update isl for isl_map_affine_hull optimization
[ppcg.git] / gpu.c
blob349bb050664e966b44fcfd7a51f58c63aeae64d6
1 /*
2 * Copyright 2010-2011 INRIA Saclay
3 * Copyright 2012 Ecole Normale Superieure
5 * Use of this software is governed by the GNU LGPLv2.1 license
7 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
8 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
9 * 91893 Orsay, France
10 * and Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France
13 #include <assert.h>
14 #include <stdlib.h>
16 #include <isl/polynomial.h>
17 #include <isl/union_set.h>
18 #include <isl/aff.h>
19 #include <isl/ilp.h>
20 #include <isl/flow.h>
21 #include <isl/band.h>
22 #include <isl/schedule.h>
23 #include <isl/options.h>
24 #include <isl/ast_build.h>
26 #include "gpu.h"
27 #include "schedule.h"
28 #include "ppcg_options.h"
30 /* The fields stride, shift and shift_map only contain valid information
31 * if shift != NULL.
32 * If so, they express that current index is such that if you add shift,
33 * then the result is always a multiple of stride.
34 * shift_map contains the mapping
36 * i -> (i + shift)/stride
38 * Let D represent the initial shared_len dimensions of the computed schedule.
39 * The spaces of "lb" and "shift" are of the form
41 * D -> [b]
43 * "shift_map" is of the form
45 * [D -> i] -> [D -> (i + shift(D))/stride]
47 struct gpu_array_bound {
48 isl_int size;
49 isl_aff *lb;
51 isl_int stride;
52 isl_aff *shift;
53 isl_basic_map *shift_map;
56 /* A tile of an array.
58 * n is the dimension of the array.
59 * bound is an array of size "n" representing the lower bound
60 * and size for each index.
62 struct gpu_array_tile {
63 int n;
64 struct gpu_array_bound *bound;
67 struct gpu_array_info;
69 /* A group of array references in a kernel that should be handled together.
70 * If private_tile is not NULL, then it is mapped to registers.
71 * Otherwise, if shared_tile is not NULL, it is mapped to shared memory.
72 * Otherwise, it is accessed from global memory.
74 struct gpu_array_ref_group {
75 /* The references in this group access this array. */
76 struct gpu_array_info *array;
77 /* Position of this group in the list of reference groups of array. */
78 int nr;
80 /* The following fields are use during the construction of the groups.
81 * access is the combined access relation relative to the shared
82 * memory tiling. In particular, the domain of the map corresponds
83 * to the first shared_len dimensions of the computed schedule.
84 * write is set if any access in the group is a write.
86 isl_map *access;
87 int write;
89 /* The shared memory tile, NULL if none. */
90 struct gpu_array_tile *shared_tile;
92 /* The private memory tile, NULL if none. */
93 struct gpu_array_tile *private_tile;
95 /* References in this group; point to elements of a linked list. */
96 int n_ref;
97 struct gpu_stmt_access **refs;
99 /* Last shared memory tile dimension that affects tile of this group. */
100 int last_shared;
103 struct gpu_gen {
104 isl_ctx *ctx;
105 struct ppcg_options *options;
107 struct gpu_prog *prog;
109 /* tile, grid and block sizes for each kernel */
110 isl_union_map *sizes;
112 /* Identifier of current kernel. */
113 int kernel_id;
114 /* Pointer to the current kernel. */
115 struct ppcg_kernel *kernel;
117 /* First tile dimension. */
118 int tile_first;
119 /* Number of tile dimensions. */
120 int tile_len;
121 /* Number of initial parallel loops among tile dimensions. */
122 int n_parallel;
124 /* Number of dimensions determining shared memory. */
125 int shared_len;
127 /* Number of rows in the untiled schedule. */
128 int untiled_len;
129 /* Number of rows in the tiled schedule. */
130 int tiled_len;
131 /* Number of rows in schedule after tiling/wrapping over threads. */
132 int thread_tiled_len;
134 /* Global untiled schedule. */
135 isl_union_map *sched;
136 /* Local (per kernel launch) tiled schedule. */
137 isl_union_map *tiled_sched;
138 /* Local schedule per shared memory tile loop iteration. */
139 isl_union_map *local_sched;
141 /* Local tiled schedule projected onto the shared tile loops and
142 * the loops that will be wrapped over the threads,
143 * with all shared tile loops parametrized.
145 isl_union_map *shared_sched;
146 /* Projects out the loops that will be wrapped over the threads
147 * from shared_sched.
149 isl_union_map *shared_proj;
151 /* A map that takes the range of shared_sched as input,
152 * wraps the appropriate loops over the threads and then projects
153 * out these loops.
155 isl_map *privatization;
157 /* A map from the shared memory tile loops and the thread indices
158 * (as parameters) to the set of accessed memory elements that
159 * will be accessed through private copies.
161 isl_union_map *private_access;
163 /* The schedule for the current private/shared access
164 * (within print_private_access or print_shared_access).
166 isl_map *copy_sched;
167 /* The array reference group corresponding to copy_sched. */
168 struct gpu_array_ref_group *copy_group;
170 /* First loop to unroll (or -1 if none) in the current part of the
171 * schedule.
173 int first_unroll;
175 int n_grid;
176 int n_block;
177 /* Note: in the input file, the sizes of the grid and the blocks
178 * are specified in the order x, y, z, but internally, the sizes
179 * are stored in reverse order, so that the last element always
180 * refers to the x dimension.
182 int grid_dim[2];
183 int block_dim[3];
184 int *tile_size;
187 /* Print the name of the local copy of a given group of array references.
189 static __isl_give isl_printer *print_array_name(__isl_take isl_printer *p,
190 struct gpu_array_ref_group *group)
192 int global = 0;
194 if (group->private_tile)
195 p = isl_printer_print_str(p, "private_");
196 else if (group->shared_tile)
197 p = isl_printer_print_str(p, "shared_");
198 else
199 global = 1;
200 p = isl_printer_print_str(p, group->array->name);
201 if (!global && group->array->n_group > 1) {
202 p = isl_printer_print_str(p, "_");
203 p = isl_printer_print_int(p, group->nr);
206 return p;
209 /* Collect all references to the given array and store pointers to them
210 * in array->refs.
212 static void collect_references(struct gpu_prog *prog,
213 struct gpu_array_info *array)
215 int i;
216 int n;
218 n = 0;
219 for (i = 0; i < prog->n_stmts; ++i) {
220 struct gpu_stmt *stmt = &prog->stmts[i];
221 struct gpu_stmt_access *access;
223 for (access = stmt->accesses; access; access = access->next) {
224 const char *name;
225 name = isl_map_get_tuple_name(access->access,
226 isl_dim_out);
227 if (name && !strcmp(array->name, name))
228 n++;
232 array->n_ref = n;
233 array->refs = isl_alloc_array(prog->ctx, struct gpu_stmt_access *, n);
234 assert(array->refs);
236 n = 0;
237 for (i = 0; i < prog->n_stmts; ++i) {
238 struct gpu_stmt *stmt = &prog->stmts[i];
239 struct gpu_stmt_access *access;
241 for (access = stmt->accesses; access; access = access->next) {
242 const char *name;
243 name = isl_map_get_tuple_name(access->access,
244 isl_dim_out);
245 if (!name || strcmp(array->name, name))
246 continue;
248 array->refs[n++] = access;
253 /* Create a gpu_array_tile for an array of dimension "n_index".
255 static struct gpu_array_tile *create_tile(isl_ctx *ctx, int n_index)
257 int i;
258 struct gpu_array_tile *tile;
260 tile = isl_calloc_type(ctx, struct gpu_array_tile);
261 assert(tile);
263 tile->n = n_index;
265 tile->bound = isl_alloc_array(ctx, struct gpu_array_bound, n_index);
266 assert(tile->bound);
268 for (i = 0; i < n_index; ++i) {
269 isl_int_init(tile->bound[i].size);
270 tile->bound[i].lb = NULL;
271 isl_int_init(tile->bound[i].stride);
272 tile->bound[i].shift = NULL;
273 tile->bound[i].shift_map = NULL;
276 return tile;
279 static void *free_tile(struct gpu_array_tile *tile)
281 int j;
283 if (!tile)
284 return NULL;
286 for (j = 0; j < tile->n; ++j) {
287 isl_int_clear(tile->bound[j].size);
288 isl_int_clear(tile->bound[j].stride);
289 isl_aff_free(tile->bound[j].lb);
290 isl_aff_free(tile->bound[j].shift);
291 isl_basic_map_free(tile->bound[j].shift_map);
293 free(tile->bound);
294 free(tile);
296 return NULL;
299 static struct pet_array *find_array(struct ppcg_scop *scop,
300 __isl_keep isl_set *accessed)
302 int i;
303 isl_id *id;
305 id = isl_set_get_tuple_id(accessed);
307 for (i = 0; i < scop->n_array; ++i) {
308 isl_id *id_i;
310 id_i = isl_set_get_tuple_id(scop->arrays[i]->extent);
311 isl_id_free(id_i);
312 if (id == id_i)
313 break;
315 isl_id_free(id);
317 return i < scop->n_array ? scop->arrays[i] : NULL;
320 /* Compute and return the extent of "array", taking into account the set of
321 * accessed elements.
323 * In particular, the extent in the outer dimension is taken
324 * from "accessed", while then extent in the remaing dimensions
325 * are taken from array->extent.
327 * The extent in the outer dimension cannot be taken from array->extent
328 * because that may be unbounded. Furthermore, even if it is bounded,
329 * it may be larger than the piece of the array that is being accessed.
331 static __isl_give isl_set *compute_extent(struct pet_array *array,
332 __isl_keep isl_set *accessed)
334 int n_index;
335 isl_id *id;
336 isl_set *outer;
337 isl_set *extent;
339 extent = isl_set_copy(array->extent);
341 n_index = isl_set_dim(accessed, isl_dim_set);
342 if (n_index == 0)
343 return extent;
345 extent = isl_set_project_out(extent, isl_dim_set, 0, 1);
346 outer = isl_set_copy(accessed);
347 outer = isl_set_project_out(outer, isl_dim_set, 1, n_index - 1);
348 extent = isl_set_flat_product(outer, extent);
349 id = isl_set_get_tuple_id(accessed);
350 extent = isl_set_set_tuple_id(extent, id);
352 return extent;
355 /* Compute bounds on the host arrays based on the accessed elements
356 * and collect all references to the array.
358 * If the array is zero-dimensional, i.e., a scalar, we check
359 * whether it is read-only.
361 static int extract_array_info(__isl_take isl_set *array, void *user)
363 int i;
364 struct gpu_prog *prog = (struct gpu_prog *)user;
365 const char *name;
366 int n_index;
367 isl_pw_aff **bounds;
368 struct pet_array *pa;
369 isl_set *extent;
371 n_index = isl_set_dim(array, isl_dim_set);
372 name = isl_set_get_tuple_name(array);
373 bounds = isl_alloc_array(isl_set_get_ctx(array),
374 isl_pw_aff *, n_index);
375 assert(bounds);
376 prog->array[prog->n_array].dim = isl_set_get_space(array);
377 prog->array[prog->n_array].name = strdup(name);
378 prog->array[prog->n_array].n_index = n_index;
379 prog->array[prog->n_array].bound = bounds;
381 pa = find_array(prog->scop, array);
382 assert(pa);
384 prog->array[prog->n_array].type = strdup(pa->element_type);
385 prog->array[prog->n_array].size = pa->element_size;
386 prog->array[prog->n_array].local = pa->declared && !pa->exposed;
388 if (n_index == 0) {
389 isl_set *space;
390 isl_union_map *write;
391 int empty;
393 write = isl_union_map_copy(prog->write);
394 space = isl_set_universe(isl_set_get_space(array));
395 write = isl_union_map_intersect_range(write,
396 isl_union_set_from_set(space));
397 empty = isl_union_map_is_empty(write);
398 isl_union_map_free(write);
400 prog->array[prog->n_array].read_only = empty;
403 extent = compute_extent(pa, array);
404 for (i = 0; i < n_index; ++i) {
405 isl_set *dom;
406 isl_local_space *ls;
407 isl_aff *one;
408 isl_pw_aff *bound;
410 bound = isl_set_dim_max(isl_set_copy(extent), i);
411 assert(bound);
412 dom = isl_pw_aff_domain(isl_pw_aff_copy(bound));
413 ls = isl_local_space_from_space(isl_set_get_space(dom));
414 one = isl_aff_zero_on_domain(ls);
415 one = isl_aff_add_constant_si(one, 1);
416 bound = isl_pw_aff_add(bound, isl_pw_aff_alloc(dom, one));
417 bound = isl_pw_aff_gist(bound, isl_set_copy(prog->context));
419 bounds[i] = bound;
421 prog->array[prog->n_array].extent = extent;
423 collect_references(prog, &prog->array[prog->n_array]);
425 prog->n_array++;
427 isl_set_free(array);
428 return 0;
431 void collect_array_info(struct gpu_prog *prog)
433 isl_union_set *arrays;
435 arrays = isl_union_map_range(isl_union_map_copy(prog->read));
436 arrays = isl_union_set_union(arrays,
437 isl_union_map_range(isl_union_map_copy(prog->write)));
438 arrays = isl_union_set_coalesce(arrays);
440 prog->n_array = isl_union_set_n_set(arrays);
441 prog->array = isl_alloc_array(prog->ctx,
442 struct gpu_array_info, prog->n_array);
443 assert(prog->array);
444 prog->n_array = 0;
445 isl_union_set_foreach_set(arrays, &extract_array_info, prog);
446 isl_union_set_free(arrays);
449 static void free_array_info(struct gpu_prog *prog)
451 int i, j;
453 for (i = 0; i < prog->n_array; ++i) {
454 int n_index = prog->array[i].n_index;
455 free(prog->array[i].type);
456 free(prog->array[i].name);
457 for (j = 0; j < n_index; ++j)
458 isl_pw_aff_free(prog->array[i].bound[j]);
459 isl_space_free(prog->array[i].dim);
460 isl_set_free(prog->array[i].extent);
461 free(prog->array[i].bound);
462 free(prog->array[i].refs);
464 free(prog->array);
467 /* Check if a gpu array is a scalar. A scalar is a value that is not stored
468 * as an array or through a pointer reference, but as single data element. At
469 * the moment, scalars are represented as zero dimensional arrays.
471 int gpu_array_is_scalar(struct gpu_array_info *array)
473 return (array->n_index == 0);
476 /* Is "array" a read-only scalar?
478 int gpu_array_is_read_only_scalar(struct gpu_array_info *array)
480 return gpu_array_is_scalar(array) && array->read_only;
483 /* Internal data structure for extract_size_of_type.
484 * "type" specifies the name of the space that we want to extract.
485 * "res" is used to store the subset of that space.
487 struct ppcg_extract_size_data {
488 const char *type;
489 isl_set *res;
492 /* This function is called for each set in a union_set.
493 * If the name of the set matches data->type, we store the
494 * set in data->res.
496 static int extract_size_of_type(__isl_take isl_set *size, void *user)
498 struct ppcg_extract_size_data *data = user;
499 const char *name;
501 name = isl_set_get_tuple_name(size);
502 if (name && !strcmp(name, data->type)) {
503 data->res = size;
504 return -1;
507 isl_set_free(size);
508 return 0;
511 /* Given a union map { kernel[i] -> *[...] },
512 * return the range in the space called "type" for the kernel with
513 * sequence number "id".
515 static __isl_give isl_set *extract_sizes(__isl_keep isl_union_map *sizes,
516 const char *type, int id)
518 isl_space *space;
519 isl_set *dom;
520 isl_union_set *local_sizes;
521 struct ppcg_extract_size_data data = { type, NULL };
523 if (!sizes)
524 return NULL;
526 space = isl_union_map_get_space(sizes);
527 space = isl_space_set_from_params(space);
528 space = isl_space_add_dims(space, isl_dim_set, 1);
529 space = isl_space_set_tuple_name(space, isl_dim_set, "kernel");
530 dom = isl_set_universe(space);
531 dom = isl_set_fix_si(dom, isl_dim_set, 0, id);
533 local_sizes = isl_union_set_apply(isl_union_set_from_set(dom),
534 isl_union_map_copy(sizes));
535 isl_union_set_foreach_set(local_sizes, &extract_size_of_type, &data);
536 isl_union_set_free(local_sizes);
537 return data.res;
540 /* Given a singleton set, extract the first (at most *len) elements
541 * of the single integer tuple into *sizes and update *len if needed.
543 static void read_sizes_from_set(__isl_take isl_set *set, int *sizes, int *len)
545 int i;
546 int dim;
547 isl_int v;
549 if (!set)
550 return;
552 dim = isl_set_dim(set, isl_dim_set);
553 if (dim < *len)
554 *len = dim;
556 isl_int_init(v);
558 for (i = 0; i < *len; ++i) {
559 int ok;
561 ok = isl_set_plain_is_fixed(set, isl_dim_set, i, &v);
562 assert(ok);
564 sizes[i] = isl_int_get_si(v);
567 isl_int_clear(v);
569 isl_set_free(set);
572 /* Extract user specified "tile" sizes from the "sizes" command line option,
573 * defaulting to option->tile_size in each dimension.
575 static void read_tile_sizes(struct gpu_gen *gen)
577 int n;
578 isl_set *size;
580 gen->tile_size = isl_alloc_array(gen->ctx, int, gen->tile_len);
581 assert(gen->tile_size);
582 for (n = 0; n < gen->tile_len; ++n)
583 gen->tile_size[n] = gen->options->tile_size;
585 size = extract_sizes(gen->sizes, "tile", gen->kernel_id);
586 read_sizes_from_set(size, gen->tile_size, &gen->tile_len);
588 if (gen->n_parallel > gen->tile_len)
589 gen->n_parallel = gen->tile_len;
592 /* Extract user specified "block" sizes from the "sizes" command line option,
593 * after filling in some potentially useful defaults.
595 static void read_block_sizes(struct gpu_gen *gen)
597 int n;
598 isl_set *size;
600 n = gen->n_parallel;
601 gen->n_block = (n <= 3) ? n : 3;
602 switch (gen->n_block) {
603 case 1:
604 gen->block_dim[0] = 512;
605 break;
606 case 2:
607 gen->block_dim[0] = 32;
608 gen->block_dim[1] = 16;
609 break;
610 default:
611 gen->block_dim[0] = 32;
612 gen->block_dim[1] = 4;
613 gen->block_dim[2] = 4;
614 break;
617 size = extract_sizes(gen->sizes, "block", gen->kernel_id);
618 read_sizes_from_set(size, gen->block_dim, &gen->n_block);
621 /* Extract user specified "grid" sizes from the "sizes" command line option,
622 * after filling in some potentially useful defaults.
624 static void read_grid_sizes(struct gpu_gen *gen)
626 int n = gen->n_parallel;
627 isl_set *size;
629 gen->n_grid = (n <= 2) ? n : 2;
630 switch (gen->n_grid) {
631 case 1:
632 gen->grid_dim[0] = 32768;
633 break;
634 default:
635 gen->grid_dim[0] = 256;
636 gen->grid_dim[1] = 256;
637 break;
640 size = extract_sizes(gen->sizes, "grid", gen->kernel_id);
641 read_sizes_from_set(size, gen->grid_dim, &gen->n_grid);
644 /* Extract user specified sizes from the "sizes" command line option
645 * after filling in some potentially useful defaults.
647 static void read_sizes(struct gpu_gen *gen)
649 read_tile_sizes(gen);
650 read_block_sizes(gen);
651 read_grid_sizes(gen);
654 static void free_stmts(struct gpu_stmt *stmts, int n)
656 int i;
658 for (i = 0; i < n; ++i) {
659 struct gpu_stmt_access *access, *next;
661 for (access = stmts[i].accesses; access; access = next) {
662 next = access->next;
663 isl_map_free(access->access);
664 free(access);
667 isl_id_free(stmts[i].id);
669 free(stmts);
672 void clear_gpu_gen(struct gpu_gen *gen)
674 isl_union_map_free(gen->sizes);
675 isl_union_map_free(gen->sched);
678 /* Construct a map from a domain of dimensionality "len"
679 * to a domain of dimensionality "len" + "tile_len" that tiles
680 * the "tile_len" coordinates starting at "first".
681 * In particular, [s_i] -> [s_i / tile_size[i], s_i % tile_size[i]].
682 * "dim" prescribes the parameters.
684 static __isl_give isl_map *tile(__isl_take isl_space *dim, int len,
685 int first, int tile_len, int *tile_size)
687 int i;
688 isl_int v;
689 isl_basic_map *bmap;
690 isl_constraint *c;
691 isl_local_space *ls;
693 isl_int_init(v);
695 dim = isl_space_add_dims(dim, isl_dim_in, len);
696 dim = isl_space_add_dims(dim, isl_dim_out, len + tile_len);
697 bmap = isl_basic_map_universe(isl_space_copy(dim));
698 ls = isl_local_space_from_space(dim);
700 for (i = 0; i < len - tile_len; ++i) {
701 int j = i < first ? i : i + tile_len;
702 int k = i < first ? i : i + 2 * tile_len;
704 c = isl_equality_alloc(isl_local_space_copy(ls));
705 isl_int_set_si(v, -1);
706 c = isl_constraint_set_coefficient(c, isl_dim_in, j, v);
707 isl_int_set_si(v, 1);
708 c = isl_constraint_set_coefficient(c, isl_dim_out, k, v);
709 bmap = isl_basic_map_add_constraint(bmap, c);
712 for (i = 0; i < tile_len; ++i) {
713 c = isl_equality_alloc(isl_local_space_copy(ls));
714 isl_int_set_si(v, -1);
715 c = isl_constraint_set_coefficient(c, isl_dim_in, first + i, v);
716 isl_int_set_si(v, tile_size[i]);
717 c = isl_constraint_set_coefficient(c, isl_dim_out,
718 first + i, v);
719 isl_int_set_si(v, 1);
720 c = isl_constraint_set_coefficient(c, isl_dim_out,
721 first + i + tile_len, v);
722 bmap = isl_basic_map_add_constraint(bmap, c);
724 c = isl_inequality_alloc(isl_local_space_copy(ls));
725 isl_int_set_si(v, 1);
726 c = isl_constraint_set_coefficient(c, isl_dim_out,
727 first + i + tile_len, v);
728 bmap = isl_basic_map_add_constraint(bmap, c);
730 c = isl_inequality_alloc(isl_local_space_copy(ls));
731 isl_int_set_si(v, -1);
732 c = isl_constraint_set_coefficient(c, isl_dim_out,
733 first + i + tile_len, v);
734 isl_int_set_si(v, tile_size[i] - 1);
735 c = isl_constraint_set_constant(c, v);
736 bmap = isl_basic_map_add_constraint(bmap, c);
739 isl_local_space_free(ls);
740 isl_int_clear(v);
742 return isl_map_from_basic_map(bmap);
745 /* Construct a map from a domain of dimensionality "len"
746 * to a domain of dimensionality "len" + "wrap_len" that "wraps"
747 * the "wrap_len" coordinates starting at "first" according to "wrap_size".
748 * In particular, [s_i] -> [s_i, s_i % wrap_size[i]].
749 * To do so, we need extra variables corresponding to [s_i / wrap_size[i]],
750 * that are projected out at the end.
751 * "dim" prescribes the parameters.
753 static __isl_give isl_map *wrap(__isl_take isl_space *dim, int len,
754 int first, int wrap_len, int *wrap_size)
756 int i;
757 isl_basic_map *bmap;
758 isl_constraint *c;
759 isl_local_space *ls;
761 dim = isl_space_add_dims(dim, isl_dim_in, len);
762 dim = isl_space_add_dims(dim, isl_dim_out, len + 2 * wrap_len);
763 bmap = isl_basic_map_universe(isl_space_copy(dim));
764 ls = isl_local_space_from_space(dim);
766 for (i = 0; i < len; ++i) {
767 int k = i < first + wrap_len ? i : i + 2 * wrap_len;
769 c = isl_equality_alloc(isl_local_space_copy(ls));
770 c = isl_constraint_set_coefficient_si(c, isl_dim_in, i, -1);
771 c = isl_constraint_set_coefficient_si(c, isl_dim_out, k, 1);
772 bmap = isl_basic_map_add_constraint(bmap, c);
775 for (i = 0; i < wrap_len; ++i) {
776 c = isl_equality_alloc(isl_local_space_copy(ls));
777 c = isl_constraint_set_coefficient_si(c, isl_dim_out,
778 first + i, -1);
779 c = isl_constraint_set_coefficient_si(c, isl_dim_out,
780 first + wrap_len + i, 1);
781 c = isl_constraint_set_coefficient_si(c, isl_dim_out,
782 first + 2 * wrap_len + i, wrap_size[i]);
783 bmap = isl_basic_map_add_constraint(bmap, c);
785 c = isl_inequality_alloc(isl_local_space_copy(ls));
786 c = isl_constraint_set_coefficient_si(c, isl_dim_out,
787 first + wrap_len + i, 1);
788 bmap = isl_basic_map_add_constraint(bmap, c);
790 c = isl_inequality_alloc(isl_local_space_copy(ls));
791 c = isl_constraint_set_coefficient_si(c, isl_dim_out,
792 first + wrap_len + i, -1);
793 c = isl_constraint_set_constant_si(c, wrap_size[i] - 1);
794 bmap = isl_basic_map_add_constraint(bmap, c);
797 isl_local_space_free(ls);
799 bmap = isl_basic_map_project_out(bmap, isl_dim_out,
800 first + 2 * wrap_len, wrap_len);
802 return isl_map_from_basic_map(bmap);
805 /* Add "n" parameters named prefix%d.
807 static __isl_give isl_set *add_params( __isl_take isl_set *set,
808 int n, const char *prefix)
810 int i;
811 unsigned nparam;
812 char name[20];
814 nparam = isl_set_dim(set, isl_dim_param);
815 set = isl_set_add_dims(set, isl_dim_param, n);
817 for (i = 0; i < n; ++i) {
818 snprintf(name, sizeof(name), "%s%d", prefix, i);
819 set = isl_set_set_dim_name(set, isl_dim_param,
820 nparam + i, name);
823 return set;
826 /* Equate the "n" dimensions of "set" starting at "first" to
827 * freshly created parameters named prefix%d.
829 static __isl_give isl_set *parametrize(__isl_take isl_set *set,
830 int first, int n, const char *prefix)
832 int i;
833 unsigned nparam;
834 isl_int v;
835 isl_space *dim;
836 isl_basic_set *bset;
837 isl_constraint *c;
838 isl_local_space *ls;
840 nparam = isl_set_dim(set, isl_dim_param);
842 set = add_params(set, n, prefix);
844 dim = isl_set_get_space(set);
845 bset = isl_basic_set_universe(isl_space_copy(dim));
846 ls = isl_local_space_from_space(dim);
848 isl_int_init(v);
850 for (i = 0; i < n; ++i) {
851 c = isl_equality_alloc(isl_local_space_copy(ls));
852 isl_int_set_si(v, -1);
853 c = isl_constraint_set_coefficient(c, isl_dim_param,
854 nparam + i, v);
855 isl_int_set_si(v, 1);
856 c = isl_constraint_set_coefficient(c, isl_dim_set, first + i,
858 bset = isl_basic_set_add_constraint(bset, c);
861 isl_int_clear(v);
862 isl_local_space_free(ls);
864 return isl_set_intersect(set, isl_set_from_basic_set(bset));
867 /* Given a parameter space "space", create a set of dimension "len"
868 * of which the "n" dimensions starting at "first" are equated to
869 * freshly created parameters named prefix%d.
871 static __isl_give isl_set *parametrization(__isl_take isl_space *space,
872 int len, int first, int n, const char *prefix)
874 isl_set *set;
876 space = isl_space_set_from_params(space);
877 space = isl_space_add_dims(space, isl_dim_set, len);
878 set = isl_set_universe(space);
880 return parametrize(set, first, n, prefix);
883 /* Tile the B loops over the tile sizes and then tile/wrap
884 * the T1 loops over the blocks.
886 static __isl_give isl_union_map *tile_schedule(struct gpu_gen *gen,
887 __isl_take isl_union_map *sched)
889 isl_space *dim;
890 isl_map *tiling, *block_tiling;
892 dim = isl_union_map_get_space(sched);
893 tiling = tile(isl_space_copy(dim), gen->untiled_len,
894 gen->tile_first, gen->tile_len, gen->tile_size);
896 if (gen->options->wrap)
897 block_tiling = wrap(dim, gen->untiled_len + gen->tile_len,
898 gen->tile_first, gen->n_grid, gen->grid_dim);
899 else
900 block_tiling = tile(dim, gen->untiled_len + gen->tile_len,
901 gen->tile_first, gen->n_grid, gen->grid_dim);
903 gen->tiled_len = gen->untiled_len + gen->tile_len + gen->n_grid;
905 tiling = isl_map_apply_range(tiling, block_tiling);
907 sched = isl_union_map_apply_range(sched,
908 isl_union_map_from_map(tiling));
910 gen->shared_len = gen->tile_first + gen->tile_len + gen->n_grid;
912 return sched;
915 /* Equate the "T1P" iterators in the tiled schedule "sched"
916 * to the block dimensions.
918 static __isl_give isl_union_map *parametrize_tiled_schedule(
919 struct gpu_gen *gen, __isl_take isl_union_map *sched)
921 isl_space *dim;
922 isl_set *par;
924 dim = isl_union_map_get_space(sched);
925 par = parametrization(dim, gen->tiled_len,
926 gen->tile_first + gen->n_grid, gen->n_grid, "b");
927 sched = isl_union_map_intersect_range(sched,
928 isl_union_set_from_set(par));
930 return sched;
933 /* Tile/wrap the P1 loops over the threads.
935 static __isl_give isl_union_map *thread_tile_schedule(struct gpu_gen *gen,
936 __isl_take isl_union_map *sched)
938 isl_space *dim;
939 isl_map *tiling;
940 isl_set *par;
942 dim = isl_union_map_get_space(sched);
944 if (gen->options->wrap)
945 tiling = wrap(isl_space_copy(dim), gen->tiled_len,
946 gen->shared_len, gen->n_block, gen->block_dim);
947 else
948 tiling = tile(isl_space_copy(dim), gen->tiled_len,
949 gen->shared_len, gen->n_block, gen->block_dim);
950 gen->thread_tiled_len = gen->tiled_len + gen->n_block;
952 sched = isl_union_map_apply_range(sched,
953 isl_union_map_from_map(tiling));
955 par = parametrization(dim, gen->thread_tiled_len,
956 gen->tile_first + gen->tile_len + gen->n_grid + gen->n_block,
957 gen->n_block, "t");
958 sched = isl_union_map_intersect_range(sched,
959 isl_union_set_from_set(par));
961 gen->shared_len = gen->tile_first + gen->tile_len + gen->n_grid;
963 return sched;
966 /* If the user asked for it, scale the shared memory tile loops
967 * (T1T and T2) of "sched" by gen->tile_size[i].
968 * If we are not performing "wrapping", then additionally scale the T1P
969 * loops by gen->grid_dim[i].
971 static __isl_give isl_union_map *scale_tile_loops(struct gpu_gen *gen,
972 __isl_take isl_union_map *sched)
974 int i;
975 isl_space *dim;
976 isl_basic_map *scale;
977 isl_constraint *c;
978 isl_local_space *ls;
980 if (!gen->options->scale_tile_loops)
981 return sched;
983 dim = isl_union_map_get_space(sched);
984 dim = isl_space_add_dims(dim, isl_dim_in, gen->tiled_len);
985 dim = isl_space_add_dims(dim, isl_dim_out, gen->tiled_len);
986 scale = isl_basic_map_universe(isl_space_copy(dim));
987 ls = isl_local_space_from_space(dim);
989 for (i = 0; i < gen->tiled_len; ++i) {
990 int f = 1;
992 if (i >= gen->tile_first && i < gen->tile_first + gen->n_grid) {
993 f = gen->tile_size[i - gen->tile_first];
994 if (!gen->options->wrap)
995 f *= gen->grid_dim[i - gen->tile_first];
996 } else if (i >= gen->tile_first + gen->n_grid &&
997 i < gen->tile_first + gen->n_grid + gen->tile_len) {
998 f = gen->tile_size[i - (gen->tile_first + gen->n_grid)];
1001 c = isl_equality_alloc(isl_local_space_copy(ls));
1002 c = isl_constraint_set_coefficient_si(c, isl_dim_in, i, f);
1003 c = isl_constraint_set_coefficient_si(c, isl_dim_out, i, -1);
1004 scale = isl_basic_map_add_constraint(scale, c);
1007 isl_local_space_free(ls);
1009 sched = isl_union_map_apply_range(sched,
1010 isl_union_map_from_map(isl_map_from_basic_map(scale)));
1012 return sched;
1015 /* If we are not performing "wrapping" and if the user asked for it,
1016 * scale the thread tile loops (P1T) of "sched" by gen->block_dim[i].
1018 static __isl_give isl_union_map *scale_thread_tile_loops(struct gpu_gen *gen,
1019 __isl_take isl_union_map *sched)
1021 int i;
1022 isl_space *dim;
1023 isl_basic_map *scale;
1024 isl_constraint *c;
1025 isl_local_space *ls;
1027 if (gen->options->wrap)
1028 return sched;
1029 if (!gen->options->scale_tile_loops)
1030 return sched;
1032 dim = isl_union_map_get_space(sched);
1033 dim = isl_space_add_dims(dim, isl_dim_in, gen->thread_tiled_len);
1034 dim = isl_space_add_dims(dim, isl_dim_out, gen->thread_tiled_len);
1035 scale = isl_basic_map_universe(isl_space_copy(dim));
1036 ls = isl_local_space_from_space(dim);
1038 for (i = 0; i < gen->thread_tiled_len; ++i) {
1039 int f = 1;
1041 if (i >= gen->shared_len &&
1042 i < gen->shared_len + gen->n_block)
1043 f = gen->block_dim[i - gen->shared_len];
1045 c = isl_equality_alloc(isl_local_space_copy(ls));
1046 c = isl_constraint_set_coefficient_si(c, isl_dim_in, i, f);
1047 c = isl_constraint_set_coefficient_si(c, isl_dim_out, i, -1);
1048 scale = isl_basic_map_add_constraint(scale, c);
1051 isl_local_space_free(ls);
1053 sched = isl_union_map_apply_range(sched,
1054 isl_union_map_from_map(isl_map_from_basic_map(scale)));
1056 return sched;
1059 /* If we are not performing "wrapping" and if the user asked for it,
1060 * scale the "n_tile" loops starting at "first" of "sched" by gen->block_dim[i].
1062 static __isl_give isl_union_map *scale_access_tile_loops(struct gpu_gen *gen,
1063 __isl_take isl_union_map *sched, int len, int first, int n_tile)
1065 int i;
1066 isl_space *dim;
1067 isl_basic_map *scale;
1068 isl_constraint *c;
1069 isl_local_space *ls;
1071 if (gen->options->wrap)
1072 return sched;
1073 if (!gen->options->scale_tile_loops)
1074 return sched;
1076 dim = isl_union_map_get_space(sched);
1077 dim = isl_space_add_dims(dim, isl_dim_in, len);
1078 dim = isl_space_add_dims(dim, isl_dim_out, len);
1079 scale = isl_basic_map_universe(isl_space_copy(dim));
1080 ls = isl_local_space_from_space(dim);
1082 for (i = 0; i < len; ++i) {
1083 int f = 1;
1085 if (i >= first && i < first + n_tile)
1086 f = gen->block_dim[i - first];
1088 c = isl_equality_alloc(isl_local_space_copy(ls));
1089 c = isl_constraint_set_coefficient_si(c, isl_dim_in, i, f);
1090 c = isl_constraint_set_coefficient_si(c, isl_dim_out, i, -1);
1091 scale = isl_basic_map_add_constraint(scale, c);
1094 isl_local_space_free(ls);
1096 sched = isl_union_map_apply_range(sched,
1097 isl_union_map_from_map(isl_map_from_basic_map(scale)));
1099 return sched;
1102 /* Add "len" parameters p[i] called prefix%d,
1103 * with bounds to 0 <= p[i] < size[i].
1105 __isl_give isl_set *add_bounded_parameters(__isl_take isl_set *set,
1106 int len, int *size, const char *prefix)
1108 int i;
1109 unsigned nparam;
1110 isl_int v;
1111 isl_space *dim;
1112 isl_basic_set *bset;
1113 isl_constraint *c;
1114 isl_local_space *ls;
1115 char name[20];
1117 nparam = isl_set_dim(set, isl_dim_param);
1118 set = isl_set_add_dims(set, isl_dim_param, len);
1120 for (i = 0; i < len; ++i) {
1121 snprintf(name, sizeof(name), "%s%d", prefix, i);
1122 set = isl_set_set_dim_name(set, isl_dim_param,
1123 nparam + i, name);
1126 dim = isl_set_get_space(set);
1127 bset = isl_basic_set_universe(isl_space_copy(dim));
1128 ls = isl_local_space_from_space(dim);
1130 isl_int_init(v);
1132 for (i = 0; i < len; ++i) {
1133 c = isl_inequality_alloc(isl_local_space_copy(ls));
1134 isl_int_set_si(v, 1);
1135 c = isl_constraint_set_coefficient(c, isl_dim_param, nparam + i,
1137 bset = isl_basic_set_add_constraint(bset, c);
1139 c = isl_inequality_alloc(isl_local_space_copy(ls));
1140 isl_int_set_si(v, -1);
1141 c = isl_constraint_set_coefficient(c, isl_dim_param, nparam + i,
1143 isl_int_set_si(v, size[i] - 1);
1144 c = isl_constraint_set_constant(c, v);
1145 bset = isl_basic_set_add_constraint(bset, c);
1148 isl_int_clear(v);
1149 isl_local_space_free(ls);
1151 return isl_set_intersect(set, isl_set_from_basic_set(bset));
1154 /* Add "len" parameters p[i] called prefix%d,
1155 * with bounds to 0 <= p[i] < size[i].
1157 static __isl_give isl_set *add_bounded_parameters_dynamic(
1158 __isl_take isl_set *set, __isl_keep isl_multi_pw_aff *size,
1159 const char *prefix)
1161 int i, len;
1162 unsigned nparam;
1163 isl_space *space;
1164 isl_local_space *ls;
1165 char name[20];
1167 len = isl_multi_pw_aff_dim(size, isl_dim_out);
1168 nparam = isl_set_dim(set, isl_dim_param);
1169 set = isl_set_add_dims(set, isl_dim_param, len);
1171 for (i = 0; i < len; ++i) {
1172 snprintf(name, sizeof(name), "%s%d", prefix, i);
1173 set = isl_set_set_dim_name(set, isl_dim_param,
1174 nparam + i, name);
1177 space = isl_space_params(isl_set_get_space(set));
1178 ls = isl_local_space_from_space(space);
1179 for (i = 0; i < len; ++i) {
1180 isl_pw_aff *param, *size_i, *zero;
1181 isl_set *bound;
1183 param = isl_pw_aff_var_on_domain(isl_local_space_copy(ls),
1184 isl_dim_param, nparam + i);
1186 size_i = isl_multi_pw_aff_get_pw_aff(size, i);
1187 bound = isl_pw_aff_lt_set(isl_pw_aff_copy(param), size_i);
1188 set = isl_set_intersect_params(set, bound);
1190 zero = isl_pw_aff_zero_on_domain(isl_local_space_copy(ls));
1191 bound = isl_pw_aff_ge_set(param, zero);
1192 set = isl_set_intersect_params(set, bound);
1194 isl_local_space_free(ls);
1196 return set;
1199 /* Given a mapping "sched" of the form
1201 * [D -> A] -> [D -> T(A)]
1203 * apply the mapping encoded in tile->bound[i].shift_map
1204 * to the range of "sched".
1205 * The mappings in tile->bound[i].shift_map are of the form
1207 * [D -> a] -> [D -> s(D,a)]
1209 * We first compose them with a mapping
1211 * [D -> v] -> v
1213 * (If tile->bound[i].shift_map is not set, then it is assumed to be
1214 * an identity mapping and then we use this second mapping instead.)
1215 * This results in
1217 * [D -> a] -> s(D,a)
1219 * We precompose them with a projection on the i th dimension to obtain
1221 * [D -> T] -> s(D,T)
1223 * and collect these into
1225 * [D -> T] -> S(D,T)
1227 * Introducing D in the range yields
1229 * [D -> T] -> [D -> S(D,T)]
1231 * and application to "sched" yields
1233 * [D -> A] -> [D -> S(D,T(A))]
1235 static __isl_give isl_map *pre_shift(__isl_take isl_map *sched,
1236 struct gpu_array_tile *tile)
1238 int i;
1239 isl_ctx *ctx = isl_map_get_ctx(sched);
1240 isl_space *space, *space2;
1241 isl_basic_map *def;
1242 isl_map *map, *id, *pre_shift;
1244 space = isl_space_range(isl_map_get_space(sched));
1245 space2 = isl_space_from_domain(isl_space_copy(space));
1246 pre_shift = isl_map_universe(space2);
1247 space = isl_space_domain(isl_space_unwrap(space));
1248 id = isl_map_identity(isl_space_map_from_set(isl_space_copy(space)));
1249 space = isl_space_from_domain(space);
1250 space = isl_space_add_dims(space, isl_dim_out, 1);
1251 def = isl_basic_map_range_map(isl_basic_map_universe(space));
1253 for (i = 0; i < tile->n; ++i) {
1254 isl_basic_map *bmap, *drop;
1255 isl_map *proj;
1257 space = isl_space_alloc(ctx, 0, tile->n, tile->n);
1258 proj = isl_map_identity(space);
1259 proj = isl_map_project_out(proj, isl_dim_out,
1260 i + 1, tile->n - (i + 1));
1261 proj = isl_map_project_out(proj, isl_dim_out, 0, i);
1262 proj = isl_map_product(isl_map_copy(id), proj);
1264 if (!tile->bound[i].shift_map)
1265 bmap = isl_basic_map_copy(def);
1266 else {
1267 bmap = isl_basic_map_copy(tile->bound[i].shift_map);
1268 bmap = isl_basic_map_apply_range(bmap,
1269 isl_basic_map_copy(def));
1272 map = isl_map_from_basic_map(bmap);
1273 map = isl_map_apply_range(proj, map);
1274 pre_shift = isl_map_flat_range_product(pre_shift, map);
1277 isl_map_free(id);
1278 isl_basic_map_free(def);
1280 space = isl_space_domain(isl_map_get_space(pre_shift));
1281 map = isl_map_domain_map(isl_map_universe(isl_space_unwrap(space)));
1282 pre_shift = isl_map_range_product(map, pre_shift);
1284 sched = isl_map_apply_range(sched, pre_shift);
1286 return sched;
1289 /* Given an access relation to a tile of an array, construct a map that
1290 * maps each element in the space of the access relation
1291 * to a copy of the tile shifted to the origin
1292 * (based on the lower bounds in group->private_tile or group->shared_tile).
1293 * If any of the indices is strided, then
1294 * {private,shared}_tile->bound[i].shift_map is applied to the index first.
1295 * The domain space of the resulting map is that of access "access",
1296 * while the range space is anonymous.
1297 * The resulting map only encodes the mapping to the shift tile and
1298 * not the constraints of "access".
1300 * Let the space of the access relation be
1302 * D -> A
1304 * We first construct an identity relation on a wrapped copy of this space,
1305 * except that it strips off the name of array
1307 * [D -> A] -> [D -> T(A)] (1)
1309 * The bounds in tile->bound[i].lb are of the form
1311 * D -> b(D)
1313 * We collect them into
1315 * D -> B(D)
1317 * and then transform them into
1319 * [D -> T] -> T - B(D) (2)
1321 * Combining those two mappings (1) and (2) yields
1323 * [D -> A] -> T(A) - B(D)
1325 * If there are any strides, then (1) is first transformed into (1')
1327 * [D -> A] -> [D -> T'(A)] (1')
1329 * by a call to pre_shift.
1331 static __isl_give isl_map *shift_access(__isl_take isl_map *access,
1332 struct gpu_array_ref_group *group)
1334 int i;
1335 isl_space *space;
1336 isl_map *id1, *id2;
1337 isl_map *map;
1338 isl_map *shift;
1339 isl_map *sched;
1340 struct gpu_array_tile *tile;
1341 int n_index = group->array->n_index;
1343 tile = group->private_tile;
1344 if (!tile)
1345 tile = group->shared_tile;
1347 space = isl_space_domain(isl_map_get_space(access));
1348 space = isl_space_map_from_set(space);
1349 id1 = isl_map_identity(space);
1350 space = isl_space_range(isl_map_get_space(access));
1351 space = isl_space_map_from_set(space);
1352 space = isl_space_set_tuple_name(space, isl_dim_out, NULL);
1353 id2 = isl_map_identity(space);
1354 sched = isl_map_product(id1, id2);
1356 space = isl_space_unwrap(isl_space_range(isl_map_get_space(sched)));
1357 space = isl_space_from_domain(isl_space_domain(space));
1358 shift = isl_map_universe(space);
1359 for (i = 0; i < n_index; ++i) {
1360 map = isl_map_from_aff(isl_aff_copy(tile->bound[i].lb));
1361 shift = isl_map_flat_range_product(shift, map);
1364 space = isl_space_unwrap(isl_space_range(isl_map_get_space(sched)));
1365 map = isl_map_universe(space);
1366 id1 = isl_map_range_map(isl_map_copy(map));
1367 map = isl_map_domain_map(map);
1368 shift = isl_map_neg(shift);
1369 shift = isl_map_apply_range(map, shift);
1370 shift = isl_map_sum(id1, shift);
1372 for (i = 0; i < n_index; ++i)
1373 if (tile->bound[i].shift_map)
1374 break;
1376 if (i < n_index)
1377 sched = pre_shift(sched, tile);
1379 sched = isl_map_apply_range(sched, shift);
1381 isl_map_free(access);
1383 return sched;
1386 /* Given a schedule that iterates over all elements in a piece of an array,
1387 * perform tiling/wrapping over the threads.
1389 * In particular, we tile the final iterators so that the final thread
1390 * dimension runs over the final array dimension.
1391 * However, if those final iterators have only a single iteration,
1392 * we try to tile earlier iterators instead.
1394 static __isl_give isl_map *tile_access_schedule(struct gpu_gen *gen,
1395 __isl_take isl_map *sched)
1397 isl_space *dim;
1398 isl_union_map *usched;
1399 isl_map *tiling;
1400 isl_set *par;
1401 unsigned nvar = isl_map_dim(sched, isl_dim_out);
1402 int n_tile;
1403 int first;
1405 n_tile = gen->n_block;
1406 if (n_tile > nvar) {
1407 int i;
1408 sched = isl_map_insert_dims(sched,
1409 isl_dim_out, 0, n_tile - nvar);
1410 for (i = 0; i < n_tile - nvar; ++i)
1411 sched = isl_map_fix_si(sched, isl_dim_out, i, 0);
1412 nvar = n_tile;
1415 first = nvar - n_tile;
1417 for (; first > 0; first --)
1418 if (!isl_map_plain_is_fixed(sched, isl_dim_out,
1419 first + n_tile - 1, NULL))
1420 break;
1422 dim = isl_map_get_space(sched);
1423 dim = isl_space_params(dim);
1424 if (gen->options->wrap)
1425 tiling = wrap(isl_space_copy(dim), nvar, first,
1426 n_tile, gen->block_dim);
1427 else
1428 tiling = tile(isl_space_copy(dim), nvar, first,
1429 n_tile, gen->block_dim);
1430 sched = isl_map_apply_range(sched, tiling);
1432 par = parametrization(dim, nvar + n_tile, first + n_tile, n_tile, "t");
1433 sched = isl_map_intersect_range(sched, par);
1435 usched = isl_union_map_from_map(sched);
1436 usched = scale_access_tile_loops(gen, usched, nvar + n_tile,
1437 first, n_tile);
1438 sched = isl_map_from_union_map(usched);
1440 return sched;
1443 /* Given an index expression "pa" into a tile of an array, adjust the expression
1444 * to a shift of the tile to the origin
1445 * (based on the lower bounds in "bound".
1446 * If the index is strided, then we first add
1447 * bound->shift and divide by bound->stride.
1448 * In the end, we compute the gist with respect to "domain".
1450 * All of the input expression "pa", the set "domain" and
1451 * the output are expressed in terms of the AST schedule domain.
1452 * The expressions in "bound" are expressed
1453 * in terms of the first shared_len dimensions of the schedule computed by PPCG.
1454 * The mapping "sched2shared" maps the former domain to the latter domain.
1456 static __isl_give isl_pw_aff *shift_index(__isl_take isl_pw_aff *pa,
1457 struct gpu_array_info *array,
1458 struct gpu_array_bound *bound, __isl_take isl_set *domain,
1459 __isl_take isl_map *sched2shared)
1461 isl_map *map;
1462 isl_pw_aff *tmp;
1463 isl_pw_multi_aff *pma;
1465 if (bound->shift) {
1466 map = isl_map_from_aff(isl_aff_copy(bound->shift));
1467 map = isl_map_apply_range(isl_map_copy(sched2shared), map);
1468 pma = isl_pw_multi_aff_from_map(map);
1469 tmp = isl_pw_multi_aff_get_pw_aff(pma, 0);
1470 isl_pw_multi_aff_free(pma);
1471 pa = isl_pw_aff_add(pa, tmp);
1472 pa = isl_pw_aff_scale_down(pa, bound->stride);
1476 map = isl_map_from_aff(isl_aff_copy(bound->lb));
1477 map = isl_map_apply_range(sched2shared, map);
1478 pma = isl_pw_multi_aff_from_map(map);
1479 tmp = isl_pw_multi_aff_get_pw_aff(pma, 0);
1480 isl_pw_multi_aff_free(pma);
1481 pa = isl_pw_aff_sub(pa, tmp);
1482 pa = isl_pw_aff_coalesce(pa);
1483 pa = isl_pw_aff_gist(pa, domain);
1485 return pa;
1488 /* Return the union of all read (read = 1) and/or write (write = 1)
1489 * access relations in the group.
1491 static __isl_give isl_union_map *group_access_relation(
1492 struct gpu_array_ref_group *group, int read, int write)
1494 int i;
1495 isl_union_map *access;
1497 access = isl_union_map_empty(isl_map_get_space(group->access));
1498 for (i = 0; i < group->n_ref; ++i) {
1499 isl_map *map_i;
1501 if (!((read && group->refs[i]->read) ||
1502 (write && group->refs[i]->write)))
1503 continue;
1504 map_i = isl_map_copy(group->refs[i]->access);
1505 access = isl_union_map_union(access,
1506 isl_union_map_from_map(map_i));
1509 return access;
1512 /* Return a map from the first shared_len dimensions of the computed
1513 * schedule to the values of the given index "i"
1514 * of the elements in the array tile in global memory that corresponds
1515 * to the shared memory copy.
1516 * In particular, if a is the index, then the range of the map
1518 * { D -> [a] }
1520 * is constrained as follows
1522 * tile_offset(D) <= a <= tile_offset(D) + tile_size - 1 (1)
1524 * and
1526 * 0 <= a <= array_size - 1 (2)
1529 * Note that if some stride has been detected (i.e., when
1530 * group->shared_tile->bound[i].shift is set), then offset and size (i.e.,
1531 * constraints (1)) apply to the shifted and scaled down copy of the tile.
1532 * These constraints therefore have to be mapped back to the original
1533 * array space using the inverse of the shift_map.
1535 static __isl_give isl_map *group_tile_dim(struct gpu_array_ref_group *group,
1536 int i)
1538 isl_aff *aff;
1539 isl_space *space;
1540 isl_map *map, *tile, *gt;
1541 isl_set *bound;
1543 map = isl_map_from_aff(isl_aff_copy(group->shared_tile->bound[i].lb));
1544 space = isl_space_range(isl_map_get_space(map));
1545 map = isl_map_apply_range(map, isl_map_lex_le(isl_space_copy(space)));
1546 tile = map;
1548 aff = isl_aff_copy(group->shared_tile->bound[i].lb);
1549 aff = isl_aff_add_constant(aff, group->shared_tile->bound[i].size);
1550 map = isl_map_from_aff(aff);
1551 gt = isl_map_lex_gt(space);
1552 map = isl_map_apply_range(map, isl_map_copy(gt));
1553 tile = isl_map_intersect(tile, map);
1555 if (group->shared_tile->bound[i].shift) {
1556 isl_basic_map *shift;
1557 shift = isl_basic_map_copy(group->shared_tile->bound[i].shift_map);
1558 shift = isl_basic_map_reverse(shift);
1559 tile = isl_set_unwrap(isl_set_apply(isl_map_wrap(tile),
1560 isl_map_from_basic_map(shift)));
1563 tile = isl_map_lower_bound_si(tile, isl_dim_out, 0, 0);
1565 bound = isl_set_from_pw_aff(isl_pw_aff_copy(group->array->bound[i]));
1566 bound = isl_set_apply(bound, gt);
1567 tile = isl_map_intersect_range(tile, bound);
1569 return tile;
1572 /* Return a map from the first shared_len dimensions of the computed
1573 * schedule to the array tile in
1574 * global memory that corresponds to the shared memory copy.
1576 static __isl_give isl_map *group_tile(struct gpu_array_ref_group *group)
1578 int i;
1579 int n_index = group->array->n_index;
1580 isl_map *tile;
1582 tile = group_tile_dim(group, 0);
1583 for (i = 1; i < n_index; ++i) {
1584 isl_map *tile_i;
1586 tile_i = group_tile_dim(group, i);
1587 tile = isl_map_flat_range_product(tile, tile_i);
1590 tile = isl_map_set_tuple_name(tile, isl_dim_out, group->array->name);
1592 return tile;
1595 /* Given a mapping "sched" from the AST schedule to a domain,
1596 * return the corresponding mapping from the AST schedule to
1597 * to the first shared_len dimensions of the schedule computed by PPCG.
1599 static __isl_give isl_map *compute_sched_to_shared(struct gpu_gen *gen,
1600 __isl_take isl_map *sched)
1602 isl_union_map *umap;
1603 isl_space *space;
1604 isl_map *map;
1606 space = isl_space_range(isl_map_get_space(sched));
1607 space = isl_space_from_domain(space);
1608 space = isl_space_add_dims(space, isl_dim_out, gen->shared_len);
1610 umap = isl_union_map_copy(gen->shared_sched);
1611 umap = isl_union_map_apply_range(umap,
1612 isl_union_map_copy(gen->shared_proj));
1613 map = isl_union_map_extract_map(umap, space);
1614 isl_union_map_free(umap);
1616 sched = isl_map_apply_range(sched, map);
1617 sched = isl_map_detect_equalities(sched);
1619 return sched;
1622 /* Set unroll[j] if the input dimension j is involved in
1623 * the index expression represented by ma.
1625 static int check_unroll(__isl_take isl_set *set, __isl_take isl_multi_aff *ma,
1626 void *user)
1628 int i, j;
1629 int n_in = isl_multi_aff_dim(ma, isl_dim_in);
1630 int n_out = isl_multi_aff_dim(ma, isl_dim_out);
1631 int *unroll = user;
1633 for (i = 0; i < n_out; ++i) {
1634 isl_aff *aff;
1636 aff = isl_multi_aff_get_aff(ma, i);
1637 for (j = 0; j < n_in; ++j)
1638 if (isl_aff_involves_dims(aff, isl_dim_in, j, 1))
1639 unroll[j] = 1;
1640 isl_aff_free(aff);
1643 isl_set_free(set);
1644 isl_multi_aff_free(ma);
1645 return 0;
1648 /* Given an array pos mapping input dimensions to the corresponding
1649 * output dimension, construct the corresponding map.
1651 static __isl_give isl_map *permutation(__isl_take isl_space *dim,
1652 int *pos, int len)
1654 int i;
1655 isl_constraint *c;
1656 isl_basic_map *bmap;
1657 isl_local_space *ls;
1659 dim = isl_space_add_dims(dim, isl_dim_in, len);
1660 dim = isl_space_add_dims(dim, isl_dim_out, len);
1661 bmap = isl_basic_map_universe(isl_space_copy(dim));
1662 ls = isl_local_space_from_space(dim);
1664 for (i = 0; i < len; ++i) {
1665 c = isl_equality_alloc(isl_local_space_copy(ls));
1666 c = isl_constraint_set_coefficient_si(c, isl_dim_in, i,
1667 -1);
1668 c = isl_constraint_set_coefficient_si(c, isl_dim_out, pos[i],
1670 bmap = isl_basic_map_add_constraint(bmap, c);
1672 isl_local_space_free(ls);
1674 return isl_map_from_basic_map(bmap);
1677 /* Find all loops involved in any of the index expressions for any of
1678 * the private accesses, move them innermost and then mark them as
1679 * requiring unrolling by setting gen->first_unroll.
1680 * The loops involved should all be parallel because of the checks
1681 * we performed in check_private_group_access. Moving them innermost
1682 * is therefore a valid transformation.
1684 * Loops up to gen->shared_len are generated before the mapping to
1685 * threads is applied. They should therefore be ignored.
1687 * We compute the hidden equalities of the schedule first
1688 * since we will need them in our calls to isl_pw_multi_aff_from_map
1689 * and because we want to make sure that the same equalities
1690 * are also available to the code generator.
1692 static __isl_give isl_union_map *interchange_for_unroll(struct gpu_gen *gen,
1693 __isl_take isl_union_map *sched)
1695 int i, j;
1696 int unroll[gen->thread_tiled_len];
1697 int perm[gen->thread_tiled_len];
1698 isl_space *dim;
1699 isl_map *permute;
1700 int len = gen->shared_len + gen->n_parallel + gen->n_block;
1702 gen->first_unroll = -1;
1704 sched = isl_union_map_detect_equalities(sched);
1705 for (i = 0; i < gen->thread_tiled_len; ++i)
1706 unroll[i] = 0;
1707 for (i = 0; i < gen->prog->n_array; ++i) {
1708 struct gpu_array_info *array = &gen->prog->array[i];
1710 for (j = 0; j < array->n_group; ++j) {
1711 isl_union_map *access;
1712 isl_map *acc;
1713 isl_pw_multi_aff *pma;
1715 if (!array->groups[j]->private_tile)
1716 continue;
1718 access = group_access_relation(array->groups[j], 1, 1);
1719 access = isl_union_map_apply_domain(access,
1720 isl_union_map_copy(sched));
1722 acc = isl_map_from_union_map(access);
1723 pma = isl_pw_multi_aff_from_map(acc);
1724 isl_pw_multi_aff_foreach_piece(pma,
1725 &check_unroll, unroll);
1727 isl_pw_multi_aff_free(pma);
1731 for (i = gen->shared_len; i < len; ++i)
1732 if (unroll[i])
1733 break;
1735 if (i >= len)
1736 return sched;
1738 for (i = len; i < gen->thread_tiled_len; ++i)
1739 if (unroll[i])
1740 return sched;
1742 j = 0;
1743 for (i = 0; i < gen->shared_len; ++i)
1744 perm[i] = j++;
1745 for (i = gen->shared_len; i < gen->thread_tiled_len; ++i)
1746 if (!unroll[i])
1747 perm[i] = j++;
1748 gen->first_unroll = j - gen->shared_len;
1749 for (i = gen->shared_len; i < len; ++i)
1750 if (unroll[i])
1751 perm[i] = j++;
1753 dim = isl_union_map_get_space(sched);
1754 permute = permutation(dim, perm, gen->thread_tiled_len);
1755 sched = isl_union_map_apply_range(sched,
1756 isl_union_map_from_map(permute));
1758 return sched;
1761 /* Given a constraint
1763 * a(p,i) + j = g f(e)
1765 * or -a(p,i) - j = g f(e) if sign < 0,
1766 * store a(p,i) in bound->shift and g (stride) in bound->stride.
1767 * a(p,i) is assumed to be an expression in only the parameters
1768 * and the input dimensions.
1770 static void extract_stride(__isl_keep isl_constraint *c,
1771 struct gpu_array_bound *bound, isl_int stride, int sign)
1773 int i;
1774 isl_int v;
1775 isl_space *space;
1776 unsigned nparam;
1777 unsigned nvar;
1778 isl_aff *aff;
1780 isl_int_set(bound->stride, stride);
1782 space = isl_constraint_get_space(c);
1783 space = isl_space_domain(space);
1785 nparam = isl_space_dim(space, isl_dim_param);
1786 nvar = isl_space_dim(space, isl_dim_set);
1788 isl_int_init(v);
1790 isl_constraint_get_constant(c, &v);
1791 if (sign < 0)
1792 isl_int_neg(v, v);
1793 aff = isl_aff_zero_on_domain(isl_local_space_from_space(space));
1794 aff = isl_aff_set_constant(aff, v);
1796 for (i = 0; i < nparam; ++i) {
1797 isl_constraint_get_coefficient(c, isl_dim_param, i, &v);
1798 if (isl_int_is_zero(v))
1799 continue;
1800 if (sign < 0)
1801 isl_int_neg(v, v);
1802 aff = isl_aff_add_coefficient(aff, isl_dim_param, i, v);
1805 for (i = 0; i < nvar; ++i) {
1806 isl_constraint_get_coefficient(c, isl_dim_in, i, &v);
1807 if (isl_int_is_zero(v))
1808 continue;
1809 if (sign < 0)
1810 isl_int_neg(v, v);
1811 aff = isl_aff_add_coefficient(aff, isl_dim_in, i, v);
1814 isl_int_clear(v);
1816 bound->shift = aff;
1819 /* Given an equality constraint of a map with a single output dimension j,
1820 * check if the constraint is of the form
1822 * a(p,i) + j = g f(e)
1824 * with a(p,i) an expression in the parameters and input dimensions
1825 * and f(e) an expression in the existentially quantified variables.
1826 * If so, and if g is larger than any such g from a previously considered
1827 * constraint, then call extract_stride to record the stride information
1828 * in bound.
1830 static int check_stride_constraint(__isl_take isl_constraint *c, void *user)
1832 int i;
1833 isl_int v, stride;
1834 unsigned n_div;
1835 struct gpu_array_bound *bound = user;
1837 isl_int_init(v);
1838 isl_int_init(stride);
1840 n_div = isl_constraint_dim(c, isl_dim_div);
1841 isl_constraint_get_coefficient(c, isl_dim_out, 0, &v);
1843 if (n_div && (isl_int_is_one(v) || isl_int_is_negone(v))) {
1844 int s = isl_int_sgn(v);
1845 isl_int_set_si(stride, 0);
1846 for (i = 0; i < n_div; ++i) {
1847 isl_constraint_get_coefficient(c, isl_dim_div, i, &v);
1848 isl_int_gcd(stride, stride, v);
1850 if (!isl_int_is_zero(stride) &&
1851 isl_int_gt(stride, bound->stride))
1852 extract_stride(c, bound, stride, s);
1855 isl_int_clear(stride);
1856 isl_int_clear(v);
1858 isl_constraint_free(c);
1859 return 0;
1862 /* Given contraints on an array index i, check if we can find
1863 * a shift a(p) and a stride g such that
1865 * a(p) + i = 0 mod g
1867 * If so, record the information in bound and apply the mapping
1868 * i -> (i + a(p))/g to the array index in bounds and return
1869 * the new constraints.
1870 * If not, simply return the original constraints.
1872 * If bounds is a subset of the space
1874 * D -> i
1876 * then the bound recorded in bound->shift is of the form
1878 * D -> s(D)
1880 * with s(D) equal to a(p) above.
1881 * The mapping recorded in bound->shift_map is of the form
1883 * [D -> i] -> [D -> (i + S(D))/g]
1885 * This mapping is computed as follows.
1886 * We first introduce "i" in the domain through precomposition
1887 * with [D -> i] -> D obtaining
1889 * [D -> i] -> s(D)
1891 * Adding [D -> i] -> i produces
1893 * [D -> i] -> i + s(D)
1895 * and the domain product with [D -> i] -> D yields
1897 * [D -> i] -> [D -> i + s(D)]
1899 * Composition with [D -> i] -> [D -> i/g] gives the desired result.
1901 static __isl_give isl_basic_map *check_stride(struct gpu_array_bound *bound,
1902 __isl_take isl_basic_map *bounds)
1904 isl_space *space;
1905 isl_basic_map *hull;
1906 isl_basic_map *shift, *id, *bmap, *scale;
1907 isl_basic_set *bset;
1908 isl_aff *aff;
1910 isl_int_set_si(bound->stride, -1);
1912 hull = isl_basic_map_affine_hull(isl_basic_map_copy(bounds));
1914 isl_basic_map_foreach_constraint(hull, &check_stride_constraint, bound);
1916 isl_basic_map_free(hull);
1918 if (isl_int_is_neg(bound->stride))
1919 return bounds;
1921 shift = isl_basic_map_from_aff(isl_aff_copy(bound->shift));
1922 space = isl_basic_map_get_space(bounds);
1923 bmap = isl_basic_map_domain_map(isl_basic_map_universe(space));
1924 shift = isl_basic_map_apply_range(bmap, shift);
1925 space = isl_basic_map_get_space(bounds);
1926 id = isl_basic_map_range_map(isl_basic_map_universe(space));
1927 shift = isl_basic_map_sum(id, shift);
1928 space = isl_basic_map_get_space(bounds);
1929 id = isl_basic_map_domain_map(isl_basic_map_universe(space));
1930 shift = isl_basic_map_range_product(id, shift);
1932 space = isl_space_domain(isl_basic_map_get_space(bounds));
1933 id = isl_basic_map_identity(isl_space_map_from_set(space));
1934 space = isl_space_range(isl_basic_map_get_space(bounds));
1935 aff = isl_aff_zero_on_domain(isl_local_space_from_space(space));
1936 aff = isl_aff_add_coefficient_si(aff, isl_dim_in, 0, 1);
1937 aff = isl_aff_scale_down(aff, bound->stride);
1938 scale = isl_basic_map_from_aff(aff);
1939 scale = isl_basic_map_product(id, scale);
1941 bound->shift_map = isl_basic_map_apply_range(shift, scale);
1942 bmap = isl_basic_map_copy(bound->shift_map);
1943 bset = isl_basic_set_apply(isl_basic_map_wrap(bounds), bmap);
1944 bounds = isl_basic_set_unwrap(bset);
1946 return bounds;
1949 /* Data used in compute_array_dim_size and compute_size_in_direction.
1951 * pos is the position of the variable representing the array index,
1952 * i.e., the variable for which want to compute the size. This variable
1953 * is also the last variable in the set.
1955 struct gpu_size_info {
1956 isl_basic_set *bset;
1957 struct gpu_array_bound *bound;
1958 int pos;
1961 /* Given a constraint from the basic set describing the bounds on
1962 * an array index, check if it is a lower bound, say m i >= b(x), and,
1963 * if so, check whether the expression "i - ceil(b(x)/m) + 1" has a constant
1964 * upper bound. If so, and if this bound is smaller than any bound
1965 * derived from earlier constraints, set the size to this bound on
1966 * the expression and the lower bound to ceil(b(x)/m).
1968 static int compute_size_in_direction(__isl_take isl_constraint *c, void *user)
1970 struct gpu_size_info *size = user;
1971 unsigned nparam;
1972 unsigned n_div;
1973 isl_int v;
1975 nparam = isl_basic_set_dim(size->bset, isl_dim_param);
1976 n_div = isl_constraint_dim(c, isl_dim_div);
1978 if (isl_constraint_involves_dims(c, isl_dim_div, 0, n_div)) {
1979 isl_constraint_free(c);
1980 return 0;
1983 isl_int_init(v);
1985 isl_constraint_get_coefficient(c, isl_dim_set, size->pos, &v);
1987 if (isl_int_is_pos(v)) {
1988 isl_aff *aff;
1989 isl_aff *lb;
1990 enum isl_lp_result res;
1992 aff = isl_constraint_get_bound(c, isl_dim_set, size->pos);
1993 aff = isl_aff_ceil(aff);
1995 lb = isl_aff_copy(aff);
1997 aff = isl_aff_neg(aff);
1998 aff = isl_aff_add_coefficient_si(aff, isl_dim_in, size->pos, 1);
2000 res = isl_basic_set_max(size->bset, aff, &v);
2001 isl_aff_free(aff);
2003 if (res == isl_lp_ok) {
2004 isl_int_add_ui(v, v, 1);
2005 if (isl_int_is_neg(size->bound->size) ||
2006 isl_int_lt(v, size->bound->size)) {
2007 isl_int_set(size->bound->size, v);
2008 lb = isl_aff_drop_dims(lb, isl_dim_in,
2009 size->pos, 1);
2010 isl_aff_free(size->bound->lb);
2011 size->bound->lb = isl_aff_copy(lb);
2014 isl_aff_free(lb);
2017 isl_int_clear(v);
2018 isl_constraint_free(c);
2020 return 0;
2023 /* Given a basic map "bounds" that maps parameters and input dimensions
2024 * to a single output dimension, look for an expression in the parameters
2025 * and input dimensions such that the range of the output dimension shifted
2026 * by this expression is a constant.
2028 * In particular, we currently only consider lower bounds on the output
2029 * dimension as candidate expressions.
2031 static int compute_array_dim_size(struct gpu_array_bound *bound,
2032 __isl_take isl_basic_map *bounds)
2034 struct gpu_size_info size;
2036 bounds = isl_basic_map_detect_equalities(bounds);
2037 bounds = check_stride(bound, bounds);
2039 isl_int_set_si(bound->size, -1);
2040 bound->lb = NULL;
2042 size.bound = bound;
2043 size.pos = isl_basic_map_dim(bounds, isl_dim_in);
2044 size.bset = isl_basic_map_wrap(bounds);
2045 size.bset = isl_basic_set_flatten(size.bset);
2046 size.bset = isl_set_simple_hull(isl_basic_set_compute_divs(size.bset));
2047 isl_basic_set_foreach_constraint(size.bset, &compute_size_in_direction,
2048 &size);
2049 isl_basic_set_free(size.bset);
2051 return isl_int_is_nonneg(bound->size) ? 0 : -1;
2054 /* Check if we can find a memory tile for the given array
2055 * based on the given accesses, and if so, put the results in "tile".
2057 * We project the accesses on each index in turn and look for a parametric
2058 * offset such that the size is constant.
2060 static int can_tile(__isl_keep isl_map *access, struct gpu_array_tile *tile)
2062 int i;
2064 for (i = 0; i < tile->n; ++i) {
2065 isl_map *access_i;
2066 isl_basic_map *hull;
2068 access_i = isl_map_copy(access);
2069 access_i = isl_map_project_out(access_i, isl_dim_out, 0, i);
2070 access_i = isl_map_project_out(access_i, isl_dim_out,
2071 1, tile->n - (i + 1));
2072 access_i = isl_map_compute_divs(access_i);
2073 hull = isl_map_simple_hull(access_i);
2074 if (compute_array_dim_size(&tile->bound[i], hull) < 0)
2075 return 0;
2078 return 1;
2081 /* Construct a map with input the shared tile loops and the loops that
2082 * will be wrapped around the threads that relates these later loops
2083 * to the thread indices and then projects them out.
2085 static __isl_give isl_map *compute_privatization(struct gpu_gen *gen)
2087 isl_map *priv;
2088 isl_map *tiling;
2089 isl_map *proj;
2090 isl_set *par;
2091 isl_space *dim;
2093 dim = isl_union_map_get_space(gen->shared_sched);
2095 if (gen->options->wrap)
2096 tiling = wrap(isl_space_copy(dim), gen->shared_len + gen->n_block,
2097 gen->shared_len, gen->n_block, gen->block_dim);
2098 else
2099 tiling = tile(isl_space_copy(dim), gen->shared_len + gen->n_block,
2100 gen->shared_len, gen->n_block, gen->block_dim);
2102 priv = tiling;
2104 par = parametrization(dim, gen->shared_len + 2 * gen->n_block,
2105 gen->tile_first + gen->tile_len + gen->n_grid + gen->n_block,
2106 gen->n_block, "t");
2108 priv = isl_map_align_params(priv, isl_set_get_space(par));
2109 priv = isl_map_intersect_range(priv, par);
2111 dim = isl_map_get_space(priv);
2112 dim = isl_space_drop_dims(dim, isl_dim_in, 0, isl_space_dim(dim, isl_dim_in));
2113 dim = isl_space_drop_dims(dim, isl_dim_out, 0, isl_space_dim(dim, isl_dim_out));
2114 proj = projection(dim, gen->shared_len + 2 * gen->n_block,
2115 gen->shared_len);
2117 priv = isl_map_apply_range(priv, proj);
2119 return priv;
2122 /* Construct a map from domain_dim to domain_dim that increments
2123 * the dimension at position "pos" and leaves all other dimensions
2124 * constant.
2126 static __isl_give isl_map *next(__isl_take isl_space *domain_dim, int pos)
2128 int i;
2129 int len = isl_space_dim(domain_dim, isl_dim_set);
2130 isl_space *dim;
2131 isl_basic_map *next;
2132 isl_local_space *ls;
2134 dim = isl_space_map_from_set(domain_dim);
2135 next = isl_basic_map_universe(isl_space_copy(dim));
2136 ls = isl_local_space_from_space(dim);
2138 for (i = 0; i < len; ++i) {
2139 isl_constraint *c;
2141 c = isl_equality_alloc(isl_local_space_copy(ls));
2142 c = isl_constraint_set_coefficient_si(c, isl_dim_in, i, 1);
2143 c = isl_constraint_set_coefficient_si(c, isl_dim_out, i, -1);
2144 if (i == pos)
2145 c = isl_constraint_set_constant_si(c, 1);
2146 next = isl_basic_map_add_constraint(next, c);
2149 isl_local_space_free(ls);
2151 return isl_map_from_basic_map(next);
2154 /* Check if the given access is coalesced.
2155 * That is, check whether incrementing the dimension that will get
2156 * wrapped over the last thread index results in incrementing
2157 * the last array index.
2159 * This function is only called for access relations without reuse.
2161 static int access_is_coalesced(struct gpu_gen *gen,
2162 __isl_keep isl_union_map *access)
2164 isl_space *dim;
2165 isl_map *access_map;
2166 isl_map *next_thread_x;
2167 isl_map *next_element;
2168 isl_map *map;
2169 int coalesced;
2171 access = isl_union_map_copy(access);
2172 access = isl_union_map_apply_domain(access,
2173 isl_union_map_copy(gen->tiled_sched));
2174 access_map = isl_map_from_union_map(access);
2176 dim = isl_map_get_space(access_map);
2177 dim = isl_space_domain(dim);
2178 next_thread_x = next(dim, gen->shared_len + gen->n_block - 1);
2180 dim = isl_map_get_space(access_map);
2181 dim = isl_space_range(dim);
2182 next_element = next(dim, isl_space_dim(dim, isl_dim_set) - 1);
2184 map = isl_map_apply_domain(next_thread_x, isl_map_copy(access_map));
2185 map = isl_map_apply_range(map, access_map);
2187 coalesced = isl_map_is_subset(map, next_element);
2189 isl_map_free(next_element);
2190 isl_map_free(map);
2192 return coalesced;
2195 /* Given an access relation in terms of the first gen->shared_len + gen->n_block
2196 * dimensions of the computed schedule, check if it is bijective for
2197 * fixed values of the first gen->shared_len dimensions.
2198 * We perform this check by equating these dimensions to parameters.
2200 static int access_is_bijective(struct gpu_gen *gen, __isl_keep isl_map *access)
2202 int res;
2203 isl_set *par;
2204 isl_space *space;
2206 access = isl_map_copy(access);
2207 space = isl_space_params(isl_map_get_space(access));
2208 par = parametrization(space, gen->shared_len + gen->n_block,
2209 0, gen->shared_len, "s");
2210 access = isl_map_intersect_domain(access, par);
2211 res = isl_map_is_bijective(access);
2212 isl_map_free(access);
2214 return res;
2217 /* Look for the last shared tile loop that affects the offset of "tile"
2218 * and return the result.
2219 * If there is no such loop, then return the index of the loop
2220 * before the first shared tile loop, in particular gen->tile_first - 1.
2222 static int compute_tile_last_shared(struct gpu_gen *gen,
2223 struct gpu_array_tile *tile)
2225 int i, j;
2227 for (j = gen->shared_len - 1; j >= gen->tile_first; --j) {
2228 for (i = 0; i < tile->n; ++i) {
2229 isl_aff *lb;
2230 isl_aff *shift;
2232 lb = tile->bound[i].lb;
2233 if (isl_aff_involves_dims(lb, isl_dim_in, j, 1))
2234 break;
2236 shift = tile->bound[i].shift;
2237 if (!shift)
2238 continue;
2239 if (isl_aff_involves_dims(shift, isl_dim_in, j, 1))
2240 break;
2242 if (i < tile->n)
2243 break;
2246 return j;
2249 /* Look for the last shared tile loop that affects the offset of the
2250 * shared or private tile and store the result in group->last_shared.
2251 * If there is no such loop, then group->last_shared is set to a value
2252 * before the first shared tile loop, in particular gen->tile_first - 1.
2253 * If there is no tile defined on the array reference group,
2254 * then set group->last_shared to gen->shared_len - 1.
2256 static void set_last_shared(struct gpu_gen *gen,
2257 struct gpu_array_ref_group *group)
2259 struct gpu_array_tile *tile;
2261 group->last_shared = gen->shared_len - 1;
2263 tile = group->private_tile;
2264 if (!tile)
2265 tile = group->shared_tile;
2266 if (!tile)
2267 return;
2269 group->last_shared = compute_tile_last_shared(gen, tile);
2272 /* Compute a privatized copy of all access relations from reference groups that
2273 * are mapped to private memory and store the result in gen->privatization.
2275 static void compute_private_access(struct gpu_gen *gen)
2277 int i, j;
2278 isl_union_map *private;
2280 if (!gen->options->use_private_memory)
2281 return;
2283 private = isl_union_map_empty(isl_union_map_get_space(gen->shared_sched));
2285 for (i = 0; i < gen->prog->n_array; ++i) {
2286 struct gpu_array_info *array = &gen->prog->array[i];
2288 if (gpu_array_is_read_only_scalar(array))
2289 continue;
2291 for (j = 0; j < array->n_group; ++j) {
2292 if (!array->groups[j]->private_tile)
2293 continue;
2295 private = isl_union_map_union(private,
2296 group_access_relation(array->groups[j], 1, 1));
2300 if (isl_union_map_is_empty(private))
2301 isl_union_map_free(private);
2302 else {
2303 isl_union_map *priv;
2305 private = isl_union_map_apply_domain(private,
2306 isl_union_map_copy(gen->shared_sched));
2307 priv = isl_union_map_from_map(isl_map_copy(gen->privatization));
2308 private = isl_union_map_apply_domain(private, priv);
2309 gen->private_access = private;
2313 /* Compute the size of the tile specified by "tile"
2314 * in number of elements and put the result in *size.
2316 static void tile_size(struct gpu_array_tile *tile, isl_int *size)
2318 int i;
2320 isl_int_set_si(*size, 1);
2322 for (i = 0; i < tile->n; ++i)
2323 isl_int_mul(*size, *size, tile->bound[i].size);
2326 /* If max_shared_memory is not set to infinity (-1), then make
2327 * sure that the total amount of shared memory required by the
2328 * array reference groups mapped to shared memory is no larger
2329 * than this maximum.
2331 * We apply a greedy approach and discard (keep in global memory)
2332 * those groups that would result in a total memory size that
2333 * is larger than the maximum.
2335 static void check_shared_memory_bound(struct gpu_gen *gen)
2337 int i, j;
2338 isl_int left, size;
2340 if (gen->options->max_shared_memory < 0)
2341 return;
2343 isl_int_init(left);
2344 isl_int_init(size);
2345 isl_int_set_si(left, gen->options->max_shared_memory);
2347 for (i = 0; i < gen->prog->n_array; ++i) {
2348 struct gpu_array_info *array = &gen->prog->array[i];
2350 for (j = 0; j < array->n_group; ++j) {
2351 struct gpu_array_ref_group *group;
2353 group = array->groups[j];
2354 if (!group->shared_tile)
2355 continue;
2357 tile_size(group->shared_tile, &size);
2358 isl_int_mul_ui(size, size, array->size);
2360 if (isl_int_le(size, left)) {
2361 isl_int_sub(left, left, size);
2362 continue;
2365 group->shared_tile = free_tile(group->shared_tile);
2369 isl_int_clear(size);
2370 isl_int_clear(left);
2373 /* Fill up the groups array with singleton groups, i.e., one group
2374 * per reference, initializing the array, access, write, n_ref and refs fields.
2375 * In particular the access field is initialized to the scheduled
2376 * access relation of the array reference.
2378 * Return the number of elements initialized, i.e., the number of
2379 * active references in the current kernel.
2381 static int populate_array_references(struct gpu_array_info *array,
2382 __isl_keep isl_union_map *sched, struct gpu_array_ref_group **groups)
2384 int i;
2385 int n;
2386 isl_ctx *ctx = isl_union_map_get_ctx(sched);
2388 n = 0;
2389 for (i = 0; i < array->n_ref; ++i) {
2390 isl_union_map *umap;
2391 isl_map *map;
2392 struct gpu_array_ref_group *group;
2393 struct gpu_stmt_access *access = array->refs[i];
2395 map = isl_map_copy(access->access);
2396 umap = isl_union_map_from_map(map);
2397 umap = isl_union_map_apply_domain(umap,
2398 isl_union_map_copy(sched));
2400 if (isl_union_map_is_empty(umap)) {
2401 isl_union_map_free(umap);
2402 continue;
2405 map = isl_map_from_union_map(umap);
2406 map = isl_map_detect_equalities(map);
2408 group = isl_calloc_type(ctx, struct gpu_array_ref_group);
2409 assert(group);
2410 group->array = array;
2411 group->access = map;
2412 group->write = access->write;
2413 group->refs = &array->refs[i];
2414 group->n_ref = 1;
2416 groups[n++] = group;
2419 return n;
2422 /* If group->n_ref == 1, then group->refs was set by
2423 * populate_array_references to point directly into
2424 * group->array->refs and should not be freed.
2425 * If group->n_ref > 1, then group->refs was set by join_groups
2426 * to point to a newly allocated array.
2428 static void free_array_ref_group(struct gpu_array_ref_group *group)
2430 if (!group)
2431 return;
2432 free_tile(group->shared_tile);
2433 free_tile(group->private_tile);
2434 isl_map_free(group->access);
2435 if (group->n_ref > 1)
2436 free(group->refs);
2437 free(group);
2440 /* Given a map where the input dimensions represent the tile loops,
2441 * eliminate the innermost of those that have a fixed value
2442 * until we reach one that does not (obviously) have a fixed value.
2444 static __isl_give isl_map *eliminate_fixed_inner_loops(
2445 __isl_take isl_map *access)
2447 int i, n;
2449 n = isl_map_dim(access, isl_dim_in);
2451 for (i = n - 1; i >= 0; --i) {
2452 if (!isl_map_plain_is_fixed(access, isl_dim_in, i, NULL))
2453 break;
2454 access = isl_map_eliminate(access, isl_dim_in, i, 1);
2456 return access;
2459 /* Check if the access relations of group1 and group2 overlap within
2460 * the innermost loop. In particular, ignore any inner dimension
2461 * with a fixed value.
2462 * The copying to and from shared memory will be performed within
2463 * the innermost actual loop so we are only allowed to consider
2464 * the dimensions up to that innermost loop while checking whether
2465 * two access relations overlap.
2467 static int accesses_overlap(struct gpu_array_ref_group *group1,
2468 struct gpu_array_ref_group *group2)
2470 int empty;
2471 isl_map *access1, *access2;
2473 access1 = isl_map_copy(group1->access);
2474 access1 = eliminate_fixed_inner_loops(access1);
2475 access2 = isl_map_copy(group2->access);
2476 access2 = eliminate_fixed_inner_loops(access2);
2477 access1 = isl_map_intersect(access1, access2);
2478 empty = isl_map_is_empty(access1);
2479 isl_map_free(access1);
2481 return !empty;
2484 /* Combine the given two groups into a single group, containing
2485 * the references of both groups.
2487 static struct gpu_array_ref_group *join_groups(
2488 struct gpu_array_ref_group *group1,
2489 struct gpu_array_ref_group *group2)
2491 int i;
2492 isl_ctx *ctx;
2493 struct gpu_array_ref_group *group;
2495 ctx = isl_map_get_ctx(group1->access);
2496 group = isl_calloc_type(ctx, struct gpu_array_ref_group);
2497 assert(group);
2498 group->array = group1->array;
2499 group->access = isl_map_union(isl_map_copy(group1->access),
2500 isl_map_copy(group2->access));
2501 group->write = group1->write || group2->write;
2502 group->n_ref = group1->n_ref + group2->n_ref;
2503 group->refs = isl_alloc_array(ctx, struct gpu_stmt_access *,
2504 group->n_ref);
2505 assert(group->refs);
2506 for (i = 0; i < group1->n_ref; ++i)
2507 group->refs[i] = group1->refs[i];
2508 for (i = 0; i < group2->n_ref; ++i)
2509 group->refs[group1->n_ref + i] = group2->refs[i];
2511 return group;
2514 /* Combine the given two groups into a single group and free
2515 * the original two groups.
2517 static struct gpu_array_ref_group *join_groups_and_free(
2518 struct gpu_array_ref_group *group1,
2519 struct gpu_array_ref_group *group2)
2521 struct gpu_array_ref_group *group;
2523 group = join_groups(group1, group2);
2524 free_array_ref_group(group1);
2525 free_array_ref_group(group2);
2526 return group;
2529 /* Compute the private and/or shared memory tiles for the array
2530 * reference group "group" of array "array".
2532 * If the array is a read-only scalar or if the user requested
2533 * not to use shared or private memory, then we do not need to do anything.
2535 * We only try to compute a shared memory tile if there is any reuse
2536 * or if the access is not coalesced.
2538 * For computing a private memory tile, we also require that there is
2539 * some reuse. Moreover, we require that the access is private
2540 * to the thread. That is, we check that any given array element
2541 * is only accessed by a single thread.
2542 * We compute an access relation that maps the shared tile loop iterators
2543 * and the shared point loop iterators that will be wrapped over the
2544 * threads to the array elements.
2545 * We actually check that those iterators that will be wrapped
2546 * partition the array space. This check is stricter than necessary
2547 * since several iterations may be mapped onto the same thread
2548 * and then they could be allowed to access the same memory elements,
2549 * but our check does not allow this situation.
2551 * We also check that the index expression only depends on parallel
2552 * loops. That way, we can move those loops innermost and unroll them.
2553 * Again, we use a test that is stricter than necessary.
2554 * We actually check whether the index expression only depends
2555 * on the iterators that are wrapped over the threads.
2556 * These are necessarily parallel, but there may be more parallel loops.
2558 * Combining the injectivity of the first test with the single-valuedness
2559 * of the second test, we simply test for bijectivity.
2561 * If it turns out we can use registers, we compute the private memory
2562 * tile size using can_tile, after introducing a dependence
2563 * on the thread indices.
2565 static void compute_group_bounds_core(struct gpu_gen *gen,
2566 struct gpu_array_ref_group *group)
2568 isl_ctx *ctx = isl_space_get_ctx(group->array->dim);
2569 isl_union_map *access;
2570 int n_index = group->array->n_index;
2571 int no_reuse;
2572 isl_map *acc;
2573 int use_shared = gen->options->use_shared_memory;
2574 int use_private = gen->options->use_private_memory;
2576 if (!use_shared && !use_private)
2577 return;
2578 if (gpu_array_is_read_only_scalar(group->array))
2579 return;
2581 access = group_access_relation(group, 1, 1);
2582 no_reuse = isl_union_map_is_injective(access);
2584 if (use_shared && (!no_reuse || !access_is_coalesced(gen, access))) {
2585 group->shared_tile = create_tile(ctx, group->array->n_index);
2586 if (!can_tile(group->access, group->shared_tile))
2587 group->shared_tile = free_tile(group->shared_tile);
2590 if (!use_private || no_reuse) {
2591 isl_union_map_free(access);
2592 return;
2595 access = isl_union_map_apply_domain(access,
2596 isl_union_map_copy(gen->shared_sched));
2598 acc = isl_map_from_union_map(access);
2600 if (!access_is_bijective(gen, acc)) {
2601 isl_map_free(acc);
2602 return;
2605 group->private_tile = create_tile(gen->ctx, n_index);
2606 acc = isl_map_apply_domain(acc, isl_map_copy(gen->privatization));
2607 if (!can_tile(acc, group->private_tile))
2608 group->private_tile = free_tile(group->private_tile);
2610 isl_map_free(acc);
2613 /* Compute the private and/or shared memory tiles for the array
2614 * reference group "group" of array "array" and set last_shared.
2616 static void compute_group_bounds(struct gpu_gen *gen,
2617 struct gpu_array_ref_group *group)
2619 compute_group_bounds_core(gen, group);
2620 set_last_shared(gen, group);
2623 /* If two groups have overlapping access relations (as determined by
2624 * the "overlap" function) and if one of them involves a write,
2625 * then merge the two groups into one.
2626 * If "compute_bounds" is set, then call compute_group_bounds
2627 * on the merged groups.
2629 * Return the updated number of groups.
2631 static int group_writes(struct gpu_gen *gen,
2632 int n, struct gpu_array_ref_group **groups,
2633 int (*overlap)(struct gpu_array_ref_group *group1,
2634 struct gpu_array_ref_group *group2), int compute_bounds)
2636 int i, j;
2638 for (i = 0; i < n; ++i) {
2639 for (j = n - 1; j > i; --j) {
2640 if (!groups[i]->write && !groups[j]->write)
2641 continue;
2643 if (!overlap(groups[i], groups[j]))
2644 continue;
2646 groups[i] = join_groups_and_free(groups[i], groups[j]);
2647 if (compute_bounds)
2648 compute_group_bounds(gen, groups[i]);
2649 if (j != n - 1)
2650 groups[j] = groups[n - 1];
2651 n--;
2655 return n;
2658 /* If two groups have overlapping access relations (within the innermost
2659 * loop) and if one of them involves a write, then merge the two groups
2660 * into one.
2662 * Return the updated number of groups.
2664 static int group_overlapping_writes(struct gpu_gen *gen,
2665 int n, struct gpu_array_ref_group **groups)
2667 return group_writes(gen, n, groups, &accesses_overlap, 0);
2670 /* Check if the access relations of group1 and group2 overlap within
2671 * the outermost min(group1->last_shared, group2->last_shared) loops.
2673 static int last_shared_accesses_overlap(struct gpu_array_ref_group *group1,
2674 struct gpu_array_ref_group *group2)
2676 int last_shared;
2677 int dim;
2678 int empty;
2679 isl_map *map_i, *map_j, *map;
2681 last_shared = group1->last_shared;
2682 if (group2->last_shared < last_shared)
2683 last_shared = group2->last_shared;
2684 map_i = isl_map_copy(group1->access);
2685 dim = isl_map_dim(map_i, isl_dim_in);
2686 map_i = isl_map_eliminate(map_i, isl_dim_in,
2687 last_shared + 1, dim - (last_shared + 1));
2688 map_j = isl_map_copy(group2->access);
2689 map_j = isl_map_eliminate(map_j, isl_dim_in,
2690 last_shared + 1, dim - (last_shared + 1));
2691 map = isl_map_intersect(map_i, map_j);
2692 empty = isl_map_is_empty(map);
2693 isl_map_free(map);
2695 return !empty;
2698 /* If two groups have overlapping access relations (within the outer
2699 * last_shared loops) and if one of them involves a write,
2700 * then merge the two groups into one.
2702 * Return the updated number of groups.
2704 static int group_last_shared_overlapping_writes(struct gpu_gen *gen, int n,
2705 struct gpu_array_ref_group **groups)
2707 return group_writes(gen, n, groups, &last_shared_accesses_overlap, 1);
2710 /* Is the size of the tile specified by "tile" smaller than the sum of
2711 * the sizes of the tiles specified by "tile1" and "tile2"?
2713 static int smaller_tile(struct gpu_array_tile *tile,
2714 struct gpu_array_tile *tile1, struct gpu_array_tile *tile2)
2716 int smaller;
2717 isl_int size, size1, size2;
2719 isl_int_init(size);
2720 isl_int_init(size1);
2721 isl_int_init(size2);
2723 tile_size(tile, &size);
2724 tile_size(tile1, &size1);
2725 tile_size(tile2, &size2);
2727 isl_int_sub(size, size, size1);
2728 isl_int_sub(size, size, size2);
2729 smaller = isl_int_is_neg(size);
2731 isl_int_clear(size2);
2732 isl_int_clear(size1);
2733 isl_int_clear(size);
2735 return smaller;
2738 /* Given an initial grouping of array references and shared memory tiles
2739 * for each group that allows for a shared memory tile, merge two groups
2740 * if both have a shared memory tile, the merged group also has
2741 * a shared memory tile and the size of the tile for the merge group
2742 * is smaller than the sum of the tile sizes of the individual groups.
2744 * If merging two groups decreases the "last_shared" dimension of
2745 * one or both of the two groups, then we need to check for overlapping
2746 * writes again.
2748 * Return the number of groups after merging.
2750 static int group_common_shared_memory_tile(struct gpu_gen *gen,
2751 struct gpu_array_info *array, int n,
2752 struct gpu_array_ref_group **groups)
2754 int i, j;
2755 int recompute_overlap = 0;
2756 isl_ctx *ctx = isl_space_get_ctx(array->dim);
2758 for (i = 0; i < n; ++i) {
2759 if (!groups[i]->shared_tile)
2760 continue;
2761 for (j = n - 1; j > i; --j) {
2762 isl_map *map;
2763 int empty;
2764 struct gpu_array_ref_group *group;
2766 if (!groups[j]->shared_tile)
2767 continue;
2769 map = isl_map_intersect(isl_map_copy(groups[i]->access),
2770 isl_map_copy(groups[j]->access));
2771 empty = isl_map_is_empty(map);
2772 isl_map_free(map);
2774 if (empty)
2775 continue;
2777 group = join_groups(groups[i], groups[j]);
2778 compute_group_bounds(gen, group);
2779 if (!group->shared_tile ||
2780 !smaller_tile(group->shared_tile,
2781 groups[i]->shared_tile,
2782 groups[j]->shared_tile)) {
2783 free_array_ref_group(group);
2784 continue;
2787 if (group->last_shared < groups[i]->last_shared ||
2788 group->last_shared < groups[j]->last_shared)
2789 recompute_overlap = 1;
2790 free_array_ref_group(groups[i]);
2791 free_array_ref_group(groups[j]);
2792 groups[i] = group;
2793 if (j != n - 1)
2794 groups[j] = groups[n - 1];
2795 n--;
2799 if (recompute_overlap)
2800 n = group_last_shared_overlapping_writes(gen, n, groups);
2801 return n;
2804 /* Set array->n_group and array->groups to n and groups.
2806 * Additionally, set the "nr" field of each group
2807 * and the "group" field of each reference in each group.
2809 static void set_array_groups(struct gpu_array_info *array,
2810 int n, struct gpu_array_ref_group **groups)
2812 int i, j;
2814 array->n_group = n;
2815 array->groups = groups;
2817 for (i = 0; i < n; ++i) {
2818 groups[i]->nr = i;
2820 for (j = 0; j < groups[i]->n_ref; ++j)
2821 groups[i]->refs[j]->group = i;
2825 /* Group array references that should be considered together when
2826 * deciding whether to access them from private, shared or global memory.
2828 * In particular, if two array references overlap and if one of them
2829 * is a write, then the two references are grouped together.
2830 * We first perform an initial grouping based only on the access relation.
2831 * After computing shared and private memory tiles, we check for
2832 * overlapping writes again, but this time taking into account
2833 * the "last_shared" property.
2835 * Furthermore, if two groups admit a shared memory tile and if the
2836 * combination of the two also admits a shared memory tile, we merge
2837 * the two groups.
2839 static void group_array_references(struct gpu_gen *gen,
2840 struct gpu_array_info *array, __isl_keep isl_union_map *sched)
2842 int i;
2843 int n;
2844 isl_ctx *ctx = isl_union_map_get_ctx(sched);
2845 struct gpu_array_ref_group **groups;
2847 groups = isl_calloc_array(ctx, struct gpu_array_ref_group *,
2848 array->n_ref);
2849 assert(groups);
2851 n = populate_array_references(array, sched, groups);
2853 n = group_overlapping_writes(gen, n, groups);
2855 for (i = 0; i < n; ++i)
2856 compute_group_bounds(gen, groups[i]);
2858 n = group_last_shared_overlapping_writes(gen, n, groups);
2860 n = group_common_shared_memory_tile(gen, array, n, groups);
2862 set_array_groups(array, n, groups);
2865 /* Take tiled_sched, project it onto the shared tile loops and
2866 * the loops that will be wrapped over the threads and
2867 * store the result in gen->shared_sched.
2868 * Also compute a projection that projects out the loops that will be
2869 * wrapped over the threads and store this projection in gen->shared_proj.
2871 static void compute_shared_sched(struct gpu_gen *gen)
2873 isl_space *dim;
2874 isl_map *proj;
2875 isl_set *par;
2876 isl_union_map *sched;
2878 sched = isl_union_map_copy(gen->tiled_sched);
2880 dim = isl_union_map_get_space(sched);
2881 proj = projection(dim, gen->tiled_len, gen->shared_len + gen->n_block);
2882 sched = isl_union_map_apply_range(sched, isl_union_map_from_map(proj));
2884 dim = isl_union_map_get_space(sched);
2885 proj = projection(dim, gen->shared_len + gen->n_block, gen->shared_len);
2887 gen->shared_sched = sched;
2888 gen->shared_proj = isl_union_map_from_map(proj);
2891 /* Group references of all arrays in the program.
2893 static void group_references(struct gpu_gen *gen)
2895 int i;
2896 isl_union_map *sched;
2898 sched = isl_union_map_apply_range(isl_union_map_copy(gen->shared_sched),
2899 isl_union_map_copy(gen->shared_proj));
2901 for (i = 0; i < gen->prog->n_array; ++i)
2902 group_array_references(gen, &gen->prog->array[i], sched);
2904 isl_union_map_free(sched);
2907 /* Free all array information that is local to the current kernel.
2909 static void free_local_array_info(struct gpu_gen *gen)
2911 int i, j;
2913 for (i = 0; i < gen->prog->n_array; ++i) {
2914 struct gpu_array_info *array = &gen->prog->array[i];
2916 for (j = 0; j < array->n_group; ++j)
2917 free_array_ref_group(array->groups[j]);
2918 free(array->groups);
2922 /* Compute the effective grid size as a list of the sizes in each dimension.
2924 * The grid size specified by the user or set by default
2925 * in read_grid_sizes() and applied in tile_schedule(),
2926 * may be too large for the given code in the sense that
2927 * it may contain blocks that don't need to execute anything.
2928 * We therefore don't return this grid size, but instead the
2929 * smallest grid size that ensures that all blocks that actually
2930 * execute code are included in the grid.
2932 * We first extract a description of the grid, i.e., the possible values
2933 * of the block ids, from gen->tiled_sched.
2934 * The block ids are parameters in gen->tiled_sched.
2935 * We simply need to change them into set dimensions.
2937 * Then, for each block dimension, we compute the maximal value of the block id
2938 * and add one.
2940 static __isl_give isl_multi_pw_aff *extract_grid_size(struct gpu_gen *gen,
2941 struct ppcg_kernel *kernel)
2943 int i;
2944 isl_set *grid;
2945 isl_multi_pw_aff *mpa;
2947 grid = isl_union_map_params(isl_union_map_copy(gen->tiled_sched));
2948 grid = isl_set_from_params(grid);
2949 grid = isl_set_add_dims(grid, isl_dim_set, gen->n_grid);
2950 for (i = 0; i < gen->n_grid; ++i) {
2951 int pos;
2952 char name[20];
2954 snprintf(name, sizeof(name), "b%d", i);
2955 pos = isl_set_find_dim_by_name(grid, isl_dim_param, name);
2956 assert(pos >= 0);
2957 grid = isl_set_equate(grid, isl_dim_param, pos, isl_dim_set, i);
2958 grid = isl_set_project_out(grid, isl_dim_param, pos, 1);
2961 mpa = isl_multi_pw_aff_zero(isl_set_get_space(grid));
2962 for (i = 0; i < gen->n_grid; ++i) {
2963 isl_space *space;
2964 isl_aff *one;
2965 isl_pw_aff *bound;
2967 bound = isl_set_dim_max(isl_set_copy(grid), i);
2968 bound = isl_pw_aff_coalesce(bound);
2969 bound = isl_pw_aff_gist(bound, isl_set_copy(kernel->context));
2971 space = isl_pw_aff_get_domain_space(bound);
2972 one = isl_aff_zero_on_domain(isl_local_space_from_space(space));
2973 one = isl_aff_add_constant_si(one, 1);
2974 bound = isl_pw_aff_add(bound, isl_pw_aff_from_aff(one));
2975 mpa = isl_multi_pw_aff_set_pw_aff(mpa, i, bound);
2977 isl_set_free(grid);
2979 return mpa;
2982 void ppcg_kernel_free(void *user)
2984 struct ppcg_kernel *kernel = user;
2985 int i;
2987 if (!kernel)
2988 return;
2990 isl_multi_pw_aff_free(kernel->grid_size);
2991 isl_set_free(kernel->context);
2992 isl_union_set_free(kernel->arrays);
2993 isl_space_free(kernel->space);
2994 isl_ast_node_free(kernel->tree);
2996 for (i = 0; i < kernel->n_array; ++i)
2997 isl_pw_aff_list_free(kernel->array[i].bound);
2998 free(kernel->array);
3000 for (i = 0; i < kernel->n_var; ++i) {
3001 free(kernel->var[i].name);
3002 isl_vec_free(kernel->var[i].size);
3004 free(kernel->var);
3006 free(kernel);
3009 static void create_kernel_var(isl_ctx *ctx, struct gpu_array_ref_group *group,
3010 struct ppcg_kernel_var *var)
3012 int j;
3013 struct gpu_array_tile *tile;
3014 isl_printer *p;
3015 char *name;
3017 var->array = group->array;
3019 tile = group->private_tile;
3020 var->type = ppcg_access_private;
3021 if (!tile) {
3022 tile = group->shared_tile;
3023 var->type = ppcg_access_shared;
3026 p = isl_printer_to_str(ctx);
3027 p = print_array_name(p, group);
3028 var->name = isl_printer_get_str(p);
3029 isl_printer_free(p);
3031 var->size = isl_vec_alloc(ctx, group->array->n_index);
3033 for (j = 0; j < group->array->n_index; ++j)
3034 var->size = isl_vec_set_element(var->size, j,
3035 tile->bound[j].size);
3038 static void create_kernel_vars(struct gpu_gen *gen, struct ppcg_kernel *kernel)
3040 int i, j, n;
3042 n = 0;
3043 for (i = 0; i < gen->prog->n_array; ++i) {
3044 struct gpu_array_info *array = &gen->prog->array[i];
3046 for (j = 0; j < array->n_group; ++j) {
3047 struct gpu_array_ref_group *group = array->groups[j];
3048 if (group->private_tile || group->shared_tile)
3049 ++n;
3053 kernel->n_var = n;
3054 kernel->var = isl_calloc_array(gen->ctx, struct ppcg_kernel_var, n);
3055 assert(kernel->var);
3057 n = 0;
3058 for (i = 0; i < gen->prog->n_array; ++i) {
3059 struct gpu_array_info *array = &gen->prog->array[i];
3061 for (j = 0; j < array->n_group; ++j) {
3062 struct gpu_array_ref_group *group = array->groups[j];
3063 if (!group->private_tile && !group->shared_tile)
3064 continue;
3065 create_kernel_var(gen->ctx, group, &kernel->var[n]);
3066 ++n;
3071 /* The sizes of the arrays on the host that have been computed by
3072 * extract_array_info may depend on the parameters. Use the extra
3073 * constraints on the parameters that are valid at "host_domain"
3074 * to simplify these expressions and store the results in kernel->array.
3076 static void localize_bounds(struct gpu_gen *gen, struct ppcg_kernel *kernel,
3077 __isl_keep isl_set *host_domain)
3079 int i, j;
3080 isl_set *context;
3082 kernel->array = isl_calloc_array(gen->ctx,
3083 struct gpu_local_array_info, gen->prog->n_array);
3084 assert(kernel->array);
3085 kernel->n_array = gen->prog->n_array;
3087 context = isl_set_copy(host_domain);
3088 context = isl_set_params(context);
3090 for (i = 0; i < gen->prog->n_array; ++i) {
3091 struct gpu_array_info *array = &gen->prog->array[i];
3092 isl_pw_aff_list *local;
3094 if (array->n_group == 0)
3095 continue;
3097 local = isl_pw_aff_list_alloc(gen->ctx, array->n_index);
3099 for (j = 0; j < array->n_index; ++j) {
3100 isl_pw_aff *pwaff;
3102 pwaff = isl_pw_aff_copy(array->bound[j]);
3103 pwaff = isl_pw_aff_gist(pwaff, isl_set_copy(context));
3104 local = isl_pw_aff_list_add(local, pwaff);
3107 kernel->array[i].bound = local;
3109 isl_set_free(context);
3112 /* Find the element in gen->stmt that has the given "id".
3113 * Return NULL if no such gpu_stmt can be found.
3115 static struct gpu_stmt *find_stmt(struct gpu_prog *prog, __isl_keep isl_id *id)
3117 int i;
3119 for (i = 0; i < prog->n_stmts; ++i) {
3120 if (id == prog->stmts[i].id)
3121 break;
3124 return i < prog->n_stmts ? &prog->stmts[i] : NULL;
3127 /* Set gen->tile_len and gen->n_parallel to those of the statement
3128 * affected by the first map (part of the schedule)
3129 * on which this function is called.
3130 * Because of the way the schedule is constructed, the other statements
3131 * in the list, if any, should have the same values for these properties.
3133 static int extract_tile_len(__isl_take isl_map *map, void *user)
3135 struct gpu_gen *gen = (struct gpu_gen *) user;
3136 isl_id *id;
3137 struct gpu_stmt *stmt;
3139 id = isl_map_get_tuple_id(map, isl_dim_in);
3140 stmt = find_stmt(gen->prog, id);
3141 isl_id_free(id);
3143 isl_map_free(map);
3145 if (!stmt)
3146 isl_die(gen->ctx, isl_error_unknown,
3147 "statement not found", return -1);
3149 gen->tile_len = stmt->tile_len;
3150 gen->n_parallel = stmt->n_parallel;
3152 return -1;
3155 void ppcg_kernel_stmt_free(void *user)
3157 int i;
3158 struct ppcg_kernel_stmt *stmt = user;
3160 if (!stmt)
3161 return;
3163 switch (stmt->type) {
3164 case ppcg_kernel_copy:
3165 isl_ast_expr_free(stmt->u.c.index);
3166 isl_ast_expr_free(stmt->u.c.local_index);
3167 break;
3168 case ppcg_kernel_domain:
3169 for (i = 0; i < stmt->u.d.n_access; ++i) {
3170 isl_ast_expr_list_free(stmt->u.d.access[i].index);
3171 free(stmt->u.d.access[i].local_name);
3173 free(stmt->u.d.access);
3174 break;
3175 case ppcg_kernel_sync:
3176 break;
3179 free(stmt);
3182 /* Set the options of "context" to
3184 * { space -> [x] : x >= first }
3186 static __isl_give isl_ast_build *set_unroll(
3187 __isl_take isl_ast_build *build, __isl_take isl_space *space,
3188 int first)
3190 isl_ctx *ctx;
3191 isl_map *unroll;
3192 isl_union_map *opt;
3194 ctx = isl_ast_build_get_ctx(build);
3196 space = isl_space_from_domain(space);
3197 space = isl_space_add_dims(space, isl_dim_out, 1);
3198 space = isl_space_set_tuple_name(space, isl_dim_out, "unroll");
3199 unroll = isl_map_universe(space);
3200 unroll = isl_map_lower_bound_si(unroll, isl_dim_out, 0, first);
3201 opt = isl_union_map_from_map(unroll);
3203 build = isl_ast_build_set_options(build, opt);
3205 return build;
3208 /* Return a list of isl_ids of the form "prefix%d".
3210 static __isl_give isl_id_list *generate_names(isl_ctx *ctx,
3211 int n, const char *prefix)
3213 int i;
3214 char name[10];
3215 isl_id_list *names;
3217 names = isl_id_list_alloc(ctx, n);
3218 for (i = 0; i < n; ++i) {
3219 isl_id *id;
3221 snprintf(name, sizeof(name), "%s%d", prefix, i);
3222 id = isl_id_alloc(ctx, name, NULL);
3223 names = isl_id_list_add(names, id);
3226 return names;
3229 /* Extend the schedule "schedule" with the part of "extension"
3230 * starting at "first" up to "len".
3232 static __isl_give isl_union_map *extend_schedule(
3233 __isl_take isl_union_map *schedule,
3234 __isl_take isl_union_map *extension, int first, int len)
3236 isl_space *space;
3237 isl_map *proj;
3238 isl_union_map *umap;
3239 isl_set *set;
3241 space = isl_union_map_get_space(schedule);
3242 space = isl_space_set_from_params(space);
3243 space = isl_space_add_dims(space, isl_dim_set, len);
3244 proj = isl_set_identity(isl_set_universe(space));
3245 proj = isl_map_project_out(proj, isl_dim_out, 0, first);
3246 extension = isl_union_map_apply_range(extension,
3247 isl_union_map_from_map(proj));
3249 schedule = isl_union_map_range_product(schedule, extension);
3251 return schedule;
3254 /* This function is called for each access to an array in each instance
3255 * in the kernel of some statement in the original code.
3256 * Replace that access by an access to global, shared or private memory
3257 * and store the results in *kernel_access.
3259 * Since the array in shared or private memory is just
3260 * a shifted copy of part of the original array, we simply need
3261 * to subtract the lower bound, which was computed in can_tile.
3262 * If any of the indices is strided, then we first add
3263 * shared_tile->bound[i].shift and divide by shared_tile->bound[i].stride.
3265 * If the given array is accessed directly from global memory,
3266 * we don't need to perform any shifting and simply simplify
3267 * the expression in the context of the domain instead.
3269 * If the array space (range of access) has no name, then we are
3270 * accessing an iterator in the original program.
3272 * The input stmt_access->access relation maps the iteration domain
3273 * of the current statement to an array element.
3274 * The first step is to reformulate
3275 * this access relation in terms of the loop iterators of the generated
3276 * code through precomposition with gen->stmt_it.
3278 * The expressions in "tile" are formulated in terms of the first
3279 * gen->shared_len dimensions of the computed schedule using the mapping
3280 * sched2shared which maps the loop iterators to these dimensions.
3282 static void compute_index_expression(struct gpu_gen *gen,
3283 struct ppcg_kernel_access *kernel_access,
3284 struct gpu_stmt_access *stmt_access, __isl_keep isl_map *stmt_it,
3285 __isl_keep isl_map *sched2shared, __isl_keep isl_ast_build *build)
3287 isl_map *access;
3288 isl_pw_multi_aff *pma;
3289 int i;
3290 unsigned n_index;
3291 struct gpu_array_tile *tile = NULL;
3293 if (isl_map_has_tuple_name(stmt_access->access, isl_dim_out)) {
3294 int i;
3295 const char *name;
3296 struct gpu_array_ref_group *group;
3297 isl_printer *p;
3299 name = isl_map_get_tuple_name(stmt_access->access, isl_dim_out);
3301 for (i = 0; i < gen->prog->n_array; ++i) {
3302 if (strcmp(name, gen->prog->array[i].name))
3303 continue;
3304 kernel_access->array = &gen->prog->array[i];
3305 kernel_access->local_array = &gen->kernel->array[i];
3307 assert(kernel_access->array);
3308 group = kernel_access->array->groups[stmt_access->group];
3309 p = isl_printer_to_str(gen->ctx);
3310 p = print_array_name(p, group);
3311 kernel_access->local_name = isl_printer_get_str(p);
3312 isl_printer_free(p);
3313 tile = group->private_tile;
3314 kernel_access->type = ppcg_access_private;
3315 if (!tile) {
3316 tile = group->shared_tile;
3317 kernel_access->type = ppcg_access_shared;
3320 if (!tile)
3321 kernel_access->type = ppcg_access_global;
3323 n_index = isl_map_dim(stmt_access->access, isl_dim_out);
3324 kernel_access->index = isl_ast_expr_list_alloc(gen->ctx, n_index);
3326 if (n_index == 0)
3327 return;
3329 access = isl_map_copy(stmt_access->access);
3330 access = isl_map_apply_range(isl_map_copy(stmt_it), access);
3331 pma = isl_pw_multi_aff_from_map(access);
3332 pma = isl_pw_multi_aff_coalesce(pma);
3334 for (i = 0; i < n_index; ++i) {
3335 isl_set *domain;
3336 isl_pw_aff *index;
3337 isl_ast_expr *expr;
3339 index = isl_pw_multi_aff_get_pw_aff(pma, i);
3341 if (!kernel_access->array) {
3342 } else if (!tile) {
3343 domain = isl_map_domain(isl_map_copy(stmt_it));
3344 index = isl_pw_aff_coalesce(index);
3345 index = isl_pw_aff_gist(index, domain);
3346 } else {
3347 domain = isl_map_domain(isl_map_copy(stmt_it));
3348 index = shift_index(index, kernel_access->array,
3349 &tile->bound[i], domain,
3350 isl_map_copy(sched2shared));
3353 expr = isl_ast_build_expr_from_pw_aff(build, index);
3355 kernel_access->index = isl_ast_expr_list_add(
3356 kernel_access->index, expr);
3359 isl_pw_multi_aff_free(pma);
3362 /* This function is called for each instance of a user statement
3363 * in the kernel.
3365 * We attach a struct ppcg_kernel_stmt to the "node", containing
3366 * local information about the accesses.
3367 * This information is computed from stmt_it, which expresses the domain
3368 * elements in terms of the generated loops, and sched2shared,
3369 * which expresses the first shared_len dimensions of the schedule
3370 * computed by PPCG in terms of the generated loops.
3372 static __isl_give isl_ast_node *at_each_domain(__isl_take isl_ast_node *node,
3373 __isl_keep isl_ast_build *build, void *user)
3375 struct gpu_gen *gen = (struct gpu_gen *) user;
3376 struct ppcg_kernel_stmt *stmt;
3377 isl_id *id;
3378 isl_map *stmt_it, *sched2shared;
3379 isl_ast_expr *expr, *arg;
3380 isl_union_map *schedule;
3381 int i, n;
3382 struct gpu_stmt_access *access;
3384 stmt = isl_calloc_type(gen->ctx, struct ppcg_kernel_stmt);
3385 if (!stmt)
3386 return isl_ast_node_free(node);
3388 expr = isl_ast_node_user_get_expr(node);
3389 arg = isl_ast_expr_get_op_arg(expr, 0);
3390 id = isl_ast_expr_get_id(arg);
3392 schedule = isl_ast_build_get_schedule(build);
3393 stmt_it = isl_map_reverse(isl_map_from_union_map(schedule));
3394 sched2shared = compute_sched_to_shared(gen, isl_map_copy(stmt_it));
3396 stmt->type = ppcg_kernel_domain;
3397 stmt->u.d.stmt = find_stmt(gen->prog, id);
3398 if (!stmt->u.d.stmt)
3399 goto error;
3401 n = 0;
3402 for (access = stmt->u.d.stmt->accesses; access; access = access->next)
3403 ++n;
3405 stmt->u.d.access = isl_calloc_array(gen->ctx,
3406 struct ppcg_kernel_access, n);
3407 if (!stmt->u.d.access)
3408 goto error;
3410 stmt->u.d.n_access = n;
3412 access = stmt->u.d.stmt->accesses;
3413 for (i = 0; i < n; ++i, access = access->next) {
3414 compute_index_expression(gen, &stmt->u.d.access[i], access,
3415 stmt_it, sched2shared, build);
3418 isl_id_free(id);
3419 isl_map_free(stmt_it);
3420 isl_map_free(sched2shared);
3421 isl_ast_expr_free(arg);
3422 isl_ast_expr_free(expr);
3424 id = isl_id_alloc(gen->ctx, NULL, stmt);
3425 id = isl_id_set_free_user(id, &ppcg_kernel_stmt_free);
3426 return isl_ast_node_set_annotation(node, id);
3427 error:
3428 isl_id_free(id);
3429 isl_map_free(stmt_it);
3430 ppcg_kernel_stmt_free(stmt);
3431 isl_map_free(sched2shared);
3432 return isl_ast_node_free(node);
3435 /* This function is called when code has been generated for the shared
3436 * tile loops. The "schedule" refers only to the original statements.
3438 * We extend the schedule with that part of gen->local_sched that hasn't
3439 * been taken into account yet. This introduces parameters referring
3440 * to thread ids in the schedule, so we add them (with the appropriate
3441 * bounds to the context as well).
3442 * Finally, we set the appropriate unrolling options
3443 * if gen->first_unroll is set.
3445 static __isl_give isl_ast_node *create_domain_leaf(
3446 __isl_take isl_union_map *schedule, __isl_take isl_ast_build *build,
3447 void *user)
3449 struct gpu_gen *gen = (struct gpu_gen *) user;
3450 isl_space *space;
3451 isl_union_map *sched;
3452 isl_ast_node *tree;
3453 isl_set *set;
3454 isl_id_list *iterators;
3455 int n;
3457 schedule = extend_schedule(schedule,
3458 isl_union_map_copy(gen->local_sched),
3459 gen->shared_len, gen->thread_tiled_len);
3461 space = isl_ast_build_get_schedule_space(build);
3462 set = isl_set_universe(space);
3463 set = add_bounded_parameters(set, gen->n_block, gen->block_dim, "t");
3464 build = isl_ast_build_restrict(build, set);
3466 n = gen->thread_tiled_len - gen->shared_len;
3468 if (gen->first_unroll >= 0) {
3469 space = isl_space_set_alloc(gen->ctx, 0, n);
3470 build = set_unroll(build, space, gen->first_unroll);
3472 iterators = generate_names(gen->ctx, n, "c");
3473 build = isl_ast_build_set_iterators(build, iterators);
3474 build = isl_ast_build_set_at_each_domain(build, &at_each_domain, gen);
3475 tree = isl_ast_build_ast_from_schedule(build, schedule);
3476 isl_ast_build_free(build);
3478 return tree;
3481 /* This function is called for each statement node in the AST of the code
3482 * for copying to or from shared/private memory.
3483 * Attach a pointer to a ppcg_kernel_stmt representing the copy
3484 * statement to the node.
3485 * The statement name is {read,write}_{shared,private}_<array>.
3487 * The schedule is of the form
3489 * [A -> T] -> L
3491 * where A refers to a piece of an array and T to the corresponding
3492 * shifted tile. We split this schedule into mappings L -> A and L -> T
3493 * and store the corresponding expressions in stmt->index and stmt->local_index,
3494 * where stmt points to the ppcg_kernel_stmt that is attached to the node.
3496 static __isl_give isl_ast_node *attach_copy_stmt(__isl_take isl_ast_node *node,
3497 __isl_keep isl_ast_build *build, void *user)
3499 struct gpu_gen *gen = (struct gpu_gen *) user;
3500 struct ppcg_kernel_stmt *stmt;
3501 isl_id *id;
3502 isl_ast_expr *expr;
3503 isl_space *space;
3504 isl_map *access, *local_access, *map;
3505 isl_pw_multi_aff *pma;
3506 const char *name;
3507 int array_index;
3509 stmt = isl_calloc_type(gen->ctx, struct ppcg_kernel_stmt);
3510 if (!stmt)
3511 return isl_ast_node_free(node);
3513 access = isl_map_from_union_map(isl_ast_build_get_schedule(build));
3514 name = isl_map_get_tuple_name(access, isl_dim_in);
3515 stmt->u.c.read = !strncmp(name, "read", 4);
3516 access = isl_map_reverse(access);
3517 space = isl_space_unwrap(isl_space_range(isl_map_get_space(access)));
3518 local_access = isl_map_copy(access);
3520 map = isl_map_domain_map(isl_map_universe(isl_space_copy(space)));
3521 id = isl_map_get_tuple_id(access, isl_dim_out);
3522 map = isl_map_set_tuple_id(map, isl_dim_in, id);
3523 access = isl_map_apply_range(access, map);
3524 pma = isl_pw_multi_aff_from_map(access);
3525 expr = isl_ast_build_call_from_pw_multi_aff(build, pma);
3526 stmt->u.c.index = expr;
3528 map = isl_map_range_map(isl_map_universe(space));
3529 id = isl_map_get_tuple_id(local_access, isl_dim_out);
3530 map = isl_map_set_tuple_id(map, isl_dim_in, id);
3531 local_access = isl_map_apply_range(local_access, map);
3532 pma = isl_pw_multi_aff_from_map(local_access);
3533 expr = isl_ast_build_call_from_pw_multi_aff(build, pma);
3534 stmt->u.c.local_index = expr;
3536 stmt->u.c.array = gen->copy_group->array;
3537 array_index = stmt->u.c.array - gen->prog->array;
3538 stmt->u.c.local_array = &gen->kernel->array[array_index];
3539 stmt->type = ppcg_kernel_copy;
3541 id = isl_id_alloc(gen->ctx, NULL, stmt);
3542 id = isl_id_set_free_user(id, &ppcg_kernel_stmt_free);
3543 return isl_ast_node_set_annotation(node, id);
3546 /* Given a schedule of the form
3548 * [S -> A] -> L
3550 * (with S the first shared_len dimensions of the computed schedule,
3551 * A the array and L the schedule correponding to the generated loops),
3552 * indicating where the copying the array elements that need to be copied,
3553 * construct code for performing the copying.
3555 * "group" is the array reference group that is being copied
3556 * "type" is either "read" or "write"
3557 * private is set if copying needs to be performed to/from registers
3559 * We first construct a mapping to a shifted tile of the array,
3561 * [S -> A] -> T(S,A) (1)
3563 * If private is set, then we also use this mapping as a schedule
3564 * (which is already thread-specific and will be completely unrolled).
3565 * Otherwise, we wrap/tile the range over the threads.
3566 * The result is
3568 * [S -> A] -> T'(S,A)
3570 * Combined with the given schedule, we have
3572 * [S -> A] -> [L -> T'(S,A)] (2)
3574 * From the shifted tile mapping, we construct a mapping
3576 * [S -> A] -> [A -> T(S,A)]
3578 * and apply it to the schedule (2), obtaining
3580 * [A -> T(S(L),A)] -> [L -> T'(S(L),A)]
3582 * Note that we can project out S because it is uniquely defined by L.
3584 static __isl_give isl_ast_node *copy_access(struct gpu_gen *gen,
3585 __isl_take isl_map *sched,
3586 const char *type, struct gpu_array_ref_group *group,
3587 __isl_take isl_ast_build *build, int private)
3589 const char *array_name;
3590 const char *mem = private ? "private" : "shared";
3591 char *name;
3592 isl_space *space;
3593 isl_ast_node *tree;
3594 isl_map *schedule, *shift, *map;
3595 isl_set *set;
3596 isl_id_list *iterators;
3597 int n;
3599 shift = isl_set_unwrap(isl_map_domain(isl_map_copy(sched)));
3600 array_name = isl_map_get_tuple_name(shift, isl_dim_out);
3601 shift = shift_access(shift, group);
3603 schedule = isl_map_copy(shift);
3604 if (!private)
3605 schedule = tile_access_schedule(gen, schedule);
3607 n = isl_map_dim(schedule, isl_dim_out);
3608 set = isl_set_universe(isl_ast_build_get_schedule_space(build));
3609 set = add_bounded_parameters(set, gen->n_block, gen->block_dim, "t");
3611 schedule = isl_map_range_product(sched, schedule);
3613 assert(array_name);
3614 name = isl_alloc_array(gen->ctx, char,
3615 strlen(type) + sizeof("_private_") + strlen(array_name) + 20);
3616 if (group->array->n_group > 1)
3617 sprintf(name, "%s_%s_%s_%d", type, mem, array_name, group->nr);
3618 else
3619 sprintf(name, "%s_%s_%s", type, mem, array_name);
3620 shift = isl_map_set_tuple_name(shift,
3621 isl_dim_out, name + strlen(type) + 1);
3623 space = isl_space_domain(isl_map_get_space(shift));
3624 map = isl_map_range_map(isl_map_universe(isl_space_unwrap(space)));
3625 map = isl_map_range_product(map, shift);
3627 schedule = isl_map_apply_domain(schedule, map);
3629 schedule = isl_map_set_tuple_name(schedule, isl_dim_in, name);
3630 free(name);
3632 build = isl_ast_build_restrict(build, set);
3634 gen->copy_group = group;
3636 if (private) {
3637 space = isl_space_range(isl_map_get_space(schedule));
3638 space = isl_space_range(isl_space_unwrap(space));
3639 build = set_unroll(build, space, 0);
3641 iterators = generate_names(gen->ctx, n, "c");
3642 build = isl_ast_build_set_iterators(build, iterators);
3643 build = isl_ast_build_set_at_each_domain(build, &attach_copy_stmt, gen);
3644 tree = isl_ast_build_ast_from_schedule(build,
3645 isl_union_map_from_map(schedule));
3646 isl_ast_build_free(build);
3648 return tree;
3651 /* Return code for reading into or writing from shared memory
3652 * the given array reference group.
3654 * If we are performing a read from global memory to shared memory and
3655 * if the array involved is not a scalar, then we copy
3656 * the entire tile to shared memory. This may result in some extra
3657 * elements getting copied, but it should lead to simpler code
3658 * (which means that fewer registers may be needed) and less divergence.
3660 * Otherwise, we only copy the elements that will be read or have been written
3661 * in the kernel.
3664 * The input "sched" is of the form.
3666 * type[S -> A] -> L
3668 * with S the first shared_len dimensions of the computed schedule,
3669 * A the array and L the schedule correponding to the generated loops.
3671 * We first drop "type",
3673 * [S -> A] -> L
3675 * If the above conditions are satisfied, we project out A,
3676 * resulting in
3678 * S -> L
3680 * and then introduce the group tile [S -> T], resulting in
3682 * [S -> T] -> L
3684 static __isl_give isl_ast_node *copy_group_shared_accesses(
3685 struct gpu_gen *gen, struct gpu_array_ref_group *group,
3686 __isl_take isl_map *sched, __isl_take isl_ast_build *build)
3688 const char *type;
3689 int read;
3690 isl_union_map *access;
3692 type = isl_map_get_tuple_name(sched, isl_dim_in);
3693 read = !strcmp(type, "read");
3695 sched = isl_map_reset_tuple_id(sched, isl_dim_in);
3697 if (read && group->array->n_index > 0) {
3698 isl_space *space;
3699 isl_map *map;
3701 space = isl_space_domain(isl_map_get_space(sched));
3702 space = isl_space_unwrap(space);
3703 map = isl_map_domain_map(isl_map_universe(space));
3704 sched = isl_map_apply_domain(sched, map);
3706 map = group_tile(group);
3707 map = isl_map_reverse(isl_map_domain_map(map));
3708 sched = isl_map_apply_domain(sched, map);
3711 return copy_access(gen, sched, type, group, build, 0);
3714 /* Return code for reading into or writing from private memory
3715 * the given array reference group.
3717 * Let S be the first shared_len dimensions of the computed schedule,
3718 * D the iteration domains, A the array and L the schedule correponding
3719 * to the generated loops.
3720 * "sched" is of the form
3722 * type[S -> A] -> L
3724 * where type is either "read" or "write".
3725 * We apply the privatization D -> S(t), with t the thread ids,
3726 * to the access relation D -> A to obtain the privatized access relation
3728 * S(t) -> A
3730 * We drop the type from "sched" and intersect with the privatized access
3731 * relation to obtain
3733 * [S(t) -> A] -> L
3735 static __isl_give isl_ast_node *copy_group_private_accesses(
3736 struct gpu_gen *gen, struct gpu_array_ref_group *group,
3737 __isl_take isl_map *sched, __isl_take isl_ast_build *build)
3739 const char *type;
3740 int read;
3741 isl_union_map *priv;
3742 isl_union_map *access;
3743 isl_map *access_map;
3745 type = isl_map_get_tuple_name(sched, isl_dim_in);
3746 read = !strcmp(type, "read");
3748 priv = isl_union_map_from_map(isl_map_copy(gen->privatization));
3749 priv = isl_union_map_apply_range(isl_union_map_copy(gen->shared_sched),
3750 priv);
3752 access = group_access_relation(group, read, !read);
3753 access = isl_union_map_apply_domain(access, priv);
3754 access_map = isl_map_from_union_map(access);
3756 sched = isl_map_reset_tuple_id(sched, isl_dim_in);
3757 sched = isl_map_intersect_domain(sched, isl_map_wrap(access_map));
3759 return copy_access(gen, sched, type, group, build, 1);
3762 /* Return code for reading into or writing from shared or private memory.
3764 * "schedule" is of the form
3766 * type[S -> A] -> L
3768 * with S be the first shared_len dimensions of the computed schedule,
3769 * A the array and L the schedule correponding to the generated loops.
3770 * The array reference group is attached to "type".
3772 static __isl_give isl_ast_node *create_access_leaf(
3773 struct gpu_gen *gen, __isl_take isl_map *schedule,
3774 __isl_take isl_ast_build *build)
3776 struct gpu_array_ref_group *group;
3777 isl_id *id;
3779 id = isl_map_get_tuple_id(schedule, isl_dim_in);
3780 group = isl_id_get_user(id);
3781 isl_id_free(id);
3783 if (group->private_tile)
3784 return copy_group_private_accesses(gen, group, schedule,
3785 build);
3786 else
3787 return copy_group_shared_accesses(gen, group, schedule,
3788 build);
3791 /* Create a domain node representing a synchronization.
3793 static __isl_give isl_ast_node *create_sync_leaf(
3794 struct gpu_gen *gen, __isl_take isl_map *schedule,
3795 __isl_take isl_ast_build *build)
3797 struct ppcg_kernel_stmt *stmt;
3798 isl_id *id;
3799 isl_space *space;
3800 isl_ast_node *node;
3801 isl_ast_expr *expr;
3803 isl_map_free(schedule);
3805 stmt = isl_calloc_type(gen->ctx, struct ppcg_kernel_stmt);
3806 if (!stmt)
3807 return NULL;
3809 stmt->type = ppcg_kernel_sync;
3811 space = isl_ast_build_get_schedule_space(build);
3812 space = isl_space_from_domain(space);
3813 space = isl_space_set_tuple_name(space, isl_dim_out, "sync");
3814 expr = isl_ast_build_call_from_pw_multi_aff(build,
3815 isl_pw_multi_aff_from_multi_aff(isl_multi_aff_zero(space)));
3816 node = isl_ast_node_alloc_user(expr);
3817 isl_ast_build_free(build);
3819 id = isl_id_alloc(gen->ctx, NULL, stmt);
3820 id = isl_id_set_free_user(id, &ppcg_kernel_stmt_free);
3821 return isl_ast_node_set_annotation(node, id);
3824 /* This function is called during the code generation at the point
3825 * where the schedule domain element is completely determined by
3826 * the generated code. The input schedule contains the original
3827 * statements as well as synchronization and copy "statements".
3828 * The latter are scheduled at different points than any of the original
3829 * statements, so they will only arrive here in isolation.
3831 * If the current schedule only refers to a single statement,
3832 * we check if it is a copy or synchronization statement and
3833 * call the appropriate functions.
3834 * Otherwise, we assume we are dealing with the original statements
3835 * and we call create_domain_leaf.
3837 static __isl_give isl_ast_node *create_kernel_leaf(
3838 __isl_take isl_ast_build *build, void *user)
3840 struct gpu_gen *gen = (struct gpu_gen *) user;
3841 isl_map *map;
3842 isl_union_map *schedule;
3843 const char *name;
3845 schedule = isl_ast_build_get_schedule(build);
3847 if (isl_union_map_n_map(schedule) != 1)
3848 return create_domain_leaf(schedule, build, user);
3850 map = isl_map_from_union_map(schedule);
3851 name = isl_map_get_tuple_name(map, isl_dim_in);
3852 if (!strcmp(name, "read") || !strcmp(name, "write"))
3853 return create_access_leaf(gen, map, build);
3854 if (!strcmp(name, "sync"))
3855 return create_sync_leaf(gen, map, build);
3857 return create_domain_leaf(isl_union_map_from_map(map), build, user);
3860 /* Mark all odd schedule dimensions as "atomic" (when the even dimensions
3861 * have value 0) and all even schedule dimensions as "unroll".
3863 * That is, the options look as follows
3865 * { [0, b, 0, d, ..., 0] -> atomic[i] : exists a : i = 2 a + 1;
3866 * [a, b, c, d, ..., z] -> unroll[i] : exists a : i = 2 a }
3868 * The even positions are used to be able to schedule copying blocks
3869 * and synchronization before or after each level of the shared memory
3870 * tile loops and we want to make sure that code for these is generated
3871 * separately (within each level).
3873 static __isl_give isl_ast_build *set_atomic_and_unroll(
3874 __isl_take isl_ast_build *build,
3875 __isl_take isl_space *space, int sched_len)
3877 isl_ctx *ctx;
3878 isl_map *map;
3879 isl_constraint *c;
3880 isl_union_map *opt;
3881 isl_local_space *ls;
3882 int i, n;
3884 ctx = isl_ast_build_get_ctx(build);
3886 space = isl_space_params(space);
3887 space = isl_space_add_dims(space, isl_dim_set, sched_len);
3888 space = isl_space_from_domain(space);
3889 space = isl_space_add_dims(space, isl_dim_out, 2);
3890 map = isl_map_universe(isl_space_copy(space));
3891 for (i = 0; i < sched_len; i += 2)
3892 map = isl_map_fix_si(map, isl_dim_in, i, 0);
3893 ls = isl_local_space_from_space(isl_map_get_space(map));
3894 c = isl_equality_alloc(ls);
3895 c = isl_constraint_set_coefficient_si(c, isl_dim_out, 0, 1);
3896 c = isl_constraint_set_coefficient_si(c, isl_dim_out, 1, 2);
3897 c = isl_constraint_set_constant_si(c, 1);
3898 map = isl_map_add_constraint(map, c);
3899 map = isl_map_project_out(map, isl_dim_out, 1, 1);
3900 map = isl_map_set_tuple_name(map, isl_dim_out, "atomic");
3901 opt = isl_union_map_from_map(map);
3903 map = isl_map_universe(space);
3904 ls = isl_local_space_from_space(isl_map_get_space(map));
3905 c = isl_equality_alloc(ls);
3906 c = isl_constraint_set_coefficient_si(c, isl_dim_out, 0, 1);
3907 c = isl_constraint_set_coefficient_si(c, isl_dim_out, 1, 2);
3908 map = isl_map_add_constraint(map, c);
3909 map = isl_map_project_out(map, isl_dim_out, 1, 1);
3910 map = isl_map_set_tuple_name(map, isl_dim_out, "unroll");
3911 opt = isl_union_map_add_map(opt, map);
3913 build = isl_ast_build_set_options(build, opt);
3915 return build;
3918 /* Return a map that maps a space of dimension gen->shared_len
3919 * to its last dimensions starting at gen->tile_first.
3920 * The range is of dimension
3922 * 2 * (gen->shared_len - gen->tile_first) + 1
3924 * The input dimensions are mapped to the odd dimensions in the output,
3925 * while the even dimensions (except 2*pos) are fixed to 0.
3926 * Output dimension 2*pos (if pos >= 0) is fixed to "val".
3927 * If pos >= 0, then only the pos first dimensions starting at gen->tile_first
3928 * are mapped to the output. The remaining input dimensions are projected
3929 * out and the corresponding output dimensions are fixed to 0.
3931 static __isl_give isl_map *insert_even(struct gpu_gen *gen,
3932 __isl_take isl_space *space, int pos, int val)
3934 int i, n;
3935 isl_map *proj;
3937 space = isl_space_set_from_params(space);
3938 space = isl_space_add_dims(space, isl_dim_set, gen->shared_len);
3939 space = isl_space_map_from_set(space);
3940 proj = isl_map_identity(space);
3941 proj = isl_map_project_out(proj, isl_dim_out, 0, gen->tile_first);
3942 n = gen->shared_len - gen->tile_first;
3943 for (i = 0; i <= n; ++i) {
3944 proj = isl_map_insert_dims(proj, isl_dim_out, 2 * i, 1);
3945 if (i == pos)
3946 proj = isl_map_fix_si(proj, isl_dim_out, 2 * i, val);
3947 else
3948 proj = isl_map_fix_si(proj, isl_dim_out, 2 * i, 0);
3951 if (pos < 0)
3952 return proj;
3954 proj = isl_map_eliminate(proj, isl_dim_in, gen->tile_first + pos,
3955 gen->shared_len - (gen->tile_first + pos));
3956 for (i = pos; i < n; ++i)
3957 proj = isl_map_fix_si(proj, isl_dim_out, 2 * i + 1, 0);
3959 return proj;
3962 /* Given the AST context schedule "schedule" and the mapping from
3963 * domains to the shared tile loops "shared_sched", add a schedule
3964 * for a synchronization operation at position "val" of loop level "pos".
3966 * schedule is of the form
3968 * D -> L
3970 * (with D the iteration domains and L the already generated loops),
3971 * while shared_sched is of the form
3973 * D -> S
3975 * We combine them into
3977 * L -> S
3979 * apply a mapping
3981 * [s_0,...] -> [0,s_{tile_first},0,..., val, 0, 0, ... 0]
3983 * and use the result as a schedule for "sync".
3985 static __isl_give isl_union_map *add_sync_schedule(struct gpu_gen *gen,
3986 __isl_take isl_union_map *res, __isl_keep isl_union_map *schedule,
3987 __isl_keep isl_union_map *shared_sched, int pos, int val)
3989 isl_space *space;
3990 isl_map *proj, *map;
3992 shared_sched = isl_union_map_copy(shared_sched);
3993 schedule = isl_union_map_copy(schedule);
3995 space = isl_union_map_get_space(shared_sched);
3996 schedule = isl_union_map_apply_domain(shared_sched, schedule);
3997 map = isl_map_from_union_map(schedule);
3999 proj = insert_even(gen, space, pos, val);
4000 map = isl_map_apply_range(map, proj);
4001 map = isl_map_from_range(isl_map_wrap(map));
4002 map = isl_map_set_tuple_name(map, isl_dim_in, "sync");
4004 res = isl_union_map_add_map(res, map);
4006 return res;
4009 /* Given the AST context schedule "schedule" and the mapping from
4010 * domains to the shared tile loops "shared_sched", add a schedule
4011 * for copying an array reference group to/from shared/private memory.
4012 * "read" is set if data should be copied from global memory
4013 * to shared/private memory.
4014 * "k" represents the current group
4015 * "s" is the total number of groups
4017 * We schedule an operation before or after the innermost loop
4018 * of "shared_sched" that affects the tile of the array reference group.
4020 * schedule is of the form
4022 * D -> L
4024 * (with D the iteration domains and L the already generated loops),
4025 * while shared_sched is of the form
4027 * D -> S
4029 * We first compute the access relation for the reference group
4031 * D -> A
4033 * and combine it with shared_sched into
4035 * D -> [S -> A]
4037 * If this results in an empty relation, no copying needs to be performed
4038 * at this point.
4039 * Otherwise, we invert the relation and combine it with "schedule" into
4041 * [S -> A] -> L
4043 * The actual additional piece of the schedule is obtained from combining
4045 * [S -> A] -> S
4047 * with a mapping
4049 * [s_0,...] -> [0,s_{tile_first},0,..., val, 0, 0, ... 0]
4051 * The position of "val" corresponds to the innermost loop that affects
4052 * the tile and the value indicates where the copying is scheduled
4053 * with respect to the actual kernel code (at value 0).
4054 * Reads are schedule before the code, writes to global memory from
4055 * private memory are scheduled at values 1 to s, writes to global
4056 * memory from shared memory are scheduled at values s + 2 to 2 * s + 1.
4058 * If we are scheduling a read from global memory to shared memory,
4059 * we insert a synchronization before the kernel code (at the innermost
4060 * level).
4061 * If we are scheduling a write to global memory, then we add
4062 * a synchronization after all writes (at value 2 *s + 2).
4063 * However, there is no need for a synchronization after the outermost loop.
4064 * A write to global memory from private memory at the innermost level
4065 * does not require a synchronization, because it is covered by
4066 * the synchronization after the kernel inserted by body_schedule.
4068 static __isl_give isl_union_map *add_group_schedule(struct gpu_gen *gen,
4069 __isl_take isl_union_map *res, __isl_keep isl_union_map *schedule,
4070 __isl_keep isl_union_map *shared_sched,
4071 struct gpu_array_ref_group *group, int read, int k, int s)
4073 int n;
4074 int pos, val;
4075 isl_space *space;
4076 isl_union_map *access;
4077 isl_map *map, *proj, *access_map;
4078 isl_id *id;
4080 access = group_access_relation(group, read, !read);
4081 access = isl_union_map_range_product(isl_union_map_copy(shared_sched),
4082 access);
4084 if (isl_union_map_is_empty(access)) {
4085 isl_union_map_free(access);
4086 return res;
4089 access = isl_union_map_reverse(access);
4090 access = isl_union_map_apply_range(access,
4091 isl_union_map_copy(schedule));
4092 access_map = isl_map_from_union_map(access);
4094 space = isl_space_copy(group->array->dim);
4095 space = isl_space_from_range(space);
4096 space = isl_space_add_dims(space, isl_dim_in, gen->shared_len);
4097 map = isl_map_domain_map(isl_map_universe(space));
4099 space = isl_union_map_get_space(schedule);
4100 pos = group->last_shared + 1 - gen->tile_first;
4101 assert(pos >= 0);
4102 if (read)
4103 val = -2 - k;
4104 else if (group->private_tile)
4105 val = 1 + k;
4106 else
4107 val = 1 + s + 1 + k;
4108 proj = insert_even(gen, space, pos, val);
4109 map = isl_map_apply_range(map, proj);
4111 access_map = isl_map_range_product(access_map, map);
4113 id = isl_id_alloc(gen->ctx, read ? "read" : "write", group);
4114 access_map = isl_map_set_tuple_id(access_map, isl_dim_in, id);
4116 res = isl_union_map_add_map(res, access_map);
4118 n = gen->shared_len - gen->tile_first;
4119 if (read) {
4120 if (!group->private_tile)
4121 res = add_sync_schedule(gen, res, schedule,
4122 shared_sched, n, -1);
4123 } else {
4124 if (pos == 0)
4125 return res;
4126 if (pos == n && group->private_tile)
4127 return res;
4128 res = add_sync_schedule(gen, res, schedule, shared_sched,
4129 pos, 2 * s + 2);
4132 return res;
4135 /* Return a schedule for the shared tile loops based on the current
4136 * AST context schedule.
4138 * We create a "shared_sched" that maps the domains to the first
4139 * shared_len dimensions of the computed schedule, project out the
4140 * first tile_first dimensions (as these are already covered by
4141 * the host code) and insert "statement-level" dimensions at even
4142 * positions so that we can schedule copy blocks and synchronization
4143 * before/after each level.
4145 * In particular, copy blocks are inserted inside the innermost
4146 * level that affect the tile. For the copying to global memory,
4147 * those from private memory are scheduled before those from shared
4148 * memory such that synchronization can be inserted between the two
4149 * at the innermost level.
4150 * Synchronization is inserted at the innermost level before the
4151 * actual kernel code if there is any copying from global memory
4152 * to shared memory. It is inserted unconditionally at the innermost
4153 * level after the actual kernel code and the copying to global memory
4154 * from private memory (if any). Finally, it is inserted after
4155 * any copying to global memory, except at the outermost level
4156 * and at the innermost level if there is no copying from shared
4157 * memory. The copying from private memory is covered by the unconditional
4158 * synchronization at the innermost level.
4160 static __isl_give isl_union_map *body_schedule(struct gpu_gen *gen,
4161 __isl_take isl_union_map *schedule)
4163 isl_space *space;
4164 isl_union_map *res;
4165 isl_union_map *shared_sched;
4166 isl_union_map *sched;
4167 isl_map *proj, *map;
4168 int i, j, k, s;
4170 shared_sched = isl_union_map_copy(gen->tiled_sched);
4171 proj = projection(isl_union_map_get_space(shared_sched),
4172 gen->tiled_len, gen->shared_len);
4173 shared_sched = isl_union_map_apply_range(shared_sched,
4174 isl_union_map_from_map(proj));
4175 space = isl_union_map_get_space(shared_sched);
4176 proj = insert_even(gen, space, -1, 0);
4177 sched = isl_union_map_apply_range(isl_union_map_copy(shared_sched),
4178 isl_union_map_from_map(proj));
4180 res = isl_union_map_range_product(isl_union_map_copy(schedule), sched);
4182 s = 0;
4183 for (i = 0; i < gen->prog->n_array; ++i)
4184 s += gen->prog->array[i].n_group;
4186 k = 0;
4187 for (i = 0; i < gen->prog->n_array; ++i) {
4188 struct gpu_array_info *array = &gen->prog->array[i];
4190 for (j = 0; j < array->n_group; ++j) {
4191 struct gpu_array_ref_group *group;
4193 group = array->groups[j];
4194 if (!group->private_tile && !group->shared_tile)
4195 continue;
4196 res = add_group_schedule(gen, res, schedule,
4197 shared_sched, group, 0, k, s);
4198 res = add_group_schedule(gen, res, schedule,
4199 shared_sched, group, 1, k, s);
4200 ++k;
4204 res = add_sync_schedule(gen, res, schedule, shared_sched,
4205 gen->shared_len - gen->tile_first, 1 + s);
4207 isl_union_map_free(shared_sched);
4208 isl_union_map_free(schedule);
4210 return res;
4213 /* Generate code for "kernel" in the given "context".
4215 * We first generate code for the shared tile loops (T1T, T1P and T2)
4216 * in a context that includes the block ids.
4217 * Within each iteration of these loops an additional code generation
4218 * is performed (within create_kernel_leaf) for the rest of the schedule
4219 * in a context that includes the thread ids.
4221 static __isl_give isl_ast_node *generate_kernel(struct gpu_gen *gen,
4222 __isl_keep isl_ast_build *build, __isl_keep isl_set *host_domain,
4223 __isl_keep isl_multi_pw_aff *grid_size)
4225 isl_space *space;
4226 isl_set *set;
4227 isl_id_list *iterators;
4228 isl_union_map *schedule;
4229 isl_ast_node *tree;
4230 int sched_len;
4232 schedule = isl_ast_build_get_schedule(build);
4234 build = isl_ast_build_copy(build);
4235 build = isl_ast_build_restrict(build, isl_set_copy(host_domain));
4236 space = isl_ast_build_get_schedule_space(build);
4237 set = isl_set_universe(isl_space_copy(space));
4238 set = add_bounded_parameters_dynamic(set, grid_size, "b");
4239 build = isl_ast_build_restrict(build, set);
4241 schedule = body_schedule(gen, schedule);
4243 sched_len = 2 * (gen->shared_len - gen->tile_first) + 1;
4245 build = set_atomic_and_unroll(build, space, sched_len);
4246 iterators = generate_names(gen->ctx, sched_len, "g");
4247 build = isl_ast_build_set_iterators(build, iterators);
4248 build = isl_ast_build_set_create_leaf(build, &create_kernel_leaf, gen);
4249 tree = isl_ast_build_ast_from_schedule(build, schedule);
4250 isl_ast_build_free(build);
4252 return tree;
4255 /* Attach "id" to the given node.
4257 static __isl_give isl_ast_node *attach_id(__isl_take isl_ast_node *node,
4258 __isl_keep isl_ast_build *build, void *user)
4260 isl_id *id = user;
4262 node = isl_ast_node_set_annotation(node, id);
4264 return node;
4267 /* Construct an AST node for performing a kernel launch and attach
4268 * the information about the kernel to that node.
4270 * The kernel AST has been constructed in the context of the range
4271 * of "schedule". In particular, the grid size has been computed
4272 * in the context. We therefore still need to make sure that these
4273 * constraints are expressed in the code. We do this by creating a schedule
4275 * kernel[] -> [S -> []]
4277 * where S is the schedule domain, i.e., the range of "schedule".
4278 * The AST generation will then create a single call surrounded by
4279 * all the condition in "S" that have not been expressed yet.
4281 * The kernel information is attached to this node in attach_id.
4283 static __isl_give isl_ast_node *construct_launch(
4284 __isl_take isl_ast_build *build, __isl_take isl_union_map *schedule,
4285 __isl_take struct ppcg_kernel *kernel)
4287 isl_id *id;
4288 isl_ctx *ctx;
4289 isl_union_set *domain;
4290 isl_set *set;
4291 isl_map *map;
4292 isl_ast_node *node;
4294 ctx = isl_ast_build_get_ctx(build);
4296 id = isl_id_alloc(ctx, NULL, kernel);
4297 id = isl_id_set_free_user(id, &ppcg_kernel_free);
4299 domain = isl_union_map_range(schedule);
4300 set = isl_set_from_union_set(domain);
4301 map = isl_map_from_domain(set);
4302 map = isl_map_from_range(isl_map_wrap(map));
4303 map = isl_map_set_tuple_name(map, isl_dim_in, "kernel");
4304 schedule = isl_union_map_from_map(map);
4306 build = isl_ast_build_set_at_each_domain(build, &attach_id, id);
4307 node = isl_ast_build_ast_from_schedule(build, schedule);
4308 isl_ast_build_free(build);
4310 return node;
4313 /* This function is called for each leaf in the AST of the host code.
4314 * We first specialize the schedule to the site of the leaf, compute
4315 * the size of shared memory and then construct the body of host code
4316 * and the associated kernel.
4318 * The necessary information for printing the kernel launch is
4319 * stored in a struct ppcg_kernel and attached to the leaf node
4320 * created to represent the launch.
4322 static __isl_give isl_ast_node *create_host_leaf(
4323 __isl_take isl_ast_build *build, void *user)
4325 struct gpu_gen *gen = (struct gpu_gen *) user;
4326 isl_id *id;
4327 isl_ast_node *node;
4328 struct ppcg_kernel *kernel;
4329 isl_set *host_domain;
4330 isl_union_map *schedule;
4331 isl_union_map *local_sched;
4332 isl_union_map *access;
4333 isl_union_set *domain;
4334 int i;
4336 schedule = isl_ast_build_get_schedule(build);
4338 isl_union_map_foreach_map(schedule, &extract_tile_len, gen);
4339 read_sizes(gen);
4341 domain = isl_union_map_domain(isl_union_map_copy(schedule));
4343 local_sched = isl_union_map_copy(gen->sched);
4344 local_sched = isl_union_map_intersect_domain(local_sched, domain);
4345 access = isl_union_map_union(isl_union_map_copy(gen->prog->read),
4346 isl_union_map_copy(gen->prog->write));
4347 access = isl_union_map_apply_domain(access,
4348 isl_union_map_copy(local_sched));
4350 gen->tiled_sched = tile_schedule(gen, local_sched);
4351 gen->tiled_sched = parametrize_tiled_schedule(gen, gen->tiled_sched);
4352 gen->tiled_sched = scale_tile_loops(gen, gen->tiled_sched);
4354 kernel = gen->kernel = isl_calloc_type(gen->ctx, struct ppcg_kernel);
4355 if (!kernel)
4356 goto error;
4358 kernel->id = gen->kernel_id++;
4359 kernel->n_block = gen->n_block;
4360 for (i = 0; i < gen->n_block; ++i)
4361 kernel->block_dim[i] = gen->block_dim[i];
4362 kernel->n_grid = gen->n_grid;
4363 for (i = 0; i < gen->n_grid; ++i)
4364 kernel->grid_dim[i] = gen->grid_dim[i];
4365 kernel->context = isl_union_map_params(isl_union_map_copy(schedule));
4366 kernel->grid_size = extract_grid_size(gen, kernel);
4367 kernel->arrays = isl_union_map_range(access);
4368 kernel->space = isl_ast_build_get_schedule_space(build);
4370 gen->local_sched = isl_union_map_copy(gen->tiled_sched);
4372 gen->local_sched = thread_tile_schedule(gen, gen->local_sched);
4373 gen->local_sched = scale_thread_tile_loops(gen, gen->local_sched);
4375 gen->private_access = NULL;
4376 compute_shared_sched(gen);
4377 gen->privatization = compute_privatization(gen);
4378 group_references(gen);
4379 compute_private_access(gen);
4380 check_shared_memory_bound(gen);
4381 host_domain = isl_set_from_union_set(isl_union_map_range(
4382 isl_union_map_copy(schedule)));
4383 localize_bounds(gen, kernel, host_domain);
4385 gen->local_sched = interchange_for_unroll(gen, gen->local_sched);
4387 kernel->tree = generate_kernel(gen, build, host_domain,
4388 kernel->grid_size);
4389 create_kernel_vars(gen, kernel);
4391 free_local_array_info(gen);
4392 isl_map_free(gen->privatization);
4393 isl_union_map_free(gen->private_access);
4394 isl_union_map_free(gen->local_sched);
4395 isl_union_map_free(gen->tiled_sched);
4396 isl_union_map_free(gen->shared_sched);
4397 isl_union_map_free(gen->shared_proj);
4398 isl_set_free(host_domain);
4399 free(gen->tile_size);
4401 node = construct_launch(build, schedule, kernel);
4403 return node;
4404 error:
4405 isl_union_map_free(schedule);
4406 return NULL;
4409 /* Use isl to generate code for the outer gen->tile_first loops
4410 * of the global schedule in gen->sched, resulting in the host code.
4411 * Within each iteration of this partial schedule, i.e., for each kernel
4412 * launch, create_host_leaf takes care of generating the kernel code.
4414 static __isl_give isl_ast_node *generate_host_code(struct gpu_gen *gen)
4416 isl_ast_build *build;
4417 isl_ast_node *tree;
4418 isl_union_map *sched;
4419 isl_map *proj;
4420 isl_id_list *iterators;
4422 sched = isl_union_map_copy(gen->sched);
4423 proj = projection(isl_union_map_get_space(sched),
4424 gen->untiled_len, gen->tile_first);
4425 sched = isl_union_map_apply_range(sched, isl_union_map_from_map(proj));
4427 isl_options_set_ast_build_group_coscheduled(gen->ctx, 1);
4428 build = isl_ast_build_from_context(isl_set_copy(gen->prog->context));
4429 iterators = generate_names(gen->ctx, gen->tile_first, "h");
4430 build = isl_ast_build_set_iterators(build, iterators);
4431 build = isl_ast_build_set_create_leaf(build, &create_host_leaf, gen);
4432 tree = isl_ast_build_ast_from_schedule(build, sched);
4433 isl_ast_build_free(build);
4435 return tree;
4438 __isl_give isl_union_map *extract_sizes_from_str(isl_ctx *ctx, const char *str)
4440 if (!str)
4441 return NULL;
4442 return isl_union_map_read_from_str(ctx, str);
4445 /* Information about the outermost tilable bands in the forest of bands.
4447 * tile_len and n_parallel are only sets on band_info structures
4448 * that correspond to outermost bands. For other bands (in particular,
4449 * ancestors of the outermost bands), n_parallal is set to 0.
4451 * prefix is the (padded) schedule leading up to the outermost tilable bands.
4453 * tile_first is the number of schedule dimensions in prefix.
4455 * suffix is the schedule of the outermost tilable bands and their descendants.
4457 struct band_info {
4458 struct gpu_gen *gen;
4459 int tile_first;
4460 int tile_len;
4461 int n_parallel;
4462 isl_union_map *prefix;
4463 isl_union_map *suffix;
4466 /* Set tile_len and n_parallel of the statement to that of
4467 * their outermost band, recorded in the band_info.
4469 static int set_stmt_tile_len(__isl_take isl_map *map, void *user)
4471 struct band_info *info = user;
4472 struct gpu_stmt *stmt;
4473 isl_id *id;
4475 id = isl_map_get_tuple_id(map, isl_dim_in);
4476 stmt = find_stmt(info->gen->prog, id);
4477 isl_id_free(id);
4479 stmt->tile_len = info->tile_len;
4480 stmt->n_parallel = info->n_parallel;
4482 isl_map_free(map);
4484 return 0;
4487 static void list_select_outer_band(struct gpu_gen *gen,
4488 __isl_take isl_band_list *list, int pos, struct band_info *list_info);
4490 /* Check if this band has any parallel loops. If so, take it as
4491 * the outermost tilable band. If not, continue looking for the
4492 * outermost tilable band in the children of the current band.
4494 static void band_select_outer_band(struct gpu_gen *gen,
4495 __isl_take isl_band *band, int pos, struct band_info *info)
4497 int n = isl_band_n_member(band);
4498 int n_parallel;
4500 for (n_parallel = 0; n_parallel < n; ++n_parallel)
4501 if (!isl_band_member_is_zero_distance(band, n_parallel))
4502 break;
4504 info->n_parallel = n_parallel;
4505 if (n_parallel) {
4506 info->gen = gen;
4507 info->tile_first = pos;
4508 info->tile_len = n;
4509 info->prefix = isl_band_get_prefix_schedule(band);
4510 info->suffix = isl_union_map_flat_range_product(
4511 isl_band_get_partial_schedule(band),
4512 isl_band_get_suffix_schedule(band));
4513 isl_union_map_foreach_map(info->prefix,
4514 &set_stmt_tile_len, info);
4515 } else if (isl_band_has_children(band)) {
4516 isl_band_list *children;
4517 children = isl_band_get_children(band);
4518 list_select_outer_band(gen, children, pos + n, info);
4519 } else {
4520 info->gen = gen;
4521 info->tile_first = pos + n;
4522 info->tile_len = 0;
4523 info->prefix = isl_union_map_flat_range_product(
4524 isl_band_get_prefix_schedule(band),
4525 isl_band_get_partial_schedule(band));
4526 info->suffix = isl_band_get_suffix_schedule(band);
4527 isl_union_map_foreach_map(info->prefix,
4528 &set_stmt_tile_len, info);
4531 isl_band_free(band);
4534 /* Comparison function that returns a non-zero value for band_infos
4535 * with different tile_len fields or different n_parallel fields.
4537 static int cmp_band(const void *p1, const void *p2)
4539 const struct band_info *info1 = p1;
4540 const struct band_info *info2 = p2;
4542 if (info1->tile_len != info2->tile_len)
4543 return info1->tile_len - info2->tile_len;
4545 return info1->n_parallel - info2->n_parallel;
4548 /* Extend "umap" with coordinates with fixed value "val"
4549 * to a total length of "dst_len", assuming the original dimension is "src_len".
4551 static __isl_give isl_union_map *extend_range(
4552 __isl_take isl_union_map *umap, int src_len, int dst_len, int val)
4554 isl_space *dim;
4555 isl_map *map;
4556 int i;
4558 dim = isl_union_map_get_space(umap);
4559 map = isl_map_reverse(projection(dim, dst_len, src_len));
4560 for (i = src_len; i < dst_len; ++i)
4561 map = isl_map_fix_si(map, isl_dim_out, i, val);
4563 umap = isl_union_map_apply_range(umap, isl_union_map_from_map(map));
4565 return umap;
4568 /* Group bands with the same values for tile_len and n_parallel.
4569 * The prefix schedule is then extended with a fixed coordinate that
4570 * is different for each such group.
4571 * Note that the actual values for this coordinate are not important.
4572 * The bands have already been effectively separated at a higher level
4573 * or they are independent and may be executed in parallel.
4574 * The list of band_info has been sorted before this functions is called.
4576 static void separate_bands(struct band_info *info, int n)
4578 int i;
4579 int j = 0;
4581 for (i = 0; i < n; ++i) {
4582 int l = info[i].tile_first;
4584 if (i &&
4585 (info[i].tile_len != info[i - 1].tile_len ||
4586 info[i].n_parallel != info[i - 1].n_parallel))
4587 j++;
4589 info[i].prefix = extend_range(info[i].prefix,
4590 l, l + 1, j);
4591 info[i].tile_first = l + 1;
4595 /* Select the outermost bands in the elements of the list, align
4596 * their prefix schedules, separate bands with different values
4597 * for tile_len and/or n_parallel and then combine the resulting
4598 * prefix and suffix schedules into a single pair of prefix and
4599 * suffix schedules for the entire list.
4601 static void list_select_outer_band(struct gpu_gen *gen,
4602 __isl_take isl_band_list *list, int pos, struct band_info *list_info)
4604 isl_band *band;
4605 int i;
4606 int n = isl_band_list_n_band(list);
4607 isl_ctx *ctx = isl_band_list_get_ctx(list);
4608 struct band_info *info;
4609 int max_tile_first;
4610 isl_union_map *prefix;
4611 isl_union_map *suffix;
4613 assert(n >= 1);
4614 info = isl_calloc_array(ctx, struct band_info, n);
4615 assert(info);
4617 max_tile_first = 0;
4618 for (i = 0; i < n; ++i) {
4619 band = isl_band_list_get_band(list, i);
4620 band_select_outer_band(gen, band, pos, &info[i]);
4621 if (info[i].tile_first > max_tile_first)
4622 max_tile_first = info[i].tile_first;
4625 for (i = 0; i < n; ++i) {
4626 if (info[i].tile_first == max_tile_first)
4627 continue;
4628 info[i].prefix = extend_range(info[i].prefix,
4629 info[i].tile_first, max_tile_first, 0);
4630 info[i].tile_first = max_tile_first;
4633 qsort(info, n, sizeof(struct band_info), &cmp_band);
4635 for (i = 0; i < n - 1; ++i)
4636 if (info[i].tile_len != info[i + 1].tile_len ||
4637 info[i].n_parallel != info[i + 1].n_parallel)
4638 break;
4640 if (i < n -1)
4641 separate_bands(info, n);
4643 prefix = info[0].prefix;
4644 suffix = info[0].suffix;
4646 for (i = 1; i < n; ++i) {
4647 prefix = isl_union_map_union(prefix, info[i].prefix);
4648 suffix = isl_union_map_union(suffix, info[i].suffix);
4651 list_info->tile_first = info[0].tile_first;
4652 list_info->tile_len = -1;
4653 list_info->prefix = prefix;
4654 list_info->suffix = suffix;
4656 isl_band_list_free(list);
4657 free(info);
4660 /* Select the outermost tilable band that (by construction)
4661 * has at least one parallel loop.
4662 * The starting position of the aligned band is stored in the pair
4663 * gen->tile_first.
4664 * The sizes and number of parallel loops may be different in different
4665 * parts of the band forest and are therefore stored in the gpu_stmts.
4667 * Return the complete schedule, with the tilable bands aligned
4668 * at gen->tile_first and padded with zero, if needed.
4670 static __isl_give isl_union_map *select_outer_tilable_band(struct gpu_gen *gen,
4671 __isl_keep isl_schedule *schedule)
4673 isl_band_list *list;
4674 struct band_info info;
4676 gen->n_parallel = 0;
4677 gen->tile_len = -1;
4679 list = isl_schedule_get_band_forest(schedule);
4681 list_select_outer_band(gen, list, 0, &info);
4683 gen->tile_first = info.tile_first;
4684 info.suffix = align_range(info.suffix);
4686 return isl_union_map_flat_range_product(info.prefix, info.suffix);
4689 /* Set gen->untiled_len to the number of scheduling dimensions
4690 * for the schedule of the first domain.
4691 * We assume here that this number is the same for all domains.
4693 static int set_untiled_len(__isl_take isl_map *map, void *user)
4695 unsigned *untiled_len = user;
4697 *untiled_len = isl_map_dim(map, isl_dim_out);
4699 isl_map_free(map);
4700 return -1;
4703 /* Compute an appropriate schedule based on the accesses in
4704 * gen->read and gen->write.
4706 * We use the dependences in gen->prog->scop to compute
4707 * a schedule that has a parallel loop in each tilable band.
4708 * Finally, we select the outermost tilable band.
4710 static void compute_schedule(struct gpu_gen *gen)
4712 isl_union_set *domain;
4713 isl_union_map *dep_raw, *dep;
4714 isl_union_map *sched;
4715 isl_schedule *schedule;
4717 dep_raw = isl_union_map_copy(gen->prog->scop->dep_flow);
4719 dep = isl_union_map_copy(gen->prog->scop->dep_false);
4720 dep = isl_union_map_union(dep, dep_raw);
4721 dep = isl_union_map_coalesce(dep);
4723 domain = isl_union_set_copy(gen->prog->scop->domain);
4724 domain = isl_union_set_intersect_params(domain,
4725 isl_set_copy(gen->prog->scop->context));
4726 schedule = isl_union_set_compute_schedule(isl_union_set_copy(domain),
4727 isl_union_map_copy(dep), dep);
4728 if (gen->options->debug->dump_schedule)
4729 isl_schedule_dump(schedule);
4731 sched = select_outer_tilable_band(gen, schedule);
4733 isl_union_map_foreach_map(sched, &set_untiled_len, &gen->untiled_len);
4734 sched = isl_union_map_intersect_domain(sched, domain);
4735 gen->sched = sched;
4737 isl_schedule_free(schedule);
4740 /* Compute the sets of array elements that need to be copied in and out.
4742 * In particular, for each array that is written anywhere in gen->prog and
4743 * that is visible outside the corresponding scop, we copy out its entire
4744 * extent.
4746 * Any array elements that is read without first being written needs
4747 * to be copied in. Furthermore, if there are any array elements that
4748 * are copied out, but that are not written inside gen->prog, then
4749 * they also need to be copied in to ensure that the value after execution
4750 * is the same as the value before execution.
4751 * While computing the set of array elements that
4752 * are copied out but not written, we intersect both sets with the context.
4753 * This helps in those cases where the arrays are declared with a fixed size,
4754 * while the accesses are parametric and the context assigns a fixed value
4755 * to the parameters.
4757 static void compute_copy_in_and_out(struct gpu_gen *gen)
4759 int i;
4760 isl_union_set *write;
4761 isl_union_set *copy_in, *copy_out;
4762 isl_union_set *not_written;
4763 isl_union_map *uninitialized;
4765 write = isl_union_map_range(isl_union_map_copy(gen->prog->write));
4766 write = isl_union_set_intersect_params(write,
4767 isl_set_copy(gen->prog->context));
4768 copy_out = isl_union_set_empty(isl_union_set_get_space(write));
4770 for (i = 0; i < gen->prog->n_array; ++i) {
4771 isl_space *space;
4772 isl_set *write_i;
4773 int empty;
4775 if (gen->prog->array[i].local)
4776 continue;
4778 space = isl_space_copy(gen->prog->array[i].dim);
4779 write_i = isl_union_set_extract_set(write, space);
4780 empty = isl_set_fast_is_empty(write_i);
4781 isl_set_free(write_i);
4782 if (empty)
4783 continue;
4785 write_i = isl_set_copy(gen->prog->array[i].extent);
4786 copy_out = isl_union_set_add_set(copy_out, write_i);
4789 copy_out = isl_union_set_intersect_params(copy_out,
4790 isl_set_copy(gen->prog->context));
4792 gen->prog->copy_out = isl_union_set_copy(copy_out);
4794 uninitialized = isl_union_map_copy(gen->prog->scop->live_in);
4795 copy_in = isl_union_map_range(uninitialized);
4797 not_written = isl_union_set_subtract(copy_out, write);
4798 copy_in = isl_union_set_union(copy_in, not_written);
4799 gen->prog->copy_in = copy_in;
4802 static struct gpu_stmt_access **expr_extract_access(struct pet_expr *expr,
4803 struct gpu_stmt_access **next_access)
4805 struct gpu_stmt_access *access;
4806 isl_ctx *ctx = isl_map_get_ctx(expr->acc.access);
4808 access = isl_alloc_type(ctx, struct gpu_stmt_access);
4809 assert(access);
4810 access->next = NULL;
4811 access->read = expr->acc.read;
4812 access->write = expr->acc.write;
4813 access->access = isl_map_copy(expr->acc.access);
4815 *next_access = access;
4816 next_access = &(*next_access)->next;
4817 return next_access;
4820 static struct gpu_stmt_access **expr_extract_accesses(struct pet_expr *expr,
4821 struct gpu_stmt_access **next_access)
4823 int i;
4825 for (i = 0; i < expr->n_arg; ++i)
4826 next_access = expr_extract_accesses(expr->args[i],
4827 next_access);
4829 if (expr->type == pet_expr_access)
4830 next_access = expr_extract_access(expr, next_access);
4832 return next_access;
4835 static void pet_stmt_extract_accesses(struct gpu_stmt *stmt)
4837 struct gpu_stmt_access **next_access = &stmt->accesses;
4839 stmt->accesses = NULL;
4840 expr_extract_accesses(stmt->body, next_access);
4843 /* Return an array of gpu_stmt representing the statements in "scop".
4845 static struct gpu_stmt *extract_stmts(isl_ctx *ctx, struct ppcg_scop *scop,
4846 __isl_keep isl_set *context)
4848 int i;
4849 struct gpu_stmt *stmts;
4851 stmts = isl_calloc_array(ctx, struct gpu_stmt, scop->n_stmt);
4852 assert(stmts);
4854 for (i = 0; i < scop->n_stmt; ++i) {
4855 struct gpu_stmt *s = &stmts[i];
4857 s->id = isl_set_get_tuple_id(scop->stmts[i]->domain);
4858 s->body = scop->stmts[i]->body;
4859 pet_stmt_extract_accesses(s);
4862 return stmts;
4865 /* Replace the scop in the "input" file by equivalent code
4866 * that uses the GPU. "scop" is assumed to correspond to this scop.
4868 * We first compute a schedule that respects the dependences
4869 * of the original program and select the outermost band
4870 * of tilable dimensions that has at least one parallel loop.
4871 * We then have three blocks of dimensions
4873 * H B G
4875 * The tilable band "B" is first tiled according to "tile" sizes, resulting
4876 * in
4878 * H T P G
4880 * For each iteration of the T loop and for each array, we compute
4881 * the array elements accessed by that iteration, construct a rectangular
4882 * box around it and shift it to the origin. The result is used
4883 * as shared memory for the array.
4885 * We then split off at most 2 parallel loops from the T loops and
4886 * at most 3 parallel loops from the P loops
4888 * H T1 T2 P1 P2 G
4890 * The T1/P1 loops are then tiled or "wrapped" over the blocks/threads,
4891 * according to "grid"/"block" sizes.
4893 * H T1T T1P T2 P1T P1P P2 G
4895 * Finally, the T1P and P1P iterators are equated to the block and
4896 * thread dimensions respectively and so are effectively removed.
4897 * The H loops are run on the host. The T1T, T2, P1T, P2 and G loops
4898 * are run on the GPU.
4900 * Code is generated in three stages. We first generate code for the
4901 * host (the H loops), with iterators h%d. Then, for each leaf node
4902 * of the resulting AST, we generate code for the shared loops (up to
4903 * and including T2), with iterators g%d and after equating the H loops
4904 * to h%d parameters and the T1P loops to the block dimensions.
4905 * Finally, we generate code for the remaining loops in a similar fashion.
4907 __isl_give isl_ast_node *generate_gpu(isl_ctx *ctx, struct gpu_prog *prog,
4908 struct ppcg_options *options)
4910 isl_union_map *sched;
4911 struct gpu_gen gen;
4912 isl_ast_node *tree;
4914 if (!prog)
4915 return NULL;
4917 gen.ctx = ctx;
4918 gen.prog = prog;
4919 gen.sizes = extract_sizes_from_str(ctx, options->sizes);
4920 gen.options = options;
4922 compute_schedule(&gen);
4923 compute_copy_in_and_out(&gen);
4925 gen.kernel_id = 0;
4926 tree = generate_host_code(&gen);
4928 clear_gpu_gen(&gen);
4930 return tree;
4933 struct gpu_prog *gpu_prog_alloc(isl_ctx *ctx, struct ppcg_scop *scop)
4935 struct gpu_prog *prog;
4937 if (!scop)
4938 return NULL;
4940 prog = isl_calloc_type(ctx, struct gpu_prog);
4941 assert(prog);
4943 prog->ctx = ctx;
4944 prog->scop = scop;
4945 prog->context = isl_set_copy(scop->context);
4946 prog->n_stmts = scop->n_stmt;
4947 prog->stmts = extract_stmts(ctx, scop, prog->context);
4948 prog->read = isl_union_map_copy(scop->reads);
4949 prog->write = isl_union_map_copy(scop->writes);
4951 collect_array_info(prog);
4953 return prog;
4956 void gpu_prog_free(struct gpu_prog *prog)
4958 if (!prog)
4959 return;
4960 free_array_info(prog);
4961 free_stmts(prog->stmts, prog->n_stmts);
4962 isl_union_set_free(prog->copy_in);
4963 isl_union_set_free(prog->copy_out);
4964 isl_union_map_free(prog->read);
4965 isl_union_map_free(prog->write);
4966 isl_set_free(prog->context);
4967 free(prog);