gpu: insert kernel context in schedule tree
[ppcg.git] / gpu.c
blob75de580d6b219a432213197fe34eaefeefc76d1a
1 /*
2 * Copyright 2010-2011 INRIA Saclay
3 * Copyright 2012-2013 Ecole Normale Superieure
5 * Use of this software is governed by the MIT license
7 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
8 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
9 * 91893 Orsay, France
10 * and Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France
13 #include <assert.h>
14 #include <stdlib.h>
15 #include <string.h>
17 #include <isl/polynomial.h>
18 #include <isl/union_set.h>
19 #include <isl/aff.h>
20 #include <isl/ilp.h>
21 #include <isl/flow.h>
22 #include <isl/schedule.h>
23 #include <isl/schedule_node.h>
24 #include <isl/options.h>
25 #include <isl/ast_build.h>
27 #include "cpu.h"
28 #include "gpu.h"
29 #include "gpu_array_tile.h"
30 #include "gpu_group.h"
31 #include "gpu_tree.h"
32 #include "schedule.h"
33 #include "ppcg_options.h"
34 #include "print.h"
36 struct gpu_array_info;
38 /* Collect all references to the given array and store pointers to them
39 * in array->refs.
41 * If the array contains structures, then there is no need to collect
42 * the references since we will not be computing any reference groups.
44 static void collect_references(struct gpu_prog *prog,
45 struct gpu_array_info *array)
47 int i;
48 int n;
50 if (array->has_compound_element)
51 return;
53 n = 0;
54 for (i = 0; i < prog->n_stmts; ++i) {
55 struct gpu_stmt *stmt = &prog->stmts[i];
56 struct gpu_stmt_access *access;
58 for (access = stmt->accesses; access; access = access->next) {
59 const char *name;
60 name = isl_map_get_tuple_name(access->access,
61 isl_dim_out);
62 if (name && !strcmp(array->name, name))
63 n++;
67 array->n_ref = n;
68 array->refs = isl_alloc_array(prog->ctx, struct gpu_stmt_access *, n);
69 assert(array->refs);
71 n = 0;
72 for (i = 0; i < prog->n_stmts; ++i) {
73 struct gpu_stmt *stmt = &prog->stmts[i];
74 struct gpu_stmt_access *access;
76 for (access = stmt->accesses; access; access = access->next) {
77 const char *name;
78 name = isl_map_get_tuple_name(access->access,
79 isl_dim_out);
80 if (!name || strcmp(array->name, name))
81 continue;
83 array->refs[n++] = access;
88 /* Compute and return the extent of "array", taking into account the set of
89 * accessed elements.
91 * In particular, the extent in the outer dimension is taken
92 * from "accessed", while the extents in the remaining dimensions
93 * are taken from array->extent.
95 * The extent in the outer dimension cannot be taken from array->extent
96 * because that may be unbounded. Furthermore, even if it is bounded,
97 * it may be larger than the piece of the array that is being accessed.
99 static __isl_give isl_set *compute_extent(struct pet_array *array,
100 __isl_keep isl_set *accessed)
102 int n_index;
103 isl_id *id;
104 isl_set *outer;
105 isl_set *extent;
107 extent = isl_set_copy(array->extent);
109 n_index = isl_set_dim(accessed, isl_dim_set);
110 if (n_index == 0)
111 return extent;
113 extent = isl_set_project_out(extent, isl_dim_set, 0, 1);
114 outer = isl_set_copy(accessed);
115 outer = isl_set_project_out(outer, isl_dim_set, 1, n_index - 1);
116 extent = isl_set_flat_product(outer, extent);
117 id = isl_set_get_tuple_id(accessed);
118 extent = isl_set_set_tuple_id(extent, id);
120 return extent;
123 /* Is the array "array" being extracted a read-only scalar?
125 * That is, is "array" a scalar that is never possibly written to.
126 * An array containing structures is never considered to be a scalar.
128 static int is_read_only_scalar(struct gpu_array_info *array,
129 struct gpu_prog *prog)
131 isl_set *space;
132 isl_union_map *write;
133 int empty;
135 if (array->has_compound_element)
136 return 0;
137 if (array->n_index != 0)
138 return 0;
140 write = isl_union_map_copy(prog->may_write);
141 space = isl_set_universe(isl_space_copy(array->space));
142 write = isl_union_map_intersect_range(write,
143 isl_union_set_from_set(space));
144 empty = isl_union_map_is_empty(write);
145 isl_union_map_free(write);
147 return empty;
150 /* Compute bounds on the host array "pa" based on the corresponding
151 * accessed elements in "arrays"
152 * and collect all references to the array.
153 * Store the results in "info".
155 * If the array is zero-dimensional and does not contain structures,
156 * i.e., if the array is a scalar, we check whether it is read-only.
157 * We also check whether the array is accessed at all.
159 static int extract_array_info(struct gpu_prog *prog,
160 struct gpu_array_info *info, struct pet_array *pa,
161 __isl_keep isl_union_set *arrays)
163 int i, empty;
164 const char *name;
165 int n_index;
166 isl_pw_aff **bounds;
167 isl_set *accessed, *extent;
169 n_index = isl_set_dim(pa->extent, isl_dim_set);
170 name = isl_set_get_tuple_name(pa->extent);
171 bounds = isl_alloc_array(prog->ctx, isl_pw_aff *, n_index);
172 if (!bounds)
173 return -1;
175 info->space = isl_set_get_space(pa->extent);
176 info->name = strdup(name);
177 info->n_index = n_index;
178 info->bound = bounds;
179 info->linearize = prog->scop->options->linearize_device_arrays;
181 info->type = strdup(pa->element_type);
182 info->size = pa->element_size;
183 info->local = pa->declared && !pa->exposed;
184 info->has_compound_element = pa->element_is_record;
185 info->read_only_scalar = is_read_only_scalar(info, prog);
187 accessed = isl_union_set_extract_set(arrays,
188 isl_space_copy(info->space));
189 empty = isl_set_is_empty(accessed);
190 extent = compute_extent(pa, accessed);
191 isl_set_free(accessed);
192 info->extent = extent;
193 if (empty < 0)
194 return -1;
195 info->accessed = !empty;
196 for (i = 0; i < n_index; ++i) {
197 isl_set *dom;
198 isl_local_space *ls;
199 isl_aff *one;
200 isl_pw_aff *bound;
202 dom = isl_set_copy(extent);
203 dom = isl_set_project_out(dom, isl_dim_set, i + 1,
204 n_index - (i + 1));
205 dom = isl_set_project_out(dom, isl_dim_set, 0, i);
206 if (!isl_set_dim_has_upper_bound(dom, isl_dim_set, 0)) {
207 fprintf(stderr, "unable to determine extent of '%s' "
208 "in dimension %d\n", info->name, i);
209 dom = isl_set_free(dom);
211 bound = isl_set_dim_max(dom, 0);
212 dom = isl_pw_aff_domain(isl_pw_aff_copy(bound));
213 ls = isl_local_space_from_space(isl_set_get_space(dom));
214 one = isl_aff_zero_on_domain(ls);
215 one = isl_aff_add_constant_si(one, 1);
216 bound = isl_pw_aff_add(bound, isl_pw_aff_alloc(dom, one));
217 bound = isl_pw_aff_gist(bound, isl_set_copy(prog->context));
219 bounds[i] = bound;
220 if (!isl_pw_aff_is_cst(bound))
221 info->linearize = 1;
224 collect_references(prog, info);
226 return 0;
229 /* Remove independence from the order constraints "order" on array "array".
230 * Since the pairs of iterations in the filter relation of an independence
231 * are guaranteed to be completely independent by the user, there is
232 * no need to ensure that live ranges are ordered along thong pairs.
233 * We make an exception for local variables, though, as the independence
234 * guarantee does not apply to those.
236 * The order constraints are used in two places.
237 * Those on scalars are used in check_scalar_live_ranges to check if
238 * we need to force the scalar to be private. Any non-local scalar
239 * should not be forced scalar if it only appears in independent loops.
240 * Those on non-scalars are added to the coincidence constraints
241 * in compute_schedule because we do not support any array expansion.
242 * Accesses to non-local arrays should not prevent a loop from being
243 * considered coincident so we should indeed remove those constraints
244 * from the order constraints.
246 static __isl_give isl_union_map *remove_independences(struct gpu_prog *prog,
247 struct gpu_array_info *array, __isl_take isl_union_map *order)
249 int i;
251 for (i = 0; i < prog->scop->pet->n_independence; ++i) {
252 struct pet_independence *pi = prog->scop->pet->independences[i];
253 if (isl_union_set_contains(pi->local, array->space))
254 continue;
256 order = isl_union_map_subtract(order,
257 isl_union_map_copy(pi->filter));
260 return order;
263 /* For each array in "prog", store the (untagged) order dependences
264 * derived from the array in array->dep_order.
265 * In particular, consider all references that access the given array
266 * and take the order dependences that have one of these references
267 * as source. (Since an order dependence relates two references to
268 * the same array, the target of these order dependences will also
269 * be one of these references.)
270 * Additionally, store the union of these array->dep_order relations
271 * for all non-scalar arrays in prog->array_order.
273 void collect_order_dependences(struct gpu_prog *prog)
275 int i;
276 isl_space *space;
277 isl_union_map *accesses;
279 space = isl_union_map_get_space(prog->read);
280 prog->array_order = isl_union_map_empty(space);
282 accesses = isl_union_map_copy(prog->scop->tagged_reads);
283 accesses = isl_union_map_union(accesses,
284 isl_union_map_copy(prog->scop->tagged_may_writes));
285 accesses = isl_union_map_universe(accesses);
286 accesses = isl_union_map_apply_range(accesses,
287 isl_union_map_copy(prog->to_outer));
289 for (i = 0; i < prog->n_array; ++i) {
290 struct gpu_array_info *array = &prog->array[i];
291 isl_set *set;
292 isl_union_set *uset;
293 isl_union_map *order;
295 set = isl_set_universe(isl_space_copy(array->space));
296 uset = isl_union_set_from_set(set);
297 uset = isl_union_map_domain(
298 isl_union_map_intersect_range(isl_union_map_copy(accesses),
299 uset));
300 order = isl_union_map_copy(prog->scop->tagged_dep_order);
301 order = isl_union_map_intersect_domain(order, uset);
302 order = isl_union_map_zip(order);
303 order = isl_union_set_unwrap(isl_union_map_domain(order));
304 order = remove_independences(prog, array, order);
305 array->dep_order = order;
307 if (gpu_array_is_scalar(array) && !array->has_compound_element)
308 continue;
310 prog->array_order = isl_union_map_union(prog->array_order,
311 isl_union_map_copy(array->dep_order));
314 isl_union_map_free(accesses);
317 /* Construct a gpu_array_info for each array referenced by prog->scop and
318 * collect them in prog->array.
320 * The sizes are based on the extents and the set of possibly accessed
321 * elements by "prog".
322 * If there are any member accesses involved, then they are first mapped
323 * to the outer arrays of structs.
325 * If we are allowing live range reordering, then also set
326 * the dep_order field. Otherwise leave it NULL.
328 static int collect_array_info(struct gpu_prog *prog)
330 int i;
331 int r = 0;
332 isl_union_set *arrays;
334 arrays = isl_union_map_range(isl_union_map_copy(prog->read));
335 arrays = isl_union_set_union(arrays,
336 isl_union_map_range(isl_union_map_copy(prog->may_write)));
338 arrays = isl_union_set_apply(arrays,
339 isl_union_map_copy(prog->to_outer));
341 arrays = isl_union_set_coalesce(arrays);
343 prog->n_array = prog->scop->pet->n_array;
344 prog->array = isl_calloc_array(prog->ctx,
345 struct gpu_array_info, prog->n_array);
346 assert(prog->array);
347 for (i = 0; i < prog->scop->pet->n_array; ++i)
348 if (extract_array_info(prog, &prog->array[i],
349 prog->scop->pet->arrays[i], arrays) < 0)
350 r = -1;
352 isl_union_set_free(arrays);
354 if (prog->scop->options->live_range_reordering)
355 collect_order_dependences(prog);
357 return r;
360 static void free_array_info(struct gpu_prog *prog)
362 int i, j;
364 for (i = 0; i < prog->n_array; ++i) {
365 int n_index = prog->array[i].n_index;
366 free(prog->array[i].type);
367 free(prog->array[i].name);
368 for (j = 0; j < n_index; ++j)
369 isl_pw_aff_free(prog->array[i].bound[j]);
370 isl_space_free(prog->array[i].space);
371 isl_set_free(prog->array[i].extent);
372 free(prog->array[i].bound);
373 free(prog->array[i].refs);
374 isl_union_map_free(prog->array[i].dep_order);
376 free(prog->array);
379 /* Check if a gpu array is a scalar. A scalar is a value that is not stored
380 * as an array or through a pointer reference, but as a single data element.
381 * At the moment, scalars are represented as zero-dimensional arrays.
382 * Note that the single data element may be an entire structure.
384 int gpu_array_is_scalar(struct gpu_array_info *array)
386 return array->n_index == 0;
389 /* Is "array" a read-only scalar?
391 int gpu_array_is_read_only_scalar(struct gpu_array_info *array)
393 return array->read_only_scalar;
396 /* Return the set of parameter values for which the array has a positive
397 * size in all dimensions.
398 * If the sizes are only valid for some parameter values, then those
399 * constraints are also taken into account.
401 __isl_give isl_set *gpu_array_positive_size_guard(struct gpu_array_info *array)
403 int i;
404 isl_space *space;
405 isl_set *guard;
407 space = isl_space_params(isl_space_copy(array->space));
408 guard = isl_set_universe(space);
410 for (i = 0; i < array->n_index; ++i) {
411 isl_pw_aff *bound;
412 isl_set *guard_i, *zero;
414 bound = isl_pw_aff_copy(array->bound[i]);
415 guard_i = isl_pw_aff_nonneg_set(isl_pw_aff_copy(bound));
416 zero = isl_pw_aff_zero_set(bound);
417 guard_i = isl_set_subtract(guard_i, zero);
418 guard = isl_set_intersect(guard, guard_i);
421 return guard;
424 /* Internal data structure for extract_size_of_type.
425 * "type" specifies the name of the space that we want to extract.
426 * "res" is used to store the subset of that space.
428 struct ppcg_extract_size_data {
429 const char *type;
430 isl_set *res;
433 /* This function is called for each set in a union_set.
434 * If the name of the set matches data->type, we store the
435 * set in data->res.
437 static int extract_size_of_type(__isl_take isl_set *size, void *user)
439 struct ppcg_extract_size_data *data = user;
440 const char *name;
442 name = isl_set_get_tuple_name(size);
443 if (name && !strcmp(name, data->type)) {
444 data->res = size;
445 return -1;
448 isl_set_free(size);
449 return 0;
452 /* Given a union map { kernel[i] -> *[...] },
453 * return the range in the space called "type" for the kernel with
454 * sequence number "id".
456 static __isl_give isl_set *extract_sizes(__isl_keep isl_union_map *sizes,
457 const char *type, int id)
459 isl_space *space;
460 isl_set *dom;
461 isl_union_set *local_sizes;
462 struct ppcg_extract_size_data data = { type, NULL };
464 if (!sizes)
465 return NULL;
467 space = isl_union_map_get_space(sizes);
468 space = isl_space_set_from_params(space);
469 space = isl_space_add_dims(space, isl_dim_set, 1);
470 space = isl_space_set_tuple_name(space, isl_dim_set, "kernel");
471 dom = isl_set_universe(space);
472 dom = isl_set_fix_si(dom, isl_dim_set, 0, id);
474 local_sizes = isl_union_set_apply(isl_union_set_from_set(dom),
475 isl_union_map_copy(sizes));
476 isl_union_set_foreach_set(local_sizes, &extract_size_of_type, &data);
477 isl_union_set_free(local_sizes);
478 return data.res;
481 /* Given a singleton set, extract the first (at most *len) elements
482 * of the single integer tuple into *sizes and update *len if needed.
484 static void read_sizes_from_set(__isl_take isl_set *set, int *sizes, int *len)
486 int i;
487 int dim;
489 if (!set)
490 return;
492 dim = isl_set_dim(set, isl_dim_set);
493 if (dim < *len)
494 *len = dim;
496 for (i = 0; i < *len; ++i) {
497 isl_val *v;
499 v = isl_set_plain_get_val_if_fixed(set, isl_dim_set, i);
500 assert(v);
502 sizes[i] = isl_val_get_num_si(v);
503 isl_val_free(v);
506 isl_set_free(set);
509 /* Add the map { kernel[id] -> type[sizes] } to gen->used_sizes,
510 * if the option debug->dump_sizes is set.
512 static void set_used_sizes(struct gpu_gen *gen, const char *type, int id,
513 int *sizes, int len)
515 int i;
516 isl_space *space;
517 isl_map *map;
519 if (!gen->options->debug->dump_sizes)
520 return;
522 space = isl_union_map_get_space(gen->used_sizes);
523 space = isl_space_set_from_params(space);
524 space = isl_space_add_dims(space, isl_dim_set, 1);
525 space = isl_space_set_tuple_name(space, isl_dim_set, "kernel");
526 space = isl_space_from_domain(space);
527 space = isl_space_add_dims(space, isl_dim_out, len);
528 space = isl_space_set_tuple_name(space, isl_dim_out, type);
530 map = isl_map_universe(space);
531 map = isl_map_fix_si(map, isl_dim_in, 0, id);
532 for (i = 0; i < len; ++i)
533 map = isl_map_fix_si(map, isl_dim_out, i, sizes[i]);
535 gen->used_sizes = isl_union_map_add_map(gen->used_sizes, map);
538 /* Extract user specified "tile" sizes from the "sizes" command line option,
539 * defaulting to option->tile_size in each dimension.
540 * *tile_len contains the maximum number of tile sizes needed.
541 * Update *tile_len to the number of specified tile sizes, if any, and
542 * return a pointer to the tile sizes (or NULL on error).
543 * Add the effectively used sizes to gen->used_sizes.
545 static int *read_tile_sizes(struct gpu_gen *gen, int *tile_len)
547 int n;
548 int *tile_size;
549 isl_set *size;
551 tile_size = isl_alloc_array(gen->ctx, int, *tile_len);
552 if (!tile_size)
553 return NULL;
554 for (n = 0; n < *tile_len; ++n)
555 tile_size[n] = gen->options->tile_size;
557 size = extract_sizes(gen->sizes, "tile", gen->kernel_id);
558 read_sizes_from_set(size, tile_size, tile_len);
559 set_used_sizes(gen, "tile", gen->kernel_id, tile_size, *tile_len);
561 return tile_size;
564 /* Extract user specified "block" sizes from the "sizes" command line option,
565 * after filling in some potentially useful defaults.
567 static void read_block_sizes(struct ppcg_kernel *kernel,
568 __isl_keep isl_union_map *sizes)
570 isl_set *size;
572 if (kernel->n_block > 3)
573 kernel->n_block = 3;
574 switch (kernel->n_block) {
575 case 1:
576 kernel->block_dim[0] = 512;
577 break;
578 case 2:
579 kernel->block_dim[0] = 32;
580 kernel->block_dim[1] = 16;
581 break;
582 default:
583 kernel->block_dim[0] = 32;
584 kernel->block_dim[1] = 4;
585 kernel->block_dim[2] = 4;
586 break;
589 size = extract_sizes(sizes, "block", kernel->id);
590 read_sizes_from_set(size, kernel->block_dim, &kernel->n_block);
593 /* Extract user specified "grid" sizes from the "sizes" command line option,
594 * after filling in some potentially useful defaults.
596 static void read_grid_sizes(struct ppcg_kernel *kernel,
597 __isl_keep isl_union_map *sizes)
599 isl_set *size;
601 if (kernel->n_grid > 2)
602 kernel->n_grid = 2;
603 switch (kernel->n_grid) {
604 case 1:
605 kernel->grid_dim[0] = 32768;
606 break;
607 default:
608 kernel->grid_dim[0] = 256;
609 kernel->grid_dim[1] = 256;
610 break;
613 size = extract_sizes(sizes, "grid", kernel->id);
614 read_sizes_from_set(size, kernel->grid_dim, &kernel->n_grid);
617 /* Extract user specified grid and block sizes from the gen->sizes
618 * command line option after filling in some potentially useful defaults.
619 * Store the extracted sizes in "kernel".
620 * Add the effectively used sizes to gen->used_sizes.
622 static void read_grid_and_block_sizes(struct ppcg_kernel *kernel,
623 struct gpu_gen *gen)
625 read_block_sizes(kernel, gen->sizes);
626 read_grid_sizes(kernel, gen->sizes);
627 set_used_sizes(gen, "block", kernel->id,
628 kernel->block_dim, kernel->n_block);
629 set_used_sizes(gen, "grid", kernel->id,
630 kernel->grid_dim, kernel->n_grid);
633 static void *free_stmts(struct gpu_stmt *stmts, int n)
635 int i;
637 if (!stmts)
638 return NULL;
640 for (i = 0; i < n; ++i) {
641 struct gpu_stmt_access *access, *next;
643 for (access = stmts[i].accesses; access; access = next) {
644 next = access->next;
645 isl_id_free(access->ref_id);
646 isl_map_free(access->access);
647 isl_map_free(access->tagged_access);
648 free(access);
651 isl_id_free(stmts[i].id);
653 free(stmts);
655 return NULL;
658 /* Construct a map from a domain of dimensionality "len"
659 * to a domain of dimensionality "len" + "tile_len" that tiles
660 * the "tile_len" coordinates starting at "first".
661 * In particular, [s_i] -> [s_i / tile_size[i], s_i % tile_size[i]].
662 * "dim" prescribes the parameters.
664 static __isl_give isl_map *tile(__isl_take isl_space *dim, int len,
665 int first, int tile_len, int *tile_size)
667 int i;
668 isl_basic_map *bmap;
669 isl_constraint *c;
670 isl_local_space *ls;
672 dim = isl_space_add_dims(dim, isl_dim_in, len);
673 dim = isl_space_add_dims(dim, isl_dim_out, len + tile_len);
674 bmap = isl_basic_map_universe(isl_space_copy(dim));
675 ls = isl_local_space_from_space(dim);
677 for (i = 0; i < len - tile_len; ++i) {
678 int j = i < first ? i : i + tile_len;
679 int k = i < first ? i : i + 2 * tile_len;
681 c = isl_equality_alloc(isl_local_space_copy(ls));
682 c = isl_constraint_set_coefficient_si(c, isl_dim_in, j, -1);
683 c = isl_constraint_set_coefficient_si(c, isl_dim_out, k, 1);
684 bmap = isl_basic_map_add_constraint(bmap, c);
687 for (i = 0; i < tile_len; ++i) {
688 c = isl_equality_alloc(isl_local_space_copy(ls));
689 c = isl_constraint_set_coefficient_si(c, isl_dim_in,
690 first + i, -1);
691 c = isl_constraint_set_coefficient_si(c, isl_dim_out,
692 first + i, tile_size[i]);
693 c = isl_constraint_set_coefficient_si(c, isl_dim_out,
694 first + i + tile_len, 1);
695 bmap = isl_basic_map_add_constraint(bmap, c);
697 c = isl_inequality_alloc(isl_local_space_copy(ls));
698 c = isl_constraint_set_coefficient_si(c, isl_dim_out,
699 first + i + tile_len, 1);
700 bmap = isl_basic_map_add_constraint(bmap, c);
702 c = isl_inequality_alloc(isl_local_space_copy(ls));
703 c = isl_constraint_set_coefficient_si(c, isl_dim_out,
704 first + i + tile_len, -1);
705 c = isl_constraint_set_constant_si(c, tile_size[i] - 1);
706 bmap = isl_basic_map_add_constraint(bmap, c);
709 isl_local_space_free(ls);
711 return isl_map_from_basic_map(bmap);
714 /* Construct a map from a domain of dimensionality "len"
715 * to a domain of dimensionality "len" + "wrap_len" that "wraps"
716 * the "wrap_len" coordinates starting at "first" according to "wrap_size".
717 * In particular, [s_i] -> [s_i, s_i % wrap_size[i]].
718 * To do so, we need extra variables corresponding to [s_i / wrap_size[i]],
719 * that are projected out at the end.
720 * "dim" prescribes the parameters.
722 static __isl_give isl_map *wrap(__isl_take isl_space *dim, int len,
723 int first, int wrap_len, int *wrap_size)
725 int i;
726 isl_basic_map *bmap;
727 isl_constraint *c;
728 isl_local_space *ls;
730 dim = isl_space_add_dims(dim, isl_dim_in, len);
731 dim = isl_space_add_dims(dim, isl_dim_out, len + 2 * wrap_len);
732 bmap = isl_basic_map_universe(isl_space_copy(dim));
733 ls = isl_local_space_from_space(dim);
735 for (i = 0; i < len; ++i) {
736 int k = i < first + wrap_len ? i : i + 2 * wrap_len;
738 c = isl_equality_alloc(isl_local_space_copy(ls));
739 c = isl_constraint_set_coefficient_si(c, isl_dim_in, i, -1);
740 c = isl_constraint_set_coefficient_si(c, isl_dim_out, k, 1);
741 bmap = isl_basic_map_add_constraint(bmap, c);
744 for (i = 0; i < wrap_len; ++i) {
745 c = isl_equality_alloc(isl_local_space_copy(ls));
746 c = isl_constraint_set_coefficient_si(c, isl_dim_out,
747 first + i, -1);
748 c = isl_constraint_set_coefficient_si(c, isl_dim_out,
749 first + wrap_len + i, 1);
750 c = isl_constraint_set_coefficient_si(c, isl_dim_out,
751 first + 2 * wrap_len + i, wrap_size[i]);
752 bmap = isl_basic_map_add_constraint(bmap, c);
754 c = isl_inequality_alloc(isl_local_space_copy(ls));
755 c = isl_constraint_set_coefficient_si(c, isl_dim_out,
756 first + wrap_len + i, 1);
757 bmap = isl_basic_map_add_constraint(bmap, c);
759 c = isl_inequality_alloc(isl_local_space_copy(ls));
760 c = isl_constraint_set_coefficient_si(c, isl_dim_out,
761 first + wrap_len + i, -1);
762 c = isl_constraint_set_constant_si(c, wrap_size[i] - 1);
763 bmap = isl_basic_map_add_constraint(bmap, c);
766 isl_local_space_free(ls);
768 bmap = isl_basic_map_project_out(bmap, isl_dim_out,
769 first + 2 * wrap_len, wrap_len);
771 return isl_map_from_basic_map(bmap);
774 /* Tile the B loops over the tile sizes and then tile/wrap
775 * the T1 loops over the blocks.
777 static __isl_give isl_union_map *tile_schedule(struct gpu_gen *gen,
778 __isl_take isl_union_map *sched)
780 struct ppcg_kernel *kernel = gen->kernel;
781 isl_space *dim;
782 isl_map *tiling, *block_tiling;
784 dim = isl_union_map_get_space(sched);
785 tiling = tile(isl_space_copy(dim), gen->untiled_len,
786 gen->tile_first, kernel->tile_len, kernel->tile_size);
788 if (gen->options->wrap)
789 block_tiling = wrap(dim, gen->untiled_len + kernel->tile_len,
790 gen->tile_first, kernel->n_grid, kernel->grid_dim);
791 else
792 block_tiling = tile(dim, gen->untiled_len + kernel->tile_len,
793 gen->tile_first, kernel->n_grid, kernel->grid_dim);
795 gen->tiled_len = gen->untiled_len + kernel->tile_len + kernel->n_grid;
797 tiling = isl_map_apply_range(tiling, block_tiling);
799 sched = isl_union_map_apply_range(sched,
800 isl_union_map_from_map(tiling));
802 gen->shared_len = gen->tile_first + kernel->tile_len + kernel->n_grid;
804 return sched;
807 /* Equate the "T1P" iterators in the tiled schedule "sched"
808 * to the block dimensions.
810 static __isl_give isl_union_map *parametrize_tiled_schedule(
811 struct gpu_gen *gen, __isl_take isl_union_map *sched)
813 struct ppcg_kernel *kernel = gen->kernel;
814 isl_space *dim;
815 isl_set *par;
817 dim = isl_union_map_get_space(sched);
818 par = parametrization(dim, gen->tiled_len,
819 gen->tile_first + kernel->n_grid, kernel->block_ids);
820 sched = isl_union_map_intersect_range(sched,
821 isl_union_set_from_set(par));
823 return sched;
826 /* Tile/wrap the P1 loops over the threads.
828 static __isl_give isl_union_map *thread_tile_schedule(struct gpu_gen *gen,
829 __isl_take isl_union_map *sched)
831 struct ppcg_kernel *kernel = gen->kernel;
832 isl_space *dim;
833 isl_map *tiling;
834 isl_set *par;
836 dim = isl_union_map_get_space(sched);
838 if (gen->options->wrap)
839 tiling = wrap(isl_space_copy(dim), gen->tiled_len,
840 gen->shared_len, kernel->n_block, kernel->block_dim);
841 else
842 tiling = tile(isl_space_copy(dim), gen->tiled_len,
843 gen->shared_len, kernel->n_block, kernel->block_dim);
844 gen->thread_tiled_len = gen->tiled_len + kernel->n_block;
846 sched = isl_union_map_apply_range(sched,
847 isl_union_map_from_map(tiling));
849 par = parametrization(dim, gen->thread_tiled_len,
850 gen->tile_first + kernel->tile_len +
851 kernel->n_grid + kernel->n_block, kernel->thread_ids);
852 sched = isl_union_map_intersect_range(sched,
853 isl_union_set_from_set(par));
855 gen->shared_len = gen->tile_first + kernel->tile_len + kernel->n_grid;
857 return sched;
860 /* If the user asked for it, scale the shared memory tile loops
861 * (T1T and T2) of "sched" by kernel->tile_size[i].
862 * If we are not performing "wrapping", then additionally scale the T1P
863 * loops by kernel->grid_dim[i].
865 static __isl_give isl_union_map *scale_tile_loops(struct gpu_gen *gen,
866 __isl_take isl_union_map *sched)
868 struct ppcg_kernel *kernel = gen->kernel;
869 int i;
870 isl_space *dim;
871 isl_basic_map *scale;
872 isl_constraint *c;
873 isl_local_space *ls;
875 if (!gen->options->scale_tile_loops)
876 return sched;
878 dim = isl_union_map_get_space(sched);
879 dim = isl_space_add_dims(dim, isl_dim_in, gen->tiled_len);
880 dim = isl_space_add_dims(dim, isl_dim_out, gen->tiled_len);
881 scale = isl_basic_map_universe(isl_space_copy(dim));
882 ls = isl_local_space_from_space(dim);
884 for (i = 0; i < gen->tiled_len; ++i) {
885 int f = 1;
887 if (i >= gen->tile_first &&
888 i < gen->tile_first + kernel->n_grid) {
889 f = kernel->tile_size[i - gen->tile_first];
890 if (!gen->options->wrap)
891 f *= kernel->grid_dim[i - gen->tile_first];
892 } else if (i >= gen->tile_first + kernel->n_grid &&
893 i < gen->tile_first + kernel->n_grid +
894 kernel->tile_len) {
895 f = kernel->tile_size[i -
896 (gen->tile_first + kernel->n_grid)];
899 c = isl_equality_alloc(isl_local_space_copy(ls));
900 c = isl_constraint_set_coefficient_si(c, isl_dim_in, i, f);
901 c = isl_constraint_set_coefficient_si(c, isl_dim_out, i, -1);
902 scale = isl_basic_map_add_constraint(scale, c);
905 isl_local_space_free(ls);
907 sched = isl_union_map_apply_range(sched,
908 isl_union_map_from_map(isl_map_from_basic_map(scale)));
910 return sched;
913 /* If we are not performing "wrapping" and if the user asked for it,
914 * scale the thread tile loops (P1T) of "sched" by kernel->block_dim[i].
916 static __isl_give isl_union_map *scale_thread_tile_loops(struct gpu_gen *gen,
917 __isl_take isl_union_map *sched)
919 int i;
920 isl_space *dim;
921 isl_basic_map *scale;
922 isl_constraint *c;
923 isl_local_space *ls;
925 if (gen->options->wrap)
926 return sched;
927 if (!gen->options->scale_tile_loops)
928 return sched;
930 dim = isl_union_map_get_space(sched);
931 dim = isl_space_add_dims(dim, isl_dim_in, gen->thread_tiled_len);
932 dim = isl_space_add_dims(dim, isl_dim_out, gen->thread_tiled_len);
933 scale = isl_basic_map_universe(isl_space_copy(dim));
934 ls = isl_local_space_from_space(dim);
936 for (i = 0; i < gen->thread_tiled_len; ++i) {
937 int f = 1;
939 if (i >= gen->shared_len &&
940 i < gen->shared_len + gen->kernel->n_block)
941 f = gen->kernel->block_dim[i - gen->shared_len];
943 c = isl_equality_alloc(isl_local_space_copy(ls));
944 c = isl_constraint_set_coefficient_si(c, isl_dim_in, i, f);
945 c = isl_constraint_set_coefficient_si(c, isl_dim_out, i, -1);
946 scale = isl_basic_map_add_constraint(scale, c);
949 isl_local_space_free(ls);
951 sched = isl_union_map_apply_range(sched,
952 isl_union_map_from_map(isl_map_from_basic_map(scale)));
954 return sched;
957 /* If we are not performing "wrapping" and if the user asked for it,
958 * scale the "n_tile" loops starting at "first" of "sched" by gen->block_dim[i].
960 static __isl_give isl_union_map *scale_access_tile_loops(struct gpu_gen *gen,
961 __isl_take isl_union_map *sched, int len, int first, int n_tile)
963 int i;
964 isl_space *dim;
965 isl_basic_map *scale;
966 isl_constraint *c;
967 isl_local_space *ls;
969 if (gen->options->wrap)
970 return sched;
971 if (!gen->options->scale_tile_loops)
972 return sched;
974 dim = isl_union_map_get_space(sched);
975 dim = isl_space_add_dims(dim, isl_dim_in, len);
976 dim = isl_space_add_dims(dim, isl_dim_out, len);
977 scale = isl_basic_map_universe(isl_space_copy(dim));
978 ls = isl_local_space_from_space(dim);
980 for (i = 0; i < len; ++i) {
981 int f = 1;
983 if (i >= first && i < first + n_tile)
984 f = gen->kernel->block_dim[i - first];
986 c = isl_equality_alloc(isl_local_space_copy(ls));
987 c = isl_constraint_set_coefficient_si(c, isl_dim_in, i, f);
988 c = isl_constraint_set_coefficient_si(c, isl_dim_out, i, -1);
989 scale = isl_basic_map_add_constraint(scale, c);
992 isl_local_space_free(ls);
994 sched = isl_union_map_apply_range(sched,
995 isl_union_map_from_map(isl_map_from_basic_map(scale)));
997 return sched;
1000 /* Add parameters p[i] with identifiers "ids" to "set",
1001 * with bounds to 0 <= p[i] < size[i].
1003 __isl_give isl_set *add_bounded_parameters(__isl_take isl_set *set,
1004 int *size, __isl_keep isl_id_list *ids)
1006 int i, len;
1007 unsigned nparam;
1009 len = isl_id_list_n_id(ids);
1010 nparam = isl_set_dim(set, isl_dim_param);
1011 set = isl_set_add_dims(set, isl_dim_param, len);
1013 for (i = 0; i < len; ++i) {
1014 isl_id *id;
1016 id = isl_id_list_get_id(ids, i);
1017 set = isl_set_set_dim_id(set, isl_dim_param, nparam + i, id);
1018 set = isl_set_lower_bound_si(set, isl_dim_param, nparam + i, 0);
1019 set = isl_set_upper_bound_si(set, isl_dim_param,
1020 nparam + i, size[i] - 1);
1023 return set;
1026 /* Add "len" parameters p[i] with identifiers "ids" and intersect "set"
1027 * with
1029 * { : 0 <= p[i] < size[i] }
1031 * or an overapproximation.
1033 static __isl_give isl_set *add_bounded_parameters_dynamic(
1034 __isl_take isl_set *set, __isl_keep isl_multi_pw_aff *size,
1035 __isl_keep isl_id_list *ids)
1037 int i, len;
1038 unsigned nparam;
1039 isl_space *space;
1040 isl_local_space *ls;
1042 len = isl_multi_pw_aff_dim(size, isl_dim_out);
1043 nparam = isl_set_dim(set, isl_dim_param);
1044 set = isl_set_add_dims(set, isl_dim_param, len);
1046 for (i = 0; i < len; ++i) {
1047 isl_id *id;
1049 id = isl_id_list_get_id(ids, i);
1050 set = isl_set_set_dim_id(set, isl_dim_param, nparam + i, id);
1053 space = isl_space_params(isl_set_get_space(set));
1054 ls = isl_local_space_from_space(space);
1055 for (i = 0; i < len; ++i) {
1056 isl_pw_aff *param, *size_i, *zero;
1057 isl_set *bound;
1059 param = isl_pw_aff_var_on_domain(isl_local_space_copy(ls),
1060 isl_dim_param, nparam + i);
1062 size_i = isl_multi_pw_aff_get_pw_aff(size, i);
1063 bound = isl_pw_aff_lt_set(isl_pw_aff_copy(param), size_i);
1064 bound = isl_set_from_basic_set(isl_set_simple_hull(bound));
1065 set = isl_set_intersect_params(set, bound);
1067 zero = isl_pw_aff_zero_on_domain(isl_local_space_copy(ls));
1068 bound = isl_pw_aff_ge_set(param, zero);
1069 set = isl_set_intersect_params(set, bound);
1071 isl_local_space_free(ls);
1073 return set;
1076 /* Construct a map from an access to group->array to the corresponding
1077 * shared/private memory tile.
1078 * The map is of the form
1080 * { [D[i] -> A[a]] -> T[t] }
1082 * where D represents the initial shared_len dimensions
1083 * of the computed schedule.
1085 static __isl_give isl_map *shift_access(struct gpu_array_ref_group *group)
1087 struct gpu_array_tile *tile;
1088 isl_multi_aff *tiling;
1090 tile = group->private_tile;
1091 if (!tile)
1092 tile = group->shared_tile;
1094 tiling = isl_multi_aff_copy(tile->tiling);
1096 return isl_map_from_multi_aff(tiling);
1099 /* Given a schedule that iterates over all elements in a piece of an array,
1100 * perform tiling/wrapping over the threads.
1102 * In particular, we tile the final iterators so that the final thread
1103 * dimension runs over the final array dimension.
1104 * However, if those final iterators have only a single iteration,
1105 * we try to tile earlier iterators instead.
1107 static __isl_give isl_map *tile_access_schedule(struct gpu_gen *gen,
1108 __isl_take isl_map *sched)
1110 isl_space *dim;
1111 isl_union_map *usched;
1112 isl_map *tiling;
1113 isl_set *par;
1114 unsigned nvar = isl_map_dim(sched, isl_dim_out);
1115 int n_tile;
1116 int first;
1118 n_tile = gen->kernel->n_block;
1119 if (n_tile > nvar) {
1120 int i;
1121 sched = isl_map_insert_dims(sched,
1122 isl_dim_out, 0, n_tile - nvar);
1123 for (i = 0; i < n_tile - nvar; ++i)
1124 sched = isl_map_fix_si(sched, isl_dim_out, i, 0);
1125 nvar = n_tile;
1128 first = nvar - n_tile;
1130 for (; first > 0; first --)
1131 if (!map_plain_is_fixed(sched, isl_dim_out, first + n_tile - 1))
1132 break;
1134 dim = isl_map_get_space(sched);
1135 dim = isl_space_params(dim);
1136 if (gen->options->wrap)
1137 tiling = wrap(isl_space_copy(dim), nvar, first,
1138 n_tile, gen->kernel->block_dim);
1139 else
1140 tiling = tile(isl_space_copy(dim), nvar, first,
1141 n_tile, gen->kernel->block_dim);
1142 sched = isl_map_apply_range(sched, tiling);
1144 par = parametrization(dim, nvar + n_tile, first + n_tile,
1145 gen->kernel->thread_ids);
1146 sched = isl_map_intersect_range(sched, par);
1148 usched = isl_union_map_from_map(sched);
1149 usched = scale_access_tile_loops(gen, usched, nvar + n_tile,
1150 first, n_tile);
1151 sched = isl_map_from_union_map(usched);
1153 return sched;
1156 /* Return the union of all tagged access relations in the group.
1158 static __isl_give isl_union_map *group_tagged_access_relation(
1159 struct gpu_array_ref_group *group)
1161 int i;
1162 isl_union_map *access;
1164 access = isl_union_map_empty(isl_map_get_space(group->access));
1165 for (i = 0; i < group->n_ref; ++i) {
1166 isl_map *map_i;
1168 map_i = isl_map_copy(group->refs[i]->tagged_access);
1169 access = isl_union_map_union(access,
1170 isl_union_map_from_map(map_i));
1173 return access;
1176 /* Return the extent of "array", recomputed from the bounds.
1177 * The recomputed extent may be simpler than the original extent.
1179 static __isl_give isl_set *array_extent(struct gpu_array_info *array)
1181 int i;
1182 isl_id *id;
1183 isl_space *space;
1184 isl_local_space *ls;
1185 isl_set *extent;
1187 id = isl_set_get_tuple_id(array->extent);
1188 space = isl_set_get_space(array->extent);
1189 extent = isl_set_universe(isl_space_copy(space));
1190 ls = isl_local_space_from_space(space);
1191 for (i = 0; i < array->n_index; ++i) {
1192 isl_pw_aff *bound;
1193 isl_aff *aff;
1194 isl_pw_aff *index;
1195 isl_set *lt;
1197 extent = isl_set_lower_bound_si(extent, isl_dim_set, i, 0);
1199 aff = isl_aff_var_on_domain(isl_local_space_copy(ls),
1200 isl_dim_set, i);
1201 index = isl_pw_aff_from_aff(aff);
1202 bound = isl_pw_aff_copy(array->bound[i]);
1203 bound = isl_pw_aff_from_range(bound);
1204 bound = isl_pw_aff_add_dims(bound, isl_dim_in, array->n_index);
1205 bound = isl_pw_aff_set_tuple_id(bound, isl_dim_in,
1206 isl_id_copy(id));
1207 lt = isl_pw_aff_lt_set(index, bound);
1208 extent = isl_set_intersect(extent, lt);
1210 isl_local_space_free(ls);
1211 isl_id_free(id);
1213 return extent;
1216 /* Return a map from the first shared_len dimensions of the computed
1217 * schedule to the array tile in
1218 * global memory that corresponds to the shared memory copy.
1220 * In particular, return a map
1222 * { D[i] -> A[a] }
1224 * with constraints
1226 * tile_offset(i) <= a <= tile_offset(i) + tile_size - 1 (1)
1228 * and
1230 * 0 <= a <= array_size - 1 (2)
1232 * Note that if some stride has been detected (i.e., when
1233 * group->shared_tile->bound[i].shift is set), then a in (1) refers
1234 * to the shifted and scaled down version.
1236 * Constraints (1) are obtained by mapping the size constraints on the
1237 * shared/private memory tile back to the access relation.
1238 * Constraints (2) are obtained from the (recomputed) extent.
1240 static __isl_give isl_map *group_tile(struct gpu_array_ref_group *group)
1242 int i;
1243 int n_index = group->array->n_index;
1244 isl_map *tile;
1245 isl_space *space;
1246 isl_set *local;
1247 isl_set *extent;
1249 space = isl_multi_aff_get_space(group->shared_tile->tiling);
1250 space = isl_space_range(space);
1251 local = isl_set_universe(space);
1252 for (i = 0; i < n_index; ++i) {
1253 isl_val *bound;
1255 local = isl_set_lower_bound_si(local, isl_dim_set, i, 0);
1256 bound = isl_val_copy(group->shared_tile->bound[i].size);
1257 bound = isl_val_sub_ui(bound, 1);
1258 local = isl_set_upper_bound_val(local, isl_dim_set, i, bound);
1260 local = isl_set_preimage_multi_aff(local,
1261 isl_multi_aff_copy(group->shared_tile->tiling));
1262 tile = isl_set_unwrap(local);
1263 extent = array_extent(group->array);
1264 tile = isl_map_intersect_range(tile, extent);
1266 return tile;
1269 /* Given a mapping "iterator_map" from the AST schedule to a domain,
1270 * return the corresponding mapping from the AST schedule to
1271 * to the first shared_len dimensions of the schedule computed by PPCG.
1273 static __isl_give isl_pw_multi_aff *compute_sched_to_shared(struct gpu_gen *gen,
1274 __isl_take isl_pw_multi_aff *iterator_map)
1276 isl_union_map *umap;
1277 isl_space *space;
1278 isl_map *map, *sched;;
1280 space = isl_space_range(isl_pw_multi_aff_get_space(iterator_map));
1281 space = isl_space_from_domain(space);
1282 space = isl_space_add_dims(space, isl_dim_out, gen->shared_len);
1284 umap = isl_union_map_copy(gen->shared_sched);
1285 umap = isl_union_map_apply_range(umap,
1286 isl_union_map_copy(gen->shared_proj));
1287 map = isl_union_map_extract_map(umap, space);
1288 isl_union_map_free(umap);
1290 sched = isl_map_preimage_domain_pw_multi_aff(map, iterator_map);
1291 sched = isl_map_detect_equalities(sched);
1293 return isl_pw_multi_aff_from_map(sched);
1296 /* Set unroll[j] if the input dimension j is involved in
1297 * the index expression represented by ma.
1299 static int check_unroll(__isl_take isl_set *set, __isl_take isl_multi_aff *ma,
1300 void *user)
1302 int i, j;
1303 int n_in = isl_multi_aff_dim(ma, isl_dim_in);
1304 int n_out = isl_multi_aff_dim(ma, isl_dim_out);
1305 int *unroll = user;
1307 for (i = 0; i < n_out; ++i) {
1308 isl_aff *aff;
1310 aff = isl_multi_aff_get_aff(ma, i);
1311 for (j = 0; j < n_in; ++j)
1312 if (isl_aff_involves_dims(aff, isl_dim_in, j, 1))
1313 unroll[j] = 1;
1314 isl_aff_free(aff);
1317 isl_set_free(set);
1318 isl_multi_aff_free(ma);
1319 return 0;
1322 /* Given an array pos mapping input dimensions to the corresponding
1323 * output dimension, construct the corresponding map.
1325 static __isl_give isl_map *permutation(__isl_take isl_space *dim,
1326 int *pos, int len)
1328 int i;
1329 isl_constraint *c;
1330 isl_basic_map *bmap;
1331 isl_local_space *ls;
1333 dim = isl_space_add_dims(dim, isl_dim_in, len);
1334 dim = isl_space_add_dims(dim, isl_dim_out, len);
1335 bmap = isl_basic_map_universe(isl_space_copy(dim));
1336 ls = isl_local_space_from_space(dim);
1338 for (i = 0; i < len; ++i) {
1339 c = isl_equality_alloc(isl_local_space_copy(ls));
1340 c = isl_constraint_set_coefficient_si(c, isl_dim_in, i,
1341 -1);
1342 c = isl_constraint_set_coefficient_si(c, isl_dim_out, pos[i],
1344 bmap = isl_basic_map_add_constraint(bmap, c);
1346 isl_local_space_free(ls);
1348 return isl_map_from_basic_map(bmap);
1351 /* Remove the private tiles from all array reference groups,
1352 * except for the groups of arrays that are marked force_private.
1354 static void remove_private_tiles(struct gpu_gen *gen)
1356 int i, j;
1358 for (i = 0; i < gen->kernel->n_array; ++i) {
1359 struct gpu_local_array_info *local = &gen->kernel->array[i];
1361 if (local->force_private)
1362 continue;
1364 for (j = 0; j < local->n_group; ++j) {
1365 struct gpu_array_ref_group *group = local->groups[j];
1367 group->private_tile =
1368 gpu_array_tile_free(group->private_tile);
1373 /* Find all loops involved in any of the index expressions for any of
1374 * the private accesses, move them innermost and then mark them as
1375 * requiring unrolling by setting gen->first_unroll.
1376 * The loops involved should all be parallel because of the checks
1377 * we performed in check_private_group_access. Moving them innermost
1378 * is therefore a valid transformation.
1380 * If any of the arrays are marked force_private, however, then
1381 * those loops may not be parallel with respect to the marked arrays.
1382 * If any of the loops would have to be moved innermost for the
1383 * (non forced) private accesses and if there are any force_private
1384 * arrays, then we revert the decision to map the selected arrays
1385 * to private memory. An alternative solution would be to expand
1386 * the force_private arrays.
1388 * Loops up to gen->shared_len are generated before the mapping to
1389 * threads is applied. They should therefore be ignored.
1391 * We compute the hidden equalities of the schedule first
1392 * since we will need them in our calls to isl_pw_multi_aff_from_map
1393 * and because we want to make sure that the same equalities
1394 * are also available to the code generator.
1396 static __isl_give isl_union_map *interchange_for_unroll(struct gpu_gen *gen,
1397 __isl_take isl_union_map *sched)
1399 struct ppcg_kernel *kernel = gen->kernel;
1400 int i, j;
1401 int unroll[gen->thread_tiled_len];
1402 int perm[gen->thread_tiled_len];
1403 isl_space *dim;
1404 isl_map *permute;
1405 int len = gen->shared_len + kernel->n_parallel + kernel->n_block;
1407 gen->first_unroll = -1;
1409 sched = isl_union_map_detect_equalities(sched);
1410 for (i = 0; i < gen->thread_tiled_len; ++i)
1411 unroll[i] = 0;
1412 for (i = 0; i < kernel->n_array; ++i) {
1413 struct gpu_local_array_info *array = &kernel->array[i];
1415 for (j = 0; j < array->n_group; ++j) {
1416 isl_union_map *access;
1417 isl_map *acc;
1418 isl_pw_multi_aff *pma;
1420 if (!array->groups[j]->private_tile)
1421 continue;
1423 access = gpu_array_ref_group_access_relation(
1424 array->groups[j], 1, 1);
1425 access = isl_union_map_apply_domain(access,
1426 isl_union_map_copy(sched));
1428 acc = isl_map_from_union_map(access);
1429 pma = isl_pw_multi_aff_from_map(acc);
1430 isl_pw_multi_aff_foreach_piece(pma,
1431 &check_unroll, unroll);
1433 isl_pw_multi_aff_free(pma);
1437 for (i = gen->shared_len; i < len; ++i)
1438 if (unroll[i])
1439 break;
1441 if (i >= len)
1442 return sched;
1444 for (i = len; i < gen->thread_tiled_len; ++i)
1445 if (unroll[i])
1446 return sched;
1448 if (kernel->any_force_private) {
1449 remove_private_tiles(gen);
1450 return sched;
1453 j = 0;
1454 for (i = 0; i < gen->shared_len; ++i)
1455 perm[i] = j++;
1456 for (i = gen->shared_len; i < gen->thread_tiled_len; ++i)
1457 if (!unroll[i])
1458 perm[i] = j++;
1459 gen->first_unroll = j - gen->shared_len;
1460 for (i = gen->shared_len; i < len; ++i)
1461 if (unroll[i])
1462 perm[i] = j++;
1464 dim = isl_union_map_get_space(sched);
1465 permute = permutation(dim, perm, gen->thread_tiled_len);
1466 sched = isl_union_map_apply_range(sched,
1467 isl_union_map_from_map(permute));
1469 return sched;
1472 /* Construct a map with input the shared tile loops and the loops that
1473 * will be wrapped around the threads that relates these later loops
1474 * to the thread indices and then projects them out.
1476 static __isl_give isl_map *compute_privatization(struct gpu_gen *gen)
1478 struct ppcg_kernel *kernel = gen->kernel;
1479 isl_map *priv;
1480 isl_map *tiling;
1481 isl_map *proj;
1482 isl_set *par;
1483 isl_space *dim;
1485 dim = isl_union_map_get_space(gen->shared_sched);
1487 if (gen->options->wrap)
1488 tiling = wrap(isl_space_copy(dim),
1489 gen->shared_len + kernel->n_block,
1490 gen->shared_len, kernel->n_block, kernel->block_dim);
1491 else
1492 tiling = tile(isl_space_copy(dim),
1493 gen->shared_len + kernel->n_block,
1494 gen->shared_len, kernel->n_block, kernel->block_dim);
1496 priv = tiling;
1498 par = parametrization(dim, gen->shared_len + 2 * kernel->n_block,
1499 gen->tile_first + kernel->tile_len +
1500 kernel->n_grid + kernel->n_block, kernel->thread_ids);
1502 priv = isl_map_align_params(priv, isl_set_get_space(par));
1503 priv = isl_map_intersect_range(priv, par);
1505 dim = isl_map_get_space(priv);
1506 dim = isl_space_drop_dims(dim, isl_dim_in, 0, isl_space_dim(dim, isl_dim_in));
1507 dim = isl_space_drop_dims(dim, isl_dim_out, 0, isl_space_dim(dim, isl_dim_out));
1508 proj = projection(dim, gen->shared_len + 2 * kernel->n_block,
1509 gen->shared_len);
1511 priv = isl_map_apply_range(priv, proj);
1513 return priv;
1516 /* If max_shared_memory is not set to infinity (-1), then make
1517 * sure that the total amount of shared memory required by the
1518 * array reference groups mapped to shared memory is no larger
1519 * than this maximum.
1521 * We apply a greedy approach and discard (keep in global memory)
1522 * those groups that would result in a total memory size that
1523 * is larger than the maximum.
1525 * This function should be called after any function that may
1526 * affect the decision on whether to place a reference group
1527 * in private, shared or global memory.
1529 static void check_shared_memory_bound(struct gpu_gen *gen)
1531 int i, j;
1532 isl_val *left, *size;
1534 if (gen->options->max_shared_memory < 0)
1535 return;
1537 left = isl_val_int_from_si(gen->ctx, gen->options->max_shared_memory);
1539 for (i = 0; i < gen->kernel->n_array; ++i) {
1540 struct gpu_local_array_info *local = &gen->kernel->array[i];
1542 for (j = 0; j < local->n_group; ++j) {
1543 struct gpu_array_ref_group *group;
1545 group = local->groups[j];
1546 if (group->private_tile)
1547 continue;
1548 if (!group->shared_tile)
1549 continue;
1551 size = gpu_array_tile_size(group->shared_tile);
1552 size = isl_val_mul_ui(size, local->array->size);
1554 if (isl_val_le(size, left)) {
1555 left = isl_val_sub(left, size);
1556 continue;
1558 isl_val_free(size);
1560 group->shared_tile =
1561 gpu_array_tile_free(group->shared_tile);
1565 isl_val_free(left);
1568 /* Compute a tiling for all the array reference groups.
1570 static void compute_group_tilings(struct gpu_gen *gen)
1572 int i, j;
1574 for (i = 0; i < gen->kernel->n_array; ++i) {
1575 struct gpu_local_array_info *array = &gen->kernel->array[i];
1577 for (j = 0; j < array->n_group; ++j)
1578 gpu_array_ref_group_compute_tiling(array->groups[j]);
1582 /* Take tiled_sched, project it onto the shared tile loops and
1583 * the loops that will be wrapped over the threads and
1584 * store the result in gen->shared_sched.
1585 * Also compute a projection that projects out the loops that will be
1586 * wrapped over the threads and store this projection in gen->shared_proj.
1588 static void compute_shared_sched(struct gpu_gen *gen)
1590 isl_space *dim;
1591 isl_map *proj;
1592 isl_set *par;
1593 isl_union_map *sched;
1595 sched = isl_union_map_copy(gen->tiled_sched);
1597 dim = isl_union_map_get_space(sched);
1598 proj = projection(dim, gen->tiled_len,
1599 gen->shared_len + gen->kernel->n_block);
1600 sched = isl_union_map_apply_range(sched, isl_union_map_from_map(proj));
1602 dim = isl_union_map_get_space(sched);
1603 proj = projection(dim, gen->shared_len + gen->kernel->n_block,
1604 gen->shared_len);
1606 gen->shared_sched = sched;
1607 gen->shared_proj = isl_union_map_from_map(proj);
1610 /* Compute the size of a bounding box around the origin and "set",
1611 * where "set" is assumed to contain only non-negative elements.
1612 * In particular, compute the maximal value of "set" in each direction
1613 * and add one.
1615 static __isl_give isl_multi_pw_aff *extract_size(__isl_take isl_set *set,
1616 __isl_take isl_set *context)
1618 int i, n;
1619 isl_multi_pw_aff *mpa;
1621 context = isl_set_params(context);
1622 n = isl_set_dim(set, isl_dim_set);
1623 mpa = isl_multi_pw_aff_zero(isl_set_get_space(set));
1624 for (i = 0; i < n; ++i) {
1625 isl_space *space;
1626 isl_aff *one;
1627 isl_pw_aff *bound;
1629 bound = isl_set_dim_max(isl_set_copy(set), i);
1630 bound = isl_pw_aff_coalesce(bound);
1631 bound = isl_pw_aff_gist(bound, isl_set_copy(context));
1633 space = isl_pw_aff_get_domain_space(bound);
1634 one = isl_aff_zero_on_domain(isl_local_space_from_space(space));
1635 one = isl_aff_add_constant_si(one, 1);
1636 bound = isl_pw_aff_add(bound, isl_pw_aff_from_aff(one));
1637 mpa = isl_multi_pw_aff_set_pw_aff(mpa, i, bound);
1639 isl_set_free(set);
1640 isl_set_free(context);
1642 return mpa;
1645 /* Compute the effective grid size as a list of the sizes in each dimension.
1647 * The grid size specified by the user or set by default
1648 * in read_grid_sizes() and applied by the block filter,
1649 * may be too large for the given code in the sense that
1650 * it may contain blocks that don't need to execute anything.
1651 * We therefore don't return this grid size, but instead the
1652 * smallest grid size that ensures that all blocks that actually
1653 * execute code are included in the grid.
1655 * We first extract a description of the grid, i.e., the possible values
1656 * of the block ids, from the domain elements in "domain" and
1657 * kernel->block_filter.
1658 * The block ids are parameters in kernel->block_filter.
1659 * We simply need to change them into set dimensions.
1661 * Then, for each block dimension, we compute the maximal value of the block id
1662 * and add one.
1664 static __isl_give isl_multi_pw_aff *extract_grid_size(
1665 struct ppcg_kernel *kernel, __isl_take isl_union_set *domain)
1667 int i;
1668 isl_set *grid;
1670 domain = isl_union_set_intersect(domain,
1671 isl_union_set_copy(kernel->block_filter));
1672 grid = isl_union_set_params(domain);
1673 grid = isl_set_from_params(grid);
1674 grid = isl_set_add_dims(grid, isl_dim_set, kernel->n_grid);
1675 for (i = 0; i < kernel->n_grid; ++i) {
1676 int pos;
1677 isl_id *id;
1679 id = isl_id_list_get_id(kernel->block_ids, i);
1680 pos = isl_set_find_dim_by_id(grid, isl_dim_param, id);
1681 isl_id_free(id);
1682 assert(pos >= 0);
1683 grid = isl_set_equate(grid, isl_dim_param, pos, isl_dim_set, i);
1684 grid = isl_set_project_out(grid, isl_dim_param, pos, 1);
1687 return extract_size(grid, isl_set_copy(kernel->context));
1690 /* Compute the size of a fixed bounding box around the origin and "set",
1691 * where "set" is assumed to contain only non-negative elements,
1692 * and store the results in "size".
1693 * In particular, compute the maximal value of "set" in each direction
1694 * and add one.
1696 static void extract_fixed_size(__isl_take isl_set *set, int *size)
1698 int i, n;
1699 isl_local_space *ls;
1700 isl_aff *obj;
1702 n = isl_set_dim(set, isl_dim_set);
1703 ls = isl_local_space_from_space(isl_set_get_space(set));
1704 obj = isl_aff_zero_on_domain(ls);
1705 for (i = 0; i < n; ++i) {
1706 isl_val *max;
1708 obj = isl_aff_set_coefficient_si(obj, isl_dim_in, i, 1);
1709 max = isl_set_max_val(set, obj);
1710 size[i] = isl_val_get_num_si(max) + 1;
1711 isl_val_free(max);
1712 obj = isl_aff_set_coefficient_si(obj, isl_dim_in, i, 0);
1714 isl_aff_free(obj);
1715 isl_set_free(set);
1718 /* Compute the effective block size as a list of the sizes in each dimension
1719 * and store the sizes in kernel->block_dim.
1721 * The block size specified by the user or set by default
1722 * in read_block_sizes() and applied by the thread filter,
1723 * may be too large for the given code in the sense that
1724 * it may contain threads that don't need to execute anything.
1725 * We therefore update this block size in kernel->block_dim
1726 * to the smallest block size that ensures that all threads
1727 * that actually execute code are included in the block.
1729 * The possible values of the thread ids is obtained from
1730 * the domain elements "domain" and kernel->thread_filter.
1731 * The current implementation eliminates all parameters, ensuring
1732 * that the size is a fixed constant in each dimension.
1733 * In principle we could also compute parametric sizes.
1734 * We would have to make sure to project out all b%d and t%d parameters,
1735 * however.
1737 static void extract_block_size(struct ppcg_kernel *kernel,
1738 __isl_take isl_union_set *domain)
1740 int i;
1741 int nparam;
1742 isl_set *block;
1744 domain = isl_union_set_intersect(domain,
1745 isl_union_set_copy(kernel->thread_filter));
1746 block = isl_union_set_params(domain);
1747 block = isl_set_from_params(block);
1748 block = isl_set_add_dims(block, isl_dim_set, kernel->n_block);
1749 for (i = 0; i < kernel->n_block; ++i) {
1750 int pos;
1751 isl_id *id;
1753 id = isl_id_list_get_id(kernel->thread_ids, i);
1754 pos = isl_set_find_dim_by_id(block, isl_dim_param, id);
1755 isl_id_free(id);
1756 assert(pos >= 0);
1757 block = isl_set_equate(block, isl_dim_param, pos,
1758 isl_dim_set, i);
1760 nparam = isl_set_dim(block, isl_dim_param);
1761 block = isl_set_project_out(block, isl_dim_param, 0, nparam);
1763 extract_fixed_size(block, kernel->block_dim);
1766 struct ppcg_kernel *ppcg_kernel_free(struct ppcg_kernel *kernel)
1768 int i, j;
1770 if (!kernel)
1771 return NULL;
1773 isl_id_list_free(kernel->block_ids);
1774 isl_id_list_free(kernel->thread_ids);
1775 isl_multi_pw_aff_free(kernel->grid_size);
1776 isl_set_free(kernel->context);
1777 isl_union_set_free(kernel->core);
1778 isl_union_set_free(kernel->arrays);
1779 isl_space_free(kernel->space);
1780 isl_ast_node_free(kernel->tree);
1781 isl_union_set_free(kernel->block_filter);
1782 isl_union_set_free(kernel->thread_filter);
1784 for (i = 0; i < kernel->n_array; ++i) {
1785 struct gpu_local_array_info *array = &kernel->array[i];
1787 for (j = 0; j < array->n_group; ++j)
1788 gpu_array_ref_group_free(array->groups[j]);
1789 free(array->groups);
1791 isl_pw_aff_list_free(array->bound);
1793 free(kernel->array);
1795 for (i = 0; i < kernel->n_var; ++i) {
1796 free(kernel->var[i].name);
1797 isl_vec_free(kernel->var[i].size);
1799 free(kernel->var);
1800 free(kernel->tile_size);
1802 free(kernel);
1804 return NULL;
1807 /* Wrapper around ppcg_kernel_free for use as a isl_id_set_free_user callback.
1809 static void ppcg_kernel_free_wrap(void *user)
1811 struct ppcg_kernel *kernel = user;
1813 ppcg_kernel_free(kernel);
1816 static void create_kernel_var(isl_ctx *ctx, struct gpu_array_ref_group *group,
1817 struct ppcg_kernel_var *var)
1819 int j;
1820 struct gpu_array_tile *tile;
1821 isl_printer *p;
1822 char *name;
1824 var->array = group->array;
1826 tile = group->private_tile;
1827 var->type = ppcg_access_private;
1828 if (!tile) {
1829 tile = group->shared_tile;
1830 var->type = ppcg_access_shared;
1833 p = isl_printer_to_str(ctx);
1834 p = gpu_array_ref_group_print_name(group, p);
1835 var->name = isl_printer_get_str(p);
1836 isl_printer_free(p);
1838 var->size = isl_vec_alloc(ctx, group->array->n_index);
1840 for (j = 0; j < group->array->n_index; ++j)
1841 var->size = isl_vec_set_element_val(var->size, j,
1842 isl_val_copy(tile->bound[j].size));
1845 static void create_kernel_vars(struct gpu_gen *gen, struct ppcg_kernel *kernel)
1847 int i, j, n;
1849 n = 0;
1850 for (i = 0; i < kernel->n_array; ++i) {
1851 struct gpu_local_array_info *array = &kernel->array[i];
1853 for (j = 0; j < array->n_group; ++j) {
1854 struct gpu_array_ref_group *group = array->groups[j];
1855 if (group->private_tile || group->shared_tile)
1856 ++n;
1860 kernel->n_var = n;
1861 kernel->var = isl_calloc_array(gen->ctx, struct ppcg_kernel_var, n);
1862 assert(kernel->var);
1864 n = 0;
1865 for (i = 0; i < kernel->n_array; ++i) {
1866 struct gpu_local_array_info *array = &kernel->array[i];
1868 for (j = 0; j < array->n_group; ++j) {
1869 struct gpu_array_ref_group *group = array->groups[j];
1870 if (!group->private_tile && !group->shared_tile)
1871 continue;
1872 create_kernel_var(gen->ctx, group, &kernel->var[n]);
1873 ++n;
1878 /* Replace "pa" by the zero function defined over the universe domain
1879 * in the space of "pa".
1881 static __isl_give isl_pw_aff *set_universally_zero(__isl_take isl_pw_aff *pa)
1883 isl_space *space;
1884 isl_aff *zero;
1886 space = isl_space_domain(isl_pw_aff_get_space(pa));
1887 isl_pw_aff_free(pa);
1888 zero = isl_aff_zero_on_domain(isl_local_space_from_space(space));
1890 return isl_pw_aff_from_aff(zero);
1893 /* The sizes of the arrays on the host that have been computed by
1894 * extract_array_info may depend on the parameters. Use the extra
1895 * constraints on the parameters that are valid at "host_domain"
1896 * to simplify these expressions and store the results in kernel->array.
1898 * We only need these localized bounds for arrays that are accessed
1899 * by the current kernel. If we have found at least one reference group
1900 * then the array is accessed by the kernel. If the array has compound
1901 * elements then we skipped the construction of array reference groups.
1903 * The resulting sizes may be functions that are nowhere defined
1904 * in case the access function cannot possibly access anything inside
1905 * the kernel for some reason. If so, they are replaced by the zero
1906 * function. Since the access function cannot actually access anything,
1907 * there is no harm in printing the array sizes as zero.
1909 static void localize_bounds(struct gpu_gen *gen, struct ppcg_kernel *kernel,
1910 __isl_keep isl_set *host_domain)
1912 int i, j;
1913 isl_set *context;
1915 context = isl_set_copy(host_domain);
1916 context = isl_set_params(context);
1918 for (i = 0; i < kernel->n_array; ++i) {
1919 struct gpu_local_array_info *local = &kernel->array[i];
1920 isl_pw_aff_list *bound;
1921 int n_index;
1923 if (local->n_group == 0 && !local->array->has_compound_element)
1924 continue;
1926 n_index = local->array->n_index;
1927 bound = isl_pw_aff_list_alloc(gen->ctx, n_index);
1929 for (j = 0; j < n_index; ++j) {
1930 isl_pw_aff *pwaff;
1931 int empty;
1933 pwaff = isl_pw_aff_copy(local->array->bound[j]);
1934 pwaff = isl_pw_aff_gist(pwaff, isl_set_copy(context));
1935 empty = isl_pw_aff_is_empty(pwaff);
1936 if (empty < 0)
1937 pwaff = isl_pw_aff_free(pwaff);
1938 else if (empty)
1939 pwaff = set_universally_zero(pwaff);
1940 bound = isl_pw_aff_list_add(bound, pwaff);
1943 local->n_index = n_index;
1944 local->bound = bound;
1946 isl_set_free(context);
1949 /* Create the array of gpu_local_array_info structures "array"
1950 * inside "kernel". The number of elements in this array is
1951 * the same as the number of arrays in "prog".
1952 * Initialize the "array" field of each local array to point
1953 * to the corresponding array in "prog".
1955 static struct ppcg_kernel *ppcg_kernel_create_local_arrays(
1956 struct ppcg_kernel *kernel, struct gpu_prog *prog)
1958 int i;
1959 isl_ctx *ctx;
1961 ctx = isl_set_get_ctx(prog->context);
1962 kernel->array = isl_calloc_array(ctx,
1963 struct gpu_local_array_info, prog->n_array);
1964 if (!kernel->array)
1965 return ppcg_kernel_free(kernel);
1966 kernel->n_array = prog->n_array;
1968 for (i = 0; i < prog->n_array; ++i)
1969 kernel->array[i].array = &prog->array[i];
1971 return kernel;
1974 /* Find the element in gen->stmt that has the given "id".
1975 * Return NULL if no such gpu_stmt can be found.
1977 static struct gpu_stmt *find_stmt(struct gpu_prog *prog, __isl_keep isl_id *id)
1979 int i;
1981 for (i = 0; i < prog->n_stmts; ++i) {
1982 if (id == prog->stmts[i].id)
1983 break;
1986 return i < prog->n_stmts ? &prog->stmts[i] : NULL;
1989 void ppcg_kernel_stmt_free(void *user)
1991 int i;
1992 struct ppcg_kernel_stmt *stmt = user;
1994 if (!stmt)
1995 return;
1997 switch (stmt->type) {
1998 case ppcg_kernel_copy:
1999 isl_ast_expr_free(stmt->u.c.index);
2000 isl_ast_expr_free(stmt->u.c.local_index);
2001 break;
2002 case ppcg_kernel_domain:
2003 isl_id_to_ast_expr_free(stmt->u.d.ref2expr);
2004 break;
2005 case ppcg_kernel_sync:
2006 break;
2009 free(stmt);
2012 /* Set the options of "context" to
2014 * { space -> [x] : x >= first }
2016 static __isl_give isl_ast_build *set_unroll(
2017 __isl_take isl_ast_build *build, __isl_take isl_space *space,
2018 int first)
2020 isl_ctx *ctx;
2021 isl_map *unroll;
2022 isl_union_map *opt;
2024 ctx = isl_ast_build_get_ctx(build);
2026 space = isl_space_from_domain(space);
2027 space = isl_space_add_dims(space, isl_dim_out, 1);
2028 space = isl_space_set_tuple_name(space, isl_dim_out, "unroll");
2029 unroll = isl_map_universe(space);
2030 unroll = isl_map_lower_bound_si(unroll, isl_dim_out, 0, first);
2031 opt = isl_union_map_from_map(unroll);
2033 build = isl_ast_build_set_options(build, opt);
2035 return build;
2038 /* Extend the schedule "schedule" with the part of "extension"
2039 * starting at "first" up to "len".
2041 static __isl_give isl_union_map *extend_schedule(
2042 __isl_take isl_union_map *schedule,
2043 __isl_take isl_union_map *extension, int first, int len)
2045 isl_space *space;
2046 isl_map *proj;
2047 isl_union_map *umap;
2048 isl_set *set;
2050 space = isl_union_map_get_space(schedule);
2051 space = isl_space_set_from_params(space);
2052 space = isl_space_add_dims(space, isl_dim_set, len);
2053 proj = isl_set_identity(isl_set_universe(space));
2054 proj = isl_map_project_out(proj, isl_dim_out, 0, first);
2055 extension = isl_union_map_apply_range(extension,
2056 isl_union_map_from_map(proj));
2058 schedule = isl_union_map_range_product(schedule, extension);
2060 return schedule;
2063 /* Return the gpu_stmt_access in the list "accesses" that corresponds
2064 * to "ref_id".
2066 static struct gpu_stmt_access *find_access(struct gpu_stmt_access *accesses,
2067 __isl_keep isl_id *ref_id)
2069 struct gpu_stmt_access *access;
2071 for (access = accesses; access; access = access->next)
2072 if (access->ref_id == ref_id)
2073 return access;
2075 return NULL;
2078 /* Return the index of the array called "name" in the list of arrays.
2080 static int find_array_index(struct gpu_gen *gen, const char *name)
2082 int i;
2084 for (i = 0; i < gen->prog->n_array; ++i)
2085 if (!strcmp(name, gen->prog->array[i].name))
2086 return i;
2088 return -1;
2091 /* Internal data structure for the index and AST expression transformation
2092 * callbacks for pet_stmt_build_ast_exprs.
2094 * "accesses" is the list of gpu_stmt_access in the statement.
2095 * "iterator_map" expresses the statement iterators in terms of
2096 * the AST loop iterators.
2097 * "sched2shared" expresses the first shared_len dimensions of
2098 * the computed schedule in terms of the AST loop iterators.
2100 * The following fields are set in transform_index and used in transform_expr.
2101 * "array" is the array that is being accessed.
2102 * "global" is set if the global array is accessed (rather than
2103 * shared/private memory).
2104 * "local_array" refers to information on the array specialized
2105 * to the current kernel.
2107 struct ppcg_transform_data {
2108 struct gpu_gen *gen;
2109 struct gpu_stmt_access *accesses;
2110 isl_pw_multi_aff *iterator_map;
2111 isl_pw_multi_aff *sched2shared;
2113 struct gpu_array_info *array;
2114 int global;
2115 struct gpu_local_array_info *local_array;
2118 /* Return the name of the outer array (of structs) accessed by "access".
2120 static const char *get_outer_array_name(__isl_keep isl_map *access)
2122 isl_space *space;
2123 const char *name;
2125 space = isl_space_range(isl_map_get_space(access));
2126 while (space && isl_space_is_wrapping(space))
2127 space = isl_space_domain(isl_space_unwrap(space));
2128 name = isl_space_get_tuple_name(space, isl_dim_set);
2129 isl_space_free(space);
2131 return name;
2134 /* Return a pointer to the gpu_array_ref_group in "local"
2135 * that contains the reference "access".
2136 * Return NULL if no such group can be found.
2138 static struct gpu_array_ref_group *find_ref_group(
2139 struct gpu_local_array_info *local, struct gpu_stmt_access *access)
2141 int i, j;
2143 for (i = 0; i < local->n_group; ++i) {
2144 struct gpu_array_ref_group *group = local->groups[i];
2146 for (j = 0; j < group->n_ref; ++j)
2147 if (group->refs[j] == access)
2148 return group;
2151 return NULL;
2154 /* Index transformation callback for pet_stmt_build_ast_exprs.
2156 * "index" expresses the array indices in terms of statement iterators
2158 * We first reformulate "index" in terms of the AST loop iterators.
2159 * Then we check if we are accessing the global array or
2160 * a shared/private copy. In the former case, we simply return
2161 * the updated index. If "index" is an affine expression rather
2162 * than an array access, then we also return the updated index here.
2164 * If no reference groups have been computed for the array,
2165 * then we can only be accessing the global array.
2167 * Otherwise, we apply the tiling to the index.
2168 * This tiling is of the form
2170 * [D -> A] -> T
2172 * The index is of the form
2174 * L -> A
2176 * We update the tiling to refer to the AST loop iterators
2178 * [L -> A] -> T
2180 * and modify index to keep track of those iterators
2182 * L -> [L -> A]
2184 * Combining these two yields a tiled index expression in terms
2185 * of the AST loop iterators
2187 * L -> T
2189 static __isl_give isl_multi_pw_aff *transform_index(
2190 __isl_take isl_multi_pw_aff *index, __isl_keep isl_id *ref_id,
2191 void *user)
2193 struct ppcg_transform_data *data = user;
2194 struct gpu_stmt_access *access;
2195 struct gpu_array_ref_group *group;
2196 struct gpu_array_tile *tile;
2197 isl_pw_multi_aff *iterator_map;
2198 int i;
2199 const char *name;
2200 isl_space *space;
2201 isl_multi_pw_aff *tiling;
2202 isl_pw_multi_aff *pma;
2203 isl_multi_pw_aff *mpa;
2205 data->array = NULL;
2207 iterator_map = isl_pw_multi_aff_copy(data->iterator_map);
2208 index = isl_multi_pw_aff_pullback_pw_multi_aff(index, iterator_map);
2210 access = find_access(data->accesses, ref_id);
2211 if (!access)
2212 return index;
2213 if (!isl_map_has_tuple_name(access->access, isl_dim_out))
2214 return index;
2216 name = get_outer_array_name(access->access);
2217 i = find_array_index(data->gen, name);
2218 if (i < 0)
2219 isl_die(isl_multi_pw_aff_get_ctx(index), isl_error_internal,
2220 "cannot find array",
2221 return isl_multi_pw_aff_free(index));
2222 data->array = &data->gen->prog->array[i];
2223 data->local_array = &data->gen->kernel->array[i];
2225 group = find_ref_group(data->local_array, access);
2226 if (!group) {
2227 data->global = 1;
2228 return index;
2231 tile = group->private_tile;
2232 if (!tile)
2233 tile = group->shared_tile;
2234 data->global = !tile;
2235 if (!tile)
2236 return index;
2238 space = isl_space_range(isl_multi_pw_aff_get_space(index));
2239 space = isl_space_map_from_set(space);
2240 pma = isl_pw_multi_aff_identity(space);
2241 pma = isl_pw_multi_aff_product(
2242 isl_pw_multi_aff_copy(data->sched2shared), pma);
2243 tiling = isl_multi_pw_aff_from_multi_aff(
2244 isl_multi_aff_copy(tile->tiling));
2245 tiling = isl_multi_pw_aff_pullback_pw_multi_aff(tiling, pma);
2247 space = isl_space_domain(isl_multi_pw_aff_get_space(index));
2248 space = isl_space_map_from_set(space);
2249 mpa = isl_multi_pw_aff_identity(space);
2250 index = isl_multi_pw_aff_range_product(mpa, index);
2251 index = isl_multi_pw_aff_pullback_multi_pw_aff(tiling, index);
2253 return index;
2256 /* Dereference "expr" by adding an index [0].
2257 * The original "expr" is assumed not to have any indices.
2259 * If "expr" is a member access, then the dereferencing needs
2260 * to be applied to the structure argument of this member access.
2262 static __isl_give isl_ast_expr *dereference(__isl_take isl_ast_expr *expr)
2264 isl_ctx *ctx;
2265 isl_ast_expr *arg0, *res;
2266 isl_ast_expr_list *list;
2268 arg0 = isl_ast_expr_get_op_arg(expr, 0);
2269 if (!arg0)
2270 return isl_ast_expr_free(expr);
2271 if (isl_ast_expr_get_type(arg0) == isl_ast_expr_op &&
2272 isl_ast_expr_get_op_type(arg0) == isl_ast_op_member) {
2273 isl_ast_expr *arg;
2275 arg = isl_ast_expr_get_op_arg(arg0, 0);
2276 arg = dereference(arg);
2277 arg0 = isl_ast_expr_set_op_arg(arg0, 0, arg);
2278 expr = isl_ast_expr_set_op_arg(expr, 0, arg0);
2280 return expr;
2282 isl_ast_expr_free(arg0);
2284 ctx = isl_ast_expr_get_ctx(expr);
2285 res = isl_ast_expr_from_val(isl_val_zero(ctx));
2286 list = isl_ast_expr_list_from_ast_expr(res);
2287 res = isl_ast_expr_get_op_arg(expr, 0);
2288 res = isl_ast_expr_access(res, list);
2289 isl_ast_expr_free(expr);
2291 return res;
2294 /* Linearize the index expression "expr" based on the array bounds
2295 * of "array".
2297 * That is, transform expression
2299 * A[i_0][i_1]...[i_n]
2301 * to
2303 * A[(..((i_0 * b_1 + i_1) ... ) * b_n + i_n]
2305 * where b_0, b_1, ..., b_n are the bounds on the array.
2307 * If the base of "expr" is a member access, then the linearization needs
2308 * to be applied to the structure argument of this member access.
2310 * In the base case, if "expr" has no arguments (other than the name of
2311 * the array), then we are passing an entire array to a function.
2312 * In this case, there is nothing to linearize.
2313 * Note that at this point an expression with no arguments can
2314 * only be an entire array because the scalar case and
2315 * the case of single struct are handled by the caller.
2317 * If the number of specified index expressions in "expr"
2318 * is smaller than the dimension of the accessed array,
2319 * then the missing i_j also do not appear in the linearized expression.
2320 * Furthermore, since such an expression does not refer to a single
2321 * element while the default linearized expression would refer to
2322 * a single element, we return the expression
2324 * A + (..((i_0 * b_1 + i_1) ... ) * b_n]
2326 * instead. Note that because of the special case handling above,
2327 * we can assume here that here that there is at least one index expression.
2329 __isl_give isl_ast_expr *gpu_local_array_info_linearize_index(
2330 struct gpu_local_array_info *array, __isl_take isl_ast_expr *expr)
2332 int i, n;
2333 isl_ctx *ctx;
2334 isl_set *context;
2335 isl_ast_expr *arg0;
2336 isl_ast_expr *res;
2337 isl_ast_expr_list *list;
2338 isl_ast_build *build;
2340 arg0 = isl_ast_expr_get_op_arg(expr, 0);
2341 if (isl_ast_expr_get_type(arg0) == isl_ast_expr_op &&
2342 isl_ast_expr_get_op_type(arg0) == isl_ast_op_member) {
2343 isl_ast_expr *arg;
2345 arg = isl_ast_expr_get_op_arg(arg0, 0);
2346 arg = gpu_local_array_info_linearize_index(array, arg);
2347 arg0 = isl_ast_expr_set_op_arg(arg0, 0, arg);
2348 expr = isl_ast_expr_set_op_arg(expr, 0, arg0);
2350 return expr;
2352 isl_ast_expr_free(arg0);
2354 if (isl_ast_expr_get_op_n_arg(expr) == 1)
2355 return expr;
2357 ctx = isl_ast_expr_get_ctx(expr);
2358 context = isl_set_universe(isl_space_params_alloc(ctx, 0));
2359 build = isl_ast_build_from_context(context);
2361 n = isl_ast_expr_get_op_n_arg(expr);
2362 res = isl_ast_expr_get_op_arg(expr, 1);
2363 for (i = 1; i < array->n_index; ++i) {
2364 isl_pw_aff *bound_i;
2365 isl_ast_expr *expr_i;
2367 bound_i = isl_pw_aff_list_get_pw_aff(array->bound, i);
2368 expr_i = isl_ast_build_expr_from_pw_aff(build, bound_i);
2369 res = isl_ast_expr_mul(res, expr_i);
2371 if (i + 1 >= n)
2372 continue;
2373 expr_i = isl_ast_expr_get_op_arg(expr, i + 1);
2374 res = isl_ast_expr_add(res, expr_i);
2377 isl_ast_build_free(build);
2379 if (1 + array->n_index > n) {
2380 res = isl_ast_expr_add(isl_ast_expr_get_op_arg(expr, 0), res);
2381 } else {
2382 list = isl_ast_expr_list_from_ast_expr(res);
2383 res = isl_ast_expr_get_op_arg(expr, 0);
2384 res = isl_ast_expr_access(res, list);
2387 isl_ast_expr_free(expr);
2389 return res;
2392 /* AST expression transformation callback for pet_stmt_build_ast_exprs.
2394 * If the AST expression refers to an array that is not accessed
2395 * at all, then this means the value of the expression is not used,
2396 * so we might as well print zero (NULL pointer) instead.
2398 * If the AST expression refers to a global scalar that is not
2399 * a read-only scalar, then its address was passed to the kernel and
2400 * we need to dereference it.
2402 * If the AST expression refers to an access to a global array,
2403 * then we linearize the access exploiting the bounds in data->local_array.
2405 static __isl_give isl_ast_expr *transform_expr(__isl_take isl_ast_expr *expr,
2406 __isl_keep isl_id *id, void *user)
2408 struct ppcg_transform_data *data = user;
2410 if (!data->array)
2411 return expr;
2412 if (!data->array->accessed) {
2413 isl_ctx *ctx;
2415 ctx = isl_ast_expr_get_ctx(expr);
2416 isl_ast_expr_free(expr);
2417 return isl_ast_expr_from_val(isl_val_zero(ctx));
2419 if (gpu_array_is_read_only_scalar(data->array))
2420 return expr;
2421 if (!data->global)
2422 return expr;
2423 if (data->array->n_index == 0)
2424 return dereference(expr);
2425 if (!data->array->linearize)
2426 return expr;
2428 return gpu_local_array_info_linearize_index(data->local_array, expr);
2431 /* This function is called for each instance of a user statement
2432 * in the kernel.
2434 * We attach a struct ppcg_kernel_stmt to the "node", containing
2435 * a computed AST expression for each access.
2436 * These AST expressions are computed from iterator_map,
2437 * which expresses the domain
2438 * elements in terms of the generated loops, and sched2shared,
2439 * which expresses the first shared_len dimensions of the schedule
2440 * computed by PPCG in terms of the generated loops.
2442 static __isl_give isl_ast_node *at_each_domain(__isl_take isl_ast_node *node,
2443 __isl_keep isl_ast_build *build, void *user)
2445 struct ppcg_transform_data data;
2446 struct gpu_gen *gen = (struct gpu_gen *) user;
2447 struct ppcg_kernel_stmt *stmt;
2448 isl_id *id;
2449 isl_pw_multi_aff *sched2shared;
2450 isl_map *map;
2451 isl_pw_multi_aff *iterator_map;
2452 isl_ast_expr *expr, *arg;
2453 isl_union_map *schedule;
2455 stmt = isl_calloc_type(gen->ctx, struct ppcg_kernel_stmt);
2456 if (!stmt)
2457 return isl_ast_node_free(node);
2459 expr = isl_ast_node_user_get_expr(node);
2460 arg = isl_ast_expr_get_op_arg(expr, 0);
2461 id = isl_ast_expr_get_id(arg);
2463 schedule = isl_ast_build_get_schedule(build);
2464 map = isl_map_reverse(isl_map_from_union_map(schedule));
2465 iterator_map = isl_pw_multi_aff_from_map(map);
2466 sched2shared = compute_sched_to_shared(gen,
2467 isl_pw_multi_aff_copy(iterator_map));
2469 stmt->type = ppcg_kernel_domain;
2470 stmt->u.d.stmt = find_stmt(gen->prog, id);
2471 if (!stmt->u.d.stmt)
2472 isl_die(gen->ctx, isl_error_internal,
2473 "statement not found", goto error);
2475 data.gen = gen;
2476 data.accesses = stmt->u.d.stmt->accesses;
2477 data.iterator_map = iterator_map;
2478 data.sched2shared = sched2shared;
2479 stmt->u.d.ref2expr = pet_stmt_build_ast_exprs(stmt->u.d.stmt->stmt,
2480 build, &transform_index, &data,
2481 &transform_expr, &data);
2483 isl_id_free(id);
2484 isl_pw_multi_aff_free(iterator_map);
2485 isl_pw_multi_aff_free(sched2shared);
2486 isl_ast_expr_free(arg);
2487 isl_ast_expr_free(expr);
2489 id = isl_id_alloc(gen->ctx, NULL, stmt);
2490 id = isl_id_set_free_user(id, &ppcg_kernel_stmt_free);
2491 return isl_ast_node_set_annotation(node, id);
2492 error:
2493 isl_id_free(id);
2494 isl_pw_multi_aff_free(iterator_map);
2495 ppcg_kernel_stmt_free(stmt);
2496 isl_pw_multi_aff_free(sched2shared);
2497 return isl_ast_node_free(node);
2500 /* This function is called when code has been generated for the shared
2501 * tile loops. The "schedule" refers only to the original statements.
2503 * We extend the schedule with that part of gen->local_sched that hasn't
2504 * been taken into account yet. This introduces parameters referring
2505 * to thread ids in the schedule, so we add them (with the appropriate
2506 * bounds to the context as well).
2507 * Finally, we set the appropriate unrolling options
2508 * if gen->first_unroll is set.
2510 static __isl_give isl_ast_node *create_domain_leaf(
2511 __isl_take isl_union_map *schedule, __isl_take isl_ast_build *build,
2512 void *user)
2514 struct gpu_gen *gen = (struct gpu_gen *) user;
2515 isl_space *space;
2516 isl_union_map *sched;
2517 isl_ast_node *tree;
2518 isl_set *set;
2519 isl_id_list *iterators;
2520 int n;
2522 schedule = extend_schedule(schedule,
2523 isl_union_map_copy(gen->local_sched),
2524 gen->shared_len, gen->thread_tiled_len);
2526 space = isl_ast_build_get_schedule_space(build);
2527 set = isl_set_universe(space);
2528 set = add_bounded_parameters(set, gen->kernel->block_dim,
2529 gen->kernel->thread_ids);
2530 build = isl_ast_build_restrict(build, set);
2532 n = gen->thread_tiled_len - gen->shared_len;
2534 if (gen->first_unroll >= 0) {
2535 space = isl_space_set_alloc(gen->ctx, 0, n);
2536 build = set_unroll(build, space, gen->first_unroll);
2538 iterators = ppcg_scop_generate_names(gen->prog->scop, n, "c");
2539 build = isl_ast_build_set_iterators(build, iterators);
2540 build = isl_ast_build_set_at_each_domain(build, &at_each_domain, gen);
2541 tree = isl_ast_build_node_from_schedule_map(build, schedule);
2542 isl_ast_build_free(build);
2544 return tree;
2547 /* This function is called for each statement node in the AST of the code
2548 * for copying to or from shared/private memory.
2549 * Attach a pointer to a ppcg_kernel_stmt representing the copy
2550 * statement to the node.
2551 * The statement name is "read" or "write", depending on whether we are
2552 * reading from global memory or writing to global memory.
2553 * The name of the T space is {shared,private}_<array>.
2555 * The schedule is of the form
2557 * type[A -> T] -> L
2559 * where A refers to a piece of an array and T to the corresponding
2560 * shifted tile. We split this schedule into mappings L -> A and L -> T
2561 * and store the corresponding expressions in stmt->index and stmt->local_index,
2562 * where stmt points to the ppcg_kernel_stmt that is attached to the node.
2564 static __isl_give isl_ast_node *attach_copy_stmt(__isl_take isl_ast_node *node,
2565 __isl_keep isl_ast_build *build, void *user)
2567 struct gpu_gen *gen = (struct gpu_gen *) user;
2568 struct ppcg_kernel_stmt *stmt;
2569 isl_id *id;
2570 isl_ast_expr *expr;
2571 isl_space *space;
2572 isl_map *access, *local_access, *map;
2573 isl_pw_multi_aff *pma;
2574 const char *type;
2575 int array_index;
2577 stmt = isl_calloc_type(gen->ctx, struct ppcg_kernel_stmt);
2578 if (!stmt)
2579 return isl_ast_node_free(node);
2581 access = isl_map_from_union_map(isl_ast_build_get_schedule(build));
2582 type = isl_map_get_tuple_name(access, isl_dim_in);
2583 stmt->u.c.read = !strcmp(type, "read");
2584 access = isl_map_reverse(access);
2585 space = isl_space_unwrap(isl_space_range(isl_map_get_space(access)));
2586 local_access = isl_map_copy(access);
2588 map = isl_map_domain_map(isl_map_universe(isl_space_copy(space)));
2589 id = isl_map_get_tuple_id(access, isl_dim_out);
2590 map = isl_map_set_tuple_id(map, isl_dim_in, id);
2591 access = isl_map_apply_range(access, map);
2592 pma = isl_pw_multi_aff_from_map(access);
2593 expr = isl_ast_build_access_from_pw_multi_aff(build, pma);
2594 stmt->u.c.index = expr;
2596 map = isl_map_range_map(isl_map_universe(space));
2597 id = isl_map_get_tuple_id(local_access, isl_dim_out);
2598 map = isl_map_set_tuple_id(map, isl_dim_in, id);
2599 local_access = isl_map_apply_range(local_access, map);
2600 pma = isl_pw_multi_aff_from_map(local_access);
2601 expr = isl_ast_build_access_from_pw_multi_aff(build, pma);
2602 stmt->u.c.local_index = expr;
2604 stmt->u.c.array = gen->copy_group->array;
2605 array_index = stmt->u.c.array - gen->prog->array;
2606 stmt->u.c.local_array = &gen->kernel->array[array_index];
2607 stmt->type = ppcg_kernel_copy;
2609 id = isl_id_alloc(gen->ctx, NULL, stmt);
2610 id = isl_id_set_free_user(id, &ppcg_kernel_stmt_free);
2611 return isl_ast_node_set_annotation(node, id);
2614 /* Given a schedule of the form
2616 * [S -> A] -> L
2618 * (with S the first shared_len dimensions of the computed schedule,
2619 * A the array and L the schedule correponding to the generated loops),
2620 * indicating where to copy the array elements that need to be copied,
2621 * construct code for performing the copying.
2623 * "group" is the array reference group that is being copied
2624 * "type" is either "read" or "write"
2625 * private is set if copying needs to be performed to/from registers
2627 * We first construct a mapping to a shifted tile of the array,
2629 * [S -> A] -> T(S,A) (1)
2631 * If private is set, then we also use this mapping as a schedule
2632 * (which is already thread-specific and will be completely unrolled).
2633 * Otherwise, we wrap/tile the range over the threads.
2634 * The result is
2636 * [S -> A] -> T'(S,A)
2638 * Combined with the given schedule, we have
2640 * [S -> A] -> [L -> T'(S,A)] (2)
2642 * From the shifted tile mapping, we construct a mapping
2644 * [S -> A] -> [A -> T(S,A)]
2646 * and apply it to the schedule (2), obtaining
2648 * [A -> T(S(L),A)] -> [L -> T'(S(L),A)]
2650 * Note that we can project out S because it is uniquely defined by L.
2652 static __isl_give isl_ast_node *copy_access(struct gpu_gen *gen,
2653 __isl_take isl_map *sched,
2654 const char *type, struct gpu_array_ref_group *group,
2655 __isl_take isl_ast_build *build, int private)
2657 isl_space *space;
2658 isl_ast_node *tree;
2659 isl_map *schedule, *shift, *map;
2660 isl_set *set;
2661 isl_id_list *iterators;
2662 int n;
2664 shift = shift_access(group);
2666 schedule = isl_map_copy(shift);
2667 schedule = isl_map_reset_tuple_id(schedule, isl_dim_out);
2668 if (!private)
2669 schedule = tile_access_schedule(gen, schedule);
2671 n = isl_map_dim(schedule, isl_dim_out);
2672 set = isl_set_universe(isl_ast_build_get_schedule_space(build));
2673 set = add_bounded_parameters(set, gen->kernel->block_dim,
2674 gen->kernel->thread_ids);
2676 schedule = isl_map_range_product(sched, schedule);
2678 space = isl_space_domain(isl_map_get_space(shift));
2679 map = isl_map_range_map(isl_map_universe(isl_space_unwrap(space)));
2680 map = isl_map_range_product(map, shift);
2682 schedule = isl_map_apply_domain(schedule, map);
2684 schedule = isl_map_set_tuple_name(schedule, isl_dim_in, type);
2686 build = isl_ast_build_restrict(build, set);
2688 gen->copy_group = group;
2690 if (private) {
2691 space = isl_space_range(isl_map_get_space(schedule));
2692 space = isl_space_range(isl_space_unwrap(space));
2693 build = set_unroll(build, space, 0);
2695 iterators = ppcg_scop_generate_names(gen->prog->scop, n, "c");
2696 build = isl_ast_build_set_iterators(build, iterators);
2697 build = isl_ast_build_set_at_each_domain(build, &attach_copy_stmt, gen);
2698 tree = isl_ast_build_node_from_schedule_map(build,
2699 isl_union_map_from_map(schedule));
2700 isl_ast_build_free(build);
2702 return tree;
2705 /* Return code for reading into or writing from shared memory
2706 * the given array reference group.
2708 * If we are performing a read from global memory to shared memory and
2709 * if the array involved is not a scalar, then we copy
2710 * the entire tile to shared memory. This may result in some extra
2711 * elements getting copied, but it should lead to simpler code
2712 * (which means that fewer registers may be needed) and less divergence.
2714 * Otherwise, we only copy the elements that will be read or have been written
2715 * in the kernel.
2718 * The input "sched" is of the form.
2720 * type[S -> A] -> L
2722 * with S the first shared_len dimensions of the computed schedule,
2723 * A the array and L the schedule correponding to the generated loops.
2725 * We first drop "type",
2727 * [S -> A] -> L
2729 * If the above conditions are satisfied, we project out A,
2730 * resulting in
2732 * S -> L
2734 * and then introduce the group tile [S -> T], resulting in
2736 * [S -> T] -> L
2738 static __isl_give isl_ast_node *copy_group_shared_accesses(
2739 struct gpu_gen *gen, struct gpu_array_ref_group *group,
2740 __isl_take isl_map *sched, __isl_take isl_ast_build *build)
2742 const char *type;
2743 int read;
2744 isl_union_map *access;
2746 type = isl_map_get_tuple_name(sched, isl_dim_in);
2747 read = !strcmp(type, "read");
2749 sched = isl_map_reset_tuple_id(sched, isl_dim_in);
2751 if (read && !gpu_array_is_scalar(group->array)) {
2752 isl_space *space;
2753 isl_map *map;
2755 space = isl_space_domain(isl_map_get_space(sched));
2756 space = isl_space_unwrap(space);
2757 map = isl_map_domain_map(isl_map_universe(space));
2758 sched = isl_map_apply_domain(sched, map);
2760 map = group_tile(group);
2761 map = isl_map_reverse(isl_map_domain_map(map));
2762 sched = isl_map_apply_domain(sched, map);
2765 return copy_access(gen, sched, type, group, build, 0);
2768 /* Return code for reading into or writing from private memory
2769 * the given array reference group.
2771 * Let S be the first shared_len dimensions of the computed schedule,
2772 * D the iteration domains, A the array and L the schedule correponding
2773 * to the generated loops.
2774 * "sched" is of the form
2776 * type[S -> A] -> L
2778 * where type is either "read" or "write".
2779 * We apply the privatization D -> S(t), with t the thread ids,
2780 * to the access relation D -> A to obtain the privatized access relation
2782 * S(t) -> A
2784 * We drop the type from "sched" and intersect with the privatized access
2785 * relation to obtain
2787 * [S(t) -> A] -> L
2789 static __isl_give isl_ast_node *copy_group_private_accesses(
2790 struct gpu_gen *gen, struct gpu_array_ref_group *group,
2791 __isl_take isl_map *sched, __isl_take isl_ast_build *build)
2793 const char *type;
2794 int read;
2795 isl_union_map *priv;
2796 isl_union_map *access;
2797 isl_map *access_map;
2799 type = isl_map_get_tuple_name(sched, isl_dim_in);
2800 read = !strcmp(type, "read");
2802 priv = isl_union_map_from_map(isl_map_copy(gen->privatization));
2803 priv = isl_union_map_apply_range(isl_union_map_copy(gen->shared_sched),
2804 priv);
2806 access = gpu_array_ref_group_access_relation(group, read, !read);
2807 access = isl_union_map_apply_domain(access, priv);
2808 access_map = isl_map_from_union_map(access);
2810 sched = isl_map_reset_tuple_id(sched, isl_dim_in);
2811 sched = isl_map_intersect_domain(sched, isl_map_wrap(access_map));
2813 return copy_access(gen, sched, type, group, build, 1);
2816 /* Return code for reading into or writing from shared or private memory.
2818 * "schedule" is of the form
2820 * type[S -> A] -> L
2822 * with S be the first shared_len dimensions of the computed schedule,
2823 * A the array and L the schedule correponding to the generated loops.
2824 * The array reference group is attached to "type".
2826 static __isl_give isl_ast_node *create_access_leaf(
2827 struct gpu_gen *gen, __isl_take isl_map *schedule,
2828 __isl_take isl_ast_build *build)
2830 struct gpu_array_ref_group *group;
2831 isl_id *id;
2833 id = isl_map_get_tuple_id(schedule, isl_dim_in);
2834 group = isl_id_get_user(id);
2835 isl_id_free(id);
2837 if (group->private_tile)
2838 return copy_group_private_accesses(gen, group, schedule,
2839 build);
2840 else
2841 return copy_group_shared_accesses(gen, group, schedule,
2842 build);
2845 /* Create a domain node representing a synchronization.
2847 static __isl_give isl_ast_node *create_sync_leaf(
2848 struct gpu_gen *gen, __isl_take isl_map *schedule,
2849 __isl_take isl_ast_build *build)
2851 struct ppcg_kernel_stmt *stmt;
2852 isl_id *id;
2853 isl_space *space;
2854 isl_ast_node *node;
2855 isl_ast_expr *expr;
2857 isl_map_free(schedule);
2859 stmt = isl_calloc_type(gen->ctx, struct ppcg_kernel_stmt);
2860 if (!stmt)
2861 return NULL;
2863 stmt->type = ppcg_kernel_sync;
2865 space = isl_ast_build_get_schedule_space(build);
2866 space = isl_space_from_domain(space);
2867 space = isl_space_set_tuple_name(space, isl_dim_out, "sync");
2868 expr = isl_ast_build_call_from_pw_multi_aff(build,
2869 isl_pw_multi_aff_from_multi_aff(isl_multi_aff_zero(space)));
2870 node = isl_ast_node_alloc_user(expr);
2871 isl_ast_build_free(build);
2873 id = isl_id_alloc(gen->ctx, NULL, stmt);
2874 id = isl_id_set_free_user(id, &ppcg_kernel_stmt_free);
2875 return isl_ast_node_set_annotation(node, id);
2878 /* This function is called during the code generation at the point
2879 * where the schedule domain element is completely determined by
2880 * the generated code. The input schedule contains the original
2881 * statements as well as synchronization and copy "statements".
2882 * The latter are scheduled at different points than any of the original
2883 * statements, so they will only arrive here in isolation.
2885 * If the current schedule only refers to a single statement,
2886 * we check if it is a copy or synchronization statement and
2887 * call the appropriate functions.
2888 * Otherwise, we assume we are dealing with the original statements
2889 * and we call create_domain_leaf.
2891 static __isl_give isl_ast_node *create_kernel_leaf(
2892 __isl_take isl_ast_build *build, void *user)
2894 struct gpu_gen *gen = (struct gpu_gen *) user;
2895 isl_map *map;
2896 isl_union_map *schedule;
2897 const char *name;
2899 schedule = isl_ast_build_get_schedule(build);
2901 if (isl_union_map_n_map(schedule) != 1)
2902 return create_domain_leaf(schedule, build, user);
2904 map = isl_map_from_union_map(schedule);
2905 name = isl_map_get_tuple_name(map, isl_dim_in);
2906 if (!strcmp(name, "read") || !strcmp(name, "write"))
2907 return create_access_leaf(gen, map, build);
2908 if (!strcmp(name, "sync"))
2909 return create_sync_leaf(gen, map, build);
2911 return create_domain_leaf(isl_union_map_from_map(map), build, user);
2914 /* Mark all odd schedule dimensions as "atomic" (when the even dimensions
2915 * have value 0) and all even schedule dimensions as "unroll".
2917 * That is, the options look as follows
2919 * { [0, b, 0, d, ..., 0] -> atomic[i] : exists a : i = 2 a + 1;
2920 * [a, b, c, d, ..., z] -> unroll[i] : exists a : i = 2 a }
2922 * The even positions are used to be able to schedule copying blocks
2923 * and synchronization before or after each level of the shared memory
2924 * tile loops and we want to make sure that code for these is generated
2925 * separately (within each level).
2927 static __isl_give isl_ast_build *set_atomic_and_unroll(
2928 __isl_take isl_ast_build *build,
2929 __isl_take isl_space *space, int sched_len)
2931 isl_ctx *ctx;
2932 isl_map *map;
2933 isl_constraint *c;
2934 isl_union_map *opt;
2935 isl_local_space *ls;
2936 int i, n;
2938 ctx = isl_ast_build_get_ctx(build);
2940 space = isl_space_params(space);
2941 space = isl_space_add_dims(space, isl_dim_set, sched_len);
2942 space = isl_space_from_domain(space);
2943 space = isl_space_add_dims(space, isl_dim_out, 2);
2944 map = isl_map_universe(isl_space_copy(space));
2945 for (i = 0; i < sched_len; i += 2)
2946 map = isl_map_fix_si(map, isl_dim_in, i, 0);
2947 ls = isl_local_space_from_space(isl_map_get_space(map));
2948 c = isl_equality_alloc(ls);
2949 c = isl_constraint_set_coefficient_si(c, isl_dim_out, 0, 1);
2950 c = isl_constraint_set_coefficient_si(c, isl_dim_out, 1, 2);
2951 c = isl_constraint_set_constant_si(c, 1);
2952 map = isl_map_add_constraint(map, c);
2953 map = isl_map_project_out(map, isl_dim_out, 1, 1);
2954 map = isl_map_set_tuple_name(map, isl_dim_out, "atomic");
2955 opt = isl_union_map_from_map(map);
2957 map = isl_map_universe(space);
2958 ls = isl_local_space_from_space(isl_map_get_space(map));
2959 c = isl_equality_alloc(ls);
2960 c = isl_constraint_set_coefficient_si(c, isl_dim_out, 0, 1);
2961 c = isl_constraint_set_coefficient_si(c, isl_dim_out, 1, 2);
2962 map = isl_map_add_constraint(map, c);
2963 map = isl_map_project_out(map, isl_dim_out, 1, 1);
2964 map = isl_map_set_tuple_name(map, isl_dim_out, "unroll");
2965 opt = isl_union_map_add_map(opt, map);
2967 build = isl_ast_build_set_options(build, opt);
2969 return build;
2972 /* Return a map that maps a space of dimension gen->shared_len
2973 * to its last dimensions starting at gen->tile_first.
2974 * The range is of dimension
2976 * 2 * (gen->shared_len - gen->tile_first) + 1
2978 * The input dimensions are mapped to the odd dimensions in the output,
2979 * while the even dimensions (except 2*pos) are fixed to 0.
2980 * Output dimension 2*pos (if pos >= 0) is fixed to "val".
2981 * If pos >= 0, then only the pos first dimensions starting at gen->tile_first
2982 * are mapped to the output. The remaining input dimensions are projected
2983 * out and the corresponding output dimensions are fixed to 0.
2985 static __isl_give isl_map *insert_even(struct gpu_gen *gen,
2986 __isl_take isl_space *space, int pos, int val)
2988 int i, n;
2989 isl_map *proj;
2991 space = isl_space_set_from_params(space);
2992 space = isl_space_add_dims(space, isl_dim_set, gen->shared_len);
2993 space = isl_space_map_from_set(space);
2994 proj = isl_map_identity(space);
2995 proj = isl_map_project_out(proj, isl_dim_out, 0, gen->tile_first);
2996 n = gen->shared_len - gen->tile_first;
2997 for (i = 0; i <= n; ++i) {
2998 proj = isl_map_insert_dims(proj, isl_dim_out, 2 * i, 1);
2999 if (i == pos)
3000 proj = isl_map_fix_si(proj, isl_dim_out, 2 * i, val);
3001 else
3002 proj = isl_map_fix_si(proj, isl_dim_out, 2 * i, 0);
3005 if (pos < 0)
3006 return proj;
3008 proj = isl_map_eliminate(proj, isl_dim_in, gen->tile_first + pos,
3009 gen->shared_len - (gen->tile_first + pos));
3010 for (i = pos; i < n; ++i)
3011 proj = isl_map_fix_si(proj, isl_dim_out, 2 * i + 1, 0);
3013 return proj;
3016 /* Given the AST context schedule "schedule" and the mapping from
3017 * domains to the shared tile loops "shared_sched", add a schedule
3018 * for a synchronization operation at position "val" of loop level "pos".
3020 * schedule is of the form
3022 * D -> L
3024 * (with D the iteration domains and L the already generated loops),
3025 * while shared_sched is of the form
3027 * D -> S
3029 * We combine them into
3031 * L -> S
3033 * apply a mapping
3035 * [s_0,...] -> [0,s_{tile_first},0,..., val, 0, 0, ... 0]
3037 * and use the result as a schedule for "sync".
3039 static __isl_give isl_union_map *add_sync_schedule(struct gpu_gen *gen,
3040 __isl_take isl_union_map *res, __isl_keep isl_union_map *schedule,
3041 __isl_keep isl_union_map *shared_sched, int pos, int val)
3043 isl_space *space;
3044 isl_map *proj, *map;
3046 shared_sched = isl_union_map_copy(shared_sched);
3047 schedule = isl_union_map_copy(schedule);
3049 space = isl_union_map_get_space(shared_sched);
3050 schedule = isl_union_map_apply_domain(shared_sched, schedule);
3051 map = isl_map_from_union_map(schedule);
3053 proj = insert_even(gen, space, pos, val);
3054 map = isl_map_apply_range(map, proj);
3055 map = isl_map_from_range(isl_map_wrap(map));
3056 map = isl_map_set_tuple_name(map, isl_dim_in, "sync");
3058 res = isl_union_map_add_map(res, map);
3060 return res;
3063 /* Given a set of wrapped references "ref", return the corresponding
3064 * access relations based on the tagged access relations "tagged".
3066 * The elements of "ref" are of the form
3068 * [D -> R]
3070 * with D an iteration domains and R a reference.
3071 * The elements of "tagged" are of the form
3073 * [D -> R] -> A
3075 * with A an array.
3077 * Extend "tagged" to include the iteration domain in the range, i.e.,
3079 * [D -> R] -> [D -> A]
3081 * apply the result to "ref" and then unwrap the resulting set
3082 * to obtain relations of the form
3084 * D -> A
3086 static __isl_give isl_union_map *wrapped_reference_to_access(
3087 __isl_take isl_union_set *ref, __isl_take isl_union_map *tagged)
3089 isl_union_map *tag2access;
3091 tag2access = isl_union_map_copy(tagged);
3092 tag2access = isl_union_map_universe(tag2access);
3093 tag2access = isl_union_set_unwrap(isl_union_map_domain(tag2access));
3094 tag2access = isl_union_map_domain_map(tag2access);
3095 tag2access = isl_union_map_range_product(tag2access, tagged);
3097 ref = isl_union_set_coalesce(ref);
3098 ref = isl_union_set_apply(ref, tag2access);
3100 return isl_union_set_unwrap(ref);
3103 /* Given an access relation "access" from "group", remove those reads
3104 * if ("read" is 1) or writes (if "read" is 0) that are only needed to
3105 * communicate data within the same iteration of the last_shared dimension
3106 * of the group.
3108 * If the access is a read then it is either an element of
3110 * live_in union (range flow)
3112 * where live_in and flow may be overapproximations, or
3113 * it reads an uninitialized value (that is not live-in because
3114 * there is an intermediate kill) or it reads a value that was
3115 * written within the same (compound) statement instance.
3116 * If the access is a write then it is either an element of
3118 * live_out union (domain flow)
3120 * or it writes a value that is never read (and is not live-out
3121 * because of an intermediate kill) or only
3122 * within the same (compound) statement instance.
3123 * In both cases, the access relation is also a subset of
3124 * the group access relation.
3126 * The cases where an uninitialized value is read or a value is written
3127 * that is never read or where the dataflow occurs within a statement
3128 * instance are also considered local and may also be removed.
3130 * Essentially, we compute the intersection of "access" with either
3132 * live_in union (range non-local-flow)
3134 * or
3136 * live_out union (domain non-local-flow)
3138 * We first construct a relation "local"
3140 * [[D -> R] -> [D' -> R']]
3142 * of pairs of domain iterations accessing the reference group
3143 * and references in the group that are scheduled to the same iteration
3144 * of the last_shared dimension.
3146 * If this relation does not intersect the dataflow dependences,
3147 * then there is nothing we can possibly remove, unless the dataflow
3148 * dependences themselves only relate a subset of the accesses.
3149 * In particular, the accesses may not be involved in any dataflow
3150 * dependences, either because they are uninitialized reads/dead writes
3151 * or because the dataflow occurs inside a statement instance.
3153 * Since the computation below may break up the access relation
3154 * into smaller pieces, we only perform the intersection with
3155 * the non-local dependent accesses if the local pairs
3156 * intersect the dataflow dependences. Otherwise, we intersect
3157 * with the universe of the non-local dependent accesses.
3158 * This should at least remove accesses from statements that
3159 * do not participate in any dependences.
3161 * In particular, we remove the "local" dataflow dependences from
3162 * the set of all dataflow dependences.
3163 * Note that if the potential dataflow dependences are an overapproximation
3164 * of the actual dataflow dependences, then the result remains an
3165 * overapproximation of the non-local dataflow dependences.
3166 * Copying to/from global memory is only needed for the references
3167 * in the domain/range of the result or for accesses that are live out/in
3168 * for the entire scop.
3170 * We therefore map the domain/range of the "external" relation
3171 * to the corresponding access relation and take the union with
3172 * the live out/in relation.
3174 static __isl_give isl_union_map *remove_local_accesses(struct gpu_gen *gen,
3175 struct gpu_array_ref_group *group, __isl_take isl_union_map *access,
3176 int read)
3178 int empty;
3179 isl_union_pw_multi_aff *tagger;
3180 isl_union_set *domain;
3181 isl_space *space;
3182 isl_union_map *sched, *local, *tagged, *external;
3183 isl_union_set *tag_set;
3184 isl_map *proj;
3186 if (isl_union_map_is_empty(access))
3187 return access;
3189 tagged = group_tagged_access_relation(group);
3191 sched = isl_union_map_copy(gen->sched);
3193 space = isl_union_map_get_space(sched);
3194 proj = projection(space, gen->untiled_len, group->last_shared + 1);
3195 sched = isl_union_map_apply_range(sched, isl_union_map_from_map(proj));
3197 tagger = isl_union_pw_multi_aff_copy(gen->prog->scop->tagger);
3198 domain = isl_union_map_domain(isl_union_map_copy(tagged));
3199 tagger = isl_union_pw_multi_aff_intersect_domain(tagger, domain);
3200 sched = isl_union_map_preimage_domain_union_pw_multi_aff(sched, tagger);
3202 local = isl_union_map_apply_range(sched,
3203 isl_union_map_reverse(isl_union_map_copy(sched)));
3204 local = isl_union_map_intersect(local,
3205 isl_union_map_copy(gen->prog->scop->tagged_dep_flow));
3207 empty = isl_union_map_is_empty(local);
3209 external = isl_union_map_copy(gen->prog->scop->tagged_dep_flow);
3210 external = isl_union_map_intersect_params(external,
3211 isl_set_copy(gen->prog->scop->context));
3212 external = isl_union_map_subtract(external, local);
3214 if (read) {
3215 tag_set = isl_union_map_range(external);
3216 external = wrapped_reference_to_access(tag_set, tagged);
3217 external = isl_union_map_union(external,
3218 isl_union_map_copy(gen->prog->scop->live_in));
3219 } else {
3220 tag_set = isl_union_map_domain(external);
3221 external = wrapped_reference_to_access(tag_set, tagged);
3222 external = isl_union_map_union(external,
3223 isl_union_map_copy(gen->prog->scop->live_out));
3226 if (empty < 0)
3227 external = isl_union_map_free(external);
3228 else if (empty)
3229 external = isl_union_map_universe(external);
3231 access = isl_union_map_intersect(access, external);
3233 return access;
3236 /* Given the AST context schedule "schedule" and the mapping from
3237 * domains to the shared tile loops "shared_sched", add a schedule
3238 * for copying an array reference group to/from shared/private memory.
3239 * "read" is set if data should be copied from global memory
3240 * to shared/private memory.
3241 * "k" represents the current group
3242 * "s" is the total number of groups
3244 * We schedule an operation before or after the innermost loop
3245 * of "shared_sched" that affects the tile of the array reference group.
3247 * schedule is of the form
3249 * D -> L
3251 * (with D the iteration domains and L the already generated loops),
3252 * while shared_sched is of the form
3254 * D -> S
3256 * We first compute the access relation for the reference group
3258 * D -> A
3260 * and remove from this access relation those reads or writes
3261 * that only needed to communicate data within the same iteration
3262 * of the last_shared dimension of the group.
3263 * We then combine what is left with shared_sched into
3265 * D -> [S -> A]
3267 * If this results in an empty relation, no copying needs to be performed
3268 * at this point.
3269 * Otherwise, we invert the relation and combine it with "schedule" into
3271 * [S -> A] -> L
3273 * The actual additional piece of the schedule is obtained from combining
3275 * [S -> A] -> S
3277 * with a mapping
3279 * [s_0,...] -> [0,s_{tile_first},0,..., val, 0, 0, ... 0]
3281 * The position of "val" corresponds to the innermost loop that affects
3282 * the tile and the value indicates where the copying is scheduled
3283 * with respect to the actual kernel code (at value 0).
3284 * Reads are schedule before the code, writes to global memory from
3285 * private memory are scheduled at values 1 to s, writes to global
3286 * memory from shared memory are scheduled at values s + 2 to 2 * s + 1.
3288 * If we are scheduling a read from global memory to shared memory,
3289 * we insert a synchronization before the kernel code (at the innermost
3290 * level).
3291 * If we are scheduling a write to global memory, then we add
3292 * a synchronization after all writes (at value 2 *s + 2).
3293 * However, there is no need for a synchronization after the outermost loop.
3294 * A write to global memory from private memory at the innermost level
3295 * does not require a synchronization, because it is covered by
3296 * the synchronization after the kernel inserted by body_schedule.
3298 static __isl_give isl_union_map *add_group_schedule(struct gpu_gen *gen,
3299 __isl_take isl_union_map *res, __isl_keep isl_union_map *schedule,
3300 __isl_keep isl_union_map *shared_sched,
3301 struct gpu_array_ref_group *group, int read, int k, int s)
3303 int n;
3304 int pos, val;
3305 isl_space *space;
3306 isl_union_map *access;
3307 isl_map *map, *proj, *access_map;
3308 isl_id *id;
3310 access = gpu_array_ref_group_access_relation(group, read, !read);
3311 access = remove_local_accesses(gen, group, access, read);
3312 access = isl_union_map_range_product(isl_union_map_copy(shared_sched),
3313 access);
3315 if (isl_union_map_is_empty(access)) {
3316 isl_union_map_free(access);
3317 return res;
3320 access = isl_union_map_reverse(access);
3321 access = isl_union_map_apply_range(access,
3322 isl_union_map_copy(schedule));
3323 access_map = isl_map_from_union_map(access);
3325 space = isl_space_copy(group->array->space);
3326 space = isl_space_from_range(space);
3327 space = isl_space_add_dims(space, isl_dim_in, gen->shared_len);
3328 map = isl_map_domain_map(isl_map_universe(space));
3330 space = isl_union_map_get_space(schedule);
3331 pos = group->last_shared + 1 - gen->tile_first;
3332 assert(pos >= 0);
3333 if (read)
3334 val = -2 - k;
3335 else if (group->private_tile)
3336 val = 1 + k;
3337 else
3338 val = 1 + s + 1 + k;
3339 proj = insert_even(gen, space, pos, val);
3340 map = isl_map_apply_range(map, proj);
3342 access_map = isl_map_range_product(access_map, map);
3344 id = isl_id_alloc(gen->ctx, read ? "read" : "write", group);
3345 access_map = isl_map_set_tuple_id(access_map, isl_dim_in, id);
3347 res = isl_union_map_add_map(res, access_map);
3349 n = gen->shared_len - gen->tile_first;
3350 if (read) {
3351 if (!group->private_tile)
3352 res = add_sync_schedule(gen, res, schedule,
3353 shared_sched, n, -1);
3354 } else {
3355 if (pos == 0)
3356 return res;
3357 if (pos == n && group->private_tile)
3358 return res;
3359 res = add_sync_schedule(gen, res, schedule, shared_sched,
3360 pos, 2 * s + 2);
3363 return res;
3366 /* Return a schedule for the shared tile loops based on the current
3367 * AST context schedule.
3369 * We create a "shared_sched" that maps the domains to the first
3370 * shared_len dimensions of the computed schedule, project out the
3371 * first tile_first dimensions (as these are already covered by
3372 * the host code) and insert "statement-level" dimensions at even
3373 * positions so that we can schedule copy blocks and synchronization
3374 * before/after each level.
3376 * In particular, copy blocks are inserted inside the innermost
3377 * level that affect the tile. For the copying to global memory,
3378 * those from private memory are scheduled before those from shared
3379 * memory such that synchronization can be inserted between the two
3380 * at the innermost level.
3381 * Synchronization is inserted at the innermost level before the
3382 * actual kernel code if there is any copying from global memory
3383 * to shared memory. It is inserted unconditionally at the innermost
3384 * level after the actual kernel code and the copying to global memory
3385 * from private memory (if any). Finally, it is inserted after
3386 * any copying to global memory, except at the outermost level
3387 * and at the innermost level if there is no copying from shared
3388 * memory. The copying from private memory is covered by the unconditional
3389 * synchronization at the innermost level.
3391 static __isl_give isl_union_map *body_schedule(struct gpu_gen *gen,
3392 __isl_take isl_union_map *schedule)
3394 isl_space *space;
3395 isl_union_map *res;
3396 isl_union_map *shared_sched;
3397 isl_union_map *sched;
3398 isl_map *proj, *map;
3399 int i, j, k, s;
3401 shared_sched = isl_union_map_copy(gen->tiled_sched);
3402 proj = projection(isl_union_map_get_space(shared_sched),
3403 gen->tiled_len, gen->shared_len);
3404 shared_sched = isl_union_map_apply_range(shared_sched,
3405 isl_union_map_from_map(proj));
3406 space = isl_union_map_get_space(shared_sched);
3407 proj = insert_even(gen, space, -1, 0);
3408 sched = isl_union_map_apply_range(isl_union_map_copy(shared_sched),
3409 isl_union_map_from_map(proj));
3411 res = isl_union_map_range_product(isl_union_map_copy(schedule), sched);
3413 s = 0;
3414 for (i = 0; i < gen->kernel->n_array; ++i)
3415 s += gen->kernel->array[i].n_group;
3417 k = 0;
3418 for (i = 0; i < gen->kernel->n_array; ++i) {
3419 struct gpu_local_array_info *array = &gen->kernel->array[i];
3421 for (j = 0; j < array->n_group; ++j) {
3422 struct gpu_array_ref_group *group;
3424 group = array->groups[j];
3425 if (!group->private_tile && !group->shared_tile)
3426 continue;
3427 res = add_group_schedule(gen, res, schedule,
3428 shared_sched, group, 0, k, s);
3429 res = add_group_schedule(gen, res, schedule,
3430 shared_sched, group, 1, k, s);
3431 ++k;
3435 res = add_sync_schedule(gen, res, schedule, shared_sched,
3436 gen->shared_len - gen->tile_first, 1 + s);
3438 isl_union_map_free(shared_sched);
3439 isl_union_map_free(schedule);
3441 return res;
3444 /* Generate code for "kernel" in the given "context".
3446 * We first generate code for the shared tile loops (T1T, T1P and T2)
3447 * in a context that includes the block ids.
3448 * Within each iteration of these loops an additional code generation
3449 * is performed (within create_kernel_leaf) for the rest of the schedule
3450 * in a context that includes the thread ids.
3452 static __isl_give isl_ast_node *generate_kernel(struct gpu_gen *gen,
3453 __isl_keep isl_ast_build *build, __isl_keep isl_set *host_domain,
3454 __isl_keep isl_multi_pw_aff *grid_size)
3456 isl_space *space;
3457 isl_set *set;
3458 isl_id_list *iterators;
3459 isl_union_map *schedule;
3460 isl_ast_node *tree;
3461 int sched_len;
3463 schedule = isl_ast_build_get_schedule(build);
3465 build = isl_ast_build_copy(build);
3466 build = isl_ast_build_restrict(build, isl_set_copy(host_domain));
3467 space = isl_ast_build_get_schedule_space(build);
3468 set = isl_set_universe(isl_space_copy(space));
3469 set = add_bounded_parameters_dynamic(set, grid_size,
3470 gen->kernel->block_ids);
3471 build = isl_ast_build_restrict(build, set);
3473 schedule = body_schedule(gen, schedule);
3475 sched_len = 2 * (gen->shared_len - gen->tile_first) + 1;
3477 build = set_atomic_and_unroll(build, space, sched_len);
3478 iterators = ppcg_scop_generate_names(gen->prog->scop, sched_len, "g");
3479 build = isl_ast_build_set_iterators(build, iterators);
3480 build = isl_ast_build_set_create_leaf(build, &create_kernel_leaf, gen);
3481 tree = isl_ast_build_node_from_schedule_map(build, schedule);
3482 isl_ast_build_free(build);
3484 return tree;
3487 /* Attach "id" to the given node.
3489 static __isl_give isl_ast_node *attach_id(__isl_take isl_ast_node *node,
3490 __isl_keep isl_ast_build *build, void *user)
3492 isl_id *id = user;
3494 node = isl_ast_node_set_annotation(node, id);
3496 return node;
3499 /* Construct an AST node for performing a kernel launch and attach
3500 * the information about the kernel to that node.
3501 * "kernel_id" has name "kernel" and contains a pointer
3502 * to the ppcg_kernel structure.
3504 * The kernel AST has been constructed in the context of the range
3505 * of "schedule". In particular, the grid size has been computed
3506 * in the context. We therefore still need to make sure that these
3507 * constraints are expressed in the code. We do this by creating a schedule
3509 * kernel[] -> [S -> []]
3511 * where S is the schedule domain, i.e., the range of "schedule".
3512 * The AST generation will then create a single call surrounded by
3513 * all the condition in "S" that have not been expressed yet.
3515 * The kernel information is attached to this node in attach_id.
3517 static __isl_give isl_ast_node *construct_launch(
3518 __isl_take isl_ast_build *build, __isl_take isl_union_map *schedule,
3519 __isl_take isl_id *kernel_id)
3521 isl_ctx *ctx;
3522 isl_union_set *domain;
3523 isl_set *set;
3524 isl_map *map;
3525 isl_ast_node *node;
3527 ctx = isl_ast_build_get_ctx(build);
3529 domain = isl_union_map_range(schedule);
3530 set = isl_set_from_union_set(domain);
3531 map = isl_map_from_domain(set);
3532 map = isl_map_from_range(isl_map_wrap(map));
3533 map = isl_map_set_tuple_name(map, isl_dim_in, "kernel");
3534 schedule = isl_union_map_from_map(map);
3536 build = isl_ast_build_set_at_each_domain(build, &attach_id, kernel_id);
3537 node = isl_ast_build_node_from_schedule_map(build, schedule);
3538 isl_ast_build_free(build);
3540 return node;
3543 /* This function is called for each leaf in the AST of the host code.
3544 * We first specialize the schedule to the site of the leaf, compute
3545 * the size of shared memory and then construct the body of the host code
3546 * and the associated kernel.
3548 * The necessary information for printing the kernel launch is
3549 * stored in the struct ppcg_kernel that was created in create_kernel and
3550 * attached to an outer mark node in the schedule tree.
3551 * Note that this assumes that a kernel is only launched once.
3552 * The kernel pointer itself is stored in gen->kernel by before_mark,
3553 * while the isl_id containing this pointer is stored in gen->kernel_mark.
3554 * The latter is attached to the leaf AST node created to represent the launch.
3556 static __isl_give isl_ast_node *create_host_leaf(
3557 __isl_take isl_ast_build *build, void *user)
3559 struct gpu_gen *gen = (struct gpu_gen *) user;
3560 isl_id *id;
3561 isl_ast_node *node;
3562 struct ppcg_kernel *kernel;
3563 isl_set *host_domain;
3564 isl_union_map *schedule;
3565 isl_union_map *local_sched;
3566 isl_union_set *domain;
3567 int i;
3569 schedule = isl_ast_build_get_schedule(build);
3571 kernel = gen->kernel;
3572 if (!kernel)
3573 goto error;
3575 domain = isl_union_map_domain(isl_union_map_copy(schedule));
3577 local_sched = isl_union_map_copy(gen->sched);
3578 local_sched = isl_union_map_intersect_domain(local_sched, domain);
3580 gen->tiled_sched = tile_schedule(gen, local_sched);
3581 gen->tiled_sched = parametrize_tiled_schedule(gen, gen->tiled_sched);
3582 gen->tiled_sched = scale_tile_loops(gen, gen->tiled_sched);
3584 gen->local_sched = isl_union_map_copy(gen->tiled_sched);
3585 gen->local_sched = thread_tile_schedule(gen, gen->local_sched);
3586 gen->local_sched = scale_thread_tile_loops(gen, gen->local_sched);
3588 kernel->space = isl_ast_build_get_schedule_space(build);
3590 compute_shared_sched(gen);
3591 gen->privatization = compute_privatization(gen);
3592 if (gpu_group_references(gen) < 0)
3593 schedule = isl_union_map_free(schedule);
3594 host_domain = isl_set_from_union_set(isl_union_map_range(
3595 isl_union_map_copy(schedule)));
3596 localize_bounds(gen, kernel, host_domain);
3598 gen->local_sched = interchange_for_unroll(gen, gen->local_sched);
3599 check_shared_memory_bound(gen);
3600 compute_group_tilings(gen);
3602 kernel->tree = generate_kernel(gen, build, host_domain,
3603 kernel->grid_size);
3604 create_kernel_vars(gen, kernel);
3606 isl_map_free(gen->privatization);
3607 isl_union_map_free(gen->local_sched);
3608 isl_union_map_free(gen->tiled_sched);
3609 isl_union_map_free(gen->shared_sched);
3610 isl_union_map_free(gen->shared_proj);
3611 isl_set_free(host_domain);
3613 node = construct_launch(build, schedule, isl_id_copy(gen->kernel_mark));
3615 return node;
3616 error:
3617 isl_union_map_free(schedule);
3618 return NULL;
3621 /* This function is called before the AST generator starts traversing
3622 * the schedule subtree of a node with mark "mark".
3624 * If the mark is called "kernel", store the mark itself in gen->kernel_mark
3625 * and the kernel pointer in gen->kernel for use in create_host_leaf.
3627 static int before_mark(__isl_keep isl_id *mark,
3628 __isl_keep isl_ast_build *build, void *user)
3630 struct gpu_gen *gen = user;
3632 if (!mark)
3633 return -1;
3634 if (!strcmp(isl_id_get_name(mark), "kernel")) {
3635 gen->kernel_mark = isl_id_copy(mark);
3636 gen->kernel = isl_id_get_user(mark);
3638 return 0;
3641 /* This function is called after the AST generator has finished traversing
3642 * the schedule subtree of a mark node. "node" points to the corresponding
3643 * mark AST node.
3645 * If the mark is called "kernel", then clear kernel and gen->kernel_mark.
3647 static __isl_give isl_ast_node *after_mark(__isl_take isl_ast_node *node,
3648 __isl_keep isl_ast_build *build, void *user)
3650 struct gpu_gen *gen = user;
3651 isl_id *id;
3653 id = isl_ast_node_mark_get_id(node);
3654 if (!id)
3655 return isl_ast_node_free(node);
3656 if (!strcmp(isl_id_get_name(id), "kernel") && gen->kernel) {
3657 gen->kernel_mark = isl_id_free(gen->kernel_mark);
3658 gen->kernel = NULL;
3661 isl_id_free(id);
3662 return node;
3665 /* Use isl to generate host code from gen->host_schedule, which corresponds to
3666 * the outer gen->tile_first loops of the global schedule in gen->sched.
3667 * Within each iteration of this partial schedule, i.e., for each kernel
3668 * launch, create_host_leaf takes care of generating the kernel code.
3669 * The ppcg_kernel objects are stored in mark nodes in the schedule
3670 * tree and are extracted in before_mark.
3672 static __isl_give isl_ast_node *generate_host_code(struct gpu_gen *gen)
3674 isl_ast_build *build;
3675 isl_ast_node *tree;
3676 isl_schedule *schedule;
3677 isl_id_list *iterators;
3679 isl_options_set_ast_build_group_coscheduled(gen->ctx, 1);
3680 build = isl_ast_build_from_context(isl_set_copy(gen->prog->context));
3681 iterators = ppcg_scop_generate_names(gen->prog->scop,
3682 gen->tile_first, "h");
3683 build = isl_ast_build_set_iterators(build, iterators);
3684 build = isl_ast_build_set_create_leaf(build, &create_host_leaf, gen);
3685 build = isl_ast_build_set_before_each_mark(build, &before_mark, gen);
3686 build = isl_ast_build_set_after_each_mark(build, &after_mark, gen);
3687 schedule = isl_schedule_copy(gen->host_schedule);
3688 tree = isl_ast_build_node_from_schedule(build, schedule);
3689 isl_ast_build_free(build);
3691 return tree;
3694 __isl_give isl_union_map *extract_sizes_from_str(isl_ctx *ctx, const char *str)
3696 if (!str)
3697 return NULL;
3698 return isl_union_map_read_from_str(ctx, str);
3701 /* Information about the outermost tilable bands in the forest of bands.
3703 * prefix is the (padded) schedule leading up to the outermost tilable bands.
3705 * tile_first is the number of schedule dimensions in prefix.
3707 * suffix is the schedule of the outermost tilable bands and their descendants.
3709 struct band_info {
3710 struct gpu_gen *gen;
3711 int tile_first;
3712 isl_union_map *prefix;
3713 isl_union_map *suffix;
3716 /* Construct an isl_multi_val for use as tile sizes for tiling "node"
3717 * from the elements in "tile_size".
3719 static __isl_give isl_multi_val *construct_band_tiles_sizes(
3720 __isl_keep isl_schedule_node *node, int *tile_size)
3722 int i, n;
3723 isl_ctx *ctx;
3724 isl_space *space;
3725 isl_multi_val *mv;
3727 if (!node)
3728 return NULL;
3730 ctx = isl_schedule_node_get_ctx(node);
3731 space = isl_schedule_node_band_get_space(node);
3732 n = isl_schedule_node_band_n_member(node);
3733 mv = isl_multi_val_zero(space);
3734 for (i = 0; i < n; ++i) {
3735 isl_val *v;
3737 v = isl_val_int_from_si(ctx, tile_size[i]);
3738 mv = isl_multi_val_set_val(mv, i, v);
3741 return mv;
3744 /* Tile "band" with tile size specified by "sizes".
3746 * Since the tile loops will be mapped to block ids, we forcibly
3747 * turn off tile loop scaling. We may want to enable tile loop scaling
3748 * at some later point, but then we would have to support the detection
3749 * of strides during the mapping to block ids.
3750 * Similarly, since the point loops will be mapped to thread ids,
3751 * we forcibly shift the point loops so that they start at zero.
3753 static __isl_give isl_schedule_node *tile_band(
3754 __isl_take isl_schedule_node *node, __isl_take isl_multi_val *sizes)
3756 isl_ctx *ctx = isl_schedule_node_get_ctx(node);
3757 int scale_tile;
3758 int shift_point;
3760 scale_tile = isl_options_get_tile_scale_tile_loops(ctx);
3761 isl_options_set_tile_scale_tile_loops(ctx, 0);
3762 shift_point = isl_options_get_tile_shift_point_loops(ctx);
3763 isl_options_set_tile_shift_point_loops(ctx, 1);
3765 node = isl_schedule_node_band_tile(node, sizes);
3767 isl_options_set_tile_scale_tile_loops(ctx, scale_tile);
3768 isl_options_set_tile_shift_point_loops(ctx, shift_point);
3770 return node;
3773 /* Extract the set of parameter values and outer schedule dimensions
3774 * for which any statement instance
3775 * in the kernel inserted at "node" needs to be executed.
3776 * Intersect the set of parameter values derived from the host schedule
3777 * relation with the context of "prog".
3779 static __isl_give isl_set *extract_context(__isl_keep isl_schedule_node *node,
3780 struct gpu_prog *prog)
3782 isl_union_map *schedule;
3783 isl_union_set *schedule_domain;
3784 isl_set *context;
3785 int empty;
3787 schedule = isl_schedule_node_get_prefix_schedule_relation(node);
3788 schedule_domain = isl_union_map_range(schedule);
3789 empty = isl_union_set_is_empty(schedule_domain);
3790 if (empty < 0) {
3791 isl_union_set_free(schedule_domain);
3792 return NULL;
3794 if (empty) {
3795 int depth;
3796 isl_space *space;
3798 space = isl_union_set_get_space(schedule_domain);
3799 isl_union_set_free(schedule_domain);
3800 space = isl_space_set_from_params(space);
3801 depth = isl_schedule_node_get_schedule_depth(node);
3802 space = isl_space_add_dims(space, isl_dim_set, depth);
3803 context = isl_set_empty(space);
3804 } else {
3805 context = isl_set_from_union_set(schedule_domain);
3807 context = isl_set_intersect_params(context,
3808 isl_set_copy(prog->context));
3810 return context;
3813 /* Return the set of outer array elements accessed by
3814 * by the statement instance in "domain" in "prog".
3816 static __isl_give isl_union_set *accessed_by_domain(
3817 __isl_take isl_union_set *domain, struct gpu_prog *prog)
3819 isl_union_map *access;
3820 isl_union_set *arrays;
3822 access = isl_union_map_union(isl_union_map_copy(prog->read),
3823 isl_union_map_copy(prog->may_write));
3824 access = isl_union_map_intersect_domain(access, domain);
3825 arrays = isl_union_map_range(access);
3826 arrays = isl_union_set_apply(arrays,
3827 isl_union_map_copy(prog->to_outer));
3829 return arrays;
3832 /* Return the number of outer band members of the band node "node"
3833 * that are marked coincident.
3835 static int n_outer_coincidence(__isl_keep isl_schedule_node *node)
3837 int i, n;
3839 n = isl_schedule_node_band_n_member(node);
3841 for (i = 0; i < n; ++i)
3842 if (!isl_schedule_node_band_member_get_coincident(node, i))
3843 break;
3845 return i;
3848 /* If the band node "node" has more than "n" members, then split off
3849 * the first "n" of them.
3851 static __isl_give isl_schedule_node *split_band(
3852 __isl_take isl_schedule_node *node, int n)
3854 int dim;
3856 dim = isl_schedule_node_band_n_member(node);
3857 if (n < dim)
3858 node = isl_schedule_node_band_split(node, n);
3860 return node;
3863 /* Scale a band node that may have been split by split_band.
3864 * "sizes" are the scaling factors for the original node.
3865 * "node" either points to the original band node, or the outer
3866 * of the two pieces after splitting.
3868 * If the number of elements in "node" is smaller than the number of
3869 * elements in "sizes", then some splitting has occurred and we split
3870 * "sizes" in the same way.
3872 static __isl_give isl_schedule_node *scale_band(
3873 __isl_take isl_schedule_node *node, __isl_take isl_multi_val *sizes)
3875 int n, dim;
3877 n = isl_multi_val_dim(sizes, isl_dim_set);
3878 dim = isl_schedule_node_band_n_member(node);
3879 if (n > dim) {
3880 isl_multi_val *sizes2;
3882 sizes2 = isl_multi_val_copy(sizes);
3883 sizes = isl_multi_val_drop_dims(sizes,
3884 isl_dim_set, dim, n - dim);
3885 sizes2 = isl_multi_val_drop_dims(sizes2, isl_dim_set, 0, dim);
3886 node = isl_schedule_node_child(node, 0);
3887 node = isl_schedule_node_band_scale(node, sizes2);
3888 node = isl_schedule_node_parent(node);
3891 return isl_schedule_node_band_scale(node, sizes);
3894 /* Return an isl_multi_aff, with as elements the parameters in "space"
3895 * that have the names specified by the elements in "names".
3896 * If (some of) these parameters do not already appear in "space",
3897 * then they are added first.
3899 static __isl_give isl_multi_aff *parameter_vector(__isl_take isl_space *space,
3900 __isl_keep isl_id_list *names)
3902 int i, n;
3903 isl_local_space *ls;
3904 isl_multi_aff *ma;
3906 if (!names)
3907 space = isl_space_free(space);
3909 n = isl_id_list_n_id(names);
3910 for (i = 0; i < n; ++i) {
3911 int pos;
3912 isl_id *id;
3914 id = isl_id_list_get_id(names, i);
3915 pos = isl_space_find_dim_by_id(space, isl_dim_param, id);
3916 if (pos >= 0) {
3917 isl_id_free(id);
3918 continue;
3920 pos = isl_space_dim(space, isl_dim_param);
3921 space = isl_space_add_dims(space, isl_dim_param, 1);
3922 space = isl_space_set_dim_id(space, isl_dim_param, pos, id);
3924 ma = isl_multi_aff_zero(isl_space_copy(space));
3925 ls = isl_local_space_from_space(isl_space_domain(space));
3926 for (i = 0; i < n; ++i) {
3927 int pos;
3928 isl_id *id;
3929 isl_aff *aff;
3931 id = isl_id_list_get_id(names, i);
3932 pos = isl_space_find_dim_by_id(space, isl_dim_param, id);
3933 isl_id_free(id);
3934 aff = isl_aff_var_on_domain(isl_local_space_copy(ls),
3935 isl_dim_param, pos);
3936 ma = isl_multi_aff_set_aff(ma, i, aff);
3938 isl_local_space_free(ls);
3940 return ma;
3943 /* Return constraints on the domain elements that equate a sequence of
3944 * parameters called "names", to the partial schedule
3945 * of "node" modulo the integers in "size".
3946 * The number of elements in the array "size" should be equal
3947 * to the number of members of the band node "node" and
3948 * to the number of elements in "names".
3950 static __isl_give isl_union_set *set_schedule_modulo(
3951 __isl_keep isl_schedule_node *node, __isl_keep isl_id_list *names,
3952 int *size)
3954 isl_space *space;
3955 isl_multi_aff *ma;
3956 isl_multi_union_pw_aff *mupa, *mupa2;
3957 isl_multi_val *mv;
3958 isl_union_set *domain;
3960 if (!node)
3961 return NULL;
3962 if (isl_schedule_node_band_n_member(node) == 0)
3963 return isl_schedule_node_get_universe_domain(node);
3965 mupa = isl_schedule_node_band_get_partial_schedule(node);
3966 mv = construct_band_tiles_sizes(node, size);
3967 mupa = isl_multi_union_pw_aff_mod_multi_val(mupa, mv);
3969 space = isl_multi_union_pw_aff_get_space(mupa);
3970 ma = parameter_vector(space, names);
3972 domain = isl_schedule_node_get_universe_domain(node);
3974 mupa2 = isl_multi_union_pw_aff_multi_aff_on_domain(domain, ma);
3975 mupa = isl_multi_union_pw_aff_sub(mupa, mupa2);
3977 return isl_multi_union_pw_aff_zero_union_set(mupa);
3980 /* Insert a context node at "node" introducing the block and thread
3981 * identifiers along with their bounds, which are stored in kernel->grid_size
3982 * and kernel->block_dim.
3983 * Note that the bounds on the block identifiers may implicitly impose
3984 * constraints on the parameters. A guard needs to be inserted
3985 * in the schedule tree to ensure that those bounds hold at "node".
3986 * This guard is inserted in insert_guard.
3988 static __isl_give isl_schedule_node *insert_context(struct ppcg_kernel *kernel,
3989 __isl_take isl_schedule_node *node)
3991 isl_set *context;
3993 context = isl_set_universe(isl_set_get_space(kernel->context));
3995 context = add_bounded_parameters_dynamic(context,
3996 kernel->grid_size, kernel->block_ids);
3997 context = add_bounded_parameters(context,
3998 kernel->block_dim, kernel->thread_ids);
4000 node = isl_schedule_node_insert_context(node, context);
4002 return node;
4005 /* Insert a guard that eliminates kernel launches where the kernel
4006 * obviously does not have any work to do.
4008 * In particular, eliminate kernel launches where there are obviously
4009 * zero blocks.
4010 * Use the same block size constraints that are used to create the context
4011 * to ensure that all constraints implicit in the constructed context
4012 * are imposed by the guard.
4014 * Additionally, add other constraints that are valid
4015 * for each executed instance ("context"), as long as this does not result
4016 * in a disjunction.
4018 static __isl_give isl_schedule_node *insert_guard(
4019 __isl_take isl_schedule_node *node, __isl_keep isl_set *context,
4020 __isl_keep isl_multi_pw_aff *size, struct ppcg_scop *scop)
4022 unsigned nparam, n;
4023 isl_set *guard;
4024 isl_id_list *ids;
4026 guard = isl_set_copy(context);
4027 guard = isl_set_compute_divs(guard);
4028 guard = isl_set_from_basic_set(isl_set_simple_hull(guard));
4030 nparam = isl_set_dim(guard, isl_dim_param);
4031 n = isl_multi_pw_aff_dim(size, isl_dim_out);
4032 ids = ppcg_scop_generate_names(scop, n, "__ppcg_tmp");
4033 guard = add_bounded_parameters_dynamic(guard, size, ids);
4034 isl_id_list_free(ids);
4035 guard = isl_set_project_out(guard, isl_dim_param, nparam, n);
4037 node = isl_schedule_node_insert_guard(node, guard);
4039 return node;
4042 /* Mark all dimensions in the current band node atomic.
4044 static __isl_give isl_schedule_node *atomic(__isl_take isl_schedule_node *node)
4046 int i, n;
4048 n = isl_schedule_node_band_n_member(node);
4049 for (i = 0; i < n; ++i)
4050 node = isl_schedule_node_band_member_set_ast_loop_type(node, i,
4051 isl_ast_loop_atomic);
4053 return node;
4056 /* Mark "node" atomic, if it is a band node.
4057 * Do the same for all ancestors.
4058 * Return a pointer to "node" (in the updated schedule tree).
4060 static __isl_give isl_schedule_node *atomic_ancestors(
4061 __isl_take isl_schedule_node *node)
4063 int pos;
4065 if (!node)
4066 return NULL;
4067 if (!isl_schedule_node_has_parent(node))
4068 return node;
4070 pos = isl_schedule_node_get_child_position(node);
4071 node = isl_schedule_node_parent(node);
4072 if (isl_schedule_node_get_type(node) == isl_schedule_node_band)
4073 node = atomic(node);
4074 node = atomic_ancestors(node);
4075 node = isl_schedule_node_child(node, pos);
4077 return node;
4080 /* Group the domain elements into a single space, named kernelX,
4081 * with X the kernel sequence number "kernel_id".
4083 static __isl_give isl_schedule_node *group_statements(
4084 __isl_take isl_schedule_node *node, int kernel_id)
4086 char buffer[20];
4087 isl_id *id;
4089 if (!node)
4090 return NULL;
4092 snprintf(buffer, sizeof(buffer), "kernel%d", kernel_id);
4093 id = isl_id_alloc(isl_schedule_node_get_ctx(node), buffer, NULL);
4094 return isl_schedule_node_group(node, id);
4097 /* Create a ppcg_kernel representing the domain instances that reach "node"
4098 * and replace the subtree at "node" by a mark node pointing
4099 * to the ppcg_kernel.
4100 * The band that "node" points to is the band that needs to be mapped
4101 * to block identifiers. The band that needs to be mapped to thread
4102 * identifiers should be marked by a "thread" mark by the caller.
4103 * If "scale" is set, then the band that "node" points to is scaled
4104 * by "sizes".
4106 * Mark all outer band nodes as atomic to ensure each kernel is only
4107 * scheduled once.
4108 * If the domain elements that reach "node" live in more than one space,
4109 * then group the domain elements into a single space, named kernelX,
4110 * with X the kernel sequence number.
4112 * Insert a guard node governing the kernel node to ensure that
4113 * no kernels with zero blocks are launched.
4115 * Temporarily adjust the schedule tree underneath the kernel mark as follows.
4116 * Insert a context node describing the block and thread
4117 * identifiers inside the kernel mark.
4118 * The context node needs to be inserted after the effective block size
4119 * has been determined such that the bounds on the thread identifiers
4120 * would reflect the effective block size.
4122 * Store a pointer to the created ppcg_kernel in gen->kernel.
4124 * We keep a copy of the isl_id that points to the kernel to ensure
4125 * that the kernel does not get destroyed if the schedule node
4126 * is freed due to some error condition.
4128 static __isl_give isl_schedule_node *create_kernel(struct gpu_gen *gen,
4129 __isl_take isl_schedule_node *node, int scale,
4130 __isl_keep isl_multi_val *sizes)
4132 struct ppcg_kernel *kernel;
4133 isl_id *id;
4134 isl_schedule_node *node_thread;
4135 isl_union_set *domain;
4136 int single_statement;
4138 kernel = isl_calloc_type(gen->ctx, struct ppcg_kernel);
4139 kernel = ppcg_kernel_create_local_arrays(kernel, gen->prog);
4140 if (!kernel)
4141 return isl_schedule_node_free(node);
4143 domain = isl_schedule_node_get_domain(node);
4144 single_statement = isl_union_set_n_set(domain) == 1;
4146 kernel->ctx = gen->ctx;
4147 kernel->options = gen->options;
4148 kernel->context = extract_context(node, gen->prog);
4149 kernel->core = isl_union_set_universe(isl_union_set_copy(domain));
4150 kernel->arrays = accessed_by_domain(isl_union_set_copy(domain),
4151 gen->prog);
4152 kernel->tile_len = isl_schedule_node_band_n_member(node);
4153 kernel->n_parallel = n_outer_coincidence(node);
4154 kernel->n_grid = kernel->n_parallel;
4155 node_thread = isl_schedule_node_copy(node);
4156 node_thread = gpu_tree_move_down_to_thread(node_thread, kernel->core);
4157 node_thread = isl_schedule_node_child(node_thread, 0);
4158 kernel->n_block = n_outer_coincidence(node_thread);
4159 isl_schedule_node_free(node_thread);
4160 kernel->id = gen->kernel_id++;
4161 read_grid_and_block_sizes(kernel, gen);
4163 gen->kernel = kernel;
4165 node = atomic_ancestors(node);
4167 id = isl_id_alloc(gen->ctx, "kernel", kernel);
4168 id = isl_id_set_free_user(id, &ppcg_kernel_free_wrap);
4169 node = isl_schedule_node_insert_mark(node, isl_id_copy(id));
4171 if (!single_statement)
4172 node = group_statements(node, kernel->id);
4174 node = isl_schedule_node_child(node, 0);
4175 node = split_band(node, kernel->n_grid);
4176 kernel->block_ids = ppcg_scop_generate_names(gen->prog->scop,
4177 kernel->n_grid, "b");
4178 kernel->block_filter = set_schedule_modulo(node, kernel->block_ids,
4179 kernel->grid_dim);
4180 kernel->grid_size = extract_grid_size(kernel,
4181 isl_union_set_copy(domain));
4182 if (scale)
4183 node = scale_band(node, isl_multi_val_copy(sizes));
4184 node = isl_schedule_node_parent(node);
4185 if (!single_statement)
4186 node = isl_schedule_node_parent(node);
4187 node = insert_guard(node, kernel->context, kernel->grid_size,
4188 gen->prog->scop);
4189 node = gpu_tree_move_down_to_thread(node, kernel->core);
4190 node = isl_schedule_node_child(node, 0);
4191 node = split_band(node, kernel->n_block);
4192 kernel->thread_ids = ppcg_scop_generate_names(gen->prog->scop,
4193 kernel->n_block, "t");
4194 kernel->thread_filter = set_schedule_modulo(node, kernel->thread_ids,
4195 kernel->block_dim);
4196 extract_block_size(kernel, domain);
4198 node = gpu_tree_move_up_to_kernel(node);
4199 node = isl_schedule_node_child(node, 0);
4200 node = insert_context(kernel, node);
4202 node = gpu_tree_move_up_to_kernel(node);
4204 node = isl_schedule_node_child(node, 0);
4205 node = isl_schedule_node_cut(node);
4206 node = isl_schedule_node_parent(node);
4208 if (!single_statement)
4209 node = isl_schedule_node_parent(node);
4210 node = isl_schedule_node_parent(node);
4212 isl_id_free(id);
4213 return node;
4216 /* Insert a zero-dimensional permutable band at "node".
4218 static __isl_give isl_schedule_node *insert_empty_permutable_band(
4219 __isl_take isl_schedule_node *node)
4221 isl_space *space;
4222 isl_schedule *schedule;
4223 isl_union_set *domain;
4224 isl_multi_union_pw_aff *mupa;
4226 schedule = isl_schedule_node_get_schedule(node);
4227 domain = isl_schedule_get_domain(schedule);
4228 space = isl_union_set_get_space(domain);
4229 isl_union_set_free(domain);
4230 isl_schedule_free(schedule);
4232 space = isl_space_set_from_params(space);
4233 mupa = isl_multi_union_pw_aff_zero(space);
4234 node = isl_schedule_node_insert_partial_schedule(node, mupa);
4235 node = isl_schedule_node_band_set_permutable(node, 1);
4237 return node;
4240 /* Mark "node" as outer permutable.
4242 * If "node" originally points to a leaf, then insert a zero-dimensional
4243 * permutable band such that we can assume that "node" always
4244 * points to a band node.
4246 * Tile "node" using user specified tile sizes, after splitting the band
4247 * if the number of specified tile sizes is smaller than the dimension
4248 * of the band. Mark the point band of this tiling as the band that
4249 * needs to be mapped to threads.
4250 * Create a kernel representing the domain instances that reach "node" and
4251 * replace the band node with a mark node pointing to the kernel.
4253 static __isl_give isl_schedule_node *mark_outer_permutable(
4254 struct gpu_gen *gen, __isl_take isl_schedule_node *node)
4256 struct ppcg_kernel *kernel;
4257 int scale;
4258 int tile_len;
4259 int *tile_size;
4260 isl_id *id;
4261 isl_multi_val *sizes;
4263 if (isl_schedule_node_get_type(node) == isl_schedule_node_leaf)
4264 node = insert_empty_permutable_band(node);
4266 tile_len = isl_schedule_node_band_n_member(node);
4267 tile_size = read_tile_sizes(gen, &tile_len);
4268 if (!tile_size)
4269 return isl_schedule_node_free(node);
4270 if (tile_len < isl_schedule_node_band_n_member(node))
4271 node = isl_schedule_node_band_split(node, tile_len);
4272 sizes = construct_band_tiles_sizes(node, tile_size);
4273 node = tile_band(node, isl_multi_val_copy(sizes));
4274 node = isl_schedule_node_child(node, 0);
4275 id = isl_id_alloc(gen->ctx, "thread", NULL);
4276 node = isl_schedule_node_insert_mark(node, id);
4277 node = isl_schedule_node_parent(node);
4279 scale = gen->options->scale_tile_loops;
4280 node = create_kernel(gen, node, scale, sizes);
4281 isl_multi_val_free(sizes);
4282 if (!node)
4283 return NULL;
4284 kernel = gen->kernel;
4285 kernel->tile_len = tile_len;
4286 kernel->tile_size = tile_size;
4288 return node;
4291 static __isl_give isl_schedule_node *select_outer_band(struct gpu_gen *gen,
4292 __isl_take isl_schedule_node *node, int pos, struct band_info *info);
4294 /* Check if this band node is tilable and has any parallel loops. If so,
4295 * take it as the outermost tilable band. If not, continue looking for the
4296 * outermost tilable band in the children of the current band.
4297 * Return a pointer to the same node in a tree where all outermost tilable
4298 * bands in the current subtree have been replaced by mark nodes
4299 * containing a pointer to a ppcg_kernel object.
4301 static __isl_give isl_schedule_node *band_select_outer_band(struct gpu_gen *gen,
4302 __isl_take isl_schedule_node *node, int pos, struct band_info *info)
4304 int n = isl_schedule_node_band_n_member(node);
4305 int n_parallel;
4307 n_parallel = n_outer_coincidence(node);
4309 if (!isl_schedule_node_band_get_permutable(node) || n_parallel == 0) {
4310 node = isl_schedule_node_child(node, 0);
4311 node = select_outer_band(gen, node, pos + n, info);
4312 return isl_schedule_node_parent(node);
4315 gen->any_parallelism = 1;
4316 info->gen = gen;
4317 info->tile_first = pos;
4318 info->prefix = isl_schedule_node_get_prefix_schedule_union_map(node);
4319 info->suffix = isl_schedule_node_get_subtree_schedule_union_map(node);
4321 node = mark_outer_permutable(gen, node);
4323 return node;
4326 /* Extend "umap" with coordinates with fixed value "val"
4327 * to a total length of "dst_len", assuming the original dimension is "src_len".
4329 static __isl_give isl_union_map *extend_range(
4330 __isl_take isl_union_map *umap, int src_len, int dst_len, int val)
4332 isl_space *dim;
4333 isl_map *map;
4334 int i;
4336 dim = isl_union_map_get_space(umap);
4337 map = isl_map_reverse(projection(dim, dst_len, src_len));
4338 for (i = src_len; i < dst_len; ++i)
4339 map = isl_map_fix_si(map, isl_dim_out, i, val);
4341 umap = isl_union_map_apply_range(umap, isl_union_map_from_map(map));
4343 return umap;
4346 /* Select the outermost bands in the elements of the sequence or set
4347 * node "node", align their prefix schedules and combine the resulting
4348 * prefix and suffix schedules into a single pair of prefix and
4349 * suffix schedules for the entire list.
4350 * Return a pointer to the same node in a tree where all outermost tilable
4351 * bands in the current subtree have been replaced by mark nodes
4352 * containing a pointer to a ppcg_kernel object.
4354 static __isl_give isl_schedule_node *list_select_outer_band(
4355 struct gpu_gen *gen, __isl_take isl_schedule_node *node, int pos,
4356 struct band_info *list_info)
4358 int i;
4359 int n = isl_schedule_node_n_children(node);
4360 isl_ctx *ctx = isl_schedule_node_get_ctx(node);
4361 struct band_info *info;
4362 int max_tile_first;
4363 isl_union_map *prefix;
4364 isl_union_map *suffix;
4366 assert(n >= 1);
4367 info = isl_calloc_array(ctx, struct band_info, n);
4368 assert(info);
4370 max_tile_first = 0;
4371 for (i = 0; i < n; ++i) {
4372 node = isl_schedule_node_child(node, i);
4373 node = select_outer_band(gen, node, pos, &info[i]);
4374 if (info[i].tile_first > max_tile_first)
4375 max_tile_first = info[i].tile_first;
4376 node = isl_schedule_node_parent(node);
4379 for (i = 0; i < n; ++i) {
4380 if (info[i].tile_first == max_tile_first)
4381 continue;
4382 info[i].prefix = extend_range(info[i].prefix,
4383 info[i].tile_first, max_tile_first, 0);
4384 info[i].tile_first = max_tile_first;
4387 prefix = info[0].prefix;
4388 suffix = info[0].suffix;
4390 for (i = 1; i < n; ++i) {
4391 prefix = isl_union_map_union(prefix, info[i].prefix);
4392 suffix = isl_union_map_union(suffix, info[i].suffix);
4395 list_info->tile_first = info[0].tile_first;
4396 list_info->prefix = prefix;
4397 list_info->suffix = suffix;
4399 free(info);
4400 return node;
4403 /* If we reach a leaf node, then we have not found any outer tilable
4404 * band with parallel loops, so consider the leaf node as the outermost
4405 * tilable band.
4406 * Return a pointer to a mark node containing a pointer
4407 * to a ppcg_kernel object inserted at the original leaf node.
4409 static __isl_give isl_schedule_node *leaf_select_outer_band(struct gpu_gen *gen,
4410 __isl_take isl_schedule_node *node, int pos, struct band_info *info)
4412 info->gen = gen;
4413 info->tile_first = pos;
4414 info->prefix = isl_schedule_node_get_prefix_schedule_union_map(node);
4415 info->suffix = isl_schedule_node_get_subtree_schedule_union_map(node);
4417 node = mark_outer_permutable(gen, node);
4419 return node;
4422 /* Select the outermost tilable band in the subtree that "node" points to and
4423 * return a pointer to the same node in a tree where all outermost tilable
4424 * bands in the current subtree have been replaced by mark nodes
4425 * containing a pointer to a ppcg_kernel object.
4427 static __isl_give isl_schedule_node *select_outer_band(struct gpu_gen *gen,
4428 __isl_take isl_schedule_node *node, int pos, struct band_info *info)
4430 enum isl_schedule_node_type type;
4432 type = isl_schedule_node_get_type(node);
4433 switch (type) {
4434 case isl_schedule_node_domain:
4435 case isl_schedule_node_filter:
4436 node = isl_schedule_node_child(node, 0);
4437 node = select_outer_band(gen, node, pos, info);
4438 return isl_schedule_node_parent(node);
4439 case isl_schedule_node_leaf:
4440 return leaf_select_outer_band(gen, node, pos, info);
4441 case isl_schedule_node_band:
4442 return band_select_outer_band(gen, node, pos, info);
4443 case isl_schedule_node_set:
4444 case isl_schedule_node_sequence:
4445 return list_select_outer_band(gen, node, pos, info);
4446 default:
4447 isl_die(isl_schedule_node_get_ctx(node),
4448 isl_error_unsupported, "unhandled schedule node type",
4449 node = node);
4450 case isl_schedule_node_error:
4451 info->prefix = NULL;
4452 info->suffix = NULL;
4453 break;
4456 return isl_schedule_node_free(node);
4459 /* Select the outermost tilable band that (by construction)
4460 * has at least one parallel loop.
4461 * The starting position of the aligned band is stored in the pair
4462 * gen->tile_first.
4463 * The sizes and number of parallel loops may be different in different
4464 * parts of the band forest and are therefore stored in the gpu_stmts.
4466 * Return the complete schedule, with the tilable bands aligned
4467 * at gen->tile_first and padded with zero, if needed.
4468 * Store a schedule tree corresponding to the outer gen->tile_first
4469 * dimensions, with mark nodes containing pointers to ppcg_kernel objects,
4470 * in gen->host_schedule.
4472 static __isl_give isl_union_map *select_outer_tilable_band(struct gpu_gen *gen,
4473 __isl_keep isl_schedule *schedule)
4475 isl_schedule_node *node;
4476 struct band_info info;
4478 node = isl_schedule_get_root(schedule);
4479 node = select_outer_band(gen, node, 0, &info);
4480 gen->host_schedule = isl_schedule_node_get_schedule(node);
4481 isl_schedule_node_free(node);
4483 gen->tile_first = info.tile_first;
4484 info.suffix = align_range(info.suffix);
4486 return isl_union_map_flat_range_product(info.prefix, info.suffix);
4489 /* Set gen->untiled_len to the number of scheduling dimensions
4490 * for the schedule of the first domain.
4491 * We assume here that this number is the same for all domains.
4493 static int set_untiled_len(__isl_take isl_map *map, void *user)
4495 unsigned *untiled_len = user;
4497 *untiled_len = isl_map_dim(map, isl_dim_out);
4499 isl_map_free(map);
4500 return -1;
4503 /* Compute an appropriate schedule based on the accesses in
4504 * gen->read and gen->write.
4506 * We use the dependences in gen->prog->scop to compute
4507 * a schedule that has a parallel loop in each tilable band.
4508 * Finally, we select the outermost tilable band.
4510 * If live range reordering is allowed, then we need to make sure
4511 * that live ranges on arrays are not run in parallel since doing
4512 * so would require array expansion. We therefore add the array
4513 * order dependences to the coincidence dependences. Non-zero array
4514 * order dependences will then prevent a schedule dimension from being
4515 * considered parallel.
4516 * Live ranges derived from scalars are allowed to be run in parallel
4517 * since we force the scalars to be mapped to private memory in
4518 * check_scalar_live_ranges.
4519 * If live range reordering is allowed, then the false dependences
4520 * are not added to the validity constraints as that would prevent
4521 * reordering. Instead, the external false dependences that enforce that reads
4522 * from potentially live-in data precede any later write and
4523 * that writes of potentially live-out data follow any other earlier write
4524 * are added to the validity and the coincidence constraints.
4525 * The false dependences are still added to the proximity constraints
4526 * for consistency with the case where live range reordering is not allowed.
4527 * The coincidence constraints then consist of flow dependences,
4528 * external false dependences and array order dependences.
4529 * The independences can be filtered out from the first two sets.
4530 * They have already been filtered out from the array order dependences
4531 * on a per array basis in collect_order_dependences.
4532 * There is no need for a per array handling of the other two sets
4533 * as there should be no flow or external false dependence on local
4534 * variables that can be filtered out.
4536 static void compute_schedule(struct gpu_gen *gen)
4538 isl_union_set *domain;
4539 isl_union_map *dep_raw, *dep;
4540 isl_union_map *validity, *proximity, *coincidence;
4541 isl_union_map *sched;
4542 isl_schedule_constraints *sc;
4543 isl_schedule *schedule;
4545 domain = isl_union_set_copy(gen->prog->scop->domain);
4546 sc = isl_schedule_constraints_on_domain(isl_union_set_copy(domain));
4547 sc = isl_schedule_constraints_set_context(sc,
4548 isl_set_copy(gen->prog->scop->context));
4549 if (gen->options->live_range_reordering) {
4550 sc = isl_schedule_constraints_set_conditional_validity(sc,
4551 isl_union_map_copy(gen->prog->scop->tagged_dep_flow),
4552 isl_union_map_copy(gen->prog->scop->tagged_dep_order));
4553 proximity = isl_union_map_copy(gen->prog->scop->dep_flow);
4554 validity = isl_union_map_copy(proximity);
4555 validity = isl_union_map_union(validity,
4556 isl_union_map_copy(gen->prog->scop->dep_forced));
4557 proximity = isl_union_map_union(proximity,
4558 isl_union_map_copy(gen->prog->scop->dep_false));
4559 coincidence = isl_union_map_copy(validity);
4560 coincidence = isl_union_map_subtract(coincidence,
4561 isl_union_map_copy(gen->prog->scop->independence));
4562 coincidence = isl_union_map_union(coincidence,
4563 isl_union_map_copy(gen->prog->array_order));
4564 } else {
4565 dep_raw = isl_union_map_copy(gen->prog->scop->dep_flow);
4566 dep = isl_union_map_copy(gen->prog->scop->dep_false);
4567 dep = isl_union_map_union(dep, dep_raw);
4568 dep = isl_union_map_coalesce(dep);
4569 proximity = isl_union_map_copy(dep);
4570 coincidence = isl_union_map_copy(dep);
4571 validity = dep;
4573 sc = isl_schedule_constraints_set_validity(sc, validity);
4574 sc = isl_schedule_constraints_set_coincidence(sc, coincidence);
4575 sc = isl_schedule_constraints_set_proximity(sc, proximity);
4577 if (gen->options->debug->dump_schedule_constraints)
4578 isl_schedule_constraints_dump(sc);
4579 schedule = isl_schedule_constraints_compute_schedule(sc);
4580 if (gen->options->debug->dump_schedule)
4581 isl_schedule_dump(schedule);
4583 sched = select_outer_tilable_band(gen, schedule);
4585 isl_union_map_foreach_map(sched, &set_untiled_len, &gen->untiled_len);
4586 sched = isl_union_map_intersect_domain(sched, domain);
4587 gen->sched = sched;
4589 isl_schedule_free(schedule);
4592 /* Compute the sets of outer array elements that need to be copied in and out.
4594 * In particular, for each array that is possibly written anywhere in
4595 * gen->prog and that is visible outside the corresponding scop,
4596 * we copy out its entire extent.
4598 * Any array elements that is read without first being written needs
4599 * to be copied in. Furthermore, if there are any array elements that
4600 * are copied out, but that may not be written inside gen->prog, then
4601 * they also need to be copied in to ensure that the value after execution
4602 * is the same as the value before execution, at least for those array
4603 * elements that may have their values preserved by the scop.
4604 * In case the array elements are structures, we need to take into
4605 * account that all members of the structures need to be written
4606 * by gen->prog before we can avoid copying the data structure in.
4608 * While computing the set of array elements that are copied out but
4609 * not necessarily written, we intersect both sets with the context.
4610 * This helps in those cases where the arrays are declared with a fixed size,
4611 * while the accesses are parametric and the context assigns a fixed value
4612 * to the parameters.
4614 * If an element from a local array is read without first being written,
4615 * then there is no point in copying it in since it cannot have been
4616 * written prior to the scop. Warn about the uninitialized read instead.
4618 static void compute_copy_in_and_out(struct gpu_gen *gen)
4620 int i;
4621 isl_union_set *local;
4622 isl_union_set *may_write, *must_write;
4623 isl_union_set *copy_in, *copy_out;
4624 isl_union_set *not_written;
4625 isl_union_map *uninitialized;
4626 isl_union_map *local_uninitialized;
4628 must_write = isl_union_map_range(
4629 isl_union_map_copy(gen->prog->must_write));
4630 must_write = isl_union_set_intersect_params(must_write,
4631 isl_set_copy(gen->prog->context));
4632 may_write = isl_union_map_range(
4633 isl_union_map_copy(gen->prog->may_write));
4634 may_write = isl_union_set_intersect_params(may_write,
4635 isl_set_copy(gen->prog->context));
4636 may_write = isl_union_set_universe(may_write);
4637 may_write = isl_union_set_apply(may_write,
4638 isl_union_map_copy(gen->prog->to_outer));
4639 copy_out = isl_union_set_empty(isl_union_set_get_space(may_write));
4640 local = isl_union_set_copy(copy_out);
4642 for (i = 0; i < gen->prog->n_array; ++i) {
4643 isl_space *space;
4644 isl_set *write_i;
4645 int empty;
4647 space = isl_space_copy(gen->prog->array[i].space);
4649 if (gen->prog->array[i].local) {
4650 isl_set *set;
4652 set = isl_set_universe(space);
4653 local = isl_union_set_add_set(local, set);
4654 continue;
4657 write_i = isl_union_set_extract_set(may_write, space);
4658 empty = isl_set_plain_is_empty(write_i);
4659 isl_set_free(write_i);
4660 if (empty)
4661 continue;
4663 write_i = isl_set_copy(gen->prog->array[i].extent);
4664 copy_out = isl_union_set_add_set(copy_out, write_i);
4666 isl_union_set_free(may_write);
4668 copy_out = isl_union_set_intersect_params(copy_out,
4669 isl_set_copy(gen->prog->context));
4671 gen->prog->copy_out = isl_union_set_copy(copy_out);
4673 copy_out = isl_union_set_apply(copy_out,
4674 isl_union_map_copy(gen->prog->to_inner));
4675 copy_out = isl_union_set_intersect(copy_out,
4676 isl_union_set_copy(gen->prog->may_persist));
4677 not_written = isl_union_set_subtract(copy_out, must_write);
4679 uninitialized = isl_union_map_copy(gen->prog->scop->live_in);
4680 local_uninitialized = isl_union_map_copy(uninitialized);
4682 local = isl_union_set_apply(local,
4683 isl_union_map_copy(gen->prog->to_inner));
4684 local_uninitialized = isl_union_map_intersect_range(local_uninitialized,
4685 local);
4686 if (!isl_union_map_is_empty(local_uninitialized)) {
4687 fprintf(stderr,
4688 "possibly uninitialized reads (not copied in):\n");
4689 isl_union_map_dump(local_uninitialized);
4691 uninitialized = isl_union_map_subtract(uninitialized,
4692 local_uninitialized);
4693 copy_in = isl_union_map_range(uninitialized);
4694 copy_in = isl_union_set_union(copy_in, not_written);
4695 copy_in = isl_union_set_apply(copy_in,
4696 isl_union_map_copy(gen->prog->to_outer));
4698 gen->prog->copy_in = copy_in;
4701 /* Internal data structure for extract_access.
4702 * "next_access" points to the end of a linked list that is extended
4703 * by extract_access.
4704 * "single_expression" is set if the access expressions belong to
4705 * an expression statement (i.e., a statement without internal control).
4706 * "any_to_outer" maps all intermediate arrays to their outer arrays.
4708 struct ppcg_extract_access_data {
4709 struct gpu_stmt_access **next_access;
4710 int single_expression;
4711 isl_union_map *any_to_outer;
4714 /* Given a tagged access relation to a single array "tagged", extract it
4715 * as a map, taking into account that the input may be empty.
4716 * If the access relation is empty, then it does not contain
4717 * any space information, so we try to recover it from the index
4718 * expression.
4719 * The space of the index expression is of the form I -> A,
4720 * with I the statement instances and A the array, or [I -> F] -> A,
4721 * with F the filters corresponding to arguments.
4722 * We first drop F, if present, obtaining I -> A.
4723 * Then we construct I -> R, with R the reference tag,
4724 * combine the two into I -> [R -> A] and uncurry to obtain
4725 * the final result [I -> R] -> A.
4726 * Note that the index expression may have a lower dimension
4727 * than that of the array, but this dimension is not used
4728 * if the access relation is empty.
4730 static __isl_give isl_map *extract_single_tagged_access(
4731 __isl_take isl_union_map *tagged, __isl_keep pet_expr *expr)
4733 int empty;
4734 isl_id *id;
4735 isl_space *space, *space2;
4736 isl_multi_pw_aff *index;
4738 empty = isl_union_map_is_empty(tagged);
4739 if (empty < 0)
4740 goto error;
4741 if (!empty)
4742 return isl_map_from_union_map(tagged);
4743 isl_union_map_free(tagged);
4745 index = pet_expr_access_get_index(expr);
4746 space = isl_multi_pw_aff_get_space(index);
4747 isl_multi_pw_aff_free(index);
4748 if (isl_space_domain_is_wrapping(space))
4749 space = isl_space_domain_factor_domain(space);
4750 space2 = isl_space_copy(space);
4751 space2 = isl_space_from_domain(isl_space_domain(space));
4752 id = pet_expr_access_get_ref_id(expr);
4753 space2 = isl_space_set_tuple_id(space2, isl_dim_out, id);
4754 space = isl_space_range_product(space2, space);
4755 space = isl_space_uncurry(space);
4757 return isl_map_empty(space);
4758 error:
4759 isl_union_map_free(tagged);
4760 return NULL;
4763 /* Extract a gpu_stmt_access from "expr", append it to the list
4764 * that ends in *data->next_access and update the end of the list.
4765 * If the access expression performs a write, then it is considered
4766 * exact only if it appears in a single expression statement and
4767 * if its may access relation is equal to its must access relation.
4769 * The combined set of may accesses may be union if member accesses
4770 * are involved, but the entire set is derived from a single reference and
4771 * therefore from a single index expression. These accesses therefore
4772 * all map to the same outer array.
4774 static int extract_access(__isl_keep pet_expr *expr, void *user)
4776 struct ppcg_extract_access_data *data = user;
4777 isl_union_map *tagged;
4778 struct gpu_stmt_access *access;
4779 isl_ctx *ctx = pet_expr_get_ctx(expr);
4780 isl_multi_pw_aff *index;
4782 access = isl_alloc_type(ctx, struct gpu_stmt_access);
4783 assert(access);
4784 access->next = NULL;
4785 access->read = pet_expr_access_is_read(expr);
4786 access->write = pet_expr_access_is_write(expr);
4787 tagged = pet_expr_access_get_tagged_may_read(expr);
4788 tagged = isl_union_map_union(tagged,
4789 pet_expr_access_get_tagged_may_write(expr));
4790 tagged = isl_union_map_apply_range(tagged,
4791 isl_union_map_copy(data->any_to_outer));
4792 if (!access->write) {
4793 access->exact_write = 1;
4794 } else if (!data->single_expression) {
4795 access->exact_write = 0;
4796 } else {
4797 isl_union_map *must, *may;
4798 may = isl_union_map_copy(tagged);
4799 may = isl_union_map_domain_factor_domain(may);
4800 must = pet_expr_access_get_must_write(expr);
4801 access->exact_write = isl_union_map_is_equal(must, may);
4802 isl_union_map_free(must);
4803 isl_union_map_free(may);
4805 index = pet_expr_access_get_index(expr);
4806 access->n_index = isl_multi_pw_aff_dim(index, isl_dim_out);
4807 isl_multi_pw_aff_free(index);
4808 access->ref_id = pet_expr_access_get_ref_id(expr);
4809 access->tagged_access = extract_single_tagged_access(tagged, expr);
4810 access->access = isl_map_copy(access->tagged_access);
4811 access->access = isl_map_domain_factor_domain(access->access);
4813 *data->next_access = access;
4814 data->next_access = &(*data->next_access)->next;
4816 if (!access->access)
4817 return -1;
4819 return 0;
4822 /* Construct a linked list of gpu_stmt_access objects,
4823 * one for each access expression in the statement body.
4824 * "any_to_outer" maps all intermediate arrays to their outer arrays.
4826 static int pet_stmt_extract_accesses(struct gpu_stmt *stmt,
4827 __isl_keep isl_union_map *any_to_outer)
4829 struct ppcg_extract_access_data data;
4831 stmt->accesses = NULL;
4832 data.next_access = &stmt->accesses;
4833 data.single_expression =
4834 pet_tree_get_type(stmt->stmt->body) == pet_tree_expr;
4835 data.any_to_outer = any_to_outer;
4836 return pet_tree_foreach_access_expr(stmt->stmt->body,
4837 &extract_access, &data);
4840 /* Return an array of gpu_stmt representing the statements in "scop".
4842 static struct gpu_stmt *extract_stmts(isl_ctx *ctx, struct ppcg_scop *scop,
4843 __isl_keep isl_set *context, __isl_keep isl_union_map *any_to_outer)
4845 int i;
4846 struct gpu_stmt *stmts;
4848 stmts = isl_calloc_array(ctx, struct gpu_stmt, scop->pet->n_stmt);
4849 if (!stmts)
4850 return NULL;
4852 for (i = 0; i < scop->pet->n_stmt; ++i) {
4853 struct gpu_stmt *s = &stmts[i];
4855 s->id = isl_set_get_tuple_id(scop->pet->stmts[i]->domain);
4856 s->stmt = scop->pet->stmts[i];
4857 if (pet_stmt_extract_accesses(s, any_to_outer) < 0)
4858 return free_stmts(stmts, i + 1);
4861 return stmts;
4864 /* Callback for ppcg_print_guarded that calls the callback for generate_gpu.
4866 static __isl_give isl_printer *print_gpu(__isl_take isl_printer *p, void *user)
4868 struct gpu_gen *gen = user;
4870 return gen->print(p, gen->prog, gen->tree, &gen->types,
4871 gen->print_user);
4874 /* Generate CUDA code for "scop" and print it to "p".
4875 * After generating an AST for the transformed scop as explained below,
4876 * we call "gen->print" to print the AST in the desired output format
4877 * to "p".
4879 * If it turns out that it does not make sense to generate GPU code,
4880 * then we generate CPU code instead.
4882 * The GPU code is generated in a context where at least one
4883 * statement instance is executed. The corresponding guard (if any) is printed
4884 * around the entire generated GPU code, except for the declaration
4885 * of the arrays that are visible outside of the scop and that therefore
4886 * cannot be declared inside the body of any possible guard.
4888 * We first compute a schedule that respects the dependences
4889 * of the original program and select the outermost band
4890 * of tilable dimensions that has at least one parallel loop.
4891 * We then have three blocks of dimensions
4893 * H B G
4895 * The tilable band "B" is first tiled according to "tile" sizes, resulting
4896 * in
4898 * H T P G
4900 * For each iteration of the T loop and for each array, we compute
4901 * the array elements accessed by that iteration, construct a rectangular
4902 * box around it and shift it to the origin. The result is used
4903 * as shared memory for the array.
4905 * We then split off at most 2 parallel loops from the T loops and
4906 * at most 3 parallel loops from the P loops
4908 * H T1 T2 P1 P2 G
4910 * The T1/P1 loops are then tiled or "wrapped" over the blocks/threads,
4911 * according to "grid"/"block" sizes.
4913 * H T1T T1P T2 P1T P1P P2 G
4915 * Finally, the T1P and P1P iterators are equated to the block and
4916 * thread dimensions respectively and so are effectively removed.
4917 * The H loops are run on the host. The T1T, T2, P1T, P2 and G loops
4918 * are run on the GPU.
4920 * Code is generated in three stages. We first generate code for the
4921 * host (the H loops), with iterators h%d. Then, for each leaf node
4922 * of the resulting AST, we generate code for the shared loops (up to
4923 * and including T2), with iterators g%d and after equating the H loops
4924 * to h%d parameters and the T1P loops to the block dimensions.
4925 * Finally, we generate code for the remaining loops in a similar fashion.
4927 static __isl_give isl_printer *generate(__isl_take isl_printer *p,
4928 struct gpu_gen *gen, struct ppcg_scop *scop,
4929 struct ppcg_options *options)
4931 struct gpu_prog *prog;
4932 isl_ctx *ctx;
4933 isl_set *context, *guard;
4935 if (!scop)
4936 return isl_printer_free(p);
4938 ctx = isl_printer_get_ctx(p);
4939 prog = gpu_prog_alloc(ctx, scop);
4940 if (!prog)
4941 return isl_printer_free(p);
4943 context = isl_set_copy(prog->context);
4944 guard = isl_union_set_params(isl_union_set_copy(prog->scop->domain));
4945 prog->context = isl_set_intersect(prog->context, isl_set_copy(guard));
4947 gen->prog = prog;
4948 gen->any_parallelism = 0;
4949 compute_schedule(gen);
4951 if (!gen->any_parallelism) {
4952 isl_set_free(context);
4953 isl_set_free(guard);
4954 p = print_cpu(p, scop, options);
4955 } else {
4956 compute_copy_in_and_out(gen);
4957 gen->tree = generate_host_code(gen);
4958 p = ppcg_print_exposed_declarations(p, prog->scop);
4959 p = ppcg_print_guarded(p, guard, context, &print_gpu, gen);
4960 isl_ast_node_free(gen->tree);
4963 isl_union_map_free(gen->sched);
4964 isl_schedule_free(gen->host_schedule);
4966 gpu_prog_free(prog);
4968 return p;
4971 /* Wrapper around generate for use as a ppcg_transform callback.
4973 static __isl_give isl_printer *generate_wrap(__isl_take isl_printer *p,
4974 struct ppcg_scop *scop, void *user)
4976 struct gpu_gen *gen = user;
4978 return generate(p, gen, scop, gen->options);
4981 /* Transform the code in the file called "input" by replacing
4982 * all scops by corresponding GPU code and write the results to "out".
4984 int generate_gpu(isl_ctx *ctx, const char *input, FILE *out,
4985 struct ppcg_options *options,
4986 __isl_give isl_printer *(*print)(__isl_take isl_printer *p,
4987 struct gpu_prog *prog, __isl_keep isl_ast_node *tree,
4988 struct gpu_types *types, void *user), void *user)
4990 struct gpu_gen gen;
4991 int r;
4992 int i;
4994 gen.ctx = ctx;
4995 gen.sizes = extract_sizes_from_str(ctx, options->sizes);
4996 gen.options = options;
4997 gen.kernel_id = 0;
4998 gen.print = print;
4999 gen.print_user = user;
5000 gen.types.n = 0;
5001 gen.types.name = NULL;
5003 if (options->debug->dump_sizes) {
5004 isl_space *space = isl_space_params_alloc(ctx, 0);
5005 gen.used_sizes = isl_union_map_empty(space);
5008 r = ppcg_transform(ctx, input, out, options, &generate_wrap, &gen);
5010 if (options->debug->dump_sizes) {
5011 isl_union_map_dump(gen.used_sizes);
5012 isl_union_map_free(gen.used_sizes);
5015 isl_union_map_free(gen.sizes);
5016 for (i = 0; i < gen.types.n; ++i)
5017 free(gen.types.name[i]);
5018 free(gen.types.name);
5020 return r;
5023 /* Compute the set of inner array elements that may have their values
5024 * preserved by "prog". In particular, collect the array elements of
5025 * arrays that are not local to "prog" and remove those elements that
5026 * are definitely killed or definitely written by "prog".
5028 static __isl_give isl_union_set *compute_may_persist(struct gpu_prog *prog)
5030 int i;
5031 isl_union_set *may_persist, *killed;
5032 isl_union_map *must_kill;
5034 may_persist = isl_union_set_empty(isl_set_get_space(prog->context));
5035 for (i = 0; i < prog->n_array; ++i) {
5036 isl_set *extent;
5038 if (prog->array[i].local)
5039 continue;
5041 extent = isl_set_copy(prog->array[i].extent);
5042 may_persist = isl_union_set_add_set(may_persist, extent);
5045 may_persist = isl_union_set_intersect_params(may_persist,
5046 isl_set_copy(prog->context));
5047 may_persist = isl_union_set_apply(may_persist,
5048 isl_union_map_copy(prog->to_inner));
5049 must_kill = isl_union_map_copy(prog->tagged_must_kill);
5050 killed = isl_union_map_range(must_kill);
5051 must_kill = isl_union_map_copy(prog->must_write);
5052 killed = isl_union_set_union(killed, isl_union_map_range(must_kill));
5054 may_persist = isl_union_set_subtract(may_persist, killed);
5055 return may_persist;
5058 struct gpu_prog *gpu_prog_alloc(isl_ctx *ctx, struct ppcg_scop *scop)
5060 struct gpu_prog *prog;
5061 isl_space *space;
5062 isl_map *id;
5064 if (!scop)
5065 return NULL;
5067 prog = isl_calloc_type(ctx, struct gpu_prog);
5068 assert(prog);
5070 prog->ctx = ctx;
5071 prog->scop = scop;
5072 prog->context = isl_set_copy(scop->context);
5073 prog->n_stmts = scop->pet->n_stmt;
5074 prog->any_to_outer = pet_scop_compute_outer_to_any(scop->pet);
5075 prog->any_to_outer = isl_union_map_reverse(prog->any_to_outer);
5076 space = isl_union_map_get_space(prog->any_to_outer);
5077 space = isl_space_set_from_params(space);
5078 space = isl_space_add_dims(space, isl_dim_set, 1);
5079 space = isl_space_map_from_set(space);
5080 id = isl_map_identity(space);
5081 prog->any_to_outer = isl_union_map_add_map(prog->any_to_outer, id);
5082 prog->stmts = extract_stmts(ctx, scop,
5083 prog->context, prog->any_to_outer);
5084 prog->read = isl_union_map_copy(scop->reads);
5085 prog->may_write = isl_union_map_copy(scop->may_writes);
5086 prog->must_write = isl_union_map_copy(scop->must_writes);
5087 prog->tagged_must_kill = isl_union_map_copy(scop->tagged_must_kills);
5088 prog->to_inner = pet_scop_compute_outer_to_inner(scop->pet);
5089 prog->to_outer = isl_union_map_copy(prog->to_inner);
5090 prog->to_outer = isl_union_map_reverse(prog->to_outer);
5092 if (!prog->stmts)
5093 return gpu_prog_free(prog);
5095 if (collect_array_info(prog) < 0)
5096 return gpu_prog_free(prog);
5097 prog->may_persist = compute_may_persist(prog);
5099 return prog;
5102 void *gpu_prog_free(struct gpu_prog *prog)
5104 if (!prog)
5105 return NULL;
5106 free_array_info(prog);
5107 free_stmts(prog->stmts, prog->n_stmts);
5108 isl_union_map_free(prog->any_to_outer);
5109 isl_union_map_free(prog->to_outer);
5110 isl_union_map_free(prog->to_inner);
5111 isl_union_set_free(prog->copy_in);
5112 isl_union_set_free(prog->copy_out);
5113 isl_union_map_free(prog->read);
5114 isl_union_map_free(prog->may_write);
5115 isl_union_map_free(prog->must_write);
5116 isl_union_map_free(prog->tagged_must_kill);
5117 isl_union_map_free(prog->array_order);
5118 isl_union_set_free(prog->may_persist);
5119 isl_set_free(prog->context);
5120 free(prog);
5121 return NULL;