gpu.c: collect_array_info: propagate error instead of asserting
[ppcg.git] / gpu.c
blob2828dead289c3ec40bc16217c1048d7b70eecf9f
1 /*
2 * Copyright 2010-2011 INRIA Saclay
3 * Copyright 2012-2013 Ecole Normale Superieure
4 * Copyright 2015-2016 Sven Verdoolaege
6 * Use of this software is governed by the MIT license
8 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
9 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
10 * 91893 Orsay, France
11 * and Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France
14 #include <assert.h>
15 #include <stdlib.h>
16 #include <string.h>
18 #include <isl/polynomial.h>
19 #include <isl/union_set.h>
20 #include <isl/aff.h>
21 #include <isl/ilp.h>
22 #include <isl/flow.h>
23 #include <isl/schedule.h>
24 #include <isl/schedule_node.h>
25 #include <isl/options.h>
26 #include <isl/ast_build.h>
28 #include "cpu.h"
29 #include "gpu.h"
30 #include "gpu_array_tile.h"
31 #include "gpu_group.h"
32 #include "gpu_hybrid.h"
33 #include "gpu_tree.h"
34 #include "hybrid.h"
35 #include "schedule.h"
36 #include "ppcg_options.h"
37 #include "print.h"
38 #include "util.h"
40 struct gpu_array_info;
42 /* Return the name of the outer array (of structs) accessed by "access".
44 static const char *get_outer_array_name(__isl_keep isl_map *access)
46 isl_space *space;
47 const char *name;
49 space = isl_space_range(isl_map_get_space(access));
50 while (space && isl_space_is_wrapping(space))
51 space = isl_space_domain(isl_space_unwrap(space));
52 name = isl_space_get_tuple_name(space, isl_dim_set);
53 isl_space_free(space);
55 return name;
58 /* Collect all references to the given array and store pointers to them
59 * in array->refs.
61 static void collect_references(struct gpu_prog *prog,
62 struct gpu_array_info *array)
64 int i;
65 int n;
67 n = 0;
68 for (i = 0; i < prog->n_stmts; ++i) {
69 struct gpu_stmt *stmt = &prog->stmts[i];
70 struct gpu_stmt_access *access;
72 for (access = stmt->accesses; access; access = access->next) {
73 const char *name;
74 name = get_outer_array_name(access->access);
75 if (name && !strcmp(array->name, name))
76 n++;
80 array->n_ref = n;
81 array->refs = isl_alloc_array(prog->ctx, struct gpu_stmt_access *, n);
82 assert(array->refs);
84 n = 0;
85 for (i = 0; i < prog->n_stmts; ++i) {
86 struct gpu_stmt *stmt = &prog->stmts[i];
87 struct gpu_stmt_access *access;
89 for (access = stmt->accesses; access; access = access->next) {
90 const char *name;
91 name = get_outer_array_name(access->access);
92 if (!name || strcmp(array->name, name))
93 continue;
95 array->refs[n++] = access;
100 /* Compute and return the extent of "array", taking into account the set of
101 * accessed elements.
103 * In particular, the extent in the outer dimension is taken
104 * from "accessed", while the extents in the remaining dimensions
105 * are taken from array->extent.
107 * The extent in the outer dimension cannot be taken from array->extent
108 * because that may be unbounded. Furthermore, even if it is bounded,
109 * it may be larger than the piece of the array that is being accessed.
111 static __isl_give isl_set *compute_extent(struct pet_array *array,
112 __isl_keep isl_set *accessed)
114 int n_index;
115 isl_id *id;
116 isl_set *outer;
117 isl_set *extent;
119 extent = isl_set_copy(array->extent);
121 n_index = isl_set_dim(accessed, isl_dim_set);
122 if (n_index == 0)
123 return extent;
125 extent = isl_set_project_out(extent, isl_dim_set, 0, 1);
126 outer = isl_set_copy(accessed);
127 outer = isl_set_project_out(outer, isl_dim_set, 1, n_index - 1);
128 extent = isl_set_flat_product(outer, extent);
129 id = isl_set_get_tuple_id(accessed);
130 extent = isl_set_set_tuple_id(extent, id);
132 return extent;
135 /* Is the array "array" being extracted a read-only scalar?
137 * That is, is "array" a scalar that is never possibly written to.
138 * An array containing structures is never considered to be a scalar.
140 static int is_read_only_scalar(struct gpu_array_info *array,
141 struct gpu_prog *prog)
143 isl_set *space;
144 isl_union_map *write;
145 int empty;
147 if (array->has_compound_element)
148 return 0;
149 if (array->n_index != 0)
150 return 0;
152 write = isl_union_map_copy(prog->may_write);
153 space = isl_set_universe(isl_space_copy(array->space));
154 write = isl_union_map_intersect_range(write,
155 isl_union_set_from_set(space));
156 empty = isl_union_map_is_empty(write);
157 isl_union_map_free(write);
159 return empty;
162 /* Is "array" only accessed as individual, fixed elements?
163 * That is, does each access to "array" access a single, fixed element?
165 static isl_bool only_fixed_element_accessed(struct gpu_array_info *array)
167 int i;
169 for (i = 0; i < array->n_ref; ++i)
170 if (!array->refs[i]->fixed_element)
171 return isl_bool_false;
173 return isl_bool_true;
176 /* Compute bounds on the host array "pa" based on the corresponding
177 * accessed elements in "arrays"
178 * and collect all references to the array.
179 * Store the results in "info".
181 * If the array is zero-dimensional and does not contain structures,
182 * i.e., if the array is a scalar, we check whether it is read-only.
183 * We also check whether the array is accessed at all.
185 static int extract_array_info(struct gpu_prog *prog,
186 struct gpu_array_info *info, struct pet_array *pa,
187 __isl_keep isl_union_set *arrays)
189 int empty;
190 const char *name;
191 int n_index;
192 isl_multi_pw_aff *bounds;
193 isl_set *accessed, *extent;
195 n_index = isl_set_dim(pa->extent, isl_dim_set);
196 name = isl_set_get_tuple_name(pa->extent);
198 info->space = isl_set_get_space(pa->extent);
199 info->name = strdup(name);
200 info->n_index = n_index;
201 info->linearize = prog->scop->options->linearize_device_arrays;
203 info->type = strdup(pa->element_type);
204 info->size = pa->element_size;
205 info->local = pa->declared && !pa->exposed;
206 info->has_compound_element = pa->element_is_record;
207 info->read_only_scalar = is_read_only_scalar(info, prog);
209 info->declared_extent = isl_set_copy(pa->extent);
210 accessed = isl_union_set_extract_set(arrays,
211 isl_space_copy(info->space));
212 empty = isl_set_is_empty(accessed);
213 extent = compute_extent(pa, accessed);
214 isl_set_free(accessed);
215 info->extent = extent;
216 if (empty < 0)
217 return -1;
218 info->accessed = !empty;
219 bounds = ppcg_size_from_extent(isl_set_copy(extent));
220 bounds = isl_multi_pw_aff_gist(bounds, isl_set_copy(prog->context));
221 if (!bounds)
222 return -1;
223 if (!isl_multi_pw_aff_is_cst(bounds))
224 info->linearize = 1;
225 info->bound = bounds;
227 collect_references(prog, info);
228 info->only_fixed_element = only_fixed_element_accessed(info);
230 return 0;
233 /* Remove independence from the order constraints "order" on array "array".
234 * Since the pairs of iterations in the filter relation of an independence
235 * are guaranteed to be completely independent by the user, there is
236 * no need to ensure that live ranges are ordered along those pairs.
237 * We make an exception for local variables, though, as the independence
238 * guarantee does not apply to those.
240 * The order constraints are used in two places.
241 * Those on scalars are used in check_scalar_live_ranges to check if
242 * we need to force the scalar to be private. Any non-local scalar
243 * should not be forced scalar if it only appears in independent loops.
244 * Those on non-scalars are added to the coincidence constraints
245 * in compute_schedule because we do not support any array expansion.
246 * Accesses to non-local arrays should not prevent a loop from being
247 * considered coincident so we should indeed remove those constraints
248 * from the order constraints.
250 static __isl_give isl_union_map *remove_independences(struct gpu_prog *prog,
251 struct gpu_array_info *array, __isl_take isl_union_map *order)
253 int i;
255 for (i = 0; i < prog->scop->pet->n_independence; ++i) {
256 struct pet_independence *pi = prog->scop->pet->independences[i];
257 if (isl_union_set_contains(pi->local, array->space))
258 continue;
260 order = isl_union_map_subtract(order,
261 isl_union_map_copy(pi->filter));
264 return order;
267 /* For each array in "prog", store the (untagged) order dependences
268 * derived from the array in array->dep_order.
269 * In particular, consider all references that access the given array
270 * and take the order dependences that have one of these references
271 * as source. (Since an order dependence relates two references to
272 * the same array, the target of these order dependences will also
273 * be one of these references.)
274 * Additionally, store the union of these array->dep_order relations
275 * for all arrays that cannot be mapped to private memory in prog->array_order.
277 void collect_order_dependences(struct gpu_prog *prog)
279 int i;
280 isl_space *space;
281 isl_union_map *accesses;
283 space = isl_union_map_get_space(prog->read);
284 prog->array_order = isl_union_map_empty(space);
286 accesses = isl_union_map_copy(prog->scop->tagged_reads);
287 accesses = isl_union_map_union(accesses,
288 isl_union_map_copy(prog->scop->tagged_may_writes));
289 accesses = isl_union_map_universe(accesses);
290 accesses = isl_union_map_apply_range(accesses,
291 isl_union_map_copy(prog->to_outer));
293 for (i = 0; i < prog->n_array; ++i) {
294 struct gpu_array_info *array = &prog->array[i];
295 isl_set *set;
296 isl_union_set *uset;
297 isl_union_map *order;
299 set = isl_set_universe(isl_space_copy(array->space));
300 uset = isl_union_set_from_set(set);
301 uset = isl_union_map_domain(
302 isl_union_map_intersect_range(isl_union_map_copy(accesses),
303 uset));
304 order = isl_union_map_copy(prog->scop->tagged_dep_order);
305 order = isl_union_map_intersect_domain(order, uset);
306 order = isl_union_map_zip(order);
307 order = isl_union_set_unwrap(isl_union_map_domain(order));
308 order = remove_independences(prog, array, order);
309 array->dep_order = order;
311 if (gpu_array_can_be_private(array))
312 continue;
314 prog->array_order = isl_union_map_union(prog->array_order,
315 isl_union_map_copy(array->dep_order));
318 isl_union_map_free(accesses);
321 /* Construct a gpu_array_info for each array referenced by prog->scop and
322 * collect them in prog->array.
324 * The sizes are based on the extents and the set of possibly accessed
325 * elements by "prog".
326 * If there are any member accesses involved, then they are first mapped
327 * to the outer arrays of structs.
328 * Only extract gpu_array_info entries for these outer arrays.
330 * If we are allowing live range reordering, then also set
331 * the dep_order field. Otherwise leave it NULL.
333 static isl_stat collect_array_info(struct gpu_prog *prog)
335 int i;
336 isl_stat r = isl_stat_ok;
337 isl_union_set *arrays;
339 prog->n_array = 0;
340 prog->array = isl_calloc_array(prog->ctx,
341 struct gpu_array_info, prog->scop->pet->n_array);
342 if (!prog->array)
343 return isl_stat_error;
345 arrays = isl_union_map_range(isl_union_map_copy(prog->read));
346 arrays = isl_union_set_union(arrays,
347 isl_union_map_range(isl_union_map_copy(prog->may_write)));
349 arrays = isl_union_set_apply(arrays,
350 isl_union_map_copy(prog->to_outer));
352 arrays = isl_union_set_coalesce(arrays);
354 for (i = 0; i < prog->scop->pet->n_array; ++i) {
355 isl_bool field;
357 field = isl_set_is_wrapping(prog->scop->pet->arrays[i]->extent);
358 if (field < 0)
359 break;
360 if (field)
361 continue;
362 if (extract_array_info(prog, &prog->array[prog->n_array++],
363 prog->scop->pet->arrays[i], arrays) < 0)
364 r = isl_stat_error;
366 if (i < prog->scop->pet->n_array)
367 r = isl_stat_error;
369 isl_union_set_free(arrays);
371 if (prog->scop->options->live_range_reordering)
372 collect_order_dependences(prog);
374 return r;
377 static void free_array_info(struct gpu_prog *prog)
379 int i;
381 for (i = 0; i < prog->n_array; ++i) {
382 free(prog->array[i].type);
383 free(prog->array[i].name);
384 isl_multi_pw_aff_free(prog->array[i].bound);
385 isl_ast_expr_free(prog->array[i].bound_expr);
386 isl_space_free(prog->array[i].space);
387 isl_set_free(prog->array[i].declared_extent);
388 isl_set_free(prog->array[i].extent);
389 isl_ast_expr_free(prog->array[i].declared_size);
390 free(prog->array[i].refs);
391 isl_union_map_free(prog->array[i].dep_order);
393 free(prog->array);
396 /* Check if a gpu array is a scalar. A scalar is a value that is not stored
397 * as an array or through a pointer reference, but as a single data element.
398 * At the moment, scalars are represented as zero-dimensional arrays.
399 * Note that the single data element may be an entire structure.
401 int gpu_array_is_scalar(struct gpu_array_info *array)
403 return array->n_index == 0;
406 /* Can "array" be mapped to private memory?
407 * That is, is it only accessed as individual elements with
408 * constant index expressions?
410 isl_bool gpu_array_can_be_private(struct gpu_array_info *array)
412 if (!array)
413 return isl_bool_error;
414 return array->only_fixed_element;
417 /* Is "array" a read-only scalar?
419 int gpu_array_is_read_only_scalar(struct gpu_array_info *array)
421 return array->read_only_scalar;
424 /* Does "array" need to be allocated on the device?
425 * If it is a read-only scalar, then it will be passed as an argument
426 * to the kernel and therefore does not require any allocation.
427 * If this device memory is not accessed at all, then it does not
428 * need to be allocated either.
430 int gpu_array_requires_device_allocation(struct gpu_array_info *array)
432 if (gpu_array_is_read_only_scalar(array))
433 return 0;
434 if (!array->global)
435 return 0;
436 return 1;
439 /* Return the set of parameter values for which the array has a positive
440 * size in all dimensions.
441 * If the sizes are only valid for some parameter values, then those
442 * constraints are also taken into account.
444 __isl_give isl_set *gpu_array_positive_size_guard(struct gpu_array_info *array)
446 int i;
447 isl_space *space;
448 isl_set *guard;
450 if (!array)
451 return NULL;
453 space = isl_space_params(isl_space_copy(array->space));
454 guard = isl_set_universe(space);
456 for (i = 0; i < array->n_index; ++i) {
457 isl_pw_aff *bound;
458 isl_set *guard_i, *zero;
460 bound = isl_multi_pw_aff_get_pw_aff(array->bound, i);
461 guard_i = isl_pw_aff_nonneg_set(isl_pw_aff_copy(bound));
462 zero = isl_pw_aff_zero_set(bound);
463 guard_i = isl_set_subtract(guard_i, zero);
464 guard = isl_set_intersect(guard, guard_i);
467 return guard;
470 /* Internal data structure for extract_size_of_type.
471 * "type" specifies the name of the space that we want to extract.
472 * "res" is used to store the subset of that space.
474 struct ppcg_extract_size_data {
475 const char *type;
476 isl_set *res;
479 /* This function is called for each set in a union_set.
480 * If the name of the set matches data->type, we store the
481 * set in data->res.
483 static isl_stat extract_size_of_type(__isl_take isl_set *size, void *user)
485 struct ppcg_extract_size_data *data = user;
486 const char *name;
488 name = isl_set_get_tuple_name(size);
489 if (name && !strcmp(name, data->type)) {
490 data->res = size;
491 return isl_stat_error;
494 isl_set_free(size);
495 return isl_stat_ok;
498 /* Given a union map { kernel[i] -> *[...] },
499 * return the range in the space called "type" for the kernel with
500 * sequence number "id".
502 static __isl_give isl_set *extract_sizes(__isl_keep isl_union_map *sizes,
503 const char *type, int id)
505 isl_space *space;
506 isl_set *dom;
507 isl_union_set *local_sizes;
508 struct ppcg_extract_size_data data = { type, NULL };
510 if (!sizes)
511 return NULL;
513 space = isl_union_map_get_space(sizes);
514 space = isl_space_set_from_params(space);
515 space = isl_space_add_dims(space, isl_dim_set, 1);
516 space = isl_space_set_tuple_name(space, isl_dim_set, "kernel");
517 dom = isl_set_universe(space);
518 dom = isl_set_fix_si(dom, isl_dim_set, 0, id);
520 local_sizes = isl_union_set_apply(isl_union_set_from_set(dom),
521 isl_union_map_copy(sizes));
522 isl_union_set_foreach_set(local_sizes, &extract_size_of_type, &data);
523 isl_union_set_free(local_sizes);
524 return data.res;
527 /* Given a singleton set, extract the first (at most *len) elements
528 * of the single integer tuple into *sizes and update *len if needed.
530 static void read_sizes_from_set(__isl_take isl_set *set, int *sizes, int *len)
532 int i;
533 int dim;
535 if (!set)
536 return;
538 dim = isl_set_dim(set, isl_dim_set);
539 if (dim < *len)
540 *len = dim;
542 for (i = 0; i < *len; ++i) {
543 isl_val *v;
545 v = isl_set_plain_get_val_if_fixed(set, isl_dim_set, i);
546 assert(v);
548 sizes[i] = isl_val_get_num_si(v);
549 isl_val_free(v);
552 isl_set_free(set);
555 /* Add the map { kernel[id] -> type[sizes] } to gen->used_sizes,
556 * if the option debug->dump_sizes is set.
558 static void set_used_sizes(struct gpu_gen *gen, const char *type, int id,
559 int *sizes, int len)
561 int i;
562 isl_space *space;
563 isl_map *map;
565 if (!gen->options->debug->dump_sizes)
566 return;
568 space = isl_union_map_get_space(gen->used_sizes);
569 space = isl_space_set_from_params(space);
570 space = isl_space_add_dims(space, isl_dim_set, 1);
571 space = isl_space_set_tuple_name(space, isl_dim_set, "kernel");
572 space = isl_space_from_domain(space);
573 space = isl_space_add_dims(space, isl_dim_out, len);
574 space = isl_space_set_tuple_name(space, isl_dim_out, type);
576 map = isl_map_universe(space);
577 map = isl_map_fix_si(map, isl_dim_in, 0, id);
578 for (i = 0; i < len; ++i)
579 map = isl_map_fix_si(map, isl_dim_out, i, sizes[i]);
581 gen->used_sizes = isl_union_map_add_map(gen->used_sizes, map);
584 /* Extract user specified "tile" sizes from the "sizes" command line option,
585 * defaulting to option->tile_size in each dimension.
586 * *tile_len contains the maximum number of tile sizes needed.
587 * Update *tile_len to the number of specified tile sizes, if any, and
588 * return a pointer to the tile sizes (or NULL on error).
589 * Add the effectively used sizes to gen->used_sizes.
591 static int *read_tile_sizes(struct gpu_gen *gen, int *tile_len)
593 int n;
594 int *tile_size;
595 isl_set *size;
597 tile_size = isl_alloc_array(gen->ctx, int, *tile_len);
598 if (!tile_size)
599 return NULL;
600 for (n = 0; n < *tile_len; ++n)
601 tile_size[n] = gen->options->tile_size;
603 size = extract_sizes(gen->sizes, "tile", gen->kernel_id);
604 read_sizes_from_set(size, tile_size, tile_len);
605 set_used_sizes(gen, "tile", gen->kernel_id, tile_size, *tile_len);
607 return tile_size;
610 /* Extract user specified "block" sizes from the "sizes" command line option,
611 * after filling in some potentially useful defaults.
613 static void read_block_sizes(struct ppcg_kernel *kernel,
614 __isl_keep isl_union_map *sizes)
616 isl_set *size;
618 if (kernel->n_block > 3)
619 kernel->n_block = 3;
620 switch (kernel->n_block) {
621 case 1:
622 kernel->block_dim[0] = 512;
623 break;
624 case 2:
625 kernel->block_dim[0] = 32;
626 kernel->block_dim[1] = 16;
627 break;
628 default:
629 kernel->block_dim[0] = 32;
630 kernel->block_dim[1] = 4;
631 kernel->block_dim[2] = 4;
632 break;
635 size = extract_sizes(sizes, "block", kernel->id);
636 read_sizes_from_set(size, kernel->block_dim, &kernel->n_block);
639 /* Extract user specified "grid" sizes from the "sizes" command line option,
640 * after filling in some potentially useful defaults.
642 static void read_grid_sizes(struct ppcg_kernel *kernel,
643 __isl_keep isl_union_map *sizes)
645 isl_set *size;
647 if (kernel->n_grid > 2)
648 kernel->n_grid = 2;
649 switch (kernel->n_grid) {
650 case 1:
651 kernel->grid_dim[0] = 32768;
652 break;
653 default:
654 kernel->grid_dim[0] = 256;
655 kernel->grid_dim[1] = 256;
656 break;
659 size = extract_sizes(sizes, "grid", kernel->id);
660 read_sizes_from_set(size, kernel->grid_dim, &kernel->n_grid);
663 /* Extract user specified grid and block sizes from the gen->sizes
664 * command line option after filling in some potentially useful defaults.
665 * Store the extracted sizes in "kernel".
666 * Add the effectively used sizes to gen->used_sizes.
668 static void read_grid_and_block_sizes(struct ppcg_kernel *kernel,
669 struct gpu_gen *gen)
671 read_block_sizes(kernel, gen->sizes);
672 read_grid_sizes(kernel, gen->sizes);
673 set_used_sizes(gen, "block", kernel->id,
674 kernel->block_dim, kernel->n_block);
675 set_used_sizes(gen, "grid", kernel->id,
676 kernel->grid_dim, kernel->n_grid);
679 static void *free_stmts(struct gpu_stmt *stmts, int n)
681 int i;
683 if (!stmts)
684 return NULL;
686 for (i = 0; i < n; ++i) {
687 struct gpu_stmt_access *access, *next;
689 for (access = stmts[i].accesses; access; access = next) {
690 next = access->next;
691 isl_id_free(access->ref_id);
692 isl_map_free(access->access);
693 isl_map_free(access->tagged_access);
694 free(access);
697 isl_id_free(stmts[i].id);
699 free(stmts);
701 return NULL;
704 /* Add parameters p[i] with identifiers "ids" to "set",
705 * with bounds to 0 <= p[i] < size[i].
707 __isl_give isl_set *add_bounded_parameters(__isl_take isl_set *set,
708 int *size, __isl_keep isl_id_list *ids)
710 int i, len;
711 unsigned nparam;
713 len = isl_id_list_n_id(ids);
714 nparam = isl_set_dim(set, isl_dim_param);
715 set = isl_set_add_dims(set, isl_dim_param, len);
717 for (i = 0; i < len; ++i) {
718 isl_id *id;
720 id = isl_id_list_get_id(ids, i);
721 set = isl_set_set_dim_id(set, isl_dim_param, nparam + i, id);
722 set = isl_set_lower_bound_si(set, isl_dim_param, nparam + i, 0);
723 set = isl_set_upper_bound_si(set, isl_dim_param,
724 nparam + i, size[i] - 1);
727 return set;
730 /* Add "len" parameters p[i] with identifiers "ids" and intersect "set"
731 * with
733 * { : 0 <= p[i] < size[i] }
735 * or an overapproximation.
737 static __isl_give isl_set *add_bounded_parameters_dynamic(
738 __isl_take isl_set *set, __isl_keep isl_multi_pw_aff *size,
739 __isl_keep isl_id_list *ids)
741 int i, len;
742 unsigned nparam;
743 isl_space *space;
744 isl_local_space *ls;
746 len = isl_multi_pw_aff_dim(size, isl_dim_out);
747 nparam = isl_set_dim(set, isl_dim_param);
748 set = isl_set_add_dims(set, isl_dim_param, len);
750 for (i = 0; i < len; ++i) {
751 isl_id *id;
753 id = isl_id_list_get_id(ids, i);
754 set = isl_set_set_dim_id(set, isl_dim_param, nparam + i, id);
757 space = isl_space_params(isl_set_get_space(set));
758 ls = isl_local_space_from_space(space);
759 for (i = 0; i < len; ++i) {
760 isl_pw_aff *param, *size_i, *zero;
761 isl_set *bound;
763 param = isl_pw_aff_var_on_domain(isl_local_space_copy(ls),
764 isl_dim_param, nparam + i);
766 size_i = isl_multi_pw_aff_get_pw_aff(size, i);
767 bound = isl_pw_aff_lt_set(isl_pw_aff_copy(param), size_i);
768 bound = isl_set_from_basic_set(isl_set_simple_hull(bound));
769 set = isl_set_intersect_params(set, bound);
771 zero = isl_pw_aff_zero_on_domain(isl_local_space_copy(ls));
772 bound = isl_pw_aff_ge_set(param, zero);
773 set = isl_set_intersect_params(set, bound);
775 isl_local_space_free(ls);
777 return set;
780 /* Return the union of all tagged access relations in the group.
782 static __isl_give isl_union_map *group_tagged_access_relation(
783 struct gpu_array_ref_group *group)
785 int i;
786 isl_union_map *access;
788 access = isl_union_map_empty(isl_map_get_space(group->access));
789 for (i = 0; i < group->n_ref; ++i) {
790 isl_map *map_i;
792 map_i = isl_map_copy(group->refs[i]->tagged_access);
793 access = isl_union_map_union(access,
794 isl_union_map_from_map(map_i));
797 return access;
800 /* Return the extent of "array", recomputed from the bounds.
801 * The recomputed extent may be simpler than the original extent.
803 static __isl_give isl_set *array_extent(struct gpu_array_info *array)
805 int i;
806 isl_id *id;
807 isl_space *space;
808 isl_local_space *ls;
809 isl_set *extent;
811 id = isl_set_get_tuple_id(array->extent);
812 space = isl_set_get_space(array->extent);
813 extent = isl_set_universe(isl_space_copy(space));
814 ls = isl_local_space_from_space(space);
815 for (i = 0; i < array->n_index; ++i) {
816 isl_pw_aff *bound;
817 isl_aff *aff;
818 isl_pw_aff *index;
819 isl_set *lt;
821 extent = isl_set_lower_bound_si(extent, isl_dim_set, i, 0);
823 aff = isl_aff_var_on_domain(isl_local_space_copy(ls),
824 isl_dim_set, i);
825 index = isl_pw_aff_from_aff(aff);
826 bound = isl_multi_pw_aff_get_pw_aff(array->bound, i);
827 bound = isl_pw_aff_from_range(bound);
828 bound = isl_pw_aff_add_dims(bound, isl_dim_in, array->n_index);
829 bound = isl_pw_aff_set_tuple_id(bound, isl_dim_in,
830 isl_id_copy(id));
831 lt = isl_pw_aff_lt_set(index, bound);
832 extent = isl_set_intersect(extent, lt);
834 isl_local_space_free(ls);
835 isl_id_free(id);
837 return extent;
840 /* Return a map from the first group->shared_tile->depth dimensions
841 * of the computed schedule to the array tile in
842 * global memory that corresponds to the shared memory copy.
844 * In particular, return a map
846 * { D[i] -> A[a] }
848 * with constraints
850 * tile_offset(i) <= a <= tile_offset(i) + tile_size - 1 (1)
852 * and
854 * 0 <= a <= array_size - 1 (2)
856 * Note that if some stride has been detected (i.e., when
857 * group->shared_tile->bound[i].shift is set), then a in (1) refers
858 * to the shifted and scaled down version.
860 * Constraints (1) are obtained by mapping the size constraints on the
861 * shared/private memory tile back to the access relation.
862 * Constraints (2) are obtained from the (recomputed) extent.
864 static __isl_give isl_map *group_tile(struct gpu_array_ref_group *group)
866 int i;
867 int n_index = group->array->n_index;
868 isl_map *tile;
869 isl_space *space;
870 isl_set *local;
871 isl_set *extent;
873 space = isl_multi_aff_get_space(group->shared_tile->tiling);
874 space = isl_space_range(space);
875 local = isl_set_universe(space);
876 for (i = 0; i < n_index; ++i) {
877 isl_val *bound;
879 local = isl_set_lower_bound_si(local, isl_dim_set, i, 0);
880 bound = isl_val_copy(group->shared_tile->bound[i].size);
881 bound = isl_val_sub_ui(bound, 1);
882 local = isl_set_upper_bound_val(local, isl_dim_set, i, bound);
884 local = isl_set_preimage_multi_aff(local,
885 isl_multi_aff_copy(group->shared_tile->tiling));
886 tile = isl_set_unwrap(local);
887 extent = array_extent(group->array);
888 tile = isl_map_intersect_range(tile, extent);
890 return tile;
893 /* Given a mapping "iterator_map" from the AST schedule to a domain,
894 * return the corresponding mapping from the AST schedule to
895 * to the outer kernel->copy_schedule_dim dimensions of
896 * the schedule computed by PPCG for this kernel.
898 * Note that kernel->copy_schedule_dim is at least as large as
899 * the largest depth of any array reference group associated to the kernel.
900 * This is needed as the returned schedule is used to extract a mapping
901 * to the outer tile->depth dimensions in transform_index.
903 static __isl_give isl_pw_multi_aff *compute_sched_to_copy(
904 struct ppcg_kernel *kernel, __isl_take isl_pw_multi_aff *iterator_map)
906 isl_union_pw_multi_aff *upma;
907 isl_pw_multi_aff *pma;
908 isl_space *space;
910 space = isl_space_range(isl_pw_multi_aff_get_space(iterator_map));
911 space = isl_space_from_domain(space);
912 space = isl_space_add_dims(space, isl_dim_out,
913 kernel->copy_schedule_dim);
915 upma = isl_union_pw_multi_aff_copy(kernel->copy_schedule);
916 pma = isl_union_pw_multi_aff_extract_pw_multi_aff(upma, space);
917 isl_union_pw_multi_aff_free(upma);
919 return isl_pw_multi_aff_pullback_pw_multi_aff(pma, iterator_map);
922 /* If max_shared_memory is not set to infinity (-1), then make
923 * sure that the total amount of shared memory required by the
924 * array reference groups mapped to shared memory by "kernel"
925 * is no larger than this maximum.
927 * We apply a greedy approach and discard (keep in global memory)
928 * those groups that would result in a total memory size that
929 * is larger than the maximum.
931 * This function should be called after any function that may
932 * affect the decision on whether to place a reference group
933 * in private, shared or global memory.
935 static void check_shared_memory_bound(struct ppcg_kernel *kernel)
937 int i, j;
938 isl_val *left, *size;
940 if (kernel->options->max_shared_memory < 0)
941 return;
943 left = isl_val_int_from_si(kernel->ctx,
944 kernel->options->max_shared_memory);
946 for (i = 0; i < kernel->n_array; ++i) {
947 struct gpu_local_array_info *local = &kernel->array[i];
949 for (j = 0; j < local->n_group; ++j) {
950 struct gpu_array_ref_group *group;
951 enum ppcg_group_access_type type;
953 group = local->groups[j];
954 type = gpu_array_ref_group_type(group);
955 if (type != ppcg_access_shared)
956 continue;
958 size = gpu_array_tile_size(group->shared_tile);
959 size = isl_val_mul_ui(size, local->array->size);
961 if (isl_val_le(size, left)) {
962 left = isl_val_sub(left, size);
963 continue;
965 isl_val_free(size);
967 group->shared_tile =
968 gpu_array_tile_free(group->shared_tile);
972 isl_val_free(left);
975 /* Mark all arrays of "kernel" that have an array reference group
976 * that is not mapped to private or shared memory as
977 * accessing the corresponding global device memory.
979 static void mark_global_arrays(struct ppcg_kernel *kernel)
981 int i, j;
983 for (i = 0; i < kernel->n_array; ++i) {
984 struct gpu_local_array_info *local = &kernel->array[i];
986 if (local->global)
987 continue;
988 for (j = 0; j < local->n_group; ++j) {
989 if (gpu_array_ref_group_tile(local->groups[j]))
990 continue;
992 local->global = 1;
993 local->array->global = 1;
994 break;
999 /* Compute a tiling for all the array reference groups in "kernel".
1001 static void compute_group_tilings(struct ppcg_kernel *kernel)
1003 int i, j;
1005 for (i = 0; i < kernel->n_array; ++i) {
1006 struct gpu_local_array_info *array = &kernel->array[i];
1008 for (j = 0; j < array->n_group; ++j)
1009 gpu_array_ref_group_compute_tiling(array->groups[j]);
1013 /* Compute the effective grid size as a list of the sizes in each dimension.
1015 * The grid size specified by the user or set by default
1016 * in read_grid_sizes() and applied by the block filter,
1017 * may be too large for the given code in the sense that
1018 * it may contain blocks that don't need to execute anything.
1019 * We therefore don't return this grid size, but instead the
1020 * smallest grid size that ensures that all blocks that actually
1021 * execute code are included in the grid.
1023 * We first extract a description of the grid, i.e., the possible values
1024 * of the block ids, from the domain elements in "domain" and
1025 * kernel->block_filter.
1026 * The block ids are parameters in kernel->block_filter.
1027 * We simply need to change them into set dimensions.
1029 * Then, for each block dimension, we compute the maximal value of the block id
1030 * and add one.
1032 static __isl_give isl_multi_pw_aff *extract_grid_size(
1033 struct ppcg_kernel *kernel, __isl_take isl_union_set *domain)
1035 int i;
1036 isl_set *grid;
1037 isl_set *context;
1038 isl_multi_pw_aff *size;
1040 domain = isl_union_set_intersect(domain,
1041 isl_union_set_copy(kernel->block_filter));
1042 grid = isl_union_set_params(domain);
1043 grid = isl_set_from_params(grid);
1044 grid = isl_set_add_dims(grid, isl_dim_set, kernel->n_grid);
1045 for (i = 0; i < kernel->n_grid; ++i) {
1046 int pos;
1047 isl_id *id;
1049 id = isl_id_list_get_id(kernel->block_ids, i);
1050 pos = isl_set_find_dim_by_id(grid, isl_dim_param, id);
1051 isl_id_free(id);
1052 assert(pos >= 0);
1053 grid = isl_set_equate(grid, isl_dim_param, pos, isl_dim_set, i);
1054 grid = isl_set_project_out(grid, isl_dim_param, pos, 1);
1057 grid = isl_set_coalesce(grid);
1058 size = ppcg_size_from_extent(grid);
1059 context = isl_set_params(isl_set_copy(kernel->context));
1060 return isl_multi_pw_aff_gist(size, context);
1063 /* Compute the size of a fixed bounding box around the origin and "set",
1064 * where "set" is assumed to contain only non-negative elements,
1065 * and store the results in "size".
1066 * In particular, compute the maximal value of "set" in each direction
1067 * and add one.
1069 static void extract_fixed_size(__isl_take isl_set *set, int *size)
1071 int i, n;
1072 isl_local_space *ls;
1073 isl_aff *obj;
1075 n = isl_set_dim(set, isl_dim_set);
1076 ls = isl_local_space_from_space(isl_set_get_space(set));
1077 obj = isl_aff_zero_on_domain(ls);
1078 for (i = 0; i < n; ++i) {
1079 isl_val *max;
1081 obj = isl_aff_set_coefficient_si(obj, isl_dim_in, i, 1);
1082 max = isl_set_max_val(set, obj);
1083 size[i] = isl_val_get_num_si(max) + 1;
1084 isl_val_free(max);
1085 obj = isl_aff_set_coefficient_si(obj, isl_dim_in, i, 0);
1087 isl_aff_free(obj);
1088 isl_set_free(set);
1091 /* Compute the effective block size as a list of the sizes in each dimension
1092 * and store the sizes in kernel->block_dim.
1094 * The block size specified by the user or set by default
1095 * in read_block_sizes() and applied by the thread filter,
1096 * may be too large for the given code in the sense that
1097 * it may contain threads that don't need to execute anything.
1098 * We therefore update this block size in kernel->block_dim
1099 * to the smallest block size that ensures that all threads
1100 * that actually execute code are included in the block.
1102 * The set of possible values of the thread ids is obtained from
1103 * the domain elements "domain" and kernel->thread_filter.
1104 * The current implementation eliminates all parameters, ensuring
1105 * that the size is a fixed constant in each dimension.
1106 * In principle we could also compute parametric sizes.
1107 * We would have to make sure to project out all b%d and t%d parameters,
1108 * however.
1110 static isl_stat extract_block_size(struct ppcg_kernel *kernel,
1111 __isl_take isl_union_set *domain)
1113 int i;
1114 int nparam;
1115 isl_set *block;
1117 domain = isl_union_set_intersect(domain,
1118 isl_union_set_copy(kernel->thread_filter));
1119 block = isl_union_set_params(domain);
1120 block = isl_set_from_params(block);
1121 block = isl_set_add_dims(block, isl_dim_set, kernel->n_block);
1122 for (i = 0; i < kernel->n_block; ++i) {
1123 int pos;
1124 isl_id *id;
1126 if (!block)
1127 return isl_stat_error;
1129 id = isl_id_list_get_id(kernel->thread_ids, i);
1130 pos = isl_set_find_dim_by_id(block, isl_dim_param, id);
1131 isl_id_free(id);
1132 if (pos < 0)
1133 isl_die(isl_set_get_ctx(block), isl_error_internal,
1134 "missing constraints on thread identifier",
1135 block = isl_set_free(block));
1136 block = isl_set_equate(block, isl_dim_param, pos,
1137 isl_dim_set, i);
1139 nparam = isl_set_dim(block, isl_dim_param);
1140 block = isl_set_project_out(block, isl_dim_param, 0, nparam);
1142 if (!block)
1143 return isl_stat_error;
1145 extract_fixed_size(block, kernel->block_dim);
1147 return isl_stat_ok;
1150 struct ppcg_kernel *ppcg_kernel_free(struct ppcg_kernel *kernel)
1152 int i, j;
1154 if (!kernel)
1155 return NULL;
1157 isl_id_list_free(kernel->block_ids);
1158 isl_id_list_free(kernel->thread_ids);
1159 isl_multi_pw_aff_free(kernel->grid_size);
1160 isl_ast_expr_free(kernel->grid_size_expr);
1161 isl_set_free(kernel->context);
1162 isl_union_set_free(kernel->core);
1163 isl_union_set_free(kernel->arrays);
1164 isl_union_pw_multi_aff_free(kernel->contraction);
1165 isl_union_set_free(kernel->expanded_domain);
1166 isl_space_free(kernel->space);
1167 isl_ast_node_free(kernel->tree);
1168 isl_union_set_free(kernel->block_filter);
1169 isl_union_set_free(kernel->thread_filter);
1170 isl_union_pw_multi_aff_free(kernel->copy_schedule);
1171 isl_union_set_free(kernel->sync_writes);
1173 for (i = 0; i < kernel->n_array; ++i) {
1174 struct gpu_local_array_info *array = &kernel->array[i];
1176 for (j = 0; j < array->n_group; ++j)
1177 gpu_array_ref_group_free(array->groups[j]);
1178 free(array->groups);
1180 isl_multi_pw_aff_free(array->bound);
1181 isl_ast_expr_free(array->bound_expr);
1183 free(kernel->array);
1185 for (i = 0; i < kernel->n_var; ++i) {
1186 free(kernel->var[i].name);
1187 isl_vec_free(kernel->var[i].size);
1189 free(kernel->var);
1191 free(kernel);
1193 return NULL;
1196 /* Wrapper around ppcg_kernel_free for use as a isl_id_set_free_user callback.
1198 static void ppcg_kernel_free_wrap(void *user)
1200 struct ppcg_kernel *kernel = user;
1202 ppcg_kernel_free(kernel);
1205 static void create_kernel_var(isl_ctx *ctx, struct gpu_array_ref_group *group,
1206 struct ppcg_kernel_var *var)
1208 int j;
1209 struct gpu_array_tile *tile;
1210 isl_printer *p;
1212 var->array = group->array;
1214 var->type = gpu_array_ref_group_type(group);
1215 tile = gpu_array_ref_group_tile(group);
1217 p = isl_printer_to_str(ctx);
1218 p = gpu_array_ref_group_print_name(group, p);
1219 var->name = isl_printer_get_str(p);
1220 isl_printer_free(p);
1222 var->size = isl_vec_alloc(ctx, group->array->n_index);
1224 for (j = 0; j < group->array->n_index; ++j)
1225 var->size = isl_vec_set_element_val(var->size, j,
1226 isl_val_copy(tile->bound[j].size));
1229 static isl_stat create_kernel_vars(struct ppcg_kernel *kernel)
1231 int i, j, n;
1233 n = 0;
1234 for (i = 0; i < kernel->n_array; ++i) {
1235 struct gpu_local_array_info *array = &kernel->array[i];
1237 for (j = 0; j < array->n_group; ++j) {
1238 struct gpu_array_ref_group *group = array->groups[j];
1239 enum ppcg_group_access_type type;
1241 type = gpu_array_ref_group_type(group);
1242 if (type != ppcg_access_global)
1243 ++n;
1247 kernel->var = isl_calloc_array(kernel->ctx, struct ppcg_kernel_var, n);
1248 if (!kernel->var)
1249 return isl_stat_error;
1250 kernel->n_var = n;
1252 n = 0;
1253 for (i = 0; i < kernel->n_array; ++i) {
1254 struct gpu_local_array_info *array = &kernel->array[i];
1256 for (j = 0; j < array->n_group; ++j) {
1257 struct gpu_array_ref_group *group = array->groups[j];
1258 enum ppcg_group_access_type type;
1260 type = gpu_array_ref_group_type(group);
1261 if (type == ppcg_access_global)
1262 continue;
1263 create_kernel_var(kernel->ctx, group, &kernel->var[n]);
1264 ++n;
1268 return isl_stat_ok;
1271 /* Replace "pa" by the zero function defined over the universe domain
1272 * in the space of "pa".
1274 static __isl_give isl_pw_aff *set_universally_zero(__isl_take isl_pw_aff *pa)
1276 isl_space *space;
1277 isl_aff *zero;
1279 space = isl_space_domain(isl_pw_aff_get_space(pa));
1280 isl_pw_aff_free(pa);
1281 zero = isl_aff_zero_on_domain(isl_local_space_from_space(space));
1283 return isl_pw_aff_from_aff(zero);
1286 /* The sizes of the arrays on the host that have been computed by
1287 * extract_array_info may depend on the parameters. Use the extra
1288 * constraints on the parameters that are valid at "host_domain"
1289 * to simplify these expressions and store the results in kernel->array.
1291 * We only need these localized bounds for arrays that are accessed
1292 * by the current kernel. If we have found at least one reference group
1293 * then the array is accessed by the kernel.
1295 * The resulting sizes may be functions that are nowhere defined
1296 * in case the access function cannot possibly access anything inside
1297 * the kernel for some reason. If so, they are replaced by the zero
1298 * function. Since the access function cannot actually access anything,
1299 * there is no harm in printing the array sizes as zero.
1301 static void localize_bounds(struct ppcg_kernel *kernel,
1302 __isl_keep isl_set *host_domain)
1304 int i, j;
1305 isl_set *context;
1307 context = isl_set_copy(host_domain);
1308 context = isl_set_params(context);
1310 for (i = 0; i < kernel->n_array; ++i) {
1311 struct gpu_local_array_info *local = &kernel->array[i];
1312 isl_multi_pw_aff *bound;
1313 int n_index;
1315 if (local->n_group == 0)
1316 continue;
1318 n_index = local->array->n_index;
1319 bound = isl_multi_pw_aff_copy(local->array->bound);
1321 for (j = 0; j < n_index; ++j) {
1322 isl_pw_aff *pwaff;
1323 int empty;
1325 pwaff = isl_multi_pw_aff_get_pw_aff(bound, j);
1326 pwaff = isl_pw_aff_gist(pwaff, isl_set_copy(context));
1327 empty = isl_pw_aff_is_empty(pwaff);
1328 if (empty < 0)
1329 pwaff = isl_pw_aff_free(pwaff);
1330 else if (empty)
1331 pwaff = set_universally_zero(pwaff);
1332 bound = isl_multi_pw_aff_set_pw_aff(bound, j, pwaff);
1335 local->n_index = n_index;
1336 local->bound = bound;
1338 isl_set_free(context);
1341 /* Create the array of gpu_local_array_info structures "array"
1342 * inside "kernel". The number of elements in this array is
1343 * the same as the number of arrays in "prog".
1344 * Initialize the "array" field of each local array to point
1345 * to the corresponding array in "prog".
1347 static struct ppcg_kernel *ppcg_kernel_create_local_arrays(
1348 struct ppcg_kernel *kernel, struct gpu_prog *prog)
1350 int i;
1351 isl_ctx *ctx;
1353 if (!kernel)
1354 return NULL;
1356 ctx = isl_set_get_ctx(prog->context);
1357 kernel->array = isl_calloc_array(ctx,
1358 struct gpu_local_array_info, prog->n_array);
1359 if (!kernel->array)
1360 return ppcg_kernel_free(kernel);
1361 kernel->n_array = prog->n_array;
1363 for (i = 0; i < prog->n_array; ++i)
1364 kernel->array[i].array = &prog->array[i];
1366 return kernel;
1369 /* Does "kernel" need to be passed an argument corresponding to array "i"?
1371 * The argument is only needed if the kernel accesses this device memory.
1373 int ppcg_kernel_requires_array_argument(struct ppcg_kernel *kernel, int i)
1375 return kernel->array[i].global;
1378 /* Find the element in gen->stmt that has the given "id".
1379 * Return NULL if no such gpu_stmt can be found.
1381 static struct gpu_stmt *find_stmt(struct gpu_prog *prog, __isl_keep isl_id *id)
1383 int i;
1385 for (i = 0; i < prog->n_stmts; ++i) {
1386 if (id == prog->stmts[i].id)
1387 break;
1390 return i < prog->n_stmts ? &prog->stmts[i] : NULL;
1393 void ppcg_kernel_stmt_free(void *user)
1395 struct ppcg_kernel_stmt *stmt = user;
1397 if (!stmt)
1398 return;
1400 switch (stmt->type) {
1401 case ppcg_kernel_copy:
1402 isl_ast_expr_free(stmt->u.c.index);
1403 isl_ast_expr_free(stmt->u.c.local_index);
1404 break;
1405 case ppcg_kernel_domain:
1406 isl_id_to_ast_expr_free(stmt->u.d.ref2expr);
1407 break;
1408 case ppcg_kernel_sync:
1409 break;
1412 free(stmt);
1415 /* Return the gpu_stmt_access in the list "accesses" that corresponds
1416 * to "ref_id".
1418 static struct gpu_stmt_access *find_access(struct gpu_stmt_access *accesses,
1419 __isl_keep isl_id *ref_id)
1421 struct gpu_stmt_access *access;
1423 for (access = accesses; access; access = access->next)
1424 if (access->ref_id == ref_id)
1425 return access;
1427 return NULL;
1430 /* Return the index of the array called "name" in the list of arrays.
1432 static int find_array_index(struct ppcg_kernel *kernel, const char *name)
1434 int i;
1436 for (i = 0; i < kernel->n_array; ++i)
1437 if (!strcmp(name, kernel->array[i].array->name))
1438 return i;
1440 return -1;
1443 /* Internal data structure for the index and AST expression transformation
1444 * callbacks for pet_stmt_build_ast_exprs.
1446 * "kernel" is the kernel for which are computing AST expressions and
1447 * may be NULL if we are not inside a kernel.
1448 * "accesses" is the list of gpu_stmt_access in the statement.
1449 * "iterator_map" expresses the statement iterators in terms of
1450 * the AST loop iterators.
1451 * "sched2copy" expresses the outer copy_schedule_dim dimensions of
1452 * the kernel schedule in terms of the AST loop iterators and
1453 * may be NULL if we are not inside a kernel.
1455 * The following fields are set in transform_index and used in transform_expr.
1456 * "array" is the array that is being accessed.
1457 * "global" is set if the global array is accessed (rather than
1458 * shared/private memory).
1459 * "local_array" refers to information on the array specialized
1460 * to the current kernel.
1462 struct ppcg_transform_data {
1463 struct ppcg_kernel *kernel;
1464 struct gpu_stmt_access *accesses;
1465 isl_pw_multi_aff *iterator_map;
1466 isl_pw_multi_aff *sched2copy;
1468 struct gpu_array_info *array;
1469 int global;
1470 struct gpu_local_array_info *local_array;
1473 /* Return a pointer to the gpu_array_ref_group in "local"
1474 * that contains the reference "access".
1475 * Return NULL if no such group can be found.
1477 static struct gpu_array_ref_group *find_ref_group(
1478 struct gpu_local_array_info *local, struct gpu_stmt_access *access)
1480 int i, j;
1482 for (i = 0; i < local->n_group; ++i) {
1483 struct gpu_array_ref_group *group = local->groups[i];
1485 for (j = 0; j < group->n_ref; ++j)
1486 if (group->refs[j] == access)
1487 return group;
1490 return NULL;
1493 /* Given an index expression "index" of the form
1495 * L -> F(A),
1497 * with F(A) either A or some subfield of A and L the AST loop iterators,
1498 * and a tiling "tiling" of the form
1500 * [L -> A] -> T
1502 * apply the tiling to the outer array in the index expression to obtain
1504 * L -> T(A)
1506 * If F(A) is some subfield of A, then separate the member access
1507 * into the base index expression and the field index expression,
1508 * apply the tiling to the base index expression and combine the result
1509 * with the field index expression.
1511 * If F(A) is A, then modify index to keep track of the iterators
1513 * L -> [L -> A]
1515 * and combine the result with the tiling to obtain a tiled index expression
1516 * in terms of the AST loop iterators
1518 * L -> T
1520 static __isl_give isl_multi_pw_aff *tile_outer(
1521 __isl_take isl_multi_pw_aff *index, __isl_take isl_multi_pw_aff *tiling)
1523 isl_bool is_wrapping;
1524 isl_space *space;
1525 isl_multi_pw_aff *mpa;
1527 is_wrapping = isl_multi_pw_aff_range_is_wrapping(index);
1528 if (is_wrapping < 0)
1529 goto error;
1530 if (is_wrapping) {
1531 isl_multi_pw_aff *field;
1533 field = isl_multi_pw_aff_copy(index);
1534 field = isl_multi_pw_aff_range_factor_range(field);
1535 index = isl_multi_pw_aff_range_factor_domain(index);
1536 index = tile_outer(index, tiling);
1537 return isl_multi_pw_aff_range_product(index, field);
1540 space = isl_space_domain(isl_multi_pw_aff_get_space(index));
1541 space = isl_space_map_from_set(space);
1542 mpa = isl_multi_pw_aff_identity(space);
1543 index = isl_multi_pw_aff_range_product(mpa, index);
1544 index = isl_multi_pw_aff_pullback_multi_pw_aff(tiling, index);
1546 return index;
1547 error:
1548 isl_multi_pw_aff_free(index);
1549 isl_multi_pw_aff_free(tiling);
1550 return NULL;
1553 /* Index transformation callback for pet_stmt_build_ast_exprs.
1555 * "index" expresses the array indices in terms of statement iterators
1557 * We first reformulate "index" in terms of the AST loop iterators.
1558 * Then we check if we are accessing the global array or
1559 * a shared/private copy. In particular, if we are not inside a kernel
1560 * then we must be accessing a global array.
1561 * In the former case, we simply return
1562 * the updated index. If "index" is an affine expression rather
1563 * than an array access, then we also return the updated index here.
1565 * If no reference groups have been computed for the array,
1566 * then we can only be accessing the global array.
1568 * Otherwise, we apply the tiling to the index.
1569 * This tiling is of the form
1571 * [D -> A] -> T
1573 * where D corresponds to the outer tile->depth dimensions of
1574 * the kernel schedule.
1575 * The index is of the form
1577 * L -> A
1579 * We update the tiling to refer to the AST loop iterators
1581 * [L -> A] -> T
1583 * and combine it with the index to obtain a tiled index expression in terms
1584 * of the AST loop iterators
1586 * L -> T
1588 * Note that while the tiling applies directly to an outer array.
1589 * the index may refer to some subfield of this outer array.
1590 * In such cases, the result will refer to the same subfield of the tile.
1591 * That is, an index expression of the form L -> F(A) will be transformed
1592 * into an index expression of the form L -> F(T).
1594 static __isl_give isl_multi_pw_aff *transform_index(
1595 __isl_take isl_multi_pw_aff *index, __isl_keep isl_id *ref_id,
1596 void *user)
1598 struct ppcg_transform_data *data = user;
1599 struct gpu_stmt_access *access;
1600 struct gpu_array_ref_group *group;
1601 struct gpu_array_tile *tile;
1602 isl_pw_multi_aff *iterator_map;
1603 int i;
1604 int dim;
1605 const char *name;
1606 isl_space *space;
1607 isl_multi_pw_aff *tiling;
1608 isl_pw_multi_aff *pma;
1609 isl_pw_multi_aff *sched2depth;
1611 data->array = NULL;
1613 iterator_map = isl_pw_multi_aff_copy(data->iterator_map);
1614 index = isl_multi_pw_aff_pullback_pw_multi_aff(index, iterator_map);
1616 if (!data->kernel)
1617 return index;
1619 access = find_access(data->accesses, ref_id);
1620 if (!access)
1621 return index;
1622 if (!isl_map_has_tuple_name(access->access, isl_dim_out))
1623 return index;
1625 name = get_outer_array_name(access->access);
1626 if (!name)
1627 return isl_multi_pw_aff_free(index);
1628 i = find_array_index(data->kernel, name);
1629 if (i < 0)
1630 isl_die(isl_multi_pw_aff_get_ctx(index), isl_error_internal,
1631 "cannot find array",
1632 return isl_multi_pw_aff_free(index));
1633 data->local_array = &data->kernel->array[i];
1634 data->array = data->local_array->array;
1636 group = find_ref_group(data->local_array, access);
1637 if (!group) {
1638 data->global = 1;
1639 return index;
1642 tile = gpu_array_ref_group_tile(group);
1643 data->global = !tile;
1644 if (!tile)
1645 return index;
1647 space = isl_space_domain(isl_multi_aff_get_space(tile->tiling));
1648 space = isl_space_range(isl_space_unwrap(space));
1649 space = isl_space_map_from_set(space);
1650 pma = isl_pw_multi_aff_identity(space);
1651 sched2depth = isl_pw_multi_aff_copy(data->sched2copy);
1652 dim = isl_pw_multi_aff_dim(sched2depth, isl_dim_out);
1653 sched2depth = isl_pw_multi_aff_drop_dims(sched2depth, isl_dim_out,
1654 tile->depth, dim - tile->depth);
1655 pma = isl_pw_multi_aff_product(sched2depth, pma);
1656 tiling = isl_multi_pw_aff_from_multi_aff(
1657 isl_multi_aff_copy(tile->tiling));
1658 tiling = isl_multi_pw_aff_pullback_pw_multi_aff(tiling, pma);
1660 index = tile_outer(index, tiling);
1662 return index;
1665 /* Dereference "expr" by adding an index [0].
1666 * The original "expr" is assumed not to have any indices.
1668 * If "expr" is a member access, then the dereferencing needs
1669 * to be applied to the structure argument of this member access.
1671 static __isl_give isl_ast_expr *dereference(__isl_take isl_ast_expr *expr)
1673 isl_ctx *ctx;
1674 isl_ast_expr *arg0, *res;
1675 isl_ast_expr_list *list;
1677 arg0 = isl_ast_expr_get_op_arg(expr, 0);
1678 if (!arg0)
1679 return isl_ast_expr_free(expr);
1680 if (isl_ast_expr_get_type(arg0) == isl_ast_expr_op &&
1681 isl_ast_expr_get_op_type(arg0) == isl_ast_op_member) {
1682 isl_ast_expr *arg;
1684 arg = isl_ast_expr_get_op_arg(arg0, 0);
1685 arg = dereference(arg);
1686 arg0 = isl_ast_expr_set_op_arg(arg0, 0, arg);
1687 expr = isl_ast_expr_set_op_arg(expr, 0, arg0);
1689 return expr;
1691 isl_ast_expr_free(arg0);
1693 ctx = isl_ast_expr_get_ctx(expr);
1694 res = isl_ast_expr_from_val(isl_val_zero(ctx));
1695 list = isl_ast_expr_list_from_ast_expr(res);
1696 res = isl_ast_expr_get_op_arg(expr, 0);
1697 res = isl_ast_expr_access(res, list);
1698 isl_ast_expr_free(expr);
1700 return res;
1703 /* Linearize the index expression "expr" based on the array bounds
1704 * of "array".
1706 * That is, transform expression
1708 * A[i_0][i_1]...[i_n]
1710 * to
1712 * A[(..((i_0 * b_1 + i_1) ... ) * b_n + i_n]
1714 * where b_0, b_1, ..., b_n are the bounds on the array.
1716 * If the base of "expr" is a member access, then the linearization needs
1717 * to be applied to the structure argument of this member access.
1719 * In the base case, if "expr" has no arguments (other than the name of
1720 * the array), then we are passing an entire array to a function.
1721 * In this case, there is nothing to linearize.
1722 * Note that at this point an expression with no arguments can
1723 * only be an entire array because the scalar case and
1724 * the case of single struct are handled by the caller.
1726 * If the number of specified index expressions in "expr"
1727 * is smaller than the dimension of the accessed array,
1728 * then the missing i_j also do not appear in the linearized expression.
1729 * Furthermore, since such an expression does not refer to a single
1730 * element while the default linearized expression would refer to
1731 * a single element, we return the expression
1733 * A + (..((i_0 * b_1 + i_1) ... ) * b_l + i_l)
1735 * instead. Note that because of the special case handling above,
1736 * we can assume here that there is at least one index expression.
1738 __isl_give isl_ast_expr *gpu_local_array_info_linearize_index(
1739 struct gpu_local_array_info *array, __isl_take isl_ast_expr *expr)
1741 int i, n;
1742 isl_ast_expr *arg0;
1743 isl_ast_expr *res;
1744 isl_ast_expr_list *list;
1746 arg0 = isl_ast_expr_get_op_arg(expr, 0);
1747 if (isl_ast_expr_get_type(arg0) == isl_ast_expr_op &&
1748 isl_ast_expr_get_op_type(arg0) == isl_ast_op_member) {
1749 isl_ast_expr *arg;
1751 arg = isl_ast_expr_get_op_arg(arg0, 0);
1752 arg = gpu_local_array_info_linearize_index(array, arg);
1753 arg0 = isl_ast_expr_set_op_arg(arg0, 0, arg);
1754 expr = isl_ast_expr_set_op_arg(expr, 0, arg0);
1756 return expr;
1758 isl_ast_expr_free(arg0);
1760 if (isl_ast_expr_get_op_n_arg(expr) == 1)
1761 return expr;
1763 n = isl_ast_expr_get_op_n_arg(expr);
1764 res = isl_ast_expr_get_op_arg(expr, 1);
1765 for (i = 1; i < array->n_index; ++i) {
1766 isl_ast_expr *expr_i;
1768 expr_i = isl_ast_expr_get_op_arg(array->bound_expr, 1 + i);
1769 res = isl_ast_expr_mul(res, expr_i);
1771 if (i + 1 >= n)
1772 continue;
1773 expr_i = isl_ast_expr_get_op_arg(expr, i + 1);
1774 res = isl_ast_expr_add(res, expr_i);
1777 if (1 + array->n_index > n) {
1778 res = isl_ast_expr_add(isl_ast_expr_get_op_arg(expr, 0), res);
1779 } else {
1780 list = isl_ast_expr_list_from_ast_expr(res);
1781 res = isl_ast_expr_get_op_arg(expr, 0);
1782 res = isl_ast_expr_access(res, list);
1785 isl_ast_expr_free(expr);
1787 return res;
1790 /* AST expression transformation callback for pet_stmt_build_ast_exprs.
1792 * If the AST expression refers to an array that is not accessed
1793 * at all, then this means the value of the expression is not used,
1794 * so we might as well print zero (NULL pointer) instead.
1796 * If the AST expression refers to a global scalar that is not
1797 * a read-only scalar, then its address was passed to the kernel and
1798 * we need to dereference it.
1800 * If the AST expression refers to an access to a global array,
1801 * then we linearize the access exploiting the bounds in data->local_array.
1803 static __isl_give isl_ast_expr *transform_expr(__isl_take isl_ast_expr *expr,
1804 __isl_keep isl_id *id, void *user)
1806 struct ppcg_transform_data *data = user;
1808 if (!data->array)
1809 return expr;
1810 if (!data->array->accessed) {
1811 isl_ctx *ctx;
1813 ctx = isl_ast_expr_get_ctx(expr);
1814 isl_ast_expr_free(expr);
1815 return isl_ast_expr_from_val(isl_val_zero(ctx));
1817 if (gpu_array_is_read_only_scalar(data->array))
1818 return expr;
1819 if (!data->global)
1820 return expr;
1821 if (data->array->n_index == 0)
1822 return dereference(expr);
1823 if (!data->array->linearize)
1824 return expr;
1826 return gpu_local_array_info_linearize_index(data->local_array, expr);
1829 /* This function is called for each instance of a user statement
1830 * in the kernel "kernel", identified by "gpu_stmt".
1831 * "kernel" may be NULL if we are not inside a kernel.
1833 * We attach a struct ppcg_kernel_stmt to the "node", containing
1834 * a computed AST expression for each access, through an annotation
1835 * with name "user".
1836 * These AST expressions are computed from iterator_map,
1837 * which expresses the domain
1838 * elements in terms of the generated loops, and sched2copy,
1839 * which expresses the outer copy_schedule_dim dimensions of
1840 * the kernel schedule computed by PPCG in terms of the generated loops.
1842 static __isl_give isl_ast_node *create_domain_leaf(
1843 struct ppcg_kernel *kernel, __isl_take isl_ast_node *node,
1844 __isl_keep isl_ast_build *build, struct gpu_stmt *gpu_stmt)
1846 struct ppcg_transform_data data;
1847 struct ppcg_kernel_stmt *stmt;
1848 isl_ctx *ctx;
1849 isl_id *id;
1850 isl_pw_multi_aff *sched2copy;
1851 isl_map *map;
1852 isl_pw_multi_aff *iterator_map;
1853 isl_union_map *schedule;
1855 if (!node)
1856 return NULL;
1857 ctx = isl_ast_node_get_ctx(node);
1859 stmt = isl_calloc_type(ctx, struct ppcg_kernel_stmt);
1860 if (!stmt)
1861 return isl_ast_node_free(node);
1863 schedule = isl_ast_build_get_schedule(build);
1864 map = isl_map_reverse(isl_map_from_union_map(schedule));
1865 iterator_map = isl_pw_multi_aff_from_map(map);
1866 if (kernel)
1867 sched2copy = compute_sched_to_copy(kernel,
1868 isl_pw_multi_aff_copy(iterator_map));
1869 else
1870 sched2copy = NULL;
1872 stmt->type = ppcg_kernel_domain;
1873 stmt->u.d.stmt = gpu_stmt;
1875 data.kernel = kernel;
1876 data.accesses = stmt->u.d.stmt->accesses;
1877 data.iterator_map = iterator_map;
1878 data.sched2copy = sched2copy;
1879 stmt->u.d.ref2expr = pet_stmt_build_ast_exprs(stmt->u.d.stmt->stmt,
1880 build, &transform_index, &data,
1881 &transform_expr, &data);
1883 isl_pw_multi_aff_free(iterator_map);
1884 isl_pw_multi_aff_free(sched2copy);
1886 id = isl_id_alloc(ctx, "user", stmt);
1887 id = isl_id_set_free_user(id, &ppcg_kernel_stmt_free);
1888 if (!id)
1889 ppcg_kernel_stmt_free(stmt);
1890 return isl_ast_node_set_annotation(node, id);
1893 /* This function is called for each statement node in the AST
1894 * for copying to or from shared/private memory.
1895 * Attach a pointer to a ppcg_kernel_stmt representing the copy
1896 * statement to the node.
1897 * The statement name is "read" or "write", depending on whether we are
1898 * reading from global memory or writing to global memory.
1900 * The schedule is of the form
1902 * type[D -> A] -> L
1904 * where D corresponds to the outer tile->depth dimensions of
1905 * the kernel schedule, A to the global array and L to the outer
1906 * generated AST schedule.
1907 * We compute the inverse and strip off the type, resulting in
1909 * L -> [D -> A]
1911 * We combine this mapping with on the one hand the projection
1913 * [D -> A] -> A
1915 * and on the other hand the group tiling
1917 * [D -> A] -> T
1919 * resulting in
1921 * L -> A and L -> T
1923 * and store the corresponding expressions in stmt->index and stmt->local_index,
1924 * where stmt points to the ppcg_kernel_stmt that is attached to the node.
1925 * stmt->index is linearized if the global memory array is linearized.
1927 static __isl_give isl_ast_node *create_access_leaf(struct ppcg_kernel *kernel,
1928 struct gpu_array_ref_group *group, __isl_take isl_ast_node *node,
1929 __isl_keep isl_ast_build *build)
1931 struct ppcg_kernel_stmt *stmt;
1932 struct gpu_array_tile *tile;
1933 isl_id *id;
1934 isl_ast_expr *expr;
1935 isl_space *space;
1936 isl_map *access;
1937 isl_pw_multi_aff *pma, *pma2;
1938 const char *type;
1940 stmt = isl_calloc_type(kernel->ctx, struct ppcg_kernel_stmt);
1941 if (!stmt)
1942 return isl_ast_node_free(node);
1944 access = isl_map_from_union_map(isl_ast_build_get_schedule(build));
1945 type = isl_map_get_tuple_name(access, isl_dim_in);
1946 stmt->u.c.read = type && !strcmp(type, "read");
1947 access = isl_map_reverse(access);
1948 pma = isl_pw_multi_aff_from_map(access);
1949 pma = isl_pw_multi_aff_reset_tuple_id(pma, isl_dim_out);
1951 space = isl_space_range(isl_pw_multi_aff_get_space(pma));
1952 space = isl_space_unwrap(space);
1953 pma2 = isl_pw_multi_aff_range_map(space);
1954 pma2 = isl_pw_multi_aff_pullback_pw_multi_aff(pma2,
1955 isl_pw_multi_aff_copy(pma));
1956 expr = isl_ast_build_access_from_pw_multi_aff(build, pma2);
1957 if (group->array->linearize)
1958 expr = gpu_local_array_info_linearize_index(group->local_array,
1959 expr);
1960 stmt->u.c.index = expr;
1962 tile = gpu_array_ref_group_tile(group);
1963 pma2 = isl_pw_multi_aff_from_multi_aff(
1964 isl_multi_aff_copy(tile->tiling));
1965 pma2 = isl_pw_multi_aff_pullback_pw_multi_aff(pma2, pma);
1966 expr = isl_ast_build_access_from_pw_multi_aff(build, pma2);
1967 stmt->u.c.local_index = expr;
1969 stmt->u.c.array = group->array;
1970 stmt->u.c.local_array = group->local_array;
1971 stmt->type = ppcg_kernel_copy;
1973 id = isl_id_alloc(kernel->ctx, "copy", stmt);
1974 id = isl_id_set_free_user(id, &ppcg_kernel_stmt_free);
1975 if (!id)
1976 ppcg_kernel_stmt_free(stmt);
1977 return isl_ast_node_set_annotation(node, id);
1980 /* Create a synchronization ppcg_kernel_stmt and
1981 * attach it to the node "node" representing the synchronization.
1983 static __isl_give isl_ast_node *create_sync_leaf(
1984 struct ppcg_kernel *kernel, __isl_take isl_ast_node *node,
1985 __isl_keep isl_ast_build *build)
1987 struct ppcg_kernel_stmt *stmt;
1988 isl_id *id;
1990 stmt = isl_calloc_type(kernel->ctx, struct ppcg_kernel_stmt);
1991 if (!stmt)
1992 return isl_ast_node_free(node);
1994 stmt->type = ppcg_kernel_sync;
1995 id = isl_id_alloc(kernel->ctx, "sync", stmt);
1996 id = isl_id_set_free_user(id, &ppcg_kernel_stmt_free);
1997 if (!id)
1998 ppcg_kernel_stmt_free(stmt);
1999 return isl_ast_node_set_annotation(node, id);
2002 /* Build AST expressions for the device array sizes of all arrays in "prog"
2003 * that require allocation on the device using "build", as well as
2004 * for the original array sizes of all arrays that need to be declared
2005 * on the host.
2006 * "node" is freed in case of error.
2008 static __isl_give isl_ast_node *build_array_bounds(
2009 __isl_take isl_ast_node *node, struct gpu_prog *prog,
2010 __isl_keep isl_ast_build *build)
2012 int i;
2014 for (i = 0; i < prog->n_array; ++i) {
2015 struct gpu_array_info *array = &prog->array[i];
2016 isl_multi_pw_aff *size;
2017 isl_ast_expr *expr;
2019 if (!gpu_array_requires_device_allocation(array))
2020 continue;
2022 size = isl_multi_pw_aff_copy(array->bound);
2023 expr = ppcg_build_size_expr(size, build);
2024 array->bound_expr = expr;
2025 if (!expr)
2026 return isl_ast_node_free(node);
2029 for (i = 0; i < prog->n_array; ++i) {
2030 struct gpu_array_info *array = &prog->array[i];
2031 isl_set *extent;
2032 isl_multi_pw_aff *size;
2033 isl_ast_expr *expr;
2035 if (!array->declare_local)
2036 continue;
2037 extent = isl_set_copy(array->declared_extent);
2038 size = ppcg_size_from_extent(extent);
2039 expr = ppcg_build_size_expr(size, build);
2040 array->declared_size = expr;
2041 if (!expr)
2042 return isl_ast_node_free(node);
2045 return node;
2048 /* Internal data structure for at_domain.
2050 * "prog" represents the entire scop.
2051 * "kernel" points to the kernel to which the current schedule node
2052 * belongs. It is set by before_mark and reset by after_mark.
2053 * It may be NULL if we are outside any kernel.
2055 struct ppcg_at_domain_data {
2056 struct gpu_prog *prog;
2057 struct ppcg_kernel *kernel;
2060 /* This function is called for each instance of a user statement
2061 * in the kernel. This may be one of the original user statements
2062 * or a statement introduced by PPCG.
2064 * We first check if the statement id corresponds to a gpu statement,
2065 * which indicates the statement is an original user statement. Any statement
2066 * that is not an original user statement has been introduced by PPCG and
2067 * requires special handling.
2069 * If the user statement is one of the original user statements, then we call
2070 * create_domain_leaf. If it is "init_device", then we call
2071 * build_array_bounds. Otherwise, we check if it is a copy or synchronization
2072 * statement and call the appropriate functions. Statements that copy an array
2073 * to/from the device do not need any further treatment.
2074 * Neither does "clear_device".
2076 static __isl_give isl_ast_node *at_domain(__isl_take isl_ast_node *node,
2077 __isl_keep isl_ast_build *build, void *user)
2079 struct ppcg_at_domain_data *data = user;
2080 struct gpu_stmt *gpu_stmt;
2081 isl_ast_expr *expr, *arg;
2082 isl_id *id;
2083 int is_sync;
2084 const char *name;
2085 void *p;
2087 expr = isl_ast_node_user_get_expr(node);
2088 arg = isl_ast_expr_get_op_arg(expr, 0);
2089 id = isl_ast_expr_get_id(arg);
2090 name = isl_id_get_name(id);
2091 p = isl_id_get_user(id);
2092 isl_ast_expr_free(expr);
2093 isl_ast_expr_free(arg);
2095 gpu_stmt = find_stmt(data->prog, id);
2096 is_sync = gpu_tree_id_is_sync(id, data->kernel);
2097 isl_id_free(id);
2099 if (gpu_stmt)
2100 return create_domain_leaf(data->kernel, node, build, gpu_stmt);
2102 if (!prefixcmp(name, "to_device_") || !prefixcmp(name, "from_device_"))
2103 return node;
2104 if (!strcmp(name, "init_device"))
2105 return build_array_bounds(node, data->prog, build);
2106 if (!strcmp(name, "clear_device"))
2107 return node;
2108 if (is_sync < 0)
2109 return isl_ast_node_free(node);
2110 if (!strcmp(name, "read") || !strcmp(name, "write")) {
2111 struct gpu_array_ref_group *group = p;
2112 return create_access_leaf(data->kernel, group, node, build);
2114 if (!is_sync)
2115 isl_die(data->prog->ctx, isl_error_internal,
2116 "unknown statement type",
2117 return isl_ast_node_free(node));
2118 return create_sync_leaf(data->kernel, node, build);
2121 /* Given a set of wrapped references "ref", return the corresponding
2122 * access relations based on the tagged access relations "tagged".
2124 * The elements of "ref" are of the form
2126 * [D -> R]
2128 * with D an iteration domains and R a reference.
2129 * The elements of "tagged" are of the form
2131 * [D -> R] -> A
2133 * with A an array.
2135 * Extend "tagged" to include the iteration domain in the range, i.e.,
2137 * [D -> R] -> [D -> A]
2139 * apply the result to "ref" and then unwrap the resulting set
2140 * to obtain relations of the form
2142 * D -> A
2144 static __isl_give isl_union_map *wrapped_reference_to_access(
2145 __isl_take isl_union_set *ref, __isl_take isl_union_map *tagged)
2147 isl_union_map *tag2access;
2149 tag2access = isl_union_map_copy(tagged);
2150 tag2access = isl_union_map_universe(tag2access);
2151 tag2access = isl_union_set_unwrap(isl_union_map_domain(tag2access));
2152 tag2access = isl_union_map_domain_map(tag2access);
2153 tag2access = isl_union_map_range_product(tag2access, tagged);
2155 ref = isl_union_set_coalesce(ref);
2156 ref = isl_union_set_apply(ref, tag2access);
2158 return isl_union_set_unwrap(ref);
2161 /* Given an access relation "access" from one or more array reference groups,
2162 * remove those reads if ("read" is 1) or writes (if "read" is 0)
2163 * that are only needed to communicate data within
2164 * the same iteration of "sched".
2165 * The domain of "sched" corresponds to the original statement instances,
2166 * i.e., those that appear in the domains of the access relations.
2167 * "tagged" contains all tagged access relations to all
2168 * the array reference groups accessed by "access" from statement
2169 * instances scheduled by "sched".
2171 * If the access is a read then it is either an element of
2173 * live_in union (range flow)
2175 * where live_in and flow may be overapproximations, or
2176 * it reads an uninitialized value (that is not live-in because
2177 * there is an intermediate kill) or it reads a value that was
2178 * written within the same (compound) statement instance.
2179 * If the access is a write then it is either an element of
2181 * live_out union (domain flow)
2183 * or it writes a value that is never read (and is not live-out
2184 * because of an intermediate kill) or only
2185 * within the same (compound) statement instance.
2186 * In both cases, the access relation is also a subset of
2187 * the group access relation.
2189 * The cases where an uninitialized value is read or a value is written
2190 * that is never read or where the dataflow occurs within a statement
2191 * instance are also considered local and may also be removed.
2193 * Essentially, we compute the intersection of "access" with either
2195 * live_in union (range non-local-flow)
2197 * or
2199 * live_out union (domain non-local-flow)
2201 * We first construct a relation "local"
2203 * [[D -> R] -> [D' -> R']]
2205 * of pairs of domain iterations accessing the reference group
2206 * and references in the group that are coscheduled by "sched".
2208 * If this relation does not intersect the dataflow dependences,
2209 * then there is nothing we can possibly remove, unless the dataflow
2210 * dependences themselves only relate a subset of the accesses.
2211 * In particular, the accesses may not be involved in any dataflow
2212 * dependences, either because they are uninitialized reads/dead writes
2213 * or because the dataflow occurs inside a statement instance.
2215 * Since the computation below may break up the access relation
2216 * into smaller pieces, we only perform the intersection with
2217 * the non-local dependent accesses if the local pairs
2218 * intersect the dataflow dependences. Otherwise, we intersect
2219 * with the universe of the non-local dependent accesses.
2220 * This should at least remove accesses from statements that
2221 * do not participate in any dependences.
2223 * In particular, we remove the "local" dataflow dependences from
2224 * the set of all dataflow dependences, or at least those
2225 * that may contribute to a domain/range that intersects
2226 * the domain of "access".
2227 * Note that if the potential dataflow dependences are an overapproximation
2228 * of the actual dataflow dependences, then the result remains an
2229 * overapproximation of the non-local dataflow dependences.
2230 * Copying to/from global memory is only needed for the references
2231 * in the domain/range of the result or for accesses that are live out/in
2232 * for the entire scop.
2234 * We therefore map the domain/range of the "external" relation
2235 * to the corresponding access relation and take the union with
2236 * the live out/in relation.
2238 static __isl_give isl_union_map *remove_local_accesses(
2239 struct gpu_prog *prog, __isl_take isl_union_map *tagged,
2240 __isl_take isl_union_map *access, __isl_take isl_union_map *sched,
2241 int read)
2243 int empty;
2244 isl_union_pw_multi_aff *tagger;
2245 isl_union_set *domain, *access_domain;
2246 isl_union_map *local, *external, *universe;
2247 isl_union_set *tag_set;
2249 if (isl_union_map_is_empty(access)) {
2250 isl_union_map_free(sched);
2251 isl_union_map_free(tagged);
2252 return access;
2255 tagger = isl_union_pw_multi_aff_copy(prog->scop->tagger);
2256 domain = isl_union_map_domain(isl_union_map_copy(tagged));
2257 tagger = isl_union_pw_multi_aff_intersect_domain(tagger,
2258 isl_union_set_copy(domain));
2259 sched = isl_union_map_preimage_domain_union_pw_multi_aff(sched, tagger);
2261 local = isl_union_map_apply_range(sched,
2262 isl_union_map_reverse(isl_union_map_copy(sched)));
2263 local = isl_union_map_intersect(local,
2264 isl_union_map_copy(prog->scop->tagged_dep_flow));
2266 empty = isl_union_map_is_empty(local);
2268 external = isl_union_map_copy(prog->scop->tagged_dep_flow);
2269 universe = isl_union_map_universe(isl_union_map_copy(access));
2270 access_domain = isl_union_map_domain(universe);
2271 domain = isl_union_set_universe(domain);
2272 universe = isl_union_set_unwrap(domain);
2273 universe = isl_union_map_intersect_domain(universe, access_domain);
2274 domain = isl_union_map_wrap(universe);
2275 if (read)
2276 external = isl_union_map_intersect_range(external, domain);
2277 else
2278 external = isl_union_map_intersect_domain(external, domain);
2279 external = isl_union_map_intersect_params(external,
2280 isl_set_copy(prog->scop->context));
2281 external = isl_union_map_subtract(external, local);
2283 if (read) {
2284 tag_set = isl_union_map_range(external);
2285 external = wrapped_reference_to_access(tag_set, tagged);
2286 external = isl_union_map_union(external,
2287 isl_union_map_copy(prog->scop->live_in));
2288 } else {
2289 tag_set = isl_union_map_domain(external);
2290 external = wrapped_reference_to_access(tag_set, tagged);
2291 external = isl_union_map_union(external,
2292 isl_union_map_copy(prog->scop->live_out));
2295 if (empty < 0)
2296 external = isl_union_map_free(external);
2297 else if (empty)
2298 external = isl_union_map_universe(external);
2300 access = isl_union_map_intersect(access, external);
2302 return access;
2305 /* Given an access relation "access" from "group", remove those reads
2306 * if ("read" is 1) or writes (if "read" is 0) that are only needed to
2307 * communicate data within the same iteration of the schedule "prefix"
2308 * at the position where the copying of the group is inserted.
2309 * That is, the output dimension of "prefix"
2310 * is equal to tile->depth.
2311 * The domain of "prefix" corresponds to the original statement instances,
2312 * i.e., those that appear in the domains of the access relations.
2314 * Extract the tagged access relation of "group" and
2315 * then call remove_local_accesses.
2317 static __isl_give isl_union_map *remove_local_accesses_group(
2318 struct ppcg_kernel *kernel, struct gpu_array_ref_group *group,
2319 __isl_take isl_union_map *access, __isl_keep isl_union_map *prefix,
2320 int read)
2322 isl_union_map *sched, *tagged;
2324 if (isl_union_map_is_empty(access))
2325 return access;
2327 tagged = group_tagged_access_relation(group);
2328 sched = isl_union_map_copy(prefix);
2330 return remove_local_accesses(kernel->prog, tagged, access, sched, read);
2333 /* Build an access AST expression for the effective grid size using "build".
2334 * Store the result in kernel->grid_size_expr.
2336 static isl_stat build_grid_size(struct ppcg_kernel *kernel,
2337 __isl_keep isl_ast_build *build)
2339 isl_multi_pw_aff *size;
2341 size = isl_multi_pw_aff_copy(kernel->grid_size);
2342 size = isl_multi_pw_aff_set_tuple_name(size, isl_dim_out, "grid");
2343 kernel->grid_size_expr = ppcg_build_size_expr(size, build);
2345 if (!kernel->grid_size_expr)
2346 return isl_stat_error;
2347 return isl_stat_ok;
2350 /* Build access AST expressions for the localized array sizes using "build".
2351 * Store the result in local->bound_expr.
2352 * Only do this for arrays for which localized bounds have been computed.
2354 static isl_stat build_local_array_sizes(struct ppcg_kernel *kernel,
2355 __isl_keep isl_ast_build *build)
2357 int i;
2359 for (i = 0; i < kernel->n_array; ++i) {
2360 struct gpu_local_array_info *local = &kernel->array[i];
2361 isl_multi_pw_aff *size;
2363 if (local->n_group == 0)
2364 continue;
2365 size = isl_multi_pw_aff_copy(local->bound);
2366 local->bound_expr = ppcg_build_size_expr(size, build);
2367 if (!local->bound_expr)
2368 return isl_stat_error;
2371 return isl_stat_ok;
2374 /* Build access AST expressions for the effective grid size and
2375 * the localized array sizes using "build".
2377 static isl_stat build_grid_and_local_array_sizes(struct ppcg_kernel *kernel,
2378 __isl_keep isl_ast_build *build)
2380 if (build_grid_size(kernel, build) < 0)
2381 return isl_stat_error;
2382 if (build_local_array_sizes(kernel, build) < 0)
2383 return isl_stat_error;
2384 return isl_stat_ok;
2387 /* This function is called before the AST generator starts traversing
2388 * the schedule subtree of a node with mark "mark".
2390 * If the mark is called "kernel", store the kernel pointer in data->kernel
2391 * for use in at_domain and build AST expressions for the grid size and
2392 * the localized array sizes.
2394 static isl_stat before_mark(__isl_keep isl_id *mark,
2395 __isl_keep isl_ast_build *build, void *user)
2397 struct ppcg_at_domain_data *data = user;
2399 if (!mark)
2400 return isl_stat_error;
2401 if (!strcmp(isl_id_get_name(mark), "kernel")) {
2402 data->kernel = isl_id_get_user(mark);
2403 if (build_grid_and_local_array_sizes(data->kernel, build) < 0)
2404 return isl_stat_error;
2406 return isl_stat_ok;
2409 /* This function is called after the AST generator has finished traversing
2410 * the schedule subtree of a mark node. "node" points to the corresponding
2411 * mark AST node.
2413 * If the mark is called "kernel", then replace "node" by a user node
2414 * that "calls" the kernel, representing the launch of the kernel.
2415 * The original "node" is stored inside the kernel object so that
2416 * it can be used to print the device code.
2417 * Note that this assumes that a kernel is only launched once.
2418 * Also clear data->kernel.
2420 static __isl_give isl_ast_node *after_mark(__isl_take isl_ast_node *node,
2421 __isl_keep isl_ast_build *build, void *user)
2423 isl_ctx *ctx;
2424 isl_id *id;
2425 isl_ast_expr *expr;
2426 isl_ast_expr_list *list;
2427 struct ppcg_kernel *kernel;
2428 struct ppcg_at_domain_data *data = user;
2430 ctx = isl_ast_node_get_ctx(node);
2431 id = isl_ast_node_mark_get_id(node);
2432 if (!id)
2433 return isl_ast_node_free(node);
2434 if (strcmp(isl_id_get_name(id), "kernel") || !data->kernel) {
2435 isl_id_free(id);
2436 return node;
2438 kernel = data->kernel;
2439 data->kernel = NULL;
2440 kernel->space = isl_ast_build_get_schedule_space(build);
2441 kernel->tree = isl_ast_node_mark_get_node(node);
2442 isl_ast_node_free(node);
2444 expr = isl_ast_expr_from_id(isl_id_copy(id));
2445 list = isl_ast_expr_list_alloc(ctx, 0);
2446 expr = isl_ast_expr_call(expr, list);
2447 node = isl_ast_node_alloc_user(expr);
2448 node = isl_ast_node_set_annotation(node, id);
2450 return node;
2453 static isl_bool update_depth(__isl_keep isl_schedule_node *node, void *user)
2455 int *depth = user;
2456 int node_depth;
2458 if (isl_schedule_node_get_type(node) != isl_schedule_node_leaf)
2459 return isl_bool_true;
2460 node_depth = isl_schedule_node_get_schedule_depth(node);
2461 if (node_depth > *depth)
2462 *depth = node_depth;
2464 return isl_bool_false;
2467 /* Use isl to generate code for both the host and the device
2468 * from "schedule".
2469 * The device code is marked by "kernel" mark nodes in the schedule tree,
2470 * containing a pointer to a ppcg_kernel object.
2471 * The returned AST only contains the AST for the host code.
2472 * The ASTs for the device code are embedded in ppcg_kernel objects
2473 * attached to the leaf nodes that call "kernel".
2475 static __isl_give isl_ast_node *generate_code(struct gpu_gen *gen,
2476 __isl_take isl_schedule *schedule)
2478 struct ppcg_at_domain_data data;
2479 isl_ast_build *build;
2480 isl_ast_node *tree;
2481 isl_id_list *iterators;
2482 int depth;
2484 data.prog = gen->prog;
2485 data.kernel = NULL;
2487 depth = 0;
2488 if (isl_schedule_foreach_schedule_node_top_down(schedule, &update_depth,
2489 &depth) < 0)
2490 schedule = isl_schedule_free(schedule);
2491 build = isl_ast_build_alloc(gen->prog->ctx);
2492 iterators = ppcg_scop_generate_names(gen->prog->scop, depth, "c");
2493 build = isl_ast_build_set_iterators(build, iterators);
2494 build = isl_ast_build_set_at_each_domain(build, &at_domain, &data);
2495 build = isl_ast_build_set_before_each_mark(build, &before_mark, &data);
2496 build = isl_ast_build_set_after_each_mark(build, &after_mark, &data);
2497 if (gen->prog->scop->options->debug->dump_final_schedule)
2498 isl_schedule_dump(schedule);
2499 tree = isl_ast_build_node_from_schedule(build, schedule);
2500 isl_ast_build_free(build);
2502 return tree;
2505 __isl_give isl_union_map *extract_sizes_from_str(isl_ctx *ctx, const char *str)
2507 if (!str)
2508 return NULL;
2509 return isl_union_map_read_from_str(ctx, str);
2512 /* Can "node" be tiled and then mapped to block and thread identifiers?
2513 * That is, is it permutable with at least one coincident dimension?
2515 static isl_bool is_permutable(__isl_keep isl_schedule_node *node)
2517 if (!node)
2518 return isl_bool_error;
2520 if (isl_schedule_node_get_type(node) != isl_schedule_node_band)
2521 return isl_bool_false;
2522 if (!isl_schedule_node_band_get_permutable(node))
2523 return isl_bool_false;
2524 if (isl_schedule_node_band_n_member(node) < 1)
2525 return isl_bool_false;
2526 if (!isl_schedule_node_band_member_get_coincident(node, 0))
2527 return isl_bool_false;
2529 return isl_bool_true;
2532 /* Is "node" not a suitably permutable band?
2534 static isl_bool not_permutable(__isl_keep isl_schedule_node *node, void *user)
2536 return isl_bool_not(is_permutable(node));
2539 /* Does the subtree rooted at "node" have any suitably permutable band nodes?
2540 * That is, does it have any nodes that are permutable and that
2541 * have a least one coincident dimension?
2543 static isl_bool subtree_has_permutable_bands(__isl_keep isl_schedule_node *node)
2545 isl_bool all_non_permutable;
2547 all_non_permutable = isl_schedule_node_every_descendant(node,
2548 &not_permutable, NULL);
2549 return isl_bool_not(all_non_permutable);
2552 /* Does "schedule" contain any permutable band with at least one coincident
2553 * member?
2555 static isl_bool has_any_permutable_node(__isl_keep isl_schedule *schedule)
2557 isl_schedule_node *root;
2558 isl_bool any_permutable;
2560 root = isl_schedule_get_root(schedule);
2561 any_permutable = subtree_has_permutable_bands(root);
2562 isl_schedule_node_free(root);
2564 return any_permutable;
2567 /* Is "node" a candidate for mapping to block and thread identifiers?
2568 * In particular, is it permutable with at least one coincident dimension?
2569 * Alternatively, does the subtree rooted at "node" not contain
2570 * any such permutable node? Filter nodes are skipped in this case,
2571 * because a band node will be inserted in front of the returned
2572 * node and this is not possible for filter nodes that are children
2573 * of set or sequence nodes.
2575 static int is_candidate(__isl_keep isl_schedule_node *node)
2577 isl_bool permutable;
2579 if (isl_schedule_node_get_type(node) == isl_schedule_node_leaf)
2580 return 1;
2581 permutable = is_permutable(node);
2582 if (permutable < 0 || permutable)
2583 return permutable;
2584 if (isl_schedule_node_get_type(node) == isl_schedule_node_filter)
2585 return 0;
2586 permutable = subtree_has_permutable_bands(node);
2587 if (permutable < 0)
2588 return -1;
2589 return !permutable;
2592 /* Is "node" the outermost node in its branch that can be tiled
2593 * and then mapped to block and thread identifiers?
2594 * If there are no such nodes in the subtree at "node" and
2595 * if "node" is not a filter node, then it is accepted too.
2597 static int is_outer_tilable(__isl_keep isl_schedule_node *node)
2599 int tilable;
2600 isl_schedule_node *ancestor;
2602 tilable = is_candidate(node);
2603 if (tilable < 0)
2604 return -1;
2605 if (!tilable)
2606 return 0;
2608 tilable = 0;
2609 ancestor = isl_schedule_node_copy(node);
2610 while (isl_schedule_node_has_parent(ancestor)) {
2611 ancestor = isl_schedule_node_parent(ancestor);
2613 tilable = is_candidate(ancestor);
2614 if (tilable < 0 || tilable)
2615 break;
2618 isl_schedule_node_free(ancestor);
2619 return tilable < 0 ? -1 : !tilable;
2622 /* Collect the references to all writes in "group".
2623 * Each reference is represented by a universe set in a space
2625 * [S[i,j] -> R[]]
2627 * with S[i,j] the statement instance space and R[] the array reference.
2629 static __isl_give isl_union_set *group_tagged_writes(
2630 struct gpu_array_ref_group *group)
2632 int i;
2633 isl_space *space;
2634 isl_union_set *writes;
2636 space = isl_map_get_space(group->access);
2637 writes = isl_union_set_empty(space);
2638 for (i = 0; i < group->n_ref; ++i) {
2639 isl_space *space;
2640 isl_set *writes_i;
2642 if (!group->refs[i]->write)
2643 continue;
2645 space = isl_map_get_space(group->refs[i]->tagged_access);
2646 space = isl_space_domain(space);
2647 writes_i = isl_set_universe(space);
2648 writes = isl_union_set_add_set(writes, writes_i);
2651 return writes;
2654 /* Is there any write access in "group" that requires synchronization
2655 * on a write to global memory?
2656 * We currently take into account all writes that would require
2657 * synchronization at the thread level depth, but if the copying
2658 * for this group is performed at an outer level, then we do not
2659 * actually need to take into account dependences at intermediate levels.
2661 static int any_sync_writes_in_group(struct ppcg_kernel *kernel,
2662 struct gpu_array_ref_group *group)
2664 isl_union_set *writes;
2665 int empty, disjoint;
2667 empty = isl_union_set_is_empty(kernel->sync_writes);
2668 if (empty < 0)
2669 return -1;
2670 if (empty)
2671 return 0;
2673 writes = group_tagged_writes(group);
2674 disjoint = isl_union_set_is_disjoint(kernel->sync_writes, writes);
2675 isl_union_set_free(writes);
2677 return disjoint < 0 ? -1 : !disjoint;
2680 /* Collect the references to all writes in "kernel" that write directly
2681 * to global or shared memory, i.e., that are not mapped to private memory.
2682 * Each reference is represented by a universe set in a space
2684 * [S[i,j] -> R[]]
2686 * with S[i,j] the statement instance space and R[] the array reference.
2688 static __isl_give isl_union_set *collect_non_private_tagged_writes(
2689 struct ppcg_kernel *kernel)
2691 isl_union_set *writes;
2692 int i, j;
2694 writes = isl_union_set_empty(isl_union_set_get_space(kernel->arrays));
2696 for (i = 0; i < kernel->n_array; ++i) {
2697 struct gpu_local_array_info *array = &kernel->array[i];
2699 for (j = 0; j < array->n_group; ++j) {
2700 struct gpu_array_ref_group *group = array->groups[j];
2701 enum ppcg_group_access_type type;
2702 isl_union_set *writes_ij;
2704 if (!group->write)
2705 continue;
2706 type = gpu_array_ref_group_type(group);
2707 if (type == ppcg_access_private)
2708 continue;
2709 writes_ij = group_tagged_writes(group);
2710 writes = isl_union_set_union(writes, writes_ij);
2714 return writes;
2717 /* Are there any direct writes to global memory that require
2718 * synchronization?
2720 static int any_global_or_shared_sync_writes(struct ppcg_kernel *kernel)
2722 isl_union_set *writes;
2723 int empty, disjoint;
2725 empty = isl_union_set_is_empty(kernel->sync_writes);
2726 if (empty < 0)
2727 return -1;
2728 if (empty)
2729 return 0;
2731 writes = collect_non_private_tagged_writes(kernel);
2732 disjoint = isl_union_set_is_disjoint(kernel->sync_writes, writes);
2733 isl_union_set_free(writes);
2735 return disjoint < 0 ? -1 : !disjoint;
2738 /* Construct an isl_multi_val for use as tile sizes for tiling "node"
2739 * from the elements in "tile_size".
2741 static __isl_give isl_multi_val *construct_band_tiles_sizes(
2742 __isl_keep isl_schedule_node *node, int *tile_size)
2744 isl_space *space;
2746 if (!node)
2747 return NULL;
2749 space = isl_schedule_node_band_get_space(node);
2750 return ppcg_multi_val_from_int_list(space, tile_size);
2753 /* Replace the partial schedule S of the band node "node" by
2755 * floor(S/f)
2757 * or
2759 * f * floor(S/f)
2761 * if scale_tile_loops is set, with f the integers in "factor".
2762 * The list that "factor" points to is assumed to contain at least
2763 * as many elements as the number of members in the band.
2765 static __isl_give isl_schedule_node *snap_band_to_sizes(
2766 __isl_take isl_schedule_node *node, int *factor,
2767 struct ppcg_options *options)
2769 isl_multi_val *mv;
2771 mv = construct_band_tiles_sizes(node, factor);
2772 node = isl_schedule_node_band_scale_down(node, isl_multi_val_copy(mv));
2773 if (options->scale_tile_loops)
2774 node = isl_schedule_node_band_scale(node,
2775 isl_multi_val_copy(mv));
2776 isl_multi_val_free(mv);
2778 return node;
2781 /* Tile "band" with tile size specified by "sizes".
2783 * Since the tile loops will be mapped to block ids, we forcibly
2784 * turn off tile loop scaling. We may want to enable tile loop scaling
2785 * at some later point, but then we would have to support the detection
2786 * of strides during the mapping to block ids.
2787 * Similarly, since the point loops will be mapped to thread ids,
2788 * we forcibly shift the point loops so that they start at zero.
2790 static __isl_give isl_schedule_node *tile_band(
2791 __isl_take isl_schedule_node *node, __isl_take isl_multi_val *sizes)
2793 isl_ctx *ctx = isl_schedule_node_get_ctx(node);
2794 int scale_tile;
2795 int shift_point;
2797 scale_tile = isl_options_get_tile_scale_tile_loops(ctx);
2798 isl_options_set_tile_scale_tile_loops(ctx, 0);
2799 shift_point = isl_options_get_tile_shift_point_loops(ctx);
2800 isl_options_set_tile_shift_point_loops(ctx, 1);
2802 node = isl_schedule_node_band_tile(node, sizes);
2804 isl_options_set_tile_scale_tile_loops(ctx, scale_tile);
2805 isl_options_set_tile_shift_point_loops(ctx, shift_point);
2807 return node;
2810 /* Extract the set of parameter values and outer schedule dimensions
2811 * for which any statement instance
2812 * in the kernel inserted at "node" needs to be executed.
2813 * Intersect the set of parameter values derived from the host schedule
2814 * relation with the context of "prog".
2816 static __isl_give isl_set *extract_context(__isl_keep isl_schedule_node *node,
2817 struct gpu_prog *prog)
2819 isl_union_map *schedule;
2820 isl_union_set *schedule_domain;
2821 isl_set *context;
2822 int empty;
2824 schedule = isl_schedule_node_get_prefix_schedule_relation(node);
2825 schedule_domain = isl_union_map_range(schedule);
2826 empty = isl_union_set_is_empty(schedule_domain);
2827 if (empty < 0) {
2828 isl_union_set_free(schedule_domain);
2829 return NULL;
2831 if (empty) {
2832 int depth;
2833 isl_space *space;
2835 space = isl_union_set_get_space(schedule_domain);
2836 isl_union_set_free(schedule_domain);
2837 space = isl_space_set_from_params(space);
2838 depth = isl_schedule_node_get_schedule_depth(node);
2839 space = isl_space_add_dims(space, isl_dim_set, depth);
2840 context = isl_set_empty(space);
2841 } else {
2842 context = isl_set_from_union_set(schedule_domain);
2844 context = isl_set_intersect_params(context,
2845 isl_set_copy(prog->context));
2847 return context;
2850 /* Return the set of outer array elements accessed by
2851 * by the statement instances in "domain" in "prog".
2852 * The instances in "domain" are those that appear
2853 * in the domains of the access relations in "prog".
2855 static __isl_give isl_union_set *accessed_by_domain(
2856 __isl_take isl_union_set *domain, struct gpu_prog *prog)
2858 isl_union_map *access;
2859 isl_union_set *arrays;
2861 access = isl_union_map_union(isl_union_map_copy(prog->read),
2862 isl_union_map_copy(prog->may_write));
2863 access = isl_union_map_intersect_domain(access, domain);
2864 arrays = isl_union_map_range(access);
2865 arrays = isl_union_set_apply(arrays,
2866 isl_union_map_copy(prog->to_outer));
2868 return arrays;
2871 /* Return the number of outer band members of the band node "node"
2872 * that are marked coincident.
2874 static int n_outer_coincidence(__isl_keep isl_schedule_node *node)
2876 int i, n;
2878 n = isl_schedule_node_band_n_member(node);
2880 for (i = 0; i < n; ++i)
2881 if (!isl_schedule_node_band_member_get_coincident(node, i))
2882 break;
2884 return i;
2887 /* If the band node "node" has more than "n" members, then split off
2888 * the first "n" of them.
2890 static __isl_give isl_schedule_node *split_band(
2891 __isl_take isl_schedule_node *node, int n)
2893 int dim;
2895 dim = isl_schedule_node_band_n_member(node);
2896 if (n < dim)
2897 node = isl_schedule_node_band_split(node, n);
2899 return node;
2902 /* Scale a band node that may have been split by split_band.
2903 * "sizes" are the scaling factors for the original node.
2904 * "node" either points to the original band node, or the outer
2905 * of the two pieces after splitting.
2907 * If the number of elements in "node" is smaller than the number of
2908 * elements in "sizes", then some splitting has occurred and we split
2909 * "sizes" in the same way.
2911 static __isl_give isl_schedule_node *scale_band(
2912 __isl_take isl_schedule_node *node, __isl_take isl_multi_val *sizes)
2914 int n, dim;
2916 n = isl_multi_val_dim(sizes, isl_dim_set);
2917 dim = isl_schedule_node_band_n_member(node);
2918 if (n > dim) {
2919 isl_multi_val *sizes2;
2921 sizes2 = isl_multi_val_copy(sizes);
2922 sizes = isl_multi_val_drop_dims(sizes,
2923 isl_dim_set, dim, n - dim);
2924 sizes2 = isl_multi_val_drop_dims(sizes2, isl_dim_set, 0, dim);
2925 node = isl_schedule_node_child(node, 0);
2926 node = isl_schedule_node_band_scale(node, sizes2);
2927 node = isl_schedule_node_parent(node);
2930 return isl_schedule_node_band_scale(node, sizes);
2933 /* Return an isl_multi_aff, with as elements the parameters in "space"
2934 * that have the names specified by the elements in "names".
2935 * If (some of) these parameters do not already appear in "space",
2936 * then they are added first.
2938 static __isl_give isl_multi_aff *parameter_vector(__isl_take isl_space *space,
2939 __isl_keep isl_id_list *names)
2941 int i, n;
2942 isl_local_space *ls;
2943 isl_multi_aff *ma;
2945 if (!names)
2946 space = isl_space_free(space);
2948 n = isl_id_list_n_id(names);
2949 for (i = 0; i < n; ++i) {
2950 int pos;
2951 isl_id *id;
2953 id = isl_id_list_get_id(names, i);
2954 pos = isl_space_find_dim_by_id(space, isl_dim_param, id);
2955 if (pos >= 0) {
2956 isl_id_free(id);
2957 continue;
2959 pos = isl_space_dim(space, isl_dim_param);
2960 space = isl_space_add_dims(space, isl_dim_param, 1);
2961 space = isl_space_set_dim_id(space, isl_dim_param, pos, id);
2963 ma = isl_multi_aff_zero(isl_space_copy(space));
2964 ls = isl_local_space_from_space(isl_space_domain(space));
2965 for (i = 0; i < n; ++i) {
2966 int pos;
2967 isl_id *id;
2968 isl_aff *aff;
2970 id = isl_id_list_get_id(names, i);
2971 pos = isl_space_find_dim_by_id(space, isl_dim_param, id);
2972 isl_id_free(id);
2973 aff = isl_aff_var_on_domain(isl_local_space_copy(ls),
2974 isl_dim_param, pos);
2975 ma = isl_multi_aff_set_aff(ma, i, aff);
2977 isl_local_space_free(ls);
2979 return ma;
2982 /* Return constraints on the domain elements that equate a sequence of
2983 * parameters called "names", to the partial schedule
2984 * of "node" modulo the integers in "size".
2985 * The number of elements in the array "size" should be equal
2986 * to the number of elements in "names".
2987 * The number of members of the band node "node" should be smaller
2988 * than or equal to this number. If it is smaller, then the first
2989 * elements of "names" are equated to zero.
2991 static __isl_give isl_union_set *set_schedule_modulo(
2992 __isl_keep isl_schedule_node *node, __isl_keep isl_id_list *names,
2993 int *size)
2995 int n, n_zero;
2996 isl_space *space;
2997 isl_multi_aff *ma;
2998 isl_multi_union_pw_aff *mupa, *mupa2;
2999 isl_multi_val *mv;
3000 isl_union_set *domain;
3002 if (!node)
3003 return NULL;
3004 n = isl_id_list_n_id(names);
3005 if (n == 0)
3006 return isl_schedule_node_get_universe_domain(node);
3007 n_zero = n - isl_schedule_node_band_n_member(node);
3009 mupa = isl_schedule_node_band_get_partial_schedule(node);
3010 mv = construct_band_tiles_sizes(node, size + n_zero);
3011 mupa = isl_multi_union_pw_aff_mod_multi_val(mupa, mv);
3013 space = isl_multi_union_pw_aff_get_space(mupa);
3014 space = isl_space_params(space);
3015 space = isl_space_set_from_params(space);
3016 space = isl_space_add_dims(space, isl_dim_set, n_zero);
3017 ma = isl_multi_aff_zero(space);
3019 domain = isl_schedule_node_get_universe_domain(node);
3020 mupa2 = isl_multi_union_pw_aff_multi_aff_on_domain(
3021 isl_union_set_copy(domain), ma);
3022 mupa = isl_multi_union_pw_aff_range_product(mupa2, mupa);
3024 space = isl_multi_union_pw_aff_get_space(mupa);
3025 ma = parameter_vector(space, names);
3027 mupa2 = isl_multi_union_pw_aff_multi_aff_on_domain(domain, ma);
3028 mupa = isl_multi_union_pw_aff_sub(mupa, mupa2);
3030 return isl_multi_union_pw_aff_zero_union_set(mupa);
3033 /* Insert a context node at "node" introducing the block and thread
3034 * identifiers along with their bounds, which are stored in kernel->grid_size
3035 * and kernel->block_dim.
3036 * Note that the bounds on the block identifiers may implicitly impose
3037 * constraints on the parameters. A guard needs to be inserted
3038 * in the schedule tree to ensure that those bounds hold at "node".
3039 * This guard is inserted in insert_guard.
3041 static __isl_give isl_schedule_node *insert_context(struct ppcg_kernel *kernel,
3042 __isl_take isl_schedule_node *node)
3044 isl_set *context;
3046 context = isl_set_universe(isl_set_get_space(kernel->context));
3048 context = add_bounded_parameters_dynamic(context,
3049 kernel->grid_size, kernel->block_ids);
3050 context = add_bounded_parameters(context,
3051 kernel->block_dim, kernel->thread_ids);
3053 node = isl_schedule_node_insert_context(node, context);
3055 return node;
3058 /* Insert a guard that eliminates kernel launches where the kernel
3059 * obviously does not have any work to do.
3061 * In particular, eliminate kernel launches where there are obviously
3062 * zero blocks.
3063 * Use the same block size constraints that are used to create the context
3064 * to ensure that all constraints implicit in the constructed context
3065 * are imposed by the guard.
3067 * Additionally, add other constraints that are valid
3068 * for each executed instance ("context"), as long as this does not result
3069 * in a disjunction.
3071 static __isl_give isl_schedule_node *insert_guard(
3072 __isl_take isl_schedule_node *node, __isl_keep isl_set *context,
3073 __isl_keep isl_multi_pw_aff *size, struct ppcg_scop *scop)
3075 unsigned nparam, n;
3076 isl_set *guard;
3077 isl_id_list *ids;
3079 guard = isl_set_copy(context);
3080 guard = isl_set_compute_divs(guard);
3081 guard = isl_set_from_basic_set(isl_set_simple_hull(guard));
3083 nparam = isl_set_dim(guard, isl_dim_param);
3084 n = isl_multi_pw_aff_dim(size, isl_dim_out);
3085 ids = ppcg_scop_generate_names(scop, n, "__ppcg_tmp");
3086 guard = add_bounded_parameters_dynamic(guard, size, ids);
3087 isl_id_list_free(ids);
3088 guard = isl_set_project_out(guard, isl_dim_param, nparam, n);
3090 node = isl_schedule_node_insert_guard(node, guard);
3092 return node;
3095 /* Does any array reference group mapping require the band that is mapped
3096 * to threads to be unrolled?
3098 static int kernel_requires_unroll(struct ppcg_kernel *kernel)
3100 int i, j;
3102 for (i = 0; i < kernel->n_array; ++i) {
3103 struct gpu_local_array_info *array = &kernel->array[i];
3105 for (j = 0; j < array->n_group; ++j) {
3106 struct gpu_array_ref_group *group = array->groups[j];
3107 if (gpu_array_ref_group_requires_unroll(group))
3108 return 1;
3112 return 0;
3115 /* Mark the given band node "node" for unrolling by the AST generator and
3116 * then sink it to the leaves of the schedule tree.
3117 * All dimensions of "node" are assumed to be coincident, such that this
3118 * sinking is a valid operation.
3120 static __isl_give isl_schedule_node *unroll(__isl_take isl_schedule_node *node)
3122 node = ppcg_set_schedule_node_type(node, isl_ast_loop_unroll);
3124 node = isl_schedule_node_band_sink(node);
3126 return node;
3129 /* Insert a synchronization node in the schedule tree of "node"
3130 * after the core computation of "kernel" at the level of the band
3131 * that is mapped to threads, except if that level is equal to
3132 * that of the band that is mapped to blocks or if there are no writes
3133 * to global or shared memory in the core computation that require
3134 * synchronization.
3135 * If there are any writes to shared memory and the shared memory
3136 * copying is performed at the same level, then synchronization
3137 * is needed between the core and the copying anyway, so we might
3138 * as well add it here. If the copying is performed at a higher
3139 * level, then different iterations of intermediate schedule dimensions
3140 * may have a different mapping from between shared memory elements and
3141 * threads, such that synchronization is required after the core.
3142 * "node" is assumed to point to the kernel node.
3144 * If the shared and the thread mark point to the same node, then make
3145 * sure the synchronization is inserted outside of the shared mark.
3147 static __isl_give isl_schedule_node *add_sync(struct ppcg_kernel *kernel,
3148 __isl_take isl_schedule_node *node)
3150 int depth;
3151 int need_sync;
3153 need_sync = any_global_or_shared_sync_writes(kernel);
3154 if (need_sync < 0)
3155 return isl_schedule_node_free(node);
3156 if (!need_sync)
3157 return node;
3159 node = gpu_tree_move_down_to_thread(node, kernel->core);
3160 depth = isl_schedule_node_get_schedule_depth(node);
3161 node = gpu_tree_move_up_to_kernel(node);
3162 if (depth == isl_schedule_node_get_schedule_depth(node))
3163 return node;
3165 node = gpu_tree_move_down_to_depth(node, depth, kernel->core);
3166 node = gpu_tree_ensure_following_sync(node, kernel);
3168 node = gpu_tree_move_up_to_kernel(node);
3170 return node;
3173 /* Return a read ("read" is 1) or write access relation for "group"
3174 * with those accesses removed that are only needed to communicate data
3175 * within the subtree of the schedule rooted at "node".
3176 * Furthermore, include the prefix schedule at "node".
3177 * That is, return a relation of the form
3179 * S -> [D -> A]
3181 * with D the outer schedule dimensions at "node".
3183 static __isl_give isl_union_map *anchored_non_local_accesses(
3184 struct ppcg_kernel *kernel, struct gpu_array_ref_group *group,
3185 __isl_take isl_schedule_node *node, int read)
3187 isl_union_map *access;
3188 isl_union_map *prefix;
3190 prefix = isl_schedule_node_get_prefix_schedule_relation(node);
3191 prefix = isl_union_map_preimage_domain_union_pw_multi_aff(prefix,
3192 isl_union_pw_multi_aff_copy(kernel->contraction));
3193 access = gpu_array_ref_group_access_relation(group, read, !read);
3194 access = remove_local_accesses_group(kernel, group, access, prefix,
3195 read);
3196 access = isl_union_map_range_product(prefix, access);
3198 return access;
3201 /* Given an array reference group "group", create a mapping
3203 * read[D -> A] -> [D -> A]
3205 * if "read" is set or
3207 * write[D -> A] -> [D -> A]
3209 * if "read" is not set.
3210 * D corresponds to the outer tile->depth dimensions of
3211 * the kernel schedule.
3213 static __isl_give isl_multi_aff *create_from_access(isl_ctx *ctx,
3214 struct gpu_array_ref_group *group, int read)
3216 struct gpu_array_tile *tile;
3217 isl_space *space;
3218 isl_id *id;
3220 tile = gpu_array_ref_group_tile(group);
3221 space = isl_space_copy(group->array->space);
3222 space = isl_space_from_range(space);
3223 space = isl_space_add_dims(space, isl_dim_in, tile->depth);
3224 space = isl_space_wrap(space);
3225 space = isl_space_map_from_set(space);
3227 id = isl_id_alloc(ctx, read ? "read" : "write", group);
3228 space = isl_space_set_tuple_id(space, isl_dim_in, id);
3230 return isl_multi_aff_identity(space);
3233 /* If any writes in "group" require synchronization, then make sure
3234 * that there is a synchronization node for "kernel" after the node
3235 * following "node" in a sequence.
3237 * If "shared" is set and no synchronization is needed for
3238 * the writes to global memory, then add synchronization before
3239 * the kernel to protect shared memory from being overwritten
3240 * by the next iteration of the core computation.
3241 * No additional synchronization is needed to protect against
3242 * the next copy into shared memory because each element of
3243 * the shared memory tile is always copied by the same thread.
3245 static __isl_give isl_schedule_node *add_group_write_sync(
3246 __isl_take isl_schedule_node *node, struct ppcg_kernel *kernel,
3247 struct gpu_array_ref_group *group, int shared)
3249 int need_sync;
3251 need_sync = any_sync_writes_in_group(kernel, group);
3252 if (need_sync < 0)
3253 return isl_schedule_node_free(node);
3254 if (need_sync) {
3255 node = isl_schedule_node_parent(node);
3256 node = isl_schedule_node_next_sibling(node);
3257 node = isl_schedule_node_child(node, 0);
3258 node = gpu_tree_ensure_following_sync(node, kernel);
3259 } else if (shared) {
3260 struct gpu_array_tile *tile;
3262 tile = gpu_array_ref_group_tile(group);
3263 node = isl_schedule_node_parent(node);
3264 node = isl_schedule_node_parent(node);
3265 node = gpu_tree_move_down_to_depth(node, tile->depth,
3266 kernel->core);
3267 node = gpu_tree_move_left_to_sync(node, kernel);
3270 return node;
3273 /* Add copy statements to the schedule tree of "node"
3274 * for reading from global memory to private memory (if "read" is set) or
3275 * for writing back from private memory to global memory
3276 * (if "read" is not set) for the array reference group "group" that
3277 * is mapped to private memory.
3278 * On input, "node" points to the kernel node, and it is moved
3279 * back there on output.
3281 * The copies are performed in the order of the array elements.
3282 * The copy statement instances include a reference to the outer
3283 * tile->depth dimensions of the kernel schedule for ease of
3284 * combining them with the group tiling.
3286 * That is, the extra schedule is of the form
3288 * type[D -> A] -> A
3290 * where D corresponds to the outer tile->depth dimensions of
3291 * the kernel schedule and A to the global array.
3292 * This schedule is unrolled because registers are not addressable.
3294 * The copying is inserted in the schedule tree through an extension
3295 * of the form
3297 * D -> type[D -> A]
3299 * where the extra domain elements type[D -> A] are those accessed
3300 * by the group.
3301 * A filter is inserted on type[D -> A] to ensure that the element
3302 * is read/written by the same thread that needs the element.
3303 * This filter is obtained by applying
3305 * S -> type[D -> A]
3307 * to the thread filter for the core statements.
3309 * The extension is inserted before the core computation in case of a read
3310 * and after the core computation in case of a write.
3311 * In the latter case, we also make sure that there is a synchronization
3312 * node after the write to global memory, unless this write is performed
3313 * at the outer level of the kernel.
3314 * In principle, this synchronization could be inserted higher
3315 * in the schedule tree depending on where the corresponding reads
3316 * from global memory are performed.
3318 static __isl_give isl_schedule_node *add_copies_group_private(
3319 struct ppcg_kernel *kernel, struct gpu_array_ref_group *group,
3320 __isl_take isl_schedule_node *node, int read)
3322 struct gpu_array_tile *tile;
3323 isl_union_map *access;
3324 isl_union_set *domain;
3325 isl_space *space;
3326 isl_multi_aff *from_access;
3327 isl_multi_pw_aff *mpa;
3328 isl_multi_union_pw_aff *mupa;
3329 isl_union_pw_multi_aff *contraction;
3330 isl_schedule_node *graft;
3331 isl_union_set *filter;
3332 int kernel_depth;
3333 int empty;
3335 kernel_depth = isl_schedule_node_get_schedule_depth(node);
3336 tile = gpu_array_ref_group_tile(group);
3337 node = gpu_tree_move_down_to_depth(node, tile->depth, kernel->core);
3339 access = anchored_non_local_accesses(kernel, group, node, read);
3340 empty = isl_union_map_is_empty(access);
3341 if (empty < 0 || empty) {
3342 isl_union_map_free(access);
3343 if (empty < 0)
3344 return isl_schedule_node_free(node);
3345 return gpu_tree_move_up_to_kernel(node);
3348 group->array->global = 1;
3349 group->local_array->global = 1;
3351 from_access = create_from_access(kernel->ctx, group, read);
3352 space = isl_space_domain(isl_multi_aff_get_space(from_access));
3353 access = isl_union_map_preimage_range_multi_aff(access, from_access);
3355 filter = isl_union_set_copy(kernel->thread_filter);
3356 contraction = isl_union_pw_multi_aff_copy(kernel->contraction);
3357 filter = isl_union_set_preimage_union_pw_multi_aff(filter, contraction);
3358 filter = isl_union_set_apply(filter, isl_union_map_copy(access));
3359 filter = isl_union_set_detect_equalities(filter);
3360 filter = isl_union_set_coalesce(filter);
3362 domain = isl_union_map_range(access);
3363 access = isl_union_set_wrapped_domain_map(domain);
3364 access = isl_union_map_reverse(access);
3365 access = isl_union_map_coalesce(access);
3366 graft = isl_schedule_node_from_extension(access);
3368 space = isl_space_map_from_set(space);
3369 mpa = isl_multi_pw_aff_identity(space);
3370 mpa = isl_multi_pw_aff_range_factor_range(mpa);
3371 mupa = isl_multi_union_pw_aff_from_multi_pw_aff(mpa);
3373 graft = isl_schedule_node_child(graft, 0);
3374 graft = isl_schedule_node_insert_partial_schedule(graft, mupa);
3375 graft = unroll(graft);
3377 graft = isl_schedule_node_insert_filter(graft, filter);
3379 graft = isl_schedule_node_parent(graft);
3381 if (read)
3382 node = isl_schedule_node_graft_before(node, graft);
3383 else {
3384 node = isl_schedule_node_graft_after(node, graft);
3385 if (kernel_depth < tile->depth)
3386 node = add_group_write_sync(node, kernel, group, 0);
3389 node = gpu_tree_move_up_to_kernel(node);
3391 return node;
3394 /* Add copy statements to the schedule tree of "node"
3395 * for reading from global memory to shared memory (if "read" is set) or
3396 * for writing back from shared memory to global memory
3397 * (if "read" is not set) for the array reference group "group" that
3398 * is mapped to shared memory.
3399 * On input, "node" points to the kernel node, and it is moved
3400 * back there on output.
3402 * The copies are performed in the order of the corresponding shared
3403 * memory tile.
3404 * The copy statement instances include a reference to the outer
3405 * tile->depth dimensions of the kernel schedule for ease of
3406 * combining them with the group tiling.
3408 * If we are performing a read from global memory to shared memory and
3409 * if the array involved is not a scalar, then we copy
3410 * the entire tile to shared memory. This may result in some extra
3411 * elements getting copied, but it should lead to simpler code
3412 * (which means that fewer registers may be needed) and less divergence.
3414 * Otherwise, we only copy the elements that will be read or have been written
3415 * in the kernel.
3417 * That is, the extra schedule is of the form
3419 * type[D -> A] -> T
3421 * where D corresponds to the outer tile->depth dimensions of
3422 * the kernel schedule, A to the global array and T is the corresponding
3423 * shared memory tile.
3425 * The copying is inserted in the schedule tree through an extension
3426 * of the form
3428 * D -> type[D -> A]
3430 * where the extra domain elements type[D -> A] are those accessed
3431 * by the group. In the case of read from a non-scalar, this set
3432 * is replaced by the entire shared memory tile.
3434 * If the "unroll_copy_shared" option is set, then the AST generator
3435 * is instructed to unroll the copying code.
3437 * A filter is inserted on type[D -> A] to map the copy instances
3438 * to the threads. In particular, the thread identifiers are
3439 * equated to the position inside the shared memory tile (T)
3440 * modulo the block size.
3441 * We try to align the innermost tile dimension with the innermost
3442 * thread identifier (x) as a heuristic to improve coalescing.
3443 * In particular, if the dimension of the tile is greater than
3444 * the dimension of the block, then the schedule mapping to the tile
3445 * is broken up into two pieces and the filter is applied to the inner part.
3446 * If, on the other hand, the dimension of the tile is smaller than
3447 * the dimension of the block, then the initial thread identifiers
3448 * are equated to zero and the remaining thread identifiers are
3449 * matched to the memory tile.
3451 * The extension is inserted before the core computation in case of a read
3452 * and after the core computation in case of a write.
3453 * In the case of a read, we first need to make sure there is some
3454 * synchronization before the core computation such that we can put the read
3455 * from global memory to shared memory before that synchronization.
3456 * This ensures that all threads have finished copying into shared memory
3457 * before the shared memory is used.
3458 * We also need to make sure that there is a synchronization node after
3459 * the core computation to ensure that the next load into shared memory
3460 * only happens after all data has been used. There is no need for
3461 * this synchronization if we are at the outer level since then there
3462 * won't be a next load.
3463 * In the case of a write, we need to make sure there is some synchronization
3464 * after the core computation such that we can put the write from shared
3465 * memory to global memory after that synchronization.
3466 * Unless we are at the outer level, we also need a synchronization node
3467 * after the write to ensure the data is saved to global memory
3468 * before the next iteration writes to the same shared memory.
3469 * It also makes sure the data has arrived in global memory before
3470 * it is read in a subsequent iteration.
3472 static __isl_give isl_schedule_node *add_copies_group_shared(
3473 struct ppcg_kernel *kernel, struct gpu_array_ref_group *group,
3474 __isl_take isl_schedule_node *node, int read)
3476 struct gpu_array_tile *tile;
3477 isl_union_map *access;
3478 isl_union_set *domain;
3479 isl_multi_aff *ma;
3480 isl_multi_aff *from_access;
3481 isl_multi_pw_aff *mpa;
3482 isl_multi_union_pw_aff *mupa;
3483 isl_schedule_node *graft;
3484 isl_union_set *filter;
3485 int skip;
3486 int kernel_depth;
3487 int empty;
3489 tile = gpu_array_ref_group_tile(group);
3490 kernel_depth = isl_schedule_node_get_schedule_depth(node);
3491 node = gpu_tree_move_down_to_depth(node, tile->depth, kernel->core);
3493 access = anchored_non_local_accesses(kernel, group, node, read);
3494 empty = isl_union_map_is_empty(access);
3495 if (empty < 0 || empty) {
3496 isl_union_map_free(access);
3497 if (empty < 0)
3498 return isl_schedule_node_free(node);
3499 return gpu_tree_move_up_to_kernel(node);
3502 group->array->global = 1;
3503 group->local_array->global = 1;
3505 from_access = create_from_access(kernel->ctx, group, read);
3507 ma = isl_multi_aff_copy(tile->tiling);
3508 ma = isl_multi_aff_pullback_multi_aff(ma,
3509 isl_multi_aff_copy(from_access));
3510 mpa = isl_multi_pw_aff_from_multi_aff(ma);
3511 mupa = isl_multi_union_pw_aff_from_multi_pw_aff(mpa);
3513 domain = isl_union_map_range(access);
3515 if (read && !gpu_array_is_scalar(group->array)) {
3516 isl_map *map;
3517 isl_union_set_free(domain);
3518 map = group_tile(group);
3519 domain = isl_union_set_from_set(isl_map_wrap(map));
3522 domain = isl_union_set_preimage_multi_aff(domain, from_access);
3523 access = isl_union_set_wrapped_domain_map(domain);
3524 access = isl_union_map_reverse(access);
3525 access = isl_union_map_coalesce(access);
3526 graft = isl_schedule_node_from_extension(access);
3528 graft = isl_schedule_node_child(graft, 0);
3530 graft = isl_schedule_node_insert_partial_schedule(graft, mupa);
3531 if (kernel->options->unroll_copy_shared)
3532 graft = ppcg_set_schedule_node_type(graft, isl_ast_loop_unroll);
3534 if (tile->n > kernel->n_block && kernel->n_block > 0) {
3535 graft = isl_schedule_node_band_split(graft,
3536 tile->n - kernel->n_block);
3537 graft = isl_schedule_node_child(graft, 0);
3539 if (tile->n < kernel->n_block)
3540 skip = kernel->n_block - tile->n;
3541 else
3542 skip = 0;
3543 filter = set_schedule_modulo(graft, kernel->thread_ids,
3544 kernel->block_dim);
3545 if (!kernel->options->wrap)
3546 graft = snap_band_to_sizes(graft, kernel->block_dim + skip,
3547 kernel->options);
3548 if (tile->n > kernel->n_block && kernel->n_block > 0)
3549 graft = isl_schedule_node_parent(graft);
3550 graft = isl_schedule_node_insert_filter(graft, filter);
3552 while (graft && isl_schedule_node_has_parent(graft))
3553 graft = isl_schedule_node_parent(graft);
3555 if (read) {
3556 if (kernel_depth < tile->depth)
3557 node = gpu_tree_ensure_sync_after_core(node, kernel);
3558 node = gpu_tree_move_left_to_sync(node, kernel);
3559 node = isl_schedule_node_graft_before(node, graft);
3560 } else {
3561 node = gpu_tree_move_right_to_sync(node, kernel);
3562 node = isl_schedule_node_graft_after(node, graft);
3563 if (kernel_depth < tile->depth)
3564 node = add_group_write_sync(node, kernel, group, 1);
3567 node = gpu_tree_move_up_to_kernel(node);
3569 return node;
3572 /* Check whether the array reference group "group" is mapped to
3573 * private or shared memory and, if so,
3574 * add copy statements to the schedule tree of "node"
3575 * for reading from global memory to private or shared memory
3576 * (if "read" is set) or for writing back from private or shared memory
3577 * to global memory (if "read" is not set) for this group.
3578 * On input, "node" points to the kernel node, and it is moved
3579 * back there on output.
3581 static __isl_give isl_schedule_node *add_copies_group(
3582 struct ppcg_kernel *kernel, struct gpu_array_ref_group *group,
3583 __isl_take isl_schedule_node *node, int read)
3585 enum ppcg_group_access_type type;
3587 type = gpu_array_ref_group_type(group);
3588 if (type == ppcg_access_private)
3589 return add_copies_group_private(kernel, group, node, read);
3590 if (type == ppcg_access_shared)
3591 return add_copies_group_shared(kernel, group, node, read);
3592 return node;
3595 /* For each array reference group that is mapped to private or shared memory,
3596 * add copy statements to the schedule tree of "node"
3597 * for reading from global memory to private or shared memory
3598 * and for writing back.
3599 * On input, "node" points to the kernel node, and it is moved
3600 * back there on output.
3602 static __isl_give isl_schedule_node *add_copies(struct ppcg_kernel *kernel,
3603 __isl_take isl_schedule_node *node)
3605 int i, j;
3607 for (i = 0; i < kernel->n_array; ++i) {
3608 struct gpu_local_array_info *array = &kernel->array[i];
3610 for (j = 0; j < array->n_group; ++j) {
3611 struct gpu_array_ref_group *group = array->groups[j];
3613 node = add_copies_group(kernel, group, node, 1);
3614 if (!node)
3615 return NULL;
3616 node = add_copies_group(kernel, group, node, 0);
3617 if (!node)
3618 return NULL;
3622 return node;
3625 /* Mark all dimensions in the current band node atomic.
3627 static __isl_give isl_schedule_node *atomic(__isl_take isl_schedule_node *node)
3629 return ppcg_set_schedule_node_type(node, isl_ast_loop_atomic);
3632 /* Mark "node" atomic, if it is a band node.
3633 * Do the same for all ancestors.
3634 * Return a pointer to "node" (in the updated schedule tree).
3636 static __isl_give isl_schedule_node *atomic_ancestors(
3637 __isl_take isl_schedule_node *node)
3639 int pos;
3641 if (!node)
3642 return NULL;
3643 if (!isl_schedule_node_has_parent(node))
3644 return node;
3646 pos = isl_schedule_node_get_child_position(node);
3647 node = isl_schedule_node_parent(node);
3648 if (isl_schedule_node_get_type(node) == isl_schedule_node_band)
3649 node = atomic(node);
3650 node = atomic_ancestors(node);
3651 node = isl_schedule_node_child(node, pos);
3653 return node;
3656 /* Collect all write references that require synchronization.
3657 * "node" is assumed to point to the kernel node.
3658 * Each reference is represented by a universe set in a space
3660 * [S[i,j] -> R[]]
3662 * with S[i,j] the statement instance space and R[] the array reference.
3664 * This function should be called before block and thread filters are added.
3666 * Synchronization is needed after a write if there is a subsequent read
3667 * within the same block that may not be performed by the same thread.
3668 * There should not be any dependences between different blocks,
3669 * so we start with the flow dependences within the same kernel invocation
3670 * and we subtract from these those dependences that are mapped
3671 * to the same iteration of the bands where synchronization is inserted.
3672 * We do not remove pairs of instances that are known to map to
3673 * the same thread across different iterations of the intermediate
3674 * bands because the read may be performed by a different thread
3675 * than the one that needs the value if shared memory is involved.
3677 * We also consider all pairs of possible writes that access the same
3678 * memory location and that may be mapped to the same block but not
3679 * to the same iteration of the intermediate bands.
3680 * In theory, it would be possible for one thread to still be in
3681 * a previous iteration of a loop in these bands.
3682 * A write to global memory in this delayed thread could then overwrite
3683 * a write from another thread that has already moved on to
3684 * the next iteration.
3686 * After computing the above writes paired off with reads or writes
3687 * that depend on them, we project onto the domain writes.
3688 * Sychronization is needed after writes to global memory
3689 * through these references.
3691 static __isl_give isl_union_set *compute_sync_writes(
3692 struct ppcg_kernel *kernel, __isl_keep isl_schedule_node *node)
3694 isl_union_map *local;
3695 isl_union_map *may_writes, *shared_access;
3696 isl_union_map *kernel_prefix, *thread_prefix;
3697 isl_union_map *equal;
3698 isl_union_set *wrap;
3699 isl_union_set *domain;
3700 isl_union_pw_multi_aff *contraction;
3702 kernel_prefix = isl_schedule_node_get_prefix_schedule_union_map(node);
3703 node = isl_schedule_node_copy(node);
3704 node = gpu_tree_move_down_to_thread(node, kernel->core);
3705 thread_prefix = isl_schedule_node_get_prefix_schedule_union_map(node);
3706 isl_schedule_node_free(node);
3708 contraction = kernel->contraction;
3709 kernel_prefix = isl_union_map_preimage_domain_union_pw_multi_aff(
3710 kernel_prefix, isl_union_pw_multi_aff_copy(contraction));
3711 thread_prefix = isl_union_map_preimage_domain_union_pw_multi_aff(
3712 thread_prefix, isl_union_pw_multi_aff_copy(contraction));
3713 domain = isl_union_set_copy(kernel->expanded_domain);
3714 domain = isl_union_set_universe(domain);
3716 may_writes = isl_union_map_copy(kernel->prog->scop->tagged_may_writes);
3717 may_writes = isl_union_map_curry(may_writes);
3718 may_writes = isl_union_map_intersect_domain(may_writes, domain);
3719 may_writes = isl_union_map_uncurry(may_writes);
3720 shared_access = isl_union_map_copy(may_writes);
3721 shared_access = isl_union_map_apply_range(shared_access,
3722 isl_union_map_reverse(may_writes));
3724 local = isl_union_map_copy(kernel->prog->scop->tagged_dep_flow);
3725 local = isl_union_map_union(local, shared_access);
3726 local = isl_union_map_zip(local);
3728 equal = isl_union_map_apply_range(kernel_prefix,
3729 isl_union_map_reverse(isl_union_map_copy(kernel_prefix)));
3730 wrap = isl_union_map_wrap(equal);
3731 local = isl_union_map_intersect_domain(local, wrap);
3732 equal = isl_union_map_apply_range(thread_prefix,
3733 isl_union_map_reverse(isl_union_map_copy(thread_prefix)));
3734 wrap = isl_union_map_wrap(equal);
3735 local = isl_union_map_subtract_domain(local, wrap);
3737 local = isl_union_map_zip(local);
3738 local = isl_union_map_universe(local);
3740 return isl_union_map_domain(local);
3743 /* Group the domain elements into a single space, named kernelX,
3744 * with X the kernel sequence number "kernel_id".
3746 static __isl_give isl_schedule_node *group_statements(
3747 __isl_take isl_schedule_node *node, int kernel_id)
3749 char buffer[20];
3750 isl_id *id;
3752 if (!node)
3753 return NULL;
3755 snprintf(buffer, sizeof(buffer), "kernel%d", kernel_id);
3756 id = isl_id_alloc(isl_schedule_node_get_ctx(node), buffer, NULL);
3757 return isl_schedule_node_group(node, id);
3760 /* Create a ppcg_kernel representing the domain instances that reach "node"
3761 * and insert a mark node pointing to the ppcg_kernel before "node".
3762 * The band that "node" points to is the band that needs to be mapped
3763 * to block identifiers. The band that needs to be mapped to thread
3764 * identifiers should be marked by a "thread" mark by the caller.
3765 * The linear branch between the current node and the "thread" mark
3766 * may also have a "shared" mark. If present, the mapping to shared
3767 * memory is computed at that point.
3768 * Both marks are removed by this function.
3769 * If "scale" is set, then the band that "node" points to is scaled
3770 * by "sizes".
3772 * Mark all outer band nodes as atomic to ensure each kernel is only
3773 * scheduled once.
3774 * If the domain elements that reach "node" live in more than one space,
3775 * then group the domain elements into a single space, named kernelX,
3776 * with X the kernel sequence number.
3778 * Insert a guard node governing the kernel node to ensure that
3779 * no kernels with zero blocks are launched.
3781 * Insert a context node describing the block and thread
3782 * identifiers inside the kernel mark.
3783 * The context node needs to be inserted after the effective block size
3784 * has been determined such that the bounds on the thread identifiers
3785 * would reflect the effective block size.
3786 * Insert a filter node inside the context node mapping the statement
3787 * instances to block identifiers. In particular, the block identifiers
3788 * are equated to the partial schedule of band that was marked for mapping
3789 * to blocks modulo the grid size.
3790 * Insert a filter node inside the "thread" mark mapping the statement
3791 * instances to thread identifiers. In particular, the thread identifiers
3792 * are equated to the partial schedule of band that was marked for mapping
3793 * to threads modulo the block size.
3795 * Compute array reference groups for all arrays, set the local
3796 * array bounds based on the set of domain instances that reach
3797 * the kernel node, check the total amount of shared memory used
3798 * and compute all group tilings.
3799 * The array reference groups are computed after the block filter
3800 * has been inserted because it affects the mapping to shared or
3801 * private memory. This computation also requires the thread filter
3802 * (in the ppcg_kernel object), but this thread filter should not
3803 * have been added to the schedule tree yet since the computation
3804 * requires the schedule of the band that needs to be mapped to
3805 * threads before the privatization is applied.
3807 * If any array reference group requires the band mapped to threads
3808 * to be unrolled, then we perform the required unrolling.
3810 * We save a copy of the schedule that may influence the mappings
3811 * to shared or private memory in kernel->copy_schedule.
3813 * Finally, we add synchronization and copy statements to the schedule tree,
3814 * remove the "thread" mark and create representations for the local
3815 * variables in the kernel.
3817 * We keep a copy of the isl_id that points to the kernel to ensure
3818 * that the kernel does not get destroyed if the schedule node
3819 * is freed due to some error condition.
3821 __isl_give isl_schedule_node *gpu_create_kernel(struct gpu_gen *gen,
3822 __isl_take isl_schedule_node *node, int scale,
3823 __isl_keep isl_multi_val *sizes)
3825 struct ppcg_kernel *kernel;
3826 isl_id *id;
3827 isl_schedule_node *node_thread;
3828 isl_union_map *host_schedule;
3829 isl_union_pw_multi_aff *contraction;
3830 isl_set *host_domain;
3831 isl_union_set *domain, *expanded;
3832 int single_statement;
3834 node = gpu_tree_insert_shared_before_thread(node);
3835 if (!node)
3836 return NULL;
3838 kernel = isl_calloc_type(gen->ctx, struct ppcg_kernel);
3839 kernel = ppcg_kernel_create_local_arrays(kernel, gen->prog);
3840 if (!kernel)
3841 return isl_schedule_node_free(node);
3843 domain = isl_schedule_node_get_domain(node);
3844 single_statement = isl_union_set_n_set(domain) == 1;
3846 kernel->ctx = gen->ctx;
3847 kernel->prog = gen->prog;
3848 kernel->options = gen->options;
3849 kernel->context = extract_context(node, gen->prog);
3850 kernel->core = isl_union_set_universe(isl_union_set_copy(domain));
3851 contraction = isl_schedule_node_get_subtree_contraction(node);
3852 kernel->contraction = isl_union_pw_multi_aff_copy(contraction);
3853 expanded = isl_union_set_copy(domain);
3854 expanded = isl_union_set_preimage_union_pw_multi_aff(expanded,
3855 contraction);
3856 kernel->expanded_domain = isl_union_set_copy(expanded);
3857 kernel->arrays = accessed_by_domain(expanded, gen->prog);
3858 kernel->n_grid = n_outer_coincidence(node);
3859 node_thread = isl_schedule_node_copy(node);
3860 node_thread = gpu_tree_move_down_to_thread(node_thread, kernel->core);
3861 node_thread = isl_schedule_node_child(node_thread, 0);
3862 kernel->n_block = n_outer_coincidence(node_thread);
3863 isl_schedule_node_free(node_thread);
3864 kernel->id = gen->kernel_id++;
3865 read_grid_and_block_sizes(kernel, gen);
3867 kernel->sync_writes = compute_sync_writes(kernel, node);
3869 host_schedule = isl_schedule_node_get_prefix_schedule_union_map(node);
3870 host_domain = isl_set_from_union_set(isl_union_map_range(
3871 host_schedule));
3873 node = atomic_ancestors(node);
3875 id = isl_id_alloc(gen->ctx, "kernel", kernel);
3876 id = isl_id_set_free_user(id, &ppcg_kernel_free_wrap);
3877 node = isl_schedule_node_insert_mark(node, isl_id_copy(id));
3879 if (!single_statement)
3880 node = group_statements(node, kernel->id);
3882 node = isl_schedule_node_child(node, 0);
3883 node = split_band(node, kernel->n_grid);
3884 kernel->block_ids = ppcg_scop_generate_names(gen->prog->scop,
3885 kernel->n_grid, "b");
3886 kernel->block_filter = set_schedule_modulo(node, kernel->block_ids,
3887 kernel->grid_dim);
3888 kernel->grid_size = extract_grid_size(kernel,
3889 isl_union_set_copy(domain));
3890 if (!kernel->options->wrap)
3891 node = snap_band_to_sizes(node, kernel->grid_dim,
3892 kernel->options);
3893 if (scale)
3894 node = scale_band(node, isl_multi_val_copy(sizes));
3895 node = isl_schedule_node_parent(node);
3896 if (!single_statement)
3897 node = isl_schedule_node_parent(node);
3898 node = insert_guard(node, kernel->context, kernel->grid_size,
3899 gen->prog->scop);
3900 node = gpu_tree_move_down_to_thread(node, kernel->core);
3901 node = isl_schedule_node_child(node, 0);
3902 node = split_band(node, kernel->n_block);
3903 kernel->thread_ids = ppcg_scop_generate_names(gen->prog->scop,
3904 kernel->n_block, "t");
3905 kernel->thread_filter = set_schedule_modulo(node, kernel->thread_ids,
3906 kernel->block_dim);
3907 if (extract_block_size(kernel, domain) < 0)
3908 node = isl_schedule_node_free(node);
3910 node = gpu_tree_move_up_to_kernel(node);
3911 node = isl_schedule_node_child(node, 0);
3912 node = insert_context(kernel, node);
3913 node = isl_schedule_node_child(node, 0);
3914 node = isl_schedule_node_insert_filter(node,
3915 isl_union_set_copy(kernel->block_filter));
3917 node = gpu_tree_move_up_to_kernel(node);
3919 if (gpu_group_references(kernel, node) < 0)
3920 node = isl_schedule_node_free(node);
3921 localize_bounds(kernel, host_domain);
3922 isl_set_free(host_domain);
3924 check_shared_memory_bound(kernel);
3925 mark_global_arrays(kernel);
3926 compute_group_tilings(kernel);
3928 node = gpu_tree_move_down_to_thread(node, kernel->core);
3929 node = isl_schedule_node_child(node, 0);
3930 if (!kernel->options->wrap)
3931 node = snap_band_to_sizes(node, kernel->block_dim,
3932 kernel->options);
3933 node = isl_schedule_node_insert_filter(node,
3934 isl_union_set_copy(kernel->thread_filter));
3935 if (kernel_requires_unroll(kernel)) {
3936 node = isl_schedule_node_child(node, 0);
3937 node = unroll(node);
3940 node = gpu_tree_move_up_to_thread(node);
3941 kernel->copy_schedule_dim = isl_schedule_node_get_schedule_depth(node);
3942 kernel->copy_schedule =
3943 isl_schedule_node_get_prefix_schedule_union_pw_multi_aff(node);
3944 contraction = isl_union_pw_multi_aff_copy(kernel->contraction);
3945 kernel->copy_schedule =
3946 isl_union_pw_multi_aff_pullback_union_pw_multi_aff(
3947 kernel->copy_schedule, contraction);
3949 node = gpu_tree_move_up_to_kernel(node);
3951 node = add_sync(kernel, node);
3952 node = add_copies(kernel, node);
3954 node = gpu_tree_move_down_to_shared(node, kernel->core);
3955 node = isl_schedule_node_delete(node);
3957 node = gpu_tree_move_down_to_thread(node, kernel->core);
3958 node = isl_schedule_node_delete(node);
3960 node = gpu_tree_move_up_to_kernel(node);
3962 if (create_kernel_vars(kernel) < 0)
3963 node = isl_schedule_node_free(node);
3965 if (!single_statement)
3966 node = isl_schedule_node_parent(node);
3967 node = isl_schedule_node_parent(node);
3969 isl_id_free(id);
3970 if (!id)
3971 ppcg_kernel_free(kernel);
3972 return node;
3975 /* Insert a zero-dimensional permutable band at "node".
3977 static __isl_give isl_schedule_node *insert_empty_permutable_band(
3978 __isl_take isl_schedule_node *node)
3980 isl_space *space;
3981 isl_schedule *schedule;
3982 isl_union_set *domain;
3983 isl_multi_union_pw_aff *mupa;
3985 schedule = isl_schedule_node_get_schedule(node);
3986 domain = isl_schedule_get_domain(schedule);
3987 space = isl_union_set_get_space(domain);
3988 isl_union_set_free(domain);
3989 isl_schedule_free(schedule);
3991 space = isl_space_set_from_params(space);
3992 mupa = isl_multi_union_pw_aff_zero(space);
3993 node = isl_schedule_node_insert_partial_schedule(node, mupa);
3994 node = isl_schedule_node_band_set_permutable(node, 1);
3996 return node;
3999 /* See if hybrid tiling can be performed on "node" and its parent.
4000 * If so, apply hybrid tiling and return the updated schedule tree.
4001 * If not, return the original schedule tree.
4002 * Return NULL on error.
4004 * First check if "node", together with its parent, meets
4005 * the basic requirements for hybrid tiling.
4006 * If so, compute the relative dependence distances of "node"
4007 * with respect to its parent and check if they are sufficiently bounded.
4008 * If so, apply hybrid tiling using user specified tile sizes.
4010 * The tile sizes are read before the dependence distance bounds are
4011 * computed, because the user may have specified fewer dimensions
4012 * than are available. In this case, the remaining schedule dimensions
4013 * are split off and the dependence distances should be computed
4014 * after these dimensions have been split off.
4016 static __isl_give isl_schedule_node *try_hybrid_tile(struct gpu_gen *gen,
4017 __isl_take isl_schedule_node *node)
4019 int tile_len;
4020 int *tile_size;
4021 isl_bool ok;
4022 isl_schedule_node *orig = node;
4023 ppcg_ht_bounds *bounds;
4025 ok = ppcg_ht_parent_has_input_pattern(node);
4026 if (ok < 0)
4027 return isl_schedule_node_free(node);
4028 if (!ok)
4029 return orig;
4031 tile_len = 1 + isl_schedule_node_band_n_member(node);
4032 tile_size = read_tile_sizes(gen, &tile_len);
4033 if (!tile_size)
4034 return isl_schedule_node_free(node);
4036 node = isl_schedule_node_copy(node);
4037 node = split_band(node, tile_len - 1);
4038 node = isl_schedule_node_parent(node);
4039 bounds = ppcg_ht_compute_bounds(gen->prog->scop, node);
4040 node = isl_schedule_node_child(node, 0);
4042 ok = ppcg_ht_bounds_is_valid(bounds);
4043 if (ok >= 0 && ok)
4044 node = gpu_hybrid_tile(gen, node, bounds, tile_size);
4045 else
4046 ppcg_ht_bounds_free(bounds);
4047 free(tile_size);
4049 if (ok >= 0 && !ok) {
4050 isl_schedule_node_free(node);
4051 return orig;
4053 isl_schedule_node_free(orig);
4054 if (ok < 0)
4055 return isl_schedule_node_free(node);
4056 return node;
4059 /* If "node" is the outermost permutable band that can be mapped to block and
4060 * thread identifiers in its branch (or the root of a subtree with
4061 * no such outer bands),
4062 * then mark the band as such, attaching a ppcg_kernel to the mark.
4064 * If hybrid tiling is allowed, then first try and apply it
4065 * to "node" and its parent.
4067 * If "node" is the root of a subtree without permutable bands,
4068 * then insert a zero-dimensional permutable band such that
4069 * we can assume that "node" always points to a band node.
4070 * This includes the case where "node" already points to a band node,
4071 * but one without any coincident dimension. In this case,
4072 * the extra node ensures that this original node does not get tiled.
4074 * Tile "node" using user specified tile sizes, after splitting the band
4075 * if the number of specified tile sizes is smaller than the dimension
4076 * of the band. Mark the point band of this tiling as the band that
4077 * needs to be mapped to threads and instruct the AST generator to unroll
4078 * the band if the "unroll_gpu_tile" option is set.
4079 * Create a kernel representing the domain instances that reach "node" and
4080 * insert a mark node pointing to the ppcg_kernel before the band node.
4082 static __isl_give isl_schedule_node *mark_outer_permutable(
4083 __isl_take isl_schedule_node *node, void *user)
4085 struct gpu_gen *gen = user;
4086 int outer;
4087 int scale;
4088 int tile_len;
4089 int *tile_size;
4090 isl_id *id;
4091 isl_multi_val *sizes;
4093 outer = is_outer_tilable(node);
4094 if (outer < 0)
4095 return isl_schedule_node_free(node);
4096 if (!outer)
4097 return node;
4099 if (gen->options->hybrid) {
4100 isl_schedule_node *saved = isl_schedule_node_copy(node);
4101 node = try_hybrid_tile(gen, node);
4102 isl_schedule_node_free(saved);
4103 if (node != saved)
4104 return node;
4107 if (isl_schedule_node_get_type(node) != isl_schedule_node_band ||
4108 !isl_schedule_node_band_member_get_coincident(node, 0))
4109 node = insert_empty_permutable_band(node);
4111 tile_len = isl_schedule_node_band_n_member(node);
4112 tile_size = read_tile_sizes(gen, &tile_len);
4113 if (!tile_size)
4114 return isl_schedule_node_free(node);
4115 if (tile_len < isl_schedule_node_band_n_member(node))
4116 node = isl_schedule_node_band_split(node, tile_len);
4117 sizes = construct_band_tiles_sizes(node, tile_size);
4118 node = tile_band(node, isl_multi_val_copy(sizes));
4119 node = isl_schedule_node_child(node, 0);
4120 if (gen->options->unroll_gpu_tile)
4121 node = ppcg_set_schedule_node_type(node, isl_ast_loop_unroll);
4122 id = isl_id_alloc(gen->ctx, "thread", NULL);
4123 node = isl_schedule_node_insert_mark(node, id);
4124 node = isl_schedule_node_parent(node);
4126 scale = gen->options->scale_tile_loops;
4127 node = gpu_create_kernel(gen, node, scale, sizes);
4128 isl_multi_val_free(sizes);
4129 free(tile_size);
4131 return node;
4134 /* Given a set or sequence node, return the union the filters of either all
4135 * (if "only_initial" is not set) or the initial (if "only_initial" is set)
4136 * direct subtrees that do not contain any suitably permutable bands
4137 * (according to subtree_has_permutable_bands).
4139 static __isl_give isl_union_set *get_non_parallel_subtree_filters(
4140 __isl_keep isl_schedule_node *node, int only_initial)
4142 isl_space *space;
4143 isl_union_set *filter;
4144 int i, n;
4146 n = isl_schedule_node_n_children(node);
4147 if (n < 0)
4148 return NULL;
4150 node = isl_schedule_node_copy(node);
4151 node = isl_schedule_node_child(node, 0);
4152 filter = isl_schedule_node_filter_get_filter(node);
4153 node = isl_schedule_node_parent(node);
4154 space = isl_union_set_get_space(filter);
4155 isl_union_set_free(filter);
4156 filter = isl_union_set_empty(space);
4158 for (i = 0; i < n; ++i) {
4159 int parallelism;
4161 node = isl_schedule_node_child(node, i);
4162 parallelism = subtree_has_permutable_bands(node);
4163 if (parallelism < 0) {
4164 filter = isl_union_set_free(filter);
4165 } else if (!parallelism) {
4166 isl_union_set *filter_i;
4167 filter_i = isl_schedule_node_filter_get_filter(node);
4168 filter = isl_union_set_union(filter, filter_i);
4169 } else if (only_initial)
4170 break;
4171 node = isl_schedule_node_parent(node);
4174 isl_schedule_node_free(node);
4176 return filter;
4179 /* Given a set or sequence node, return the union of the filters of
4180 * the direct subtrees that do not contain any suitably permutable bands
4181 * (according to subtree_has_permutable_bands).
4183 static __isl_give isl_union_set *get_all_non_parallel_subtree_filters(
4184 __isl_keep isl_schedule_node *node)
4186 return get_non_parallel_subtree_filters(node, 0);
4189 /* Given a set or sequence node, return the union of the filters of
4190 * the initial direct subtrees that do not contain any suitably permutable
4191 * bands (according to subtree_has_permutable_bands).
4193 static __isl_give isl_union_set *get_initial_non_parallel_subtree_filters(
4194 __isl_keep isl_schedule_node *node)
4196 return get_non_parallel_subtree_filters(node, 1);
4199 /* Mark all variables that are accessed by the statement instances in "domain"
4200 * and that are local to "prog" as requiring a declaration in the host code.
4201 * The statement instances in "domain" correspond to (a subset of)
4202 * the active instances at "node".
4203 * "node" is not modified by this function, except that NULL is returned
4204 * in case of error.
4206 static __isl_give isl_schedule_node *declare_accessed_local_variables(
4207 __isl_take isl_schedule_node *node, struct gpu_prog *prog,
4208 __isl_keep isl_union_set *domain)
4210 isl_union_pw_multi_aff *contraction;
4211 isl_union_set *arrays;
4212 int i;
4214 if (!ppcg_scop_any_hidden_declarations(prog->scop))
4215 return node;
4216 contraction = isl_schedule_node_get_subtree_contraction(node);
4217 domain = isl_union_set_copy(domain);
4218 domain = isl_union_set_preimage_union_pw_multi_aff(domain, contraction);
4219 arrays = accessed_by_domain(domain, prog);
4221 for (i = 0; i < prog->n_array; ++i) {
4222 isl_space *space;
4223 isl_set *set;
4224 int empty;
4226 if (!prog->array[i].local)
4227 continue;
4228 space = isl_set_get_space(prog->array[i].extent);
4229 set = isl_union_set_extract_set(arrays, space);
4230 empty = isl_set_plain_is_empty(set);
4231 isl_set_free(set);
4232 if (empty < 0)
4233 goto error;
4234 if (!empty)
4235 prog->array[i].declare_local = 1;
4238 isl_union_set_free(arrays);
4239 return node;
4240 error:
4241 isl_union_set_free(arrays);
4242 return isl_schedule_node_free(node);
4245 /* If "node" points to a set node, then separate its children
4246 * into subtrees that have suitably permutable bands and
4247 * those that do not.
4248 * Adjust the schedule tree in order to execute the second group
4249 * after the first group and return a pointer to the first group,
4250 * assuming there are any such subtrees.
4251 * If "node" points to a sequence node, then separate the initial
4252 * children that do not have suitably permutable bands and
4253 * return a pointer to the subsequence of children that do have such bands,
4254 * assuming there are any such subtrees.
4256 * In both cases, mark all local variables in "prog" that are accessed by
4257 * the group without permutable bands as requiring a declaration on the host.
4259 static __isl_give isl_schedule_node *isolate_permutable_subtrees(
4260 __isl_take isl_schedule_node *node, struct gpu_prog *prog)
4262 isl_union_set *filter;
4263 enum isl_schedule_node_type type;
4265 if (!node)
4266 return NULL;
4267 type = isl_schedule_node_get_type(node);
4268 if (type == isl_schedule_node_set) {
4269 filter = get_all_non_parallel_subtree_filters(node);
4270 node = declare_accessed_local_variables(node, prog, filter);
4271 node = isl_schedule_node_order_after(node, filter);
4272 } else if (type == isl_schedule_node_sequence) {
4273 filter = get_initial_non_parallel_subtree_filters(node);
4274 node = declare_accessed_local_variables(node, prog, filter);
4275 node = isl_schedule_node_order_before(node, filter);
4278 return node;
4281 /* Replace any reference to an array element in the range of "copy"
4282 * by a reference to all array elements (defined by the extent of the array).
4284 static __isl_give isl_union_map *approximate_copy_out(
4285 __isl_take isl_union_map *copy, struct gpu_prog *prog)
4287 int i;
4288 isl_union_map *res;
4290 res = isl_union_map_empty(isl_union_map_get_space(copy));
4292 for (i = 0; i < prog->n_array; ++i) {
4293 isl_space *space;
4294 isl_set *set;
4295 isl_union_map *copy_i;
4296 isl_union_set *extent, *domain;
4298 space = isl_space_copy(prog->array[i].space);
4299 extent = isl_union_set_from_set(isl_set_universe(space));
4300 copy_i = isl_union_map_copy(copy);
4301 copy_i = isl_union_map_intersect_range(copy_i, extent);
4302 set = isl_set_copy(prog->array[i].extent);
4303 extent = isl_union_set_from_set(set);
4304 domain = isl_union_map_domain(copy_i);
4305 copy_i = isl_union_map_from_domain_and_range(domain, extent);
4306 res = isl_union_map_union(res, copy_i);
4309 isl_union_map_free(copy);
4311 return res;
4314 /* Insert "kernel" marks that point to a ppcg_kernel structure
4315 * in front of all outermost tilable band that (by construction)
4316 * have at least one parallel loop.
4318 static __isl_give isl_schedule_node *mark_kernels(struct gpu_gen *gen,
4319 __isl_take isl_schedule_node *node)
4321 return isl_schedule_node_map_descendant_bottom_up(node,
4322 &mark_outer_permutable, gen);
4325 /* Construct schedule constraints from the dependences in prog->scop and
4326 * the array order dependences in prog->array_order.
4328 * If live range reordering is allowed, then we need to make sure
4329 * that live ranges on arrays are not run in parallel since doing
4330 * so would require array expansion. We therefore add the array
4331 * order dependences to the coincidence dependences. Non-zero array
4332 * order dependences will then prevent a schedule dimension from being
4333 * considered parallel.
4334 * Live ranges derived from scalars are allowed to be run in parallel
4335 * since we force the scalars to be mapped to private memory in
4336 * check_scalar_live_ranges.
4337 * If live range reordering is allowed, then the false dependences
4338 * are not added to the validity constraints as that would prevent
4339 * reordering. Instead, the external false dependences that enforce that reads
4340 * from potentially live-in data precede any later write and
4341 * that writes of potentially live-out data follow any other earlier write
4342 * are added to the validity and the coincidence constraints.
4343 * The false dependences are still added to the proximity constraints
4344 * for consistency with the case where live range reordering is not allowed.
4345 * The coincidence constraints then consist of flow dependences,
4346 * external false dependences and array order dependences.
4347 * The independences can be filtered out from the first two sets.
4348 * They have already been filtered out from the array order dependences
4349 * on a per array basis in collect_order_dependences.
4350 * There is no need for a per array handling of the other two sets
4351 * as there should be no flow or external false dependence on local
4352 * variables that can be filtered out.
4354 static __isl_give isl_schedule_constraints *construct_schedule_constraints(
4355 struct gpu_prog *prog)
4357 isl_union_set *domain;
4358 isl_union_map *dep_raw, *dep;
4359 isl_union_map *validity, *proximity, *coincidence;
4360 isl_schedule_constraints *sc;
4362 domain = isl_union_set_copy(prog->scop->domain);
4363 sc = isl_schedule_constraints_on_domain(domain);
4364 sc = isl_schedule_constraints_set_context(sc,
4365 isl_set_copy(prog->scop->context));
4366 if (prog->scop->options->live_range_reordering) {
4367 sc = isl_schedule_constraints_set_conditional_validity(sc,
4368 isl_union_map_copy(prog->scop->tagged_dep_flow),
4369 isl_union_map_copy(prog->scop->tagged_dep_order));
4370 proximity = isl_union_map_copy(prog->scop->dep_flow);
4371 validity = isl_union_map_copy(proximity);
4372 validity = isl_union_map_union(validity,
4373 isl_union_map_copy(prog->scop->dep_forced));
4374 proximity = isl_union_map_union(proximity,
4375 isl_union_map_copy(prog->scop->dep_false));
4376 coincidence = isl_union_map_copy(validity);
4377 coincidence = isl_union_map_subtract(coincidence,
4378 isl_union_map_copy(prog->scop->independence));
4379 coincidence = isl_union_map_union(coincidence,
4380 isl_union_map_copy(prog->array_order));
4381 } else {
4382 dep_raw = isl_union_map_copy(prog->scop->dep_flow);
4383 dep = isl_union_map_copy(prog->scop->dep_false);
4384 dep = isl_union_map_union(dep, dep_raw);
4385 dep = isl_union_map_coalesce(dep);
4386 proximity = isl_union_map_copy(dep);
4387 coincidence = isl_union_map_copy(dep);
4388 validity = dep;
4390 sc = isl_schedule_constraints_set_validity(sc, validity);
4391 sc = isl_schedule_constraints_set_coincidence(sc, coincidence);
4392 sc = isl_schedule_constraints_set_proximity(sc, proximity);
4394 return sc;
4397 /* Compute an appropriate schedule based on the accesses in
4398 * gen->read and gen->write.
4400 * We derive schedule constraints from the dependences in gen->prog->scop
4401 * and then use isl to compute a schedule that has a parallel loop
4402 * in each tilable band.
4403 * During the schedule construction, some statement instances
4404 * may be grouped first based on the input schedule.
4406 static __isl_give isl_schedule *compute_schedule(struct gpu_gen *gen)
4408 isl_schedule_constraints *sc;
4409 isl_schedule *schedule;
4411 sc = construct_schedule_constraints(gen->prog);
4412 schedule = gen->prog->scop->schedule;
4413 schedule = ppcg_compute_schedule(sc, schedule, gen->options);
4415 return schedule;
4418 /* If the band node "node" has exactly one member then mark it permutable.
4420 static __isl_give isl_schedule_node *band_set_permutable(
4421 __isl_take isl_schedule_node *node,
4422 __isl_keep isl_schedule_constraints *sc)
4424 if (isl_schedule_node_band_n_member(node) == 1)
4425 node = isl_schedule_node_band_set_permutable(node, 1);
4427 return node;
4430 /* Return the coincidence constraints between pairs of instances
4431 * that are scheduled together by the ancestors of "node".
4432 * That is, select those coincidence constraints that relate
4433 * pairs of instances that have the same value for the prefix schedule.
4434 * If the schedule depth is zero, then the prefix schedule does not
4435 * contain any information, so we intersect domain and range
4436 * of the schedule constraints with the reaching domain elements instead.
4438 static __isl_give isl_union_map *get_local_coincidence(
4439 __isl_keep isl_schedule_node *node,
4440 __isl_keep isl_schedule_constraints *sc)
4442 isl_union_map *coincidence;
4443 isl_multi_union_pw_aff *prefix;
4444 isl_union_pw_multi_aff *contraction;
4446 coincidence = isl_schedule_constraints_get_coincidence(sc);
4447 contraction = isl_schedule_node_get_subtree_contraction(node);
4448 if (isl_schedule_node_get_schedule_depth(node) == 0) {
4449 isl_union_set *domain;
4451 domain = isl_schedule_node_get_domain(node);
4452 domain = isl_union_set_preimage_union_pw_multi_aff(domain,
4453 contraction);
4454 coincidence = isl_union_map_intersect_domain(coincidence,
4455 isl_union_set_copy(domain));
4456 coincidence = isl_union_map_intersect_range(coincidence,
4457 domain);
4458 return coincidence;
4461 prefix = isl_schedule_node_get_prefix_schedule_multi_union_pw_aff(node);
4462 prefix = isl_multi_union_pw_aff_pullback_union_pw_multi_aff(prefix,
4463 contraction);
4464 return isl_union_map_eq_at_multi_union_pw_aff(coincidence, prefix);
4467 /* For each member in the band node "node", determine whether
4468 * it is coincident with respect to the outer nodes and mark
4469 * it accordingly.
4471 * That is, for each coincidence constraint between pairs
4472 * of instances that are scheduled together by the outer nodes,
4473 * check that domain and range are assigned the same value
4474 * by the band member. This test is performed by checking
4475 * that imposing the same value for the band member does not
4476 * remove any elements from the set of coincidence constraints.
4478 static __isl_give isl_schedule_node *band_set_coincident(
4479 __isl_take isl_schedule_node *node,
4480 __isl_keep isl_schedule_constraints *sc)
4482 isl_union_map *coincidence;
4483 isl_union_pw_multi_aff *contraction;
4484 isl_multi_union_pw_aff *partial;
4485 int i, n;
4487 coincidence = get_local_coincidence(node, sc);
4489 partial = isl_schedule_node_band_get_partial_schedule(node);
4490 contraction = isl_schedule_node_get_subtree_contraction(node);
4491 partial = isl_multi_union_pw_aff_pullback_union_pw_multi_aff(partial,
4492 contraction);
4493 n = isl_schedule_node_band_n_member(node);
4494 for (i = 0; i < n; ++i) {
4495 isl_union_map *coincidence_i;
4496 isl_union_pw_aff *upa;
4497 isl_multi_union_pw_aff *partial_i;
4498 int subset;
4500 upa = isl_multi_union_pw_aff_get_union_pw_aff(partial, i);
4501 partial_i = isl_multi_union_pw_aff_from_union_pw_aff(upa);
4502 coincidence_i = isl_union_map_copy(coincidence);
4503 coincidence_i = isl_union_map_eq_at_multi_union_pw_aff(
4504 coincidence_i, partial_i);
4505 subset = isl_union_map_is_subset(coincidence, coincidence_i);
4506 isl_union_map_free(coincidence_i);
4508 if (subset < 0)
4509 break;
4510 node = isl_schedule_node_band_member_set_coincident(node, i,
4511 subset);
4513 if (i < n)
4514 node = isl_schedule_node_free(node);
4515 isl_multi_union_pw_aff_free(partial);
4516 isl_union_map_free(coincidence);
4518 return node;
4521 /* If "node" is a band, then set its properties.
4523 * In particular, if the band has exactly one member, then mark it permutable.
4524 * Mark the band members coincident based on the coincidence constraints
4525 * of "sc".
4527 static __isl_give isl_schedule_node *set_band_properties(
4528 __isl_take isl_schedule_node *node, void *user)
4530 isl_schedule_constraints *sc = user;
4532 if (isl_schedule_node_get_type(node) != isl_schedule_node_band)
4533 return node;
4534 if (isl_schedule_node_band_n_member(node) == 0)
4535 return node;
4537 node = band_set_permutable(node, sc);
4538 node = band_set_coincident(node, sc);
4540 return node;
4543 /* Return the original schedule with all bands marked permutable and
4544 * all band members marked coincident based on the coincidence constraints.
4545 * The bands are explicitly marked permutable so that they will be considered
4546 * by mark_outer_permutable.
4548 static __isl_give isl_schedule *determine_properties_original_schedule(
4549 struct gpu_gen *gen)
4551 isl_schedule *schedule;
4552 isl_schedule_constraints *sc;
4554 schedule = isl_schedule_copy(gen->prog->scop->schedule);
4555 sc = construct_schedule_constraints(gen->prog);
4556 schedule = isl_schedule_map_schedule_node_bottom_up(schedule,
4557 &set_band_properties, sc);
4558 isl_schedule_constraints_free(sc);
4560 return schedule;
4563 /* Compute a schedule or determine the properties of the original schedule
4564 * depending on the value of the "reschedule" option.
4566 static __isl_give isl_schedule *compute_or_set_properties(void *user)
4568 struct gpu_gen *gen = user;
4570 if (gen->options->reschedule)
4571 return compute_schedule(gen);
4572 else
4573 return determine_properties_original_schedule(gen);
4576 /* Obtain a schedule for the scop, by reading it from
4577 * a file, by computing one or by determining the properties
4578 * of the original schedule.
4580 static __isl_give isl_schedule *get_schedule(struct gpu_gen *gen)
4582 return ppcg_get_schedule(gen->ctx, gen->options,
4583 &compute_or_set_properties, gen);
4586 /* Construct the string "<a>_<b>".
4588 static char *concat(isl_ctx *ctx, const char *a, const char *b)
4590 isl_printer *p;
4591 char *s;
4593 p = isl_printer_to_str(ctx);
4594 p = isl_printer_print_str(p, a);
4595 p = isl_printer_print_str(p, "_");
4596 p = isl_printer_print_str(p, b);
4597 s = isl_printer_get_str(p);
4598 isl_printer_free(p);
4600 return s;
4603 /* For each array in "prog" of which an element appears in "accessed" and
4604 * that is not a read only scalar, create a zero-dimensional universe set
4605 * of which the tuple id has name "<prefix>_<name of array>" and a user
4606 * pointer pointing to the array (gpu_array_info).
4608 * If the array is local to "prog", then make sure it will be declared
4609 * in the host code.
4611 * Return the list of these universe sets.
4613 static __isl_give isl_union_set_list *create_copy_filters(struct gpu_prog *prog,
4614 const char *prefix, __isl_take isl_union_set *accessed)
4616 int i;
4617 isl_ctx *ctx;
4618 isl_union_set_list *filters;
4620 ctx = prog->ctx;
4621 filters = isl_union_set_list_alloc(ctx, 0);
4622 for (i = 0; i < prog->n_array; ++i) {
4623 struct gpu_array_info *array = &prog->array[i];
4624 isl_space *space;
4625 isl_set *accessed_i;
4626 int empty;
4627 char *name;
4628 isl_id *id;
4629 isl_union_set *uset;
4631 if (gpu_array_is_read_only_scalar(array))
4632 continue;
4634 space = isl_space_copy(array->space);
4635 accessed_i = isl_union_set_extract_set(accessed, space);
4636 empty = isl_set_plain_is_empty(accessed_i);
4637 isl_set_free(accessed_i);
4638 if (empty < 0) {
4639 filters = isl_union_set_list_free(filters);
4640 break;
4642 if (empty)
4643 continue;
4645 array->global = 1;
4646 if (array->local)
4647 array->declare_local = 1;
4649 name = concat(ctx, prefix, array->name);
4650 id = name ? isl_id_alloc(ctx, name, array) : NULL;
4651 free(name);
4652 space = isl_space_set_alloc(ctx, 0, 0);
4653 space = isl_space_set_tuple_id(space, isl_dim_set, id);
4654 uset = isl_union_set_from_set(isl_set_universe(space));
4656 filters = isl_union_set_list_add(filters, uset);
4658 isl_union_set_free(accessed);
4660 return filters;
4663 /* Make sure that code for the statements in "filters" that
4664 * copy arrays to or from the device is only generated when
4665 * the size of the corresponding array is positive.
4666 * That is, add a set node underneath "graft" with "filters" as children
4667 * and for each child add a guard that the selects the parameter
4668 * values for which the corresponding array has a positive size.
4669 * The array is available in the user pointer of the statement identifier.
4670 * "depth" is the schedule depth of the position where "graft"
4671 * will be added.
4673 static __isl_give isl_schedule_node *insert_positive_size_guards(
4674 __isl_take isl_schedule_node *graft,
4675 __isl_take isl_union_set_list *filters, int depth)
4677 int i, n;
4679 graft = isl_schedule_node_child(graft, 0);
4680 graft = isl_schedule_node_insert_set(graft, filters);
4681 n = isl_schedule_node_n_children(graft);
4682 for (i = 0; i < n; ++i) {
4683 isl_union_set *filter;
4684 isl_set *domain, *guard;
4685 isl_id *id;
4686 struct gpu_array_info *array;
4688 graft = isl_schedule_node_child(graft, i);
4689 filter = isl_schedule_node_filter_get_filter(graft);
4690 domain = isl_set_from_union_set(filter);
4691 id = isl_set_get_tuple_id(domain);
4692 array = isl_id_get_user(id);
4693 isl_id_free(id);
4694 isl_set_free(domain);
4695 guard = gpu_array_positive_size_guard(array);
4696 guard = isl_set_from_params(guard);
4697 guard = isl_set_add_dims(guard, isl_dim_set, depth);
4698 graft = isl_schedule_node_child(graft, 0);
4699 graft = isl_schedule_node_insert_guard(graft, guard);
4700 graft = isl_schedule_node_parent(graft);
4701 graft = isl_schedule_node_parent(graft);
4703 graft = isl_schedule_node_parent(graft);
4705 return graft;
4708 /* Create a graft for copying arrays to or from the device,
4709 * whenever the size of the array is strictly positive.
4710 * Each statement is called "<prefix>_<name of array>" and
4711 * the identifier has a user pointer pointing to the array.
4712 * The graft will be added at the position specified by "node".
4713 * "copy" contains the array elements that need to be copied.
4714 * Only arrays of which some elements need to be copied
4715 * will have a corresponding statement in the graph.
4716 * Note though that each such statement will copy the entire array.
4718 static __isl_give isl_schedule_node *create_copy_device(struct gpu_prog *prog,
4719 __isl_keep isl_schedule_node *node, const char *prefix,
4720 __isl_take isl_union_set *copy)
4722 int depth;
4723 isl_ctx *ctx;
4724 isl_space *space;
4725 isl_union_set *all, *domain;
4726 isl_union_set_list *filters;
4727 isl_union_map *extension;
4728 isl_schedule_node *graft;
4730 ctx = prog->ctx;
4731 depth = isl_schedule_node_get_schedule_depth(node);
4732 filters = create_copy_filters(prog, prefix, copy);
4733 all = isl_union_set_list_union(isl_union_set_list_copy(filters));
4735 space = depth < 0 ? NULL : isl_space_set_alloc(ctx, 0, depth);
4736 domain = isl_union_set_from_set(isl_set_universe(space));
4737 extension = isl_union_map_from_domain_and_range(domain, all);
4738 graft = isl_schedule_node_from_extension(extension);
4740 if (!filters)
4741 return isl_schedule_node_free(graft);
4742 if (isl_union_set_list_n_union_set(filters) == 0) {
4743 isl_union_set_list_free(filters);
4744 return graft;
4747 return insert_positive_size_guards(graft, filters, depth);
4750 /* Return (the universe spaces of) the arrays that are declared
4751 * inside the scop corresponding to "prog" and for which all
4752 * potential writes inside the scop form a subset of "domain".
4754 static __isl_give isl_union_set *extract_local_accesses(struct gpu_prog *prog,
4755 __isl_keep isl_union_set *domain)
4757 int i;
4758 isl_union_set *local;
4760 local = isl_union_set_empty(isl_union_set_get_space(domain));
4762 for (i = 0; i < prog->n_array; ++i) {
4763 isl_set *set;
4764 isl_union_map *to_outer;
4765 isl_union_map *may_write;
4766 isl_union_set *write_domain;
4767 isl_union_set *fields;
4768 int subset;
4770 if (!prog->array[i].local)
4771 continue;
4773 set = isl_set_universe(isl_space_copy(prog->array[i].space));
4774 to_outer = isl_union_map_copy(prog->to_outer);
4775 to_outer = isl_union_map_intersect_range(to_outer,
4776 isl_union_set_from_set(isl_set_copy(set)));
4777 fields = isl_union_map_domain(to_outer);
4778 may_write = isl_union_map_copy(prog->may_write);
4779 may_write = isl_union_map_intersect_range(may_write, fields);
4780 write_domain = isl_union_map_domain(may_write);
4781 subset = isl_union_set_is_subset(write_domain, domain);
4782 isl_union_set_free(write_domain);
4784 if (subset < 0) {
4785 isl_set_free(set);
4786 return isl_union_set_free(local);
4787 } else if (subset) {
4788 local = isl_union_set_add_set(local, set);
4789 } else {
4790 isl_set_free(set);
4794 return local;
4797 /* Internal data structure for node_may_persist.
4799 * "tagger" maps tagged iteration domains to the corresponding untagged
4800 * iteration domain.
4802 * "may_persist_flow" is the set of all tagged dataflow dependences
4803 * with those dependences removed that either precede or follow
4804 * the kernel launch in a sequence.
4805 * "inner_band_flow" is the set of all tagged dataflow dependences
4806 * that are local to a given iteration of the outer band nodes
4807 * with respect to the current node.
4808 * "local_flow" is equal to "inner_band_flow", except that the domain
4809 * and the range have been intersected with intermediate filters
4810 * on children of sets or sequences.
4812 struct ppcg_may_persist_data {
4813 isl_union_pw_multi_aff *tagger;
4815 isl_union_map *local_flow;
4816 isl_union_map *inner_band_flow;
4817 isl_union_map *may_persist_flow;
4820 /* Update the information in "data" based on the band ancestor "node".
4822 * In particular, we restrict the dependences in data->local_flow
4823 * to those dependence where the source and the sink occur in
4824 * the same iteration of the given band node.
4825 * We also update data->inner_band_flow to the new value of
4826 * data->local_flow.
4828 static int update_may_persist_at_band(__isl_keep isl_schedule_node *node,
4829 struct ppcg_may_persist_data *data)
4831 isl_multi_union_pw_aff *partial;
4832 isl_union_pw_multi_aff *contraction;
4833 isl_union_map *flow;
4835 if (isl_schedule_node_band_n_member(node) == 0)
4836 return 0;
4838 partial = isl_schedule_node_band_get_partial_schedule(node);
4839 contraction = isl_schedule_node_get_subtree_contraction(node);
4840 partial = isl_multi_union_pw_aff_pullback_union_pw_multi_aff(partial,
4841 contraction);
4842 partial = isl_multi_union_pw_aff_pullback_union_pw_multi_aff(partial,
4843 isl_union_pw_multi_aff_copy(data->tagger));
4845 flow = data->local_flow;
4846 flow = isl_union_map_eq_at_multi_union_pw_aff(flow, partial);
4847 data->local_flow = flow;
4849 isl_union_map_free(data->inner_band_flow);
4850 data->inner_band_flow = isl_union_map_copy(data->local_flow);
4852 return 0;
4855 /* Given a set of local reaching domain elements "domain",
4856 * expand them to the corresponding leaf domain elements using "contraction"
4857 * and insert the array references tags using data->tagger.
4859 static __isl_give isl_union_set *expand_and_tag(
4860 __isl_take isl_union_set *domain,
4861 __isl_take isl_union_pw_multi_aff *contraction,
4862 struct ppcg_may_persist_data *data)
4864 domain = isl_union_set_preimage_union_pw_multi_aff(domain,
4865 contraction);
4866 domain = isl_union_set_preimage_union_pw_multi_aff(domain,
4867 isl_union_pw_multi_aff_copy(data->tagger));
4868 return domain;
4871 /* Given a filter node that is the child of a set or sequence node,
4872 * restrict data->local_flow to refer only to those elements
4873 * in the filter of the node.
4874 * "contraction" maps the leaf domain elements of the schedule tree
4875 * to the corresponding domain elements at (the parent of) "node".
4877 static int filter_flow(__isl_keep isl_schedule_node *node,
4878 struct ppcg_may_persist_data *data,
4879 __isl_take isl_union_pw_multi_aff *contraction)
4881 isl_union_set *filter;
4882 isl_union_map *flow;
4884 flow = data->local_flow;
4885 filter = isl_schedule_node_filter_get_filter(node);
4886 filter = expand_and_tag(filter, contraction, data);
4887 flow = isl_union_map_intersect_domain(flow, isl_union_set_copy(filter));
4888 flow = isl_union_map_intersect_range(flow, filter);
4889 data->local_flow = flow;
4891 return 0;
4894 /* Given a filter node "node", collect the filters on all preceding siblings
4895 * (which are also filter nodes), add them to "filters" and return the result.
4897 static __isl_give isl_union_set *add_previous_filters(
4898 __isl_take isl_union_set *filters, __isl_keep isl_schedule_node *node)
4900 isl_schedule_node *sibling;
4902 sibling = isl_schedule_node_copy(node);
4903 while (sibling && isl_schedule_node_has_previous_sibling(sibling)) {
4904 isl_union_set *filter;
4906 sibling = isl_schedule_node_previous_sibling(sibling);
4907 filter = isl_schedule_node_filter_get_filter(sibling);
4908 filters = isl_union_set_union(filters, filter);
4910 isl_schedule_node_free(sibling);
4911 if (!sibling)
4912 return isl_union_set_free(filters);
4914 return filters;
4917 /* Given a filter node "node", collect the filters on all following siblings
4918 * (which are also filter nodes), add them to "filters" and return the result.
4920 static __isl_give isl_union_set *add_next_filters(
4921 __isl_take isl_union_set *filters, __isl_keep isl_schedule_node *node)
4923 isl_schedule_node *sibling;
4925 sibling = isl_schedule_node_copy(node);
4926 while (sibling && isl_schedule_node_has_next_sibling(sibling)) {
4927 isl_union_set *filter;
4929 sibling = isl_schedule_node_next_sibling(sibling);
4930 filter = isl_schedule_node_filter_get_filter(sibling);
4931 filters = isl_union_set_union(filters, filter);
4933 isl_schedule_node_free(sibling);
4934 if (!sibling)
4935 return isl_union_set_free(filters);
4937 return filters;
4940 /* Remove those flow dependences from data->may_persist_flow
4941 * that flow between elements of "domain" within the same iteration
4942 * of all outer band nodes.
4943 * "contraction" maps the leaf domain elements of the schedule tree
4944 * to the corresponding elements "domain".
4946 static void remove_external_flow(struct ppcg_may_persist_data *data,
4947 __isl_take isl_union_set *domain,
4948 __isl_keep isl_union_pw_multi_aff *contraction)
4950 isl_union_map *flow;
4952 contraction = isl_union_pw_multi_aff_copy(contraction);
4953 domain = expand_and_tag(domain, contraction, data);
4954 flow = isl_union_map_copy(data->local_flow);
4955 flow = isl_union_map_intersect_domain(flow, isl_union_set_copy(domain));
4956 flow = isl_union_map_intersect_range(flow, domain);
4958 data->may_persist_flow = isl_union_map_subtract(data->may_persist_flow,
4959 flow);
4962 /* Update the information in "data" based on the filter ancestor "node".
4963 * We only need to modify anything if the filter is the child
4964 * of a set or sequence node.
4966 * In the case of a sequence, we remove the dependences between
4967 * statement instances that are both executed either before or
4968 * after the subtree that will be mapped to a kernel, within
4969 * the same iteration of outer bands.
4971 * In both cases, we restrict data->local_flow to the current child.
4973 static int update_may_persist_at_filter(__isl_keep isl_schedule_node *node,
4974 struct ppcg_may_persist_data *data)
4976 enum isl_schedule_node_type type;
4977 isl_schedule_node *parent;
4978 isl_space *space;
4979 isl_union_pw_multi_aff *contraction;
4980 isl_union_set *before, *after, *filter;
4982 type = isl_schedule_node_get_parent_type(node);
4983 if (type != isl_schedule_node_sequence && type != isl_schedule_node_set)
4984 return 0;
4986 parent = isl_schedule_node_copy(node);
4987 parent = isl_schedule_node_parent(parent);
4988 contraction = isl_schedule_node_get_subtree_contraction(parent);
4989 isl_schedule_node_free(parent);
4991 if (type == isl_schedule_node_set)
4992 return filter_flow(node, data, contraction);
4994 filter = isl_schedule_node_filter_get_filter(node);
4995 space = isl_union_set_get_space(filter);
4996 isl_union_set_free(filter);
4997 before = isl_union_set_empty(space);
4998 after = isl_union_set_copy(before);
4999 before = add_previous_filters(before, node);
5000 after = add_next_filters(after, node);
5002 remove_external_flow(data, before, contraction);
5003 remove_external_flow(data, after, contraction);
5005 return filter_flow(node, data, contraction);
5008 /* Update the information in "data" based on the ancestor "node".
5010 static isl_stat update_may_persist_at(__isl_keep isl_schedule_node *node,
5011 void *user)
5013 struct ppcg_may_persist_data *data = user;
5015 switch (isl_schedule_node_get_type(node)) {
5016 case isl_schedule_node_error:
5017 return isl_stat_error;
5018 case isl_schedule_node_context:
5019 case isl_schedule_node_domain:
5020 case isl_schedule_node_expansion:
5021 case isl_schedule_node_extension:
5022 case isl_schedule_node_guard:
5023 case isl_schedule_node_leaf:
5024 case isl_schedule_node_mark:
5025 case isl_schedule_node_sequence:
5026 case isl_schedule_node_set:
5027 break;
5028 case isl_schedule_node_band:
5029 if (update_may_persist_at_band(node, data) < 0)
5030 return isl_stat_error;
5031 break;
5032 case isl_schedule_node_filter:
5033 if (update_may_persist_at_filter(node, data) < 0)
5034 return isl_stat_error;
5035 break;
5038 return isl_stat_ok;
5041 /* Determine the set of array elements that may need to be perserved
5042 * by a kernel constructed from the subtree at "node".
5043 * This includes the set of array elements that may need to be preserved
5044 * by the entire scop (prog->may_persist) and the elements for which
5045 * there is a potential flow dependence that may cross a kernel launch.
5047 * To determine the second set, we start from all flow dependences.
5048 * From this set of dependences, we remove those that cannot possibly
5049 * require data to be preserved by a kernel launch.
5050 * In particular, we consider the following sets of dependences.
5051 * - dependences of which the write occurs inside the kernel.
5052 * If the data is needed outside the kernel, then it will
5053 * be copied out immediately after the kernel launch, so there
5054 * is no need for any special care.
5055 * - dependences of which the read occurs inside the kernel and the
5056 * corresponding write occurs inside the same iteration of the
5057 * outer band nodes. This means that the data is needed in
5058 * the first kernel launch after the write, which is already
5059 * taken care of by the standard copy-in. That is, the data
5060 * do not need to be preserved by any intermediate call to
5061 * the same kernel.
5062 * - dependences of which the write and the read either both occur
5063 * before the kernel launch or both occur after the kernel launch,
5064 * within the same iteration of the outer band nodes with respect
5065 * to the sequence that determines the ordering of the dependence
5066 * and the kernel launch. Such flow dependences cannot cross
5067 * any kernel launch.
5069 * For the remaining (tagged) dependences, we take the domain
5070 * (i.e., the tagged writes) and apply the tagged access relation
5071 * to obtain the accessed data elements.
5072 * These are then combined with the elements that may need to be
5073 * preserved by the entire scop.
5075 static __isl_give isl_union_set *node_may_persist(
5076 __isl_keep isl_schedule_node *node, struct gpu_prog *prog)
5078 struct ppcg_may_persist_data data;
5079 isl_union_pw_multi_aff *contraction;
5080 isl_union_set *domain;
5081 isl_union_set *persist;
5082 isl_union_map *flow, *local_flow;
5084 data.tagger = prog->scop->tagger;
5086 flow = isl_union_map_copy(prog->scop->tagged_dep_flow);
5087 data.local_flow = isl_union_map_copy(flow);
5088 data.inner_band_flow = isl_union_map_copy(flow);
5089 data.may_persist_flow = flow;
5090 if (isl_schedule_node_foreach_ancestor_top_down(node,
5091 &update_may_persist_at, &data) < 0)
5092 data.may_persist_flow =
5093 isl_union_map_free(data.may_persist_flow);
5094 flow = data.may_persist_flow;
5095 isl_union_map_free(data.local_flow);
5097 domain = isl_schedule_node_get_domain(node);
5098 contraction = isl_schedule_node_get_subtree_contraction(node);
5099 domain = isl_union_set_preimage_union_pw_multi_aff(domain,
5100 contraction);
5101 domain = isl_union_set_preimage_union_pw_multi_aff(domain,
5102 isl_union_pw_multi_aff_copy(data.tagger));
5103 flow = isl_union_map_subtract_domain(flow, isl_union_set_copy(domain));
5104 local_flow = data.inner_band_flow;
5105 local_flow = isl_union_map_intersect_range(local_flow, domain);
5106 flow = isl_union_map_subtract(flow, local_flow);
5108 persist = isl_union_map_domain(flow);
5109 persist = isl_union_set_apply(persist,
5110 isl_union_map_copy(prog->scop->tagged_may_writes));
5111 persist = isl_union_set_union(persist,
5112 isl_union_set_copy(prog->may_persist));
5114 return persist;
5117 /* Add nodes for copying outer arrays in and out of the device
5118 * before and after the subtree "node", which contains one or more kernels.
5119 * "domain" contains the original statement instances, i.e.,
5120 * those that correspond to the domains of the access relations in "prog".
5121 * In particular, the domain has not been contracted in any way.
5122 * "prefix" contains the prefix schedule at that point, in terms
5123 * of the same original statement instances.
5125 * We first compute the sets of outer array elements that need
5126 * to be copied in and out and then graft in the nodes for
5127 * performing this copying.
5129 * In particular, for each array that is possibly written anywhere in
5130 * the subtree "node" and that may be used after "node"
5131 * or that may be visible outside the corresponding scop,
5132 * we copy out its entire extent.
5134 * Any array elements that is read without first being written inside
5135 * the subtree "node" needs to be copied in.
5136 * Furthermore, if there are any array elements that
5137 * are copied out, but that may not be written inside "node, then
5138 * they also need to be copied in to ensure that the value after execution
5139 * is the same as the value before execution, at least for those array
5140 * elements that may have their values preserved by the scop or that
5141 * may be written before "node" and read after "node".
5142 * In case the array elements are structures, we need to take into
5143 * account that all members of the structures need to be written
5144 * by "node" before we can avoid copying the data structure in.
5146 * Note that the may_write relation is intersected with the domain,
5147 * which has been intersected with the context.
5148 * This helps in those cases where the arrays are declared with a fixed size,
5149 * while the accesses are parametric and the context assigns a fixed value
5150 * to the parameters.
5152 * If an element from a local array is read without first being written,
5153 * then there is no point in copying it in since it cannot have been
5154 * written prior to the scop. Warn about the uninitialized read instead.
5156 static __isl_give isl_schedule_node *add_to_from_device(
5157 __isl_take isl_schedule_node *node, __isl_take isl_union_set *domain,
5158 __isl_take isl_union_map *prefix, struct gpu_prog *prog)
5160 isl_union_set *local;
5161 isl_union_set *may_persist;
5162 isl_union_map *may_write, *must_write, *copy_out, *not_written;
5163 isl_union_map *read, *copy_in;
5164 isl_union_map *tagged;
5165 isl_union_map *local_uninitialized;
5166 isl_schedule_node *graft;
5168 tagged = isl_union_map_copy(prog->scop->tagged_reads);
5169 tagged = isl_union_map_union(tagged,
5170 isl_union_map_copy(prog->scop->tagged_may_writes));
5172 may_write = isl_union_map_copy(prog->may_write);
5173 may_write = isl_union_map_intersect_domain(may_write,
5174 isl_union_set_copy(domain));
5175 may_write = remove_local_accesses(prog,
5176 isl_union_map_copy(tagged), may_write,
5177 isl_union_map_copy(prefix), 0);
5178 may_write = isl_union_map_apply_range(may_write,
5179 isl_union_map_copy(prog->to_outer));
5180 may_write = isl_union_map_apply_domain(may_write,
5181 isl_union_map_copy(prefix));
5182 may_write = approximate_copy_out(may_write, prog);
5183 copy_out = isl_union_map_copy(may_write);
5184 may_write = isl_union_map_apply_range(may_write,
5185 isl_union_map_copy(prog->to_inner));
5186 must_write = isl_union_map_copy(prog->must_write);
5187 must_write = isl_union_map_apply_domain(must_write,
5188 isl_union_map_copy(prefix));
5189 may_persist = node_may_persist(node, prog);
5190 may_write = isl_union_map_intersect_range(may_write, may_persist);
5191 not_written = isl_union_map_subtract(may_write, must_write);
5193 local = extract_local_accesses(prog, domain);
5194 read = isl_union_map_copy(prog->read);
5195 read = isl_union_map_intersect_domain(read, domain);
5196 read = remove_local_accesses(prog, tagged, read,
5197 isl_union_map_copy(prefix), 1);
5198 local = isl_union_set_apply(local, isl_union_map_copy(prog->to_inner));
5199 local_uninitialized = isl_union_map_copy(prog->scop->live_in);
5200 local_uninitialized = isl_union_map_intersect_range(local_uninitialized,
5201 local);
5202 local_uninitialized = isl_union_map_intersect(local_uninitialized,
5203 isl_union_map_copy(read));
5204 if (!isl_union_map_is_empty(local_uninitialized)) {
5205 fprintf(stderr,
5206 "possibly uninitialized reads (not copied in):\n");
5207 isl_union_map_dump(local_uninitialized);
5209 read = isl_union_map_subtract(read, local_uninitialized);
5210 read = isl_union_map_apply_domain(read, prefix);
5211 copy_in = isl_union_map_union(read, not_written);
5212 copy_in = isl_union_map_apply_range(copy_in,
5213 isl_union_map_copy(prog->to_outer));
5215 graft = create_copy_device(prog, node, "to_device",
5216 isl_union_map_range(copy_in));
5217 node = isl_schedule_node_graft_before(node, graft);
5218 graft = create_copy_device(prog, node, "from_device",
5219 isl_union_map_range(copy_out));
5220 node = isl_schedule_node_graft_after(node, graft);
5222 return node;
5225 /* Add nodes for initializing ("init_device") and clearing ("clear_device")
5226 * the device before and after "node".
5228 static __isl_give isl_schedule_node *add_init_clear_device(
5229 __isl_take isl_schedule_node *node)
5231 isl_ctx *ctx;
5232 isl_space *space;
5233 isl_union_set *domain;
5234 isl_schedule_node *graft;
5236 ctx = isl_schedule_node_get_ctx(node);
5238 space = isl_space_set_alloc(ctx, 0, 0);
5239 space = isl_space_set_tuple_name(space, isl_dim_set, "init_device");
5240 domain = isl_union_set_from_set(isl_set_universe(space));
5241 graft = isl_schedule_node_from_domain(domain);
5243 node = isl_schedule_node_graft_before(node, graft);
5245 space = isl_space_set_alloc(ctx, 0, 0);
5246 space = isl_space_set_tuple_name(space, isl_dim_set, "clear_device");
5247 domain = isl_union_set_from_set(isl_set_universe(space));
5248 graft = isl_schedule_node_from_domain(domain);
5250 node = isl_schedule_node_graft_after(node, graft);
5252 return node;
5255 /* Update "schedule" for mapping to a GPU device.
5257 * In particular, insert a context node, create kernels for
5258 * each outermost tilable band and introduce nodes for copying arrays
5259 * in and out of the device and for initializing and clearing the device.
5260 * If the child of the initial root points to a set node,
5261 * then children of this node that do not contain any tilable bands
5262 * are separated from the other children and are not mapped to
5263 * the device.
5265 * The GPU code is generated in a context where at least one
5266 * statement instance is executed. The corresponding guard is inserted
5267 * around the entire schedule.
5269 static __isl_give isl_schedule *map_to_device(struct gpu_gen *gen,
5270 __isl_take isl_schedule *schedule)
5272 isl_schedule_node *node;
5273 isl_set *context;
5274 isl_set *guard;
5275 isl_union_set *domain;
5276 isl_union_map *prefix;
5277 isl_union_pw_multi_aff *contraction;
5278 struct gpu_prog *prog;
5280 context = isl_set_copy(gen->prog->context);
5281 context = isl_set_from_params(context);
5282 schedule = isl_schedule_insert_context(schedule, context);
5284 prog = gen->prog;
5285 guard = isl_union_set_params(isl_union_set_copy(prog->scop->domain));
5286 prog->context = isl_set_intersect(prog->context, isl_set_copy(guard));
5287 guard = isl_set_from_params(guard);
5289 node = isl_schedule_get_root(schedule);
5290 isl_schedule_free(schedule);
5291 node = isl_schedule_node_child(node, 0);
5292 node = isl_schedule_node_child(node, 0);
5293 node = isolate_permutable_subtrees(node, gen->prog);
5294 domain = isl_schedule_node_get_domain(node);
5295 contraction = isl_schedule_node_get_subtree_contraction(node);
5296 domain = isl_union_set_preimage_union_pw_multi_aff(domain,
5297 isl_union_pw_multi_aff_copy(contraction));
5298 prefix = isl_schedule_node_get_prefix_schedule_union_map(node);
5299 prefix = isl_union_map_preimage_domain_union_pw_multi_aff(prefix,
5300 contraction);
5301 node = mark_kernels(gen, node);
5302 node = add_to_from_device(node, domain, prefix, gen->prog);
5303 node = isl_schedule_node_root(node);
5304 node = isl_schedule_node_child(node, 0);
5305 node = isl_schedule_node_child(node, 0);
5306 node = isl_schedule_node_insert_guard(node, guard);
5307 node = isl_schedule_node_child(node, 0);
5308 node = add_init_clear_device(node);
5309 schedule = isl_schedule_node_get_schedule(node);
5310 isl_schedule_node_free(node);
5312 return schedule;
5315 /* Internal data structure for extract_access.
5316 * "next_access" points to the end of a linked list that is extended
5317 * by extract_access.
5318 * "single_expression" is set if the access expressions belong to
5319 * an expression statement (i.e., a statement without internal control).
5320 * "any_to_outer" maps all intermediate arrays to their outer arrays.
5322 struct ppcg_extract_access_data {
5323 struct gpu_stmt_access **next_access;
5324 int single_expression;
5325 isl_union_map *any_to_outer;
5328 /* Given a tagged access relation to a single array "tagged", extract it
5329 * as a map, taking into account that the input may be empty.
5330 * If the access relation is empty, then it does not contain
5331 * any space information, so we try to recover it from the index
5332 * expression.
5333 * The space of the index expression is of the form I -> A,
5334 * with I the statement instances and A the array, or [I -> F] -> A,
5335 * with F the filters corresponding to arguments.
5336 * We first drop F, if present, obtaining I -> A.
5337 * Then we construct I -> R, with R the reference tag,
5338 * combine the two into I -> [R -> A] and uncurry to obtain
5339 * the final result [I -> R] -> A.
5340 * Note that the index expression may have a lower dimension
5341 * than that of the array, but this dimension is not used
5342 * if the access relation is empty.
5344 static __isl_give isl_map *extract_single_tagged_access(
5345 __isl_take isl_union_map *tagged, __isl_keep pet_expr *expr)
5347 int empty;
5348 isl_id *id;
5349 isl_space *space, *space2;
5350 isl_multi_pw_aff *index;
5352 empty = isl_union_map_is_empty(tagged);
5353 if (empty < 0)
5354 goto error;
5355 if (!empty)
5356 return isl_map_from_union_map(tagged);
5357 isl_union_map_free(tagged);
5359 index = pet_expr_access_get_index(expr);
5360 space = isl_multi_pw_aff_get_space(index);
5361 isl_multi_pw_aff_free(index);
5362 if (isl_space_domain_is_wrapping(space))
5363 space = isl_space_domain_factor_domain(space);
5364 space2 = isl_space_copy(space);
5365 space2 = isl_space_from_domain(isl_space_domain(space));
5366 id = pet_expr_access_get_ref_id(expr);
5367 space2 = isl_space_set_tuple_id(space2, isl_dim_out, id);
5368 space = isl_space_range_product(space2, space);
5369 space = isl_space_uncurry(space);
5371 return isl_map_empty(space);
5372 error:
5373 isl_union_map_free(tagged);
5374 return NULL;
5377 /* Does the index expression "index" of "expr" represent an access
5378 * to a single element?
5379 * That is, is "index" completely specified?
5381 * If "expr" accesses elements from different spaces (i.e., fields
5382 * of a structure), then it does not access a single element.
5383 * Otherwise, if the single space of the access matches the space
5384 * of "index", then the index expression is completely specified
5385 * (no pointer to a lower-dimensional slice of the accessed array)
5386 * and a single element is being accessed.
5388 static isl_bool complete_index(__isl_keep pet_expr *expr,
5389 __isl_keep isl_multi_pw_aff *index)
5391 isl_union_map *read, *write, *all;
5392 isl_map *map;
5393 isl_space *space1, *space2;
5394 isl_bool complete;
5396 read = pet_expr_access_get_may_read(expr);
5397 write = pet_expr_access_get_may_write(expr);
5398 all = isl_union_map_union(read, write);
5399 if (!all)
5400 return isl_bool_error;
5401 if (isl_union_map_n_map(all) != 1) {
5402 isl_union_map_free(all);
5403 return isl_bool_false;
5405 map = isl_map_from_union_map(all);
5406 space1 = isl_map_get_space(map);
5407 isl_map_free(map);
5408 space2 = isl_multi_pw_aff_get_space(index);
5409 complete = isl_space_tuple_is_equal(space1, isl_dim_out,
5410 space2, isl_dim_out);
5411 isl_space_free(space1);
5412 isl_space_free(space2);
5414 return complete;
5417 /* Does "expr" access a single, fixed element (independently of the statement
5418 * instance)?
5419 * That is, does it have a completely specified constant index expression?
5421 * Note that it is not sufficient for the index expression to be
5422 * piecewise constant. isl_multi_pw_aff_is_cst can therefore not be used.
5424 static isl_bool accesses_fixed_element(__isl_keep pet_expr *expr)
5426 int i, n;
5427 isl_multi_pw_aff *index;
5428 isl_bool fixed = isl_bool_true;
5430 index = pet_expr_access_get_index(expr);
5431 if (index < 0)
5432 return isl_bool_error;
5433 n = isl_multi_pw_aff_dim(index, isl_dim_out);
5434 for (i = 0; i < n; ++i) {
5435 isl_pw_aff *pa;
5437 pa = isl_multi_pw_aff_get_pw_aff(index, 0);
5438 fixed = isl_pw_aff_n_piece(pa) == 1;
5439 if (fixed)
5440 fixed = isl_pw_aff_is_cst(pa);
5441 isl_pw_aff_free(pa);
5442 if (fixed < 0 || !fixed)
5443 break;
5445 if (fixed >= 0 && fixed)
5446 fixed = complete_index(expr, index);
5447 isl_multi_pw_aff_free(index);
5449 return fixed;
5452 /* Extract a gpu_stmt_access from "expr", append it to the list
5453 * that ends in *data->next_access and update the end of the list.
5454 * If the access expression performs a write, then it is considered
5455 * exact only if it appears in a single expression statement and
5456 * if its may access relation is equal to its must access relation.
5458 * The combined set of may accesses may be a union if member accesses
5459 * are involved, but the entire set is derived from a single reference and
5460 * therefore from a single index expression. These accesses therefore
5461 * all map to the same outer array.
5463 static int extract_access(__isl_keep pet_expr *expr, void *user)
5465 struct ppcg_extract_access_data *data = user;
5466 isl_union_map *tagged;
5467 struct gpu_stmt_access *access;
5468 isl_ctx *ctx = pet_expr_get_ctx(expr);
5469 isl_multi_pw_aff *index;
5471 access = isl_alloc_type(ctx, struct gpu_stmt_access);
5472 assert(access);
5473 access->next = NULL;
5474 access->read = pet_expr_access_is_read(expr);
5475 access->write = pet_expr_access_is_write(expr);
5476 tagged = pet_expr_access_get_tagged_may_read(expr);
5477 tagged = isl_union_map_union(tagged,
5478 pet_expr_access_get_tagged_may_write(expr));
5479 tagged = isl_union_map_apply_range(tagged,
5480 isl_union_map_copy(data->any_to_outer));
5481 if (!access->write) {
5482 access->exact_write = 1;
5483 } else if (!data->single_expression) {
5484 access->exact_write = 0;
5485 } else {
5486 isl_union_map *must, *may;
5487 may = isl_union_map_copy(tagged);
5488 may = isl_union_map_domain_factor_domain(may);
5489 must = pet_expr_access_get_must_write(expr);
5490 access->exact_write = isl_union_map_is_equal(must, may);
5491 isl_union_map_free(must);
5492 isl_union_map_free(may);
5494 index = pet_expr_access_get_index(expr);
5495 access->n_index = isl_multi_pw_aff_dim(index, isl_dim_out);
5496 isl_multi_pw_aff_free(index);
5497 access->ref_id = pet_expr_access_get_ref_id(expr);
5498 access->tagged_access = extract_single_tagged_access(tagged, expr);
5499 access->access = isl_map_copy(access->tagged_access);
5500 access->access = isl_map_domain_factor_domain(access->access);
5501 access->fixed_element = accesses_fixed_element(expr);
5503 *data->next_access = access;
5504 data->next_access = &(*data->next_access)->next;
5506 if (!access->access || access->fixed_element < 0)
5507 return -1;
5509 return 0;
5512 /* Construct a linked list of gpu_stmt_access objects,
5513 * one for each access expression in the statement body.
5514 * "any_to_outer" maps all intermediate arrays to their outer arrays.
5516 static int pet_stmt_extract_accesses(struct gpu_stmt *stmt,
5517 __isl_keep isl_union_map *any_to_outer)
5519 struct ppcg_extract_access_data data;
5521 stmt->accesses = NULL;
5522 data.next_access = &stmt->accesses;
5523 data.single_expression =
5524 pet_tree_get_type(stmt->stmt->body) == pet_tree_expr;
5525 data.any_to_outer = any_to_outer;
5526 return pet_tree_foreach_access_expr(stmt->stmt->body,
5527 &extract_access, &data);
5530 /* Has statement "stmt" been killed from "scop"?
5531 * That is, is the instance set of "scop" free from any
5532 * instances of "stmt"?
5534 static isl_bool is_stmt_killed(struct ppcg_scop *scop, struct pet_stmt *stmt)
5536 isl_space *space;
5537 isl_set *left;
5538 isl_bool empty;
5540 if (!scop || !stmt)
5541 return isl_bool_error;
5542 space = isl_set_get_space(stmt->domain);
5543 left = isl_union_set_extract_set(scop->domain, space);
5544 empty = isl_set_plain_is_empty(left);
5545 isl_set_free(left);
5547 return empty;
5550 /* Return an array of gpu_stmt representing the statements in "scop".
5551 * Do not collect array accesses for statements that have been killed.
5553 static struct gpu_stmt *extract_stmts(isl_ctx *ctx, struct ppcg_scop *scop,
5554 __isl_keep isl_union_map *any_to_outer)
5556 int i;
5557 struct gpu_stmt *stmts;
5559 stmts = isl_calloc_array(ctx, struct gpu_stmt, scop->pet->n_stmt);
5560 if (!stmts)
5561 return NULL;
5563 for (i = 0; i < scop->pet->n_stmt; ++i) {
5564 struct gpu_stmt *s = &stmts[i];
5565 isl_bool killed;
5567 s->id = isl_set_get_tuple_id(scop->pet->stmts[i]->domain);
5568 s->stmt = scop->pet->stmts[i];
5569 killed = is_stmt_killed(scop, scop->pet->stmts[i]);
5570 if (killed < 0)
5571 return free_stmts(stmts, i + 1);
5572 if (killed)
5573 continue;
5574 if (pet_stmt_extract_accesses(s, any_to_outer) < 0)
5575 return free_stmts(stmts, i + 1);
5578 return stmts;
5581 /* Generate CUDA code for "scop" and print it to "p".
5582 * After generating an AST for the transformed scop as explained below,
5583 * we call "gen->print" to print the AST in the desired output format
5584 * to "p".
5586 * If it turns out that it does not make sense to generate GPU code,
5587 * then we generate CPU code instead.
5589 * The declarations of the arrays that are visible outside of the scop
5590 * are printed outside of the code generated from the schedule,
5591 * because the generated code may involve a guard around the entire code.
5593 * We first compute a schedule that respects the dependences
5594 * of the original program and select the outermost bands
5595 * of tilable dimensions that have at least one parallel loop.
5596 * If the --load-schedule is specified, then the loaded schedule
5597 * is used instead of a computed schedule.
5599 * Each of these bands B is then tiled according to "tile" sizes, resulting
5600 * in two nested bands, with a kernel marker on top
5608 * We then split off at most 2 parallel dimensions from the T band and
5609 * at most 3 parallel dimension from the P band
5614 * T1
5616 * T2
5618 * P1
5620 * P2
5622 * A filter is introduced in front of T1 that maps the domain instances
5623 * to block identifiers. Similarly, a filter is introduced in front of P1
5624 * that maps the domain instances to thread identifiers.
5626 * For each iteration of the T2 band and for each array, we compute
5627 * the array elements accessed by that iteration, construct a rectangular
5628 * box around it and shift it to the origin. The result is used
5629 * as shared memory for the array.
5631 * Copying and synchronization statements are added to this schedule tree.
5632 * In principle, these are added in front of the P1 band, but some of
5633 * them may get hoisted up to higher levels.
5635 * The entire AST is then generated from the single resulting schedule tree.
5636 * During the generation the subtrees at kernel nodes (K) are saved
5637 * aside and replaced by kernel calls. The result is printed as host code
5638 * while the saved subtrees are printed as device code.
5640 static __isl_give isl_printer *generate(__isl_take isl_printer *p,
5641 struct gpu_gen *gen, struct ppcg_scop *scop,
5642 struct ppcg_options *options)
5644 struct gpu_prog *prog;
5645 isl_ctx *ctx;
5646 isl_schedule *schedule;
5647 isl_bool any_permutable;
5649 if (!scop)
5650 return isl_printer_free(p);
5652 ctx = isl_printer_get_ctx(p);
5653 prog = gpu_prog_alloc(ctx, scop);
5654 if (!prog)
5655 return isl_printer_free(p);
5657 gen->prog = prog;
5658 schedule = get_schedule(gen);
5660 any_permutable = has_any_permutable_node(schedule);
5661 if (any_permutable < 0 || !any_permutable) {
5662 if (any_permutable < 0)
5663 p = isl_printer_free(p);
5664 else
5665 p = print_cpu(p, scop, options);
5666 isl_schedule_free(schedule);
5667 } else {
5668 schedule = map_to_device(gen, schedule);
5669 gen->tree = generate_code(gen, schedule);
5670 p = ppcg_set_macro_names(p);
5671 p = ppcg_print_exposed_declarations(p, prog->scop);
5672 p = gen->print(p, gen->prog, gen->tree, &gen->types,
5673 gen->print_user);
5674 isl_ast_node_free(gen->tree);
5677 gpu_prog_free(prog);
5679 return p;
5682 /* Wrapper around generate for use as a ppcg_transform callback.
5684 static __isl_give isl_printer *generate_wrap(__isl_take isl_printer *p,
5685 struct ppcg_scop *scop, void *user)
5687 struct gpu_gen *gen = user;
5689 return generate(p, gen, scop, gen->options);
5692 /* Transform the code in the file called "input" by replacing
5693 * all scops by corresponding GPU code and write the results to "out".
5695 int generate_gpu(isl_ctx *ctx, const char *input, FILE *out,
5696 struct ppcg_options *options,
5697 __isl_give isl_printer *(*print)(__isl_take isl_printer *p,
5698 struct gpu_prog *prog, __isl_keep isl_ast_node *tree,
5699 struct gpu_types *types, void *user), void *user)
5701 struct gpu_gen gen;
5702 int r;
5703 int i;
5705 gen.ctx = ctx;
5706 gen.sizes = extract_sizes_from_str(ctx, options->sizes);
5707 gen.options = options;
5708 gen.kernel_id = 0;
5709 gen.print = print;
5710 gen.print_user = user;
5711 gen.types.n = 0;
5712 gen.types.name = NULL;
5714 if (options->debug->dump_sizes) {
5715 isl_space *space = isl_space_params_alloc(ctx, 0);
5716 gen.used_sizes = isl_union_map_empty(space);
5719 r = ppcg_transform(ctx, input, out, options, &generate_wrap, &gen);
5721 if (options->debug->dump_sizes) {
5722 isl_union_map_dump(gen.used_sizes);
5723 isl_union_map_free(gen.used_sizes);
5726 isl_union_map_free(gen.sizes);
5727 for (i = 0; i < gen.types.n; ++i)
5728 free(gen.types.name[i]);
5729 free(gen.types.name);
5731 return r;
5734 /* Compute the set of inner array elements that may have their values
5735 * preserved by "prog". In particular, collect the array elements of
5736 * arrays that are not local to "prog" and remove those elements that
5737 * are definitely killed or definitely written by "prog".
5739 static __isl_give isl_union_set *compute_may_persist(struct gpu_prog *prog)
5741 int i;
5742 isl_union_set *may_persist, *killed;
5743 isl_union_map *must_kill;
5745 may_persist = isl_union_set_empty(isl_set_get_space(prog->context));
5746 for (i = 0; i < prog->n_array; ++i) {
5747 isl_set *extent;
5749 if (prog->array[i].local)
5750 continue;
5752 extent = isl_set_copy(prog->array[i].extent);
5753 may_persist = isl_union_set_add_set(may_persist, extent);
5756 may_persist = isl_union_set_intersect_params(may_persist,
5757 isl_set_copy(prog->context));
5758 may_persist = isl_union_set_apply(may_persist,
5759 isl_union_map_copy(prog->to_inner));
5760 must_kill = isl_union_map_copy(prog->tagged_must_kill);
5761 killed = isl_union_map_range(must_kill);
5762 must_kill = isl_union_map_copy(prog->must_write);
5763 killed = isl_union_set_union(killed, isl_union_map_range(must_kill));
5765 may_persist = isl_union_set_subtract(may_persist, killed);
5766 return may_persist;
5769 struct gpu_prog *gpu_prog_alloc(isl_ctx *ctx, struct ppcg_scop *scop)
5771 struct gpu_prog *prog;
5772 isl_space *space;
5773 isl_map *id;
5775 if (!scop)
5776 return NULL;
5778 prog = isl_calloc_type(ctx, struct gpu_prog);
5779 assert(prog);
5781 prog->ctx = ctx;
5782 prog->scop = scop;
5783 prog->context = isl_set_copy(scop->context);
5784 prog->n_stmts = scop->pet->n_stmt;
5785 prog->any_to_outer = pet_scop_compute_outer_to_any(scop->pet);
5786 prog->any_to_outer = isl_union_map_reverse(prog->any_to_outer);
5787 space = isl_union_map_get_space(prog->any_to_outer);
5788 space = isl_space_set_from_params(space);
5789 space = isl_space_add_dims(space, isl_dim_set, 1);
5790 space = isl_space_map_from_set(space);
5791 id = isl_map_identity(space);
5792 prog->any_to_outer = isl_union_map_add_map(prog->any_to_outer, id);
5793 prog->stmts = extract_stmts(ctx, scop, prog->any_to_outer);
5794 prog->read = isl_union_map_copy(scop->reads);
5795 prog->may_write = isl_union_map_copy(scop->may_writes);
5796 prog->must_write = isl_union_map_copy(scop->must_writes);
5797 prog->tagged_must_kill = isl_union_map_copy(scop->tagged_must_kills);
5798 prog->to_inner = pet_scop_compute_outer_to_inner(scop->pet);
5799 prog->to_outer = isl_union_map_copy(prog->to_inner);
5800 prog->to_outer = isl_union_map_reverse(prog->to_outer);
5802 if (!prog->stmts)
5803 return gpu_prog_free(prog);
5805 if (collect_array_info(prog) < 0)
5806 return gpu_prog_free(prog);
5807 prog->may_persist = compute_may_persist(prog);
5809 return prog;
5812 void *gpu_prog_free(struct gpu_prog *prog)
5814 if (!prog)
5815 return NULL;
5816 free_array_info(prog);
5817 free_stmts(prog->stmts, prog->n_stmts);
5818 isl_union_map_free(prog->any_to_outer);
5819 isl_union_map_free(prog->to_outer);
5820 isl_union_map_free(prog->to_inner);
5821 isl_union_map_free(prog->read);
5822 isl_union_map_free(prog->may_write);
5823 isl_union_map_free(prog->must_write);
5824 isl_union_map_free(prog->tagged_must_kill);
5825 isl_union_map_free(prog->array_order);
5826 isl_union_set_free(prog->may_persist);
5827 isl_set_free(prog->context);
5828 free(prog);
5829 return NULL;