + n_tile, first + n_tile, n_tile, "t");
1504 sched = isl_map_intersect_range(sched, par);
1506 usched = isl_union_map_from_map(sched);
1507 usched = scale_access_tile_loops(gen, usched, nvar + n_tile,
1508 first, n_tile);
1509 sched = isl_map_from_union_map(usched);
1511 return sched;
1514 /* Return the union of all read (read = 1) and/or write (write = 1)
1515 * access relations in the group.
1517 static __isl_give isl_union_map *group_access_relation(
1518 struct gpu_array_ref_group *group, int read, int write)
1520 int i;
1521 isl_union_map *access;
1523 access = isl_union_map_empty(isl_map_get_space(group->access));
1524 for (i = 0; i < group->n_ref; ++i) {
1525 isl_map *map_i;
1527 if (!((read && group->refs[i]->read) ||
1528 (write && group->refs[i]->write)))
1529 continue;
1530 map_i = isl_map_copy(group->refs[i]->access);
1531 access = isl_union_map_union(access,
1532 isl_union_map_from_map(map_i));
1535 return access;
1538 /* Return the union of all tagged access relations in the group.
1540 static __isl_give isl_union_map *group_tagged_access_relation(
1541 struct gpu_array_ref_group *group)
1543 int i;
1544 isl_union_map *access;
1546 access = isl_union_map_empty(isl_map_get_space(group->access));
1547 for (i = 0; i < group->n_ref; ++i) {
1548 isl_map *map_i;
1550 map_i = isl_map_copy(group->refs[i]->tagged_access);
1551 access = isl_union_map_union(access,
1552 isl_union_map_from_map(map_i));
1555 return access;
1558 /* Return the extent of "array", recomputed from the bounds.
1559 * The recomputed extent may be simpler than the original extent.
1561 static __isl_give isl_set *array_extent(struct gpu_array_info *array)
1563 int i;
1564 isl_id *id;
1565 isl_space *space;
1566 isl_local_space *ls;
1567 isl_set *extent;
1569 id = isl_set_get_tuple_id(array->extent);
1570 space = isl_set_get_space(array->extent);
1571 extent = isl_set_universe(isl_space_copy(space));
1572 ls = isl_local_space_from_space(space);
1573 for (i = 0; i < array->n_index; ++i) {
1574 isl_pw_aff *bound;
1575 isl_aff *aff;
1576 isl_pw_aff *index;
1577 isl_set *lt;
1579 extent = isl_set_lower_bound_si(extent, isl_dim_set, i, 0);
1581 aff = isl_aff_var_on_domain(isl_local_space_copy(ls),
1582 isl_dim_set, i);
1583 index = isl_pw_aff_from_aff(aff);
1584 bound = isl_pw_aff_copy(array->bound[i]);
1585 bound = isl_pw_aff_from_range(bound);
1586 bound = isl_pw_aff_add_dims(bound, isl_dim_in, array->n_index);
1587 bound = isl_pw_aff_set_tuple_id(bound, isl_dim_in,
1588 isl_id_copy(id));
1589 lt = isl_pw_aff_lt_set(index, bound);
1590 extent = isl_set_intersect(extent, lt);
1592 isl_local_space_free(ls);
1593 isl_id_free(id);
1595 return extent;
1598 /* Return a map from the first shared_len dimensions of the computed
1599 * schedule to the array tile in
1600 * global memory that corresponds to the shared memory copy.
1602 * In particular, return a map
1604 * { D[i] -> A[a] }
1606 * with constraints
1608 * tile_offset(i) <= a <= tile_offset(i) + tile_size - 1 (1)
1610 * and
1612 * 0 <= a <= array_size - 1 (2)
1614 * Note that if some stride has been detected (i.e., when
1615 * group->shared_tile->bound[i].shift is set), then a in (1) refers
1616 * to the shifted and scaled down version.
1618 * Constraints (1) are obtained by mapping the size constraints on the
1619 * shared/private memory tile back to the access relation.
1620 * Constraints (2) are obtained from the (recomputed) extent.
1622 static __isl_give isl_map *group_tile(struct gpu_array_ref_group *group)
1624 int i;
1625 int n_index = group->array->n_index;
1626 isl_map *tile;
1627 isl_space *space;
1628 isl_set *local;
1629 isl_set *extent;
1631 space = isl_multi_aff_get_space(group->shared_tile->tiling);
1632 space = isl_space_range(space);
1633 local = isl_set_universe(space);
1634 for (i = 0; i < n_index; ++i) {
1635 isl_val *bound;
1637 local = isl_set_lower_bound_si(local, isl_dim_set, i, 0);
1638 bound = isl_val_copy(group->shared_tile->bound[i].size);
1639 bound = isl_val_sub_ui(bound, 1);
1640 local = isl_set_upper_bound_val(local, isl_dim_set, i, bound);
1642 local = isl_set_preimage_multi_aff(local,
1643 isl_multi_aff_copy(group->shared_tile->tiling));
1644 tile = isl_set_unwrap(local);
1645 extent = array_extent(group->array);
1646 tile = isl_map_intersect_range(tile, extent);
1648 return tile;
1651 /* Given a mapping "iterator_map" from the AST schedule to a domain,
1652 * return the corresponding mapping from the AST schedule to
1653 * to the first shared_len dimensions of the schedule computed by PPCG.
1655 static __isl_give isl_pw_multi_aff *compute_sched_to_shared(struct gpu_gen *gen,
1656 __isl_take isl_pw_multi_aff *iterator_map)
1658 isl_union_map *umap;
1659 isl_space *space;
1660 isl_map *map, *sched;;
1662 space = isl_space_range(isl_pw_multi_aff_get_space(iterator_map));
1663 space = isl_space_from_domain(space);
1664 space = isl_space_add_dims(space, isl_dim_out, gen->shared_len);
1666 umap = isl_union_map_copy(gen->shared_sched);
1667 umap = isl_union_map_apply_range(umap,
1668 isl_union_map_copy(gen->shared_proj));
1669 map = isl_union_map_extract_map(umap, space);
1670 isl_union_map_free(umap);
1672 sched = isl_map_preimage_domain_pw_multi_aff(map, iterator_map);
1673 sched = isl_map_detect_equalities(sched);
1675 return isl_pw_multi_aff_from_map(sched);
1678 /* Set unroll[j] if the input dimension j is involved in
1679 * the index expression represented by ma.
1681 static int check_unroll(__isl_take isl_set *set, __isl_take isl_multi_aff *ma,
1682 void *user)
1684 int i, j;
1685 int n_in = isl_multi_aff_dim(ma, isl_dim_in);
1686 int n_out = isl_multi_aff_dim(ma, isl_dim_out);
1687 int *unroll = user;
1689 for (i = 0; i < n_out; ++i) {
1690 isl_aff *aff;
1692 aff = isl_multi_aff_get_aff(ma, i);
1693 for (j = 0; j < n_in; ++j)
1694 if (isl_aff_involves_dims(aff, isl_dim_in, j, 1))
1695 unroll[j] = 1;
1696 isl_aff_free(aff);
1699 isl_set_free(set);
1700 isl_multi_aff_free(ma);
1701 return 0;
1704 /* Given an array pos mapping input dimensions to the corresponding
1705 * output dimension, construct the corresponding map.
1707 static __isl_give isl_map *permutation(__isl_take isl_space *dim,
1708 int *pos, int len)
1710 int i;
1711 isl_constraint *c;
1712 isl_basic_map *bmap;
1713 isl_local_space *ls;
1715 dim = isl_space_add_dims(dim, isl_dim_in, len);
1716 dim = isl_space_add_dims(dim, isl_dim_out, len);
1717 bmap = isl_basic_map_universe(isl_space_copy(dim));
1718 ls = isl_local_space_from_space(dim);
1720 for (i = 0; i < len; ++i) {
1721 c = isl_equality_alloc(isl_local_space_copy(ls));
1722 c = isl_constraint_set_coefficient_si(c, isl_dim_in, i,
1723 -1);
1724 c = isl_constraint_set_coefficient_si(c, isl_dim_out, pos[i],
1726 bmap = isl_basic_map_add_constraint(bmap, c);
1728 isl_local_space_free(ls);
1730 return isl_map_from_basic_map(bmap);
1733 /* Remove the private tiles from all array reference groups,
1734 * except for the groups of arrays that are marked force_private.
1736 static void remove_private_tiles(struct gpu_gen *gen)
1738 int i, j;
1740 for (i = 0; i < gen->prog->n_array; ++i) {
1741 struct gpu_array_info *array = &gen->prog->array[i];
1743 if (array->force_private)
1744 continue;
1746 for (j = 0; j < array->n_group; ++j) {
1747 struct gpu_array_ref_group *group = array->groups[j];
1749 group->private_tile = free_tile(group->private_tile);
1754 /* Find all loops involved in any of the index expressions for any of
1755 * the private accesses, move them innermost and then mark them as
1756 * requiring unrolling by setting gen->first_unroll.
1757 * The loops involved should all be parallel because of the checks
1758 * we performed in check_private_group_access. Moving them innermost
1759 * is therefore a valid transformation.
1761 * If any of the arrays are marked force_private, however, then
1762 * those loops may not be parallel with respect to the marked arrays.
1763 * If any of the loops would have to be moved innermost for the
1764 * (non forced) private accesses and if there are any force_private
1765 * arrays, then we revert the decision to map the selected arrays
1766 * to private memory. An alternative solution would be to expand
1767 * the force_private arrays.
1769 * Loops up to gen->shared_len are generated before the mapping to
1770 * threads is applied. They should therefore be ignored.
1772 * We compute the hidden equalities of the schedule first
1773 * since we will need them in our calls to isl_pw_multi_aff_from_map
1774 * and because we want to make sure that the same equalities
1775 * are also available to the code generator.
1777 static __isl_give isl_union_map *interchange_for_unroll(struct gpu_gen *gen,
1778 __isl_take isl_union_map *sched)
1780 int i, j;
1781 int unroll[gen->thread_tiled_len];
1782 int perm[gen->thread_tiled_len];
1783 isl_space *dim;
1784 isl_map *permute;
1785 int len = gen->shared_len + gen->n_parallel + gen->n_block;
1787 gen->first_unroll = -1;
1789 sched = isl_union_map_detect_equalities(sched);
1790 for (i = 0; i < gen->thread_tiled_len; ++i)
1791 unroll[i] = 0;
1792 for (i = 0; i < gen->prog->n_array; ++i) {
1793 struct gpu_array_info *array = &gen->prog->array[i];
1795 for (j = 0; j < array->n_group; ++j) {
1796 isl_union_map *access;
1797 isl_map *acc;
1798 isl_pw_multi_aff *pma;
1800 if (!array->groups[j]->private_tile)
1801 continue;
1803 access = group_access_relation(array->groups[j], 1, 1);
1804 access = isl_union_map_apply_domain(access,
1805 isl_union_map_copy(sched));
1807 acc = isl_map_from_union_map(access);
1808 pma = isl_pw_multi_aff_from_map(acc);
1809 isl_pw_multi_aff_foreach_piece(pma,
1810 &check_unroll, unroll);
1812 isl_pw_multi_aff_free(pma);
1816 for (i = gen->shared_len; i < len; ++i)
1817 if (unroll[i])
1818 break;
1820 if (i >= len)
1821 return sched;
1823 for (i = len; i < gen->thread_tiled_len; ++i)
1824 if (unroll[i])
1825 return sched;
1827 if (gen->any_force_private) {
1828 remove_private_tiles(gen);
1829 return sched;
1832 j = 0;
1833 for (i = 0; i < gen->shared_len; ++i)
1834 perm[i] = j++;
1835 for (i = gen->shared_len; i < gen->thread_tiled_len; ++i)
1836 if (!unroll[i])
1837 perm[i] = j++;
1838 gen->first_unroll = j - gen->shared_len;
1839 for (i = gen->shared_len; i < len; ++i)
1840 if (unroll[i])
1841 perm[i] = j++;
1843 dim = isl_union_map_get_space(sched);
1844 permute = permutation(dim, perm, gen->thread_tiled_len);
1845 sched = isl_union_map_apply_range(sched,
1846 isl_union_map_from_map(permute));
1848 return sched;
1851 /* Given a constraint
1853 * a(p,i) + j = g f(e)
1855 * or -a(p,i) - j = g f(e) if sign < 0,
1856 * store a(p,i) in bound->shift and g (stride) in bound->stride.
1857 * a(p,i) is assumed to be an expression in only the parameters
1858 * and the input dimensions.
1860 static void extract_stride(__isl_keep isl_constraint *c,
1861 struct gpu_array_bound *bound, __isl_keep isl_val *stride, int sign)
1863 int i;
1864 isl_val *v;
1865 isl_space *space;
1866 unsigned nparam;
1867 unsigned nvar;
1868 isl_aff *aff;
1870 isl_val_free(bound->stride);
1871 bound->stride = isl_val_copy(stride);
1873 space = isl_constraint_get_space(c);
1874 space = isl_space_domain(space);
1876 nparam = isl_space_dim(space, isl_dim_param);
1877 nvar = isl_space_dim(space, isl_dim_set);
1879 v = isl_constraint_get_constant_val(c);
1880 if (sign < 0)
1881 v = isl_val_neg(v);
1882 aff = isl_aff_zero_on_domain(isl_local_space_from_space(space));
1883 aff = isl_aff_set_constant_val(aff, v);
1885 for (i = 0; i < nparam; ++i) {
1886 if (!isl_constraint_involves_dims(c, isl_dim_param, i, 1))
1887 continue;
1888 v = isl_constraint_get_coefficient_val(c, isl_dim_param, i);
1889 if (sign < 0)
1890 v = isl_val_neg(v);
1891 aff = isl_aff_add_coefficient_val(aff, isl_dim_param, i, v);
1894 for (i = 0; i < nvar; ++i) {
1895 if (!isl_constraint_involves_dims(c, isl_dim_in, i, 1))
1896 continue;
1897 v = isl_constraint_get_coefficient_val(c, isl_dim_in, i);
1898 if (sign < 0)
1899 v = isl_val_neg(v);
1900 aff = isl_aff_add_coefficient_val(aff, isl_dim_in, i, v);
1903 bound->shift = aff;
1906 /* Given an equality constraint of a map with a single output dimension j,
1907 * check if the constraint is of the form
1909 * a(p,i) + j = g f(e)
1911 * with a(p,i) an expression in the parameters and input dimensions
1912 * and f(e) an expression in the existentially quantified variables.
1913 * If so, and if g is larger than any such g from a previously considered
1914 * constraint, then call extract_stride to record the stride information
1915 * in bound.
1917 static int check_stride_constraint(__isl_take isl_constraint *c, void *user)
1919 int i;
1920 isl_ctx *ctx;
1921 isl_val *v;
1922 unsigned n_div;
1923 struct gpu_array_bound *bound = user;
1925 ctx = isl_constraint_get_ctx(c);
1926 n_div = isl_constraint_dim(c, isl_dim_div);
1927 v = isl_constraint_get_coefficient_val(c, isl_dim_out, 0);
1929 if (n_div && (isl_val_is_one(v) || isl_val_is_negone(v))) {
1930 int s = isl_val_sgn(v);
1931 isl_val *stride = isl_val_zero(ctx);
1933 isl_val_free(v);
1934 for (i = 0; i < n_div; ++i) {
1935 v = isl_constraint_get_coefficient_val(c,
1936 isl_dim_div, i);
1937 stride = isl_val_gcd(stride, v);
1939 if (!isl_val_is_zero(stride) &&
1940 isl_val_gt(stride, bound->stride))
1941 extract_stride(c, bound, stride, s);
1943 isl_val_free(stride);
1944 } else
1945 isl_val_free(v);
1947 isl_constraint_free(c);
1948 return 0;
1951 /* Given contraints on an array index i, check if we can find
1952 * a shift a(p) and a stride g such that
1954 * a(p) + i = 0 mod g
1956 * If so, record the information in bound and apply the mapping
1957 * i -> (i + a(p))/g to the array index in bounds and return
1958 * the new constraints.
1959 * If not, simply return the original constraints.
1961 * If bounds is a subset of the space
1963 * D -> i
1965 * then the bound recorded in bound->shift is of the form
1967 * D -> s(D)
1969 * with s(D) equal to a(p) above.
1970 * The mapping recorded in bound->shift_map is of the form
1972 * [D -> i] -> [D -> (i + S(D))/g]
1974 * This mapping is computed as follows.
1975 * We first introduce "i" in the domain through precomposition
1976 * with [D -> i] -> D obtaining
1978 * [D -> i] -> s(D)
1980 * Adding [D -> i] -> i produces
1982 * [D -> i] -> i + s(D)
1984 * and the domain product with [D -> i] -> D yields
1986 * [D -> i] -> [D -> i + s(D)]
1988 * Composition with [D -> i] -> [D -> i/g] gives the desired result.
1990 static __isl_give isl_basic_map *check_stride(struct gpu_array_bound *bound,
1991 __isl_take isl_basic_map *bounds)
1993 isl_space *space;
1994 isl_basic_map *hull;
1995 isl_basic_map *shift, *id, *bmap, *scale;
1996 isl_basic_set *bset;
1997 isl_aff *aff;
1999 bound->stride = NULL;
2001 hull = isl_basic_map_affine_hull(isl_basic_map_copy(bounds));
2003 isl_basic_map_foreach_constraint(hull, &check_stride_constraint, bound);
2005 isl_basic_map_free(hull);
2007 if (!bound->stride)
2008 return bounds;
2010 shift = isl_basic_map_from_aff(isl_aff_copy(bound->shift));
2011 space = isl_basic_map_get_space(bounds);
2012 bmap = isl_basic_map_domain_map(isl_basic_map_universe(space));
2013 shift = isl_basic_map_apply_range(bmap, shift);
2014 space = isl_basic_map_get_space(bounds);
2015 id = isl_basic_map_range_map(isl_basic_map_universe(space));
2016 shift = isl_basic_map_sum(id, shift);
2017 space = isl_basic_map_get_space(bounds);
2018 id = isl_basic_map_domain_map(isl_basic_map_universe(space));
2019 shift = isl_basic_map_range_product(id, shift);
2021 space = isl_space_domain(isl_basic_map_get_space(bounds));
2022 id = isl_basic_map_identity(isl_space_map_from_set(space));
2023 space = isl_space_range(isl_basic_map_get_space(bounds));
2024 aff = isl_aff_zero_on_domain(isl_local_space_from_space(space));
2025 aff = isl_aff_add_coefficient_si(aff, isl_dim_in, 0, 1);
2026 aff = isl_aff_scale_down_val(aff, isl_val_copy(bound->stride));
2027 scale = isl_basic_map_from_aff(aff);
2028 scale = isl_basic_map_product(id, scale);
2030 bound->shift_map = isl_basic_map_apply_range(shift, scale);
2031 bmap = isl_basic_map_copy(bound->shift_map);
2032 bset = isl_basic_set_apply(isl_basic_map_wrap(bounds), bmap);
2033 bounds = isl_basic_set_unwrap(bset);
2035 return bounds;
2038 /* Data used in compute_array_dim_size and compute_size_in_direction.
2040 * pos is the position of the variable representing the array index,
2041 * i.e., the variable for which want to compute the size. This variable
2042 * is also the last variable in the set.
2044 struct gpu_size_info {
2045 isl_basic_set *bset;
2046 struct gpu_array_bound *bound;
2047 int pos;
2050 /* Given a constraint from the basic set describing the bounds on
2051 * an array index, check if it is a lower bound, say m i >= b(x), and,
2052 * if so, check whether the expression "i - ceil(b(x)/m) + 1" has a constant
2053 * upper bound. If so, and if this bound is smaller than any bound
2054 * derived from earlier constraints, set the size to this bound on
2055 * the expression and the lower bound to ceil(b(x)/m).
2057 static int compute_size_in_direction(__isl_take isl_constraint *c, void *user)
2059 struct gpu_size_info *size = user;
2060 unsigned nparam;
2061 unsigned n_div;
2062 isl_val *v;
2063 isl_aff *aff;
2064 isl_aff *lb;
2066 nparam = isl_basic_set_dim(size->bset, isl_dim_param);
2067 n_div = isl_constraint_dim(c, isl_dim_div);
2069 if (isl_constraint_involves_dims(c, isl_dim_div, 0, n_div) ||
2070 !isl_constraint_is_lower_bound(c, isl_dim_set, size->pos)) {
2071 isl_constraint_free(c);
2072 return 0;
2075 aff = isl_constraint_get_bound(c, isl_dim_set, size->pos);
2076 aff = isl_aff_ceil(aff);
2078 lb = isl_aff_copy(aff);
2080 aff = isl_aff_neg(aff);
2081 aff = isl_aff_add_coefficient_si(aff, isl_dim_in, size->pos, 1);
2083 v = isl_basic_set_max_val(size->bset, aff);
2084 isl_aff_free(aff);
2086 if (isl_val_is_int(v)) {
2087 v = isl_val_add_ui(v, 1);
2088 if (!size->bound->size || isl_val_lt(v, size->bound->size)) {
2089 isl_val_free(size->bound->size);
2090 size->bound->size = isl_val_copy(v);
2091 lb = isl_aff_drop_dims(lb, isl_dim_in, size->pos, 1);
2092 isl_aff_free(size->bound->lb);
2093 size->bound->lb = isl_aff_copy(lb);
2096 isl_val_free(v);
2097 isl_aff_free(lb);
2099 isl_constraint_free(c);
2101 return 0;
2104 /* Given a basic map "bounds" that maps parameters and input dimensions
2105 * to a single output dimension, look for an expression in the parameters
2106 * and input dimensions such that the range of the output dimension shifted
2107 * by this expression is a constant.
2109 * In particular, we currently only consider lower bounds on the output
2110 * dimension as candidate expressions.
2112 static int compute_array_dim_size(struct gpu_array_bound *bound,
2113 __isl_take isl_basic_map *bounds)
2115 struct gpu_size_info size;
2117 bounds = isl_basic_map_detect_equalities(bounds);
2118 bounds = check_stride(bound, bounds);
2120 bound->size = NULL;
2121 bound->lb = NULL;
2123 size.bound = bound;
2124 size.pos = isl_basic_map_dim(bounds, isl_dim_in);
2125 size.bset = isl_basic_map_wrap(bounds);
2126 size.bset = isl_basic_set_flatten(size.bset);
2127 size.bset = isl_set_simple_hull(isl_basic_set_compute_divs(size.bset));
2128 isl_basic_set_foreach_constraint(size.bset, &compute_size_in_direction,
2129 &size);
2130 isl_basic_set_free(size.bset);
2132 return bound->size ? 0 : -1;
2135 /* Check if we can find a memory tile for the given array
2136 * based on the given accesses, and if so, put the results in "tile".
2138 * We project the accesses on each index in turn and look for a parametric
2139 * offset such that the size is constant.
2141 static int can_tile(__isl_keep isl_map *access, struct gpu_array_tile *tile)
2143 int i;
2145 for (i = 0; i < tile->n; ++i) {
2146 isl_map *access_i;
2147 isl_basic_map *hull;
2149 access_i = isl_map_copy(access);
2150 access_i = isl_map_project_out(access_i, isl_dim_out, 0, i);
2151 access_i = isl_map_project_out(access_i, isl_dim_out,
2152 1, tile->n - (i + 1));
2153 access_i = isl_map_compute_divs(access_i);
2154 hull = isl_map_simple_hull(access_i);
2155 if (compute_array_dim_size(&tile->bound[i], hull) < 0)
2156 return 0;
2159 return 1;
2162 /* Construct a map with input the shared tile loops and the loops that
2163 * will be wrapped around the threads that relates these later loops
2164 * to the thread indices and then projects them out.
2166 static __isl_give isl_map *compute_privatization(struct gpu_gen *gen)
2168 isl_map *priv;
2169 isl_map *tiling;
2170 isl_map *proj;
2171 isl_set *par;
2172 isl_space *dim;
2174 dim = isl_union_map_get_space(gen->shared_sched);
2176 if (gen->options->wrap)
2177 tiling = wrap(isl_space_copy(dim), gen->shared_len + gen->n_block,
2178 gen->shared_len, gen->n_block, gen->block_dim);
2179 else
2180 tiling = tile(isl_space_copy(dim), gen->shared_len + gen->n_block,
2181 gen->shared_len, gen->n_block, gen->block_dim);
2183 priv = tiling;
2185 par = parametrization(dim, gen->shared_len + 2 * gen->n_block,
2186 gen->tile_first + gen->tile_len + gen->n_grid + gen->n_block,
2187 gen->n_block, "t");
2189 priv = isl_map_align_params(priv, isl_set_get_space(par));
2190 priv = isl_map_intersect_range(priv, par);
2192 dim = isl_map_get_space(priv);
2193 dim = isl_space_drop_dims(dim, isl_dim_in, 0, isl_space_dim(dim, isl_dim_in));
2194 dim = isl_space_drop_dims(dim, isl_dim_out, 0, isl_space_dim(dim, isl_dim_out));
2195 proj = projection(dim, gen->shared_len + 2 * gen->n_block,
2196 gen->shared_len);
2198 priv = isl_map_apply_range(priv, proj);
2200 return priv;
2203 /* Construct a map from domain_dim to domain_dim that increments
2204 * the dimension at position "pos" and leaves all other dimensions
2205 * constant.
2207 static __isl_give isl_map *next(__isl_take isl_space *domain_dim, int pos)
2209 int i;
2210 int len = isl_space_dim(domain_dim, isl_dim_set);
2211 isl_space *dim;
2212 isl_basic_map *next;
2213 isl_local_space *ls;
2215 dim = isl_space_map_from_set(domain_dim);
2216 next = isl_basic_map_universe(isl_space_copy(dim));
2217 ls = isl_local_space_from_space(dim);
2219 for (i = 0; i < len; ++i) {
2220 isl_constraint *c;
2222 c = isl_equality_alloc(isl_local_space_copy(ls));
2223 c = isl_constraint_set_coefficient_si(c, isl_dim_in, i, 1);
2224 c = isl_constraint_set_coefficient_si(c, isl_dim_out, i, -1);
2225 if (i == pos)
2226 c = isl_constraint_set_constant_si(c, 1);
2227 next = isl_basic_map_add_constraint(next, c);
2230 isl_local_space_free(ls);
2232 return isl_map_from_basic_map(next);
2235 /* Check if the given access is coalesced.
2236 * That is, check whether incrementing the dimension that will get
2237 * wrapped over the last thread index results in incrementing
2238 * the last array index.
2240 * This function is only called for access relations without reuse.
2242 static int access_is_coalesced(struct gpu_gen *gen,
2243 __isl_keep isl_union_map *access)
2245 isl_space *dim;
2246 isl_map *access_map;
2247 isl_map *next_thread_x;
2248 isl_map *next_element;
2249 isl_map *map;
2250 int coalesced;
2252 access = isl_union_map_copy(access);
2253 access = isl_union_map_apply_domain(access,
2254 isl_union_map_copy(gen->tiled_sched));
2255 access_map = isl_map_from_union_map(access);
2257 dim = isl_map_get_space(access_map);
2258 dim = isl_space_domain(dim);
2259 next_thread_x = next(dim, gen->shared_len + gen->n_block - 1);
2261 dim = isl_map_get_space(access_map);
2262 dim = isl_space_range(dim);
2263 next_element = next(dim, isl_space_dim(dim, isl_dim_set) - 1);
2265 map = isl_map_apply_domain(next_thread_x, isl_map_copy(access_map));
2266 map = isl_map_apply_range(map, access_map);
2268 coalesced = isl_map_is_subset(map, next_element);
2270 isl_map_free(next_element);
2271 isl_map_free(map);
2273 return coalesced;
2276 /* Given an access relation in terms of the first gen->shared_len + gen->n_block
2277 * dimensions of the computed schedule, check if it is bijective for
2278 * fixed values of the first gen->shared_len dimensions.
2279 * We perform this check by equating these dimensions to parameters.
2281 static int access_is_bijective(struct gpu_gen *gen, __isl_keep isl_map *access)
2283 int res;
2284 isl_set *par;
2285 isl_space *space;
2287 access = isl_map_copy(access);
2288 space = isl_space_params(isl_map_get_space(access));
2289 par = parametrization(space, gen->shared_len + gen->n_block,
2290 0, gen->shared_len, "s");
2291 access = isl_map_intersect_domain(access, par);
2292 res = isl_map_is_bijective(access);
2293 isl_map_free(access);
2295 return res;
2298 /* Look for the last shared tile loop that affects the offset of "tile"
2299 * and return the result.
2300 * If there is no such loop, then return the index of the loop
2301 * before the first shared tile loop, in particular gen->tile_first - 1.
2303 static int compute_tile_last_shared(struct gpu_gen *gen,
2304 struct gpu_array_tile *tile)
2306 int i, j;
2308 for (j = gen->shared_len - 1; j >= gen->tile_first; --j) {
2309 for (i = 0; i < tile->n; ++i) {
2310 isl_aff *lb;
2311 isl_aff *shift;
2313 lb = tile->bound[i].lb;
2314 if (isl_aff_involves_dims(lb, isl_dim_in, j, 1))
2315 break;
2317 shift = tile->bound[i].shift;
2318 if (!shift)
2319 continue;
2320 if (isl_aff_involves_dims(shift, isl_dim_in, j, 1))
2321 break;
2323 if (i < tile->n)
2324 break;
2327 return j;
2330 /* Look for the last shared tile loop that affects the offset of the
2331 * shared or private tile and store the result in group->last_shared.
2332 * If there is no such loop, then group->last_shared is set to a value
2333 * before the first shared tile loop, in particular gen->tile_first - 1.
2334 * If there is no tile defined on the array reference group,
2335 * then set group->last_shared to gen->shared_len - 1.
2337 static void set_last_shared(struct gpu_gen *gen,
2338 struct gpu_array_ref_group *group)
2340 struct gpu_array_tile *tile;
2342 group->last_shared = gen->shared_len - 1;
2344 tile = group->private_tile;
2345 if (!tile)
2346 tile = group->shared_tile;
2347 if (!tile)
2348 return;
2350 group->last_shared = compute_tile_last_shared(gen, tile);
2353 /* Compute a privatized copy of all access relations from reference groups that
2354 * are mapped to private memory and store the result in gen->privatization.
2356 * Read-only scalars and arrays containing structures are not mapped
2357 * to private memory.
2359 static void compute_private_access(struct gpu_gen *gen)
2361 int i, j;
2362 isl_union_map *private;
2364 if (!gen->options->use_private_memory)
2365 return;
2367 private = isl_union_map_empty(isl_union_map_get_space(gen->shared_sched));
2369 for (i = 0; i < gen->prog->n_array; ++i) {
2370 struct gpu_array_info *array = &gen->prog->array[i];
2372 if (gpu_array_is_read_only_scalar(array))
2373 continue;
2374 if (array->has_compound_element)
2375 continue;
2377 for (j = 0; j < array->n_group; ++j) {
2378 if (!array->groups[j]->private_tile)
2379 continue;
2381 private = isl_union_map_union(private,
2382 group_access_relation(array->groups[j], 1, 1));
2386 if (isl_union_map_is_empty(private))
2387 isl_union_map_free(private);
2388 else {
2389 isl_union_map *priv;
2391 private = isl_union_map_apply_domain(private,
2392 isl_union_map_copy(gen->shared_sched));
2393 priv = isl_union_map_from_map(isl_map_copy(gen->privatization));
2394 private = isl_union_map_apply_domain(private, priv);
2395 gen->private_access = private;
2399 /* Compute the size of the tile specified by "tile"
2400 * in number of elements and return the result.
2402 static __isl_give isl_val *tile_size(isl_ctx *ctx, struct gpu_array_tile *tile)
2404 int i;
2405 isl_val *size;
2407 size = isl_val_one(ctx);
2409 for (i = 0; i < tile->n; ++i)
2410 size = isl_val_mul(size, isl_val_copy(tile->bound[i].size));
2412 return size;
2415 /* If max_shared_memory is not set to infinity (-1), then make
2416 * sure that the total amount of shared memory required by the
2417 * array reference groups mapped to shared memory is no larger
2418 * than this maximum.
2420 * We apply a greedy approach and discard (keep in global memory)
2421 * those groups that would result in a total memory size that
2422 * is larger than the maximum.
2424 * This function should be called after any function that may
2425 * affect the decision on whether to place a reference group
2426 * in private, shared or global memory.
2428 static void check_shared_memory_bound(struct gpu_gen *gen)
2430 int i, j;
2431 isl_val *left, *size;
2433 if (gen->options->max_shared_memory < 0)
2434 return;
2436 left = isl_val_int_from_si(gen->ctx, gen->options->max_shared_memory);
2438 for (i = 0; i < gen->prog->n_array; ++i) {
2439 struct gpu_array_info *array = &gen->prog->array[i];
2441 for (j = 0; j < array->n_group; ++j) {
2442 struct gpu_array_ref_group *group;
2444 group = array->groups[j];
2445 if (group->private_tile)
2446 continue;
2447 if (!group->shared_tile)
2448 continue;
2450 size = tile_size(gen->ctx, group->shared_tile);
2451 size = isl_val_mul_ui(size, array->size);
2453 if (isl_val_le(size, left)) {
2454 left = isl_val_sub(left, size);
2455 continue;
2457 isl_val_free(size);
2459 group->shared_tile = free_tile(group->shared_tile);
2463 isl_val_free(left);
2466 /* Given a description of an array tile "tile" and the "space"
2468 * { D -> A }
2470 * where D represents the first shared_len schedule dimensions
2471 * and A represents the array, construct an isl_multi_aff
2473 * { [D[i] -> A[a]] -> A'[a'] }
2475 * with A' a scaled down copy of A according to the shifts and strides
2476 * in "tile". In particular,
2478 * a' = (a + shift(i))/stride
2480 * "insert_array" represents
2482 * { [D -> A] -> D }
2484 * and is used to insert A into the domain of functions that only
2485 * reference D.
2487 static __isl_give isl_multi_aff *strided_tile(
2488 struct gpu_array_tile *tile, __isl_keep isl_space *space,
2489 __isl_keep isl_multi_aff *insert_array)
2491 int i;
2492 isl_ctx *ctx;
2493 isl_multi_aff *shift;
2494 isl_multi_val *stride;
2495 isl_space *space2;
2496 isl_local_space *ls;
2497 isl_multi_aff *tiling;
2499 ctx = isl_space_get_ctx(space);
2500 space2 = isl_space_domain(isl_space_copy(space));
2501 ls = isl_local_space_from_space(space2);
2502 space2 = isl_space_range(isl_space_copy(space));
2503 stride = isl_multi_val_zero(space2);
2504 shift = isl_multi_aff_zero(isl_space_copy(space));
2506 for (i = 0; i < tile->n; ++i) {
2507 struct gpu_array_bound *bound = &tile->bound[i];
2508 isl_val *stride_i;
2509 isl_aff *shift_i;
2511 if (tile->bound[i].shift) {
2512 stride_i = isl_val_copy(bound->stride);
2513 shift_i = isl_aff_copy(bound->shift);
2514 } else {
2515 stride_i = isl_val_one(ctx);
2516 shift_i = isl_aff_zero_on_domain(
2517 isl_local_space_copy(ls));
2520 stride = isl_multi_val_set_val(stride, i, stride_i);
2521 shift = isl_multi_aff_set_aff(shift, i, shift_i);
2523 isl_local_space_free(ls);
2525 shift = isl_multi_aff_pullback_multi_aff(shift,
2526 isl_multi_aff_copy(insert_array));
2528 tiling = isl_multi_aff_range_map(isl_space_copy(space));
2529 tiling = isl_multi_aff_add(tiling, shift);
2530 tiling = isl_multi_aff_scale_down_multi_val(tiling, stride);
2532 return tiling;
2535 /* Compute a tiling for the array reference group "group".
2537 * The tiling is of the form
2539 * { [D[i] -> A[a]] -> T[t] }
2541 * where D represents the first shared_len schedule dimensions,
2542 * A represents the global array and T represents the shared or
2543 * private memory tile. The name of T is the name of the local
2544 * array.
2546 * If there is any stride in the accesses, then the mapping is
2548 * t = (a + shift(i))/stride - lb(i)
2550 * otherwise, it is simply
2552 * t = a - lb(i)
2554 static void compute_group_tiling(struct gpu_array_ref_group *group)
2556 int i;
2557 struct gpu_array_tile *tile;
2558 struct gpu_array_info *array = group->array;
2559 isl_space *space;
2560 isl_multi_aff *tiling, *lb, *insert_array;
2561 isl_printer *p;
2562 char *local_name;
2564 tile = group->private_tile;
2565 if (!tile)
2566 tile = group->shared_tile;
2567 if (!tile)
2568 return;
2570 space = isl_map_get_space(group->access);
2571 insert_array = isl_multi_aff_domain_map(isl_space_copy(space));
2573 for (i = 0; i < tile->n; ++i)
2574 if (tile->bound[i].shift)
2575 break;
2577 if (i < tile->n)
2578 tiling = strided_tile(tile, space, insert_array);
2579 else
2580 tiling = isl_multi_aff_range_map(isl_space_copy(space));
2582 lb = isl_multi_aff_zero(space);
2583 for (i = 0; i < tile->n; ++i) {
2584 isl_aff *lb_i = isl_aff_copy(tile->bound[i].lb);
2585 lb = isl_multi_aff_set_aff(lb, i, lb_i);
2587 lb = isl_multi_aff_pullback_multi_aff(lb, insert_array);
2589 tiling = isl_multi_aff_sub(tiling, lb);
2591 p = isl_printer_to_str(isl_multi_aff_get_ctx(tiling));
2592 p = print_array_name(p, group);
2593 local_name = isl_printer_get_str(p);
2594 isl_printer_free(p);
2595 tiling = isl_multi_aff_set_tuple_name(tiling, isl_dim_out, local_name);
2596 free(local_name);
2598 tile->tiling = tiling;
2601 /* Compute a tiling for all the array reference groups.
2603 static void compute_group_tilings(struct gpu_gen *gen)
2605 int i, j;
2607 for (i = 0; i < gen->prog->n_array; ++i) {
2608 struct gpu_array_info *array = &gen->prog->array[i];
2610 for (j = 0; j < array->n_group; ++j)
2611 compute_group_tiling(array->groups[j]);
2615 /* Fill up the groups array with singleton groups, i.e., one group
2616 * per reference, initializing the array, access, write, n_ref and refs fields.
2617 * In particular the access field is initialized to the scheduled
2618 * access relation of the array reference.
2620 * Return the number of elements initialized, i.e., the number of
2621 * active references in the current kernel.
2623 static int populate_array_references(struct gpu_array_info *array,
2624 __isl_keep isl_union_map *sched, struct gpu_array_ref_group **groups)
2626 int i;
2627 int n;
2628 isl_ctx *ctx = isl_union_map_get_ctx(sched);
2630 n = 0;
2631 for (i = 0; i < array->n_ref; ++i) {
2632 isl_union_map *umap;
2633 isl_map *map;
2634 struct gpu_array_ref_group *group;
2635 struct gpu_stmt_access *access = array->refs[i];
2637 map = isl_map_copy(access->access);
2638 umap = isl_union_map_from_map(map);
2639 umap = isl_union_map_apply_domain(umap,
2640 isl_union_map_copy(sched));
2642 if (isl_union_map_is_empty(umap)) {
2643 isl_union_map_free(umap);
2644 continue;
2647 map = isl_map_from_union_map(umap);
2648 map = isl_map_detect_equalities(map);
2650 group = isl_calloc_type(ctx, struct gpu_array_ref_group);
2651 assert(group);
2652 group->array = array;
2653 group->access = map;
2654 group->write = access->write;
2655 group->exact_write = access->exact_write;
2656 group->refs = &array->refs[i];
2657 group->n_ref = 1;
2659 groups[n++] = group;
2662 return n;
2665 /* If group->n_ref == 1, then group->refs was set by
2666 * populate_array_references to point directly into
2667 * group->array->refs and should not be freed.
2668 * If group->n_ref > 1, then group->refs was set by join_groups
2669 * to point to a newly allocated array.
2671 static void free_array_ref_group(struct gpu_array_ref_group *group)
2673 if (!group)
2674 return;
2675 free_tile(group->shared_tile);
2676 free_tile(group->private_tile);
2677 isl_map_free(group->access);
2678 if (group->n_ref > 1)
2679 free(group->refs);
2680 free(group);
2683 /* Given a map where the input dimensions represent the tile loops,
2684 * eliminate the innermost of those that have a fixed value
2685 * until we reach one that does not (obviously) have a fixed value.
2687 static __isl_give isl_map *eliminate_fixed_inner_loops(
2688 __isl_take isl_map *access)
2690 int i, n;
2692 n = isl_map_dim(access, isl_dim_in);
2694 for (i = n - 1; i >= 0; --i) {
2695 if (!map_plain_is_fixed(access, isl_dim_in, i))
2696 break;
2697 access = isl_map_eliminate(access, isl_dim_in, i, 1);
2699 return access;
2702 /* Check if the access relations of group1 and group2 overlap within
2703 * the innermost loop. In particular, ignore any inner dimension
2704 * with a fixed value.
2705 * The copying to and from shared memory will be performed within
2706 * the innermost actual loop so we are only allowed to consider
2707 * the dimensions up to that innermost loop while checking whether
2708 * two access relations overlap.
2710 static int accesses_overlap(struct gpu_array_ref_group *group1,
2711 struct gpu_array_ref_group *group2)
2713 int empty;
2714 isl_map *access1, *access2;
2716 access1 = isl_map_copy(group1->access);
2717 access1 = eliminate_fixed_inner_loops(access1);
2718 access2 = isl_map_copy(group2->access);
2719 access2 = eliminate_fixed_inner_loops(access2);
2720 access1 = isl_map_intersect(access1, access2);
2721 empty = isl_map_is_empty(access1);
2722 isl_map_free(access1);
2724 return !empty;
2727 /* Combine the given two groups into a single group, containing
2728 * the references of both groups.
2730 static struct gpu_array_ref_group *join_groups(
2731 struct gpu_array_ref_group *group1,
2732 struct gpu_array_ref_group *group2)
2734 int i;
2735 isl_ctx *ctx;
2736 struct gpu_array_ref_group *group;
2738 ctx = isl_map_get_ctx(group1->access);
2739 group = isl_calloc_type(ctx, struct gpu_array_ref_group);
2740 assert(group);
2741 group->array = group1->array;
2742 group->access = isl_map_union(isl_map_copy(group1->access),
2743 isl_map_copy(group2->access));
2744 group->write = group1->write || group2->write;
2745 group->exact_write = group1->exact_write && group2->exact_write;
2746 group->n_ref = group1->n_ref + group2->n_ref;
2747 group->refs = isl_alloc_array(ctx, struct gpu_stmt_access *,
2748 group->n_ref);
2749 assert(group->refs);
2750 for (i = 0; i < group1->n_ref; ++i)
2751 group->refs[i] = group1->refs[i];
2752 for (i = 0; i < group2->n_ref; ++i)
2753 group->refs[group1->n_ref + i] = group2->refs[i];
2755 return group;
2758 /* Combine the given two groups into a single group and free
2759 * the original two groups.
2761 static struct gpu_array_ref_group *join_groups_and_free(
2762 struct gpu_array_ref_group *group1,
2763 struct gpu_array_ref_group *group2)
2765 struct gpu_array_ref_group *group;
2767 group = join_groups(group1, group2);
2768 free_array_ref_group(group1);
2769 free_array_ref_group(group2);
2770 return group;
2773 /* Compute the private and/or shared memory tiles for the array
2774 * reference group "group" of array "array".
2775 * Return 0 on success and -1 on error.
2777 * If the array is a read-only scalar or if the user requested
2778 * not to use shared or private memory, then we do not need to do anything.
2780 * If the array group involves any may writes (that are not must writes),
2781 * then we would have to make sure that we load the data into shared/private
2782 * memory first in case the data is not written by the kernel
2783 * (but still written back out to global memory).
2784 * Since we don't have any such mechanism at the moment, we don't
2785 * compute shared/private tiles for groups involving may writes.
2787 * We only try to compute a shared memory tile if there is any reuse
2788 * or if the access is not coalesced.
2790 * For computing a private memory tile, we also require that there is
2791 * some reuse. Moreover, we require that the access is private
2792 * to the thread. That is, we check that any given array element
2793 * is only accessed by a single thread.
2794 * We compute an access relation that maps the shared tile loop iterators
2795 * and the shared point loop iterators that will be wrapped over the
2796 * threads to the array elements.
2797 * We actually check that those iterators that will be wrapped
2798 * partition the array space. This check is stricter than necessary
2799 * since several iterations may be mapped onto the same thread
2800 * and then they could be allowed to access the same memory elements,
2801 * but our check does not allow this situation.
2803 * We also check that the index expression only depends on parallel
2804 * loops. That way, we can move those loops innermost and unroll them.
2805 * Again, we use a test that is stricter than necessary.
2806 * We actually check whether the index expression only depends
2807 * on the iterators that are wrapped over the threads.
2808 * These are necessarily parallel, but there may be more parallel loops.
2810 * Combining the injectivity of the first test with the single-valuedness
2811 * of the second test, we simply test for bijectivity.
2813 * If the array is marked force_private, then we bypass all checks
2814 * and assume we can (and should) use registers.
2816 * If it turns out we can (or have to) use registers, we compute
2817 * the private memory tile size using can_tile, after introducing a dependence
2818 * on the thread indices.
2820 static int compute_group_bounds_core(struct gpu_gen *gen,
2821 struct gpu_array_ref_group *group)
2823 isl_ctx *ctx = isl_space_get_ctx(group->array->space);
2824 isl_union_map *access;
2825 int n_index = group->array->n_index;
2826 int no_reuse;
2827 isl_map *acc;
2828 int force_private = group->array->force_private;
2829 int use_shared = gen->options->use_shared_memory;
2830 int use_private = force_private || gen->options->use_private_memory;
2832 if (!use_shared && !use_private)
2833 return 0;
2834 if (gpu_array_is_read_only_scalar(group->array))
2835 return 0;
2836 if (!force_private && !group->exact_write)
2837 return 0;
2839 access = group_access_relation(group, 1, 1);
2840 no_reuse = isl_union_map_is_injective(access);
2842 if (use_shared && (!no_reuse || !access_is_coalesced(gen, access))) {
2843 group->shared_tile = create_tile(ctx, group->array->n_index);
2844 if (!can_tile(group->access, group->shared_tile))
2845 group->shared_tile = free_tile(group->shared_tile);
2848 if (!force_private && (!use_private || no_reuse)) {
2849 isl_union_map_free(access);
2850 return 0;
2853 access = isl_union_map_apply_domain(access,
2854 isl_union_map_copy(gen->shared_sched));
2856 acc = isl_map_from_union_map(access);
2858 if (!force_private && !access_is_bijective(gen, acc)) {
2859 isl_map_free(acc);
2860 return 0;
2863 group->private_tile = create_tile(gen->ctx, n_index);
2864 acc = isl_map_apply_domain(acc, isl_map_copy(gen->privatization));
2865 if (!can_tile(acc, group->private_tile))
2866 group->private_tile = free_tile(group->private_tile);
2868 isl_map_free(acc);
2870 if (force_private && !group->private_tile)
2871 isl_die(ctx, isl_error_internal,
2872 "unable to map array reference group to registers",
2873 return -1);
2875 return 0;
2878 /* Compute the private and/or shared memory tiles for the array
2879 * reference group "group" of array "array" and set last_shared.
2880 * Return 0 on success and -1 on error.
2882 static int compute_group_bounds(struct gpu_gen *gen,
2883 struct gpu_array_ref_group *group)
2885 if (compute_group_bounds_core(gen, group) < 0)
2886 return -1;
2887 set_last_shared(gen, group);
2889 return 0;
2892 /* If two groups have overlapping access relations (as determined by
2893 * the "overlap" function) and if one of them involves a write,
2894 * then merge the two groups into one.
2895 * If "compute_bounds" is set, then call compute_group_bounds
2896 * on the merged groups.
2898 * Return the updated number of groups.
2899 * Return -1 on error.
2901 static int group_writes(struct gpu_gen *gen,
2902 int n, struct gpu_array_ref_group **groups,
2903 int (*overlap)(struct gpu_array_ref_group *group1,
2904 struct gpu_array_ref_group *group2), int compute_bounds)
2906 int i, j;
2908 for (i = 0; i < n; ++i) {
2909 for (j = n - 1; j > i; --j) {
2910 if (!groups[i]->write && !groups[j]->write)
2911 continue;
2913 if (!overlap(groups[i], groups[j]))
2914 continue;
2916 groups[i] = join_groups_and_free(groups[i], groups[j]);
2917 if (compute_bounds &&
2918 compute_group_bounds(gen, groups[i]) < 0)
2919 return -1;
2920 if (j != n - 1)
2921 groups[j] = groups[n - 1];
2922 groups[n - 1] = NULL;
2923 n--;
2927 return n;
2930 /* If two groups have overlapping access relations (within the innermost
2931 * loop) and if one of them involves a write, then merge the two groups
2932 * into one.
2934 * Return the updated number of groups.
2936 static int group_overlapping_writes(struct gpu_gen *gen,
2937 int n, struct gpu_array_ref_group **groups)
2939 return group_writes(gen, n, groups, &accesses_overlap, 0);
2942 /* Check if the access relations of group1 and group2 overlap within
2943 * the outermost min(group1->last_shared, group2->last_shared) loops.
2945 static int last_shared_accesses_overlap(struct gpu_array_ref_group *group1,
2946 struct gpu_array_ref_group *group2)
2948 int last_shared;
2949 int dim;
2950 int empty;
2951 isl_map *map_i, *map_j, *map;
2953 last_shared = group1->last_shared;
2954 if (group2->last_shared < last_shared)
2955 last_shared = group2->last_shared;
2956 map_i = isl_map_copy(group1->access);
2957 dim = isl_map_dim(map_i, isl_dim_in);
2958 map_i = isl_map_eliminate(map_i, isl_dim_in,
2959 last_shared + 1, dim - (last_shared + 1));
2960 map_j = isl_map_copy(group2->access);
2961 map_j = isl_map_eliminate(map_j, isl_dim_in,
2962 last_shared + 1, dim - (last_shared + 1));
2963 map = isl_map_intersect(map_i, map_j);
2964 empty = isl_map_is_empty(map);
2965 isl_map_free(map);
2967 return !empty;
2970 /* If two groups have overlapping access relations (within the outer
2971 * last_shared loops) and if one of them involves a write,
2972 * then merge the two groups into one.
2974 * Return the updated number of groups.
2976 static int group_last_shared_overlapping_writes(struct gpu_gen *gen, int n,
2977 struct gpu_array_ref_group **groups)
2979 return group_writes(gen, n, groups, &last_shared_accesses_overlap, 1);
2982 /* Is the size of the tile specified by "tile" smaller than the sum of
2983 * the sizes of the tiles specified by "tile1" and "tile2"?
2985 static int smaller_tile(isl_ctx *ctx, struct gpu_array_tile *tile,
2986 struct gpu_array_tile *tile1, struct gpu_array_tile *tile2)
2988 int smaller;
2989 isl_val *size, *size1, *size2;
2991 size = tile_size(ctx, tile);
2992 size1 = tile_size(ctx, tile1);
2993 size2 = tile_size(ctx, tile2);
2995 size = isl_val_sub(size, size1);
2996 size = isl_val_sub(size, size2);
2997 smaller = isl_val_is_neg(size);
2999 isl_val_free(size);
3001 return smaller;
3004 /* Given an initial grouping of array references and shared memory tiles
3005 * for each group that allows for a shared memory tile, merge two groups
3006 * if both have a shared memory tile, the merged group also has
3007 * a shared memory tile and the size of the tile for the merge group
3008 * is smaller than the sum of the tile sizes of the individual groups.
3010 * If merging two groups decreases the "last_shared" dimension of
3011 * one or both of the two groups, then we need to check for overlapping
3012 * writes again.
3014 * Return the number of groups after merging.
3015 * Return -1 on error.
3017 static int group_common_shared_memory_tile(struct gpu_gen *gen,
3018 struct gpu_array_info *array, int n,
3019 struct gpu_array_ref_group **groups)
3021 int i, j;
3022 int recompute_overlap = 0;
3023 isl_ctx *ctx = isl_space_get_ctx(array->space);
3025 for (i = 0; i < n; ++i) {
3026 if (!groups[i]->shared_tile)
3027 continue;
3028 for (j = n - 1; j > i; --j) {
3029 isl_map *map;
3030 int empty;
3031 struct gpu_array_ref_group *group;
3033 if (!groups[j]->shared_tile)
3034 continue;
3036 map = isl_map_intersect(isl_map_copy(groups[i]->access),
3037 isl_map_copy(groups[j]->access));
3038 empty = isl_map_is_empty(map);
3039 isl_map_free(map);
3041 if (empty)
3042 continue;
3044 group = join_groups(groups[i], groups[j]);
3045 if (compute_group_bounds(gen, group) < 0) {
3046 free_array_ref_group(group);
3047 return -1;
3049 if (!group->shared_tile ||
3050 !smaller_tile(ctx, group->shared_tile,
3051 groups[i]->shared_tile,
3052 groups[j]->shared_tile)) {
3053 free_array_ref_group(group);
3054 continue;
3057 if (group->last_shared < groups[i]->last_shared ||
3058 group->last_shared < groups[j]->last_shared)
3059 recompute_overlap = 1;
3060 free_array_ref_group(groups[i]);
3061 free_array_ref_group(groups[j]);
3062 groups[i] = group;
3063 if (j != n - 1)
3064 groups[j] = groups[n - 1];
3065 n--;
3069 if (recompute_overlap)
3070 n = group_last_shared_overlapping_writes(gen, n, groups);
3071 return n;
3074 /* Set array->n_group and array->groups to n and groups.
3076 * Additionally, set the "nr" field of each group
3077 * and the "group" field of each reference in each group.
3079 static void set_array_groups(struct gpu_array_info *array,
3080 int n, struct gpu_array_ref_group **groups)
3082 int i, j;
3084 array->n_group = n;
3085 array->groups = groups;
3087 for (i = 0; i < n; ++i) {
3088 groups[i]->nr = i;
3090 for (j = 0; j < groups[i]->n_ref; ++j)
3091 groups[i]->refs[j]->group = i;
3095 /* Group array references that should be considered together when
3096 * deciding whether to access them from private, shared or global memory.
3097 * Return -1 on error.
3099 * In particular, if two array references overlap and if one of them
3100 * is a write, then the two references are grouped together.
3101 * We first perform an initial grouping based only on the access relation.
3102 * After computing shared and private memory tiles, we check for
3103 * overlapping writes again, but this time taking into account
3104 * the "last_shared" property.
3106 * Furthermore, if two groups admit a shared memory tile and if the
3107 * combination of the two also admits a shared memory tile, we merge
3108 * the two groups.
3110 * If the array contains structures, then there is no need to compute
3111 * reference groups since we do not map such arrays to private or shared
3112 * memory.
3114 static int group_array_references(struct gpu_gen *gen,
3115 struct gpu_array_info *array, __isl_keep isl_union_map *sched)
3117 int i;
3118 int n;
3119 isl_ctx *ctx = isl_union_map_get_ctx(sched);
3120 struct gpu_array_ref_group **groups;
3122 if (array->has_compound_element)
3123 return 0;
3125 groups = isl_calloc_array(ctx, struct gpu_array_ref_group *,
3126 array->n_ref);
3127 if (!groups)
3128 return -1;
3130 n = populate_array_references(array, sched, groups);
3132 n = group_overlapping_writes(gen, n, groups);
3134 for (i = 0; i < n; ++i)
3135 if (compute_group_bounds(gen, groups[i]) < 0)
3136 n = -1;
3138 n = group_last_shared_overlapping_writes(gen, n, groups);
3140 n = group_common_shared_memory_tile(gen, array, n, groups);
3142 set_array_groups(array, n, groups);
3144 if (n >= 0)
3145 return 0;
3147 for (i = 0; i < array->n_ref; ++i)
3148 free_array_ref_group(groups[i]);
3149 return -1;
3152 /* Take tiled_sched, project it onto the shared tile loops and
3153 * the loops that will be wrapped over the threads and
3154 * store the result in gen->shared_sched.
3155 * Also compute a projection that projects out the loops that will be
3156 * wrapped over the threads and store this projection in gen->shared_proj.
3158 static void compute_shared_sched(struct gpu_gen *gen)
3160 isl_space *dim;
3161 isl_map *proj;
3162 isl_set *par;
3163 isl_union_map *sched;
3165 sched = isl_union_map_copy(gen->tiled_sched);
3167 dim = isl_union_map_get_space(sched);
3168 proj = projection(dim, gen->tiled_len, gen->shared_len + gen->n_block);
3169 sched = isl_union_map_apply_range(sched, isl_union_map_from_map(proj));
3171 dim = isl_union_map_get_space(sched);
3172 proj = projection(dim, gen->shared_len + gen->n_block, gen->shared_len);
3174 gen->shared_sched = sched;
3175 gen->shared_proj = isl_union_map_from_map(proj);
3178 /* For each scalar in the input program, check if there are any
3179 * order dependences active inside the current kernel, within
3180 * the same iteration of the host schedule.
3181 * If so, mark the scalar as force_private so that it will be
3182 * mapped to a register.
3184 static void check_scalar_live_ranges(struct gpu_gen *gen)
3186 int i;
3187 isl_map *proj;
3188 isl_union_map *sched;
3189 isl_union_set *domain;
3190 isl_union_map *same_host_iteration;
3192 gen->any_force_private = 0;
3194 if (!gen->options->live_range_reordering)
3195 return;
3197 sched = gen->shared_sched;
3198 sched = isl_union_map_universe(isl_union_map_copy(sched));
3199 domain = isl_union_map_domain(sched);
3201 sched = isl_union_map_copy(gen->sched);
3202 proj = projection(isl_union_map_get_space(sched),
3203 gen->untiled_len, gen->tile_first);
3204 sched = isl_union_map_apply_range(sched, isl_union_map_from_map(proj));
3205 same_host_iteration = isl_union_map_apply_range(sched,
3206 isl_union_map_reverse(isl_union_map_copy(sched)));
3208 for (i = 0; i < gen->prog->n_array; ++i) {
3209 struct gpu_array_info *array = &gen->prog->array[i];
3210 isl_union_map *order;
3212 array->force_private = 0;
3213 if (array->n_index != 0)
3214 continue;
3215 order = isl_union_map_copy(array->dep_order);
3216 order = isl_union_map_intersect_domain(order,
3217 isl_union_set_copy(domain));
3218 order = isl_union_map_intersect_range(order,
3219 isl_union_set_copy(domain));
3220 order = isl_union_map_intersect(order,
3221 isl_union_map_copy(same_host_iteration));
3222 if (!isl_union_map_is_empty(order)) {
3223 array->force_private = 1;
3224 gen->any_force_private = 1;
3226 isl_union_map_free(order);
3229 isl_union_map_free(same_host_iteration);
3230 isl_union_set_free(domain);
3233 /* Group references of all arrays in the program.
3235 static int group_references(struct gpu_gen *gen)
3237 int i;
3238 int r = 0;
3239 isl_union_map *sched;
3241 sched = isl_union_map_apply_range(isl_union_map_copy(gen->shared_sched),
3242 isl_union_map_copy(gen->shared_proj));
3244 for (i = 0; i < gen->prog->n_array; ++i) {
3245 r = group_array_references(gen, &gen->prog->array[i], sched);
3246 if (r < 0)
3247 break;
3250 isl_union_map_free(sched);
3252 return r;
3255 /* Free all array information that is local to the current kernel.
3257 static void free_local_array_info(struct gpu_gen *gen)
3259 int i, j;
3261 for (i = 0; i < gen->prog->n_array; ++i) {
3262 struct gpu_array_info *array = &gen->prog->array[i];
3264 for (j = 0; j < array->n_group; ++j)
3265 free_array_ref_group(array->groups[j]);
3266 free(array->groups);
3270 /* Compute the size of a bounding box around the origin and "set",
3271 * where "set" is assumed to contain only non-negative elements.
3272 * In particular, compute the maximal value of "set" in each direction
3273 * and add one.
3275 static __isl_give isl_multi_pw_aff *extract_size(__isl_take isl_set *set,
3276 __isl_keep isl_set *context)
3278 int i, n;
3279 isl_multi_pw_aff *mpa;
3281 n = isl_set_dim(set, isl_dim_set);
3282 mpa = isl_multi_pw_aff_zero(isl_set_get_space(set));
3283 for (i = 0; i < n; ++i) {
3284 isl_space *space;
3285 isl_aff *one;
3286 isl_pw_aff *bound;
3288 bound = isl_set_dim_max(isl_set_copy(set), i);
3289 bound = isl_pw_aff_coalesce(bound);
3290 bound = isl_pw_aff_gist(bound, isl_set_copy(context));
3292 space = isl_pw_aff_get_domain_space(bound);
3293 one = isl_aff_zero_on_domain(isl_local_space_from_space(space));
3294 one = isl_aff_add_constant_si(one, 1);
3295 bound = isl_pw_aff_add(bound, isl_pw_aff_from_aff(one));
3296 mpa = isl_multi_pw_aff_set_pw_aff(mpa, i, bound);
3298 isl_set_free(set);
3300 return mpa;
3303 /* Compute the effective grid size as a list of the sizes in each dimension.
3305 * The grid size specified by the user or set by default
3306 * in read_grid_sizes() and applied in tile_schedule(),
3307 * may be too large for the given code in the sense that
3308 * it may contain blocks that don't need to execute anything.
3309 * We therefore don't return this grid size, but instead the
3310 * smallest grid size that ensures that all blocks that actually
3311 * execute code are included in the grid.
3313 * We first extract a description of the grid, i.e., the possible values
3314 * of the block ids, from gen->tiled_sched.
3315 * The block ids are parameters in gen->tiled_sched.
3316 * We simply need to change them into set dimensions.
3318 * Then, for each block dimension, we compute the maximal value of the block id
3319 * and add one.
3321 static __isl_give isl_multi_pw_aff *extract_grid_size(struct gpu_gen *gen,
3322 struct ppcg_kernel *kernel)
3324 int i;
3325 isl_set *grid;
3327 grid = isl_union_map_params(isl_union_map_copy(gen->tiled_sched));
3328 grid = isl_set_from_params(grid);
3329 grid = isl_set_add_dims(grid, isl_dim_set, gen->n_grid);
3330 for (i = 0; i < gen->n_grid; ++i) {
3331 int pos;
3332 char name[20];
3334 snprintf(name, sizeof(name), "b%d", i);
3335 pos = isl_set_find_dim_by_name(grid, isl_dim_param, name);
3336 assert(pos >= 0);
3337 grid = isl_set_equate(grid, isl_dim_param, pos, isl_dim_set, i);
3338 grid = isl_set_project_out(grid, isl_dim_param, pos, 1);
3341 return extract_size(grid, kernel->context);
3344 /* Compute the size of a fixed bounding box around the origin and "set",
3345 * where "set" is assumed to contain only non-negative elements,
3346 * and store the results in "size".
3347 * In particular, compute the maximal value of "set" in each direction
3348 * and add one.
3350 static void extract_fixed_size(__isl_take isl_set *set, int *size)
3352 int i, n;
3353 isl_local_space *ls;
3354 isl_aff *obj;
3356 n = isl_set_dim(set, isl_dim_set);
3357 ls = isl_local_space_from_space(isl_set_get_space(set));
3358 obj = isl_aff_zero_on_domain(ls);
3359 for (i = 0; i < n; ++i) {
3360 isl_val *max;
3362 obj = isl_aff_set_coefficient_si(obj, isl_dim_in, i, 1);
3363 max = isl_set_max_val(set, obj);
3364 size[i] = isl_val_get_num_si(max) + 1;
3365 isl_val_free(max);
3366 obj = isl_aff_set_coefficient_si(obj, isl_dim_in, i, 0);
3368 isl_aff_free(obj);
3369 isl_set_free(set);
3372 /* Compute the effective block size as a list of the sizes in each dimension
3373 * and store the sizes in kernel->block_dim.
3375 * The block size specified by the user or set by default
3376 * in read_block_sizes() and applied in thread_tile_schedule(),
3377 * may be too large for the given code in the sense that
3378 * it may contain threads that don't need to execute anything.
3379 * We therefore don't store this block size in kernel->block_dim,
3380 * but instead the smallest block size that ensures that all threads
3381 * that actually execute code are included in the block.
3383 * The current implementation eliminates all parameters, ensuring
3384 * that the size is a fixed constant in each dimension.
3385 * In principle we could also compute parametric sizes.
3386 * We would have to make sure to project out all b%d and t%d parameters,
3387 * however.
3389 static void extract_block_size(struct gpu_gen *gen, struct ppcg_kernel *kernel)
3391 int i;
3392 int nparam;
3393 isl_set *block;
3394 isl_multi_pw_aff *mpa;
3396 block = isl_union_map_params(isl_union_map_copy(gen->local_sched));
3397 block = isl_set_from_params(block);
3398 block = isl_set_add_dims(block, isl_dim_set, gen->n_block);
3399 kernel->n_block = gen->n_block;
3400 for (i = 0; i < gen->n_block; ++i) {
3401 int pos;
3402 char name[20];
3404 snprintf(name, sizeof(name), "t%d", i);
3405 pos = isl_set_find_dim_by_name(block, isl_dim_param, name);
3406 assert(pos >= 0);
3407 block = isl_set_equate(block, isl_dim_param, pos,
3408 isl_dim_set, i);
3410 nparam = isl_set_dim(block, isl_dim_param);
3411 block = isl_set_project_out(block, isl_dim_param, 0, nparam);
3413 extract_fixed_size(block, kernel->block_dim);
3416 void ppcg_kernel_free(void *user)
3418 struct ppcg_kernel *kernel = user;
3419 int i;
3421 if (!kernel)
3422 return;
3424 isl_multi_pw_aff_free(kernel->grid_size);
3425 isl_set_free(kernel->context);
3426 isl_union_set_free(kernel->arrays);
3427 isl_space_free(kernel->space);
3428 isl_ast_node_free(kernel->tree);
3430 for (i = 0; i < kernel->n_array; ++i)
3431 isl_pw_aff_list_free(kernel->array[i].bound);
3432 free(kernel->array);
3434 for (i = 0; i < kernel->n_var; ++i) {
3435 free(kernel->var[i].name);
3436 isl_vec_free(kernel->var[i].size);
3438 free(kernel->var);
3440 free(kernel);
3443 static void create_kernel_var(isl_ctx *ctx, struct gpu_array_ref_group *group,
3444 struct ppcg_kernel_var *var)
3446 int j;
3447 struct gpu_array_tile *tile;
3448 isl_printer *p;
3449 char *name;
3451 var->array = group->array;
3453 tile = group->private_tile;
3454 var->type = ppcg_access_private;
3455 if (!tile) {
3456 tile = group->shared_tile;
3457 var->type = ppcg_access_shared;
3460 p = isl_printer_to_str(ctx);
3461 p = print_array_name(p, group);
3462 var->name = isl_printer_get_str(p);
3463 isl_printer_free(p);
3465 var->size = isl_vec_alloc(ctx, group->array->n_index);
3467 for (j = 0; j < group->array->n_index; ++j)
3468 var->size = isl_vec_set_element_val(var->size, j,
3469 isl_val_copy(tile->bound[j].size));
3472 static void create_kernel_vars(struct gpu_gen *gen, struct ppcg_kernel *kernel)
3474 int i, j, n;
3476 n = 0;
3477 for (i = 0; i < gen->prog->n_array; ++i) {
3478 struct gpu_array_info *array = &gen->prog->array[i];
3480 for (j = 0; j < array->n_group; ++j) {
3481 struct gpu_array_ref_group *group = array->groups[j];
3482 if (group->private_tile || group->shared_tile)
3483 ++n;
3487 kernel->n_var = n;
3488 kernel->var = isl_calloc_array(gen->ctx, struct ppcg_kernel_var, n);
3489 assert(kernel->var);
3491 n = 0;
3492 for (i = 0; i < gen->prog->n_array; ++i) {
3493 struct gpu_array_info *array = &gen->prog->array[i];
3495 for (j = 0; j < array->n_group; ++j) {
3496 struct gpu_array_ref_group *group = array->groups[j];
3497 if (!group->private_tile && !group->shared_tile)
3498 continue;
3499 create_kernel_var(gen->ctx, group, &kernel->var[n]);
3500 ++n;
3505 /* The sizes of the arrays on the host that have been computed by
3506 * extract_array_info may depend on the parameters. Use the extra
3507 * constraints on the parameters that are valid at "host_domain"
3508 * to simplify these expressions and store the results in kernel->array.
3510 * We only need these localized bounds for arrays that are accessed
3511 * by the current kernel. If we have found at least one reference group
3512 * then the array is accessed by the kernel. If the array has compound
3513 * elements then we skipped the construction of array reference groups.
3515 static void localize_bounds(struct gpu_gen *gen, struct ppcg_kernel *kernel,
3516 __isl_keep isl_set *host_domain)
3518 int i, j;
3519 isl_set *context;
3521 kernel->array = isl_calloc_array(gen->ctx,
3522 struct gpu_local_array_info, gen->prog->n_array);
3523 assert(kernel->array);
3524 kernel->n_array = gen->prog->n_array;
3526 context = isl_set_copy(host_domain);
3527 context = isl_set_params(context);
3529 for (i = 0; i < gen->prog->n_array; ++i) {
3530 struct gpu_array_info *array = &gen->prog->array[i];
3531 isl_pw_aff_list *local;
3533 if (array->n_group == 0 && !array->has_compound_element)
3534 continue;
3536 local = isl_pw_aff_list_alloc(gen->ctx, array->n_index);
3538 for (j = 0; j < array->n_index; ++j) {
3539 isl_pw_aff *pwaff;
3541 pwaff = isl_pw_aff_copy(array->bound[j]);
3542 pwaff = isl_pw_aff_gist(pwaff, isl_set_copy(context));
3543 local = isl_pw_aff_list_add(local, pwaff);
3546 kernel->array[i].bound = local;
3548 isl_set_free(context);
3551 /* Find the element in gen->stmt that has the given "id".
3552 * Return NULL if no such gpu_stmt can be found.
3554 static struct gpu_stmt *find_stmt(struct gpu_prog *prog, __isl_keep isl_id *id)
3556 int i;
3558 for (i = 0; i < prog->n_stmts; ++i) {
3559 if (id == prog->stmts[i].id)
3560 break;
3563 return i < prog->n_stmts ? &prog->stmts[i] : NULL;
3566 /* Set gen->tile_len and gen->n_parallel to those of the statement
3567 * affected by the first map (part of the schedule)
3568 * on which this function is called.
3569 * Because of the way the schedule is constructed, the other statements
3570 * in the list, if any, should have the same values for these properties.
3572 static int extract_tile_len(__isl_take isl_map *map, void *user)
3574 struct gpu_gen *gen = (struct gpu_gen *) user;
3575 isl_id *id;
3576 struct gpu_stmt *stmt;
3578 id = isl_map_get_tuple_id(map, isl_dim_in);
3579 stmt = find_stmt(gen->prog, id);
3580 isl_id_free(id);
3582 isl_map_free(map);
3584 if (!stmt)
3585 isl_die(gen->ctx, isl_error_unknown,
3586 "statement not found", return -1);
3588 gen->tile_len = stmt->tile_len;
3589 gen->n_parallel = stmt->n_parallel;
3591 return -1;
3594 void ppcg_kernel_stmt_free(void *user)
3596 int i;
3597 struct ppcg_kernel_stmt *stmt = user;
3599 if (!stmt)
3600 return;
3602 switch (stmt->type) {
3603 case ppcg_kernel_copy:
3604 isl_ast_expr_free(stmt->u.c.index);
3605 isl_ast_expr_free(stmt->u.c.local_index);
3606 break;
3607 case ppcg_kernel_domain:
3608 isl_id_to_ast_expr_free(stmt->u.d.ref2expr);
3609 break;
3610 case ppcg_kernel_sync:
3611 break;
3614 free(stmt);
3617 /* Set the options of "context" to
3619 * { space -> [x] : x >= first }
3621 static __isl_give isl_ast_build *set_unroll(
3622 __isl_take isl_ast_build *build, __isl_take isl_space *space,
3623 int first)
3625 isl_ctx *ctx;
3626 isl_map *unroll;
3627 isl_union_map *opt;
3629 ctx = isl_ast_build_get_ctx(build);
3631 space = isl_space_from_domain(space);
3632 space = isl_space_add_dims(space, isl_dim_out, 1);
3633 space = isl_space_set_tuple_name(space, isl_dim_out, "unroll");
3634 unroll = isl_map_universe(space);
3635 unroll = isl_map_lower_bound_si(unroll, isl_dim_out, 0, first);
3636 opt = isl_union_map_from_map(unroll);
3638 build = isl_ast_build_set_options(build, opt);
3640 return build;
3643 /* Return a list of isl_ids of the form "prefix%d".
3645 static __isl_give isl_id_list *generate_names(isl_ctx *ctx,
3646 int n, const char *prefix)
3648 int i;
3649 char name[10];
3650 isl_id_list *names;
3652 names = isl_id_list_alloc(ctx, n);
3653 for (i = 0; i < n; ++i) {
3654 isl_id *id;
3656 snprintf(name, sizeof(name), "%s%d", prefix, i);
3657 id = isl_id_alloc(ctx, name, NULL);
3658 names = isl_id_list_add(names, id);
3661 return names;
3664 /* Extend the schedule "schedule" with the part of "extension"
3665 * starting at "first" up to "len".
3667 static __isl_give isl_union_map *extend_schedule(
3668 __isl_take isl_union_map *schedule,
3669 __isl_take isl_union_map *extension, int first, int len)
3671 isl_space *space;
3672 isl_map *proj;
3673 isl_union_map *umap;
3674 isl_set *set;
3676 space = isl_union_map_get_space(schedule);
3677 space = isl_space_set_from_params(space);
3678 space = isl_space_add_dims(space, isl_dim_set, len);
3679 proj = isl_set_identity(isl_set_universe(space));
3680 proj = isl_map_project_out(proj, isl_dim_out, 0, first);
3681 extension = isl_union_map_apply_range(extension,
3682 isl_union_map_from_map(proj));
3684 schedule = isl_union_map_range_product(schedule, extension);
3686 return schedule;
3689 /* Return the gpu_stmt_access in the list "accesses" that corresponds
3690 * to "ref_id".
3692 static struct gpu_stmt_access *find_access(struct gpu_stmt_access *accesses,
3693 __isl_keep isl_id *ref_id)
3695 struct gpu_stmt_access *access;
3697 for (access = accesses; access; access = access->next)
3698 if (access->ref_id == ref_id)
3699 return access;
3701 return NULL;
3704 /* Return the index of the array called "name" in the list of arrays.
3706 static int find_array_index(struct gpu_gen *gen, const char *name)
3708 int i;
3710 for (i = 0; i < gen->prog->n_array; ++i)
3711 if (!strcmp(name, gen->prog->array[i].name))
3712 return i;
3714 return -1;
3717 /* Internal data structure for the index and AST expression transformation
3718 * callbacks for pet_stmt_build_ast_exprs.
3720 * "accesses" is the list of gpu_stmt_access in the statement.
3721 * "iterator_map" expresses the statement iterators in terms of
3722 * the AST loop iterators.
3723 * "sched2shared" expresses the first shared_len dimensions of
3724 * the computed schedule in terms of the AST loop iterators.
3726 * The following fields are set in transform_index and used in transform_expr.
3727 * "array" is the array that is being accessed.
3728 * "global" is set if the global array is accessed (rather than
3729 * shared/private memory).
3730 * "local_array" refers to information on the array specialized
3731 * to the current kernel.
3733 struct ppcg_transform_data {
3734 struct gpu_gen *gen;
3735 struct gpu_stmt_access *accesses;
3736 isl_pw_multi_aff *iterator_map;
3737 isl_pw_multi_aff *sched2shared;
3739 struct gpu_array_info *array;
3740 int global;
3741 struct gpu_local_array_info *local_array;
3744 /* Return the name of the outer array (of structs) accessed by "access".
3746 static const char *get_outer_array_name(__isl_keep isl_map *access)
3748 isl_space *space;
3749 const char *name;
3751 space = isl_space_range(isl_map_get_space(access));
3752 while (space && isl_space_is_wrapping(space))
3753 space = isl_space_domain(isl_space_unwrap(space));
3754 name = isl_space_get_tuple_name(space, isl_dim_set);
3755 isl_space_free(space);
3757 return name;
3760 /* Index transformation callback for pet_stmt_build_ast_exprs.
3762 * "index" expresses the array indices in terms of statement iterators
3764 * We first reformulate "index" in terms of the AST loop iterators.
3765 * Then we check if we are accessing the global array or
3766 * a shared/private copy. In the former case, we simply return
3767 * the updated index. If "index" is an affine expression rather
3768 * than an array access, then we also return the updated index here.
3770 * If no reference groups have been computed for the array,
3771 * then we can only be accessing the global array.
3773 * Otherwise, we apply the tiling to the index.
3774 * This tiling is of the form
3776 * [D -> A] -> T
3778 * The index is of the form
3780 * L -> A
3782 * We update the tiling to refer to the AST loop iteratos
3784 * [L -> A] -> T
3786 * and modify index to keep track of those iterators
3788 * L -> [L -> A]
3790 * Combining these two yields a tiled index expression in terms
3791 * of the AST loop iterators
3793 * L -> T
3795 static __isl_give isl_multi_pw_aff *transform_index(
3796 __isl_take isl_multi_pw_aff *index, __isl_keep isl_id *ref_id,
3797 void *user)
3799 struct ppcg_transform_data *data = user;
3800 struct gpu_stmt_access *access;
3801 struct gpu_array_ref_group *group;
3802 struct gpu_array_tile *tile;
3803 isl_pw_multi_aff *iterator_map;
3804 int i;
3805 const char *name;
3806 isl_space *space;
3807 isl_multi_pw_aff *tiling;
3808 isl_pw_multi_aff *pma;
3809 isl_multi_pw_aff *mpa;
3811 data->array = NULL;
3813 iterator_map = isl_pw_multi_aff_copy(data->iterator_map);
3814 index = isl_multi_pw_aff_pullback_pw_multi_aff(index, iterator_map);
3816 access = find_access(data->accesses, ref_id);
3817 if (!access)
3818 return index;
3819 if (!isl_map_has_tuple_name(access->access, isl_dim_out))
3820 return index;
3822 name = get_outer_array_name(access->access);
3823 i = find_array_index(data->gen, name);
3824 if (i < 0)
3825 isl_die(isl_multi_pw_aff_get_ctx(index), isl_error_internal,
3826 "cannot find array",
3827 return isl_multi_pw_aff_free(index));
3828 data->array = &data->gen->prog->array[i];
3829 data->local_array = &data->gen->kernel->array[i];
3831 if (access->group < 0) {
3832 data->global = 1;
3833 return index;
3836 group = data->array->groups[access->group];
3837 tile = group->private_tile;
3838 if (!tile)
3839 tile = group->shared_tile;
3840 data->global = !tile;
3841 if (!tile)
3842 return index;
3844 space = isl_space_range(isl_multi_pw_aff_get_space(index));
3845 space = isl_space_map_from_set(space);
3846 pma = isl_pw_multi_aff_identity(space);
3847 pma = isl_pw_multi_aff_product(
3848 isl_pw_multi_aff_copy(data->sched2shared), pma);
3849 tiling = isl_multi_pw_aff_from_multi_aff(
3850 isl_multi_aff_copy(tile->tiling));
3851 tiling = isl_multi_pw_aff_pullback_pw_multi_aff(tiling, pma);
3853 space = isl_space_domain(isl_multi_pw_aff_get_space(index));
3854 space = isl_space_map_from_set(space);
3855 mpa = isl_multi_pw_aff_identity(space);
3856 index = isl_multi_pw_aff_range_product(mpa, index);
3857 index = isl_multi_pw_aff_pullback_multi_pw_aff(tiling, index);
3859 return index;
3862 /* Dereference "expr" by adding an index [0].
3863 * The original "expr" is assumed not to have any indices.
3865 * If "expr" is a member access, then the dereferencing needs
3866 * to be applied to the structure argument of this member access.
3868 static __isl_give isl_ast_expr *dereference(__isl_take isl_ast_expr *expr)
3870 isl_ctx *ctx;
3871 isl_ast_expr *res;
3872 isl_ast_expr_list *list;
3874 if (isl_ast_expr_get_op_type(expr) == isl_ast_op_member) {
3875 isl_ast_expr *arg;
3877 arg = isl_ast_expr_get_op_arg(expr, 0);
3878 arg = dereference(arg);
3879 expr = isl_ast_expr_set_op_arg(expr, 0, arg);
3881 return expr;
3884 ctx = isl_ast_expr_get_ctx(expr);
3885 res = isl_ast_expr_from_val(isl_val_zero(ctx));
3886 list = isl_ast_expr_list_from_ast_expr(res);
3887 res = isl_ast_expr_get_op_arg(expr, 0);
3888 res = isl_ast_expr_access(res, list);
3889 isl_ast_expr_free(expr);
3891 return res;
3894 /* Linearize the index expression "expr" based on the array bounds
3895 * of "array".
3897 * That is, transform expression
3899 * A[i_0][i_1]...[i_n]
3901 * to
3903 * A[(..((i_0 * b_1 + i_1) ... ) * b_n + i_n]
3905 * where b_0, b_1, ..., b_n are the bounds on the array.
3907 * If the base of "expr" is a member access, then the linearization needs
3908 * to be applied to the structure argument of this member access.
3910 __isl_give isl_ast_expr *gpu_local_array_info_linearize_index(
3911 struct gpu_local_array_info *array, __isl_take isl_ast_expr *expr)
3913 int i, n;
3914 isl_ctx *ctx;
3915 isl_set *context;
3916 isl_ast_expr *arg0;
3917 isl_ast_expr *res;
3918 isl_ast_expr_list *list;
3919 isl_ast_build *build;
3921 arg0 = isl_ast_expr_get_op_arg(expr, 0);
3922 if (isl_ast_expr_get_type(arg0) == isl_ast_expr_op &&
3923 isl_ast_expr_get_op_type(arg0) == isl_ast_op_member) {
3924 isl_ast_expr *arg;
3926 arg = isl_ast_expr_get_op_arg(arg0, 0);
3927 arg = gpu_local_array_info_linearize_index(array, arg);
3928 arg0 = isl_ast_expr_set_op_arg(arg0, 0, arg);
3929 expr = isl_ast_expr_set_op_arg(expr, 0, arg0);
3931 return expr;
3933 isl_ast_expr_free(arg0);
3935 ctx = isl_ast_expr_get_ctx(expr);
3936 context = isl_set_universe(isl_space_params_alloc(ctx, 0));
3937 build = isl_ast_build_from_context(context);
3939 n = isl_ast_expr_get_op_n_arg(expr);
3940 res = isl_ast_expr_get_op_arg(expr, 1);
3941 for (i = 2; i < n; ++i) {
3942 isl_pw_aff *bound_i;
3943 isl_ast_expr *expr_i;
3945 bound_i = isl_pw_aff_list_get_pw_aff(array->bound, i - 1);
3946 expr_i = isl_ast_build_expr_from_pw_aff(build, bound_i);
3947 res = isl_ast_expr_mul(res, expr_i);
3948 expr_i = isl_ast_expr_get_op_arg(expr, i);
3949 res = isl_ast_expr_add(res, expr_i);
3952 isl_ast_build_free(build);
3954 list = isl_ast_expr_list_from_ast_expr(res);
3955 res = isl_ast_expr_get_op_arg(expr, 0);
3956 res = isl_ast_expr_access(res, list);
3958 isl_ast_expr_free(expr);
3960 return res;
3963 /* AST expression transformation callback for pet_stmt_build_ast_exprs.
3965 * If the AST expression refers to a global scalar that is not
3966 * a read-only scalar, then its address was passed to the kernel and
3967 * we need to dereference it.
3969 * If the AST expression refers to an access to a global array,
3970 * then we linearize the access exploiting the bounds in data->local_array.
3972 static __isl_give isl_ast_expr *transform_expr(__isl_take isl_ast_expr *expr,
3973 __isl_keep isl_id *id, void *user)
3975 struct ppcg_transform_data *data = user;
3977 if (!data->array)
3978 return expr;
3979 if (gpu_array_is_read_only_scalar(data->array))
3980 return expr;
3981 if (!data->global)
3982 return expr;
3983 if (data->array->n_index == 0)
3984 return dereference(expr);
3985 if (!data->array->linearize)
3986 return expr;
3988 return gpu_local_array_info_linearize_index(data->local_array, expr);
3991 /* This function is called for each instance of a user statement
3992 * in the kernel.
3994 * We attach a struct ppcg_kernel_stmt to the "node", containing
3995 * a computed AST expression for each access.
3996 * These AST expressions are computed from iterator_map,
3997 * which expresses the domain
3998 * elements in terms of the generated loops, and sched2shared,
3999 * which expresses the first shared_len dimensions of the schedule
4000 * computed by PPCG in terms of the generated loops.
4002 static __isl_give isl_ast_node *at_each_domain(__isl_take isl_ast_node *node,
4003 __isl_keep isl_ast_build *build, void *user)
4005 struct ppcg_transform_data data;
4006 struct gpu_gen *gen = (struct gpu_gen *) user;
4007 struct ppcg_kernel_stmt *stmt;
4008 isl_id *id;
4009 isl_pw_multi_aff *sched2shared;
4010 isl_map *map;
4011 isl_pw_multi_aff *iterator_map;
4012 isl_ast_expr *expr, *arg;
4013 isl_union_map *schedule;
4014 int i, n;
4016 stmt = isl_calloc_type(gen->ctx, struct ppcg_kernel_stmt);
4017 if (!stmt)
4018 return isl_ast_node_free(node);
4020 expr = isl_ast_node_user_get_expr(node);
4021 arg = isl_ast_expr_get_op_arg(expr, 0);
4022 id = isl_ast_expr_get_id(arg);
4024 schedule = isl_ast_build_get_schedule(build);
4025 map = isl_map_reverse(isl_map_from_union_map(schedule));
4026 iterator_map = isl_pw_multi_aff_from_map(map);
4027 sched2shared = compute_sched_to_shared(gen,
4028 isl_pw_multi_aff_copy(iterator_map));
4030 stmt->type = ppcg_kernel_domain;
4031 stmt->u.d.stmt = find_stmt(gen->prog, id);
4032 if (!stmt->u.d.stmt)
4033 goto error;
4035 data.gen = gen;
4036 data.accesses = stmt->u.d.stmt->accesses;
4037 data.iterator_map = iterator_map;
4038 data.sched2shared = sched2shared;
4039 stmt->u.d.ref2expr = pet_stmt_build_ast_exprs(stmt->u.d.stmt->stmt,
4040 build, &transform_index, &data,
4041 &transform_expr, &data);
4043 isl_id_free(id);
4044 isl_pw_multi_aff_free(iterator_map);
4045 isl_pw_multi_aff_free(sched2shared);
4046 isl_ast_expr_free(arg);
4047 isl_ast_expr_free(expr);
4049 id = isl_id_alloc(gen->ctx, NULL, stmt);
4050 id = isl_id_set_free_user(id, &ppcg_kernel_stmt_free);
4051 return isl_ast_node_set_annotation(node, id);
4052 error:
4053 isl_id_free(id);
4054 isl_pw_multi_aff_free(iterator_map);
4055 ppcg_kernel_stmt_free(stmt);
4056 isl_pw_multi_aff_free(sched2shared);
4057 return isl_ast_node_free(node);
4060 /* This function is called when code has been generated for the shared
4061 * tile loops. The "schedule" refers only to the original statements.
4063 * We extend the schedule with that part of gen->local_sched that hasn't
4064 * been taken into account yet. This introduces parameters referring
4065 * to thread ids in the schedule, so we add them (with the appropriate
4066 * bounds to the context as well).
4067 * Finally, we set the appropriate unrolling options
4068 * if gen->first_unroll is set.
4070 static __isl_give isl_ast_node *create_domain_leaf(
4071 __isl_take isl_union_map *schedule, __isl_take isl_ast_build *build,
4072 void *user)
4074 struct gpu_gen *gen = (struct gpu_gen *) user;
4075 isl_space *space;
4076 isl_union_map *sched;
4077 isl_ast_node *tree;
4078 isl_set *set;
4079 isl_id_list *iterators;
4080 int n;
4082 schedule = extend_schedule(schedule,
4083 isl_union_map_copy(gen->local_sched),
4084 gen->shared_len, gen->thread_tiled_len);
4086 space = isl_ast_build_get_schedule_space(build);
4087 set = isl_set_universe(space);
4088 set = add_bounded_parameters(set, gen->kernel->n_block,
4089 gen->kernel->block_dim, "t");
4090 build = isl_ast_build_restrict(build, set);
4092 n = gen->thread_tiled_len - gen->shared_len;
4094 if (gen->first_unroll >= 0) {
4095 space = isl_space_set_alloc(gen->ctx, 0, n);
4096 build = set_unroll(build, space, gen->first_unroll);
4098 iterators = generate_names(gen->ctx, n, "c");
4099 build = isl_ast_build_set_iterators(build, iterators);
4100 build = isl_ast_build_set_at_each_domain(build, &at_each_domain, gen);
4101 tree = isl_ast_build_ast_from_schedule(build, schedule);
4102 isl_ast_build_free(build);
4104 return tree;
4107 /* This function is called for each statement node in the AST of the code
4108 * for copying to or from shared/private memory.
4109 * Attach a pointer to a ppcg_kernel_stmt representing the copy
4110 * statement to the node.
4111 * The statement name is "read" or "write", depending on whether we are
4112 * reading from global memory or writing to global memory.
4113 * The name of the T space is {shared,private}_<array>.
4115 * The schedule is of the form
4117 * type[A -> T] -> L
4119 * where A refers to a piece of an array and T to the corresponding
4120 * shifted tile. We split this schedule into mappings L -> A and L -> T
4121 * and store the corresponding expressions in stmt->index and stmt->local_index,
4122 * where stmt points to the ppcg_kernel_stmt that is attached to the node.
4124 static __isl_give isl_ast_node *attach_copy_stmt(__isl_take isl_ast_node *node,
4125 __isl_keep isl_ast_build *build, void *user)
4127 struct gpu_gen *gen = (struct gpu_gen *) user;
4128 struct ppcg_kernel_stmt *stmt;
4129 isl_id *id;
4130 isl_ast_expr *expr;
4131 isl_space *space;
4132 isl_map *access, *local_access, *map;
4133 isl_pw_multi_aff *pma;
4134 const char *type;
4135 int array_index;
4137 stmt = isl_calloc_type(gen->ctx, struct ppcg_kernel_stmt);
4138 if (!stmt)
4139 return isl_ast_node_free(node);
4141 access = isl_map_from_union_map(isl_ast_build_get_schedule(build));
4142 type = isl_map_get_tuple_name(access, isl_dim_in);
4143 stmt->u.c.read = !strcmp(type, "read");
4144 access = isl_map_reverse(access);
4145 space = isl_space_unwrap(isl_space_range(isl_map_get_space(access)));
4146 local_access = isl_map_copy(access);
4148 map = isl_map_domain_map(isl_map_universe(isl_space_copy(space)));
4149 id = isl_map_get_tuple_id(access, isl_dim_out);
4150 map = isl_map_set_tuple_id(map, isl_dim_in, id);
4151 access = isl_map_apply_range(access, map);
4152 pma = isl_pw_multi_aff_from_map(access);
4153 expr = isl_ast_build_access_from_pw_multi_aff(build, pma);
4154 stmt->u.c.index = expr;
4156 map = isl_map_range_map(isl_map_universe(space));
4157 id = isl_map_get_tuple_id(local_access, isl_dim_out);
4158 map = isl_map_set_tuple_id(map, isl_dim_in, id);
4159 local_access = isl_map_apply_range(local_access, map);
4160 pma = isl_pw_multi_aff_from_map(local_access);
4161 expr = isl_ast_build_access_from_pw_multi_aff(build, pma);
4162 stmt->u.c.local_index = expr;
4164 stmt->u.c.array = gen->copy_group->array;
4165 array_index = stmt->u.c.array - gen->prog->array;
4166 stmt->u.c.local_array = &gen->kernel->array[array_index];
4167 stmt->type = ppcg_kernel_copy;
4169 id = isl_id_alloc(gen->ctx, NULL, stmt);
4170 id = isl_id_set_free_user(id, &ppcg_kernel_stmt_free);
4171 return isl_ast_node_set_annotation(node, id);
4174 /* Given a schedule of the form
4176 * [S -> A] -> L
4178 * (with S the first shared_len dimensions of the computed schedule,
4179 * A the array and L the schedule correponding to the generated loops),
4180 * indicating where to copy the array elements that need to be copied,
4181 * construct code for performing the copying.
4183 * "group" is the array reference group that is being copied
4184 * "type" is either "read" or "write"
4185 * private is set if copying needs to be performed to/from registers
4187 * We first construct a mapping to a shifted tile of the array,
4189 * [S -> A] -> T(S,A) (1)
4191 * If private is set, then we also use this mapping as a schedule
4192 * (which is already thread-specific and will be completely unrolled).
4193 * Otherwise, we wrap/tile the range over the threads.
4194 * The result is
4196 * [S -> A] -> T'(S,A)
4198 * Combined with the given schedule, we have
4200 * [S -> A] -> [L -> T'(S,A)] (2)
4202 * From the shifted tile mapping, we construct a mapping
4204 * [S -> A] -> [A -> T(S,A)]
4206 * and apply it to the schedule (2), obtaining
4208 * [A -> T(S(L),A)] -> [L -> T'(S(L),A)]
4210 * Note that we can project out S because it is uniquely defined by L.
4212 static __isl_give isl_ast_node *copy_access(struct gpu_gen *gen,
4213 __isl_take isl_map *sched,
4214 const char *type, struct gpu_array_ref_group *group,
4215 __isl_take isl_ast_build *build, int private)
4217 isl_space *space;
4218 isl_ast_node *tree;
4219 isl_map *schedule, *shift, *map;
4220 isl_set *set;
4221 isl_id_list *iterators;
4222 int n;
4224 shift = shift_access(group);
4226 schedule = isl_map_copy(shift);
4227 schedule = isl_map_reset_tuple_id(schedule, isl_dim_out);
4228 if (!private)
4229 schedule = tile_access_schedule(gen, schedule);
4231 n = isl_map_dim(schedule, isl_dim_out);
4232 set = isl_set_universe(isl_ast_build_get_schedule_space(build));
4233 set = add_bounded_parameters(set, gen->kernel->n_block,
4234 gen->kernel->block_dim, "t");
4236 schedule = isl_map_range_product(sched, schedule);
4238 space = isl_space_domain(isl_map_get_space(shift));
4239 map = isl_map_range_map(isl_map_universe(isl_space_unwrap(space)));
4240 map = isl_map_range_product(map, shift);
4242 schedule = isl_map_apply_domain(schedule, map);
4244 schedule = isl_map_set_tuple_name(schedule, isl_dim_in, type);
4246 build = isl_ast_build_restrict(build, set);
4248 gen->copy_group = group;
4250 if (private) {
4251 space = isl_space_range(isl_map_get_space(schedule));
4252 space = isl_space_range(isl_space_unwrap(space));
4253 build = set_unroll(build, space, 0);
4255 iterators = generate_names(gen->ctx, n, "c");
4256 build = isl_ast_build_set_iterators(build, iterators);
4257 build = isl_ast_build_set_at_each_domain(build, &attach_copy_stmt, gen);
4258 tree = isl_ast_build_ast_from_schedule(build,
4259 isl_union_map_from_map(schedule));
4260 isl_ast_build_free(build);
4262 return tree;
4265 /* Return code for reading into or writing from shared memory
4266 * the given array reference group.
4268 * If we are performing a read from global memory to shared memory and
4269 * if the array involved is not a scalar, then we copy
4270 * the entire tile to shared memory. This may result in some extra
4271 * elements getting copied, but it should lead to simpler code
4272 * (which means that fewer registers may be needed) and less divergence.
4274 * Otherwise, we only copy the elements that will be read or have been written
4275 * in the kernel.
4278 * The input "sched" is of the form.
4280 * type[S -> A] -> L
4282 * with S the first shared_len dimensions of the computed schedule,
4283 * A the array and L the schedule correponding to the generated loops.
4285 * We first drop "type",
4287 * [S -> A] -> L
4289 * If the above conditions are satisfied, we project out A,
4290 * resulting in
4292 * S -> L
4294 * and then introduce the group tile [S -> T], resulting in
4296 * [S -> T] -> L
4298 static __isl_give isl_ast_node *copy_group_shared_accesses(
4299 struct gpu_gen *gen, struct gpu_array_ref_group *group,
4300 __isl_take isl_map *sched, __isl_take isl_ast_build *build)
4302 const char *type;
4303 int read;
4304 isl_union_map *access;
4306 type = isl_map_get_tuple_name(sched, isl_dim_in);
4307 read = !strcmp(type, "read");
4309 sched = isl_map_reset_tuple_id(sched, isl_dim_in);
4311 if (read && !gpu_array_is_scalar(group->array)) {
4312 isl_space *space;
4313 isl_map *map;
4315 space = isl_space_domain(isl_map_get_space(sched));
4316 space = isl_space_unwrap(space);
4317 map = isl_map_domain_map(isl_map_universe(space));
4318 sched = isl_map_apply_domain(sched, map);
4320 map = group_tile(group);
4321 map = isl_map_reverse(isl_map_domain_map(map));
4322 sched = isl_map_apply_domain(sched, map);
4325 return copy_access(gen, sched, type, group, build, 0);
4328 /* Return code for reading into or writing from private memory
4329 * the given array reference group.
4331 * Let S be the first shared_len dimensions of the computed schedule,
4332 * D the iteration domains, A the array and L the schedule correponding
4333 * to the generated loops.
4334 * "sched" is of the form
4336 * type[S -> A] -> L
4338 * where type is either "read" or "write".
4339 * We apply the privatization D -> S(t), with t the thread ids,
4340 * to the access relation D -> A to obtain the privatized access relation
4342 * S(t) -> A
4344 * We drop the type from "sched" and intersect with the privatized access
4345 * relation to obtain
4347 * [S(t) -> A] -> L
4349 static __isl_give isl_ast_node *copy_group_private_accesses(
4350 struct gpu_gen *gen, struct gpu_array_ref_group *group,
4351 __isl_take isl_map *sched, __isl_take isl_ast_build *build)
4353 const char *type;
4354 int read;
4355 isl_union_map *priv;
4356 isl_union_map *access;
4357 isl_map *access_map;
4359 type = isl_map_get_tuple_name(sched, isl_dim_in);
4360 read = !strcmp(type, "read");
4362 priv = isl_union_map_from_map(isl_map_copy(gen->privatization));
4363 priv = isl_union_map_apply_range(isl_union_map_copy(gen->shared_sched),
4364 priv);
4366 access = group_access_relation(group, read, !read);
4367 access = isl_union_map_apply_domain(access, priv);
4368 access_map = isl_map_from_union_map(access);
4370 sched = isl_map_reset_tuple_id(sched, isl_dim_in);
4371 sched = isl_map_intersect_domain(sched, isl_map_wrap(access_map));
4373 return copy_access(gen, sched, type, group, build, 1);
4376 /* Return code for reading into or writing from shared or private memory.
4378 * "schedule" is of the form
4380 * type[S -> A] -> L
4382 * with S be the first shared_len dimensions of the computed schedule,
4383 * A the array and L the schedule correponding to the generated loops.
4384 * The array reference group is attached to "type".
4386 static __isl_give isl_ast_node *create_access_leaf(
4387 struct gpu_gen *gen, __isl_take isl_map *schedule,
4388 __isl_take isl_ast_build *build)
4390 struct gpu_array_ref_group *group;
4391 isl_id *id;
4393 id = isl_map_get_tuple_id(schedule, isl_dim_in);
4394 group = isl_id_get_user(id);
4395 isl_id_free(id);
4397 if (group->private_tile)
4398 return copy_group_private_accesses(gen, group, schedule,
4399 build);
4400 else
4401 return copy_group_shared_accesses(gen, group, schedule,
4402 build);
4405 /* Create a domain node representing a synchronization.
4407 static __isl_give isl_ast_node *create_sync_leaf(
4408 struct gpu_gen *gen, __isl_take isl_map *schedule,
4409 __isl_take isl_ast_build *build)
4411 struct ppcg_kernel_stmt *stmt;
4412 isl_id *id;
4413 isl_space *space;
4414 isl_ast_node *node;
4415 isl_ast_expr *expr;
4417 isl_map_free(schedule);
4419 stmt = isl_calloc_type(gen->ctx, struct ppcg_kernel_stmt);
4420 if (!stmt)
4421 return NULL;
4423 stmt->type = ppcg_kernel_sync;
4425 space = isl_ast_build_get_schedule_space(build);
4426 space = isl_space_from_domain(space);
4427 space = isl_space_set_tuple_name(space, isl_dim_out, "sync");
4428 expr = isl_ast_build_call_from_pw_multi_aff(build,
4429 isl_pw_multi_aff_from_multi_aff(isl_multi_aff_zero(space)));
4430 node = isl_ast_node_alloc_user(expr);
4431 isl_ast_build_free(build);
4433 id = isl_id_alloc(gen->ctx, NULL, stmt);
4434 id = isl_id_set_free_user(id, &ppcg_kernel_stmt_free);
4435 return isl_ast_node_set_annotation(node, id);
4438 /* This function is called during the code generation at the point
4439 * where the schedule domain element is completely determined by
4440 * the generated code. The input schedule contains the original
4441 * statements as well as synchronization and copy "statements".
4442 * The latter are scheduled at different points than any of the original
4443 * statements, so they will only arrive here in isolation.
4445 * If the current schedule only refers to a single statement,
4446 * we check if it is a copy or synchronization statement and
4447 * call the appropriate functions.
4448 * Otherwise, we assume we are dealing with the original statements
4449 * and we call create_domain_leaf.
4451 static __isl_give isl_ast_node *create_kernel_leaf(
4452 __isl_take isl_ast_build *build, void *user)
4454 struct gpu_gen *gen = (struct gpu_gen *) user;
4455 isl_map *map;
4456 isl_union_map *schedule;
4457 const char *name;
4459 schedule = isl_ast_build_get_schedule(build);
4461 if (isl_union_map_n_map(schedule) != 1)
4462 return create_domain_leaf(schedule, build, user);
4464 map = isl_map_from_union_map(schedule);
4465 name = isl_map_get_tuple_name(map, isl_dim_in);
4466 if (!strcmp(name, "read") || !strcmp(name, "write"))
4467 return create_access_leaf(gen, map, build);
4468 if (!strcmp(name, "sync"))
4469 return create_sync_leaf(gen, map, build);
4471 return create_domain_leaf(isl_union_map_from_map(map), build, user);
4474 /* Mark all odd schedule dimensions as "atomic" (when the even dimensions
4475 * have value 0) and all even schedule dimensions as "unroll".
4477 * That is, the options look as follows
4479 * { [0, b, 0, d, ..., 0] -> atomic[i] : exists a : i = 2 a + 1;
4480 * [a, b, c, d, ..., z] -> unroll[i] : exists a : i = 2 a }
4482 * The even positions are used to be able to schedule copying blocks
4483 * and synchronization before or after each level of the shared memory
4484 * tile loops and we want to make sure that code for these is generated
4485 * separately (within each level).
4487 static __isl_give isl_ast_build *set_atomic_and_unroll(
4488 __isl_take isl_ast_build *build,
4489 __isl_take isl_space *space, int sched_len)
4491 isl_ctx *ctx;
4492 isl_map *map;
4493 isl_constraint *c;
4494 isl_union_map *opt;
4495 isl_local_space *ls;
4496 int i, n;
4498 ctx = isl_ast_build_get_ctx(build);
4500 space = isl_space_params(space);
4501 space = isl_space_add_dims(space, isl_dim_set, sched_len);
4502 space = isl_space_from_domain(space);
4503 space = isl_space_add_dims(space, isl_dim_out, 2);
4504 map = isl_map_universe(isl_space_copy(space));
4505 for (i = 0; i < sched_len; i += 2)
4506 map = isl_map_fix_si(map, isl_dim_in, i, 0);
4507 ls = isl_local_space_from_space(isl_map_get_space(map));
4508 c = isl_equality_alloc(ls);
4509 c = isl_constraint_set_coefficient_si(c, isl_dim_out, 0, 1);
4510 c = isl_constraint_set_coefficient_si(c, isl_dim_out, 1, 2);
4511 c = isl_constraint_set_constant_si(c, 1);
4512 map = isl_map_add_constraint(map, c);
4513 map = isl_map_project_out(map, isl_dim_out, 1, 1);
4514 map = isl_map_set_tuple_name(map, isl_dim_out, "atomic");
4515 opt = isl_union_map_from_map(map);
4517 map = isl_map_universe(space);
4518 ls = isl_local_space_from_space(isl_map_get_space(map));
4519 c = isl_equality_alloc(ls);
4520 c = isl_constraint_set_coefficient_si(c, isl_dim_out, 0, 1);
4521 c = isl_constraint_set_coefficient_si(c, isl_dim_out, 1, 2);
4522 map = isl_map_add_constraint(map, c);
4523 map = isl_map_project_out(map, isl_dim_out, 1, 1);
4524 map = isl_map_set_tuple_name(map, isl_dim_out, "unroll");
4525 opt = isl_union_map_add_map(opt, map);
4527 build = isl_ast_build_set_options(build, opt);
4529 return build;
4532 /* Return a map that maps a space of dimension gen->shared_len
4533 * to its last dimensions starting at gen->tile_first.
4534 * The range is of dimension
4536 * 2 * (gen->shared_len - gen->tile_first) + 1
4538 * The input dimensions are mapped to the odd dimensions in the output,
4539 * while the even dimensions (except 2*pos) are fixed to 0.
4540 * Output dimension 2*pos (if pos >= 0) is fixed to "val".
4541 * If pos >= 0, then only the pos first dimensions starting at gen->tile_first
4542 * are mapped to the output. The remaining input dimensions are projected
4543 * out and the corresponding output dimensions are fixed to 0.
4545 static __isl_give isl_map *insert_even(struct gpu_gen *gen,
4546 __isl_take isl_space *space, int pos, int val)
4548 int i, n;
4549 isl_map *proj;
4551 space = isl_space_set_from_params(space);
4552 space = isl_space_add_dims(space, isl_dim_set, gen->shared_len);
4553 space = isl_space_map_from_set(space);
4554 proj = isl_map_identity(space);
4555 proj = isl_map_project_out(proj, isl_dim_out, 0, gen->tile_first);
4556 n = gen->shared_len - gen->tile_first;
4557 for (i = 0; i <= n; ++i) {
4558 proj = isl_map_insert_dims(proj, isl_dim_out, 2 * i, 1);
4559 if (i == pos)
4560 proj = isl_map_fix_si(proj, isl_dim_out, 2 * i, val);
4561 else
4562 proj = isl_map_fix_si(proj, isl_dim_out, 2 * i, 0);
4565 if (pos < 0)
4566 return proj;
4568 proj = isl_map_eliminate(proj, isl_dim_in, gen->tile_first + pos,
4569 gen->shared_len - (gen->tile_first + pos));
4570 for (i = pos; i < n; ++i)
4571 proj = isl_map_fix_si(proj, isl_dim_out, 2 * i + 1, 0);
4573 return proj;
4576 /* Given the AST context schedule "schedule" and the mapping from
4577 * domains to the shared tile loops "shared_sched", add a schedule
4578 * for a synchronization operation at position "val" of loop level "pos".
4580 * schedule is of the form
4582 * D -> L
4584 * (with D the iteration domains and L the already generated loops),
4585 * while shared_sched is of the form
4587 * D -> S
4589 * We combine them into
4591 * L -> S
4593 * apply a mapping
4595 * [s_0,...] -> [0,s_{tile_first},0,..., val, 0, 0, ... 0]
4597 * and use the result as a schedule for "sync".
4599 static __isl_give isl_union_map *add_sync_schedule(struct gpu_gen *gen,
4600 __isl_take isl_union_map *res, __isl_keep isl_union_map *schedule,
4601 __isl_keep isl_union_map *shared_sched, int pos, int val)
4603 isl_space *space;
4604 isl_map *proj, *map;
4606 shared_sched = isl_union_map_copy(shared_sched);
4607 schedule = isl_union_map_copy(schedule);
4609 space = isl_union_map_get_space(shared_sched);
4610 schedule = isl_union_map_apply_domain(shared_sched, schedule);
4611 map = isl_map_from_union_map(schedule);
4613 proj = insert_even(gen, space, pos, val);
4614 map = isl_map_apply_range(map, proj);
4615 map = isl_map_from_range(isl_map_wrap(map));
4616 map = isl_map_set_tuple_name(map, isl_dim_in, "sync");
4618 res = isl_union_map_add_map(res, map);
4620 return res;
4623 /* Given a set of wrapped references "ref", return the corresponding
4624 * access relations based on the tagged access relations "tagged".
4626 * The elements of "ref" are of the form
4628 * [D -> R]
4630 * with D an iteration domains and R a reference.
4631 * The elements of "tagged" are of the form
4633 * [D -> R] -> A
4635 * with A an array.
4637 * Extend "tagged" to include the iteration domain in the range, i.e.,
4639 * [D -> R] -> [D -> A]
4641 * apply the result to "ref" and then unwrap the resulting set
4642 * to obtain relations of the form
4644 * D -> A
4646 static __isl_give isl_union_map *wrapped_reference_to_access(
4647 __isl_take isl_union_set *ref, __isl_take isl_union_map *tagged)
4649 isl_union_map *tag2access;
4651 tag2access = isl_union_map_copy(tagged);
4652 tag2access = isl_union_map_universe(tag2access);
4653 tag2access = isl_union_set_unwrap(isl_union_map_domain(tag2access));
4654 tag2access = isl_union_map_domain_map(tag2access);
4655 tag2access = isl_union_map_range_product(tag2access, tagged);
4657 ref = isl_union_set_coalesce(ref);
4658 ref = isl_union_set_apply(ref, tag2access);
4660 return isl_union_set_unwrap(ref);
4663 /* Given an access relation "access" from "group", remove those reads
4664 * if ("read" is 1) or writes (if "read" is 0) that are only needed to
4665 * communicate data within the same iteration of the last_shared dimension
4666 * of the group.
4668 * If the access is a read then it is necessarily an element of
4670 * live_in union (range flow)
4672 * where live_in and flow may be overapproximations.
4673 * If the access is a write then it is necessarily an element of
4675 * live_out union (domain flow)
4677 * In both cases, the access relation is also a subset of
4678 * the group access relation.
4680 * Essentially, we compute the intersection of "access" with either
4682 * live_in union (range non-local-flow)
4684 * or
4686 * live_out union (domain non-local-flow)
4688 * We first construct a relation "local"
4690 * [[D -> R] -> [D' -> R']]
4692 * of pairs of domain iterations accessing the reference group
4693 * and references in the group that are scheduled to the same iteration
4694 * of the last_shared dimension.
4696 * If this relation does not intersect the dataflow dependences,
4697 * then there is nothing we can possibly remove and we simply
4698 * return the input.
4700 * Otherwise, we remove the "local" dataflow dependences from
4701 * the set of all dataflow dependences.
4702 * Note that if the potential dataflow dependences are an overapproximation
4703 * of the actual dataflow dependences, then the result remains an
4704 * overapproximation of the non-local dataflow dependences.
4705 * Copying to/from global memory is only needed for the references
4706 * in the domain/range of the result or for accesses that are live out/in
4707 * for the entire scop.
4709 * We therefore map the domain/range of the "external" relation
4710 * to the corresponding access relation and take the union with
4711 * the live out/in relation.
4713 static __isl_give isl_union_map *remove_local_accesses(struct gpu_gen *gen,
4714 struct gpu_array_ref_group *group, __isl_take isl_union_map *access,
4715 int read)
4717 int empty;
4718 isl_union_map *tagger;
4719 isl_union_set *domain;
4720 isl_space *space;
4721 isl_union_map *sched, *local, *tagged, *external;
4722 isl_union_set *tag_set;
4723 isl_map *proj;
4725 if (isl_union_map_is_empty(access))
4726 return access;
4728 tagged = group_tagged_access_relation(group);
4730 sched = isl_union_map_copy(gen->sched);
4732 space = isl_union_map_get_space(sched);
4733 proj = projection(space, gen->untiled_len, group->last_shared + 1);
4734 sched = isl_union_map_apply_range(sched, isl_union_map_from_map(proj));
4736 tagger = isl_union_map_copy(gen->prog->scop->tagger);
4737 domain = isl_union_map_domain(isl_union_map_copy(tagged));
4738 tagger = isl_union_map_intersect_range(tagger, domain);
4739 sched = isl_union_map_apply_domain(sched, tagger);
4741 local = isl_union_map_apply_range(sched,
4742 isl_union_map_reverse(isl_union_map_copy(sched)));
4743 local = isl_union_map_intersect(local,
4744 isl_union_map_copy(gen->prog->scop->tagged_dep_flow));
4746 empty = isl_union_map_is_empty(local);
4747 if (empty < 0 || empty) {
4748 isl_union_map_free(tagged);
4749 isl_union_map_free(local);
4750 if (empty < 0)
4751 return isl_union_map_free(access);
4752 return access;
4755 external = isl_union_map_copy(gen->prog->scop->tagged_dep_flow);
4756 external = isl_union_map_intersect_params(external,
4757 isl_set_copy(gen->prog->scop->context));
4758 external = isl_union_map_subtract(external, local);
4760 if (read) {
4761 tag_set = isl_union_map_range(external);
4762 external = wrapped_reference_to_access(tag_set, tagged);
4763 external = isl_union_map_union(external,
4764 isl_union_map_copy(gen->prog->scop->live_in));
4765 } else {
4766 tag_set = isl_union_map_domain(external);
4767 external = wrapped_reference_to_access(tag_set, tagged);
4768 external = isl_union_map_union(external,
4769 isl_union_map_copy(gen->prog->scop->live_out));
4772 access = isl_union_map_intersect(access, external);
4774 return access;
4777 /* Given the AST context schedule "schedule" and the mapping from
4778 * domains to the shared tile loops "shared_sched", add a schedule
4779 * for copying an array reference group to/from shared/private memory.
4780 * "read" is set if data should be copied from global memory
4781 * to shared/private memory.
4782 * "k" represents the current group
4783 * "s" is the total number of groups
4785 * We schedule an operation before or after the innermost loop
4786 * of "shared_sched" that affects the tile of the array reference group.
4788 * schedule is of the form
4790 * D -> L
4792 * (with D the iteration domains and L the already generated loops),
4793 * while shared_sched is of the form
4795 * D -> S
4797 * We first compute the access relation for the reference group
4799 * D -> A
4801 * and remove from this access relation those reads or writes
4802 * that only needed to communicate data within the same iteration
4803 * of the last_shared dimension of the group.
4804 * We then combine what is left with shared_sched into
4806 * D -> [S -> A]
4808 * If this results in an empty relation, no copying needs to be performed
4809 * at this point.
4810 * Otherwise, we invert the relation and combine it with "schedule" into
4812 * [S -> A] -> L
4814 * The actual additional piece of the schedule is obtained from combining
4816 * [S -> A] -> S
4818 * with a mapping
4820 * [s_0,...] -> [0,s_{tile_first},0,..., val, 0, 0, ... 0]
4822 * The position of "val" corresponds to the innermost loop that affects
4823 * the tile and the value indicates where the copying is scheduled
4824 * with respect to the actual kernel code (at value 0).
4825 * Reads are schedule before the code, writes to global memory from
4826 * private memory are scheduled at values 1 to s, writes to global
4827 * memory from shared memory are scheduled at values s + 2 to 2 * s + 1.
4829 * If we are scheduling a read from global memory to shared memory,
4830 * we insert a synchronization before the kernel code (at the innermost
4831 * level).
4832 * If we are scheduling a write to global memory, then we add
4833 * a synchronization after all writes (at value 2 *s + 2).
4834 * However, there is no need for a synchronization after the outermost loop.
4835 * A write to global memory from private memory at the innermost level
4836 * does not require a synchronization, because it is covered by
4837 * the synchronization after the kernel inserted by body_schedule.
4839 static __isl_give isl_union_map *add_group_schedule(struct gpu_gen *gen,
4840 __isl_take isl_union_map *res, __isl_keep isl_union_map *schedule,
4841 __isl_keep isl_union_map *shared_sched,
4842 struct gpu_array_ref_group *group, int read, int k, int s)
4844 int n;
4845 int pos, val;
4846 isl_space *space;
4847 isl_union_map *access;
4848 isl_map *map, *proj, *access_map;
4849 isl_id *id;
4851 access = group_access_relation(group, read, !read);
4852 access = remove_local_accesses(gen, group, access, read);
4853 access = isl_union_map_range_product(isl_union_map_copy(shared_sched),
4854 access);
4856 if (isl_union_map_is_empty(access)) {
4857 isl_union_map_free(access);
4858 return res;
4861 access = isl_union_map_reverse(access);
4862 access = isl_union_map_apply_range(access,
4863 isl_union_map_copy(schedule));
4864 access_map = isl_map_from_union_map(access);
4866 space = isl_space_copy(group->array->space);
4867 space = isl_space_from_range(space);
4868 space = isl_space_add_dims(space, isl_dim_in, gen->shared_len);
4869 map = isl_map_domain_map(isl_map_universe(space));
4871 space = isl_union_map_get_space(schedule);
4872 pos = group->last_shared + 1 - gen->tile_first;
4873 assert(pos >= 0);
4874 if (read)
4875 val = -2 - k;
4876 else if (group->private_tile)
4877 val = 1 + k;
4878 else
4879 val = 1 + s + 1 + k;
4880 proj = insert_even(gen, space, pos, val);
4881 map = isl_map_apply_range(map, proj);
4883 access_map = isl_map_range_product(access_map, map);
4885 id = isl_id_alloc(gen->ctx, read ? "read" : "write", group);
4886 access_map = isl_map_set_tuple_id(access_map, isl_dim_in, id);
4888 res = isl_union_map_add_map(res, access_map);
4890 n = gen->shared_len - gen->tile_first;
4891 if (read) {
4892 if (!group->private_tile)
4893 res = add_sync_schedule(gen, res, schedule,
4894 shared_sched, n, -1);
4895 } else {
4896 if (pos == 0)
4897 return res;
4898 if (pos == n && group->private_tile)
4899 return res;
4900 res = add_sync_schedule(gen, res, schedule, shared_sched,
4901 pos, 2 * s + 2);
4904 return res;
4907 /* Return a schedule for the shared tile loops based on the current
4908 * AST context schedule.
4910 * We create a "shared_sched" that maps the domains to the first
4911 * shared_len dimensions of the computed schedule, project out the
4912 * first tile_first dimensions (as these are already covered by
4913 * the host code) and insert "statement-level" dimensions at even
4914 * positions so that we can schedule copy blocks and synchronization
4915 * before/after each level.
4917 * In particular, copy blocks are inserted inside the innermost
4918 * level that affect the tile. For the copying to global memory,
4919 * those from private memory are scheduled before those from shared
4920 * memory such that synchronization can be inserted between the two
4921 * at the innermost level.
4922 * Synchronization is inserted at the innermost level before the
4923 * actual kernel code if there is any copying from global memory
4924 * to shared memory. It is inserted unconditionally at the innermost
4925 * level after the actual kernel code and the copying to global memory
4926 * from private memory (if any). Finally, it is inserted after
4927 * any copying to global memory, except at the outermost level
4928 * and at the innermost level if there is no copying from shared
4929 * memory. The copying from private memory is covered by the unconditional
4930 * synchronization at the innermost level.
4932 static __isl_give isl_union_map *body_schedule(struct gpu_gen *gen,
4933 __isl_take isl_union_map *schedule)
4935 isl_space *space;
4936 isl_union_map *res;
4937 isl_union_map *shared_sched;
4938 isl_union_map *sched;
4939 isl_map *proj, *map;
4940 int i, j, k, s;
4942 shared_sched = isl_union_map_copy(gen->tiled_sched);
4943 proj = projection(isl_union_map_get_space(shared_sched),
4944 gen->tiled_len, gen->shared_len);
4945 shared_sched = isl_union_map_apply_range(shared_sched,
4946 isl_union_map_from_map(proj));
4947 space = isl_union_map_get_space(shared_sched);
4948 proj = insert_even(gen, space, -1, 0);
4949 sched = isl_union_map_apply_range(isl_union_map_copy(shared_sched),
4950 isl_union_map_from_map(proj));
4952 res = isl_union_map_range_product(isl_union_map_copy(schedule), sched);
4954 s = 0;
4955 for (i = 0; i < gen->prog->n_array; ++i)
4956 s += gen->prog->array[i].n_group;
4958 k = 0;
4959 for (i = 0; i < gen->prog->n_array; ++i) {
4960 struct gpu_array_info *array = &gen->prog->array[i];
4962 for (j = 0; j < array->n_group; ++j) {
4963 struct gpu_array_ref_group *group;
4965 group = array->groups[j];
4966 if (!group->private_tile && !group->shared_tile)
4967 continue;
4968 res = add_group_schedule(gen, res, schedule,
4969 shared_sched, group, 0, k, s);
4970 res = add_group_schedule(gen, res, schedule,
4971 shared_sched, group, 1, k, s);
4972 ++k;
4976 res = add_sync_schedule(gen, res, schedule, shared_sched,
4977 gen->shared_len - gen->tile_first, 1 + s);
4979 isl_union_map_free(shared_sched);
4980 isl_union_map_free(schedule);
4982 return res;
4985 /* Generate code for "kernel" in the given "context".
4987 * We first generate code for the shared tile loops (T1T, T1P and T2)
4988 * in a context that includes the block ids.
4989 * Within each iteration of these loops an additional code generation
4990 * is performed (within create_kernel_leaf) for the rest of the schedule
4991 * in a context that includes the thread ids.
4993 static __isl_give isl_ast_node *generate_kernel(struct gpu_gen *gen,
4994 __isl_keep isl_ast_build *build, __isl_keep isl_set *host_domain,
4995 __isl_keep isl_multi_pw_aff *grid_size)
4997 isl_space *space;
4998 isl_set *set;
4999 isl_id_list *iterators;
5000 isl_union_map *schedule;
5001 isl_ast_node *tree;
5002 int sched_len;
5004 schedule = isl_ast_build_get_schedule(build);
5006 build = isl_ast_build_copy(build);
5007 build = isl_ast_build_restrict(build, isl_set_copy(host_domain));
5008 space = isl_ast_build_get_schedule_space(build);
5009 set = isl_set_universe(isl_space_copy(space));
5010 set = add_bounded_parameters_dynamic(set, grid_size, "b");
5011 build = isl_ast_build_restrict(build, set);
5013 schedule = body_schedule(gen, schedule);
5015 sched_len = 2 * (gen->shared_len - gen->tile_first) + 1;
5017 build = set_atomic_and_unroll(build, space, sched_len);
5018 iterators = generate_names(gen->ctx, sched_len, "g");
5019 build = isl_ast_build_set_iterators(build, iterators);
5020 build = isl_ast_build_set_create_leaf(build, &create_kernel_leaf, gen);
5021 tree = isl_ast_build_ast_from_schedule(build, schedule);
5022 isl_ast_build_free(build);
5024 return tree;
5027 /* Attach "id" to the given node.
5029 static __isl_give isl_ast_node *attach_id(__isl_take isl_ast_node *node,
5030 __isl_keep isl_ast_build *build, void *user)
5032 isl_id *id = user;
5034 node = isl_ast_node_set_annotation(node, id);
5036 return node;
5039 /* Construct an AST node for performing a kernel launch and attach
5040 * the information about the kernel to that node.
5042 * The kernel AST has been constructed in the context of the range
5043 * of "schedule". In particular, the grid size has been computed
5044 * in the context. We therefore still need to make sure that these
5045 * constraints are expressed in the code. We do this by creating a schedule
5047 * kernel[] -> [S -> []]
5049 * where S is the schedule domain, i.e., the range of "schedule".
5050 * The AST generation will then create a single call surrounded by
5051 * all the condition in "S" that have not been expressed yet.
5053 * The kernel information is attached to this node in attach_id.
5055 static __isl_give isl_ast_node *construct_launch(
5056 __isl_take isl_ast_build *build, __isl_take isl_union_map *schedule,
5057 __isl_take struct ppcg_kernel *kernel)
5059 isl_id *id;
5060 isl_ctx *ctx;
5061 isl_union_set *domain;
5062 isl_set *set;
5063 isl_map *map;
5064 isl_ast_node *node;
5066 ctx = isl_ast_build_get_ctx(build);
5068 id = isl_id_alloc(ctx, NULL, kernel);
5069 id = isl_id_set_free_user(id, &ppcg_kernel_free);
5071 domain = isl_union_map_range(schedule);
5072 set = isl_set_from_union_set(domain);
5073 map = isl_map_from_domain(set);
5074 map = isl_map_from_range(isl_map_wrap(map));
5075 map = isl_map_set_tuple_name(map, isl_dim_in, "kernel");
5076 schedule = isl_union_map_from_map(map);
5078 build = isl_ast_build_set_at_each_domain(build, &attach_id, id);
5079 node = isl_ast_build_ast_from_schedule(build, schedule);
5080 isl_ast_build_free(build);
5082 return node;
5085 /* This function is called for each leaf in the AST of the host code.
5086 * We first specialize the schedule to the site of the leaf, compute
5087 * the size of shared memory and then construct the body of the host code
5088 * and the associated kernel.
5090 * The necessary information for printing the kernel launch is
5091 * stored in a struct ppcg_kernel and attached to the leaf node
5092 * created to represent the launch.
5094 static __isl_give isl_ast_node *create_host_leaf(
5095 __isl_take isl_ast_build *build, void *user)
5097 struct gpu_gen *gen = (struct gpu_gen *) user;
5098 isl_id *id;
5099 isl_ast_node *node;
5100 struct ppcg_kernel *kernel;
5101 isl_set *host_domain;
5102 isl_union_map *schedule;
5103 isl_union_map *local_sched;
5104 isl_union_map *access;
5105 isl_union_set *domain;
5106 int i;
5108 schedule = isl_ast_build_get_schedule(build);
5110 isl_union_map_foreach_map(schedule, &extract_tile_len, gen);
5111 read_sizes(gen);
5113 domain = isl_union_map_domain(isl_union_map_copy(schedule));
5115 local_sched = isl_union_map_copy(gen->sched);
5116 local_sched = isl_union_map_intersect_domain(local_sched, domain);
5117 access = isl_union_map_union(isl_union_map_copy(gen->prog->read),
5118 isl_union_map_copy(gen->prog->may_write));
5119 access = isl_union_map_apply_domain(access,
5120 isl_union_map_copy(local_sched));
5122 gen->tiled_sched = tile_schedule(gen, local_sched);
5123 gen->tiled_sched = parametrize_tiled_schedule(gen, gen->tiled_sched);
5124 gen->tiled_sched = scale_tile_loops(gen, gen->tiled_sched);
5126 gen->local_sched = isl_union_map_copy(gen->tiled_sched);
5127 gen->local_sched = thread_tile_schedule(gen, gen->local_sched);
5128 gen->local_sched = scale_thread_tile_loops(gen, gen->local_sched);
5130 kernel = gen->kernel = isl_calloc_type(gen->ctx, struct ppcg_kernel);
5131 if (!kernel)
5132 goto error;
5134 kernel->id = gen->kernel_id++;
5135 kernel->context = isl_union_map_params(isl_union_map_copy(schedule));
5136 kernel->grid_size = extract_grid_size(gen, kernel);
5137 extract_block_size(gen, kernel);
5138 kernel->arrays = isl_union_map_range(access);
5139 kernel->arrays = isl_union_set_apply(kernel->arrays,
5140 isl_union_map_copy(gen->prog->to_outer));
5141 kernel->space = isl_ast_build_get_schedule_space(build);
5143 gen->private_access = NULL;
5144 compute_shared_sched(gen);
5145 gen->privatization = compute_privatization(gen);
5146 check_scalar_live_ranges(gen);
5147 if (group_references(gen) < 0)
5148 schedule = isl_union_map_free(schedule);
5149 compute_private_access(gen);
5150 host_domain = isl_set_from_union_set(isl_union_map_range(
5151 isl_union_map_copy(schedule)));
5152 localize_bounds(gen, kernel, host_domain);
5154 gen->local_sched = interchange_for_unroll(gen, gen->local_sched);
5155 check_shared_memory_bound(gen);
5156 compute_group_tilings(gen);
5158 kernel->tree = generate_kernel(gen, build, host_domain,
5159 kernel->grid_size);
5160 create_kernel_vars(gen, kernel);
5162 free_local_array_info(gen);
5163 isl_map_free(gen->privatization);
5164 isl_union_map_free(gen->private_access);
5165 isl_union_map_free(gen->local_sched);
5166 isl_union_map_free(gen->tiled_sched);
5167 isl_union_map_free(gen->shared_sched);
5168 isl_union_map_free(gen->shared_proj);
5169 isl_set_free(host_domain);
5170 free(gen->tile_size);
5172 node = construct_launch(build, schedule, kernel);
5174 return node;
5175 error:
5176 isl_union_map_free(schedule);
5177 return NULL;
5180 /* Use isl to generate code for the outer gen->tile_first loops
5181 * of the global schedule in gen->sched, resulting in the host code.
5182 * Within each iteration of this partial schedule, i.e., for each kernel
5183 * launch, create_host_leaf takes care of generating the kernel code.
5185 static __isl_give isl_ast_node *generate_host_code(struct gpu_gen *gen)
5187 isl_ast_build *build;
5188 isl_ast_node *tree;
5189 isl_union_map *sched;
5190 isl_map *proj;
5191 isl_id_list *iterators;
5193 sched = isl_union_map_copy(gen->sched);
5194 proj = projection(isl_union_map_get_space(sched),
5195 gen->untiled_len, gen->tile_first);
5196 sched = isl_union_map_apply_range(sched, isl_union_map_from_map(proj));
5198 isl_options_set_ast_build_group_coscheduled(gen->ctx, 1);
5199 build = isl_ast_build_from_context(isl_set_copy(gen->prog->context));
5200 iterators = generate_names(gen->ctx, gen->tile_first, "h");
5201 build = isl_ast_build_set_iterators(build, iterators);
5202 build = isl_ast_build_set_create_leaf(build, &create_host_leaf, gen);
5203 tree = isl_ast_build_ast_from_schedule(build, sched);
5204 isl_ast_build_free(build);
5206 return tree;
5209 __isl_give isl_union_map *extract_sizes_from_str(isl_ctx *ctx, const char *str)
5211 if (!str)
5212 return NULL;
5213 return isl_union_map_read_from_str(ctx, str);
5216 /* Information about the outermost tilable bands in the forest of bands.
5218 * tile_len and n_parallel are only sets on band_info structures
5219 * that correspond to outermost bands. For other bands (in particular,
5220 * ancestors of the outermost bands), n_parallal is set to 0.
5222 * prefix is the (padded) schedule leading up to the outermost tilable bands.
5224 * tile_first is the number of schedule dimensions in prefix.
5226 * suffix is the schedule of the outermost tilable bands and their descendants.
5228 struct band_info {
5229 struct gpu_gen *gen;
5230 int tile_first;
5231 int tile_len;
5232 int n_parallel;
5233 isl_union_map *prefix;
5234 isl_union_map *suffix;
5237 /* Set tile_len and n_parallel of the statement to that of
5238 * their outermost band, recorded in the band_info.
5240 static int set_stmt_tile_len(__isl_take isl_map *map, void *user)
5242 struct band_info *info = user;
5243 struct gpu_stmt *stmt;
5244 isl_id *id;
5246 id = isl_map_get_tuple_id(map, isl_dim_in);
5247 stmt = find_stmt(info->gen->prog, id);
5248 isl_id_free(id);
5250 stmt->tile_len = info->tile_len;
5251 stmt->n_parallel = info->n_parallel;
5253 isl_map_free(map);
5255 return 0;
5258 static void list_select_outer_band(struct gpu_gen *gen,
5259 __isl_take isl_band_list *list, int pos, struct band_info *list_info);
5261 /* Check if this band has any parallel loops. If so, take it as
5262 * the outermost tilable band. If not, continue looking for the
5263 * outermost tilable band in the children of the current band.
5265 static void band_select_outer_band(struct gpu_gen *gen,
5266 __isl_take isl_band *band, int pos, struct band_info *info)
5268 int n = isl_band_n_member(band);
5269 int n_parallel;
5271 for (n_parallel = 0; n_parallel < n; ++n_parallel)
5272 if (!isl_band_member_is_coincident(band, n_parallel))
5273 break;
5275 info->n_parallel = n_parallel;
5276 if (n_parallel) {
5277 gen->any_parallelism = 1;
5278 info->gen = gen;
5279 info->tile_first = pos;
5280 info->tile_len = n;
5281 info->prefix = isl_band_get_prefix_schedule(band);
5282 info->suffix = isl_union_map_flat_range_product(
5283 isl_band_get_partial_schedule(band),
5284 isl_band_get_suffix_schedule(band));
5285 isl_union_map_foreach_map(info->prefix,
5286 &set_stmt_tile_len, info);
5287 } else if (isl_band_has_children(band)) {
5288 isl_band_list *children;
5289 children = isl_band_get_children(band);
5290 list_select_outer_band(gen, children, pos + n, info);
5291 } else {
5292 info->gen = gen;
5293 info->tile_first = pos + n;
5294 info->tile_len = 0;
5295 info->prefix = isl_union_map_flat_range_product(
5296 isl_band_get_prefix_schedule(band),
5297 isl_band_get_partial_schedule(band));
5298 info->suffix = isl_band_get_suffix_schedule(band);
5299 isl_union_map_foreach_map(info->prefix,
5300 &set_stmt_tile_len, info);
5303 isl_band_free(band);
5306 /* Comparison function that returns a non-zero value for band_infos
5307 * with different tile_len fields or different n_parallel fields.
5309 static int cmp_band(const void *p1, const void *p2)
5311 const struct band_info *info1 = p1;
5312 const struct band_info *info2 = p2;
5314 if (info1->tile_len != info2->tile_len)
5315 return info1->tile_len - info2->tile_len;
5317 return info1->n_parallel - info2->n_parallel;
5320 /* Extend "umap" with coordinates with fixed value "val"
5321 * to a total length of "dst_len", assuming the original dimension is "src_len".
5323 static __isl_give isl_union_map *extend_range(
5324 __isl_take isl_union_map *umap, int src_len, int dst_len, int val)
5326 isl_space *dim;
5327 isl_map *map;
5328 int i;
5330 dim = isl_union_map_get_space(umap);
5331 map = isl_map_reverse(projection(dim, dst_len, src_len));
5332 for (i = src_len; i < dst_len; ++i)
5333 map = isl_map_fix_si(map, isl_dim_out, i, val);
5335 umap = isl_union_map_apply_range(umap, isl_union_map_from_map(map));
5337 return umap;
5340 /* Group bands with the same values for tile_len and n_parallel.
5341 * The prefix schedule is then extended with a fixed coordinate that
5342 * is different for each such group.
5343 * Note that the actual values for this coordinate are not important.
5344 * The bands have already been effectively separated at a higher level
5345 * or they are independent and may be executed in parallel.
5346 * The list of band_info has been sorted before this functions is called.
5348 static void separate_bands(struct band_info *info, int n)
5350 int i;
5351 int j = 0;
5353 for (i = 0; i < n; ++i) {
5354 int l = info[i].tile_first;
5356 if (i &&
5357 (info[i].tile_len != info[i - 1].tile_len ||
5358 info[i].n_parallel != info[i - 1].n_parallel))
5359 j++;
5361 info[i].prefix = extend_range(info[i].prefix,
5362 l, l + 1, j);
5363 info[i].tile_first = l + 1;
5367 /* Select the outermost bands in the elements of the list, align
5368 * their prefix schedules, separate bands with different values
5369 * for tile_len and/or n_parallel and then combine the resulting
5370 * prefix and suffix schedules into a single pair of prefix and
5371 * suffix schedules for the entire list.
5373 static void list_select_outer_band(struct gpu_gen *gen,
5374 __isl_take isl_band_list *list, int pos, struct band_info *list_info)
5376 isl_band *band;
5377 int i;
5378 int n = isl_band_list_n_band(list);
5379 isl_ctx *ctx = isl_band_list_get_ctx(list);
5380 struct band_info *info;
5381 int max_tile_first;
5382 isl_union_map *prefix;
5383 isl_union_map *suffix;
5385 assert(n >= 1);
5386 info = isl_calloc_array(ctx, struct band_info, n);
5387 assert(info);
5389 max_tile_first = 0;
5390 for (i = 0; i < n; ++i) {
5391 band = isl_band_list_get_band(list, i);
5392 band_select_outer_band(gen, band, pos, &info[i]);
5393 if (info[i].tile_first > max_tile_first)
5394 max_tile_first = info[i].tile_first;
5397 for (i = 0; i < n; ++i) {
5398 if (info[i].tile_first == max_tile_first)
5399 continue;
5400 info[i].prefix = extend_range(info[i].prefix,
5401 info[i].tile_first, max_tile_first, 0);
5402 info[i].tile_first = max_tile_first;
5405 qsort(info, n, sizeof(struct band_info), &cmp_band);
5407 for (i = 0; i < n - 1; ++i)
5408 if (info[i].tile_len != info[i + 1].tile_len ||
5409 info[i].n_parallel != info[i + 1].n_parallel)
5410 break;
5412 if (i < n -1)
5413 separate_bands(info, n);
5415 prefix = info[0].prefix;
5416 suffix = info[0].suffix;
5418 for (i = 1; i < n; ++i) {
5419 prefix = isl_union_map_union(prefix, info[i].prefix);
5420 suffix = isl_union_map_union(suffix, info[i].suffix);
5423 list_info->tile_first = info[0].tile_first;
5424 list_info->tile_len = -1;
5425 list_info->prefix = prefix;
5426 list_info->suffix = suffix;
5428 isl_band_list_free(list);
5429 free(info);
5432 /* Select the outermost tilable band that (by construction)
5433 * has at least one parallel loop.
5434 * The starting position of the aligned band is stored in the pair
5435 * gen->tile_first.
5436 * The sizes and number of parallel loops may be different in different
5437 * parts of the band forest and are therefore stored in the gpu_stmts.
5439 * Return the complete schedule, with the tilable bands aligned
5440 * at gen->tile_first and padded with zero, if needed.
5442 static __isl_give isl_union_map *select_outer_tilable_band(struct gpu_gen *gen,
5443 __isl_keep isl_schedule *schedule)
5445 isl_band_list *list;
5446 struct band_info info;
5448 gen->n_parallel = 0;
5449 gen->tile_len = -1;
5451 list = isl_schedule_get_band_forest(schedule);
5453 if (isl_band_list_n_band(list) == 0) {
5454 isl_band_list_free(list);
5455 return isl_schedule_get_map(schedule);
5458 list_select_outer_band(gen, list, 0, &info);
5460 gen->tile_first = info.tile_first;
5461 info.suffix = align_range(info.suffix);
5463 return isl_union_map_flat_range_product(info.prefix, info.suffix);
5466 /* Set gen->untiled_len to the number of scheduling dimensions
5467 * for the schedule of the first domain.
5468 * We assume here that this number is the same for all domains.
5470 static int set_untiled_len(__isl_take isl_map *map, void *user)
5472 unsigned *untiled_len = user;
5474 *untiled_len = isl_map_dim(map, isl_dim_out);
5476 isl_map_free(map);
5477 return -1;
5480 /* Compute an appropriate schedule based on the accesses in
5481 * gen->read and gen->write.
5483 * We use the dependences in gen->prog->scop to compute
5484 * a schedule that has a parallel loop in each tilable band.
5485 * Finally, we select the outermost tilable band.
5487 * If live range reordering is allowed, then we need to make sure
5488 * that live ranges on arrays are not run in parallel since doing
5489 * so would require array expansion. We therefore add the array
5490 * order dependences to the coincidence dependences. Non-zero array
5491 * order dependences will then prevent a schedule dimension from being
5492 * considered parallel.
5493 * Live ranges derived from scalars are allowed to be run in parallel
5494 * since we force the scalars to be mapped to private memory in
5495 * check_scalar_live_ranges.
5496 * If live range reordering is allowed, then the false dependences
5497 * are not added to the validity constraints as that would prevent
5498 * reordering. Instead, the external false dependences that enforce that reads
5499 * from potentially live-in data precede any later write and
5500 * that writes of potentially live-out data follow any other earlier write
5501 * are added to the validity and the coincidence constraints.
5502 * The false dependences are still added to the proximity constraints
5503 * for consistency with the case where live range reordering is not allowed.
5504 * The coincidence constraints then consist of flow dependences,
5505 * exernal false dependences and array order dependences.
5506 * The independences can be filtered out from the first two sets.
5507 * They have already been filtered out from the array order dependences
5508 * on a per array basis in collect_order_dependences.
5509 * There is no need for a per array handling of the other two sets
5510 * as there should be no flow or external false dependence on local
5511 * variables that can be filtered out.
5513 static void compute_schedule(struct gpu_gen *gen)
5515 isl_union_set *domain;
5516 isl_union_map *dep_raw, *dep;
5517 isl_union_map *validity, *proximity, *coincidence;
5518 isl_union_map *sched;
5519 isl_schedule_constraints *sc;
5520 isl_schedule *schedule;
5522 domain = isl_union_set_copy(gen->prog->scop->domain);
5523 domain = isl_union_set_intersect_params(domain,
5524 isl_set_copy(gen->prog->scop->context));
5525 sc = isl_schedule_constraints_on_domain(isl_union_set_copy(domain));
5526 if (gen->options->live_range_reordering) {
5527 sc = isl_schedule_constraints_set_conditional_validity(sc,
5528 isl_union_map_copy(gen->prog->scop->tagged_dep_flow),
5529 isl_union_map_copy(gen->prog->scop->tagged_dep_order));
5530 proximity = isl_union_map_copy(gen->prog->scop->dep_flow);
5531 validity = isl_union_map_copy(proximity);
5532 validity = isl_union_map_union(validity,
5533 isl_union_map_copy(gen->prog->scop->dep_external));
5534 proximity = isl_union_map_union(proximity,
5535 isl_union_map_copy(gen->prog->scop->dep_false));
5536 coincidence = isl_union_map_copy(validity);
5537 coincidence = isl_union_map_subtract(coincidence,
5538 isl_union_map_copy(gen->prog->scop->independence));
5539 coincidence = isl_union_map_union(coincidence,
5540 isl_union_map_copy(gen->prog->array_order));
5541 } else {
5542 dep_raw = isl_union_map_copy(gen->prog->scop->dep_flow);
5543 dep = isl_union_map_copy(gen->prog->scop->dep_false);
5544 dep = isl_union_map_union(dep, dep_raw);
5545 dep = isl_union_map_coalesce(dep);
5546 proximity = isl_union_map_copy(dep);
5547 coincidence = isl_union_map_copy(dep);
5548 validity = dep;
5550 sc = isl_schedule_constraints_set_validity(sc, validity);
5551 sc = isl_schedule_constraints_set_coincidence(sc, coincidence);
5552 sc = isl_schedule_constraints_set_proximity(sc, proximity);
5554 if (gen->options->debug->dump_schedule_constraints)
5555 isl_schedule_constraints_dump(sc);
5556 schedule = isl_schedule_constraints_compute_schedule(sc);
5557 if (gen->options->debug->dump_schedule)
5558 isl_schedule_dump(schedule);
5560 sched = select_outer_tilable_band(gen, schedule);
5562 isl_union_map_foreach_map(sched, &set_untiled_len, &gen->untiled_len);
5563 sched = isl_union_map_intersect_domain(sched, domain);
5564 gen->sched = sched;
5566 isl_schedule_free(schedule);
5569 /* Compute the sets of outer array elements that need to be copied in and out.
5571 * In particular, for each array that is possibly written anywhere in
5572 * gen->prog and that is visible outside the corresponding scop,
5573 * we copy out its entire extent.
5575 * Any array elements that is read without first being written needs
5576 * to be copied in. Furthermore, if there are any array elements that
5577 * are copied out, but that may not be written inside gen->prog, then
5578 * they also need to be copied in to ensure that the value after execution
5579 * is the same as the value before execution.
5580 * In case the array elements are structures, we need to take into
5581 * account that all members of the structures need to be written
5582 * by gen->prog before we can avoid copying the data structure in.
5584 * While computing the set of array elements that are copied out but
5585 * not necessarily written, we intersect both sets with the context.
5586 * This helps in those cases where the arrays are declared with a fixed size,
5587 * while the accesses are parametric and the context assigns a fixed value
5588 * to the parameters.
5590 * If an element from a local array is read without first being written,
5591 * then there is no point in copying it in since it cannot have been
5592 * written prior to the scop. Warn about the uninitialized read instead.
5594 static void compute_copy_in_and_out(struct gpu_gen *gen)
5596 int i;
5597 isl_union_set *local;
5598 isl_union_set *may_write, *must_write;
5599 isl_union_set *copy_in, *copy_out;
5600 isl_union_set *not_written;
5601 isl_union_map *uninitialized;
5602 isl_union_map *local_uninitialized;
5604 must_write = isl_union_map_range(
5605 isl_union_map_copy(gen->prog->must_write));
5606 must_write = isl_union_set_intersect_params(must_write,
5607 isl_set_copy(gen->prog->context));
5608 may_write = isl_union_map_range(
5609 isl_union_map_copy(gen->prog->may_write));
5610 may_write = isl_union_set_intersect_params(may_write,
5611 isl_set_copy(gen->prog->context));
5612 may_write = isl_union_set_universe(may_write);
5613 may_write = isl_union_set_apply(may_write,
5614 isl_union_map_copy(gen->prog->to_outer));
5615 copy_out = isl_union_set_empty(isl_union_set_get_space(may_write));
5616 local = isl_union_set_copy(copy_out);
5618 for (i = 0; i < gen->prog->n_array; ++i) {
5619 isl_space *space;
5620 isl_set *write_i;
5621 int empty;
5623 space = isl_space_copy(gen->prog->array[i].space);
5625 if (gen->prog->array[i].local) {
5626 isl_set *set;
5628 set = isl_set_universe(space);
5629 local = isl_union_set_add_set(local, set);
5630 continue;
5633 write_i = isl_union_set_extract_set(may_write, space);
5634 empty = isl_set_fast_is_empty(write_i);
5635 isl_set_free(write_i);
5636 if (empty)
5637 continue;
5639 write_i = isl_set_copy(gen->prog->array[i].extent);
5640 copy_out = isl_union_set_add_set(copy_out, write_i);
5642 isl_union_set_free(may_write);
5644 copy_out = isl_union_set_intersect_params(copy_out,
5645 isl_set_copy(gen->prog->context));
5647 gen->prog->copy_out = isl_union_set_copy(copy_out);
5649 copy_out = isl_union_set_apply(copy_out,
5650 isl_union_map_copy(gen->prog->to_inner));
5651 not_written = isl_union_set_subtract(copy_out, must_write);
5653 uninitialized = isl_union_map_copy(gen->prog->scop->live_in);
5654 local_uninitialized = isl_union_map_copy(uninitialized);
5656 local = isl_union_set_apply(local,
5657 isl_union_map_copy(gen->prog->to_inner));
5658 local_uninitialized = isl_union_map_intersect_range(local_uninitialized,
5659 local);
5660 if (!isl_union_map_is_empty(local_uninitialized)) {
5661 fprintf(stderr,
5662 "possibly uninitialized reads (not copied in):\n");
5663 isl_union_map_dump(local_uninitialized);
5665 uninitialized = isl_union_map_subtract(uninitialized,
5666 local_uninitialized);
5667 copy_in = isl_union_map_range(uninitialized);
5668 copy_in = isl_union_set_union(copy_in, not_written);
5669 copy_in = isl_union_set_apply(copy_in,
5670 isl_union_map_copy(gen->prog->to_outer));
5672 gen->prog->copy_in = copy_in;
5675 /* Internal data structure for extract_access.
5676 * "next_access" points to the end of a linked list that is extended
5677 * by extract_access.
5678 * "single_expression" is set if the access expressions belong to
5679 * an expression statement (i.e., a statement without internal control).
5681 struct ppcg_extract_access_data {
5682 struct gpu_stmt_access **next_access;
5683 int single_expression;
5686 /* Extract a gpu_stmt_access from "expr", append it to the list
5687 * that ends in *data->next_access and update the end of the list.
5688 * If the access expression performs a write, then it is considered
5689 * exact only if it appears in a single expression statement and
5690 * if its may access relation is equal to its must access relation.
5692 static int extract_access(__isl_keep pet_expr *expr, void *user)
5694 struct ppcg_extract_access_data *data = user;
5695 isl_map *may;
5696 struct gpu_stmt_access *access;
5697 isl_ctx *ctx;
5699 may = pet_expr_access_get_may_access(expr);
5700 ctx = isl_map_get_ctx(may);
5701 access = isl_alloc_type(ctx, struct gpu_stmt_access);
5702 assert(access);
5703 access->next = NULL;
5704 access->read = pet_expr_access_is_read(expr);
5705 access->write = pet_expr_access_is_write(expr);
5706 access->access = may;
5707 access->tagged_access = pet_expr_access_get_tagged_may_access(expr);
5708 if (!access->write) {
5709 access->exact_write = 1;
5710 } else if (!data->single_expression) {
5711 access->exact_write = 0;
5712 } else {
5713 isl_map *must;
5714 must = pet_expr_access_get_must_access(expr);
5715 access->exact_write = isl_map_is_equal(must, access->access);
5716 isl_map_free(must);
5718 access->ref_id = pet_expr_access_get_ref_id(expr);
5719 access->group = -1;
5721 *data->next_access = access;
5722 data->next_access = &(*data->next_access)->next;
5724 return 0;
5727 /* Construct a linked list of gpu_stmt_access objects,
5728 * one for each access expression in the statement body.
5730 static void pet_stmt_extract_accesses(struct gpu_stmt *stmt)
5732 struct ppcg_extract_access_data data;
5734 stmt->accesses = NULL;
5735 data.next_access = &stmt->accesses;
5736 data.single_expression =
5737 pet_tree_get_type(stmt->stmt->body) == pet_tree_expr;
5738 pet_tree_foreach_access_expr(stmt->stmt->body, &extract_access, &data);
5741 /* Return an array of gpu_stmt representing the statements in "scop".
5743 static struct gpu_stmt *extract_stmts(isl_ctx *ctx, struct ppcg_scop *scop,
5744 __isl_keep isl_set *context)
5746 int i;
5747 struct gpu_stmt *stmts;
5749 stmts = isl_calloc_array(ctx, struct gpu_stmt, scop->n_stmt);
5750 if (!stmts)
5751 return NULL;
5753 for (i = 0; i < scop->n_stmt; ++i) {
5754 struct gpu_stmt *s = &stmts[i];
5756 s->id = isl_set_get_tuple_id(scop->stmts[i]->domain);
5757 s->stmt = scop->stmts[i];
5758 pet_stmt_extract_accesses(s);
5761 return stmts;
5764 /* Callback for ppcg_print_guarded that calls the callback for generate_gpu.
5766 static __isl_give isl_printer *print_gpu(__isl_take isl_printer *p, void *user)
5768 struct gpu_gen *gen = user;
5770 return gen->print(p, gen->prog, gen->tree, &gen->types,
5771 gen->print_user);
5774 /* Generate CUDA code for "scop" and print it to "p".
5775 * After generating an AST for the transformed scop as explained below,
5776 * we call "gen->print" to print the AST in the desired output format
5777 * to "p".
5779 * If it turns out that it does not make sense to generate GPU code,
5780 * then we generate CPU code instead.
5782 * The GPU code is generated in a context where at least one
5783 * statement instance is executed. The corresponding guard (if any) is printed
5784 * around the entire generated GPU code, except for the declaration
5785 * of the arrays that are visible outside of the scop and that therefore
5786 * cannot be declared inside the body of any possible guard.
5788 * We first compute a schedule that respects the dependences
5789 * of the original program and select the outermost band
5790 * of tilable dimensions that has at least one parallel loop.
5791 * We then have three blocks of dimensions
5793 * H B G
5795 * The tilable band "B" is first tiled according to "tile" sizes, resulting
5796 * in
5798 * H T P G
5800 * For each iteration of the T loop and for each array, we compute
5801 * the array elements accessed by that iteration, construct a rectangular
5802 * box around it and shift it to the origin. The result is used
5803 * as shared memory for the array.
5805 * We then split off at most 2 parallel loops from the T loops and
5806 * at most 3 parallel loops from the P loops
5808 * H T1 T2 P1 P2 G
5810 * The T1/P1 loops are then tiled or "wrapped" over the blocks/threads,
5811 * according to "grid"/"block" sizes.
5813 * H T1T T1P T2 P1T P1P P2 G
5815 * Finally, the T1P and P1P iterators are equated to the block and
5816 * thread dimensions respectively and so are effectively removed.
5817 * The H loops are run on the host. The T1T, T2, P1T, P2 and G loops
5818 * are run on the GPU.
5820 * Code is generated in three stages. We first generate code for the
5821 * host (the H loops), with iterators h%d. Then, for each leaf node
5822 * of the resulting AST, we generate code for the shared loops (up to
5823 * and including T2), with iterators g%d and after equating the H loops
5824 * to h%d parameters and the T1P loops to the block dimensions.
5825 * Finally, we generate code for the remaining loops in a similar fashion.
5827 static __isl_give isl_printer *generate(__isl_take isl_printer *p,
5828 struct gpu_gen *gen, struct ppcg_scop *scop,
5829 struct ppcg_options *options)
5831 struct gpu_prog *prog;
5832 isl_ctx *ctx;
5833 isl_set *context, *guard;
5835 if (!scop)
5836 return isl_printer_free(p);
5838 ctx = isl_printer_get_ctx(p);
5839 prog = gpu_prog_alloc(ctx, scop);
5840 if (!prog)
5841 return isl_printer_free(p);
5843 context = isl_set_copy(prog->context);
5844 guard = isl_union_set_params(isl_union_set_copy(prog->scop->domain));
5845 prog->context = isl_set_intersect(prog->context, isl_set_copy(guard));
5847 gen->prog = prog;
5848 gen->any_parallelism = 0;
5849 compute_schedule(gen);
5851 if (!gen->any_parallelism) {
5852 isl_set_free(context);
5853 isl_set_free(guard);
5854 p = print_cpu(p, scop, options);
5855 } else {
5856 compute_copy_in_and_out(gen);
5857 gen->tree = generate_host_code(gen);
5858 p = ppcg_print_exposed_declarations(p, prog->scop);
5859 p = ppcg_print_guarded(p, guard, context, &print_gpu, gen);
5860 isl_ast_node_free(gen->tree);
5863 isl_union_map_free(gen->sched);
5865 gpu_prog_free(prog);
5867 return p;
5870 /* Wrapper around generate for use as a ppcg_transform callback.
5872 static __isl_give isl_printer *generate_wrap(__isl_take isl_printer *p,
5873 struct ppcg_scop *scop, void *user)
5875 struct gpu_gen *gen = user;
5877 return generate(p, gen, scop, gen->options);
5880 /* Transform the code in the file called "input" by replacing
5881 * all scops by corresponding GPU code and write the results to "out".
5883 int generate_gpu(isl_ctx *ctx, const char *input, FILE *out,
5884 struct ppcg_options *options,
5885 __isl_give isl_printer *(*print)(__isl_take isl_printer *p,
5886 struct gpu_prog *prog, __isl_keep isl_ast_node *tree,
5887 struct gpu_types *types, void *user), void *user)
5889 struct gpu_gen gen;
5890 int r;
5891 int i;
5893 gen.ctx = ctx;
5894 gen.sizes = extract_sizes_from_str(ctx, options->sizes);
5895 gen.options = options;
5896 gen.kernel_id = 0;
5897 gen.print = print;
5898 gen.print_user = user;
5899 gen.types.n = 0;
5900 gen.types.name = NULL;
5902 r = ppcg_transform(ctx, input, out, options, &generate_wrap, &gen);
5904 isl_union_map_free(gen.sizes);
5905 for (i = 0; i < gen.types.n; ++i)
5906 free(gen.types.name[i]);
5907 free(gen.types.name);
5909 return r;
5912 struct gpu_prog *gpu_prog_alloc(isl_ctx *ctx, struct ppcg_scop *scop)
5914 struct gpu_prog *prog;
5916 if (!scop)
5917 return NULL;
5919 prog = isl_calloc_type(ctx, struct gpu_prog);
5920 assert(prog);
5922 prog->ctx = ctx;
5923 prog->scop = scop;
5924 prog->context = isl_set_copy(scop->context);
5925 prog->n_stmts = scop->n_stmt;
5926 prog->stmts = extract_stmts(ctx, scop, prog->context);
5927 prog->read = isl_union_map_copy(scop->reads);
5928 prog->may_write = isl_union_map_copy(scop->may_writes);
5929 prog->must_write = isl_union_map_copy(scop->must_writes);
5930 prog->to_inner = compute_to_inner(scop);
5931 prog->to_outer = isl_union_map_copy(prog->to_inner);
5932 prog->to_outer = isl_union_map_reverse(prog->to_outer);
5934 if (!prog->stmts)
5935 return gpu_prog_free(prog);
5937 if (collect_array_info(prog) < 0)
5938 return gpu_prog_free(prog);
5940 return prog;
5943 void *gpu_prog_free(struct gpu_prog *prog)
5945 if (!prog)
5946 return NULL;
5947 free_array_info(prog);
5948 free_stmts(prog->stmts, prog->n_stmts);
5949 isl_union_map_free(prog->to_outer);
5950 isl_union_map_free(prog->to_inner);
5951 isl_union_set_free(prog->copy_in);
5952 isl_union_set_free(prog->copy_out);
5953 isl_union_map_free(prog->read);
5954 isl_union_map_free(prog->may_write);
5955 isl_union_map_free(prog->must_write);
5956 isl_union_map_free(prog->array_order);
5957 isl_set_free(prog->context);
5958 free(prog);
5959 return NULL;