gpu_group.c: set_last_shared: extract out gpu_array_ref_group_tile
[ppcg.git] / gpu_group.c
blobad830fbaa7e4f8b71b8d09d5452701d5cafb97c0
1 #include <isl/ilp.h>
3 #include "gpu_array_tile.h"
4 #include "gpu_group.h"
5 #include "schedule.h"
7 /* Print the name of the local copy of a given group of array references.
8 */
9 __isl_give isl_printer *gpu_array_ref_group_print_name(
10 struct gpu_array_ref_group *group, __isl_take isl_printer *p)
12 int global = 0;
14 if (group->private_tile)
15 p = isl_printer_print_str(p, "private_");
16 else if (group->shared_tile)
17 p = isl_printer_print_str(p, "shared_");
18 else
19 global = 1;
20 p = isl_printer_print_str(p, group->array->name);
21 if (!global && group->local_array->n_group > 1) {
22 p = isl_printer_print_str(p, "_");
23 p = isl_printer_print_int(p, group->nr);
26 return p;
29 /* Return the union of all read (read = 1) and/or write (write = 1)
30 * access relations in the group.
32 __isl_give isl_union_map *gpu_array_ref_group_access_relation(
33 struct gpu_array_ref_group *group, int read, int write)
35 int i;
36 isl_union_map *access;
38 access = isl_union_map_empty(isl_map_get_space(group->access));
39 for (i = 0; i < group->n_ref; ++i) {
40 isl_map *map_i;
42 if (!((read && group->refs[i]->read) ||
43 (write && group->refs[i]->write)))
44 continue;
45 map_i = isl_map_copy(group->refs[i]->access);
46 access = isl_union_map_union(access,
47 isl_union_map_from_map(map_i));
50 return access;
53 /* Return the effective gpu_array_tile associated to "group" or
54 * NULL if there is no such gpu_array_tile.
55 * If we have computed both a private and a shared tile, then
56 * the private tile is used.
58 struct gpu_array_tile *gpu_array_ref_group_tile(
59 struct gpu_array_ref_group *group)
61 if (group->private_tile)
62 return group->private_tile;
63 if (group->shared_tile)
64 return group->shared_tile;
65 return NULL;
68 /* Given a constraint
70 * a(p,i) + j = g f(e)
72 * or -a(p,i) - j = g f(e) if sign < 0,
73 * store a(p,i) in bound->shift and g (stride) in bound->stride.
74 * a(p,i) is assumed to be an expression in only the parameters
75 * and the input dimensions.
77 static void extract_stride(__isl_keep isl_constraint *c,
78 struct gpu_array_bound *bound, __isl_keep isl_val *stride, int sign)
80 int i;
81 isl_val *v;
82 isl_space *space;
83 unsigned nparam;
84 unsigned nvar;
85 isl_aff *aff;
87 isl_val_free(bound->stride);
88 bound->stride = isl_val_copy(stride);
90 space = isl_constraint_get_space(c);
91 space = isl_space_domain(space);
93 nparam = isl_space_dim(space, isl_dim_param);
94 nvar = isl_space_dim(space, isl_dim_set);
96 v = isl_constraint_get_constant_val(c);
97 if (sign < 0)
98 v = isl_val_neg(v);
99 aff = isl_aff_zero_on_domain(isl_local_space_from_space(space));
100 aff = isl_aff_set_constant_val(aff, v);
102 for (i = 0; i < nparam; ++i) {
103 if (!isl_constraint_involves_dims(c, isl_dim_param, i, 1))
104 continue;
105 v = isl_constraint_get_coefficient_val(c, isl_dim_param, i);
106 if (sign < 0)
107 v = isl_val_neg(v);
108 aff = isl_aff_add_coefficient_val(aff, isl_dim_param, i, v);
111 for (i = 0; i < nvar; ++i) {
112 if (!isl_constraint_involves_dims(c, isl_dim_in, i, 1))
113 continue;
114 v = isl_constraint_get_coefficient_val(c, isl_dim_in, i);
115 if (sign < 0)
116 v = isl_val_neg(v);
117 aff = isl_aff_add_coefficient_val(aff, isl_dim_in, i, v);
120 bound->shift = aff;
123 /* Given an equality constraint of a map with a single output dimension j,
124 * check if the constraint is of the form
126 * a(p,i) + j = g f(e)
128 * with a(p,i) an expression in the parameters and input dimensions
129 * and f(e) an expression in the existentially quantified variables.
130 * If so, and if g is larger than any such g from a previously considered
131 * constraint, then call extract_stride to record the stride information
132 * in bound.
134 static int check_stride_constraint(__isl_take isl_constraint *c, void *user)
136 int i;
137 isl_ctx *ctx;
138 isl_val *v;
139 unsigned n_div;
140 struct gpu_array_bound *bound = user;
142 ctx = isl_constraint_get_ctx(c);
143 n_div = isl_constraint_dim(c, isl_dim_div);
144 v = isl_constraint_get_coefficient_val(c, isl_dim_out, 0);
146 if (n_div && (isl_val_is_one(v) || isl_val_is_negone(v))) {
147 int s = isl_val_sgn(v);
148 isl_val *stride = isl_val_zero(ctx);
150 isl_val_free(v);
151 for (i = 0; i < n_div; ++i) {
152 v = isl_constraint_get_coefficient_val(c,
153 isl_dim_div, i);
154 stride = isl_val_gcd(stride, v);
156 if (!isl_val_is_zero(stride) &&
157 isl_val_gt(stride, bound->stride))
158 extract_stride(c, bound, stride, s);
160 isl_val_free(stride);
161 } else
162 isl_val_free(v);
164 isl_constraint_free(c);
165 return 0;
168 /* Given contraints on an array index i, check if we can find
169 * a shift a(p) and a stride g such that
171 * a(p) + i = 0 mod g
173 * If so, record the information in bound and apply the mapping
174 * i -> (i + a(p))/g to the array index in bounds and return
175 * the new constraints.
176 * If not, simply return the original constraints.
178 * If bounds is a subset of the space
180 * D -> i
182 * then the bound recorded in bound->shift is of the form
184 * D -> s(D)
186 * with s(D) equal to a(p) above.
187 * Next, we construct a mapping of the form
189 * [D -> i] -> [D -> (i + S(D))/g]
191 * This mapping is computed as follows.
192 * We first introduce "i" in the domain through precomposition
193 * with [D -> i] -> D obtaining
195 * [D -> i] -> s(D)
197 * Adding [D -> i] -> i produces
199 * [D -> i] -> i + s(D)
201 * and the domain product with [D -> i] -> D yields
203 * [D -> i] -> [D -> i + s(D)]
205 * Composition with [D -> i] -> [D -> i/g] gives the desired result.
207 static __isl_give isl_basic_map *check_stride(struct gpu_array_bound *bound,
208 __isl_take isl_basic_map *bounds)
210 isl_space *space;
211 isl_basic_map *hull;
212 isl_basic_map *shift, *id, *bmap, *scale;
213 isl_basic_set *bset;
214 isl_aff *aff;
216 bound->stride = NULL;
218 hull = isl_basic_map_affine_hull(isl_basic_map_copy(bounds));
220 isl_basic_map_foreach_constraint(hull, &check_stride_constraint, bound);
222 isl_basic_map_free(hull);
224 if (!bound->stride)
225 return bounds;
227 shift = isl_basic_map_from_aff(isl_aff_copy(bound->shift));
228 space = isl_basic_map_get_space(bounds);
229 bmap = isl_basic_map_domain_map(isl_basic_map_universe(space));
230 shift = isl_basic_map_apply_range(bmap, shift);
231 space = isl_basic_map_get_space(bounds);
232 id = isl_basic_map_range_map(isl_basic_map_universe(space));
233 shift = isl_basic_map_sum(id, shift);
234 space = isl_basic_map_get_space(bounds);
235 id = isl_basic_map_domain_map(isl_basic_map_universe(space));
236 shift = isl_basic_map_range_product(id, shift);
238 space = isl_space_domain(isl_basic_map_get_space(bounds));
239 id = isl_basic_map_identity(isl_space_map_from_set(space));
240 space = isl_space_range(isl_basic_map_get_space(bounds));
241 aff = isl_aff_zero_on_domain(isl_local_space_from_space(space));
242 aff = isl_aff_add_coefficient_si(aff, isl_dim_in, 0, 1);
243 aff = isl_aff_scale_down_val(aff, isl_val_copy(bound->stride));
244 scale = isl_basic_map_from_aff(aff);
245 scale = isl_basic_map_product(id, scale);
247 bmap = isl_basic_map_apply_range(shift, scale);
248 bset = isl_basic_set_apply(isl_basic_map_wrap(bounds), bmap);
249 bounds = isl_basic_set_unwrap(bset);
251 return bounds;
254 /* Data used in compute_array_dim_size and compute_size_in_direction.
256 * pos is the position of the variable representing the array index,
257 * i.e., the variable for which want to compute the size. This variable
258 * is also the last variable in the set.
260 struct gpu_size_info {
261 isl_basic_set *bset;
262 struct gpu_array_bound *bound;
263 int pos;
266 /* Given a constraint from the basic set describing the bounds on
267 * an array index, check if it is a lower bound, say m i >= b(x), and,
268 * if so, check whether the expression "i - ceil(b(x)/m) + 1" has a constant
269 * upper bound. If so, and if this bound is smaller than any bound
270 * derived from earlier constraints, set the size to this bound on
271 * the expression and the lower bound to ceil(b(x)/m).
273 static int compute_size_in_direction(__isl_take isl_constraint *c, void *user)
275 struct gpu_size_info *size = user;
276 unsigned nparam;
277 unsigned n_div;
278 isl_val *v;
279 isl_aff *aff;
280 isl_aff *lb;
282 nparam = isl_basic_set_dim(size->bset, isl_dim_param);
283 n_div = isl_constraint_dim(c, isl_dim_div);
285 if (isl_constraint_involves_dims(c, isl_dim_div, 0, n_div) ||
286 !isl_constraint_is_lower_bound(c, isl_dim_set, size->pos)) {
287 isl_constraint_free(c);
288 return 0;
291 aff = isl_constraint_get_bound(c, isl_dim_set, size->pos);
292 aff = isl_aff_ceil(aff);
294 lb = isl_aff_copy(aff);
296 aff = isl_aff_neg(aff);
297 aff = isl_aff_add_coefficient_si(aff, isl_dim_in, size->pos, 1);
299 v = isl_basic_set_max_val(size->bset, aff);
300 isl_aff_free(aff);
302 if (isl_val_is_int(v)) {
303 v = isl_val_add_ui(v, 1);
304 if (!size->bound->size || isl_val_lt(v, size->bound->size)) {
305 isl_val_free(size->bound->size);
306 size->bound->size = isl_val_copy(v);
307 lb = isl_aff_drop_dims(lb, isl_dim_in, size->pos, 1);
308 isl_aff_free(size->bound->lb);
309 size->bound->lb = isl_aff_copy(lb);
312 isl_val_free(v);
313 isl_aff_free(lb);
315 isl_constraint_free(c);
317 return 0;
320 /* Given a basic map "bounds" that maps parameters and input dimensions
321 * to a single output dimension, look for an expression in the parameters
322 * and input dimensions such that the range of the output dimension shifted
323 * by this expression is a constant.
325 * In particular, we currently only consider lower bounds on the output
326 * dimension as candidate expressions.
328 static int compute_array_dim_size(struct gpu_array_bound *bound,
329 __isl_take isl_basic_map *bounds)
331 struct gpu_size_info size;
333 bounds = isl_basic_map_detect_equalities(bounds);
334 bounds = check_stride(bound, bounds);
336 bound->size = NULL;
337 bound->lb = NULL;
339 size.bound = bound;
340 size.pos = isl_basic_map_dim(bounds, isl_dim_in);
341 size.bset = isl_basic_map_wrap(bounds);
342 size.bset = isl_basic_set_flatten(size.bset);
343 size.bset = isl_set_simple_hull(isl_basic_set_compute_divs(size.bset));
344 isl_basic_set_foreach_constraint(size.bset, &compute_size_in_direction,
345 &size);
346 isl_basic_set_free(size.bset);
348 return bound->size ? 0 : -1;
351 /* Check if we can find a memory tile for the given array
352 * based on the given accesses, and if so, put the results in "tile".
354 * We project the accesses on each index in turn and look for a parametric
355 * offset such that the size is constant.
357 static int can_tile(__isl_keep isl_map *access, struct gpu_array_tile *tile)
359 int i;
361 for (i = 0; i < tile->n; ++i) {
362 isl_map *access_i;
363 isl_basic_map *hull;
365 access_i = isl_map_copy(access);
366 access_i = isl_map_project_out(access_i, isl_dim_out, 0, i);
367 access_i = isl_map_project_out(access_i, isl_dim_out,
368 1, tile->n - (i + 1));
369 access_i = isl_map_compute_divs(access_i);
370 hull = isl_map_simple_hull(access_i);
371 if (compute_array_dim_size(&tile->bound[i], hull) < 0)
372 return 0;
375 return 1;
378 /* Construct a map from domain_dim to domain_dim that increments
379 * the dimension at position "pos" and leaves all other dimensions
380 * constant.
382 static __isl_give isl_map *next(__isl_take isl_space *domain_dim, int pos)
384 int i;
385 int len = isl_space_dim(domain_dim, isl_dim_set);
386 isl_space *dim;
387 isl_basic_map *next;
388 isl_local_space *ls;
390 dim = isl_space_map_from_set(domain_dim);
391 next = isl_basic_map_universe(isl_space_copy(dim));
392 ls = isl_local_space_from_space(dim);
394 for (i = 0; i < len; ++i) {
395 isl_constraint *c;
397 c = isl_equality_alloc(isl_local_space_copy(ls));
398 c = isl_constraint_set_coefficient_si(c, isl_dim_in, i, 1);
399 c = isl_constraint_set_coefficient_si(c, isl_dim_out, i, -1);
400 if (i == pos)
401 c = isl_constraint_set_constant_si(c, 1);
402 next = isl_basic_map_add_constraint(next, c);
405 isl_local_space_free(ls);
407 return isl_map_from_basic_map(next);
410 /* Check if the given access is coalesced.
411 * That is, check whether incrementing the dimension that will get
412 * wrapped over the last thread index results in incrementing
413 * the last array index.
415 * This function is only called for access relations without reuse and
416 * kernels with at least one block dimension.
418 static int access_is_coalesced(struct gpu_gen *gen,
419 __isl_keep isl_union_map *access)
421 isl_space *dim;
422 isl_map *access_map;
423 isl_map *next_thread_x;
424 isl_map *next_element;
425 isl_map *map;
426 int coalesced;
428 access = isl_union_map_copy(access);
429 access = isl_union_map_apply_domain(access,
430 isl_union_map_copy(gen->tiled_sched));
431 access_map = isl_map_from_union_map(access);
433 dim = isl_map_get_space(access_map);
434 dim = isl_space_domain(dim);
435 next_thread_x = next(dim, gen->shared_len + gen->kernel->n_block - 1);
437 dim = isl_map_get_space(access_map);
438 dim = isl_space_range(dim);
439 next_element = next(dim, isl_space_dim(dim, isl_dim_set) - 1);
441 map = isl_map_apply_domain(next_thread_x, isl_map_copy(access_map));
442 map = isl_map_apply_range(map, access_map);
444 coalesced = isl_map_is_subset(map, next_element);
446 isl_map_free(next_element);
447 isl_map_free(map);
449 return coalesced;
452 /* Given an access relation in terms of the first gen->shared_len + gen->n_block
453 * dimensions of the computed schedule, check if it is bijective for
454 * fixed values of the first gen->shared_len dimensions.
455 * We perform this check by equating these dimensions to parameters.
457 static int access_is_bijective(struct gpu_gen *gen, __isl_keep isl_map *access)
459 int res;
460 isl_set *par;
461 isl_space *space;
462 isl_id_list *ids;
464 access = isl_map_copy(access);
465 space = isl_space_params(isl_map_get_space(access));
466 ids = ppcg_scop_generate_names(gen->prog->scop, gen->shared_len, "s");
467 par = parametrization(space, gen->shared_len + gen->kernel->n_block,
468 0, ids);
469 isl_id_list_free(ids);
470 access = isl_map_intersect_domain(access, par);
471 res = isl_map_is_bijective(access);
472 isl_map_free(access);
474 return res;
477 /* Look for the last shared tile loop that affects the offset of "tile"
478 * and return the result.
479 * If there is no such loop, then return the index of the loop
480 * before the first shared tile loop, in particular gen->tile_first - 1.
482 static int compute_tile_last_shared(struct gpu_gen *gen,
483 struct gpu_array_tile *tile)
485 int i, j;
487 for (j = gen->shared_len - 1; j >= gen->tile_first; --j) {
488 for (i = 0; i < tile->n; ++i) {
489 isl_aff *lb;
490 isl_aff *shift;
492 lb = tile->bound[i].lb;
493 if (isl_aff_involves_dims(lb, isl_dim_in, j, 1))
494 break;
496 shift = tile->bound[i].shift;
497 if (!shift)
498 continue;
499 if (isl_aff_involves_dims(shift, isl_dim_in, j, 1))
500 break;
502 if (i < tile->n)
503 break;
506 return j;
509 /* Look for the last shared tile loop that affects the offset of the
510 * shared or private tile and store the result in group->last_shared.
511 * If there is no such loop, then group->last_shared is set to a value
512 * before the first shared tile loop, in particular gen->tile_first - 1.
513 * If there is no tile defined on the array reference group,
514 * then set group->last_shared to gen->shared_len - 1.
516 static void set_last_shared(struct gpu_gen *gen,
517 struct gpu_array_ref_group *group)
519 struct gpu_array_tile *tile;
521 group->last_shared = gen->shared_len - 1;
523 tile = gpu_array_ref_group_tile(group);
524 if (!tile)
525 return;
527 group->last_shared = compute_tile_last_shared(gen, tile);
530 /* Fill up the groups array with singleton groups, i.e., one group
531 * per reference, initializing the array, access, write, n_ref and refs fields.
532 * In particular the access field is initialized to the scheduled
533 * access relation of the array reference.
535 * Return the number of elements initialized, i.e., the number of
536 * active references in the current kernel.
538 static int populate_array_references(struct gpu_local_array_info *local,
539 __isl_keep isl_union_map *sched, struct gpu_array_ref_group **groups)
541 int i;
542 int n;
543 isl_ctx *ctx = isl_union_map_get_ctx(sched);
545 n = 0;
546 for (i = 0; i < local->array->n_ref; ++i) {
547 isl_union_map *umap;
548 isl_map *map;
549 struct gpu_array_ref_group *group;
550 struct gpu_stmt_access *access = local->array->refs[i];
552 map = isl_map_copy(access->access);
553 umap = isl_union_map_from_map(map);
554 umap = isl_union_map_apply_domain(umap,
555 isl_union_map_copy(sched));
557 if (isl_union_map_is_empty(umap)) {
558 isl_union_map_free(umap);
559 continue;
562 map = isl_map_from_union_map(umap);
563 map = isl_map_detect_equalities(map);
565 group = isl_calloc_type(ctx, struct gpu_array_ref_group);
566 if (!group)
567 return -1;
568 group->local_array = local;
569 group->array = local->array;
570 group->access = map;
571 group->write = access->write;
572 group->exact_write = access->exact_write;
573 group->slice = access->n_index < local->array->n_index;
574 group->refs = &local->array->refs[i];
575 group->n_ref = 1;
577 groups[n++] = group;
580 return n;
583 /* If group->n_ref == 1, then group->refs was set by
584 * populate_array_references to point directly into
585 * group->array->refs and should not be freed.
586 * If group->n_ref > 1, then group->refs was set by join_groups
587 * to point to a newly allocated array.
589 struct gpu_array_ref_group *gpu_array_ref_group_free(
590 struct gpu_array_ref_group *group)
592 if (!group)
593 return NULL;
594 gpu_array_tile_free(group->shared_tile);
595 gpu_array_tile_free(group->private_tile);
596 isl_map_free(group->access);
597 if (group->n_ref > 1)
598 free(group->refs);
599 free(group);
600 return NULL;
603 /* Given a map where the input dimensions represent the tile loops,
604 * eliminate the innermost of those that have a fixed value
605 * until we reach one that does not (obviously) have a fixed value.
607 static __isl_give isl_map *eliminate_fixed_inner_loops(
608 __isl_take isl_map *access)
610 int i, n;
612 n = isl_map_dim(access, isl_dim_in);
614 for (i = n - 1; i >= 0; --i) {
615 if (!map_plain_is_fixed(access, isl_dim_in, i))
616 break;
617 access = isl_map_eliminate(access, isl_dim_in, i, 1);
619 return access;
622 /* Check if the access relations of group1 and group2 overlap within
623 * the innermost loop. In particular, ignore any inner dimension
624 * with a fixed value.
625 * The copying to and from shared memory will be performed within
626 * the innermost actual loop so we are only allowed to consider
627 * the dimensions up to that innermost loop while checking whether
628 * two access relations overlap.
630 static int accesses_overlap(struct gpu_array_ref_group *group1,
631 struct gpu_array_ref_group *group2)
633 int empty;
634 isl_map *access1, *access2;
636 access1 = isl_map_copy(group1->access);
637 access1 = eliminate_fixed_inner_loops(access1);
638 access2 = isl_map_copy(group2->access);
639 access2 = eliminate_fixed_inner_loops(access2);
640 access1 = isl_map_intersect(access1, access2);
641 empty = isl_map_is_empty(access1);
642 isl_map_free(access1);
644 return !empty;
647 /* Combine the given two groups into a single group, containing
648 * the references of both groups.
650 static struct gpu_array_ref_group *join_groups(
651 struct gpu_array_ref_group *group1,
652 struct gpu_array_ref_group *group2)
654 int i;
655 isl_ctx *ctx;
656 struct gpu_array_ref_group *group;
658 ctx = isl_map_get_ctx(group1->access);
659 group = isl_calloc_type(ctx, struct gpu_array_ref_group);
660 if (!group)
661 return NULL;
662 group->local_array = group1->local_array;
663 group->array = group1->array;
664 group->access = isl_map_union(isl_map_copy(group1->access),
665 isl_map_copy(group2->access));
666 group->write = group1->write || group2->write;
667 group->exact_write = group1->exact_write && group2->exact_write;
668 group->slice = group1->slice || group2->slice;
669 group->n_ref = group1->n_ref + group2->n_ref;
670 group->refs = isl_alloc_array(ctx, struct gpu_stmt_access *,
671 group->n_ref);
672 if (!group->refs)
673 return gpu_array_ref_group_free(group);
674 for (i = 0; i < group1->n_ref; ++i)
675 group->refs[i] = group1->refs[i];
676 for (i = 0; i < group2->n_ref; ++i)
677 group->refs[group1->n_ref + i] = group2->refs[i];
679 return group;
682 /* Combine the given two groups into a single group and free
683 * the original two groups.
685 static struct gpu_array_ref_group *join_groups_and_free(
686 struct gpu_array_ref_group *group1,
687 struct gpu_array_ref_group *group2)
689 struct gpu_array_ref_group *group;
691 group = join_groups(group1, group2);
692 gpu_array_ref_group_free(group1);
693 gpu_array_ref_group_free(group2);
694 return group;
697 /* Report that the array reference group with the given access relation
698 * is not mapped to shared memory in the given kernel because
699 * it does not exhibit any reuse and is considered to be coalesced.
701 static void report_no_reuse_and_coalesced(struct ppcg_kernel *kernel,
702 __isl_keep isl_union_map *access)
704 isl_ctx *ctx;
705 isl_printer *p;
707 ctx = isl_union_map_get_ctx(access);
708 p = isl_printer_to_file(ctx, stdout);
709 p = isl_printer_print_str(p, "Array reference group ");
710 p = isl_printer_print_union_map(p, access);
711 p = isl_printer_print_str(p,
712 " not considered for mapping to shared memory in kernel");
713 p = isl_printer_print_int(p, kernel->id);
714 p = isl_printer_print_str(p,
715 " because it exhibits no reuse and is considered to be coalesced");
716 p = isl_printer_end_line(p);
717 isl_printer_free(p);
720 /* Compute the private and/or shared memory tiles for the array
721 * reference group "group" of array "array".
722 * Return 0 on success and -1 on error.
724 * If the array is a read-only scalar or if the user requested
725 * not to use shared or private memory, then we do not need to do anything.
727 * If any reference in the reference group accesses more than one element,
728 * then we would have to make sure that the layout in shared memory
729 * is the same as that in global memory. Since we do not handle this yet
730 * (and it may not even be possible), we refuse to map to private or
731 * shared memory in such cases.
733 * If the array group involves any may writes (that are not must writes),
734 * then we would have to make sure that we load the data into shared/private
735 * memory first in case the data is not written by the kernel
736 * (but still written back out to global memory).
737 * Since we don't have any such mechanism at the moment, we don't
738 * compute shared/private tiles for groups involving may writes.
740 * We only try to compute a shared memory tile if there is any reuse
741 * or if the access is not coalesced.
743 * For computing a private memory tile, we also require that there is
744 * some reuse. Moreover, we require that the access is private
745 * to the thread. That is, we check that any given array element
746 * is only accessed by a single thread.
747 * We compute an access relation that maps the shared tile loop iterators
748 * and the shared point loop iterators that will be wrapped over the
749 * threads to the array elements.
750 * We actually check that those iterators that will be wrapped
751 * partition the array space. This check is stricter than necessary
752 * since several iterations may be mapped onto the same thread
753 * and then they could be allowed to access the same memory elements,
754 * but our check does not allow this situation.
756 * We also check that the index expression only depends on parallel
757 * loops. That way, we can move those loops innermost and unroll them.
758 * Again, we use a test that is stricter than necessary.
759 * We actually check whether the index expression only depends
760 * on the iterators that are wrapped over the threads.
761 * These are necessarily parallel, but there may be more parallel loops.
763 * Combining the injectivity of the first test with the single-valuedness
764 * of the second test, we simply test for bijectivity.
766 * If the array is marked force_private, then we bypass all checks
767 * and assume we can (and should) use registers.
769 * If it turns out we can (or have to) use registers, we compute
770 * the private memory tile size using can_tile, after introducing a dependence
771 * on the thread indices.
773 static int compute_group_bounds_core(struct gpu_gen *gen,
774 struct gpu_array_ref_group *group)
776 isl_ctx *ctx = isl_space_get_ctx(group->array->space);
777 isl_union_map *access;
778 int n_index = group->array->n_index;
779 int no_reuse, coalesced;
780 isl_map *acc;
781 int force_private = group->local_array->force_private;
782 int use_shared = gen->options->use_shared_memory &&
783 gen->kernel->n_block > 0;
784 int use_private = force_private || gen->options->use_private_memory;
785 int r = 0;
787 if (!use_shared && !use_private)
788 return 0;
789 if (gpu_array_is_read_only_scalar(group->array))
790 return 0;
791 if (!force_private && !group->exact_write)
792 return 0;
793 if (group->slice)
794 return 0;
796 access = gpu_array_ref_group_access_relation(group, 1, 1);
797 no_reuse = isl_union_map_is_injective(access);
798 if (no_reuse < 0)
799 r = -1;
800 if (use_shared && no_reuse)
801 coalesced = access_is_coalesced(gen, access);
803 if (r >= 0 && gen->options->debug->verbose &&
804 use_shared && no_reuse && coalesced)
805 report_no_reuse_and_coalesced(gen->kernel, access);
807 if (use_shared && (!no_reuse || !coalesced)) {
808 group->shared_tile = gpu_array_tile_create(ctx,
809 group->array->n_index);
810 if (!group->shared_tile)
811 r = -1;
812 else if (!can_tile(group->access, group->shared_tile))
813 group->shared_tile =
814 gpu_array_tile_free(group->shared_tile);
817 if (r < 0 || (!force_private && (!use_private || no_reuse))) {
818 isl_union_map_free(access);
819 return r;
822 access = isl_union_map_apply_domain(access,
823 isl_union_map_copy(gen->shared_sched));
825 acc = isl_map_from_union_map(access);
827 if (!force_private && !access_is_bijective(gen, acc)) {
828 isl_map_free(acc);
829 return 0;
832 group->private_tile = gpu_array_tile_create(gen->ctx, n_index);
833 if (!group->private_tile) {
834 isl_map_free(acc);
835 return -1;
837 acc = isl_map_apply_domain(acc, isl_map_copy(gen->privatization));
838 if (!can_tile(acc, group->private_tile))
839 group->private_tile = gpu_array_tile_free(group->private_tile);
841 isl_map_free(acc);
843 if (force_private && !group->private_tile)
844 isl_die(ctx, isl_error_internal,
845 "unable to map array reference group to registers",
846 return -1);
848 return 0;
851 /* Compute the private and/or shared memory tiles for the array
852 * reference group "group" of array "array" and set last_shared.
853 * Return 0 on success and -1 on error.
855 static int compute_group_bounds(struct gpu_gen *gen,
856 struct gpu_array_ref_group *group)
858 if (!group)
859 return -1;
860 if (compute_group_bounds_core(gen, group) < 0)
861 return -1;
862 set_last_shared(gen, group);
864 return 0;
867 /* If two groups have overlapping access relations (as determined by
868 * the "overlap" function) and if one of them involves a write,
869 * then merge the two groups into one.
870 * If "compute_bounds" is set, then call compute_group_bounds
871 * on the merged groups.
873 * Return the updated number of groups.
874 * Return -1 on error.
876 static int group_writes(struct gpu_gen *gen,
877 int n, struct gpu_array_ref_group **groups,
878 int (*overlap)(struct gpu_array_ref_group *group1,
879 struct gpu_array_ref_group *group2), int compute_bounds)
881 int i, j;
883 for (i = 0; i < n; ++i) {
884 for (j = n - 1; j > i; --j) {
885 if (!groups[i]->write && !groups[j]->write)
886 continue;
888 if (!overlap(groups[i], groups[j]))
889 continue;
891 groups[i] = join_groups_and_free(groups[i], groups[j]);
892 if (j != n - 1)
893 groups[j] = groups[n - 1];
894 groups[n - 1] = NULL;
895 n--;
897 if (!groups[i])
898 return -1;
899 if (compute_bounds &&
900 compute_group_bounds(gen, groups[i]) < 0)
901 return -1;
905 return n;
908 /* If two groups have overlapping access relations (within the innermost
909 * loop) and if one of them involves a write, then merge the two groups
910 * into one.
912 * Return the updated number of groups.
914 static int group_overlapping_writes(struct gpu_gen *gen,
915 int n, struct gpu_array_ref_group **groups)
917 return group_writes(gen, n, groups, &accesses_overlap, 0);
920 /* Check if the access relations of group1 and group2 overlap within
921 * the outermost min(group1->last_shared, group2->last_shared) loops.
923 static int last_shared_accesses_overlap(struct gpu_array_ref_group *group1,
924 struct gpu_array_ref_group *group2)
926 int last_shared;
927 int dim;
928 int empty;
929 isl_map *map_i, *map_j, *map;
931 last_shared = group1->last_shared;
932 if (group2->last_shared < last_shared)
933 last_shared = group2->last_shared;
934 map_i = isl_map_copy(group1->access);
935 dim = isl_map_dim(map_i, isl_dim_in);
936 map_i = isl_map_eliminate(map_i, isl_dim_in,
937 last_shared + 1, dim - (last_shared + 1));
938 map_j = isl_map_copy(group2->access);
939 map_j = isl_map_eliminate(map_j, isl_dim_in,
940 last_shared + 1, dim - (last_shared + 1));
941 map = isl_map_intersect(map_i, map_j);
942 empty = isl_map_is_empty(map);
943 isl_map_free(map);
945 return !empty;
948 /* If two groups have overlapping access relations (within the outer
949 * last_shared loops) and if one of them involves a write,
950 * then merge the two groups into one.
952 * Return the updated number of groups.
954 static int group_last_shared_overlapping_writes(struct gpu_gen *gen, int n,
955 struct gpu_array_ref_group **groups)
957 return group_writes(gen, n, groups, &last_shared_accesses_overlap, 1);
960 /* Is the size of the tile specified by "tile" smaller than the sum of
961 * the sizes of the tiles specified by "tile1" and "tile2"?
963 static int smaller_tile(struct gpu_array_tile *tile,
964 struct gpu_array_tile *tile1, struct gpu_array_tile *tile2)
966 int smaller;
967 isl_val *size, *size1, *size2;
969 size = gpu_array_tile_size(tile);
970 size1 = gpu_array_tile_size(tile1);
971 size2 = gpu_array_tile_size(tile2);
973 size = isl_val_sub(size, size1);
974 size = isl_val_sub(size, size2);
975 smaller = isl_val_is_neg(size);
977 isl_val_free(size);
979 return smaller;
982 /* Given an initial grouping of array references and shared memory tiles
983 * for each group that allows for a shared memory tile, merge two groups
984 * if both have a shared memory tile, the merged group also has
985 * a shared memory tile and the size of the tile for the merge group
986 * is smaller than the sum of the tile sizes of the individual groups.
988 * If merging two groups decreases the "last_shared" dimension of
989 * one or both of the two groups, then we need to check for overlapping
990 * writes again.
992 * Return the number of groups after merging.
993 * Return -1 on error.
995 static int group_common_shared_memory_tile(struct gpu_gen *gen,
996 struct gpu_array_info *array, int n,
997 struct gpu_array_ref_group **groups)
999 int i, j;
1000 int recompute_overlap = 0;
1001 isl_ctx *ctx = isl_space_get_ctx(array->space);
1003 for (i = 0; i < n; ++i) {
1004 if (!groups[i]->shared_tile)
1005 continue;
1006 for (j = n - 1; j > i; --j) {
1007 isl_map *map;
1008 int empty;
1009 struct gpu_array_ref_group *group;
1011 if (!groups[j]->shared_tile)
1012 continue;
1014 map = isl_map_intersect(isl_map_copy(groups[i]->access),
1015 isl_map_copy(groups[j]->access));
1016 empty = isl_map_is_empty(map);
1017 isl_map_free(map);
1019 if (empty)
1020 continue;
1022 group = join_groups(groups[i], groups[j]);
1023 if (compute_group_bounds(gen, group) < 0) {
1024 gpu_array_ref_group_free(group);
1025 return -1;
1027 if (!group->shared_tile ||
1028 !smaller_tile(group->shared_tile,
1029 groups[i]->shared_tile,
1030 groups[j]->shared_tile)) {
1031 gpu_array_ref_group_free(group);
1032 continue;
1035 if (group->last_shared < groups[i]->last_shared ||
1036 group->last_shared < groups[j]->last_shared)
1037 recompute_overlap = 1;
1038 gpu_array_ref_group_free(groups[i]);
1039 gpu_array_ref_group_free(groups[j]);
1040 groups[i] = group;
1041 if (j != n - 1)
1042 groups[j] = groups[n - 1];
1043 n--;
1047 if (recompute_overlap)
1048 n = group_last_shared_overlapping_writes(gen, n, groups);
1049 return n;
1052 /* Set array->n_group and array->groups to n and groups.
1054 * Additionally, set the "nr" field of each group.
1056 static void set_array_groups(struct gpu_local_array_info *array,
1057 int n, struct gpu_array_ref_group **groups)
1059 int i, j;
1061 array->n_group = n;
1062 array->groups = groups;
1064 for (i = 0; i < n; ++i)
1065 groups[i]->nr = i;
1068 /* Group array references that should be considered together when
1069 * deciding whether to access them from private, shared or global memory.
1070 * Return -1 on error.
1072 * In particular, if two array references overlap and if one of them
1073 * is a write, then the two references are grouped together.
1074 * We first perform an initial grouping based only on the access relation.
1075 * After computing shared and private memory tiles, we check for
1076 * overlapping writes again, but this time taking into account
1077 * the "last_shared" property.
1079 * Furthermore, if two groups admit a shared memory tile and if the
1080 * combination of the two also admits a shared memory tile, we merge
1081 * the two groups.
1083 * If the array contains structures, then there is no need to compute
1084 * reference groups since we do not map such arrays to private or shared
1085 * memory.
1087 static int group_array_references(struct gpu_gen *gen,
1088 struct gpu_local_array_info *local, __isl_keep isl_union_map *sched)
1090 int i;
1091 int n;
1092 isl_ctx *ctx = isl_union_map_get_ctx(sched);
1093 struct gpu_array_ref_group **groups;
1095 if (local->array->has_compound_element)
1096 return 0;
1098 groups = isl_calloc_array(ctx, struct gpu_array_ref_group *,
1099 local->array->n_ref);
1100 if (!groups)
1101 return -1;
1103 n = populate_array_references(local, sched, groups);
1105 n = group_overlapping_writes(gen, n, groups);
1107 for (i = 0; i < n; ++i)
1108 if (compute_group_bounds(gen, groups[i]) < 0)
1109 n = -1;
1111 n = group_last_shared_overlapping_writes(gen, n, groups);
1113 n = group_common_shared_memory_tile(gen, local->array, n, groups);
1115 set_array_groups(local, n, groups);
1117 if (n >= 0)
1118 return 0;
1120 for (i = 0; i < local->array->n_ref; ++i)
1121 gpu_array_ref_group_free(groups[i]);
1122 return -1;
1125 /* For each scalar in the input program, check if there are any
1126 * order dependences active inside the current kernel, within
1127 * the same iteration of the host schedule.
1128 * If so, mark the scalar as force_private so that it will be
1129 * mapped to a register.
1131 static void check_scalar_live_ranges(struct gpu_gen *gen)
1133 int i;
1134 isl_map *proj;
1135 isl_union_map *sched;
1136 isl_union_set *domain;
1137 isl_union_map *same_host_iteration;
1139 gen->kernel->any_force_private = 0;
1141 if (!gen->options->live_range_reordering)
1142 return;
1144 sched = gen->shared_sched;
1145 sched = isl_union_map_universe(isl_union_map_copy(sched));
1146 domain = isl_union_map_domain(sched);
1148 sched = isl_union_map_copy(gen->sched);
1149 proj = projection(isl_union_map_get_space(sched),
1150 gen->untiled_len, gen->tile_first);
1151 sched = isl_union_map_apply_range(sched, isl_union_map_from_map(proj));
1152 same_host_iteration = isl_union_map_apply_range(sched,
1153 isl_union_map_reverse(isl_union_map_copy(sched)));
1155 for (i = 0; i < gen->kernel->n_array; ++i) {
1156 struct gpu_local_array_info *local = &gen->kernel->array[i];
1157 isl_union_map *order;
1159 local->force_private = 0;
1160 if (local->array->n_index != 0)
1161 continue;
1162 order = isl_union_map_copy(local->array->dep_order);
1163 order = isl_union_map_intersect_domain(order,
1164 isl_union_set_copy(domain));
1165 order = isl_union_map_intersect_range(order,
1166 isl_union_set_copy(domain));
1167 order = isl_union_map_intersect(order,
1168 isl_union_map_copy(same_host_iteration));
1169 if (!isl_union_map_is_empty(order)) {
1170 local->force_private = 1;
1171 gen->kernel->any_force_private = 1;
1173 isl_union_map_free(order);
1176 isl_union_map_free(same_host_iteration);
1177 isl_union_set_free(domain);
1180 /* Group references of all arrays in the current kernel.
1182 int gpu_group_references(struct gpu_gen *gen)
1184 int i;
1185 int r = 0;
1186 isl_union_map *sched;
1188 check_scalar_live_ranges(gen);
1190 sched = isl_union_map_apply_range(isl_union_map_copy(gen->shared_sched),
1191 isl_union_map_copy(gen->shared_proj));
1193 for (i = 0; i < gen->kernel->n_array; ++i) {
1194 r = group_array_references(gen, &gen->kernel->array[i], sched);
1195 if (r < 0)
1196 break;
1199 isl_union_map_free(sched);
1201 return r;
1204 /* Given a description of an array tile "tile" and the "space"
1206 * { D -> A }
1208 * where D represents the first shared_len schedule dimensions
1209 * and A represents the array, construct an isl_multi_aff
1211 * { [D[i] -> A[a]] -> A'[a'] }
1213 * with A' a scaled down copy of A according to the shifts and strides
1214 * in "tile". In particular,
1216 * a' = (a + shift(i))/stride
1218 * "insert_array" represents
1220 * { [D -> A] -> D }
1222 * and is used to insert A into the domain of functions that only
1223 * reference D.
1225 static __isl_give isl_multi_aff *strided_tile(
1226 struct gpu_array_tile *tile, __isl_keep isl_space *space,
1227 __isl_keep isl_multi_aff *insert_array)
1229 int i;
1230 isl_ctx *ctx;
1231 isl_multi_aff *shift;
1232 isl_multi_val *stride;
1233 isl_space *space2;
1234 isl_local_space *ls;
1235 isl_multi_aff *tiling;
1237 ctx = isl_space_get_ctx(space);
1238 space2 = isl_space_domain(isl_space_copy(space));
1239 ls = isl_local_space_from_space(space2);
1240 space2 = isl_space_range(isl_space_copy(space));
1241 stride = isl_multi_val_zero(space2);
1242 shift = isl_multi_aff_zero(isl_space_copy(space));
1244 for (i = 0; i < tile->n; ++i) {
1245 struct gpu_array_bound *bound = &tile->bound[i];
1246 isl_val *stride_i;
1247 isl_aff *shift_i;
1249 if (tile->bound[i].shift) {
1250 stride_i = isl_val_copy(bound->stride);
1251 shift_i = isl_aff_copy(bound->shift);
1252 } else {
1253 stride_i = isl_val_one(ctx);
1254 shift_i = isl_aff_zero_on_domain(
1255 isl_local_space_copy(ls));
1258 stride = isl_multi_val_set_val(stride, i, stride_i);
1259 shift = isl_multi_aff_set_aff(shift, i, shift_i);
1261 isl_local_space_free(ls);
1263 shift = isl_multi_aff_pullback_multi_aff(shift,
1264 isl_multi_aff_copy(insert_array));
1266 tiling = isl_multi_aff_range_map(isl_space_copy(space));
1267 tiling = isl_multi_aff_add(tiling, shift);
1268 tiling = isl_multi_aff_scale_down_multi_val(tiling, stride);
1270 return tiling;
1273 /* Compute a tiling for the array reference group "group".
1275 * The tiling is of the form
1277 * { [D[i] -> A[a]] -> T[t] }
1279 * where D represents the first shared_len schedule dimensions,
1280 * A represents the global array and T represents the shared or
1281 * private memory tile. The name of T is the name of the local
1282 * array.
1284 * If there is any stride in the accesses, then the mapping is
1286 * t = (a + shift(i))/stride - lb(i)
1288 * otherwise, it is simply
1290 * t = a - lb(i)
1292 void gpu_array_ref_group_compute_tiling(struct gpu_array_ref_group *group)
1294 int i;
1295 struct gpu_array_tile *tile;
1296 struct gpu_array_info *array = group->array;
1297 isl_space *space;
1298 isl_multi_aff *tiling, *lb, *insert_array;
1299 isl_printer *p;
1300 char *local_name;
1302 tile = group->private_tile;
1303 if (!tile)
1304 tile = group->shared_tile;
1305 if (!tile)
1306 return;
1308 space = isl_map_get_space(group->access);
1309 insert_array = isl_multi_aff_domain_map(isl_space_copy(space));
1311 for (i = 0; i < tile->n; ++i)
1312 if (tile->bound[i].shift)
1313 break;
1315 if (i < tile->n)
1316 tiling = strided_tile(tile, space, insert_array);
1317 else
1318 tiling = isl_multi_aff_range_map(isl_space_copy(space));
1320 lb = isl_multi_aff_zero(space);
1321 for (i = 0; i < tile->n; ++i) {
1322 isl_aff *lb_i = isl_aff_copy(tile->bound[i].lb);
1323 lb = isl_multi_aff_set_aff(lb, i, lb_i);
1325 lb = isl_multi_aff_pullback_multi_aff(lb, insert_array);
1327 tiling = isl_multi_aff_sub(tiling, lb);
1329 p = isl_printer_to_str(isl_multi_aff_get_ctx(tiling));
1330 p = gpu_array_ref_group_print_name(group, p);
1331 local_name = isl_printer_get_str(p);
1332 isl_printer_free(p);
1333 tiling = isl_multi_aff_set_tuple_name(tiling, isl_dim_out, local_name);
1334 free(local_name);
1336 tile->tiling = tiling;