gpu.c: avoid use of isl_map_plain_is_fixed
[ppcg.git] / gpu.c
blob604f82c15c0efc54f0b503ee753ea8aa6bff6738
1 /*
2 * Copyright 2010-2011 INRIA Saclay
3 * Copyright 2012 Ecole Normale Superieure
5 * Use of this software is governed by the GNU LGPLv2.1 license
7 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
8 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
9 * 91893 Orsay, France
10 * and Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France
13 #include <assert.h>
14 #include <stdlib.h>
15 #include <string.h>
17 #include <isl/polynomial.h>
18 #include <isl/union_set.h>
19 #include <isl/aff.h>
20 #include <isl/ilp.h>
21 #include <isl/flow.h>
22 #include <isl/band.h>
23 #include <isl/schedule.h>
24 #include <isl/options.h>
25 #include <isl/ast_build.h>
27 #include "gpu.h"
28 #include "schedule.h"
29 #include "ppcg_options.h"
31 /* The fields stride, shift and shift_map only contain valid information
32 * if shift != NULL.
33 * If so, they express that current index is such that if you add shift,
34 * then the result is always a multiple of stride.
35 * shift_map contains the mapping
37 * i -> (i + shift)/stride
39 * Let D represent the initial shared_len dimensions of the computed schedule.
40 * The spaces of "lb" and "shift" are of the form
42 * D -> [b]
44 * "shift_map" is of the form
46 * [D -> i] -> [D -> (i + shift(D))/stride]
48 struct gpu_array_bound {
49 isl_val *size;
50 isl_aff *lb;
52 isl_val *stride;
53 isl_aff *shift;
54 isl_basic_map *shift_map;
57 /* A tile of an array.
59 * n is the dimension of the array.
60 * bound is an array of size "n" representing the lower bound
61 * and size for each index.
63 struct gpu_array_tile {
64 int n;
65 struct gpu_array_bound *bound;
68 struct gpu_array_info;
70 /* A group of array references in a kernel that should be handled together.
71 * If private_tile is not NULL, then it is mapped to registers.
72 * Otherwise, if shared_tile is not NULL, it is mapped to shared memory.
73 * Otherwise, it is accessed from global memory.
75 struct gpu_array_ref_group {
76 /* The references in this group access this array. */
77 struct gpu_array_info *array;
78 /* Position of this group in the list of reference groups of array. */
79 int nr;
81 /* The following fields are use during the construction of the groups.
82 * access is the combined access relation relative to the shared
83 * memory tiling. In particular, the domain of the map corresponds
84 * to the first shared_len dimensions of the computed schedule.
85 * write is set if any access in the group is a write.
87 isl_map *access;
88 int write;
90 /* The shared memory tile, NULL if none. */
91 struct gpu_array_tile *shared_tile;
93 /* The private memory tile, NULL if none. */
94 struct gpu_array_tile *private_tile;
96 /* References in this group; point to elements of a linked list. */
97 int n_ref;
98 struct gpu_stmt_access **refs;
100 /* Last shared memory tile dimension that affects tile of this group. */
101 int last_shared;
104 struct gpu_gen {
105 isl_ctx *ctx;
106 struct ppcg_options *options;
108 struct gpu_prog *prog;
110 /* tile, grid and block sizes for each kernel */
111 isl_union_map *sizes;
113 /* Identifier of current kernel. */
114 int kernel_id;
115 /* Pointer to the current kernel. */
116 struct ppcg_kernel *kernel;
118 /* First tile dimension. */
119 int tile_first;
120 /* Number of tile dimensions. */
121 int tile_len;
122 /* Number of initial parallel loops among tile dimensions. */
123 int n_parallel;
125 /* Number of dimensions determining shared memory. */
126 int shared_len;
128 /* Number of rows in the untiled schedule. */
129 int untiled_len;
130 /* Number of rows in the tiled schedule. */
131 int tiled_len;
132 /* Number of rows in schedule after tiling/wrapping over threads. */
133 int thread_tiled_len;
135 /* Global untiled schedule. */
136 isl_union_map *sched;
137 /* Local (per kernel launch) tiled schedule. */
138 isl_union_map *tiled_sched;
139 /* Local schedule per shared memory tile loop iteration. */
140 isl_union_map *local_sched;
142 /* Local tiled schedule projected onto the shared tile loops and
143 * the loops that will be wrapped over the threads,
144 * with all shared tile loops parametrized.
146 isl_union_map *shared_sched;
147 /* Projects out the loops that will be wrapped over the threads
148 * from shared_sched.
150 isl_union_map *shared_proj;
152 /* A map that takes the range of shared_sched as input,
153 * wraps the appropriate loops over the threads and then projects
154 * out these loops.
156 isl_map *privatization;
158 /* A map from the shared memory tile loops and the thread indices
159 * (as parameters) to the set of accessed memory elements that
160 * will be accessed through private copies.
162 isl_union_map *private_access;
164 /* The schedule for the current private/shared access
165 * (within print_private_access or print_shared_access).
167 isl_map *copy_sched;
168 /* The array reference group corresponding to copy_sched. */
169 struct gpu_array_ref_group *copy_group;
171 /* First loop to unroll (or -1 if none) in the current part of the
172 * schedule.
174 int first_unroll;
176 int n_grid;
177 int n_block;
178 /* Note: in the input file, the sizes of the grid and the blocks
179 * are specified in the order x, y, z, but internally, the sizes
180 * are stored in reverse order, so that the last element always
181 * refers to the x dimension.
183 int grid_dim[2];
184 int block_dim[3];
185 int *tile_size;
188 /* Print the name of the local copy of a given group of array references.
190 static __isl_give isl_printer *print_array_name(__isl_take isl_printer *p,
191 struct gpu_array_ref_group *group)
193 int global = 0;
195 if (group->private_tile)
196 p = isl_printer_print_str(p, "private_");
197 else if (group->shared_tile)
198 p = isl_printer_print_str(p, "shared_");
199 else
200 global = 1;
201 p = isl_printer_print_str(p, group->array->name);
202 if (!global && group->array->n_group > 1) {
203 p = isl_printer_print_str(p, "_");
204 p = isl_printer_print_int(p, group->nr);
207 return p;
210 /* Collect all references to the given array and store pointers to them
211 * in array->refs.
213 static void collect_references(struct gpu_prog *prog,
214 struct gpu_array_info *array)
216 int i;
217 int n;
219 n = 0;
220 for (i = 0; i < prog->n_stmts; ++i) {
221 struct gpu_stmt *stmt = &prog->stmts[i];
222 struct gpu_stmt_access *access;
224 for (access = stmt->accesses; access; access = access->next) {
225 const char *name;
226 name = isl_map_get_tuple_name(access->access,
227 isl_dim_out);
228 if (name && !strcmp(array->name, name))
229 n++;
233 array->n_ref = n;
234 array->refs = isl_alloc_array(prog->ctx, struct gpu_stmt_access *, n);
235 assert(array->refs);
237 n = 0;
238 for (i = 0; i < prog->n_stmts; ++i) {
239 struct gpu_stmt *stmt = &prog->stmts[i];
240 struct gpu_stmt_access *access;
242 for (access = stmt->accesses; access; access = access->next) {
243 const char *name;
244 name = isl_map_get_tuple_name(access->access,
245 isl_dim_out);
246 if (!name || strcmp(array->name, name))
247 continue;
249 array->refs[n++] = access;
254 /* Create a gpu_array_tile for an array of dimension "n_index".
256 static struct gpu_array_tile *create_tile(isl_ctx *ctx, int n_index)
258 int i;
259 struct gpu_array_tile *tile;
261 tile = isl_calloc_type(ctx, struct gpu_array_tile);
262 assert(tile);
264 tile->n = n_index;
266 tile->bound = isl_alloc_array(ctx, struct gpu_array_bound, n_index);
267 assert(tile->bound);
269 for (i = 0; i < n_index; ++i) {
270 tile->bound[i].size = NULL;
271 tile->bound[i].lb = NULL;
272 tile->bound[i].stride = NULL;
273 tile->bound[i].shift = NULL;
274 tile->bound[i].shift_map = NULL;
277 return tile;
280 static void *free_tile(struct gpu_array_tile *tile)
282 int j;
284 if (!tile)
285 return NULL;
287 for (j = 0; j < tile->n; ++j) {
288 isl_val_free(tile->bound[j].size);
289 isl_val_free(tile->bound[j].stride);
290 isl_aff_free(tile->bound[j].lb);
291 isl_aff_free(tile->bound[j].shift);
292 isl_basic_map_free(tile->bound[j].shift_map);
294 free(tile->bound);
295 free(tile);
297 return NULL;
300 static struct pet_array *find_array(struct ppcg_scop *scop,
301 __isl_keep isl_set *accessed)
303 int i;
304 isl_id *id;
306 id = isl_set_get_tuple_id(accessed);
308 for (i = 0; i < scop->n_array; ++i) {
309 isl_id *id_i;
311 id_i = isl_set_get_tuple_id(scop->arrays[i]->extent);
312 isl_id_free(id_i);
313 if (id == id_i)
314 break;
316 isl_id_free(id);
318 return i < scop->n_array ? scop->arrays[i] : NULL;
321 /* Compute and return the extent of "array", taking into account the set of
322 * accessed elements.
324 * In particular, the extent in the outer dimension is taken
325 * from "accessed", while then extent in the remaing dimensions
326 * are taken from array->extent.
328 * The extent in the outer dimension cannot be taken from array->extent
329 * because that may be unbounded. Furthermore, even if it is bounded,
330 * it may be larger than the piece of the array that is being accessed.
332 static __isl_give isl_set *compute_extent(struct pet_array *array,
333 __isl_keep isl_set *accessed)
335 int n_index;
336 isl_id *id;
337 isl_set *outer;
338 isl_set *extent;
340 extent = isl_set_copy(array->extent);
342 n_index = isl_set_dim(accessed, isl_dim_set);
343 if (n_index == 0)
344 return extent;
346 extent = isl_set_project_out(extent, isl_dim_set, 0, 1);
347 outer = isl_set_copy(accessed);
348 outer = isl_set_project_out(outer, isl_dim_set, 1, n_index - 1);
349 extent = isl_set_flat_product(outer, extent);
350 id = isl_set_get_tuple_id(accessed);
351 extent = isl_set_set_tuple_id(extent, id);
353 return extent;
356 /* Compute bounds on the host arrays based on the accessed elements
357 * and collect all references to the array.
359 * If the array is zero-dimensional, i.e., a scalar, we check
360 * whether it is read-only.
362 static int extract_array_info(__isl_take isl_set *array, void *user)
364 int i;
365 struct gpu_prog *prog = (struct gpu_prog *)user;
366 const char *name;
367 int n_index;
368 isl_pw_aff **bounds;
369 struct pet_array *pa;
370 isl_set *extent;
372 n_index = isl_set_dim(array, isl_dim_set);
373 name = isl_set_get_tuple_name(array);
374 bounds = isl_alloc_array(isl_set_get_ctx(array),
375 isl_pw_aff *, n_index);
376 assert(bounds);
377 prog->array[prog->n_array].dim = isl_set_get_space(array);
378 prog->array[prog->n_array].name = strdup(name);
379 prog->array[prog->n_array].n_index = n_index;
380 prog->array[prog->n_array].bound = bounds;
382 pa = find_array(prog->scop, array);
383 assert(pa);
385 prog->array[prog->n_array].type = strdup(pa->element_type);
386 prog->array[prog->n_array].size = pa->element_size;
387 prog->array[prog->n_array].local = pa->declared && !pa->exposed;
389 if (n_index == 0) {
390 isl_set *space;
391 isl_union_map *write;
392 int empty;
394 write = isl_union_map_copy(prog->write);
395 space = isl_set_universe(isl_set_get_space(array));
396 write = isl_union_map_intersect_range(write,
397 isl_union_set_from_set(space));
398 empty = isl_union_map_is_empty(write);
399 isl_union_map_free(write);
401 prog->array[prog->n_array].read_only = empty;
404 extent = compute_extent(pa, array);
405 for (i = 0; i < n_index; ++i) {
406 isl_set *dom;
407 isl_local_space *ls;
408 isl_aff *one;
409 isl_pw_aff *bound;
411 bound = isl_set_dim_max(isl_set_copy(extent), i);
412 assert(bound);
413 dom = isl_pw_aff_domain(isl_pw_aff_copy(bound));
414 ls = isl_local_space_from_space(isl_set_get_space(dom));
415 one = isl_aff_zero_on_domain(ls);
416 one = isl_aff_add_constant_si(one, 1);
417 bound = isl_pw_aff_add(bound, isl_pw_aff_alloc(dom, one));
418 bound = isl_pw_aff_gist(bound, isl_set_copy(prog->context));
420 bounds[i] = bound;
422 prog->array[prog->n_array].extent = extent;
424 collect_references(prog, &prog->array[prog->n_array]);
426 prog->n_array++;
428 isl_set_free(array);
429 return 0;
432 void collect_array_info(struct gpu_prog *prog)
434 isl_union_set *arrays;
436 arrays = isl_union_map_range(isl_union_map_copy(prog->read));
437 arrays = isl_union_set_union(arrays,
438 isl_union_map_range(isl_union_map_copy(prog->write)));
439 arrays = isl_union_set_coalesce(arrays);
441 prog->n_array = isl_union_set_n_set(arrays);
442 prog->array = isl_alloc_array(prog->ctx,
443 struct gpu_array_info, prog->n_array);
444 assert(prog->array);
445 prog->n_array = 0;
446 isl_union_set_foreach_set(arrays, &extract_array_info, prog);
447 isl_union_set_free(arrays);
450 static void free_array_info(struct gpu_prog *prog)
452 int i, j;
454 for (i = 0; i < prog->n_array; ++i) {
455 int n_index = prog->array[i].n_index;
456 free(prog->array[i].type);
457 free(prog->array[i].name);
458 for (j = 0; j < n_index; ++j)
459 isl_pw_aff_free(prog->array[i].bound[j]);
460 isl_space_free(prog->array[i].dim);
461 isl_set_free(prog->array[i].extent);
462 free(prog->array[i].bound);
463 free(prog->array[i].refs);
465 free(prog->array);
468 /* Check if a gpu array is a scalar. A scalar is a value that is not stored
469 * as an array or through a pointer reference, but as single data element. At
470 * the moment, scalars are represented as zero dimensional arrays.
472 int gpu_array_is_scalar(struct gpu_array_info *array)
474 return (array->n_index == 0);
477 /* Is "array" a read-only scalar?
479 int gpu_array_is_read_only_scalar(struct gpu_array_info *array)
481 return gpu_array_is_scalar(array) && array->read_only;
484 /* Internal data structure for extract_size_of_type.
485 * "type" specifies the name of the space that we want to extract.
486 * "res" is used to store the subset of that space.
488 struct ppcg_extract_size_data {
489 const char *type;
490 isl_set *res;
493 /* This function is called for each set in a union_set.
494 * If the name of the set matches data->type, we store the
495 * set in data->res.
497 static int extract_size_of_type(__isl_take isl_set *size, void *user)
499 struct ppcg_extract_size_data *data = user;
500 const char *name;
502 name = isl_set_get_tuple_name(size);
503 if (name && !strcmp(name, data->type)) {
504 data->res = size;
505 return -1;
508 isl_set_free(size);
509 return 0;
512 /* Given a union map { kernel[i] -> *[...] },
513 * return the range in the space called "type" for the kernel with
514 * sequence number "id".
516 static __isl_give isl_set *extract_sizes(__isl_keep isl_union_map *sizes,
517 const char *type, int id)
519 isl_space *space;
520 isl_set *dom;
521 isl_union_set *local_sizes;
522 struct ppcg_extract_size_data data = { type, NULL };
524 if (!sizes)
525 return NULL;
527 space = isl_union_map_get_space(sizes);
528 space = isl_space_set_from_params(space);
529 space = isl_space_add_dims(space, isl_dim_set, 1);
530 space = isl_space_set_tuple_name(space, isl_dim_set, "kernel");
531 dom = isl_set_universe(space);
532 dom = isl_set_fix_si(dom, isl_dim_set, 0, id);
534 local_sizes = isl_union_set_apply(isl_union_set_from_set(dom),
535 isl_union_map_copy(sizes));
536 isl_union_set_foreach_set(local_sizes, &extract_size_of_type, &data);
537 isl_union_set_free(local_sizes);
538 return data.res;
541 /* Given a singleton set, extract the first (at most *len) elements
542 * of the single integer tuple into *sizes and update *len if needed.
544 static void read_sizes_from_set(__isl_take isl_set *set, int *sizes, int *len)
546 int i;
547 int dim;
549 if (!set)
550 return;
552 dim = isl_set_dim(set, isl_dim_set);
553 if (dim < *len)
554 *len = dim;
556 for (i = 0; i < *len; ++i) {
557 isl_val *v;
559 v = isl_set_plain_get_val_if_fixed(set, isl_dim_set, i);
560 assert(v);
562 sizes[i] = isl_val_get_num_si(v);
563 isl_val_free(v);
566 isl_set_free(set);
569 /* Extract user specified "tile" sizes from the "sizes" command line option,
570 * defaulting to option->tile_size in each dimension.
572 static void read_tile_sizes(struct gpu_gen *gen)
574 int n;
575 isl_set *size;
577 gen->tile_size = isl_alloc_array(gen->ctx, int, gen->tile_len);
578 assert(gen->tile_size);
579 for (n = 0; n < gen->tile_len; ++n)
580 gen->tile_size[n] = gen->options->tile_size;
582 size = extract_sizes(gen->sizes, "tile", gen->kernel_id);
583 read_sizes_from_set(size, gen->tile_size, &gen->tile_len);
585 if (gen->n_parallel > gen->tile_len)
586 gen->n_parallel = gen->tile_len;
589 /* Extract user specified "block" sizes from the "sizes" command line option,
590 * after filling in some potentially useful defaults.
592 static void read_block_sizes(struct gpu_gen *gen)
594 int n;
595 isl_set *size;
597 n = gen->n_parallel;
598 gen->n_block = (n <= 3) ? n : 3;
599 switch (gen->n_block) {
600 case 1:
601 gen->block_dim[0] = 512;
602 break;
603 case 2:
604 gen->block_dim[0] = 32;
605 gen->block_dim[1] = 16;
606 break;
607 default:
608 gen->block_dim[0] = 32;
609 gen->block_dim[1] = 4;
610 gen->block_dim[2] = 4;
611 break;
614 size = extract_sizes(gen->sizes, "block", gen->kernel_id);
615 read_sizes_from_set(size, gen->block_dim, &gen->n_block);
618 /* Extract user specified "grid" sizes from the "sizes" command line option,
619 * after filling in some potentially useful defaults.
621 static void read_grid_sizes(struct gpu_gen *gen)
623 int n = gen->n_parallel;
624 isl_set *size;
626 gen->n_grid = (n <= 2) ? n : 2;
627 switch (gen->n_grid) {
628 case 1:
629 gen->grid_dim[0] = 32768;
630 break;
631 default:
632 gen->grid_dim[0] = 256;
633 gen->grid_dim[1] = 256;
634 break;
637 size = extract_sizes(gen->sizes, "grid", gen->kernel_id);
638 read_sizes_from_set(size, gen->grid_dim, &gen->n_grid);
641 /* Extract user specified sizes from the "sizes" command line option
642 * after filling in some potentially useful defaults.
644 static void read_sizes(struct gpu_gen *gen)
646 read_tile_sizes(gen);
647 read_block_sizes(gen);
648 read_grid_sizes(gen);
651 static void free_stmts(struct gpu_stmt *stmts, int n)
653 int i;
655 for (i = 0; i < n; ++i) {
656 struct gpu_stmt_access *access, *next;
658 for (access = stmts[i].accesses; access; access = next) {
659 next = access->next;
660 isl_map_free(access->access);
661 free(access);
664 isl_id_free(stmts[i].id);
666 free(stmts);
669 void clear_gpu_gen(struct gpu_gen *gen)
671 isl_union_map_free(gen->sizes);
672 isl_union_map_free(gen->sched);
675 /* Construct a map from a domain of dimensionality "len"
676 * to a domain of dimensionality "len" + "tile_len" that tiles
677 * the "tile_len" coordinates starting at "first".
678 * In particular, [s_i] -> [s_i / tile_size[i], s_i % tile_size[i]].
679 * "dim" prescribes the parameters.
681 static __isl_give isl_map *tile(__isl_take isl_space *dim, int len,
682 int first, int tile_len, int *tile_size)
684 int i;
685 isl_basic_map *bmap;
686 isl_constraint *c;
687 isl_local_space *ls;
689 dim = isl_space_add_dims(dim, isl_dim_in, len);
690 dim = isl_space_add_dims(dim, isl_dim_out, len + tile_len);
691 bmap = isl_basic_map_universe(isl_space_copy(dim));
692 ls = isl_local_space_from_space(dim);
694 for (i = 0; i < len - tile_len; ++i) {
695 int j = i < first ? i : i + tile_len;
696 int k = i < first ? i : i + 2 * tile_len;
698 c = isl_equality_alloc(isl_local_space_copy(ls));
699 c = isl_constraint_set_coefficient_si(c, isl_dim_in, j, -1);
700 c = isl_constraint_set_coefficient_si(c, isl_dim_out, k, 1);
701 bmap = isl_basic_map_add_constraint(bmap, c);
704 for (i = 0; i < tile_len; ++i) {
705 c = isl_equality_alloc(isl_local_space_copy(ls));
706 c = isl_constraint_set_coefficient_si(c, isl_dim_in,
707 first + i, -1);
708 c = isl_constraint_set_coefficient_si(c, isl_dim_out,
709 first + i, tile_size[i]);
710 c = isl_constraint_set_coefficient_si(c, isl_dim_out,
711 first + i + tile_len, 1);
712 bmap = isl_basic_map_add_constraint(bmap, c);
714 c = isl_inequality_alloc(isl_local_space_copy(ls));
715 c = isl_constraint_set_coefficient_si(c, isl_dim_out,
716 first + i + tile_len, 1);
717 bmap = isl_basic_map_add_constraint(bmap, c);
719 c = isl_inequality_alloc(isl_local_space_copy(ls));
720 c = isl_constraint_set_coefficient_si(c, isl_dim_out,
721 first + i + tile_len, -1);
722 c = isl_constraint_set_constant_si(c, tile_size[i] - 1);
723 bmap = isl_basic_map_add_constraint(bmap, c);
726 isl_local_space_free(ls);
728 return isl_map_from_basic_map(bmap);
731 /* Construct a map from a domain of dimensionality "len"
732 * to a domain of dimensionality "len" + "wrap_len" that "wraps"
733 * the "wrap_len" coordinates starting at "first" according to "wrap_size".
734 * In particular, [s_i] -> [s_i, s_i % wrap_size[i]].
735 * To do so, we need extra variables corresponding to [s_i / wrap_size[i]],
736 * that are projected out at the end.
737 * "dim" prescribes the parameters.
739 static __isl_give isl_map *wrap(__isl_take isl_space *dim, int len,
740 int first, int wrap_len, int *wrap_size)
742 int i;
743 isl_basic_map *bmap;
744 isl_constraint *c;
745 isl_local_space *ls;
747 dim = isl_space_add_dims(dim, isl_dim_in, len);
748 dim = isl_space_add_dims(dim, isl_dim_out, len + 2 * wrap_len);
749 bmap = isl_basic_map_universe(isl_space_copy(dim));
750 ls = isl_local_space_from_space(dim);
752 for (i = 0; i < len; ++i) {
753 int k = i < first + wrap_len ? i : i + 2 * wrap_len;
755 c = isl_equality_alloc(isl_local_space_copy(ls));
756 c = isl_constraint_set_coefficient_si(c, isl_dim_in, i, -1);
757 c = isl_constraint_set_coefficient_si(c, isl_dim_out, k, 1);
758 bmap = isl_basic_map_add_constraint(bmap, c);
761 for (i = 0; i < wrap_len; ++i) {
762 c = isl_equality_alloc(isl_local_space_copy(ls));
763 c = isl_constraint_set_coefficient_si(c, isl_dim_out,
764 first + i, -1);
765 c = isl_constraint_set_coefficient_si(c, isl_dim_out,
766 first + wrap_len + i, 1);
767 c = isl_constraint_set_coefficient_si(c, isl_dim_out,
768 first + 2 * wrap_len + i, wrap_size[i]);
769 bmap = isl_basic_map_add_constraint(bmap, c);
771 c = isl_inequality_alloc(isl_local_space_copy(ls));
772 c = isl_constraint_set_coefficient_si(c, isl_dim_out,
773 first + wrap_len + i, 1);
774 bmap = isl_basic_map_add_constraint(bmap, c);
776 c = isl_inequality_alloc(isl_local_space_copy(ls));
777 c = isl_constraint_set_coefficient_si(c, isl_dim_out,
778 first + wrap_len + i, -1);
779 c = isl_constraint_set_constant_si(c, wrap_size[i] - 1);
780 bmap = isl_basic_map_add_constraint(bmap, c);
783 isl_local_space_free(ls);
785 bmap = isl_basic_map_project_out(bmap, isl_dim_out,
786 first + 2 * wrap_len, wrap_len);
788 return isl_map_from_basic_map(bmap);
791 /* Add "n" parameters named prefix%d.
793 static __isl_give isl_set *add_params( __isl_take isl_set *set,
794 int n, const char *prefix)
796 int i;
797 unsigned nparam;
798 char name[20];
800 nparam = isl_set_dim(set, isl_dim_param);
801 set = isl_set_add_dims(set, isl_dim_param, n);
803 for (i = 0; i < n; ++i) {
804 snprintf(name, sizeof(name), "%s%d", prefix, i);
805 set = isl_set_set_dim_name(set, isl_dim_param,
806 nparam + i, name);
809 return set;
812 /* Equate the "n" dimensions of "set" starting at "first" to
813 * freshly created parameters named prefix%d.
815 static __isl_give isl_set *parametrize(__isl_take isl_set *set,
816 int first, int n, const char *prefix)
818 int i;
819 unsigned nparam;
821 nparam = isl_set_dim(set, isl_dim_param);
823 set = add_params(set, n, prefix);
825 for (i = 0; i < n; ++i)
826 set = isl_set_equate(set, isl_dim_param, nparam + i,
827 isl_dim_set, first + i);
829 return set;
832 /* Given a parameter space "space", create a set of dimension "len"
833 * of which the "n" dimensions starting at "first" are equated to
834 * freshly created parameters named prefix%d.
836 static __isl_give isl_set *parametrization(__isl_take isl_space *space,
837 int len, int first, int n, const char *prefix)
839 isl_set *set;
841 space = isl_space_set_from_params(space);
842 space = isl_space_add_dims(space, isl_dim_set, len);
843 set = isl_set_universe(space);
845 return parametrize(set, first, n, prefix);
848 /* Tile the B loops over the tile sizes and then tile/wrap
849 * the T1 loops over the blocks.
851 static __isl_give isl_union_map *tile_schedule(struct gpu_gen *gen,
852 __isl_take isl_union_map *sched)
854 isl_space *dim;
855 isl_map *tiling, *block_tiling;
857 dim = isl_union_map_get_space(sched);
858 tiling = tile(isl_space_copy(dim), gen->untiled_len,
859 gen->tile_first, gen->tile_len, gen->tile_size);
861 if (gen->options->wrap)
862 block_tiling = wrap(dim, gen->untiled_len + gen->tile_len,
863 gen->tile_first, gen->n_grid, gen->grid_dim);
864 else
865 block_tiling = tile(dim, gen->untiled_len + gen->tile_len,
866 gen->tile_first, gen->n_grid, gen->grid_dim);
868 gen->tiled_len = gen->untiled_len + gen->tile_len + gen->n_grid;
870 tiling = isl_map_apply_range(tiling, block_tiling);
872 sched = isl_union_map_apply_range(sched,
873 isl_union_map_from_map(tiling));
875 gen->shared_len = gen->tile_first + gen->tile_len + gen->n_grid;
877 return sched;
880 /* Equate the "T1P" iterators in the tiled schedule "sched"
881 * to the block dimensions.
883 static __isl_give isl_union_map *parametrize_tiled_schedule(
884 struct gpu_gen *gen, __isl_take isl_union_map *sched)
886 isl_space *dim;
887 isl_set *par;
889 dim = isl_union_map_get_space(sched);
890 par = parametrization(dim, gen->tiled_len,
891 gen->tile_first + gen->n_grid, gen->n_grid, "b");
892 sched = isl_union_map_intersect_range(sched,
893 isl_union_set_from_set(par));
895 return sched;
898 /* Tile/wrap the P1 loops over the threads.
900 static __isl_give isl_union_map *thread_tile_schedule(struct gpu_gen *gen,
901 __isl_take isl_union_map *sched)
903 isl_space *dim;
904 isl_map *tiling;
905 isl_set *par;
907 dim = isl_union_map_get_space(sched);
909 if (gen->options->wrap)
910 tiling = wrap(isl_space_copy(dim), gen->tiled_len,
911 gen->shared_len, gen->n_block, gen->block_dim);
912 else
913 tiling = tile(isl_space_copy(dim), gen->tiled_len,
914 gen->shared_len, gen->n_block, gen->block_dim);
915 gen->thread_tiled_len = gen->tiled_len + gen->n_block;
917 sched = isl_union_map_apply_range(sched,
918 isl_union_map_from_map(tiling));
920 par = parametrization(dim, gen->thread_tiled_len,
921 gen->tile_first + gen->tile_len + gen->n_grid + gen->n_block,
922 gen->n_block, "t");
923 sched = isl_union_map_intersect_range(sched,
924 isl_union_set_from_set(par));
926 gen->shared_len = gen->tile_first + gen->tile_len + gen->n_grid;
928 return sched;
931 /* If the user asked for it, scale the shared memory tile loops
932 * (T1T and T2) of "sched" by gen->tile_size[i].
933 * If we are not performing "wrapping", then additionally scale the T1P
934 * loops by gen->grid_dim[i].
936 static __isl_give isl_union_map *scale_tile_loops(struct gpu_gen *gen,
937 __isl_take isl_union_map *sched)
939 int i;
940 isl_space *dim;
941 isl_basic_map *scale;
942 isl_constraint *c;
943 isl_local_space *ls;
945 if (!gen->options->scale_tile_loops)
946 return sched;
948 dim = isl_union_map_get_space(sched);
949 dim = isl_space_add_dims(dim, isl_dim_in, gen->tiled_len);
950 dim = isl_space_add_dims(dim, isl_dim_out, gen->tiled_len);
951 scale = isl_basic_map_universe(isl_space_copy(dim));
952 ls = isl_local_space_from_space(dim);
954 for (i = 0; i < gen->tiled_len; ++i) {
955 int f = 1;
957 if (i >= gen->tile_first && i < gen->tile_first + gen->n_grid) {
958 f = gen->tile_size[i - gen->tile_first];
959 if (!gen->options->wrap)
960 f *= gen->grid_dim[i - gen->tile_first];
961 } else if (i >= gen->tile_first + gen->n_grid &&
962 i < gen->tile_first + gen->n_grid + gen->tile_len) {
963 f = gen->tile_size[i - (gen->tile_first + gen->n_grid)];
966 c = isl_equality_alloc(isl_local_space_copy(ls));
967 c = isl_constraint_set_coefficient_si(c, isl_dim_in, i, f);
968 c = isl_constraint_set_coefficient_si(c, isl_dim_out, i, -1);
969 scale = isl_basic_map_add_constraint(scale, c);
972 isl_local_space_free(ls);
974 sched = isl_union_map_apply_range(sched,
975 isl_union_map_from_map(isl_map_from_basic_map(scale)));
977 return sched;
980 /* If we are not performing "wrapping" and if the user asked for it,
981 * scale the thread tile loops (P1T) of "sched" by gen->block_dim[i].
983 static __isl_give isl_union_map *scale_thread_tile_loops(struct gpu_gen *gen,
984 __isl_take isl_union_map *sched)
986 int i;
987 isl_space *dim;
988 isl_basic_map *scale;
989 isl_constraint *c;
990 isl_local_space *ls;
992 if (gen->options->wrap)
993 return sched;
994 if (!gen->options->scale_tile_loops)
995 return sched;
997 dim = isl_union_map_get_space(sched);
998 dim = isl_space_add_dims(dim, isl_dim_in, gen->thread_tiled_len);
999 dim = isl_space_add_dims(dim, isl_dim_out, gen->thread_tiled_len);
1000 scale = isl_basic_map_universe(isl_space_copy(dim));
1001 ls = isl_local_space_from_space(dim);
1003 for (i = 0; i < gen->thread_tiled_len; ++i) {
1004 int f = 1;
1006 if (i >= gen->shared_len &&
1007 i < gen->shared_len + gen->n_block)
1008 f = gen->block_dim[i - gen->shared_len];
1010 c = isl_equality_alloc(isl_local_space_copy(ls));
1011 c = isl_constraint_set_coefficient_si(c, isl_dim_in, i, f);
1012 c = isl_constraint_set_coefficient_si(c, isl_dim_out, i, -1);
1013 scale = isl_basic_map_add_constraint(scale, c);
1016 isl_local_space_free(ls);
1018 sched = isl_union_map_apply_range(sched,
1019 isl_union_map_from_map(isl_map_from_basic_map(scale)));
1021 return sched;
1024 /* If we are not performing "wrapping" and if the user asked for it,
1025 * scale the "n_tile" loops starting at "first" of "sched" by gen->block_dim[i].
1027 static __isl_give isl_union_map *scale_access_tile_loops(struct gpu_gen *gen,
1028 __isl_take isl_union_map *sched, int len, int first, int n_tile)
1030 int i;
1031 isl_space *dim;
1032 isl_basic_map *scale;
1033 isl_constraint *c;
1034 isl_local_space *ls;
1036 if (gen->options->wrap)
1037 return sched;
1038 if (!gen->options->scale_tile_loops)
1039 return sched;
1041 dim = isl_union_map_get_space(sched);
1042 dim = isl_space_add_dims(dim, isl_dim_in, len);
1043 dim = isl_space_add_dims(dim, isl_dim_out, len);
1044 scale = isl_basic_map_universe(isl_space_copy(dim));
1045 ls = isl_local_space_from_space(dim);
1047 for (i = 0; i < len; ++i) {
1048 int f = 1;
1050 if (i >= first && i < first + n_tile)
1051 f = gen->kernel->block_dim[i - first];
1053 c = isl_equality_alloc(isl_local_space_copy(ls));
1054 c = isl_constraint_set_coefficient_si(c, isl_dim_in, i, f);
1055 c = isl_constraint_set_coefficient_si(c, isl_dim_out, i, -1);
1056 scale = isl_basic_map_add_constraint(scale, c);
1059 isl_local_space_free(ls);
1061 sched = isl_union_map_apply_range(sched,
1062 isl_union_map_from_map(isl_map_from_basic_map(scale)));
1064 return sched;
1067 /* Add "len" parameters p[i] called prefix%d,
1068 * with bounds to 0 <= p[i] < size[i].
1070 __isl_give isl_set *add_bounded_parameters(__isl_take isl_set *set,
1071 int len, int *size, const char *prefix)
1073 int i;
1074 unsigned nparam;
1075 isl_space *dim;
1076 isl_basic_set *bset;
1077 isl_constraint *c;
1078 isl_local_space *ls;
1079 char name[20];
1081 nparam = isl_set_dim(set, isl_dim_param);
1082 set = isl_set_add_dims(set, isl_dim_param, len);
1084 for (i = 0; i < len; ++i) {
1085 snprintf(name, sizeof(name), "%s%d", prefix, i);
1086 set = isl_set_set_dim_name(set, isl_dim_param,
1087 nparam + i, name);
1090 dim = isl_set_get_space(set);
1091 bset = isl_basic_set_universe(isl_space_copy(dim));
1092 ls = isl_local_space_from_space(dim);
1094 for (i = 0; i < len; ++i) {
1095 c = isl_inequality_alloc(isl_local_space_copy(ls));
1096 c = isl_constraint_set_coefficient_si(c, isl_dim_param,
1097 nparam + i, 1);
1098 bset = isl_basic_set_add_constraint(bset, c);
1100 c = isl_inequality_alloc(isl_local_space_copy(ls));
1101 c = isl_constraint_set_coefficient_si(c, isl_dim_param,
1102 nparam + i, -1);
1103 c = isl_constraint_set_constant_si(c, size[i] - 1);
1104 bset = isl_basic_set_add_constraint(bset, c);
1107 isl_local_space_free(ls);
1109 return isl_set_intersect(set, isl_set_from_basic_set(bset));
1112 /* Add "len" parameters p[i] called prefix%d,
1113 * with bounds to 0 <= p[i] < size[i].
1115 static __isl_give isl_set *add_bounded_parameters_dynamic(
1116 __isl_take isl_set *set, __isl_keep isl_multi_pw_aff *size,
1117 const char *prefix)
1119 int i, len;
1120 unsigned nparam;
1121 isl_space *space;
1122 isl_local_space *ls;
1123 char name[20];
1125 len = isl_multi_pw_aff_dim(size, isl_dim_out);
1126 nparam = isl_set_dim(set, isl_dim_param);
1127 set = isl_set_add_dims(set, isl_dim_param, len);
1129 for (i = 0; i < len; ++i) {
1130 snprintf(name, sizeof(name), "%s%d", prefix, i);
1131 set = isl_set_set_dim_name(set, isl_dim_param,
1132 nparam + i, name);
1135 space = isl_space_params(isl_set_get_space(set));
1136 ls = isl_local_space_from_space(space);
1137 for (i = 0; i < len; ++i) {
1138 isl_pw_aff *param, *size_i, *zero;
1139 isl_set *bound;
1141 param = isl_pw_aff_var_on_domain(isl_local_space_copy(ls),
1142 isl_dim_param, nparam + i);
1144 size_i = isl_multi_pw_aff_get_pw_aff(size, i);
1145 bound = isl_pw_aff_lt_set(isl_pw_aff_copy(param), size_i);
1146 set = isl_set_intersect_params(set, bound);
1148 zero = isl_pw_aff_zero_on_domain(isl_local_space_copy(ls));
1149 bound = isl_pw_aff_ge_set(param, zero);
1150 set = isl_set_intersect_params(set, bound);
1152 isl_local_space_free(ls);
1154 return set;
1157 /* Given a mapping "sched" of the form
1159 * [D -> A] -> [D -> T(A)]
1161 * apply the mapping encoded in tile->bound[i].shift_map
1162 * to the range of "sched".
1163 * The mappings in tile->bound[i].shift_map are of the form
1165 * [D -> a] -> [D -> s(D,a)]
1167 * We first compose them with a mapping
1169 * [D -> v] -> v
1171 * (If tile->bound[i].shift_map is not set, then it is assumed to be
1172 * an identity mapping and then we use this second mapping instead.)
1173 * This results in
1175 * [D -> a] -> s(D,a)
1177 * We precompose them with a projection on the i th dimension to obtain
1179 * [D -> T] -> s(D,T)
1181 * and collect these into
1183 * [D -> T] -> S(D,T)
1185 * Introducing D in the range yields
1187 * [D -> T] -> [D -> S(D,T)]
1189 * and application to "sched" yields
1191 * [D -> A] -> [D -> S(D,T(A))]
1193 static __isl_give isl_map *pre_shift(__isl_take isl_map *sched,
1194 struct gpu_array_tile *tile)
1196 int i;
1197 isl_ctx *ctx = isl_map_get_ctx(sched);
1198 isl_space *space, *space2;
1199 isl_basic_map *def;
1200 isl_map *map, *id, *pre_shift;
1202 space = isl_space_range(isl_map_get_space(sched));
1203 space2 = isl_space_from_domain(isl_space_copy(space));
1204 pre_shift = isl_map_universe(space2);
1205 space = isl_space_domain(isl_space_unwrap(space));
1206 id = isl_map_identity(isl_space_map_from_set(isl_space_copy(space)));
1207 space = isl_space_from_domain(space);
1208 space = isl_space_add_dims(space, isl_dim_out, 1);
1209 def = isl_basic_map_range_map(isl_basic_map_universe(space));
1211 for (i = 0; i < tile->n; ++i) {
1212 isl_basic_map *bmap, *drop;
1213 isl_map *proj;
1215 space = isl_space_alloc(ctx, 0, tile->n, tile->n);
1216 proj = isl_map_identity(space);
1217 proj = isl_map_project_out(proj, isl_dim_out,
1218 i + 1, tile->n - (i + 1));
1219 proj = isl_map_project_out(proj, isl_dim_out, 0, i);
1220 proj = isl_map_product(isl_map_copy(id), proj);
1222 if (!tile->bound[i].shift_map)
1223 bmap = isl_basic_map_copy(def);
1224 else {
1225 bmap = isl_basic_map_copy(tile->bound[i].shift_map);
1226 bmap = isl_basic_map_apply_range(bmap,
1227 isl_basic_map_copy(def));
1230 map = isl_map_from_basic_map(bmap);
1231 map = isl_map_apply_range(proj, map);
1232 pre_shift = isl_map_flat_range_product(pre_shift, map);
1235 isl_map_free(id);
1236 isl_basic_map_free(def);
1238 space = isl_space_domain(isl_map_get_space(pre_shift));
1239 map = isl_map_domain_map(isl_map_universe(isl_space_unwrap(space)));
1240 pre_shift = isl_map_range_product(map, pre_shift);
1242 sched = isl_map_apply_range(sched, pre_shift);
1244 return sched;
1247 /* Given an access relation to a tile of an array, construct a map that
1248 * maps each element in the space of the access relation
1249 * to a copy of the tile shifted to the origin
1250 * (based on the lower bounds in group->private_tile or group->shared_tile).
1251 * If any of the indices is strided, then
1252 * {private,shared}_tile->bound[i].shift_map is applied to the index first.
1253 * The domain space of the resulting map is that of access "access",
1254 * while the range space is anonymous.
1255 * The resulting map only encodes the mapping to the shift tile and
1256 * not the constraints of "access".
1258 * Let the space of the access relation be
1260 * D -> A
1262 * We first construct an identity relation on a wrapped copy of this space,
1263 * except that it strips off the name of array
1265 * [D -> A] -> [D -> T(A)] (1)
1267 * The bounds in tile->bound[i].lb are of the form
1269 * D -> b(D)
1271 * We collect them into
1273 * D -> B(D)
1275 * and then transform them into
1277 * [D -> T] -> T - B(D) (2)
1279 * Combining those two mappings (1) and (2) yields
1281 * [D -> A] -> T(A) - B(D)
1283 * If there are any strides, then (1) is first transformed into (1')
1285 * [D -> A] -> [D -> T'(A)] (1')
1287 * by a call to pre_shift.
1289 static __isl_give isl_map *shift_access(__isl_take isl_map *access,
1290 struct gpu_array_ref_group *group)
1292 int i;
1293 isl_space *space;
1294 isl_map *id1, *id2;
1295 isl_map *map;
1296 isl_map *shift;
1297 isl_map *sched;
1298 struct gpu_array_tile *tile;
1299 int n_index = group->array->n_index;
1301 tile = group->private_tile;
1302 if (!tile)
1303 tile = group->shared_tile;
1305 space = isl_space_domain(isl_map_get_space(access));
1306 space = isl_space_map_from_set(space);
1307 id1 = isl_map_identity(space);
1308 space = isl_space_range(isl_map_get_space(access));
1309 space = isl_space_map_from_set(space);
1310 space = isl_space_set_tuple_name(space, isl_dim_out, NULL);
1311 id2 = isl_map_identity(space);
1312 sched = isl_map_product(id1, id2);
1314 space = isl_space_unwrap(isl_space_range(isl_map_get_space(sched)));
1315 space = isl_space_from_domain(isl_space_domain(space));
1316 shift = isl_map_universe(space);
1317 for (i = 0; i < n_index; ++i) {
1318 map = isl_map_from_aff(isl_aff_copy(tile->bound[i].lb));
1319 shift = isl_map_flat_range_product(shift, map);
1322 space = isl_space_unwrap(isl_space_range(isl_map_get_space(sched)));
1323 map = isl_map_universe(space);
1324 id1 = isl_map_range_map(isl_map_copy(map));
1325 map = isl_map_domain_map(map);
1326 shift = isl_map_neg(shift);
1327 shift = isl_map_apply_range(map, shift);
1328 shift = isl_map_sum(id1, shift);
1330 for (i = 0; i < n_index; ++i)
1331 if (tile->bound[i].shift_map)
1332 break;
1334 if (i < n_index)
1335 sched = pre_shift(sched, tile);
1337 sched = isl_map_apply_range(sched, shift);
1339 isl_map_free(access);
1341 return sched;
1344 /* Does "map" have an obviously fixed value at variable "pos" of "type"?
1346 static int map_plain_is_fixed(isl_map *map, enum isl_dim_type type,
1347 unsigned pos)
1349 isl_val *v;
1350 int fixed;
1352 v = isl_map_plain_get_val_if_fixed(map, type, pos);
1353 if (!v)
1354 return -1;
1355 fixed = isl_val_is_int(v);
1356 isl_val_free(v);
1358 return fixed;
1361 /* Given a schedule that iterates over all elements in a piece of an array,
1362 * perform tiling/wrapping over the threads.
1364 * In particular, we tile the final iterators so that the final thread
1365 * dimension runs over the final array dimension.
1366 * However, if those final iterators have only a single iteration,
1367 * we try to tile earlier iterators instead.
1369 static __isl_give isl_map *tile_access_schedule(struct gpu_gen *gen,
1370 __isl_take isl_map *sched)
1372 isl_space *dim;
1373 isl_union_map *usched;
1374 isl_map *tiling;
1375 isl_set *par;
1376 unsigned nvar = isl_map_dim(sched, isl_dim_out);
1377 int n_tile;
1378 int first;
1380 n_tile = gen->kernel->n_block;
1381 if (n_tile > nvar) {
1382 int i;
1383 sched = isl_map_insert_dims(sched,
1384 isl_dim_out, 0, n_tile - nvar);
1385 for (i = 0; i < n_tile - nvar; ++i)
1386 sched = isl_map_fix_si(sched, isl_dim_out, i, 0);
1387 nvar = n_tile;
1390 first = nvar - n_tile;
1392 for (; first > 0; first --)
1393 if (!map_plain_is_fixed(sched, isl_dim_out, first + n_tile - 1))
1394 break;
1396 dim = isl_map_get_space(sched);
1397 dim = isl_space_params(dim);
1398 if (gen->options->wrap)
1399 tiling = wrap(isl_space_copy(dim), nvar, first,
1400 n_tile, gen->kernel->block_dim);
1401 else
1402 tiling = tile(isl_space_copy(dim), nvar, first,
1403 n_tile, gen->kernel->block_dim);
1404 sched = isl_map_apply_range(sched, tiling);
1406 par = parametrization(dim, nvar + n_tile, first + n_tile, n_tile, "t");
1407 sched = isl_map_intersect_range(sched, par);
1409 usched = isl_union_map_from_map(sched);
1410 usched = scale_access_tile_loops(gen, usched, nvar + n_tile,
1411 first, n_tile);
1412 sched = isl_map_from_union_map(usched);
1414 return sched;
1417 /* Given an index expression "pa" into a tile of an array, adjust the expression
1418 * to a shift of the tile to the origin
1419 * (based on the lower bounds in "bound".
1420 * If the index is strided, then we first add
1421 * bound->shift and divide by bound->stride.
1422 * In the end, we compute the gist with respect to "domain".
1424 * All of the input expression "pa", the set "domain" and
1425 * the output are expressed in terms of the AST schedule domain.
1426 * The expressions in "bound" are expressed
1427 * in terms of the first shared_len dimensions of the schedule computed by PPCG.
1428 * The mapping "sched2shared" maps the former domain to the latter domain.
1430 static __isl_give isl_pw_aff *shift_index(__isl_take isl_pw_aff *pa,
1431 struct gpu_array_info *array,
1432 struct gpu_array_bound *bound, __isl_take isl_set *domain,
1433 __isl_take isl_map *sched2shared)
1435 isl_map *map;
1436 isl_pw_aff *tmp;
1437 isl_pw_multi_aff *pma;
1439 if (bound->shift) {
1440 map = isl_map_from_aff(isl_aff_copy(bound->shift));
1441 map = isl_map_apply_range(isl_map_copy(sched2shared), map);
1442 pma = isl_pw_multi_aff_from_map(map);
1443 tmp = isl_pw_multi_aff_get_pw_aff(pma, 0);
1444 isl_pw_multi_aff_free(pma);
1445 pa = isl_pw_aff_add(pa, tmp);
1446 pa = isl_pw_aff_scale_down_val(pa, isl_val_copy(bound->stride));
1450 map = isl_map_from_aff(isl_aff_copy(bound->lb));
1451 map = isl_map_apply_range(sched2shared, map);
1452 pma = isl_pw_multi_aff_from_map(map);
1453 tmp = isl_pw_multi_aff_get_pw_aff(pma, 0);
1454 isl_pw_multi_aff_free(pma);
1455 pa = isl_pw_aff_sub(pa, tmp);
1456 pa = isl_pw_aff_coalesce(pa);
1457 pa = isl_pw_aff_gist(pa, domain);
1459 return pa;
1462 /* Return the union of all read (read = 1) and/or write (write = 1)
1463 * access relations in the group.
1465 static __isl_give isl_union_map *group_access_relation(
1466 struct gpu_array_ref_group *group, int read, int write)
1468 int i;
1469 isl_union_map *access;
1471 access = isl_union_map_empty(isl_map_get_space(group->access));
1472 for (i = 0; i < group->n_ref; ++i) {
1473 isl_map *map_i;
1475 if (!((read && group->refs[i]->read) ||
1476 (write && group->refs[i]->write)))
1477 continue;
1478 map_i = isl_map_copy(group->refs[i]->access);
1479 access = isl_union_map_union(access,
1480 isl_union_map_from_map(map_i));
1483 return access;
1486 /* Return a map from the first shared_len dimensions of the computed
1487 * schedule to the values of the given index "i"
1488 * of the elements in the array tile in global memory that corresponds
1489 * to the shared memory copy.
1490 * In particular, if a is the index, then the range of the map
1492 * { D -> [a] }
1494 * is constrained as follows
1496 * tile_offset(D) <= a <= tile_offset(D) + tile_size - 1 (1)
1498 * and
1500 * 0 <= a <= array_size - 1 (2)
1503 * Note that if some stride has been detected (i.e., when
1504 * group->shared_tile->bound[i].shift is set), then offset and size (i.e.,
1505 * constraints (1)) apply to the shifted and scaled down copy of the tile.
1506 * These constraints therefore have to be mapped back to the original
1507 * array space using the inverse of the shift_map.
1509 static __isl_give isl_map *group_tile_dim(struct gpu_array_ref_group *group,
1510 int i)
1512 isl_aff *aff;
1513 isl_space *space;
1514 isl_map *map, *tile, *gt;
1515 isl_set *bound;
1517 map = isl_map_from_aff(isl_aff_copy(group->shared_tile->bound[i].lb));
1518 space = isl_space_range(isl_map_get_space(map));
1519 map = isl_map_apply_range(map, isl_map_lex_le(isl_space_copy(space)));
1520 tile = map;
1522 aff = isl_aff_copy(group->shared_tile->bound[i].lb);
1523 aff = isl_aff_add_constant_val(aff,
1524 isl_val_copy(group->shared_tile->bound[i].size));
1525 map = isl_map_from_aff(aff);
1526 gt = isl_map_lex_gt(space);
1527 map = isl_map_apply_range(map, isl_map_copy(gt));
1528 tile = isl_map_intersect(tile, map);
1530 if (group->shared_tile->bound[i].shift) {
1531 isl_basic_map *shift;
1532 shift = isl_basic_map_copy(group->shared_tile->bound[i].shift_map);
1533 shift = isl_basic_map_reverse(shift);
1534 tile = isl_set_unwrap(isl_set_apply(isl_map_wrap(tile),
1535 isl_map_from_basic_map(shift)));
1538 tile = isl_map_lower_bound_si(tile, isl_dim_out, 0, 0);
1540 bound = isl_set_from_pw_aff(isl_pw_aff_copy(group->array->bound[i]));
1541 bound = isl_set_apply(bound, gt);
1542 tile = isl_map_intersect_range(tile, bound);
1544 return tile;
1547 /* Return a map from the first shared_len dimensions of the computed
1548 * schedule to the array tile in
1549 * global memory that corresponds to the shared memory copy.
1551 static __isl_give isl_map *group_tile(struct gpu_array_ref_group *group)
1553 int i;
1554 int n_index = group->array->n_index;
1555 isl_map *tile;
1557 tile = group_tile_dim(group, 0);
1558 for (i = 1; i < n_index; ++i) {
1559 isl_map *tile_i;
1561 tile_i = group_tile_dim(group, i);
1562 tile = isl_map_flat_range_product(tile, tile_i);
1565 tile = isl_map_set_tuple_name(tile, isl_dim_out, group->array->name);
1567 return tile;
1570 /* Given a mapping "sched" from the AST schedule to a domain,
1571 * return the corresponding mapping from the AST schedule to
1572 * to the first shared_len dimensions of the schedule computed by PPCG.
1574 static __isl_give isl_map *compute_sched_to_shared(struct gpu_gen *gen,
1575 __isl_take isl_map *sched)
1577 isl_union_map *umap;
1578 isl_space *space;
1579 isl_map *map;
1581 space = isl_space_range(isl_map_get_space(sched));
1582 space = isl_space_from_domain(space);
1583 space = isl_space_add_dims(space, isl_dim_out, gen->shared_len);
1585 umap = isl_union_map_copy(gen->shared_sched);
1586 umap = isl_union_map_apply_range(umap,
1587 isl_union_map_copy(gen->shared_proj));
1588 map = isl_union_map_extract_map(umap, space);
1589 isl_union_map_free(umap);
1591 sched = isl_map_apply_range(sched, map);
1592 sched = isl_map_detect_equalities(sched);
1594 return sched;
1597 /* Set unroll[j] if the input dimension j is involved in
1598 * the index expression represented by ma.
1600 static int check_unroll(__isl_take isl_set *set, __isl_take isl_multi_aff *ma,
1601 void *user)
1603 int i, j;
1604 int n_in = isl_multi_aff_dim(ma, isl_dim_in);
1605 int n_out = isl_multi_aff_dim(ma, isl_dim_out);
1606 int *unroll = user;
1608 for (i = 0; i < n_out; ++i) {
1609 isl_aff *aff;
1611 aff = isl_multi_aff_get_aff(ma, i);
1612 for (j = 0; j < n_in; ++j)
1613 if (isl_aff_involves_dims(aff, isl_dim_in, j, 1))
1614 unroll[j] = 1;
1615 isl_aff_free(aff);
1618 isl_set_free(set);
1619 isl_multi_aff_free(ma);
1620 return 0;
1623 /* Given an array pos mapping input dimensions to the corresponding
1624 * output dimension, construct the corresponding map.
1626 static __isl_give isl_map *permutation(__isl_take isl_space *dim,
1627 int *pos, int len)
1629 int i;
1630 isl_constraint *c;
1631 isl_basic_map *bmap;
1632 isl_local_space *ls;
1634 dim = isl_space_add_dims(dim, isl_dim_in, len);
1635 dim = isl_space_add_dims(dim, isl_dim_out, len);
1636 bmap = isl_basic_map_universe(isl_space_copy(dim));
1637 ls = isl_local_space_from_space(dim);
1639 for (i = 0; i < len; ++i) {
1640 c = isl_equality_alloc(isl_local_space_copy(ls));
1641 c = isl_constraint_set_coefficient_si(c, isl_dim_in, i,
1642 -1);
1643 c = isl_constraint_set_coefficient_si(c, isl_dim_out, pos[i],
1645 bmap = isl_basic_map_add_constraint(bmap, c);
1647 isl_local_space_free(ls);
1649 return isl_map_from_basic_map(bmap);
1652 /* Find all loops involved in any of the index expressions for any of
1653 * the private accesses, move them innermost and then mark them as
1654 * requiring unrolling by setting gen->first_unroll.
1655 * The loops involved should all be parallel because of the checks
1656 * we performed in check_private_group_access. Moving them innermost
1657 * is therefore a valid transformation.
1659 * Loops up to gen->shared_len are generated before the mapping to
1660 * threads is applied. They should therefore be ignored.
1662 * We compute the hidden equalities of the schedule first
1663 * since we will need them in our calls to isl_pw_multi_aff_from_map
1664 * and because we want to make sure that the same equalities
1665 * are also available to the code generator.
1667 static __isl_give isl_union_map *interchange_for_unroll(struct gpu_gen *gen,
1668 __isl_take isl_union_map *sched)
1670 int i, j;
1671 int unroll[gen->thread_tiled_len];
1672 int perm[gen->thread_tiled_len];
1673 isl_space *dim;
1674 isl_map *permute;
1675 int len = gen->shared_len + gen->n_parallel + gen->n_block;
1677 gen->first_unroll = -1;
1679 sched = isl_union_map_detect_equalities(sched);
1680 for (i = 0; i < gen->thread_tiled_len; ++i)
1681 unroll[i] = 0;
1682 for (i = 0; i < gen->prog->n_array; ++i) {
1683 struct gpu_array_info *array = &gen->prog->array[i];
1685 for (j = 0; j < array->n_group; ++j) {
1686 isl_union_map *access;
1687 isl_map *acc;
1688 isl_pw_multi_aff *pma;
1690 if (!array->groups[j]->private_tile)
1691 continue;
1693 access = group_access_relation(array->groups[j], 1, 1);
1694 access = isl_union_map_apply_domain(access,
1695 isl_union_map_copy(sched));
1697 acc = isl_map_from_union_map(access);
1698 pma = isl_pw_multi_aff_from_map(acc);
1699 isl_pw_multi_aff_foreach_piece(pma,
1700 &check_unroll, unroll);
1702 isl_pw_multi_aff_free(pma);
1706 for (i = gen->shared_len; i < len; ++i)
1707 if (unroll[i])
1708 break;
1710 if (i >= len)
1711 return sched;
1713 for (i = len; i < gen->thread_tiled_len; ++i)
1714 if (unroll[i])
1715 return sched;
1717 j = 0;
1718 for (i = 0; i < gen->shared_len; ++i)
1719 perm[i] = j++;
1720 for (i = gen->shared_len; i < gen->thread_tiled_len; ++i)
1721 if (!unroll[i])
1722 perm[i] = j++;
1723 gen->first_unroll = j - gen->shared_len;
1724 for (i = gen->shared_len; i < len; ++i)
1725 if (unroll[i])
1726 perm[i] = j++;
1728 dim = isl_union_map_get_space(sched);
1729 permute = permutation(dim, perm, gen->thread_tiled_len);
1730 sched = isl_union_map_apply_range(sched,
1731 isl_union_map_from_map(permute));
1733 return sched;
1736 /* Given a constraint
1738 * a(p,i) + j = g f(e)
1740 * or -a(p,i) - j = g f(e) if sign < 0,
1741 * store a(p,i) in bound->shift and g (stride) in bound->stride.
1742 * a(p,i) is assumed to be an expression in only the parameters
1743 * and the input dimensions.
1745 static void extract_stride(__isl_keep isl_constraint *c,
1746 struct gpu_array_bound *bound, __isl_keep isl_val *stride, int sign)
1748 int i;
1749 isl_val *v;
1750 isl_space *space;
1751 unsigned nparam;
1752 unsigned nvar;
1753 isl_aff *aff;
1755 isl_val_free(bound->stride);
1756 bound->stride = isl_val_copy(stride);
1758 space = isl_constraint_get_space(c);
1759 space = isl_space_domain(space);
1761 nparam = isl_space_dim(space, isl_dim_param);
1762 nvar = isl_space_dim(space, isl_dim_set);
1764 v = isl_constraint_get_constant_val(c);
1765 if (sign < 0)
1766 v = isl_val_neg(v);
1767 aff = isl_aff_zero_on_domain(isl_local_space_from_space(space));
1768 aff = isl_aff_set_constant_val(aff, v);
1770 for (i = 0; i < nparam; ++i) {
1771 if (!isl_constraint_involves_dims(c, isl_dim_param, i, 1))
1772 continue;
1773 v = isl_constraint_get_coefficient_val(c, isl_dim_param, i);
1774 if (sign < 0)
1775 v = isl_val_neg(v);
1776 aff = isl_aff_add_coefficient_val(aff, isl_dim_param, i, v);
1779 for (i = 0; i < nvar; ++i) {
1780 if (!isl_constraint_involves_dims(c, isl_dim_in, i, 1))
1781 continue;
1782 v = isl_constraint_get_coefficient_val(c, isl_dim_in, i);
1783 if (sign < 0)
1784 v = isl_val_neg(v);
1785 aff = isl_aff_add_coefficient_val(aff, isl_dim_in, i, v);
1788 bound->shift = aff;
1791 /* Given an equality constraint of a map with a single output dimension j,
1792 * check if the constraint is of the form
1794 * a(p,i) + j = g f(e)
1796 * with a(p,i) an expression in the parameters and input dimensions
1797 * and f(e) an expression in the existentially quantified variables.
1798 * If so, and if g is larger than any such g from a previously considered
1799 * constraint, then call extract_stride to record the stride information
1800 * in bound.
1802 static int check_stride_constraint(__isl_take isl_constraint *c, void *user)
1804 int i;
1805 isl_ctx *ctx;
1806 isl_val *v;
1807 unsigned n_div;
1808 struct gpu_array_bound *bound = user;
1810 ctx = isl_constraint_get_ctx(c);
1811 n_div = isl_constraint_dim(c, isl_dim_div);
1812 v = isl_constraint_get_coefficient_val(c, isl_dim_out, 0);
1814 if (n_div && (isl_val_is_one(v) || isl_val_is_negone(v))) {
1815 int s = isl_val_sgn(v);
1816 isl_val *stride = isl_val_zero(ctx);
1818 isl_val_free(v);
1819 for (i = 0; i < n_div; ++i) {
1820 v = isl_constraint_get_coefficient_val(c,
1821 isl_dim_div, i);
1822 stride = isl_val_gcd(stride, v);
1824 if (!isl_val_is_zero(stride) &&
1825 isl_val_gt(stride, bound->stride))
1826 extract_stride(c, bound, stride, s);
1828 isl_val_free(stride);
1829 } else
1830 isl_val_free(v);
1832 isl_constraint_free(c);
1833 return 0;
1836 /* Given contraints on an array index i, check if we can find
1837 * a shift a(p) and a stride g such that
1839 * a(p) + i = 0 mod g
1841 * If so, record the information in bound and apply the mapping
1842 * i -> (i + a(p))/g to the array index in bounds and return
1843 * the new constraints.
1844 * If not, simply return the original constraints.
1846 * If bounds is a subset of the space
1848 * D -> i
1850 * then the bound recorded in bound->shift is of the form
1852 * D -> s(D)
1854 * with s(D) equal to a(p) above.
1855 * The mapping recorded in bound->shift_map is of the form
1857 * [D -> i] -> [D -> (i + S(D))/g]
1859 * This mapping is computed as follows.
1860 * We first introduce "i" in the domain through precomposition
1861 * with [D -> i] -> D obtaining
1863 * [D -> i] -> s(D)
1865 * Adding [D -> i] -> i produces
1867 * [D -> i] -> i + s(D)
1869 * and the domain product with [D -> i] -> D yields
1871 * [D -> i] -> [D -> i + s(D)]
1873 * Composition with [D -> i] -> [D -> i/g] gives the desired result.
1875 static __isl_give isl_basic_map *check_stride(struct gpu_array_bound *bound,
1876 __isl_take isl_basic_map *bounds)
1878 isl_space *space;
1879 isl_basic_map *hull;
1880 isl_basic_map *shift, *id, *bmap, *scale;
1881 isl_basic_set *bset;
1882 isl_aff *aff;
1884 bound->stride = NULL;
1886 hull = isl_basic_map_affine_hull(isl_basic_map_copy(bounds));
1888 isl_basic_map_foreach_constraint(hull, &check_stride_constraint, bound);
1890 isl_basic_map_free(hull);
1892 if (!bound->stride)
1893 return bounds;
1895 shift = isl_basic_map_from_aff(isl_aff_copy(bound->shift));
1896 space = isl_basic_map_get_space(bounds);
1897 bmap = isl_basic_map_domain_map(isl_basic_map_universe(space));
1898 shift = isl_basic_map_apply_range(bmap, shift);
1899 space = isl_basic_map_get_space(bounds);
1900 id = isl_basic_map_range_map(isl_basic_map_universe(space));
1901 shift = isl_basic_map_sum(id, shift);
1902 space = isl_basic_map_get_space(bounds);
1903 id = isl_basic_map_domain_map(isl_basic_map_universe(space));
1904 shift = isl_basic_map_range_product(id, shift);
1906 space = isl_space_domain(isl_basic_map_get_space(bounds));
1907 id = isl_basic_map_identity(isl_space_map_from_set(space));
1908 space = isl_space_range(isl_basic_map_get_space(bounds));
1909 aff = isl_aff_zero_on_domain(isl_local_space_from_space(space));
1910 aff = isl_aff_add_coefficient_si(aff, isl_dim_in, 0, 1);
1911 aff = isl_aff_scale_down_val(aff, isl_val_copy(bound->stride));
1912 scale = isl_basic_map_from_aff(aff);
1913 scale = isl_basic_map_product(id, scale);
1915 bound->shift_map = isl_basic_map_apply_range(shift, scale);
1916 bmap = isl_basic_map_copy(bound->shift_map);
1917 bset = isl_basic_set_apply(isl_basic_map_wrap(bounds), bmap);
1918 bounds = isl_basic_set_unwrap(bset);
1920 return bounds;
1923 /* Data used in compute_array_dim_size and compute_size_in_direction.
1925 * pos is the position of the variable representing the array index,
1926 * i.e., the variable for which want to compute the size. This variable
1927 * is also the last variable in the set.
1929 struct gpu_size_info {
1930 isl_basic_set *bset;
1931 struct gpu_array_bound *bound;
1932 int pos;
1935 /* Given a constraint from the basic set describing the bounds on
1936 * an array index, check if it is a lower bound, say m i >= b(x), and,
1937 * if so, check whether the expression "i - ceil(b(x)/m) + 1" has a constant
1938 * upper bound. If so, and if this bound is smaller than any bound
1939 * derived from earlier constraints, set the size to this bound on
1940 * the expression and the lower bound to ceil(b(x)/m).
1942 static int compute_size_in_direction(__isl_take isl_constraint *c, void *user)
1944 struct gpu_size_info *size = user;
1945 unsigned nparam;
1946 unsigned n_div;
1947 isl_val *v;
1948 isl_aff *aff;
1949 isl_aff *lb;
1951 nparam = isl_basic_set_dim(size->bset, isl_dim_param);
1952 n_div = isl_constraint_dim(c, isl_dim_div);
1954 if (isl_constraint_involves_dims(c, isl_dim_div, 0, n_div) ||
1955 !isl_constraint_is_lower_bound(c, isl_dim_set, size->pos)) {
1956 isl_constraint_free(c);
1957 return 0;
1960 aff = isl_constraint_get_bound(c, isl_dim_set, size->pos);
1961 aff = isl_aff_ceil(aff);
1963 lb = isl_aff_copy(aff);
1965 aff = isl_aff_neg(aff);
1966 aff = isl_aff_add_coefficient_si(aff, isl_dim_in, size->pos, 1);
1968 v = isl_basic_set_max_val(size->bset, aff);
1969 isl_aff_free(aff);
1971 if (isl_val_is_int(v)) {
1972 v = isl_val_add_ui(v, 1);
1973 if (!size->bound->size || isl_val_lt(v, size->bound->size)) {
1974 isl_val_free(size->bound->size);
1975 size->bound->size = isl_val_copy(v);
1976 lb = isl_aff_drop_dims(lb, isl_dim_in, size->pos, 1);
1977 isl_aff_free(size->bound->lb);
1978 size->bound->lb = isl_aff_copy(lb);
1981 isl_val_free(v);
1982 isl_aff_free(lb);
1984 isl_constraint_free(c);
1986 return 0;
1989 /* Given a basic map "bounds" that maps parameters and input dimensions
1990 * to a single output dimension, look for an expression in the parameters
1991 * and input dimensions such that the range of the output dimension shifted
1992 * by this expression is a constant.
1994 * In particular, we currently only consider lower bounds on the output
1995 * dimension as candidate expressions.
1997 static int compute_array_dim_size(struct gpu_array_bound *bound,
1998 __isl_take isl_basic_map *bounds)
2000 struct gpu_size_info size;
2002 bounds = isl_basic_map_detect_equalities(bounds);
2003 bounds = check_stride(bound, bounds);
2005 bound->size = NULL;
2006 bound->lb = NULL;
2008 size.bound = bound;
2009 size.pos = isl_basic_map_dim(bounds, isl_dim_in);
2010 size.bset = isl_basic_map_wrap(bounds);
2011 size.bset = isl_basic_set_flatten(size.bset);
2012 size.bset = isl_set_simple_hull(isl_basic_set_compute_divs(size.bset));
2013 isl_basic_set_foreach_constraint(size.bset, &compute_size_in_direction,
2014 &size);
2015 isl_basic_set_free(size.bset);
2017 return bound->size ? 0 : -1;
2020 /* Check if we can find a memory tile for the given array
2021 * based on the given accesses, and if so, put the results in "tile".
2023 * We project the accesses on each index in turn and look for a parametric
2024 * offset such that the size is constant.
2026 static int can_tile(__isl_keep isl_map *access, struct gpu_array_tile *tile)
2028 int i;
2030 for (i = 0; i < tile->n; ++i) {
2031 isl_map *access_i;
2032 isl_basic_map *hull;
2034 access_i = isl_map_copy(access);
2035 access_i = isl_map_project_out(access_i, isl_dim_out, 0, i);
2036 access_i = isl_map_project_out(access_i, isl_dim_out,
2037 1, tile->n - (i + 1));
2038 access_i = isl_map_compute_divs(access_i);
2039 hull = isl_map_simple_hull(access_i);
2040 if (compute_array_dim_size(&tile->bound[i], hull) < 0)
2041 return 0;
2044 return 1;
2047 /* Construct a map with input the shared tile loops and the loops that
2048 * will be wrapped around the threads that relates these later loops
2049 * to the thread indices and then projects them out.
2051 static __isl_give isl_map *compute_privatization(struct gpu_gen *gen)
2053 isl_map *priv;
2054 isl_map *tiling;
2055 isl_map *proj;
2056 isl_set *par;
2057 isl_space *dim;
2059 dim = isl_union_map_get_space(gen->shared_sched);
2061 if (gen->options->wrap)
2062 tiling = wrap(isl_space_copy(dim), gen->shared_len + gen->n_block,
2063 gen->shared_len, gen->n_block, gen->block_dim);
2064 else
2065 tiling = tile(isl_space_copy(dim), gen->shared_len + gen->n_block,
2066 gen->shared_len, gen->n_block, gen->block_dim);
2068 priv = tiling;
2070 par = parametrization(dim, gen->shared_len + 2 * gen->n_block,
2071 gen->tile_first + gen->tile_len + gen->n_grid + gen->n_block,
2072 gen->n_block, "t");
2074 priv = isl_map_align_params(priv, isl_set_get_space(par));
2075 priv = isl_map_intersect_range(priv, par);
2077 dim = isl_map_get_space(priv);
2078 dim = isl_space_drop_dims(dim, isl_dim_in, 0, isl_space_dim(dim, isl_dim_in));
2079 dim = isl_space_drop_dims(dim, isl_dim_out, 0, isl_space_dim(dim, isl_dim_out));
2080 proj = projection(dim, gen->shared_len + 2 * gen->n_block,
2081 gen->shared_len);
2083 priv = isl_map_apply_range(priv, proj);
2085 return priv;
2088 /* Construct a map from domain_dim to domain_dim that increments
2089 * the dimension at position "pos" and leaves all other dimensions
2090 * constant.
2092 static __isl_give isl_map *next(__isl_take isl_space *domain_dim, int pos)
2094 int i;
2095 int len = isl_space_dim(domain_dim, isl_dim_set);
2096 isl_space *dim;
2097 isl_basic_map *next;
2098 isl_local_space *ls;
2100 dim = isl_space_map_from_set(domain_dim);
2101 next = isl_basic_map_universe(isl_space_copy(dim));
2102 ls = isl_local_space_from_space(dim);
2104 for (i = 0; i < len; ++i) {
2105 isl_constraint *c;
2107 c = isl_equality_alloc(isl_local_space_copy(ls));
2108 c = isl_constraint_set_coefficient_si(c, isl_dim_in, i, 1);
2109 c = isl_constraint_set_coefficient_si(c, isl_dim_out, i, -1);
2110 if (i == pos)
2111 c = isl_constraint_set_constant_si(c, 1);
2112 next = isl_basic_map_add_constraint(next, c);
2115 isl_local_space_free(ls);
2117 return isl_map_from_basic_map(next);
2120 /* Check if the given access is coalesced.
2121 * That is, check whether incrementing the dimension that will get
2122 * wrapped over the last thread index results in incrementing
2123 * the last array index.
2125 * This function is only called for access relations without reuse.
2127 static int access_is_coalesced(struct gpu_gen *gen,
2128 __isl_keep isl_union_map *access)
2130 isl_space *dim;
2131 isl_map *access_map;
2132 isl_map *next_thread_x;
2133 isl_map *next_element;
2134 isl_map *map;
2135 int coalesced;
2137 access = isl_union_map_copy(access);
2138 access = isl_union_map_apply_domain(access,
2139 isl_union_map_copy(gen->tiled_sched));
2140 access_map = isl_map_from_union_map(access);
2142 dim = isl_map_get_space(access_map);
2143 dim = isl_space_domain(dim);
2144 next_thread_x = next(dim, gen->shared_len + gen->n_block - 1);
2146 dim = isl_map_get_space(access_map);
2147 dim = isl_space_range(dim);
2148 next_element = next(dim, isl_space_dim(dim, isl_dim_set) - 1);
2150 map = isl_map_apply_domain(next_thread_x, isl_map_copy(access_map));
2151 map = isl_map_apply_range(map, access_map);
2153 coalesced = isl_map_is_subset(map, next_element);
2155 isl_map_free(next_element);
2156 isl_map_free(map);
2158 return coalesced;
2161 /* Given an access relation in terms of the first gen->shared_len + gen->n_block
2162 * dimensions of the computed schedule, check if it is bijective for
2163 * fixed values of the first gen->shared_len dimensions.
2164 * We perform this check by equating these dimensions to parameters.
2166 static int access_is_bijective(struct gpu_gen *gen, __isl_keep isl_map *access)
2168 int res;
2169 isl_set *par;
2170 isl_space *space;
2172 access = isl_map_copy(access);
2173 space = isl_space_params(isl_map_get_space(access));
2174 par = parametrization(space, gen->shared_len + gen->n_block,
2175 0, gen->shared_len, "s");
2176 access = isl_map_intersect_domain(access, par);
2177 res = isl_map_is_bijective(access);
2178 isl_map_free(access);
2180 return res;
2183 /* Look for the last shared tile loop that affects the offset of "tile"
2184 * and return the result.
2185 * If there is no such loop, then return the index of the loop
2186 * before the first shared tile loop, in particular gen->tile_first - 1.
2188 static int compute_tile_last_shared(struct gpu_gen *gen,
2189 struct gpu_array_tile *tile)
2191 int i, j;
2193 for (j = gen->shared_len - 1; j >= gen->tile_first; --j) {
2194 for (i = 0; i < tile->n; ++i) {
2195 isl_aff *lb;
2196 isl_aff *shift;
2198 lb = tile->bound[i].lb;
2199 if (isl_aff_involves_dims(lb, isl_dim_in, j, 1))
2200 break;
2202 shift = tile->bound[i].shift;
2203 if (!shift)
2204 continue;
2205 if (isl_aff_involves_dims(shift, isl_dim_in, j, 1))
2206 break;
2208 if (i < tile->n)
2209 break;
2212 return j;
2215 /* Look for the last shared tile loop that affects the offset of the
2216 * shared or private tile and store the result in group->last_shared.
2217 * If there is no such loop, then group->last_shared is set to a value
2218 * before the first shared tile loop, in particular gen->tile_first - 1.
2219 * If there is no tile defined on the array reference group,
2220 * then set group->last_shared to gen->shared_len - 1.
2222 static void set_last_shared(struct gpu_gen *gen,
2223 struct gpu_array_ref_group *group)
2225 struct gpu_array_tile *tile;
2227 group->last_shared = gen->shared_len - 1;
2229 tile = group->private_tile;
2230 if (!tile)
2231 tile = group->shared_tile;
2232 if (!tile)
2233 return;
2235 group->last_shared = compute_tile_last_shared(gen, tile);
2238 /* Compute a privatized copy of all access relations from reference groups that
2239 * are mapped to private memory and store the result in gen->privatization.
2241 static void compute_private_access(struct gpu_gen *gen)
2243 int i, j;
2244 isl_union_map *private;
2246 if (!gen->options->use_private_memory)
2247 return;
2249 private = isl_union_map_empty(isl_union_map_get_space(gen->shared_sched));
2251 for (i = 0; i < gen->prog->n_array; ++i) {
2252 struct gpu_array_info *array = &gen->prog->array[i];
2254 if (gpu_array_is_read_only_scalar(array))
2255 continue;
2257 for (j = 0; j < array->n_group; ++j) {
2258 if (!array->groups[j]->private_tile)
2259 continue;
2261 private = isl_union_map_union(private,
2262 group_access_relation(array->groups[j], 1, 1));
2266 if (isl_union_map_is_empty(private))
2267 isl_union_map_free(private);
2268 else {
2269 isl_union_map *priv;
2271 private = isl_union_map_apply_domain(private,
2272 isl_union_map_copy(gen->shared_sched));
2273 priv = isl_union_map_from_map(isl_map_copy(gen->privatization));
2274 private = isl_union_map_apply_domain(private, priv);
2275 gen->private_access = private;
2279 /* Compute the size of the tile specified by "tile"
2280 * in number of elements and return the result.
2282 static __isl_give isl_val *tile_size(isl_ctx *ctx, struct gpu_array_tile *tile)
2284 int i;
2285 isl_val *size;
2287 size = isl_val_one(ctx);
2289 for (i = 0; i < tile->n; ++i)
2290 size = isl_val_mul(size, isl_val_copy(tile->bound[i].size));
2292 return size;
2295 /* If max_shared_memory is not set to infinity (-1), then make
2296 * sure that the total amount of shared memory required by the
2297 * array reference groups mapped to shared memory is no larger
2298 * than this maximum.
2300 * We apply a greedy approach and discard (keep in global memory)
2301 * those groups that would result in a total memory size that
2302 * is larger than the maximum.
2304 static void check_shared_memory_bound(struct gpu_gen *gen)
2306 int i, j;
2307 isl_val *left, *size;
2309 if (gen->options->max_shared_memory < 0)
2310 return;
2312 left = isl_val_int_from_si(gen->ctx, gen->options->max_shared_memory);
2314 for (i = 0; i < gen->prog->n_array; ++i) {
2315 struct gpu_array_info *array = &gen->prog->array[i];
2317 for (j = 0; j < array->n_group; ++j) {
2318 struct gpu_array_ref_group *group;
2320 group = array->groups[j];
2321 if (!group->shared_tile)
2322 continue;
2324 size = tile_size(gen->ctx, group->shared_tile);
2325 size = isl_val_mul_ui(size, array->size);
2327 if (isl_val_le(size, left)) {
2328 left = isl_val_sub(left, size);
2329 continue;
2331 isl_val_free(size);
2333 group->shared_tile = free_tile(group->shared_tile);
2337 isl_val_free(left);
2340 /* Fill up the groups array with singleton groups, i.e., one group
2341 * per reference, initializing the array, access, write, n_ref and refs fields.
2342 * In particular the access field is initialized to the scheduled
2343 * access relation of the array reference.
2345 * Return the number of elements initialized, i.e., the number of
2346 * active references in the current kernel.
2348 static int populate_array_references(struct gpu_array_info *array,
2349 __isl_keep isl_union_map *sched, struct gpu_array_ref_group **groups)
2351 int i;
2352 int n;
2353 isl_ctx *ctx = isl_union_map_get_ctx(sched);
2355 n = 0;
2356 for (i = 0; i < array->n_ref; ++i) {
2357 isl_union_map *umap;
2358 isl_map *map;
2359 struct gpu_array_ref_group *group;
2360 struct gpu_stmt_access *access = array->refs[i];
2362 map = isl_map_copy(access->access);
2363 umap = isl_union_map_from_map(map);
2364 umap = isl_union_map_apply_domain(umap,
2365 isl_union_map_copy(sched));
2367 if (isl_union_map_is_empty(umap)) {
2368 isl_union_map_free(umap);
2369 continue;
2372 map = isl_map_from_union_map(umap);
2373 map = isl_map_detect_equalities(map);
2375 group = isl_calloc_type(ctx, struct gpu_array_ref_group);
2376 assert(group);
2377 group->array = array;
2378 group->access = map;
2379 group->write = access->write;
2380 group->refs = &array->refs[i];
2381 group->n_ref = 1;
2383 groups[n++] = group;
2386 return n;
2389 /* If group->n_ref == 1, then group->refs was set by
2390 * populate_array_references to point directly into
2391 * group->array->refs and should not be freed.
2392 * If group->n_ref > 1, then group->refs was set by join_groups
2393 * to point to a newly allocated array.
2395 static void free_array_ref_group(struct gpu_array_ref_group *group)
2397 if (!group)
2398 return;
2399 free_tile(group->shared_tile);
2400 free_tile(group->private_tile);
2401 isl_map_free(group->access);
2402 if (group->n_ref > 1)
2403 free(group->refs);
2404 free(group);
2407 /* Given a map where the input dimensions represent the tile loops,
2408 * eliminate the innermost of those that have a fixed value
2409 * until we reach one that does not (obviously) have a fixed value.
2411 static __isl_give isl_map *eliminate_fixed_inner_loops(
2412 __isl_take isl_map *access)
2414 int i, n;
2416 n = isl_map_dim(access, isl_dim_in);
2418 for (i = n - 1; i >= 0; --i) {
2419 if (!map_plain_is_fixed(access, isl_dim_in, i))
2420 break;
2421 access = isl_map_eliminate(access, isl_dim_in, i, 1);
2423 return access;
2426 /* Check if the access relations of group1 and group2 overlap within
2427 * the innermost loop. In particular, ignore any inner dimension
2428 * with a fixed value.
2429 * The copying to and from shared memory will be performed within
2430 * the innermost actual loop so we are only allowed to consider
2431 * the dimensions up to that innermost loop while checking whether
2432 * two access relations overlap.
2434 static int accesses_overlap(struct gpu_array_ref_group *group1,
2435 struct gpu_array_ref_group *group2)
2437 int empty;
2438 isl_map *access1, *access2;
2440 access1 = isl_map_copy(group1->access);
2441 access1 = eliminate_fixed_inner_loops(access1);
2442 access2 = isl_map_copy(group2->access);
2443 access2 = eliminate_fixed_inner_loops(access2);
2444 access1 = isl_map_intersect(access1, access2);
2445 empty = isl_map_is_empty(access1);
2446 isl_map_free(access1);
2448 return !empty;
2451 /* Combine the given two groups into a single group, containing
2452 * the references of both groups.
2454 static struct gpu_array_ref_group *join_groups(
2455 struct gpu_array_ref_group *group1,
2456 struct gpu_array_ref_group *group2)
2458 int i;
2459 isl_ctx *ctx;
2460 struct gpu_array_ref_group *group;
2462 ctx = isl_map_get_ctx(group1->access);
2463 group = isl_calloc_type(ctx, struct gpu_array_ref_group);
2464 assert(group);
2465 group->array = group1->array;
2466 group->access = isl_map_union(isl_map_copy(group1->access),
2467 isl_map_copy(group2->access));
2468 group->write = group1->write || group2->write;
2469 group->n_ref = group1->n_ref + group2->n_ref;
2470 group->refs = isl_alloc_array(ctx, struct gpu_stmt_access *,
2471 group->n_ref);
2472 assert(group->refs);
2473 for (i = 0; i < group1->n_ref; ++i)
2474 group->refs[i] = group1->refs[i];
2475 for (i = 0; i < group2->n_ref; ++i)
2476 group->refs[group1->n_ref + i] = group2->refs[i];
2478 return group;
2481 /* Combine the given two groups into a single group and free
2482 * the original two groups.
2484 static struct gpu_array_ref_group *join_groups_and_free(
2485 struct gpu_array_ref_group *group1,
2486 struct gpu_array_ref_group *group2)
2488 struct gpu_array_ref_group *group;
2490 group = join_groups(group1, group2);
2491 free_array_ref_group(group1);
2492 free_array_ref_group(group2);
2493 return group;
2496 /* Compute the private and/or shared memory tiles for the array
2497 * reference group "group" of array "array".
2499 * If the array is a read-only scalar or if the user requested
2500 * not to use shared or private memory, then we do not need to do anything.
2502 * We only try to compute a shared memory tile if there is any reuse
2503 * or if the access is not coalesced.
2505 * For computing a private memory tile, we also require that there is
2506 * some reuse. Moreover, we require that the access is private
2507 * to the thread. That is, we check that any given array element
2508 * is only accessed by a single thread.
2509 * We compute an access relation that maps the shared tile loop iterators
2510 * and the shared point loop iterators that will be wrapped over the
2511 * threads to the array elements.
2512 * We actually check that those iterators that will be wrapped
2513 * partition the array space. This check is stricter than necessary
2514 * since several iterations may be mapped onto the same thread
2515 * and then they could be allowed to access the same memory elements,
2516 * but our check does not allow this situation.
2518 * We also check that the index expression only depends on parallel
2519 * loops. That way, we can move those loops innermost and unroll them.
2520 * Again, we use a test that is stricter than necessary.
2521 * We actually check whether the index expression only depends
2522 * on the iterators that are wrapped over the threads.
2523 * These are necessarily parallel, but there may be more parallel loops.
2525 * Combining the injectivity of the first test with the single-valuedness
2526 * of the second test, we simply test for bijectivity.
2528 * If it turns out we can use registers, we compute the private memory
2529 * tile size using can_tile, after introducing a dependence
2530 * on the thread indices.
2532 static void compute_group_bounds_core(struct gpu_gen *gen,
2533 struct gpu_array_ref_group *group)
2535 isl_ctx *ctx = isl_space_get_ctx(group->array->dim);
2536 isl_union_map *access;
2537 int n_index = group->array->n_index;
2538 int no_reuse;
2539 isl_map *acc;
2540 int use_shared = gen->options->use_shared_memory;
2541 int use_private = gen->options->use_private_memory;
2543 if (!use_shared && !use_private)
2544 return;
2545 if (gpu_array_is_read_only_scalar(group->array))
2546 return;
2548 access = group_access_relation(group, 1, 1);
2549 no_reuse = isl_union_map_is_injective(access);
2551 if (use_shared && (!no_reuse || !access_is_coalesced(gen, access))) {
2552 group->shared_tile = create_tile(ctx, group->array->n_index);
2553 if (!can_tile(group->access, group->shared_tile))
2554 group->shared_tile = free_tile(group->shared_tile);
2557 if (!use_private || no_reuse) {
2558 isl_union_map_free(access);
2559 return;
2562 access = isl_union_map_apply_domain(access,
2563 isl_union_map_copy(gen->shared_sched));
2565 acc = isl_map_from_union_map(access);
2567 if (!access_is_bijective(gen, acc)) {
2568 isl_map_free(acc);
2569 return;
2572 group->private_tile = create_tile(gen->ctx, n_index);
2573 acc = isl_map_apply_domain(acc, isl_map_copy(gen->privatization));
2574 if (!can_tile(acc, group->private_tile))
2575 group->private_tile = free_tile(group->private_tile);
2577 isl_map_free(acc);
2580 /* Compute the private and/or shared memory tiles for the array
2581 * reference group "group" of array "array" and set last_shared.
2583 static void compute_group_bounds(struct gpu_gen *gen,
2584 struct gpu_array_ref_group *group)
2586 compute_group_bounds_core(gen, group);
2587 set_last_shared(gen, group);
2590 /* If two groups have overlapping access relations (as determined by
2591 * the "overlap" function) and if one of them involves a write,
2592 * then merge the two groups into one.
2593 * If "compute_bounds" is set, then call compute_group_bounds
2594 * on the merged groups.
2596 * Return the updated number of groups.
2598 static int group_writes(struct gpu_gen *gen,
2599 int n, struct gpu_array_ref_group **groups,
2600 int (*overlap)(struct gpu_array_ref_group *group1,
2601 struct gpu_array_ref_group *group2), int compute_bounds)
2603 int i, j;
2605 for (i = 0; i < n; ++i) {
2606 for (j = n - 1; j > i; --j) {
2607 if (!groups[i]->write && !groups[j]->write)
2608 continue;
2610 if (!overlap(groups[i], groups[j]))
2611 continue;
2613 groups[i] = join_groups_and_free(groups[i], groups[j]);
2614 if (compute_bounds)
2615 compute_group_bounds(gen, groups[i]);
2616 if (j != n - 1)
2617 groups[j] = groups[n - 1];
2618 n--;
2622 return n;
2625 /* If two groups have overlapping access relations (within the innermost
2626 * loop) and if one of them involves a write, then merge the two groups
2627 * into one.
2629 * Return the updated number of groups.
2631 static int group_overlapping_writes(struct gpu_gen *gen,
2632 int n, struct gpu_array_ref_group **groups)
2634 return group_writes(gen, n, groups, &accesses_overlap, 0);
2637 /* Check if the access relations of group1 and group2 overlap within
2638 * the outermost min(group1->last_shared, group2->last_shared) loops.
2640 static int last_shared_accesses_overlap(struct gpu_array_ref_group *group1,
2641 struct gpu_array_ref_group *group2)
2643 int last_shared;
2644 int dim;
2645 int empty;
2646 isl_map *map_i, *map_j, *map;
2648 last_shared = group1->last_shared;
2649 if (group2->last_shared < last_shared)
2650 last_shared = group2->last_shared;
2651 map_i = isl_map_copy(group1->access);
2652 dim = isl_map_dim(map_i, isl_dim_in);
2653 map_i = isl_map_eliminate(map_i, isl_dim_in,
2654 last_shared + 1, dim - (last_shared + 1));
2655 map_j = isl_map_copy(group2->access);
2656 map_j = isl_map_eliminate(map_j, isl_dim_in,
2657 last_shared + 1, dim - (last_shared + 1));
2658 map = isl_map_intersect(map_i, map_j);
2659 empty = isl_map_is_empty(map);
2660 isl_map_free(map);
2662 return !empty;
2665 /* If two groups have overlapping access relations (within the outer
2666 * last_shared loops) and if one of them involves a write,
2667 * then merge the two groups into one.
2669 * Return the updated number of groups.
2671 static int group_last_shared_overlapping_writes(struct gpu_gen *gen, int n,
2672 struct gpu_array_ref_group **groups)
2674 return group_writes(gen, n, groups, &last_shared_accesses_overlap, 1);
2677 /* Is the size of the tile specified by "tile" smaller than the sum of
2678 * the sizes of the tiles specified by "tile1" and "tile2"?
2680 static int smaller_tile(isl_ctx *ctx, struct gpu_array_tile *tile,
2681 struct gpu_array_tile *tile1, struct gpu_array_tile *tile2)
2683 int smaller;
2684 isl_val *size, *size1, *size2;
2686 size = tile_size(ctx, tile);
2687 size1 = tile_size(ctx, tile1);
2688 size2 = tile_size(ctx, tile2);
2690 size = isl_val_sub(size, size1);
2691 size = isl_val_sub(size, size2);
2692 smaller = isl_val_is_neg(size);
2694 isl_val_free(size);
2696 return smaller;
2699 /* Given an initial grouping of array references and shared memory tiles
2700 * for each group that allows for a shared memory tile, merge two groups
2701 * if both have a shared memory tile, the merged group also has
2702 * a shared memory tile and the size of the tile for the merge group
2703 * is smaller than the sum of the tile sizes of the individual groups.
2705 * If merging two groups decreases the "last_shared" dimension of
2706 * one or both of the two groups, then we need to check for overlapping
2707 * writes again.
2709 * Return the number of groups after merging.
2711 static int group_common_shared_memory_tile(struct gpu_gen *gen,
2712 struct gpu_array_info *array, int n,
2713 struct gpu_array_ref_group **groups)
2715 int i, j;
2716 int recompute_overlap = 0;
2717 isl_ctx *ctx = isl_space_get_ctx(array->dim);
2719 for (i = 0; i < n; ++i) {
2720 if (!groups[i]->shared_tile)
2721 continue;
2722 for (j = n - 1; j > i; --j) {
2723 isl_map *map;
2724 int empty;
2725 struct gpu_array_ref_group *group;
2727 if (!groups[j]->shared_tile)
2728 continue;
2730 map = isl_map_intersect(isl_map_copy(groups[i]->access),
2731 isl_map_copy(groups[j]->access));
2732 empty = isl_map_is_empty(map);
2733 isl_map_free(map);
2735 if (empty)
2736 continue;
2738 group = join_groups(groups[i], groups[j]);
2739 compute_group_bounds(gen, group);
2740 if (!group->shared_tile ||
2741 !smaller_tile(ctx, group->shared_tile,
2742 groups[i]->shared_tile,
2743 groups[j]->shared_tile)) {
2744 free_array_ref_group(group);
2745 continue;
2748 if (group->last_shared < groups[i]->last_shared ||
2749 group->last_shared < groups[j]->last_shared)
2750 recompute_overlap = 1;
2751 free_array_ref_group(groups[i]);
2752 free_array_ref_group(groups[j]);
2753 groups[i] = group;
2754 if (j != n - 1)
2755 groups[j] = groups[n - 1];
2756 n--;
2760 if (recompute_overlap)
2761 n = group_last_shared_overlapping_writes(gen, n, groups);
2762 return n;
2765 /* Set array->n_group and array->groups to n and groups.
2767 * Additionally, set the "nr" field of each group
2768 * and the "group" field of each reference in each group.
2770 static void set_array_groups(struct gpu_array_info *array,
2771 int n, struct gpu_array_ref_group **groups)
2773 int i, j;
2775 array->n_group = n;
2776 array->groups = groups;
2778 for (i = 0; i < n; ++i) {
2779 groups[i]->nr = i;
2781 for (j = 0; j < groups[i]->n_ref; ++j)
2782 groups[i]->refs[j]->group = i;
2786 /* Group array references that should be considered together when
2787 * deciding whether to access them from private, shared or global memory.
2789 * In particular, if two array references overlap and if one of them
2790 * is a write, then the two references are grouped together.
2791 * We first perform an initial grouping based only on the access relation.
2792 * After computing shared and private memory tiles, we check for
2793 * overlapping writes again, but this time taking into account
2794 * the "last_shared" property.
2796 * Furthermore, if two groups admit a shared memory tile and if the
2797 * combination of the two also admits a shared memory tile, we merge
2798 * the two groups.
2800 static void group_array_references(struct gpu_gen *gen,
2801 struct gpu_array_info *array, __isl_keep isl_union_map *sched)
2803 int i;
2804 int n;
2805 isl_ctx *ctx = isl_union_map_get_ctx(sched);
2806 struct gpu_array_ref_group **groups;
2808 groups = isl_calloc_array(ctx, struct gpu_array_ref_group *,
2809 array->n_ref);
2810 assert(groups);
2812 n = populate_array_references(array, sched, groups);
2814 n = group_overlapping_writes(gen, n, groups);
2816 for (i = 0; i < n; ++i)
2817 compute_group_bounds(gen, groups[i]);
2819 n = group_last_shared_overlapping_writes(gen, n, groups);
2821 n = group_common_shared_memory_tile(gen, array, n, groups);
2823 set_array_groups(array, n, groups);
2826 /* Take tiled_sched, project it onto the shared tile loops and
2827 * the loops that will be wrapped over the threads and
2828 * store the result in gen->shared_sched.
2829 * Also compute a projection that projects out the loops that will be
2830 * wrapped over the threads and store this projection in gen->shared_proj.
2832 static void compute_shared_sched(struct gpu_gen *gen)
2834 isl_space *dim;
2835 isl_map *proj;
2836 isl_set *par;
2837 isl_union_map *sched;
2839 sched = isl_union_map_copy(gen->tiled_sched);
2841 dim = isl_union_map_get_space(sched);
2842 proj = projection(dim, gen->tiled_len, gen->shared_len + gen->n_block);
2843 sched = isl_union_map_apply_range(sched, isl_union_map_from_map(proj));
2845 dim = isl_union_map_get_space(sched);
2846 proj = projection(dim, gen->shared_len + gen->n_block, gen->shared_len);
2848 gen->shared_sched = sched;
2849 gen->shared_proj = isl_union_map_from_map(proj);
2852 /* Group references of all arrays in the program.
2854 static void group_references(struct gpu_gen *gen)
2856 int i;
2857 isl_union_map *sched;
2859 sched = isl_union_map_apply_range(isl_union_map_copy(gen->shared_sched),
2860 isl_union_map_copy(gen->shared_proj));
2862 for (i = 0; i < gen->prog->n_array; ++i)
2863 group_array_references(gen, &gen->prog->array[i], sched);
2865 isl_union_map_free(sched);
2868 /* Free all array information that is local to the current kernel.
2870 static void free_local_array_info(struct gpu_gen *gen)
2872 int i, j;
2874 for (i = 0; i < gen->prog->n_array; ++i) {
2875 struct gpu_array_info *array = &gen->prog->array[i];
2877 for (j = 0; j < array->n_group; ++j)
2878 free_array_ref_group(array->groups[j]);
2879 free(array->groups);
2883 /* Compute the size of a bounding box around the origin and "set",
2884 * where "set" is assumed to contain only non-negative elements.
2885 * In particular, compute the maximal value of "set" in each direction
2886 * and add one.
2888 static __isl_give isl_multi_pw_aff *extract_size(__isl_take isl_set *set,
2889 __isl_keep isl_set *context)
2891 int i, n;
2892 isl_multi_pw_aff *mpa;
2894 n = isl_set_dim(set, isl_dim_set);
2895 mpa = isl_multi_pw_aff_zero(isl_set_get_space(set));
2896 for (i = 0; i < n; ++i) {
2897 isl_space *space;
2898 isl_aff *one;
2899 isl_pw_aff *bound;
2901 bound = isl_set_dim_max(isl_set_copy(set), i);
2902 bound = isl_pw_aff_coalesce(bound);
2903 bound = isl_pw_aff_gist(bound, isl_set_copy(context));
2905 space = isl_pw_aff_get_domain_space(bound);
2906 one = isl_aff_zero_on_domain(isl_local_space_from_space(space));
2907 one = isl_aff_add_constant_si(one, 1);
2908 bound = isl_pw_aff_add(bound, isl_pw_aff_from_aff(one));
2909 mpa = isl_multi_pw_aff_set_pw_aff(mpa, i, bound);
2911 isl_set_free(set);
2913 return mpa;
2916 /* Compute the effective grid size as a list of the sizes in each dimension.
2918 * The grid size specified by the user or set by default
2919 * in read_grid_sizes() and applied in tile_schedule(),
2920 * may be too large for the given code in the sense that
2921 * it may contain blocks that don't need to execute anything.
2922 * We therefore don't return this grid size, but instead the
2923 * smallest grid size that ensures that all blocks that actually
2924 * execute code are included in the grid.
2926 * We first extract a description of the grid, i.e., the possible values
2927 * of the block ids, from gen->tiled_sched.
2928 * The block ids are parameters in gen->tiled_sched.
2929 * We simply need to change them into set dimensions.
2931 * Then, for each block dimension, we compute the maximal value of the block id
2932 * and add one.
2934 static __isl_give isl_multi_pw_aff *extract_grid_size(struct gpu_gen *gen,
2935 struct ppcg_kernel *kernel)
2937 int i;
2938 isl_set *grid;
2940 grid = isl_union_map_params(isl_union_map_copy(gen->tiled_sched));
2941 grid = isl_set_from_params(grid);
2942 grid = isl_set_add_dims(grid, isl_dim_set, gen->n_grid);
2943 for (i = 0; i < gen->n_grid; ++i) {
2944 int pos;
2945 char name[20];
2947 snprintf(name, sizeof(name), "b%d", i);
2948 pos = isl_set_find_dim_by_name(grid, isl_dim_param, name);
2949 assert(pos >= 0);
2950 grid = isl_set_equate(grid, isl_dim_param, pos, isl_dim_set, i);
2951 grid = isl_set_project_out(grid, isl_dim_param, pos, 1);
2954 return extract_size(grid, kernel->context);
2957 /* Compute the size of a fixed bounding box around the origin and "set",
2958 * where "set" is assumed to contain only non-negative elements,
2959 * and store the results in "size".
2960 * In particular, compute the maximal value of "set" in each direction
2961 * and add one.
2963 static void extract_fixed_size(__isl_take isl_set *set, int *size)
2965 int i, n;
2966 isl_local_space *ls;
2967 isl_aff *obj;
2969 n = isl_set_dim(set, isl_dim_set);
2970 ls = isl_local_space_from_space(isl_set_get_space(set));
2971 obj = isl_aff_zero_on_domain(ls);
2972 for (i = 0; i < n; ++i) {
2973 isl_val *max;
2975 obj = isl_aff_set_coefficient_si(obj, isl_dim_in, i, 1);
2976 max = isl_set_max_val(set, obj);
2977 size[i] = isl_val_get_num_si(max) + 1;
2978 isl_val_free(max);
2979 obj = isl_aff_set_coefficient_si(obj, isl_dim_in, i, 0);
2981 isl_aff_free(obj);
2982 isl_set_free(set);
2985 /* Compute the effective block size as a list of the sizes in each dimension
2986 * and store the sizes in kernel->block_dim.
2988 * The block size specified by the user or set by default
2989 * in read_block_sizes() and applied in thread_tile_schedule(),
2990 * may be too large for the given code in the sense that
2991 * it may contain threads that don't need to execute anything.
2992 * We therefore don't store this block size in kernel->block_dim,
2993 * but instead the smallest block size that ensures that all threads
2994 * that actually execute code are included in the block.
2996 * The current implementation eliminates all parameters, ensuring
2997 * that the size is a fixed constant in each dimension.
2998 * In principle we could also compute parametric sizes.
2999 * We would have to make sure to project out all b%d and t%d parameters,
3000 * however.
3002 static void extract_block_size(struct gpu_gen *gen, struct ppcg_kernel *kernel)
3004 int i;
3005 int nparam;
3006 isl_set *block;
3007 isl_multi_pw_aff *mpa;
3009 block = isl_union_map_params(isl_union_map_copy(gen->local_sched));
3010 block = isl_set_from_params(block);
3011 block = isl_set_add_dims(block, isl_dim_set, gen->n_block);
3012 kernel->n_block = gen->n_block;
3013 for (i = 0; i < gen->n_block; ++i) {
3014 int pos;
3015 char name[20];
3017 snprintf(name, sizeof(name), "t%d", i);
3018 pos = isl_set_find_dim_by_name(block, isl_dim_param, name);
3019 assert(pos >= 0);
3020 block = isl_set_equate(block, isl_dim_param, pos,
3021 isl_dim_set, i);
3023 nparam = isl_set_dim(block, isl_dim_param);
3024 block = isl_set_project_out(block, isl_dim_param, 0, nparam);
3026 extract_fixed_size(block, kernel->block_dim);
3029 void ppcg_kernel_free(void *user)
3031 struct ppcg_kernel *kernel = user;
3032 int i;
3034 if (!kernel)
3035 return;
3037 isl_multi_pw_aff_free(kernel->grid_size);
3038 isl_set_free(kernel->context);
3039 isl_union_set_free(kernel->arrays);
3040 isl_space_free(kernel->space);
3041 isl_ast_node_free(kernel->tree);
3043 for (i = 0; i < kernel->n_array; ++i)
3044 isl_pw_aff_list_free(kernel->array[i].bound);
3045 free(kernel->array);
3047 for (i = 0; i < kernel->n_var; ++i) {
3048 free(kernel->var[i].name);
3049 isl_vec_free(kernel->var[i].size);
3051 free(kernel->var);
3053 free(kernel);
3056 static void create_kernel_var(isl_ctx *ctx, struct gpu_array_ref_group *group,
3057 struct ppcg_kernel_var *var)
3059 int j;
3060 struct gpu_array_tile *tile;
3061 isl_printer *p;
3062 char *name;
3064 var->array = group->array;
3066 tile = group->private_tile;
3067 var->type = ppcg_access_private;
3068 if (!tile) {
3069 tile = group->shared_tile;
3070 var->type = ppcg_access_shared;
3073 p = isl_printer_to_str(ctx);
3074 p = print_array_name(p, group);
3075 var->name = isl_printer_get_str(p);
3076 isl_printer_free(p);
3078 var->size = isl_vec_alloc(ctx, group->array->n_index);
3080 for (j = 0; j < group->array->n_index; ++j)
3081 var->size = isl_vec_set_element_val(var->size, j,
3082 isl_val_copy(tile->bound[j].size));
3085 static void create_kernel_vars(struct gpu_gen *gen, struct ppcg_kernel *kernel)
3087 int i, j, n;
3089 n = 0;
3090 for (i = 0; i < gen->prog->n_array; ++i) {
3091 struct gpu_array_info *array = &gen->prog->array[i];
3093 for (j = 0; j < array->n_group; ++j) {
3094 struct gpu_array_ref_group *group = array->groups[j];
3095 if (group->private_tile || group->shared_tile)
3096 ++n;
3100 kernel->n_var = n;
3101 kernel->var = isl_calloc_array(gen->ctx, struct ppcg_kernel_var, n);
3102 assert(kernel->var);
3104 n = 0;
3105 for (i = 0; i < gen->prog->n_array; ++i) {
3106 struct gpu_array_info *array = &gen->prog->array[i];
3108 for (j = 0; j < array->n_group; ++j) {
3109 struct gpu_array_ref_group *group = array->groups[j];
3110 if (!group->private_tile && !group->shared_tile)
3111 continue;
3112 create_kernel_var(gen->ctx, group, &kernel->var[n]);
3113 ++n;
3118 /* The sizes of the arrays on the host that have been computed by
3119 * extract_array_info may depend on the parameters. Use the extra
3120 * constraints on the parameters that are valid at "host_domain"
3121 * to simplify these expressions and store the results in kernel->array.
3123 static void localize_bounds(struct gpu_gen *gen, struct ppcg_kernel *kernel,
3124 __isl_keep isl_set *host_domain)
3126 int i, j;
3127 isl_set *context;
3129 kernel->array = isl_calloc_array(gen->ctx,
3130 struct gpu_local_array_info, gen->prog->n_array);
3131 assert(kernel->array);
3132 kernel->n_array = gen->prog->n_array;
3134 context = isl_set_copy(host_domain);
3135 context = isl_set_params(context);
3137 for (i = 0; i < gen->prog->n_array; ++i) {
3138 struct gpu_array_info *array = &gen->prog->array[i];
3139 isl_pw_aff_list *local;
3141 if (array->n_group == 0)
3142 continue;
3144 local = isl_pw_aff_list_alloc(gen->ctx, array->n_index);
3146 for (j = 0; j < array->n_index; ++j) {
3147 isl_pw_aff *pwaff;
3149 pwaff = isl_pw_aff_copy(array->bound[j]);
3150 pwaff = isl_pw_aff_gist(pwaff, isl_set_copy(context));
3151 local = isl_pw_aff_list_add(local, pwaff);
3154 kernel->array[i].bound = local;
3156 isl_set_free(context);
3159 /* Find the element in gen->stmt that has the given "id".
3160 * Return NULL if no such gpu_stmt can be found.
3162 static struct gpu_stmt *find_stmt(struct gpu_prog *prog, __isl_keep isl_id *id)
3164 int i;
3166 for (i = 0; i < prog->n_stmts; ++i) {
3167 if (id == prog->stmts[i].id)
3168 break;
3171 return i < prog->n_stmts ? &prog->stmts[i] : NULL;
3174 /* Set gen->tile_len and gen->n_parallel to those of the statement
3175 * affected by the first map (part of the schedule)
3176 * on which this function is called.
3177 * Because of the way the schedule is constructed, the other statements
3178 * in the list, if any, should have the same values for these properties.
3180 static int extract_tile_len(__isl_take isl_map *map, void *user)
3182 struct gpu_gen *gen = (struct gpu_gen *) user;
3183 isl_id *id;
3184 struct gpu_stmt *stmt;
3186 id = isl_map_get_tuple_id(map, isl_dim_in);
3187 stmt = find_stmt(gen->prog, id);
3188 isl_id_free(id);
3190 isl_map_free(map);
3192 if (!stmt)
3193 isl_die(gen->ctx, isl_error_unknown,
3194 "statement not found", return -1);
3196 gen->tile_len = stmt->tile_len;
3197 gen->n_parallel = stmt->n_parallel;
3199 return -1;
3202 void ppcg_kernel_stmt_free(void *user)
3204 int i;
3205 struct ppcg_kernel_stmt *stmt = user;
3207 if (!stmt)
3208 return;
3210 switch (stmt->type) {
3211 case ppcg_kernel_copy:
3212 isl_ast_expr_free(stmt->u.c.index);
3213 isl_ast_expr_free(stmt->u.c.local_index);
3214 break;
3215 case ppcg_kernel_domain:
3216 for (i = 0; i < stmt->u.d.n_access; ++i) {
3217 isl_ast_expr_list_free(stmt->u.d.access[i].index);
3218 free(stmt->u.d.access[i].local_name);
3220 free(stmt->u.d.access);
3221 break;
3222 case ppcg_kernel_sync:
3223 break;
3226 free(stmt);
3229 /* Set the options of "context" to
3231 * { space -> [x] : x >= first }
3233 static __isl_give isl_ast_build *set_unroll(
3234 __isl_take isl_ast_build *build, __isl_take isl_space *space,
3235 int first)
3237 isl_ctx *ctx;
3238 isl_map *unroll;
3239 isl_union_map *opt;
3241 ctx = isl_ast_build_get_ctx(build);
3243 space = isl_space_from_domain(space);
3244 space = isl_space_add_dims(space, isl_dim_out, 1);
3245 space = isl_space_set_tuple_name(space, isl_dim_out, "unroll");
3246 unroll = isl_map_universe(space);
3247 unroll = isl_map_lower_bound_si(unroll, isl_dim_out, 0, first);
3248 opt = isl_union_map_from_map(unroll);
3250 build = isl_ast_build_set_options(build, opt);
3252 return build;
3255 /* Return a list of isl_ids of the form "prefix%d".
3257 static __isl_give isl_id_list *generate_names(isl_ctx *ctx,
3258 int n, const char *prefix)
3260 int i;
3261 char name[10];
3262 isl_id_list *names;
3264 names = isl_id_list_alloc(ctx, n);
3265 for (i = 0; i < n; ++i) {
3266 isl_id *id;
3268 snprintf(name, sizeof(name), "%s%d", prefix, i);
3269 id = isl_id_alloc(ctx, name, NULL);
3270 names = isl_id_list_add(names, id);
3273 return names;
3276 /* Extend the schedule "schedule" with the part of "extension"
3277 * starting at "first" up to "len".
3279 static __isl_give isl_union_map *extend_schedule(
3280 __isl_take isl_union_map *schedule,
3281 __isl_take isl_union_map *extension, int first, int len)
3283 isl_space *space;
3284 isl_map *proj;
3285 isl_union_map *umap;
3286 isl_set *set;
3288 space = isl_union_map_get_space(schedule);
3289 space = isl_space_set_from_params(space);
3290 space = isl_space_add_dims(space, isl_dim_set, len);
3291 proj = isl_set_identity(isl_set_universe(space));
3292 proj = isl_map_project_out(proj, isl_dim_out, 0, first);
3293 extension = isl_union_map_apply_range(extension,
3294 isl_union_map_from_map(proj));
3296 schedule = isl_union_map_range_product(schedule, extension);
3298 return schedule;
3301 /* This function is called for each access to an array in each instance
3302 * in the kernel of some statement in the original code.
3303 * Replace that access by an access to global, shared or private memory
3304 * and store the results in *kernel_access.
3306 * Since the array in shared or private memory is just
3307 * a shifted copy of part of the original array, we simply need
3308 * to subtract the lower bound, which was computed in can_tile.
3309 * If any of the indices is strided, then we first add
3310 * shared_tile->bound[i].shift and divide by shared_tile->bound[i].stride.
3312 * If the given array is accessed directly from global memory,
3313 * we don't need to perform any shifting and simply simplify
3314 * the expression in the context of the domain instead.
3316 * If the array space (range of access) has no name, then we are
3317 * accessing an iterator in the original program.
3319 * The input stmt_access->access relation maps the iteration domain
3320 * of the current statement to an array element.
3321 * The first step is to reformulate
3322 * this access relation in terms of the loop iterators of the generated
3323 * code through precomposition with gen->stmt_it.
3325 * The expressions in "tile" are formulated in terms of the first
3326 * gen->shared_len dimensions of the computed schedule using the mapping
3327 * sched2shared which maps the loop iterators to these dimensions.
3329 static void compute_index_expression(struct gpu_gen *gen,
3330 struct ppcg_kernel_access *kernel_access,
3331 struct gpu_stmt_access *stmt_access, __isl_keep isl_map *stmt_it,
3332 __isl_keep isl_map *sched2shared, __isl_keep isl_ast_build *build)
3334 isl_map *access;
3335 isl_pw_multi_aff *pma;
3336 int i;
3337 unsigned n_index;
3338 struct gpu_array_tile *tile = NULL;
3340 if (isl_map_has_tuple_name(stmt_access->access, isl_dim_out)) {
3341 int i;
3342 const char *name;
3343 struct gpu_array_ref_group *group;
3344 isl_printer *p;
3346 name = isl_map_get_tuple_name(stmt_access->access, isl_dim_out);
3348 for (i = 0; i < gen->prog->n_array; ++i) {
3349 if (strcmp(name, gen->prog->array[i].name))
3350 continue;
3351 kernel_access->array = &gen->prog->array[i];
3352 kernel_access->local_array = &gen->kernel->array[i];
3354 assert(kernel_access->array);
3355 group = kernel_access->array->groups[stmt_access->group];
3356 p = isl_printer_to_str(gen->ctx);
3357 p = print_array_name(p, group);
3358 kernel_access->local_name = isl_printer_get_str(p);
3359 isl_printer_free(p);
3360 tile = group->private_tile;
3361 kernel_access->type = ppcg_access_private;
3362 if (!tile) {
3363 tile = group->shared_tile;
3364 kernel_access->type = ppcg_access_shared;
3367 if (!tile)
3368 kernel_access->type = ppcg_access_global;
3370 n_index = isl_map_dim(stmt_access->access, isl_dim_out);
3371 kernel_access->index = isl_ast_expr_list_alloc(gen->ctx, n_index);
3373 if (n_index == 0)
3374 return;
3376 access = isl_map_copy(stmt_access->access);
3377 access = isl_map_apply_range(isl_map_copy(stmt_it), access);
3378 pma = isl_pw_multi_aff_from_map(access);
3379 pma = isl_pw_multi_aff_coalesce(pma);
3381 for (i = 0; i < n_index; ++i) {
3382 isl_set *domain;
3383 isl_pw_aff *index;
3384 isl_ast_expr *expr;
3386 index = isl_pw_multi_aff_get_pw_aff(pma, i);
3388 if (!kernel_access->array) {
3389 } else if (!tile) {
3390 domain = isl_map_domain(isl_map_copy(stmt_it));
3391 index = isl_pw_aff_coalesce(index);
3392 index = isl_pw_aff_gist(index, domain);
3393 } else {
3394 domain = isl_map_domain(isl_map_copy(stmt_it));
3395 index = shift_index(index, kernel_access->array,
3396 &tile->bound[i], domain,
3397 isl_map_copy(sched2shared));
3400 expr = isl_ast_build_expr_from_pw_aff(build, index);
3402 kernel_access->index = isl_ast_expr_list_add(
3403 kernel_access->index, expr);
3406 isl_pw_multi_aff_free(pma);
3409 /* This function is called for each instance of a user statement
3410 * in the kernel.
3412 * We attach a struct ppcg_kernel_stmt to the "node", containing
3413 * local information about the accesses.
3414 * This information is computed from stmt_it, which expresses the domain
3415 * elements in terms of the generated loops, and sched2shared,
3416 * which expresses the first shared_len dimensions of the schedule
3417 * computed by PPCG in terms of the generated loops.
3419 static __isl_give isl_ast_node *at_each_domain(__isl_take isl_ast_node *node,
3420 __isl_keep isl_ast_build *build, void *user)
3422 struct gpu_gen *gen = (struct gpu_gen *) user;
3423 struct ppcg_kernel_stmt *stmt;
3424 isl_id *id;
3425 isl_map *stmt_it, *sched2shared;
3426 isl_ast_expr *expr, *arg;
3427 isl_union_map *schedule;
3428 int i, n;
3429 struct gpu_stmt_access *access;
3431 stmt = isl_calloc_type(gen->ctx, struct ppcg_kernel_stmt);
3432 if (!stmt)
3433 return isl_ast_node_free(node);
3435 expr = isl_ast_node_user_get_expr(node);
3436 arg = isl_ast_expr_get_op_arg(expr, 0);
3437 id = isl_ast_expr_get_id(arg);
3439 schedule = isl_ast_build_get_schedule(build);
3440 stmt_it = isl_map_reverse(isl_map_from_union_map(schedule));
3441 sched2shared = compute_sched_to_shared(gen, isl_map_copy(stmt_it));
3443 stmt->type = ppcg_kernel_domain;
3444 stmt->u.d.stmt = find_stmt(gen->prog, id);
3445 if (!stmt->u.d.stmt)
3446 goto error;
3448 n = 0;
3449 for (access = stmt->u.d.stmt->accesses; access; access = access->next)
3450 ++n;
3452 stmt->u.d.access = isl_calloc_array(gen->ctx,
3453 struct ppcg_kernel_access, n);
3454 if (!stmt->u.d.access)
3455 goto error;
3457 stmt->u.d.n_access = n;
3459 access = stmt->u.d.stmt->accesses;
3460 for (i = 0; i < n; ++i, access = access->next) {
3461 compute_index_expression(gen, &stmt->u.d.access[i], access,
3462 stmt_it, sched2shared, build);
3465 isl_id_free(id);
3466 isl_map_free(stmt_it);
3467 isl_map_free(sched2shared);
3468 isl_ast_expr_free(arg);
3469 isl_ast_expr_free(expr);
3471 id = isl_id_alloc(gen->ctx, NULL, stmt);
3472 id = isl_id_set_free_user(id, &ppcg_kernel_stmt_free);
3473 return isl_ast_node_set_annotation(node, id);
3474 error:
3475 isl_id_free(id);
3476 isl_map_free(stmt_it);
3477 ppcg_kernel_stmt_free(stmt);
3478 isl_map_free(sched2shared);
3479 return isl_ast_node_free(node);
3482 /* This function is called when code has been generated for the shared
3483 * tile loops. The "schedule" refers only to the original statements.
3485 * We extend the schedule with that part of gen->local_sched that hasn't
3486 * been taken into account yet. This introduces parameters referring
3487 * to thread ids in the schedule, so we add them (with the appropriate
3488 * bounds to the context as well).
3489 * Finally, we set the appropriate unrolling options
3490 * if gen->first_unroll is set.
3492 static __isl_give isl_ast_node *create_domain_leaf(
3493 __isl_take isl_union_map *schedule, __isl_take isl_ast_build *build,
3494 void *user)
3496 struct gpu_gen *gen = (struct gpu_gen *) user;
3497 isl_space *space;
3498 isl_union_map *sched;
3499 isl_ast_node *tree;
3500 isl_set *set;
3501 isl_id_list *iterators;
3502 int n;
3504 schedule = extend_schedule(schedule,
3505 isl_union_map_copy(gen->local_sched),
3506 gen->shared_len, gen->thread_tiled_len);
3508 space = isl_ast_build_get_schedule_space(build);
3509 set = isl_set_universe(space);
3510 set = add_bounded_parameters(set, gen->kernel->n_block,
3511 gen->kernel->block_dim, "t");
3512 build = isl_ast_build_restrict(build, set);
3514 n = gen->thread_tiled_len - gen->shared_len;
3516 if (gen->first_unroll >= 0) {
3517 space = isl_space_set_alloc(gen->ctx, 0, n);
3518 build = set_unroll(build, space, gen->first_unroll);
3520 iterators = generate_names(gen->ctx, n, "c");
3521 build = isl_ast_build_set_iterators(build, iterators);
3522 build = isl_ast_build_set_at_each_domain(build, &at_each_domain, gen);
3523 tree = isl_ast_build_ast_from_schedule(build, schedule);
3524 isl_ast_build_free(build);
3526 return tree;
3529 /* This function is called for each statement node in the AST of the code
3530 * for copying to or from shared/private memory.
3531 * Attach a pointer to a ppcg_kernel_stmt representing the copy
3532 * statement to the node.
3533 * The statement name is {read,write}_{shared,private}_<array>.
3535 * The schedule is of the form
3537 * [A -> T] -> L
3539 * where A refers to a piece of an array and T to the corresponding
3540 * shifted tile. We split this schedule into mappings L -> A and L -> T
3541 * and store the corresponding expressions in stmt->index and stmt->local_index,
3542 * where stmt points to the ppcg_kernel_stmt that is attached to the node.
3544 static __isl_give isl_ast_node *attach_copy_stmt(__isl_take isl_ast_node *node,
3545 __isl_keep isl_ast_build *build, void *user)
3547 struct gpu_gen *gen = (struct gpu_gen *) user;
3548 struct ppcg_kernel_stmt *stmt;
3549 isl_id *id;
3550 isl_ast_expr *expr;
3551 isl_space *space;
3552 isl_map *access, *local_access, *map;
3553 isl_pw_multi_aff *pma;
3554 const char *name;
3555 int array_index;
3557 stmt = isl_calloc_type(gen->ctx, struct ppcg_kernel_stmt);
3558 if (!stmt)
3559 return isl_ast_node_free(node);
3561 access = isl_map_from_union_map(isl_ast_build_get_schedule(build));
3562 name = isl_map_get_tuple_name(access, isl_dim_in);
3563 stmt->u.c.read = !strncmp(name, "read", 4);
3564 access = isl_map_reverse(access);
3565 space = isl_space_unwrap(isl_space_range(isl_map_get_space(access)));
3566 local_access = isl_map_copy(access);
3568 map = isl_map_domain_map(isl_map_universe(isl_space_copy(space)));
3569 id = isl_map_get_tuple_id(access, isl_dim_out);
3570 map = isl_map_set_tuple_id(map, isl_dim_in, id);
3571 access = isl_map_apply_range(access, map);
3572 pma = isl_pw_multi_aff_from_map(access);
3573 expr = isl_ast_build_call_from_pw_multi_aff(build, pma);
3574 stmt->u.c.index = expr;
3576 map = isl_map_range_map(isl_map_universe(space));
3577 id = isl_map_get_tuple_id(local_access, isl_dim_out);
3578 map = isl_map_set_tuple_id(map, isl_dim_in, id);
3579 local_access = isl_map_apply_range(local_access, map);
3580 pma = isl_pw_multi_aff_from_map(local_access);
3581 expr = isl_ast_build_call_from_pw_multi_aff(build, pma);
3582 stmt->u.c.local_index = expr;
3584 stmt->u.c.array = gen->copy_group->array;
3585 array_index = stmt->u.c.array - gen->prog->array;
3586 stmt->u.c.local_array = &gen->kernel->array[array_index];
3587 stmt->type = ppcg_kernel_copy;
3589 id = isl_id_alloc(gen->ctx, NULL, stmt);
3590 id = isl_id_set_free_user(id, &ppcg_kernel_stmt_free);
3591 return isl_ast_node_set_annotation(node, id);
3594 /* Given a schedule of the form
3596 * [S -> A] -> L
3598 * (with S the first shared_len dimensions of the computed schedule,
3599 * A the array and L the schedule correponding to the generated loops),
3600 * indicating where the copying the array elements that need to be copied,
3601 * construct code for performing the copying.
3603 * "group" is the array reference group that is being copied
3604 * "type" is either "read" or "write"
3605 * private is set if copying needs to be performed to/from registers
3607 * We first construct a mapping to a shifted tile of the array,
3609 * [S -> A] -> T(S,A) (1)
3611 * If private is set, then we also use this mapping as a schedule
3612 * (which is already thread-specific and will be completely unrolled).
3613 * Otherwise, we wrap/tile the range over the threads.
3614 * The result is
3616 * [S -> A] -> T'(S,A)
3618 * Combined with the given schedule, we have
3620 * [S -> A] -> [L -> T'(S,A)] (2)
3622 * From the shifted tile mapping, we construct a mapping
3624 * [S -> A] -> [A -> T(S,A)]
3626 * and apply it to the schedule (2), obtaining
3628 * [A -> T(S(L),A)] -> [L -> T'(S(L),A)]
3630 * Note that we can project out S because it is uniquely defined by L.
3632 static __isl_give isl_ast_node *copy_access(struct gpu_gen *gen,
3633 __isl_take isl_map *sched,
3634 const char *type, struct gpu_array_ref_group *group,
3635 __isl_take isl_ast_build *build, int private)
3637 const char *array_name;
3638 const char *mem = private ? "private" : "shared";
3639 char *name;
3640 isl_space *space;
3641 isl_ast_node *tree;
3642 isl_map *schedule, *shift, *map;
3643 isl_set *set;
3644 isl_id_list *iterators;
3645 int n;
3647 shift = isl_set_unwrap(isl_map_domain(isl_map_copy(sched)));
3648 array_name = isl_map_get_tuple_name(shift, isl_dim_out);
3649 shift = shift_access(shift, group);
3651 schedule = isl_map_copy(shift);
3652 if (!private)
3653 schedule = tile_access_schedule(gen, schedule);
3655 n = isl_map_dim(schedule, isl_dim_out);
3656 set = isl_set_universe(isl_ast_build_get_schedule_space(build));
3657 set = add_bounded_parameters(set, gen->kernel->n_block,
3658 gen->kernel->block_dim, "t");
3660 schedule = isl_map_range_product(sched, schedule);
3662 assert(array_name);
3663 name = isl_alloc_array(gen->ctx, char,
3664 strlen(type) + sizeof("_private_") + strlen(array_name) + 20);
3665 if (group->array->n_group > 1)
3666 sprintf(name, "%s_%s_%s_%d", type, mem, array_name, group->nr);
3667 else
3668 sprintf(name, "%s_%s_%s", type, mem, array_name);
3669 shift = isl_map_set_tuple_name(shift,
3670 isl_dim_out, name + strlen(type) + 1);
3672 space = isl_space_domain(isl_map_get_space(shift));
3673 map = isl_map_range_map(isl_map_universe(isl_space_unwrap(space)));
3674 map = isl_map_range_product(map, shift);
3676 schedule = isl_map_apply_domain(schedule, map);
3678 schedule = isl_map_set_tuple_name(schedule, isl_dim_in, name);
3679 free(name);
3681 build = isl_ast_build_restrict(build, set);
3683 gen->copy_group = group;
3685 if (private) {
3686 space = isl_space_range(isl_map_get_space(schedule));
3687 space = isl_space_range(isl_space_unwrap(space));
3688 build = set_unroll(build, space, 0);
3690 iterators = generate_names(gen->ctx, n, "c");
3691 build = isl_ast_build_set_iterators(build, iterators);
3692 build = isl_ast_build_set_at_each_domain(build, &attach_copy_stmt, gen);
3693 tree = isl_ast_build_ast_from_schedule(build,
3694 isl_union_map_from_map(schedule));
3695 isl_ast_build_free(build);
3697 return tree;
3700 /* Return code for reading into or writing from shared memory
3701 * the given array reference group.
3703 * If we are performing a read from global memory to shared memory and
3704 * if the array involved is not a scalar, then we copy
3705 * the entire tile to shared memory. This may result in some extra
3706 * elements getting copied, but it should lead to simpler code
3707 * (which means that fewer registers may be needed) and less divergence.
3709 * Otherwise, we only copy the elements that will be read or have been written
3710 * in the kernel.
3713 * The input "sched" is of the form.
3715 * type[S -> A] -> L
3717 * with S the first shared_len dimensions of the computed schedule,
3718 * A the array and L the schedule correponding to the generated loops.
3720 * We first drop "type",
3722 * [S -> A] -> L
3724 * If the above conditions are satisfied, we project out A,
3725 * resulting in
3727 * S -> L
3729 * and then introduce the group tile [S -> T], resulting in
3731 * [S -> T] -> L
3733 static __isl_give isl_ast_node *copy_group_shared_accesses(
3734 struct gpu_gen *gen, struct gpu_array_ref_group *group,
3735 __isl_take isl_map *sched, __isl_take isl_ast_build *build)
3737 const char *type;
3738 int read;
3739 isl_union_map *access;
3741 type = isl_map_get_tuple_name(sched, isl_dim_in);
3742 read = !strcmp(type, "read");
3744 sched = isl_map_reset_tuple_id(sched, isl_dim_in);
3746 if (read && group->array->n_index > 0) {
3747 isl_space *space;
3748 isl_map *map;
3750 space = isl_space_domain(isl_map_get_space(sched));
3751 space = isl_space_unwrap(space);
3752 map = isl_map_domain_map(isl_map_universe(space));
3753 sched = isl_map_apply_domain(sched, map);
3755 map = group_tile(group);
3756 map = isl_map_reverse(isl_map_domain_map(map));
3757 sched = isl_map_apply_domain(sched, map);
3760 return copy_access(gen, sched, type, group, build, 0);
3763 /* Return code for reading into or writing from private memory
3764 * the given array reference group.
3766 * Let S be the first shared_len dimensions of the computed schedule,
3767 * D the iteration domains, A the array and L the schedule correponding
3768 * to the generated loops.
3769 * "sched" is of the form
3771 * type[S -> A] -> L
3773 * where type is either "read" or "write".
3774 * We apply the privatization D -> S(t), with t the thread ids,
3775 * to the access relation D -> A to obtain the privatized access relation
3777 * S(t) -> A
3779 * We drop the type from "sched" and intersect with the privatized access
3780 * relation to obtain
3782 * [S(t) -> A] -> L
3784 static __isl_give isl_ast_node *copy_group_private_accesses(
3785 struct gpu_gen *gen, struct gpu_array_ref_group *group,
3786 __isl_take isl_map *sched, __isl_take isl_ast_build *build)
3788 const char *type;
3789 int read;
3790 isl_union_map *priv;
3791 isl_union_map *access;
3792 isl_map *access_map;
3794 type = isl_map_get_tuple_name(sched, isl_dim_in);
3795 read = !strcmp(type, "read");
3797 priv = isl_union_map_from_map(isl_map_copy(gen->privatization));
3798 priv = isl_union_map_apply_range(isl_union_map_copy(gen->shared_sched),
3799 priv);
3801 access = group_access_relation(group, read, !read);
3802 access = isl_union_map_apply_domain(access, priv);
3803 access_map = isl_map_from_union_map(access);
3805 sched = isl_map_reset_tuple_id(sched, isl_dim_in);
3806 sched = isl_map_intersect_domain(sched, isl_map_wrap(access_map));
3808 return copy_access(gen, sched, type, group, build, 1);
3811 /* Return code for reading into or writing from shared or private memory.
3813 * "schedule" is of the form
3815 * type[S -> A] -> L
3817 * with S be the first shared_len dimensions of the computed schedule,
3818 * A the array and L the schedule correponding to the generated loops.
3819 * The array reference group is attached to "type".
3821 static __isl_give isl_ast_node *create_access_leaf(
3822 struct gpu_gen *gen, __isl_take isl_map *schedule,
3823 __isl_take isl_ast_build *build)
3825 struct gpu_array_ref_group *group;
3826 isl_id *id;
3828 id = isl_map_get_tuple_id(schedule, isl_dim_in);
3829 group = isl_id_get_user(id);
3830 isl_id_free(id);
3832 if (group->private_tile)
3833 return copy_group_private_accesses(gen, group, schedule,
3834 build);
3835 else
3836 return copy_group_shared_accesses(gen, group, schedule,
3837 build);
3840 /* Create a domain node representing a synchronization.
3842 static __isl_give isl_ast_node *create_sync_leaf(
3843 struct gpu_gen *gen, __isl_take isl_map *schedule,
3844 __isl_take isl_ast_build *build)
3846 struct ppcg_kernel_stmt *stmt;
3847 isl_id *id;
3848 isl_space *space;
3849 isl_ast_node *node;
3850 isl_ast_expr *expr;
3852 isl_map_free(schedule);
3854 stmt = isl_calloc_type(gen->ctx, struct ppcg_kernel_stmt);
3855 if (!stmt)
3856 return NULL;
3858 stmt->type = ppcg_kernel_sync;
3860 space = isl_ast_build_get_schedule_space(build);
3861 space = isl_space_from_domain(space);
3862 space = isl_space_set_tuple_name(space, isl_dim_out, "sync");
3863 expr = isl_ast_build_call_from_pw_multi_aff(build,
3864 isl_pw_multi_aff_from_multi_aff(isl_multi_aff_zero(space)));
3865 node = isl_ast_node_alloc_user(expr);
3866 isl_ast_build_free(build);
3868 id = isl_id_alloc(gen->ctx, NULL, stmt);
3869 id = isl_id_set_free_user(id, &ppcg_kernel_stmt_free);
3870 return isl_ast_node_set_annotation(node, id);
3873 /* This function is called during the code generation at the point
3874 * where the schedule domain element is completely determined by
3875 * the generated code. The input schedule contains the original
3876 * statements as well as synchronization and copy "statements".
3877 * The latter are scheduled at different points than any of the original
3878 * statements, so they will only arrive here in isolation.
3880 * If the current schedule only refers to a single statement,
3881 * we check if it is a copy or synchronization statement and
3882 * call the appropriate functions.
3883 * Otherwise, we assume we are dealing with the original statements
3884 * and we call create_domain_leaf.
3886 static __isl_give isl_ast_node *create_kernel_leaf(
3887 __isl_take isl_ast_build *build, void *user)
3889 struct gpu_gen *gen = (struct gpu_gen *) user;
3890 isl_map *map;
3891 isl_union_map *schedule;
3892 const char *name;
3894 schedule = isl_ast_build_get_schedule(build);
3896 if (isl_union_map_n_map(schedule) != 1)
3897 return create_domain_leaf(schedule, build, user);
3899 map = isl_map_from_union_map(schedule);
3900 name = isl_map_get_tuple_name(map, isl_dim_in);
3901 if (!strcmp(name, "read") || !strcmp(name, "write"))
3902 return create_access_leaf(gen, map, build);
3903 if (!strcmp(name, "sync"))
3904 return create_sync_leaf(gen, map, build);
3906 return create_domain_leaf(isl_union_map_from_map(map), build, user);
3909 /* Mark all odd schedule dimensions as "atomic" (when the even dimensions
3910 * have value 0) and all even schedule dimensions as "unroll".
3912 * That is, the options look as follows
3914 * { [0, b, 0, d, ..., 0] -> atomic[i] : exists a : i = 2 a + 1;
3915 * [a, b, c, d, ..., z] -> unroll[i] : exists a : i = 2 a }
3917 * The even positions are used to be able to schedule copying blocks
3918 * and synchronization before or after each level of the shared memory
3919 * tile loops and we want to make sure that code for these is generated
3920 * separately (within each level).
3922 static __isl_give isl_ast_build *set_atomic_and_unroll(
3923 __isl_take isl_ast_build *build,
3924 __isl_take isl_space *space, int sched_len)
3926 isl_ctx *ctx;
3927 isl_map *map;
3928 isl_constraint *c;
3929 isl_union_map *opt;
3930 isl_local_space *ls;
3931 int i, n;
3933 ctx = isl_ast_build_get_ctx(build);
3935 space = isl_space_params(space);
3936 space = isl_space_add_dims(space, isl_dim_set, sched_len);
3937 space = isl_space_from_domain(space);
3938 space = isl_space_add_dims(space, isl_dim_out, 2);
3939 map = isl_map_universe(isl_space_copy(space));
3940 for (i = 0; i < sched_len; i += 2)
3941 map = isl_map_fix_si(map, isl_dim_in, i, 0);
3942 ls = isl_local_space_from_space(isl_map_get_space(map));
3943 c = isl_equality_alloc(ls);
3944 c = isl_constraint_set_coefficient_si(c, isl_dim_out, 0, 1);
3945 c = isl_constraint_set_coefficient_si(c, isl_dim_out, 1, 2);
3946 c = isl_constraint_set_constant_si(c, 1);
3947 map = isl_map_add_constraint(map, c);
3948 map = isl_map_project_out(map, isl_dim_out, 1, 1);
3949 map = isl_map_set_tuple_name(map, isl_dim_out, "atomic");
3950 opt = isl_union_map_from_map(map);
3952 map = isl_map_universe(space);
3953 ls = isl_local_space_from_space(isl_map_get_space(map));
3954 c = isl_equality_alloc(ls);
3955 c = isl_constraint_set_coefficient_si(c, isl_dim_out, 0, 1);
3956 c = isl_constraint_set_coefficient_si(c, isl_dim_out, 1, 2);
3957 map = isl_map_add_constraint(map, c);
3958 map = isl_map_project_out(map, isl_dim_out, 1, 1);
3959 map = isl_map_set_tuple_name(map, isl_dim_out, "unroll");
3960 opt = isl_union_map_add_map(opt, map);
3962 build = isl_ast_build_set_options(build, opt);
3964 return build;
3967 /* Return a map that maps a space of dimension gen->shared_len
3968 * to its last dimensions starting at gen->tile_first.
3969 * The range is of dimension
3971 * 2 * (gen->shared_len - gen->tile_first) + 1
3973 * The input dimensions are mapped to the odd dimensions in the output,
3974 * while the even dimensions (except 2*pos) are fixed to 0.
3975 * Output dimension 2*pos (if pos >= 0) is fixed to "val".
3976 * If pos >= 0, then only the pos first dimensions starting at gen->tile_first
3977 * are mapped to the output. The remaining input dimensions are projected
3978 * out and the corresponding output dimensions are fixed to 0.
3980 static __isl_give isl_map *insert_even(struct gpu_gen *gen,
3981 __isl_take isl_space *space, int pos, int val)
3983 int i, n;
3984 isl_map *proj;
3986 space = isl_space_set_from_params(space);
3987 space = isl_space_add_dims(space, isl_dim_set, gen->shared_len);
3988 space = isl_space_map_from_set(space);
3989 proj = isl_map_identity(space);
3990 proj = isl_map_project_out(proj, isl_dim_out, 0, gen->tile_first);
3991 n = gen->shared_len - gen->tile_first;
3992 for (i = 0; i <= n; ++i) {
3993 proj = isl_map_insert_dims(proj, isl_dim_out, 2 * i, 1);
3994 if (i == pos)
3995 proj = isl_map_fix_si(proj, isl_dim_out, 2 * i, val);
3996 else
3997 proj = isl_map_fix_si(proj, isl_dim_out, 2 * i, 0);
4000 if (pos < 0)
4001 return proj;
4003 proj = isl_map_eliminate(proj, isl_dim_in, gen->tile_first + pos,
4004 gen->shared_len - (gen->tile_first + pos));
4005 for (i = pos; i < n; ++i)
4006 proj = isl_map_fix_si(proj, isl_dim_out, 2 * i + 1, 0);
4008 return proj;
4011 /* Given the AST context schedule "schedule" and the mapping from
4012 * domains to the shared tile loops "shared_sched", add a schedule
4013 * for a synchronization operation at position "val" of loop level "pos".
4015 * schedule is of the form
4017 * D -> L
4019 * (with D the iteration domains and L the already generated loops),
4020 * while shared_sched is of the form
4022 * D -> S
4024 * We combine them into
4026 * L -> S
4028 * apply a mapping
4030 * [s_0,...] -> [0,s_{tile_first},0,..., val, 0, 0, ... 0]
4032 * and use the result as a schedule for "sync".
4034 static __isl_give isl_union_map *add_sync_schedule(struct gpu_gen *gen,
4035 __isl_take isl_union_map *res, __isl_keep isl_union_map *schedule,
4036 __isl_keep isl_union_map *shared_sched, int pos, int val)
4038 isl_space *space;
4039 isl_map *proj, *map;
4041 shared_sched = isl_union_map_copy(shared_sched);
4042 schedule = isl_union_map_copy(schedule);
4044 space = isl_union_map_get_space(shared_sched);
4045 schedule = isl_union_map_apply_domain(shared_sched, schedule);
4046 map = isl_map_from_union_map(schedule);
4048 proj = insert_even(gen, space, pos, val);
4049 map = isl_map_apply_range(map, proj);
4050 map = isl_map_from_range(isl_map_wrap(map));
4051 map = isl_map_set_tuple_name(map, isl_dim_in, "sync");
4053 res = isl_union_map_add_map(res, map);
4055 return res;
4058 /* Given the AST context schedule "schedule" and the mapping from
4059 * domains to the shared tile loops "shared_sched", add a schedule
4060 * for copying an array reference group to/from shared/private memory.
4061 * "read" is set if data should be copied from global memory
4062 * to shared/private memory.
4063 * "k" represents the current group
4064 * "s" is the total number of groups
4066 * We schedule an operation before or after the innermost loop
4067 * of "shared_sched" that affects the tile of the array reference group.
4069 * schedule is of the form
4071 * D -> L
4073 * (with D the iteration domains and L the already generated loops),
4074 * while shared_sched is of the form
4076 * D -> S
4078 * We first compute the access relation for the reference group
4080 * D -> A
4082 * and combine it with shared_sched into
4084 * D -> [S -> A]
4086 * If this results in an empty relation, no copying needs to be performed
4087 * at this point.
4088 * Otherwise, we invert the relation and combine it with "schedule" into
4090 * [S -> A] -> L
4092 * The actual additional piece of the schedule is obtained from combining
4094 * [S -> A] -> S
4096 * with a mapping
4098 * [s_0,...] -> [0,s_{tile_first},0,..., val, 0, 0, ... 0]
4100 * The position of "val" corresponds to the innermost loop that affects
4101 * the tile and the value indicates where the copying is scheduled
4102 * with respect to the actual kernel code (at value 0).
4103 * Reads are schedule before the code, writes to global memory from
4104 * private memory are scheduled at values 1 to s, writes to global
4105 * memory from shared memory are scheduled at values s + 2 to 2 * s + 1.
4107 * If we are scheduling a read from global memory to shared memory,
4108 * we insert a synchronization before the kernel code (at the innermost
4109 * level).
4110 * If we are scheduling a write to global memory, then we add
4111 * a synchronization after all writes (at value 2 *s + 2).
4112 * However, there is no need for a synchronization after the outermost loop.
4113 * A write to global memory from private memory at the innermost level
4114 * does not require a synchronization, because it is covered by
4115 * the synchronization after the kernel inserted by body_schedule.
4117 static __isl_give isl_union_map *add_group_schedule(struct gpu_gen *gen,
4118 __isl_take isl_union_map *res, __isl_keep isl_union_map *schedule,
4119 __isl_keep isl_union_map *shared_sched,
4120 struct gpu_array_ref_group *group, int read, int k, int s)
4122 int n;
4123 int pos, val;
4124 isl_space *space;
4125 isl_union_map *access;
4126 isl_map *map, *proj, *access_map;
4127 isl_id *id;
4129 access = group_access_relation(group, read, !read);
4130 access = isl_union_map_range_product(isl_union_map_copy(shared_sched),
4131 access);
4133 if (isl_union_map_is_empty(access)) {
4134 isl_union_map_free(access);
4135 return res;
4138 access = isl_union_map_reverse(access);
4139 access = isl_union_map_apply_range(access,
4140 isl_union_map_copy(schedule));
4141 access_map = isl_map_from_union_map(access);
4143 space = isl_space_copy(group->array->dim);
4144 space = isl_space_from_range(space);
4145 space = isl_space_add_dims(space, isl_dim_in, gen->shared_len);
4146 map = isl_map_domain_map(isl_map_universe(space));
4148 space = isl_union_map_get_space(schedule);
4149 pos = group->last_shared + 1 - gen->tile_first;
4150 assert(pos >= 0);
4151 if (read)
4152 val = -2 - k;
4153 else if (group->private_tile)
4154 val = 1 + k;
4155 else
4156 val = 1 + s + 1 + k;
4157 proj = insert_even(gen, space, pos, val);
4158 map = isl_map_apply_range(map, proj);
4160 access_map = isl_map_range_product(access_map, map);
4162 id = isl_id_alloc(gen->ctx, read ? "read" : "write", group);
4163 access_map = isl_map_set_tuple_id(access_map, isl_dim_in, id);
4165 res = isl_union_map_add_map(res, access_map);
4167 n = gen->shared_len - gen->tile_first;
4168 if (read) {
4169 if (!group->private_tile)
4170 res = add_sync_schedule(gen, res, schedule,
4171 shared_sched, n, -1);
4172 } else {
4173 if (pos == 0)
4174 return res;
4175 if (pos == n && group->private_tile)
4176 return res;
4177 res = add_sync_schedule(gen, res, schedule, shared_sched,
4178 pos, 2 * s + 2);
4181 return res;
4184 /* Return a schedule for the shared tile loops based on the current
4185 * AST context schedule.
4187 * We create a "shared_sched" that maps the domains to the first
4188 * shared_len dimensions of the computed schedule, project out the
4189 * first tile_first dimensions (as these are already covered by
4190 * the host code) and insert "statement-level" dimensions at even
4191 * positions so that we can schedule copy blocks and synchronization
4192 * before/after each level.
4194 * In particular, copy blocks are inserted inside the innermost
4195 * level that affect the tile. For the copying to global memory,
4196 * those from private memory are scheduled before those from shared
4197 * memory such that synchronization can be inserted between the two
4198 * at the innermost level.
4199 * Synchronization is inserted at the innermost level before the
4200 * actual kernel code if there is any copying from global memory
4201 * to shared memory. It is inserted unconditionally at the innermost
4202 * level after the actual kernel code and the copying to global memory
4203 * from private memory (if any). Finally, it is inserted after
4204 * any copying to global memory, except at the outermost level
4205 * and at the innermost level if there is no copying from shared
4206 * memory. The copying from private memory is covered by the unconditional
4207 * synchronization at the innermost level.
4209 static __isl_give isl_union_map *body_schedule(struct gpu_gen *gen,
4210 __isl_take isl_union_map *schedule)
4212 isl_space *space;
4213 isl_union_map *res;
4214 isl_union_map *shared_sched;
4215 isl_union_map *sched;
4216 isl_map *proj, *map;
4217 int i, j, k, s;
4219 shared_sched = isl_union_map_copy(gen->tiled_sched);
4220 proj = projection(isl_union_map_get_space(shared_sched),
4221 gen->tiled_len, gen->shared_len);
4222 shared_sched = isl_union_map_apply_range(shared_sched,
4223 isl_union_map_from_map(proj));
4224 space = isl_union_map_get_space(shared_sched);
4225 proj = insert_even(gen, space, -1, 0);
4226 sched = isl_union_map_apply_range(isl_union_map_copy(shared_sched),
4227 isl_union_map_from_map(proj));
4229 res = isl_union_map_range_product(isl_union_map_copy(schedule), sched);
4231 s = 0;
4232 for (i = 0; i < gen->prog->n_array; ++i)
4233 s += gen->prog->array[i].n_group;
4235 k = 0;
4236 for (i = 0; i < gen->prog->n_array; ++i) {
4237 struct gpu_array_info *array = &gen->prog->array[i];
4239 for (j = 0; j < array->n_group; ++j) {
4240 struct gpu_array_ref_group *group;
4242 group = array->groups[j];
4243 if (!group->private_tile && !group->shared_tile)
4244 continue;
4245 res = add_group_schedule(gen, res, schedule,
4246 shared_sched, group, 0, k, s);
4247 res = add_group_schedule(gen, res, schedule,
4248 shared_sched, group, 1, k, s);
4249 ++k;
4253 res = add_sync_schedule(gen, res, schedule, shared_sched,
4254 gen->shared_len - gen->tile_first, 1 + s);
4256 isl_union_map_free(shared_sched);
4257 isl_union_map_free(schedule);
4259 return res;
4262 /* Generate code for "kernel" in the given "context".
4264 * We first generate code for the shared tile loops (T1T, T1P and T2)
4265 * in a context that includes the block ids.
4266 * Within each iteration of these loops an additional code generation
4267 * is performed (within create_kernel_leaf) for the rest of the schedule
4268 * in a context that includes the thread ids.
4270 static __isl_give isl_ast_node *generate_kernel(struct gpu_gen *gen,
4271 __isl_keep isl_ast_build *build, __isl_keep isl_set *host_domain,
4272 __isl_keep isl_multi_pw_aff *grid_size)
4274 isl_space *space;
4275 isl_set *set;
4276 isl_id_list *iterators;
4277 isl_union_map *schedule;
4278 isl_ast_node *tree;
4279 int sched_len;
4281 schedule = isl_ast_build_get_schedule(build);
4283 build = isl_ast_build_copy(build);
4284 build = isl_ast_build_restrict(build, isl_set_copy(host_domain));
4285 space = isl_ast_build_get_schedule_space(build);
4286 set = isl_set_universe(isl_space_copy(space));
4287 set = add_bounded_parameters_dynamic(set, grid_size, "b");
4288 build = isl_ast_build_restrict(build, set);
4290 schedule = body_schedule(gen, schedule);
4292 sched_len = 2 * (gen->shared_len - gen->tile_first) + 1;
4294 build = set_atomic_and_unroll(build, space, sched_len);
4295 iterators = generate_names(gen->ctx, sched_len, "g");
4296 build = isl_ast_build_set_iterators(build, iterators);
4297 build = isl_ast_build_set_create_leaf(build, &create_kernel_leaf, gen);
4298 tree = isl_ast_build_ast_from_schedule(build, schedule);
4299 isl_ast_build_free(build);
4301 return tree;
4304 /* Attach "id" to the given node.
4306 static __isl_give isl_ast_node *attach_id(__isl_take isl_ast_node *node,
4307 __isl_keep isl_ast_build *build, void *user)
4309 isl_id *id = user;
4311 node = isl_ast_node_set_annotation(node, id);
4313 return node;
4316 /* Construct an AST node for performing a kernel launch and attach
4317 * the information about the kernel to that node.
4319 * The kernel AST has been constructed in the context of the range
4320 * of "schedule". In particular, the grid size has been computed
4321 * in the context. We therefore still need to make sure that these
4322 * constraints are expressed in the code. We do this by creating a schedule
4324 * kernel[] -> [S -> []]
4326 * where S is the schedule domain, i.e., the range of "schedule".
4327 * The AST generation will then create a single call surrounded by
4328 * all the condition in "S" that have not been expressed yet.
4330 * The kernel information is attached to this node in attach_id.
4332 static __isl_give isl_ast_node *construct_launch(
4333 __isl_take isl_ast_build *build, __isl_take isl_union_map *schedule,
4334 __isl_take struct ppcg_kernel *kernel)
4336 isl_id *id;
4337 isl_ctx *ctx;
4338 isl_union_set *domain;
4339 isl_set *set;
4340 isl_map *map;
4341 isl_ast_node *node;
4343 ctx = isl_ast_build_get_ctx(build);
4345 id = isl_id_alloc(ctx, NULL, kernel);
4346 id = isl_id_set_free_user(id, &ppcg_kernel_free);
4348 domain = isl_union_map_range(schedule);
4349 set = isl_set_from_union_set(domain);
4350 map = isl_map_from_domain(set);
4351 map = isl_map_from_range(isl_map_wrap(map));
4352 map = isl_map_set_tuple_name(map, isl_dim_in, "kernel");
4353 schedule = isl_union_map_from_map(map);
4355 build = isl_ast_build_set_at_each_domain(build, &attach_id, id);
4356 node = isl_ast_build_ast_from_schedule(build, schedule);
4357 isl_ast_build_free(build);
4359 return node;
4362 /* This function is called for each leaf in the AST of the host code.
4363 * We first specialize the schedule to the site of the leaf, compute
4364 * the size of shared memory and then construct the body of host code
4365 * and the associated kernel.
4367 * The necessary information for printing the kernel launch is
4368 * stored in a struct ppcg_kernel and attached to the leaf node
4369 * created to represent the launch.
4371 static __isl_give isl_ast_node *create_host_leaf(
4372 __isl_take isl_ast_build *build, void *user)
4374 struct gpu_gen *gen = (struct gpu_gen *) user;
4375 isl_id *id;
4376 isl_ast_node *node;
4377 struct ppcg_kernel *kernel;
4378 isl_set *host_domain;
4379 isl_union_map *schedule;
4380 isl_union_map *local_sched;
4381 isl_union_map *access;
4382 isl_union_set *domain;
4383 int i;
4385 schedule = isl_ast_build_get_schedule(build);
4387 isl_union_map_foreach_map(schedule, &extract_tile_len, gen);
4388 read_sizes(gen);
4390 domain = isl_union_map_domain(isl_union_map_copy(schedule));
4392 local_sched = isl_union_map_copy(gen->sched);
4393 local_sched = isl_union_map_intersect_domain(local_sched, domain);
4394 access = isl_union_map_union(isl_union_map_copy(gen->prog->read),
4395 isl_union_map_copy(gen->prog->write));
4396 access = isl_union_map_apply_domain(access,
4397 isl_union_map_copy(local_sched));
4399 gen->tiled_sched = tile_schedule(gen, local_sched);
4400 gen->tiled_sched = parametrize_tiled_schedule(gen, gen->tiled_sched);
4401 gen->tiled_sched = scale_tile_loops(gen, gen->tiled_sched);
4403 gen->local_sched = isl_union_map_copy(gen->tiled_sched);
4404 gen->local_sched = thread_tile_schedule(gen, gen->local_sched);
4405 gen->local_sched = scale_thread_tile_loops(gen, gen->local_sched);
4407 kernel = gen->kernel = isl_calloc_type(gen->ctx, struct ppcg_kernel);
4408 if (!kernel)
4409 goto error;
4411 kernel->id = gen->kernel_id++;
4412 kernel->context = isl_union_map_params(isl_union_map_copy(schedule));
4413 kernel->grid_size = extract_grid_size(gen, kernel);
4414 extract_block_size(gen, kernel);
4415 kernel->arrays = isl_union_map_range(access);
4416 kernel->space = isl_ast_build_get_schedule_space(build);
4418 gen->private_access = NULL;
4419 compute_shared_sched(gen);
4420 gen->privatization = compute_privatization(gen);
4421 group_references(gen);
4422 compute_private_access(gen);
4423 check_shared_memory_bound(gen);
4424 host_domain = isl_set_from_union_set(isl_union_map_range(
4425 isl_union_map_copy(schedule)));
4426 localize_bounds(gen, kernel, host_domain);
4428 gen->local_sched = interchange_for_unroll(gen, gen->local_sched);
4430 kernel->tree = generate_kernel(gen, build, host_domain,
4431 kernel->grid_size);
4432 create_kernel_vars(gen, kernel);
4434 free_local_array_info(gen);
4435 isl_map_free(gen->privatization);
4436 isl_union_map_free(gen->private_access);
4437 isl_union_map_free(gen->local_sched);
4438 isl_union_map_free(gen->tiled_sched);
4439 isl_union_map_free(gen->shared_sched);
4440 isl_union_map_free(gen->shared_proj);
4441 isl_set_free(host_domain);
4442 free(gen->tile_size);
4444 node = construct_launch(build, schedule, kernel);
4446 return node;
4447 error:
4448 isl_union_map_free(schedule);
4449 return NULL;
4452 /* Use isl to generate code for the outer gen->tile_first loops
4453 * of the global schedule in gen->sched, resulting in the host code.
4454 * Within each iteration of this partial schedule, i.e., for each kernel
4455 * launch, create_host_leaf takes care of generating the kernel code.
4457 static __isl_give isl_ast_node *generate_host_code(struct gpu_gen *gen)
4459 isl_ast_build *build;
4460 isl_ast_node *tree;
4461 isl_union_map *sched;
4462 isl_map *proj;
4463 isl_id_list *iterators;
4465 sched = isl_union_map_copy(gen->sched);
4466 proj = projection(isl_union_map_get_space(sched),
4467 gen->untiled_len, gen->tile_first);
4468 sched = isl_union_map_apply_range(sched, isl_union_map_from_map(proj));
4470 isl_options_set_ast_build_group_coscheduled(gen->ctx, 1);
4471 build = isl_ast_build_from_context(isl_set_copy(gen->prog->context));
4472 iterators = generate_names(gen->ctx, gen->tile_first, "h");
4473 build = isl_ast_build_set_iterators(build, iterators);
4474 build = isl_ast_build_set_create_leaf(build, &create_host_leaf, gen);
4475 tree = isl_ast_build_ast_from_schedule(build, sched);
4476 isl_ast_build_free(build);
4478 return tree;
4481 __isl_give isl_union_map *extract_sizes_from_str(isl_ctx *ctx, const char *str)
4483 if (!str)
4484 return NULL;
4485 return isl_union_map_read_from_str(ctx, str);
4488 /* Information about the outermost tilable bands in the forest of bands.
4490 * tile_len and n_parallel are only sets on band_info structures
4491 * that correspond to outermost bands. For other bands (in particular,
4492 * ancestors of the outermost bands), n_parallal is set to 0.
4494 * prefix is the (padded) schedule leading up to the outermost tilable bands.
4496 * tile_first is the number of schedule dimensions in prefix.
4498 * suffix is the schedule of the outermost tilable bands and their descendants.
4500 struct band_info {
4501 struct gpu_gen *gen;
4502 int tile_first;
4503 int tile_len;
4504 int n_parallel;
4505 isl_union_map *prefix;
4506 isl_union_map *suffix;
4509 /* Set tile_len and n_parallel of the statement to that of
4510 * their outermost band, recorded in the band_info.
4512 static int set_stmt_tile_len(__isl_take isl_map *map, void *user)
4514 struct band_info *info = user;
4515 struct gpu_stmt *stmt;
4516 isl_id *id;
4518 id = isl_map_get_tuple_id(map, isl_dim_in);
4519 stmt = find_stmt(info->gen->prog, id);
4520 isl_id_free(id);
4522 stmt->tile_len = info->tile_len;
4523 stmt->n_parallel = info->n_parallel;
4525 isl_map_free(map);
4527 return 0;
4530 static void list_select_outer_band(struct gpu_gen *gen,
4531 __isl_take isl_band_list *list, int pos, struct band_info *list_info);
4533 /* Check if this band has any parallel loops. If so, take it as
4534 * the outermost tilable band. If not, continue looking for the
4535 * outermost tilable band in the children of the current band.
4537 static void band_select_outer_band(struct gpu_gen *gen,
4538 __isl_take isl_band *band, int pos, struct band_info *info)
4540 int n = isl_band_n_member(band);
4541 int n_parallel;
4543 for (n_parallel = 0; n_parallel < n; ++n_parallel)
4544 if (!isl_band_member_is_zero_distance(band, n_parallel))
4545 break;
4547 info->n_parallel = n_parallel;
4548 if (n_parallel) {
4549 info->gen = gen;
4550 info->tile_first = pos;
4551 info->tile_len = n;
4552 info->prefix = isl_band_get_prefix_schedule(band);
4553 info->suffix = isl_union_map_flat_range_product(
4554 isl_band_get_partial_schedule(band),
4555 isl_band_get_suffix_schedule(band));
4556 isl_union_map_foreach_map(info->prefix,
4557 &set_stmt_tile_len, info);
4558 } else if (isl_band_has_children(band)) {
4559 isl_band_list *children;
4560 children = isl_band_get_children(band);
4561 list_select_outer_band(gen, children, pos + n, info);
4562 } else {
4563 info->gen = gen;
4564 info->tile_first = pos + n;
4565 info->tile_len = 0;
4566 info->prefix = isl_union_map_flat_range_product(
4567 isl_band_get_prefix_schedule(band),
4568 isl_band_get_partial_schedule(band));
4569 info->suffix = isl_band_get_suffix_schedule(band);
4570 isl_union_map_foreach_map(info->prefix,
4571 &set_stmt_tile_len, info);
4574 isl_band_free(band);
4577 /* Comparison function that returns a non-zero value for band_infos
4578 * with different tile_len fields or different n_parallel fields.
4580 static int cmp_band(const void *p1, const void *p2)
4582 const struct band_info *info1 = p1;
4583 const struct band_info *info2 = p2;
4585 if (info1->tile_len != info2->tile_len)
4586 return info1->tile_len - info2->tile_len;
4588 return info1->n_parallel - info2->n_parallel;
4591 /* Extend "umap" with coordinates with fixed value "val"
4592 * to a total length of "dst_len", assuming the original dimension is "src_len".
4594 static __isl_give isl_union_map *extend_range(
4595 __isl_take isl_union_map *umap, int src_len, int dst_len, int val)
4597 isl_space *dim;
4598 isl_map *map;
4599 int i;
4601 dim = isl_union_map_get_space(umap);
4602 map = isl_map_reverse(projection(dim, dst_len, src_len));
4603 for (i = src_len; i < dst_len; ++i)
4604 map = isl_map_fix_si(map, isl_dim_out, i, val);
4606 umap = isl_union_map_apply_range(umap, isl_union_map_from_map(map));
4608 return umap;
4611 /* Group bands with the same values for tile_len and n_parallel.
4612 * The prefix schedule is then extended with a fixed coordinate that
4613 * is different for each such group.
4614 * Note that the actual values for this coordinate are not important.
4615 * The bands have already been effectively separated at a higher level
4616 * or they are independent and may be executed in parallel.
4617 * The list of band_info has been sorted before this functions is called.
4619 static void separate_bands(struct band_info *info, int n)
4621 int i;
4622 int j = 0;
4624 for (i = 0; i < n; ++i) {
4625 int l = info[i].tile_first;
4627 if (i &&
4628 (info[i].tile_len != info[i - 1].tile_len ||
4629 info[i].n_parallel != info[i - 1].n_parallel))
4630 j++;
4632 info[i].prefix = extend_range(info[i].prefix,
4633 l, l + 1, j);
4634 info[i].tile_first = l + 1;
4638 /* Select the outermost bands in the elements of the list, align
4639 * their prefix schedules, separate bands with different values
4640 * for tile_len and/or n_parallel and then combine the resulting
4641 * prefix and suffix schedules into a single pair of prefix and
4642 * suffix schedules for the entire list.
4644 static void list_select_outer_band(struct gpu_gen *gen,
4645 __isl_take isl_band_list *list, int pos, struct band_info *list_info)
4647 isl_band *band;
4648 int i;
4649 int n = isl_band_list_n_band(list);
4650 isl_ctx *ctx = isl_band_list_get_ctx(list);
4651 struct band_info *info;
4652 int max_tile_first;
4653 isl_union_map *prefix;
4654 isl_union_map *suffix;
4656 assert(n >= 1);
4657 info = isl_calloc_array(ctx, struct band_info, n);
4658 assert(info);
4660 max_tile_first = 0;
4661 for (i = 0; i < n; ++i) {
4662 band = isl_band_list_get_band(list, i);
4663 band_select_outer_band(gen, band, pos, &info[i]);
4664 if (info[i].tile_first > max_tile_first)
4665 max_tile_first = info[i].tile_first;
4668 for (i = 0; i < n; ++i) {
4669 if (info[i].tile_first == max_tile_first)
4670 continue;
4671 info[i].prefix = extend_range(info[i].prefix,
4672 info[i].tile_first, max_tile_first, 0);
4673 info[i].tile_first = max_tile_first;
4676 qsort(info, n, sizeof(struct band_info), &cmp_band);
4678 for (i = 0; i < n - 1; ++i)
4679 if (info[i].tile_len != info[i + 1].tile_len ||
4680 info[i].n_parallel != info[i + 1].n_parallel)
4681 break;
4683 if (i < n -1)
4684 separate_bands(info, n);
4686 prefix = info[0].prefix;
4687 suffix = info[0].suffix;
4689 for (i = 1; i < n; ++i) {
4690 prefix = isl_union_map_union(prefix, info[i].prefix);
4691 suffix = isl_union_map_union(suffix, info[i].suffix);
4694 list_info->tile_first = info[0].tile_first;
4695 list_info->tile_len = -1;
4696 list_info->prefix = prefix;
4697 list_info->suffix = suffix;
4699 isl_band_list_free(list);
4700 free(info);
4703 /* Select the outermost tilable band that (by construction)
4704 * has at least one parallel loop.
4705 * The starting position of the aligned band is stored in the pair
4706 * gen->tile_first.
4707 * The sizes and number of parallel loops may be different in different
4708 * parts of the band forest and are therefore stored in the gpu_stmts.
4710 * Return the complete schedule, with the tilable bands aligned
4711 * at gen->tile_first and padded with zero, if needed.
4713 static __isl_give isl_union_map *select_outer_tilable_band(struct gpu_gen *gen,
4714 __isl_keep isl_schedule *schedule)
4716 isl_band_list *list;
4717 struct band_info info;
4719 gen->n_parallel = 0;
4720 gen->tile_len = -1;
4722 list = isl_schedule_get_band_forest(schedule);
4724 list_select_outer_band(gen, list, 0, &info);
4726 gen->tile_first = info.tile_first;
4727 info.suffix = align_range(info.suffix);
4729 return isl_union_map_flat_range_product(info.prefix, info.suffix);
4732 /* Set gen->untiled_len to the number of scheduling dimensions
4733 * for the schedule of the first domain.
4734 * We assume here that this number is the same for all domains.
4736 static int set_untiled_len(__isl_take isl_map *map, void *user)
4738 unsigned *untiled_len = user;
4740 *untiled_len = isl_map_dim(map, isl_dim_out);
4742 isl_map_free(map);
4743 return -1;
4746 /* Compute an appropriate schedule based on the accesses in
4747 * gen->read and gen->write.
4749 * We use the dependences in gen->prog->scop to compute
4750 * a schedule that has a parallel loop in each tilable band.
4751 * Finally, we select the outermost tilable band.
4753 static void compute_schedule(struct gpu_gen *gen)
4755 isl_union_set *domain;
4756 isl_union_map *dep_raw, *dep;
4757 isl_union_map *sched;
4758 isl_schedule *schedule;
4760 dep_raw = isl_union_map_copy(gen->prog->scop->dep_flow);
4762 dep = isl_union_map_copy(gen->prog->scop->dep_false);
4763 dep = isl_union_map_union(dep, dep_raw);
4764 dep = isl_union_map_coalesce(dep);
4766 domain = isl_union_set_copy(gen->prog->scop->domain);
4767 domain = isl_union_set_intersect_params(domain,
4768 isl_set_copy(gen->prog->scop->context));
4769 schedule = isl_union_set_compute_schedule(isl_union_set_copy(domain),
4770 isl_union_map_copy(dep), dep);
4771 if (gen->options->debug->dump_schedule)
4772 isl_schedule_dump(schedule);
4774 sched = select_outer_tilable_band(gen, schedule);
4776 isl_union_map_foreach_map(sched, &set_untiled_len, &gen->untiled_len);
4777 sched = isl_union_map_intersect_domain(sched, domain);
4778 gen->sched = sched;
4780 isl_schedule_free(schedule);
4783 /* Compute the sets of array elements that need to be copied in and out.
4785 * In particular, for each array that is written anywhere in gen->prog and
4786 * that is visible outside the corresponding scop, we copy out its entire
4787 * extent.
4789 * Any array elements that is read without first being written needs
4790 * to be copied in. Furthermore, if there are any array elements that
4791 * are copied out, but that are not written inside gen->prog, then
4792 * they also need to be copied in to ensure that the value after execution
4793 * is the same as the value before execution.
4794 * While computing the set of array elements that
4795 * are copied out but not written, we intersect both sets with the context.
4796 * This helps in those cases where the arrays are declared with a fixed size,
4797 * while the accesses are parametric and the context assigns a fixed value
4798 * to the parameters.
4800 static void compute_copy_in_and_out(struct gpu_gen *gen)
4802 int i;
4803 isl_union_set *write;
4804 isl_union_set *copy_in, *copy_out;
4805 isl_union_set *not_written;
4806 isl_union_map *uninitialized;
4808 write = isl_union_map_range(isl_union_map_copy(gen->prog->write));
4809 write = isl_union_set_intersect_params(write,
4810 isl_set_copy(gen->prog->context));
4811 copy_out = isl_union_set_empty(isl_union_set_get_space(write));
4813 for (i = 0; i < gen->prog->n_array; ++i) {
4814 isl_space *space;
4815 isl_set *write_i;
4816 int empty;
4818 if (gen->prog->array[i].local)
4819 continue;
4821 space = isl_space_copy(gen->prog->array[i].dim);
4822 write_i = isl_union_set_extract_set(write, space);
4823 empty = isl_set_fast_is_empty(write_i);
4824 isl_set_free(write_i);
4825 if (empty)
4826 continue;
4828 write_i = isl_set_copy(gen->prog->array[i].extent);
4829 copy_out = isl_union_set_add_set(copy_out, write_i);
4832 copy_out = isl_union_set_intersect_params(copy_out,
4833 isl_set_copy(gen->prog->context));
4835 gen->prog->copy_out = isl_union_set_copy(copy_out);
4837 uninitialized = isl_union_map_copy(gen->prog->scop->live_in);
4838 copy_in = isl_union_map_range(uninitialized);
4840 not_written = isl_union_set_subtract(copy_out, write);
4841 copy_in = isl_union_set_union(copy_in, not_written);
4842 gen->prog->copy_in = copy_in;
4845 static struct gpu_stmt_access **expr_extract_access(struct pet_expr *expr,
4846 struct gpu_stmt_access **next_access)
4848 struct gpu_stmt_access *access;
4849 isl_ctx *ctx = isl_map_get_ctx(expr->acc.access);
4851 access = isl_alloc_type(ctx, struct gpu_stmt_access);
4852 assert(access);
4853 access->next = NULL;
4854 access->read = expr->acc.read;
4855 access->write = expr->acc.write;
4856 access->access = isl_map_copy(expr->acc.access);
4858 *next_access = access;
4859 next_access = &(*next_access)->next;
4860 return next_access;
4863 static struct gpu_stmt_access **expr_extract_accesses(struct pet_expr *expr,
4864 struct gpu_stmt_access **next_access)
4866 int i;
4868 for (i = 0; i < expr->n_arg; ++i)
4869 next_access = expr_extract_accesses(expr->args[i],
4870 next_access);
4872 if (expr->type == pet_expr_access)
4873 next_access = expr_extract_access(expr, next_access);
4875 return next_access;
4878 static void pet_stmt_extract_accesses(struct gpu_stmt *stmt)
4880 struct gpu_stmt_access **next_access = &stmt->accesses;
4882 stmt->accesses = NULL;
4883 expr_extract_accesses(stmt->body, next_access);
4886 /* Return an array of gpu_stmt representing the statements in "scop".
4888 static struct gpu_stmt *extract_stmts(isl_ctx *ctx, struct ppcg_scop *scop,
4889 __isl_keep isl_set *context)
4891 int i;
4892 struct gpu_stmt *stmts;
4894 stmts = isl_calloc_array(ctx, struct gpu_stmt, scop->n_stmt);
4895 assert(stmts);
4897 for (i = 0; i < scop->n_stmt; ++i) {
4898 struct gpu_stmt *s = &stmts[i];
4900 s->id = isl_set_get_tuple_id(scop->stmts[i]->domain);
4901 s->body = scop->stmts[i]->body;
4902 pet_stmt_extract_accesses(s);
4905 return stmts;
4908 /* Replace the scop in the "input" file by equivalent code
4909 * that uses the GPU. "scop" is assumed to correspond to this scop.
4911 * We first compute a schedule that respects the dependences
4912 * of the original program and select the outermost band
4913 * of tilable dimensions that has at least one parallel loop.
4914 * We then have three blocks of dimensions
4916 * H B G
4918 * The tilable band "B" is first tiled according to "tile" sizes, resulting
4919 * in
4921 * H T P G
4923 * For each iteration of the T loop and for each array, we compute
4924 * the array elements accessed by that iteration, construct a rectangular
4925 * box around it and shift it to the origin. The result is used
4926 * as shared memory for the array.
4928 * We then split off at most 2 parallel loops from the T loops and
4929 * at most 3 parallel loops from the P loops
4931 * H T1 T2 P1 P2 G
4933 * The T1/P1 loops are then tiled or "wrapped" over the blocks/threads,
4934 * according to "grid"/"block" sizes.
4936 * H T1T T1P T2 P1T P1P P2 G
4938 * Finally, the T1P and P1P iterators are equated to the block and
4939 * thread dimensions respectively and so are effectively removed.
4940 * The H loops are run on the host. The T1T, T2, P1T, P2 and G loops
4941 * are run on the GPU.
4943 * Code is generated in three stages. We first generate code for the
4944 * host (the H loops), with iterators h%d. Then, for each leaf node
4945 * of the resulting AST, we generate code for the shared loops (up to
4946 * and including T2), with iterators g%d and after equating the H loops
4947 * to h%d parameters and the T1P loops to the block dimensions.
4948 * Finally, we generate code for the remaining loops in a similar fashion.
4950 __isl_give isl_ast_node *generate_gpu(isl_ctx *ctx, struct gpu_prog *prog,
4951 struct ppcg_options *options)
4953 isl_union_map *sched;
4954 struct gpu_gen gen;
4955 isl_ast_node *tree;
4957 if (!prog)
4958 return NULL;
4960 gen.ctx = ctx;
4961 gen.prog = prog;
4962 gen.sizes = extract_sizes_from_str(ctx, options->sizes);
4963 gen.options = options;
4965 compute_schedule(&gen);
4966 compute_copy_in_and_out(&gen);
4968 gen.kernel_id = 0;
4969 tree = generate_host_code(&gen);
4971 clear_gpu_gen(&gen);
4973 return tree;
4976 struct gpu_prog *gpu_prog_alloc(isl_ctx *ctx, struct ppcg_scop *scop)
4978 struct gpu_prog *prog;
4980 if (!scop)
4981 return NULL;
4983 prog = isl_calloc_type(ctx, struct gpu_prog);
4984 assert(prog);
4986 prog->ctx = ctx;
4987 prog->scop = scop;
4988 prog->context = isl_set_copy(scop->context);
4989 prog->n_stmts = scop->n_stmt;
4990 prog->stmts = extract_stmts(ctx, scop, prog->context);
4991 prog->read = isl_union_map_copy(scop->reads);
4992 prog->write = isl_union_map_copy(scop->writes);
4994 collect_array_info(prog);
4996 return prog;
4999 void gpu_prog_free(struct gpu_prog *prog)
5001 if (!prog)
5002 return;
5003 free_array_info(prog);
5004 free_stmts(prog->stmts, prog->n_stmts);
5005 isl_union_set_free(prog->copy_in);
5006 isl_union_set_free(prog->copy_out);
5007 isl_union_map_free(prog->read);
5008 isl_union_map_free(prog->write);
5009 isl_set_free(prog->context);
5010 free(prog);