gpu.c: extract_access: propagate error instead of asserting
[ppcg.git] / gpu_group.c
blobbabecae5a72e8322f0412e03ea148abc7ff4ddde
1 /*
2 * Copyright 2010-2011 INRIA Saclay
3 * Copyright 2012-2014 Ecole Normale Superieure
4 * Copyright 2015 Sven Verdoolaege
6 * Use of this software is governed by the MIT license
8 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
9 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
10 * 91893 Orsay, France
11 * and Ecole Normale Superieure, 45 rue d'Ulm, 75230 Paris, France
14 #include <isl/constraint.h>
15 #include <isl/ilp.h>
17 #include "gpu_array_tile.h"
18 #include "gpu_group.h"
19 #include "gpu_tree.h"
20 #include "schedule.h"
22 /* Print the name of the local copy of a given group of array references.
24 __isl_give isl_printer *gpu_array_ref_group_print_name(
25 struct gpu_array_ref_group *group, __isl_take isl_printer *p)
27 int global = 0;
28 enum ppcg_group_access_type type;
30 type = gpu_array_ref_group_type(group);
31 if (type == ppcg_access_private)
32 p = isl_printer_print_str(p, "private_");
33 else if (type == ppcg_access_shared)
34 p = isl_printer_print_str(p, "shared_");
35 else
36 global = 1;
37 p = isl_printer_print_str(p, group->array->name);
38 if (!global && group->local_array->n_group > 1) {
39 p = isl_printer_print_str(p, "_");
40 p = isl_printer_print_int(p, group->nr);
43 return p;
46 /* Return the union of all read (read = 1) and/or write (write = 1)
47 * access relations in the group.
49 __isl_give isl_union_map *gpu_array_ref_group_access_relation(
50 struct gpu_array_ref_group *group, int read, int write)
52 int i;
53 isl_union_map *access;
55 access = isl_union_map_empty(isl_map_get_space(group->access));
56 for (i = 0; i < group->n_ref; ++i) {
57 isl_map *map_i;
59 if (!((read && group->refs[i]->read) ||
60 (write && group->refs[i]->write)))
61 continue;
62 map_i = isl_map_copy(group->refs[i]->access);
63 access = isl_union_map_union(access,
64 isl_union_map_from_map(map_i));
67 return access;
70 /* Should this array reference group be mapped to private, shared or global
71 * memory?
72 * If we have computed both a private and a shared tile, then
73 * the tile with the smallest depth is used. If both have the same depth,
74 * then the private tile is used.
76 enum ppcg_group_access_type gpu_array_ref_group_type(
77 struct gpu_array_ref_group *group)
79 if (group->private_tile && group->shared_tile &&
80 group->shared_tile->depth < group->private_tile->depth)
81 return ppcg_access_shared;
82 if (group->private_tile)
83 return ppcg_access_private;
84 if (group->shared_tile)
85 return ppcg_access_shared;
86 return ppcg_access_global;
90 /* Return the effective gpu_array_tile associated to "group" or
91 * NULL if there is no such gpu_array_tile.
93 struct gpu_array_tile *gpu_array_ref_group_tile(
94 struct gpu_array_ref_group *group)
96 switch (gpu_array_ref_group_type(group)) {
97 case ppcg_access_global:
98 return NULL;
99 case ppcg_access_shared:
100 return group->shared_tile;
101 case ppcg_access_private:
102 return group->private_tile;
106 /* Does the tile associated to "group" require unrolling of the schedule
107 * dimensions mapped to threads?
108 * Note that this can only happen for private tiles.
110 int gpu_array_ref_group_requires_unroll(struct gpu_array_ref_group *group)
112 struct gpu_array_tile *tile;
114 tile = gpu_array_ref_group_tile(group);
115 if (!tile)
116 return 0;
117 return tile->requires_unroll;
120 /* Given a constraint
122 * a(p,i) + j = g f(e)
124 * or -a(p,i) - j = g f(e) if sign < 0,
125 * store a(p,i) in bound->shift and g (stride) in bound->stride.
126 * a(p,i) is assumed to be an expression in only the parameters
127 * and the input dimensions.
129 static void extract_stride(__isl_keep isl_constraint *c,
130 struct gpu_array_bound *bound, __isl_keep isl_val *stride, int sign)
132 int i;
133 isl_val *v;
134 isl_space *space;
135 unsigned nparam;
136 unsigned nvar;
137 isl_aff *aff;
139 isl_val_free(bound->stride);
140 bound->stride = isl_val_copy(stride);
142 space = isl_constraint_get_space(c);
143 space = isl_space_domain(space);
145 nparam = isl_space_dim(space, isl_dim_param);
146 nvar = isl_space_dim(space, isl_dim_set);
148 v = isl_constraint_get_constant_val(c);
149 if (sign < 0)
150 v = isl_val_neg(v);
151 aff = isl_aff_zero_on_domain(isl_local_space_from_space(space));
152 aff = isl_aff_set_constant_val(aff, v);
154 for (i = 0; i < nparam; ++i) {
155 if (!isl_constraint_involves_dims(c, isl_dim_param, i, 1))
156 continue;
157 v = isl_constraint_get_coefficient_val(c, isl_dim_param, i);
158 if (sign < 0)
159 v = isl_val_neg(v);
160 aff = isl_aff_add_coefficient_val(aff, isl_dim_param, i, v);
163 for (i = 0; i < nvar; ++i) {
164 if (!isl_constraint_involves_dims(c, isl_dim_in, i, 1))
165 continue;
166 v = isl_constraint_get_coefficient_val(c, isl_dim_in, i);
167 if (sign < 0)
168 v = isl_val_neg(v);
169 aff = isl_aff_add_coefficient_val(aff, isl_dim_in, i, v);
172 bound->shift = aff;
175 /* Given an equality constraint of a map with a single output dimension j,
176 * check if the constraint is of the form
178 * a(p,i) + j = g f(e)
180 * with a(p,i) an expression in the parameters and input dimensions
181 * and f(e) an expression in the existentially quantified variables.
182 * If so, and if g is larger than any such g from a previously considered
183 * constraint, then call extract_stride to record the stride information
184 * in bound.
186 static isl_stat check_stride_constraint(__isl_take isl_constraint *c,
187 void *user)
189 int i;
190 isl_ctx *ctx;
191 isl_val *v;
192 unsigned n_div;
193 struct gpu_array_bound *bound = user;
195 ctx = isl_constraint_get_ctx(c);
196 n_div = isl_constraint_dim(c, isl_dim_div);
197 v = isl_constraint_get_coefficient_val(c, isl_dim_out, 0);
199 if (n_div && (isl_val_is_one(v) || isl_val_is_negone(v))) {
200 int s = isl_val_sgn(v);
201 isl_val *stride = isl_val_zero(ctx);
203 isl_val_free(v);
204 for (i = 0; i < n_div; ++i) {
205 v = isl_constraint_get_coefficient_val(c,
206 isl_dim_div, i);
207 stride = isl_val_gcd(stride, v);
209 if (!isl_val_is_zero(stride) &&
210 isl_val_gt(stride, bound->stride))
211 extract_stride(c, bound, stride, s);
213 isl_val_free(stride);
214 } else
215 isl_val_free(v);
217 isl_constraint_free(c);
218 return isl_stat_ok;
221 /* Given contraints on an array index i, check if we can find
222 * a shift a(p) and a stride g such that
224 * a(p) + i = 0 mod g
226 * If so, record the information in bound and apply the mapping
227 * i -> (i + a(p))/g to the array index in bounds and return
228 * the new constraints.
229 * If not, simply return the original constraints.
231 * If bounds is a subset of the space
233 * D -> i
235 * then the bound recorded in bound->shift is of the form
237 * D -> s(D)
239 * with s(D) equal to a(p) above.
240 * Next, we construct a mapping of the form
242 * [D -> i] -> [D -> (i + S(D))/g]
244 * This mapping is computed as follows.
245 * We first introduce "i" in the domain through precomposition
246 * with [D -> i] -> D obtaining
248 * [D -> i] -> s(D)
250 * Adding [D -> i] -> i produces
252 * [D -> i] -> i + s(D)
254 * and the domain product with [D -> i] -> D yields
256 * [D -> i] -> [D -> i + s(D)]
258 * Composition with [D -> i] -> [D -> i/g] gives the desired result.
260 static __isl_give isl_basic_map *check_stride(struct gpu_array_bound *bound,
261 __isl_take isl_basic_map *bounds)
263 isl_space *space;
264 isl_basic_map *hull;
265 isl_basic_map *shift, *id, *bmap, *scale;
266 isl_basic_set *bset;
267 isl_aff *aff;
269 bound->stride = NULL;
271 hull = isl_basic_map_affine_hull(isl_basic_map_copy(bounds));
273 isl_basic_map_foreach_constraint(hull, &check_stride_constraint, bound);
275 isl_basic_map_free(hull);
277 if (!bound->stride)
278 return bounds;
280 shift = isl_basic_map_from_aff(isl_aff_copy(bound->shift));
281 space = isl_basic_map_get_space(bounds);
282 bmap = isl_basic_map_domain_map(isl_basic_map_universe(space));
283 shift = isl_basic_map_apply_range(bmap, shift);
284 space = isl_basic_map_get_space(bounds);
285 id = isl_basic_map_range_map(isl_basic_map_universe(space));
286 shift = isl_basic_map_sum(id, shift);
287 space = isl_basic_map_get_space(bounds);
288 id = isl_basic_map_domain_map(isl_basic_map_universe(space));
289 shift = isl_basic_map_range_product(id, shift);
291 space = isl_space_domain(isl_basic_map_get_space(bounds));
292 id = isl_basic_map_identity(isl_space_map_from_set(space));
293 space = isl_space_range(isl_basic_map_get_space(bounds));
294 aff = isl_aff_zero_on_domain(isl_local_space_from_space(space));
295 aff = isl_aff_add_coefficient_si(aff, isl_dim_in, 0, 1);
296 aff = isl_aff_scale_down_val(aff, isl_val_copy(bound->stride));
297 scale = isl_basic_map_from_aff(aff);
298 scale = isl_basic_map_product(id, scale);
300 bmap = isl_basic_map_apply_range(shift, scale);
301 bset = isl_basic_set_apply(isl_basic_map_wrap(bounds), bmap);
302 bounds = isl_basic_set_unwrap(bset);
304 return bounds;
307 /* Data used in compute_array_dim_size and compute_size_in_direction.
309 * pos is the position of the variable representing the array index,
310 * i.e., the variable for which want to compute the size. This variable
311 * is also the last variable in the set.
313 struct gpu_size_info {
314 isl_basic_set *bset;
315 struct gpu_array_bound *bound;
316 int pos;
319 /* Given a constraint from the basic set describing the bounds on
320 * an array index, check if it is a lower bound, say m i >= b(x), and,
321 * if so, check whether the expression "i - ceil(b(x)/m) + 1" has a constant
322 * upper bound. If so, and if this bound is smaller than any bound
323 * derived from earlier constraints, set the size to this bound on
324 * the expression and the lower bound to ceil(b(x)/m).
326 static isl_stat compute_size_in_direction(__isl_take isl_constraint *c,
327 void *user)
329 struct gpu_size_info *size = user;
330 unsigned nparam;
331 unsigned n_div;
332 isl_val *v;
333 isl_aff *aff;
334 isl_aff *lb;
336 nparam = isl_basic_set_dim(size->bset, isl_dim_param);
337 n_div = isl_constraint_dim(c, isl_dim_div);
339 if (isl_constraint_involves_dims(c, isl_dim_div, 0, n_div) ||
340 !isl_constraint_is_lower_bound(c, isl_dim_set, size->pos)) {
341 isl_constraint_free(c);
342 return isl_stat_ok;
345 aff = isl_constraint_get_bound(c, isl_dim_set, size->pos);
346 aff = isl_aff_ceil(aff);
348 lb = isl_aff_copy(aff);
350 aff = isl_aff_neg(aff);
351 aff = isl_aff_add_coefficient_si(aff, isl_dim_in, size->pos, 1);
353 v = isl_basic_set_max_val(size->bset, aff);
354 isl_aff_free(aff);
356 if (isl_val_is_int(v)) {
357 v = isl_val_add_ui(v, 1);
358 if (!size->bound->size || isl_val_lt(v, size->bound->size)) {
359 isl_val_free(size->bound->size);
360 size->bound->size = isl_val_copy(v);
361 lb = isl_aff_drop_dims(lb, isl_dim_in, size->pos, 1);
362 isl_aff_free(size->bound->lb);
363 size->bound->lb = isl_aff_copy(lb);
366 isl_val_free(v);
367 isl_aff_free(lb);
369 isl_constraint_free(c);
371 return isl_stat_ok;
374 /* Given a basic map "bounds" that maps parameters and input dimensions
375 * to a single output dimension, look for an expression in the parameters
376 * and input dimensions such that the range of the output dimension shifted
377 * by this expression is a constant.
379 * In particular, we currently only consider lower bounds on the output
380 * dimension as candidate expressions.
382 static int compute_array_dim_size(struct gpu_array_bound *bound,
383 __isl_take isl_basic_map *bounds)
385 struct gpu_size_info size;
387 bounds = isl_basic_map_detect_equalities(bounds);
388 bounds = check_stride(bound, bounds);
390 bound->size = NULL;
391 bound->lb = NULL;
393 size.bound = bound;
394 size.pos = isl_basic_map_dim(bounds, isl_dim_in);
395 size.bset = isl_basic_map_wrap(bounds);
396 size.bset = isl_basic_set_flatten(size.bset);
397 size.bset = isl_set_simple_hull(isl_basic_set_compute_divs(size.bset));
398 isl_basic_set_foreach_constraint(size.bset, &compute_size_in_direction,
399 &size);
400 isl_basic_set_free(size.bset);
402 return bound->size ? 0 : -1;
405 /* Check if we can find a memory tile for the given array
406 * based on the given accesses, and if so, put the results in "tile".
408 * We project the accesses on each index in turn and look for a parametric
409 * offset such that the size is constant.
411 * tile->depth is initialized to the input dimension of the computed bounds.
413 static int can_tile(__isl_keep isl_map *access, struct gpu_array_tile *tile)
415 int i;
417 tile->depth = isl_map_dim(access, isl_dim_in);
419 for (i = 0; i < tile->n; ++i) {
420 isl_map *access_i;
421 isl_basic_map *hull;
423 access_i = isl_map_copy(access);
424 access_i = isl_map_project_out(access_i, isl_dim_out, 0, i);
425 access_i = isl_map_project_out(access_i, isl_dim_out,
426 1, tile->n - (i + 1));
427 access_i = isl_map_compute_divs(access_i);
428 hull = isl_map_simple_hull(access_i);
429 if (compute_array_dim_size(&tile->bound[i], hull) < 0)
430 return 0;
433 return 1;
436 /* Internal data structure for gpu_group_references.
438 * scop represents the input scop.
439 * kernel_depth is the schedule depth where the kernel launch will
440 * be introduced, i.e., it is the depth of the band that is mapped
441 * to blocks.
442 * shared_depth is the schedule depth at which the copying to/from
443 * shared memory is computed. The copy operation may then
444 * later be hoisted to a higher level.
445 * thread_depth is the schedule depth where the thread mark is located,
446 * i.e., it is the depth of the band that is mapped to threads and also
447 * the schedule depth at which the copying to/from private memory
448 * is computed. The copy operation may then later be hoisted to
449 * a higher level.
450 * n_thread is the number of schedule dimensions in the band that
451 * is mapped to threads.
452 * privatization lives in the range of thread_sched (i.e., it is
453 * of dimension thread_depth + n_thread) and encodes the mapping
454 * to thread identifiers (as parameters).
455 * host_sched contains the kernel_depth dimensions of the host schedule.
456 * shared_sched contains the first shared_depth dimensions of the
457 * kernel schedule.
458 * copy_sched contains the first thread_depth dimensions of the
459 * kernel schedule.
460 * thread_sched contains the first (thread_depth + n_thread) dimensions
461 * of the kernel schedule.
462 * full_sched is a union_map representation of the entire kernel schedule.
463 * The schedules are all formulated in terms of the original statement
464 * instances, i.e., those that appear in the domains of the access
465 * relations.
467 struct gpu_group_data {
468 struct ppcg_scop *scop;
469 int kernel_depth;
470 int shared_depth;
471 int thread_depth;
472 int n_thread;
473 isl_set *privatization;
474 isl_union_map *host_sched;
475 isl_union_map *shared_sched;
476 isl_union_map *copy_sched;
477 isl_union_map *thread_sched;
478 isl_union_map *full_sched;
481 /* Construct a map from domain_space to domain_space that increments
482 * the dimension at position "pos" and leaves all other dimensions
483 * constant.
485 static __isl_give isl_map *next(__isl_take isl_space *domain_space, int pos)
487 isl_space *space;
488 isl_aff *aff;
489 isl_multi_aff *next;
491 space = isl_space_map_from_set(domain_space);
492 next = isl_multi_aff_identity(space);
493 aff = isl_multi_aff_get_aff(next, pos);
494 aff = isl_aff_add_constant_si(aff, 1);
495 next = isl_multi_aff_set_aff(next, pos, aff);
497 return isl_map_from_multi_aff(next);
500 /* Check if the given access is coalesced (or if there is no point
501 * in trying to coalesce the access by mapping the array to shared memory).
502 * That is, check whether incrementing the dimension that will get
503 * wrapped over the last thread index results in incrementing
504 * the last array index.
506 * If no two consecutive array elements are ever accessed by "access",
507 * then mapping the corresponding array to shared memory will not
508 * improve coalescing. In fact, the copying will likely be performed
509 * by a single thread. Consider the access as coalesced such that
510 * the caller will not try and map the array to shared memory just
511 * to improve coalescing.
513 * This function is only called for access relations without reuse and
514 * kernels with at least one thread identifier.
516 static int access_is_coalesced(struct gpu_group_data *data,
517 __isl_keep isl_union_map *access)
519 int dim;
520 isl_space *space;
521 isl_set *accessed;
522 isl_map *access_map;
523 isl_map *next_thread_x;
524 isl_map *next_element;
525 isl_map *map;
526 int coalesced, empty;
528 access = isl_union_map_copy(access);
529 access = isl_union_map_apply_domain(access,
530 isl_union_map_copy(data->full_sched));
531 access_map = isl_map_from_union_map(access);
533 space = isl_map_get_space(access_map);
534 space = isl_space_range(space);
535 dim = isl_space_dim(space, isl_dim_set);
536 if (dim == 0)
537 next_element = isl_map_empty(isl_space_map_from_set(space));
538 else
539 next_element = next(space, dim - 1);
541 accessed = isl_map_range(isl_map_copy(access_map));
542 map = isl_map_copy(next_element);
543 map = isl_map_intersect_domain(map, isl_set_copy(accessed));
544 map = isl_map_intersect_range(map, accessed);
545 empty = isl_map_is_empty(map);
546 isl_map_free(map);
548 if (empty < 0 || empty) {
549 isl_map_free(next_element);
550 isl_map_free(access_map);
551 return empty;
554 space = isl_map_get_space(access_map);
555 space = isl_space_domain(space);
556 next_thread_x = next(space, data->thread_depth + data->n_thread - 1);
558 map = isl_map_apply_domain(next_thread_x, isl_map_copy(access_map));
559 map = isl_map_apply_range(map, access_map);
561 coalesced = isl_map_is_subset(map, next_element);
563 isl_map_free(next_element);
564 isl_map_free(map);
566 return coalesced;
569 /* Replace the host schedule dimensions in the access relation "access"
570 * by parameters, so that they are treated as fixed when checking for reuse
571 * (within a kernel) or whether two consecutive elements are accessed
572 * (within a kernel).
574 static __isl_give isl_union_map *localize_access(struct gpu_group_data *data,
575 __isl_take isl_union_map *access)
577 int n;
578 isl_space *space;
579 isl_set *param;
580 isl_union_map *umap;
581 isl_id_list *ids;
583 umap = isl_union_map_copy(data->host_sched);
584 space = isl_union_map_get_space(umap);
585 n = data->kernel_depth;
586 ids = ppcg_scop_generate_names(data->scop, n, "__ppcg_host_");
587 param = parametrization(space, n, 0, ids);
588 isl_id_list_free(ids);
589 umap = isl_union_map_intersect_range(umap,
590 isl_union_set_from_set(param));
591 access = isl_union_map_intersect_domain(access,
592 isl_union_map_domain(umap));
594 return access;
597 /* Given an access relation in terms of at least data->thread_depth initial
598 * dimensions of the computed schedule, check if it is bijective for
599 * fixed values of the first data->thread_depth dimensions.
600 * We perform this check by equating these dimensions to parameters.
602 static int access_is_bijective(struct gpu_group_data *data,
603 __isl_keep isl_map *access)
605 int res;
606 int dim;
607 isl_set *par;
608 isl_space *space;
609 isl_id_list *ids;
611 access = isl_map_copy(access);
612 space = isl_space_params(isl_map_get_space(access));
613 ids = ppcg_scop_generate_names(data->scop, data->thread_depth, "s");
614 dim = isl_map_dim(access, isl_dim_in);
615 par = parametrization(space, dim, 0, ids);
616 isl_id_list_free(ids);
617 access = isl_map_intersect_domain(access, par);
618 res = isl_map_is_bijective(access);
619 isl_map_free(access);
621 return res;
624 /* Compute the number of outer schedule tile dimensions that affect
625 * the offset of "tile".
626 * If there is no such dimension, then return the index
627 * of the first kernel dimension, i.e., data->kernel_depth.
629 static int compute_tile_depth(struct gpu_group_data *data,
630 struct gpu_array_tile *tile)
632 int i, j;
634 for (j = tile->depth - 1; j >= data->kernel_depth; --j) {
635 for (i = 0; i < tile->n; ++i) {
636 isl_aff *lb;
637 isl_aff *shift;
639 lb = tile->bound[i].lb;
640 if (isl_aff_involves_dims(lb, isl_dim_in, j, 1))
641 break;
643 shift = tile->bound[i].shift;
644 if (!shift)
645 continue;
646 if (isl_aff_involves_dims(shift, isl_dim_in, j, 1))
647 break;
649 if (i < tile->n)
650 break;
653 return ++j;
656 /* Return the lowest depth between data->kernel_depth and data->thread_depth
657 * at which every array element accessed through "acc" is accessed
658 * by a single thread. The input dimension of "acc" is
659 * data->thread_depth + data->n_thread, where the final data->n_thread
660 * dimensions are those that will be mapped to threads.
661 * If the values for these dimensions are uniquely determined
662 * by the array index and a given number of outer dimensions, then
663 * there is only one thread accessing that array element within those
664 * outer dimensions.
666 * The input space of "acc" is first split up, such that it has the form
668 * [O -> T] -> A
670 * with O the outer dimensions, T the dimensions that will be mapped to threads
671 * and A the array index.
673 * Then the positions of T and A are interchanged to simplify the test
674 * whether T uniquely depends on O and A.
675 * In particular, the above access relation is first combined with
677 * [O -> T] -> T
679 * to form
681 * [O -> T] -> [A -> T]
683 * from which
685 * O -> [A -> T]
687 * is extracted, which is then uncurried to
689 * [O -> A] -> T
691 * Finally, the final dimensions of O are projected out one by one
692 * until T is no longer uniquely determined by A and the remaining
693 * dimensions in O. The value returned is that of the last dimension
694 * that was successfully projected out.
695 * Note that there is no need to test whether [O -> A] -> T itself
696 * is single-valued as that was already tested in access_is_bijective.
698 static int compute_accessed_by_single_thread_depth(struct gpu_group_data *data,
699 __isl_keep isl_map *acc)
701 int i;
702 isl_space *space;
703 isl_map *map;
704 isl_bool sv;
706 if (data->thread_depth == data->kernel_depth)
707 return data->thread_depth;
709 acc = isl_map_copy(acc);
711 space = isl_map_get_space(acc);
712 space = isl_space_params(space);
713 space = isl_space_set_from_params(space);
714 space = isl_space_add_dims(space, isl_dim_set, data->thread_depth);
715 space = isl_space_from_domain(space);
716 space = isl_space_add_dims(space, isl_dim_out, data->n_thread);
717 space = isl_space_wrap(space);
718 map = isl_set_flatten_map(isl_set_universe(space));
719 acc = isl_map_apply_range(map, acc);
721 space = isl_space_domain(isl_map_get_space(acc));
722 map = isl_map_range_map(isl_map_universe(isl_space_unwrap(space)));
723 acc = isl_map_range_product(acc, map);
724 acc = isl_map_domain_factor_domain(acc);
725 acc = isl_map_uncurry(acc);
727 for (i = data->thread_depth - 1; i >= data->kernel_depth; --i) {
728 acc = isl_map_project_out(acc, isl_dim_in, i, 1);
729 sv = isl_map_is_single_valued(acc);
730 if (sv < 0)
731 goto error;
732 if (!sv)
733 break;
736 isl_map_free(acc);
738 return ++i;
739 error:
740 isl_map_free(acc);
741 return -1;
744 /* Adjust the fields of "tile" to reflect the new input dimension "depth".
745 * The dimension beyond "depth" are assumed not to affect the tile,
746 * so they can simply be dropped.
748 static int tile_adjust_depth(struct gpu_array_tile *tile, int depth)
750 int i;
752 if (tile->depth == depth)
753 return 0;
755 for (i = 0; i < tile->n; ++i) {
756 tile->bound[i].lb = isl_aff_drop_dims(tile->bound[i].lb,
757 isl_dim_in, depth, tile->depth - depth);
758 if (!tile->bound[i].lb)
759 return -1;
760 if (!tile->bound[i].shift)
761 continue;
762 tile->bound[i].shift = isl_aff_drop_dims(tile->bound[i].shift,
763 isl_dim_in, depth, tile->depth - depth);
764 if (!tile->bound[i].shift)
765 return -1;
768 tile->depth = depth;
770 return 0;
773 /* Determine the number of schedule dimensions that affect the offset of the
774 * shared or private tile "tile" and store the result in tile->depth, with
775 * a lower bound of data->kernel_depth.
776 * Also adjust the fields of the tile to only refer to the tile->depth
777 * outer schedule dimensions.
779 static isl_stat tile_set_depth(struct gpu_group_data *data,
780 struct gpu_array_tile *tile)
782 if (tile_adjust_depth(tile, compute_tile_depth(data, tile)) < 0)
783 return isl_stat_error;
785 return isl_stat_ok;
788 /* Determine the number of schedule dimensions that affect the offset of the
789 * shared tile and store the minimum of the private and shared tile depth
790 * in group->min_depth, with a lower bound of data->kernel_depth.
791 * If there is no tile defined on the array reference group,
792 * then set group->min_depth to data->thread_depth.
794 static int set_depth(struct gpu_group_data *data,
795 struct gpu_array_ref_group *group)
797 group->min_depth = data->thread_depth;
799 if (group->private_tile) {
800 if (group->private_tile->depth < group->min_depth)
801 group->min_depth = group->private_tile->depth;
803 if (group->shared_tile) {
804 if (tile_set_depth(data, group->shared_tile) < 0)
805 return -1;
806 if (group->shared_tile->depth < group->min_depth)
807 group->min_depth = group->shared_tile->depth;
810 return 0;
813 /* Fill up the groups array with singleton groups, i.e., one group
814 * per reference, initializing the array, access, write, n_ref and refs fields.
815 * In particular the access field is initialized to the scheduled
816 * access relation of the array reference.
818 * Return the number of elements initialized, i.e., the number of
819 * active references in the current kernel.
821 static int populate_array_references(struct gpu_local_array_info *local,
822 struct gpu_array_ref_group **groups, struct gpu_group_data *data)
824 int i;
825 int n;
826 isl_ctx *ctx = isl_union_map_get_ctx(data->copy_sched);
828 n = 0;
829 for (i = 0; i < local->array->n_ref; ++i) {
830 isl_union_map *umap;
831 isl_map *map;
832 struct gpu_array_ref_group *group;
833 struct gpu_stmt_access *access = local->array->refs[i];
835 map = isl_map_copy(access->access);
836 umap = isl_union_map_from_map(map);
837 umap = isl_union_map_apply_domain(umap,
838 isl_union_map_copy(data->copy_sched));
840 if (isl_union_map_is_empty(umap)) {
841 isl_union_map_free(umap);
842 continue;
845 map = isl_map_from_union_map(umap);
846 map = isl_map_detect_equalities(map);
848 group = isl_calloc_type(ctx, struct gpu_array_ref_group);
849 if (!group) {
850 isl_map_free(map);
851 return -1;
853 group->local_array = local;
854 group->array = local->array;
855 group->access = map;
856 group->write = access->write;
857 group->exact_write = access->exact_write;
858 group->slice = access->n_index < local->array->n_index;
859 group->refs = &local->array->refs[i];
860 group->n_ref = 1;
862 groups[n++] = group;
865 return n;
868 /* If group->n_ref == 1, then group->refs was set by
869 * populate_array_references to point directly into
870 * group->array->refs and should not be freed.
871 * If group->n_ref > 1, then group->refs was set by join_groups
872 * to point to a newly allocated array.
874 struct gpu_array_ref_group *gpu_array_ref_group_free(
875 struct gpu_array_ref_group *group)
877 if (!group)
878 return NULL;
879 gpu_array_tile_free(group->shared_tile);
880 gpu_array_tile_free(group->private_tile);
881 isl_map_free(group->access);
882 if (group->n_ref > 1)
883 free(group->refs);
884 free(group);
885 return NULL;
888 /* Check if the access relations of group1 and group2 overlap within
889 * copy_sched.
891 static int accesses_overlap(struct gpu_array_ref_group *group1,
892 struct gpu_array_ref_group *group2)
894 int disjoint;
896 disjoint = isl_map_is_disjoint(group1->access, group2->access);
897 if (disjoint < 0)
898 return -1;
900 return !disjoint;
903 /* Combine the given two groups into a single group, containing
904 * the references of both groups.
906 static struct gpu_array_ref_group *join_groups(
907 struct gpu_array_ref_group *group1,
908 struct gpu_array_ref_group *group2)
910 int i;
911 isl_ctx *ctx;
912 struct gpu_array_ref_group *group;
914 if (!group1 || !group2)
915 return NULL;
917 ctx = isl_map_get_ctx(group1->access);
918 group = isl_calloc_type(ctx, struct gpu_array_ref_group);
919 if (!group)
920 return NULL;
921 group->local_array = group1->local_array;
922 group->array = group1->array;
923 group->access = isl_map_union(isl_map_copy(group1->access),
924 isl_map_copy(group2->access));
925 group->write = group1->write || group2->write;
926 group->exact_write = group1->exact_write && group2->exact_write;
927 group->slice = group1->slice || group2->slice;
928 group->n_ref = group1->n_ref + group2->n_ref;
929 group->refs = isl_alloc_array(ctx, struct gpu_stmt_access *,
930 group->n_ref);
931 if (!group->refs)
932 return gpu_array_ref_group_free(group);
933 for (i = 0; i < group1->n_ref; ++i)
934 group->refs[i] = group1->refs[i];
935 for (i = 0; i < group2->n_ref; ++i)
936 group->refs[group1->n_ref + i] = group2->refs[i];
938 return group;
941 /* Combine the given two groups into a single group and free
942 * the original two groups.
944 static struct gpu_array_ref_group *join_groups_and_free(
945 struct gpu_array_ref_group *group1,
946 struct gpu_array_ref_group *group2)
948 struct gpu_array_ref_group *group;
950 group = join_groups(group1, group2);
951 gpu_array_ref_group_free(group1);
952 gpu_array_ref_group_free(group2);
953 return group;
956 /* Report that the array reference group with the given access relation
957 * is not mapped to shared memory in the given kernel because
958 * it does not exhibit any reuse and is considered to be coalesced.
960 static void report_no_reuse_and_coalesced(struct ppcg_kernel *kernel,
961 __isl_keep isl_union_map *access)
963 isl_ctx *ctx;
964 isl_printer *p;
966 ctx = isl_union_map_get_ctx(access);
967 p = isl_printer_to_file(ctx, stdout);
968 p = isl_printer_print_str(p, "Array reference group ");
969 p = isl_printer_print_union_map(p, access);
970 p = isl_printer_print_str(p,
971 " not considered for mapping to shared memory in kernel");
972 p = isl_printer_print_int(p, kernel->id);
973 p = isl_printer_print_str(p,
974 " because it exhibits no reuse and is considered to be coalesced");
975 p = isl_printer_end_line(p);
976 isl_printer_free(p);
979 /* Given an access relation in terms of the data->thread_depth initial
980 * dimensions of the computed schedule and the thread identifiers
981 * (as parameters), check if the use of the corresponding private tile
982 * requires unrolling.
984 * If we are creating a private tile because we are forced to,
985 * then no unrolling is required.
986 * Otherwise we check if "access" is bijective and unrolling
987 * is required if it is not. Note that the access relation
988 * has already been determined to be bijective before the introduction
989 * of the thread identifiers and the removal of the schedule dimensions
990 * that are mapped to these threads. If the access relation is no longer
991 * bijective, then this means that more than one value of one of those
992 * schedule dimensions is mapped to the same thread and therefore
993 * unrolling is required.
995 static int check_requires_unroll(struct gpu_group_data *data,
996 __isl_keep isl_map *access, int force_private)
998 int bijective;
1000 if (force_private)
1001 return 0;
1002 bijective = access_is_bijective(data, access);
1003 if (bijective < 0)
1004 return -1;
1005 return !bijective;
1008 /* Map the domain of "access" to the outer data->shared_depth
1009 * schedule dimensions. When data->shared_depth is equal to
1010 * data->thread_depth, this result is already available in group->access.
1012 static __isl_give isl_map *shared_access(struct gpu_array_ref_group *group,
1013 __isl_keep isl_union_map *access, struct gpu_group_data *data)
1015 isl_union_map *shared;
1017 if (data->shared_depth == data->thread_depth)
1018 return isl_map_copy(group->access);
1020 shared = isl_union_map_copy(access);
1021 shared = isl_union_map_apply_domain(shared,
1022 isl_union_map_copy(data->shared_sched));
1023 return isl_map_from_union_map(shared);
1026 /* Compute the private and/or shared memory tiles for the array
1027 * reference group "group" of array "array".
1028 * Return 0 on success and -1 on error.
1030 * If the array is a read-only scalar or if the user requested
1031 * not to use shared or private memory, then we do not need to do anything.
1033 * If any reference in the reference group accesses more than one element,
1034 * then we would have to make sure that the layout in shared memory
1035 * is the same as that in global memory. Since we do not handle this yet
1036 * (and it may not even be possible), we refuse to map to private or
1037 * shared memory in such cases.
1039 * If the array group involves any may writes (that are not must writes),
1040 * then we would have to make sure that we load the data into shared/private
1041 * memory first in case the data is not written by the kernel
1042 * (but still written back out to global memory).
1043 * Since we don't have any such mechanism at the moment, we don't
1044 * compute shared/private tiles for groups involving may writes.
1046 * We only try to compute a shared memory tile if there is any reuse
1047 * or if the access is not coalesced.
1048 * Reuse and coalescing are checked within the given kernel.
1050 * For computing a private memory tile, we also require that there is
1051 * some reuse. Moreover, we require that the access is private
1052 * to the thread. That is, we check that any given array element
1053 * is only accessed by a single thread.
1054 * We compute an access relation that maps the outer
1055 * data->thread_depth + data->n_thread schedule dimensions.
1056 * The latter data->n_thread will be mapped to thread identifiers.
1057 * We actually check that those iterators that will be wrapped
1058 * partition the array space. This check is stricter than necessary
1059 * since several iterations may be mapped onto the same thread
1060 * and then they could be allowed to access the same memory elements,
1061 * but our check does not allow this situation.
1063 * For private memory tiles, the number of schedule dimensions that
1064 * affect the offset is computed and stored in tile->depth, with
1065 * a lower bound of data->kernel_depth. If this depth is smaller
1066 * than the minimal depth that still ensures that every element
1067 * is accessed by a single thread, then the depth is raised
1068 * to this minimal depth.
1069 * The fields of the tile are then adjusted to only refer to the tile->depth
1070 * outer schedule dimensions.
1072 * We also check that the index expression only depends on parallel
1073 * loops. That way, we can move those loops innermost and unroll them.
1074 * Again, we use a test that is stricter than necessary.
1075 * We actually check whether the index expression only depends
1076 * on the iterators that are wrapped over the threads.
1077 * These are necessarily parallel, but there may be more parallel loops.
1079 * Combining the injectivity of the first test with the single-valuedness
1080 * of the second test, we simply test for bijectivity.
1082 * If the use of the private tile requires unrolling, but some
1083 * of the other arrays are forcibly mapped to private memory,
1084 * then we do not allow the use of this private tile since
1085 * we cannot move the schedule dimensions that need to be unrolled down
1086 * without performing some kind of expansion on those arrays
1087 * that are forcibly mapped to private memory.
1089 * If the array is marked force_private, then we bypass all checks
1090 * and assume we can (and should) use registers only.
1092 * If it turns out we can (or have to) use registers, we compute
1093 * the private memory tile size using can_tile, after introducing a dependence
1094 * on the thread indices.
1096 static int compute_group_bounds_core(struct ppcg_kernel *kernel,
1097 struct gpu_array_ref_group *group, struct gpu_group_data *data)
1099 isl_ctx *ctx = isl_space_get_ctx(group->array->space);
1100 isl_union_map *access, *local;
1101 int n_index = group->array->n_index;
1102 int no_reuse, coalesced;
1103 isl_map *acc;
1104 int force_private = group->local_array->force_private;
1105 int use_shared = !force_private && kernel->options->use_shared_memory &&
1106 data->n_thread > 0;
1107 int use_private = force_private || kernel->options->use_private_memory;
1108 int r = 0;
1109 int requires_unroll;
1110 int unique_depth;
1112 if (!use_shared && !use_private)
1113 return 0;
1114 if (gpu_array_is_read_only_scalar(group->array))
1115 return 0;
1116 if (!force_private && !group->exact_write)
1117 return 0;
1118 if (group->slice)
1119 return 0;
1121 access = gpu_array_ref_group_access_relation(group, 1, 1);
1122 local = localize_access(data, isl_union_map_copy(access));
1123 no_reuse = isl_union_map_is_injective(local);
1124 if (no_reuse < 0)
1125 r = -1;
1126 if (use_shared && no_reuse)
1127 coalesced = access_is_coalesced(data, local);
1128 isl_union_map_free(local);
1130 if (r >= 0 && kernel->options->debug->verbose &&
1131 use_shared && no_reuse && coalesced)
1132 report_no_reuse_and_coalesced(kernel, access);
1134 if (use_shared && (!no_reuse || !coalesced)) {
1135 group->shared_tile = gpu_array_tile_create(ctx,
1136 group->array->n_index);
1137 acc = shared_access(group, access, data);
1138 if (!group->shared_tile)
1139 r = -1;
1140 else if (!can_tile(acc, group->shared_tile))
1141 group->shared_tile =
1142 gpu_array_tile_free(group->shared_tile);
1143 isl_map_free(acc);
1146 if (r < 0 || (!force_private && (!use_private || no_reuse))) {
1147 isl_union_map_free(access);
1148 return r;
1151 access = isl_union_map_apply_domain(access,
1152 isl_union_map_copy(data->thread_sched));
1154 acc = isl_map_from_union_map(access);
1156 if (!force_private && !access_is_bijective(data, acc)) {
1157 isl_map_free(acc);
1158 return 0;
1161 unique_depth = compute_accessed_by_single_thread_depth(data, acc);
1163 acc = isl_map_intersect_domain(acc, isl_set_copy(data->privatization));
1164 acc = isl_map_project_out(acc, isl_dim_in, data->thread_depth,
1165 data->n_thread);
1166 requires_unroll = check_requires_unroll(data, acc, force_private);
1167 if (unique_depth < 0 || requires_unroll < 0 ||
1168 (requires_unroll && kernel->any_force_private)) {
1169 isl_map_free(acc);
1170 return requires_unroll < 0 ? -1 : 0;
1173 group->private_tile = gpu_array_tile_create(ctx, n_index);
1174 if (!group->private_tile) {
1175 isl_map_free(acc);
1176 return -1;
1178 group->private_tile->requires_unroll = requires_unroll;
1179 if (!can_tile(acc, group->private_tile))
1180 group->private_tile = gpu_array_tile_free(group->private_tile);
1182 isl_map_free(acc);
1184 if (group->private_tile) {
1185 struct gpu_array_tile *tile = group->private_tile;
1186 int tile_depth = compute_tile_depth(data, tile);
1187 if (tile_depth < unique_depth)
1188 tile_depth = unique_depth;
1189 if (tile_adjust_depth(tile, tile_depth) < 0)
1190 return -1;
1193 if (force_private && !group->private_tile)
1194 isl_die(ctx, isl_error_internal,
1195 "unable to map array reference group to registers",
1196 return -1);
1198 return 0;
1201 /* Compute the private and/or shared memory tiles for the array
1202 * reference group "group" of array "array" and set the tile depth.
1203 * Return 0 on success and -1 on error.
1205 static int compute_group_bounds(struct ppcg_kernel *kernel,
1206 struct gpu_array_ref_group *group, struct gpu_group_data *data)
1208 if (!group)
1209 return -1;
1210 if (compute_group_bounds_core(kernel, group, data) < 0)
1211 return -1;
1212 if (set_depth(data, group) < 0)
1213 return -1;
1215 return 0;
1218 /* If two groups have overlapping access relations (as determined by
1219 * the "overlap" function) and if one of them involves a write,
1220 * then merge the two groups into one.
1221 * If "compute_bounds" is set, then call compute_group_bounds
1222 * on the merged groups.
1223 * If any group is merged into the current group, then its access
1224 * relation may have changed or it may have been turned into a write.
1225 * The combined group might therefore overlap with groups that
1226 * the original group did not overlap with. The groups therefore
1227 * need to be checked again.
1229 * Return the updated number of groups.
1230 * Return -1 on error.
1232 static int group_writes(struct ppcg_kernel *kernel,
1233 int n, struct gpu_array_ref_group **groups,
1234 int (*overlap)(struct gpu_array_ref_group *group1,
1235 struct gpu_array_ref_group *group2), int compute_bounds,
1236 struct gpu_group_data *data)
1238 int i, j;
1239 int any_merge;
1241 for (i = 0; i < n; i += !any_merge) {
1242 any_merge = 0;
1243 for (j = n - 1; j > i; --j) {
1244 if (!groups[i]->write && !groups[j]->write)
1245 continue;
1247 if (!overlap(groups[i], groups[j]))
1248 continue;
1250 any_merge = 1;
1251 groups[i] = join_groups_and_free(groups[i], groups[j]);
1252 if (j != n - 1)
1253 groups[j] = groups[n - 1];
1254 groups[n - 1] = NULL;
1255 n--;
1257 if (!groups[i])
1258 return -1;
1259 if (compute_bounds &&
1260 compute_group_bounds(kernel, groups[i], data) < 0)
1261 return -1;
1265 return n;
1268 /* If two groups have overlapping access relations (within the innermost
1269 * loop) and if one of them involves a write, then merge the two groups
1270 * into one.
1272 * Return the updated number of groups.
1274 static int group_overlapping_writes(struct ppcg_kernel *kernel,
1275 int n, struct gpu_array_ref_group **groups,
1276 struct gpu_group_data *data)
1278 return group_writes(kernel, n, groups, &accesses_overlap, 0, data);
1281 /* Check if the access relations of group1 and group2 overlap within
1282 * the outermost min(group1->min_depth, group2->min_depth) loops.
1284 static int depth_accesses_overlap(struct gpu_array_ref_group *group1,
1285 struct gpu_array_ref_group *group2)
1287 int depth;
1288 int dim;
1289 int empty;
1290 isl_map *map_i, *map_j, *map;
1292 depth = group1->min_depth;
1293 if (group2->min_depth < depth)
1294 depth = group2->min_depth;
1295 map_i = isl_map_copy(group1->access);
1296 dim = isl_map_dim(map_i, isl_dim_in);
1297 map_i = isl_map_eliminate(map_i, isl_dim_in, depth, dim - depth);
1298 map_j = isl_map_copy(group2->access);
1299 map_j = isl_map_eliminate(map_j, isl_dim_in, depth, dim - depth);
1300 map = isl_map_intersect(map_i, map_j);
1301 empty = isl_map_is_empty(map);
1302 isl_map_free(map);
1304 return !empty;
1307 /* If two groups have overlapping access relations (within the outer
1308 * depth loops) and if one of them involves a write,
1309 * then merge the two groups into one.
1311 * Return the updated number of groups.
1313 static int group_depth_overlapping_writes(struct ppcg_kernel *kernel,
1314 int n, struct gpu_array_ref_group **groups, struct gpu_group_data *data)
1316 return group_writes(kernel, n, groups, &depth_accesses_overlap, 1,
1317 data);
1320 /* Is the size of the tile specified by "tile" smaller than the sum of
1321 * the sizes of the tiles specified by "tile1" and "tile2"?
1323 static int smaller_tile(struct gpu_array_tile *tile,
1324 struct gpu_array_tile *tile1, struct gpu_array_tile *tile2)
1326 int smaller;
1327 isl_val *size, *size1, *size2;
1329 size = gpu_array_tile_size(tile);
1330 size1 = gpu_array_tile_size(tile1);
1331 size2 = gpu_array_tile_size(tile2);
1333 size = isl_val_sub(size, size1);
1334 size = isl_val_sub(size, size2);
1335 smaller = isl_val_is_neg(size);
1337 isl_val_free(size);
1339 return smaller;
1342 /* Given an initial grouping of array references and shared memory tiles
1343 * for each group that allows for a shared memory tile, merge two groups
1344 * if both have a shared memory tile, the merged group also has
1345 * a shared memory tile and the size of the tile for the merge group
1346 * is smaller than the sum of the tile sizes of the individual groups.
1347 * If any group is merged into the current group, then it may become
1348 * profitable to combine it with groups that were considered before
1349 * the merge. The groups are therefore checked again after a merge.
1351 * If merging two groups decreases the depth of the tile of
1352 * one or both of the two groups, then we need to check for overlapping
1353 * writes again.
1355 * Return the number of groups after merging.
1356 * Return -1 on error.
1358 static int group_common_shared_memory_tile(struct ppcg_kernel *kernel,
1359 struct gpu_array_info *array, int n,
1360 struct gpu_array_ref_group **groups, struct gpu_group_data *data)
1362 int i, j;
1363 int recompute_overlap = 0;
1364 int any_merge;
1366 for (i = 0; i < n; i += !any_merge) {
1367 any_merge = 0;
1368 if (!groups[i]->shared_tile)
1369 continue;
1370 for (j = n - 1; j > i; --j) {
1371 struct gpu_array_ref_group *group;
1373 if (!groups[j]->shared_tile)
1374 continue;
1376 if (!depth_accesses_overlap(groups[i], groups[j]))
1377 continue;
1379 group = join_groups(groups[i], groups[j]);
1380 if (compute_group_bounds(kernel, group, data) < 0) {
1381 gpu_array_ref_group_free(group);
1382 return -1;
1384 if (!group->shared_tile ||
1385 !smaller_tile(group->shared_tile,
1386 groups[i]->shared_tile,
1387 groups[j]->shared_tile)) {
1388 gpu_array_ref_group_free(group);
1389 continue;
1392 any_merge = 1;
1393 if (group->min_depth < groups[i]->min_depth ||
1394 group->min_depth < groups[j]->min_depth)
1395 recompute_overlap = 1;
1396 gpu_array_ref_group_free(groups[i]);
1397 gpu_array_ref_group_free(groups[j]);
1398 groups[i] = group;
1399 if (j != n - 1)
1400 groups[j] = groups[n - 1];
1401 n--;
1405 if (recompute_overlap)
1406 n = group_depth_overlapping_writes(kernel, n, groups, data);
1407 return n;
1410 /* Set array->n_group and array->groups to n and groups.
1412 * Additionally, set the "nr" field of each group.
1414 static void set_array_groups(struct gpu_local_array_info *array,
1415 int n, struct gpu_array_ref_group **groups)
1417 int i;
1419 array->n_group = n;
1420 array->groups = groups;
1422 for (i = 0; i < n; ++i)
1423 groups[i]->nr = i;
1426 /* Combine all groups in "groups" into a single group and return
1427 * the new number of groups (1 or 0 if there were no groups to start with).
1429 static int join_all_groups(int n, struct gpu_array_ref_group **groups)
1431 int i;
1433 for (i = n - 1; i > 0; --i) {
1434 groups[0] = join_groups_and_free(groups[0], groups[i]);
1435 groups[i] = NULL;
1436 n--;
1439 return n;
1442 /* Group array references that should be considered together when
1443 * deciding whether to access them from private, shared or global memory.
1444 * Return -1 on error.
1446 * In particular, if two array references overlap and if one of them
1447 * is a write, then the two references are grouped together.
1448 * We first perform an initial grouping based only on the access relation.
1449 * After computing shared and private memory tiles, we check for
1450 * overlapping writes again, but this time taking into account
1451 * the depth of the effective tile.
1453 * Furthermore, if two groups admit a shared memory tile and if the
1454 * combination of the two also admits a shared memory tile, we merge
1455 * the two groups.
1457 * If the array contains structures, then we compute a single
1458 * reference group without trying to find any tiles
1459 * since we do not map such arrays to private or shared
1460 * memory. The only exception is when those arrays of structures
1461 * are required to be mapped to private memory.
1463 static int group_array_references(struct ppcg_kernel *kernel,
1464 struct gpu_local_array_info *local, struct gpu_group_data *data)
1466 int i;
1467 int n;
1468 isl_ctx *ctx = isl_union_map_get_ctx(data->shared_sched);
1469 struct gpu_array_ref_group **groups;
1471 groups = isl_calloc_array(ctx, struct gpu_array_ref_group *,
1472 local->array->n_ref);
1473 if (!groups)
1474 return -1;
1476 n = populate_array_references(local, groups, data);
1478 if (local->array->has_compound_element && !local->force_private) {
1479 n = join_all_groups(n, groups);
1480 set_array_groups(local, n, groups);
1481 return 0;
1484 n = group_overlapping_writes(kernel, n, groups, data);
1486 for (i = 0; i < n; ++i)
1487 if (compute_group_bounds(kernel, groups[i], data) < 0)
1488 n = -1;
1490 n = group_depth_overlapping_writes(kernel, n, groups, data);
1492 n = group_common_shared_memory_tile(kernel, local->array,
1493 n, groups, data);
1495 set_array_groups(local, n, groups);
1497 if (n >= 0)
1498 return 0;
1500 for (i = 0; i < local->array->n_ref; ++i)
1501 gpu_array_ref_group_free(groups[i]);
1502 return -1;
1505 /* For each array in the input program that can be mapped to private memory,
1506 * check if there are any order dependences active inside the current kernel,
1507 * within the same iteration of the host schedule, i.e., the prefix
1508 * schedule at "node".
1509 * If so, mark the array as force_private so that its reference groups will be
1510 * mapped to a registers.
1512 * Note that the arrays that cannot be mapped to private memory have
1513 * had their order dependences added to prog->array_order and
1514 * subsequently to the coincidence constraints.
1516 static void check_can_be_private_live_ranges(struct ppcg_kernel *kernel,
1517 __isl_keep isl_schedule_node *node)
1519 int i;
1520 isl_union_set *domain;
1521 isl_multi_union_pw_aff *prefix;
1522 isl_union_pw_multi_aff *contraction;
1524 if (!kernel->options->live_range_reordering)
1525 return;
1527 kernel->any_force_private = 0;
1529 prefix = isl_schedule_node_get_prefix_schedule_multi_union_pw_aff(node);
1530 contraction = isl_union_pw_multi_aff_copy(kernel->contraction);
1531 prefix = isl_multi_union_pw_aff_pullback_union_pw_multi_aff(prefix,
1532 contraction);
1533 domain = isl_union_set_copy(kernel->expanded_domain);
1534 domain = isl_union_set_universe(domain);
1536 for (i = 0; i < kernel->n_array; ++i) {
1537 struct gpu_local_array_info *local = &kernel->array[i];
1538 isl_union_map *order;
1540 local->force_private = 0;
1541 if (!gpu_array_can_be_private(local->array))
1542 continue;
1543 order = isl_union_map_copy(local->array->dep_order);
1544 order = isl_union_map_intersect_domain(order,
1545 isl_union_set_copy(domain));
1546 order = isl_union_map_intersect_range(order,
1547 isl_union_set_copy(domain));
1548 order = isl_union_map_eq_at_multi_union_pw_aff(order,
1549 isl_multi_union_pw_aff_copy(prefix));
1550 if (!isl_union_map_is_empty(order)) {
1551 local->force_private = 1;
1552 kernel->any_force_private = 1;
1554 isl_union_map_free(order);
1557 isl_multi_union_pw_aff_free(prefix);
1558 isl_union_set_free(domain);
1561 /* Expand the domain of the schedule "s" by plugging in
1562 * the contraction "contraction" and return the result.
1564 static __isl_give isl_union_map *expand(__isl_take isl_union_map *s,
1565 __isl_keep isl_union_pw_multi_aff *contraction)
1567 contraction = isl_union_pw_multi_aff_copy(contraction);
1568 s = isl_union_map_preimage_domain_union_pw_multi_aff(s, contraction);
1569 return s;
1572 /* Create a set of dimension data->thread_depth + data->n_thread
1573 * that equates the residue of the final data->n_thread dimensions
1574 * modulo the kernel->block_dim sizes to the thread identifiers.
1575 * Store the computed set in data->privatization.
1577 * The construction starts with the space of kernel->thread_filter,
1578 * which is known to reference all thread identifiers.
1580 static void compute_privatization(struct gpu_group_data *data,
1581 struct ppcg_kernel *kernel)
1583 int i;
1584 isl_ctx *ctx;
1585 isl_space *space;
1586 isl_local_space *ls;
1587 isl_set *set;
1589 ctx = isl_union_map_get_ctx(data->shared_sched);
1590 space = isl_union_set_get_space(kernel->thread_filter);
1591 space = isl_space_set_from_params(space);
1592 space = isl_space_add_dims(space, isl_dim_set,
1593 data->thread_depth + data->n_thread);
1594 set = isl_set_universe(space);
1595 space = isl_set_get_space(set);
1596 ls = isl_local_space_from_space(space);
1598 for (i = 0; i < data->n_thread; ++i) {
1599 isl_aff *aff, *aff2;
1600 isl_constraint *c;
1601 isl_val *v;
1602 isl_id *id;
1603 int pos;
1605 aff = isl_aff_var_on_domain(isl_local_space_copy(ls),
1606 isl_dim_set, data->thread_depth + i);
1607 v = isl_val_int_from_si(ctx, kernel->block_dim[i]);
1608 aff = isl_aff_mod_val(aff, v);
1609 id = isl_id_list_get_id(kernel->thread_ids, i);
1610 pos = isl_set_find_dim_by_id(set, isl_dim_param, id);
1611 isl_id_free(id);
1612 aff2 = isl_aff_var_on_domain(isl_local_space_copy(ls),
1613 isl_dim_param, pos);
1614 aff = isl_aff_sub(aff, aff2);
1615 c = isl_equality_from_aff(aff);
1616 set = isl_set_add_constraint(set, c);
1619 isl_local_space_free(ls);
1620 data->privatization = set;
1623 /* Return the prefix schedule at "node" as a relation
1624 * between domain elements and schedule dimensions after detecting
1625 * equalities in this relation.
1627 static __isl_give isl_union_map *prefix_with_equalities(
1628 __isl_keep isl_schedule_node *node)
1630 isl_union_map *schedule;
1632 schedule = isl_schedule_node_get_prefix_schedule_relation(node);
1633 schedule = isl_union_map_detect_equalities(schedule);
1635 return schedule;
1638 /* Group references of all arrays in "kernel".
1639 * "node" points to the kernel mark.
1640 * The mapping to shared memory in computed at the "shared" mark.
1642 * We first extract all required schedule information into
1643 * a gpu_group_data structure and then consider each array
1644 * in turn.
1646 int gpu_group_references(struct ppcg_kernel *kernel,
1647 __isl_keep isl_schedule_node *node)
1649 int i;
1650 int r = 0;
1651 isl_union_pw_multi_aff *contraction;
1652 struct gpu_group_data data;
1654 check_can_be_private_live_ranges(kernel, node);
1656 data.scop = kernel->prog->scop;
1658 data.kernel_depth = isl_schedule_node_get_schedule_depth(node);
1659 data.host_sched = isl_schedule_node_get_prefix_schedule_relation(node);
1661 node = isl_schedule_node_copy(node);
1662 node = gpu_tree_move_down_to_shared(node, kernel->core);
1663 data.shared_depth = isl_schedule_node_get_schedule_depth(node);
1664 data.shared_sched = prefix_with_equalities(node);
1666 node = gpu_tree_move_down_to_thread(node, kernel->core);
1667 node = isl_schedule_node_child(node, 0);
1668 data.thread_depth = isl_schedule_node_get_schedule_depth(node);
1669 data.n_thread = isl_schedule_node_band_n_member(node);
1670 if (data.thread_depth == data.shared_depth)
1671 data.copy_sched = isl_union_map_copy(data.shared_sched);
1672 else
1673 data.copy_sched = prefix_with_equalities(node);
1674 data.thread_sched = isl_union_map_copy(data.copy_sched);
1675 data.thread_sched = isl_union_map_flat_range_product(data.thread_sched,
1676 isl_schedule_node_band_get_partial_schedule_union_map(node));
1677 data.thread_sched = isl_union_map_detect_equalities(data.thread_sched);
1679 contraction = isl_union_pw_multi_aff_copy(kernel->contraction);
1680 data.host_sched = expand(data.host_sched, contraction);
1681 data.shared_sched = expand(data.shared_sched, contraction);
1682 if (data.thread_depth == data.shared_depth) {
1683 isl_union_map_free(data.copy_sched);
1684 data.copy_sched = isl_union_map_copy(data.shared_sched);
1685 } else {
1686 data.copy_sched = expand(data.copy_sched, contraction);
1688 data.thread_sched = expand(data.thread_sched, contraction);
1689 isl_union_pw_multi_aff_free(contraction);
1691 node = isl_schedule_node_child(node, 0);
1692 data.full_sched = isl_union_map_copy(data.thread_sched);
1693 data.full_sched = isl_union_map_flat_range_product(data.full_sched,
1694 isl_schedule_node_get_subtree_schedule_union_map(node));
1695 isl_schedule_node_free(node);
1697 compute_privatization(&data, kernel);
1699 for (i = 0; i < kernel->n_array; ++i) {
1700 r = group_array_references(kernel, &kernel->array[i], &data);
1701 if (r < 0)
1702 break;
1705 isl_union_map_free(data.host_sched);
1706 isl_union_map_free(data.shared_sched);
1707 isl_union_map_free(data.copy_sched);
1708 isl_union_map_free(data.thread_sched);
1709 isl_union_map_free(data.full_sched);
1710 isl_set_free(data.privatization);
1712 return r;
1715 /* Given a description of an array tile "tile" and the "space"
1717 * { D -> A }
1719 * where D represents the first tile->depth schedule dimensions
1720 * and A represents the array, construct an isl_multi_aff
1722 * { [D[i] -> A[a]] -> A'[a'] }
1724 * with A' a scaled down copy of A according to the shifts and strides
1725 * in "tile". In particular,
1727 * a' = (a + shift(i))/stride
1729 * "insert_array" represents
1731 * { [D -> A] -> D }
1733 * and is used to insert A into the domain of functions that only
1734 * reference D.
1736 static __isl_give isl_multi_aff *strided_tile(
1737 struct gpu_array_tile *tile, __isl_keep isl_space *space,
1738 __isl_keep isl_multi_aff *insert_array)
1740 int i;
1741 isl_ctx *ctx;
1742 isl_multi_aff *shift;
1743 isl_multi_val *stride;
1744 isl_space *space2;
1745 isl_local_space *ls;
1746 isl_multi_aff *tiling;
1748 ctx = isl_space_get_ctx(space);
1749 space2 = isl_space_domain(isl_space_copy(space));
1750 ls = isl_local_space_from_space(space2);
1751 space2 = isl_space_range(isl_space_copy(space));
1752 stride = isl_multi_val_zero(space2);
1753 shift = isl_multi_aff_zero(isl_space_copy(space));
1755 for (i = 0; i < tile->n; ++i) {
1756 struct gpu_array_bound *bound = &tile->bound[i];
1757 isl_val *stride_i;
1758 isl_aff *shift_i;
1760 if (tile->bound[i].shift) {
1761 stride_i = isl_val_copy(bound->stride);
1762 shift_i = isl_aff_copy(bound->shift);
1763 } else {
1764 stride_i = isl_val_one(ctx);
1765 shift_i = isl_aff_zero_on_domain(
1766 isl_local_space_copy(ls));
1769 stride = isl_multi_val_set_val(stride, i, stride_i);
1770 shift = isl_multi_aff_set_aff(shift, i, shift_i);
1772 isl_local_space_free(ls);
1774 shift = isl_multi_aff_pullback_multi_aff(shift,
1775 isl_multi_aff_copy(insert_array));
1777 tiling = isl_multi_aff_range_map(isl_space_copy(space));
1778 tiling = isl_multi_aff_add(tiling, shift);
1779 tiling = isl_multi_aff_scale_down_multi_val(tiling, stride);
1781 return tiling;
1784 /* Compute a tiling for the array reference group "group".
1786 * The tiling is of the form
1788 * { [D[i] -> A[a]] -> T[t] }
1790 * where D represents the first tile->depth schedule dimensions,
1791 * A represents the global array and T represents the shared or
1792 * private memory tile. The name of T is the name of the local
1793 * array.
1795 * If there is any stride in the accesses, then the mapping is
1797 * t = (a + shift(i))/stride - lb(i)
1799 * otherwise, it is simply
1801 * t = a - lb(i)
1803 void gpu_array_ref_group_compute_tiling(struct gpu_array_ref_group *group)
1805 int i;
1806 struct gpu_array_tile *tile;
1807 isl_space *space;
1808 isl_multi_aff *tiling, *lb, *insert_array;
1809 isl_printer *p;
1810 char *local_name;
1812 tile = gpu_array_ref_group_tile(group);
1813 if (!tile)
1814 return;
1816 space = isl_map_get_space(group->access);
1817 space = isl_space_from_range(isl_space_range(space));
1818 space = isl_space_add_dims(space, isl_dim_in, tile->depth);
1819 insert_array = isl_multi_aff_domain_map(isl_space_copy(space));
1821 for (i = 0; i < tile->n; ++i)
1822 if (tile->bound[i].shift)
1823 break;
1825 if (i < tile->n)
1826 tiling = strided_tile(tile, space, insert_array);
1827 else
1828 tiling = isl_multi_aff_range_map(isl_space_copy(space));
1830 lb = isl_multi_aff_zero(space);
1831 for (i = 0; i < tile->n; ++i) {
1832 isl_aff *lb_i = isl_aff_copy(tile->bound[i].lb);
1833 lb = isl_multi_aff_set_aff(lb, i, lb_i);
1835 lb = isl_multi_aff_pullback_multi_aff(lb, insert_array);
1837 tiling = isl_multi_aff_sub(tiling, lb);
1839 p = isl_printer_to_str(isl_multi_aff_get_ctx(tiling));
1840 p = gpu_array_ref_group_print_name(group, p);
1841 local_name = isl_printer_get_str(p);
1842 isl_printer_free(p);
1843 tiling = isl_multi_aff_set_tuple_name(tiling, isl_dim_out, local_name);
1844 free(local_name);
1846 tile->tiling = tiling;