ppcg.c: eliminate_dead_code: extract out computation of live out accesses
[ppcg.git] / gpu.c
blob57f74ce561b99264738c6d53b410aa7163367217
1 /*
2 * Copyright 2010-2011 INRIA Saclay
3 * Copyright 2012-2013 Ecole Normale Superieure
5 * Use of this software is governed by the MIT license
7 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
8 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
9 * 91893 Orsay, France
10 * and Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France
13 #include <assert.h>
14 #include <stdlib.h>
15 #include <string.h>
17 #include <isl/polynomial.h>
18 #include <isl/union_set.h>
19 #include <isl/aff.h>
20 #include <isl/ilp.h>
21 #include <isl/flow.h>
22 #include <isl/band.h>
23 #include <isl/schedule.h>
24 #include <isl/options.h>
25 #include <isl/ast_build.h>
27 #include "cpu.h"
28 #include "gpu.h"
29 #include "schedule.h"
30 #include "ppcg_options.h"
31 #include "print.h"
33 /* The fields stride, shift and shift_map only contain valid information
34 * if shift != NULL.
35 * If so, they express that current index is such that if you add shift,
36 * then the result is always a multiple of stride.
37 * shift_map contains the mapping
39 * i -> (i + shift)/stride
41 * Let D represent the initial shared_len dimensions of the computed schedule.
42 * The spaces of "lb" and "shift" are of the form
44 * D -> [b]
46 * "shift_map" is of the form
48 * [D -> i] -> [D -> (i + shift(D))/stride]
50 struct gpu_array_bound {
51 isl_val *size;
52 isl_aff *lb;
54 isl_val *stride;
55 isl_aff *shift;
56 isl_basic_map *shift_map;
59 /* A tile of an array.
61 * n is the dimension of the array.
62 * bound is an array of size "n" representing the lower bound
63 * and size for each index.
65 * tiling maps a tile in the global array to the corresponding
66 * shared/private memory tile and is of the form
68 * { [D[i] -> A[a]] -> T[(a + shift(i))/stride - lb(i)] }
70 * where D represents the initial shared_len dimensions
71 * of the computed schedule.
73 struct gpu_array_tile {
74 int n;
75 struct gpu_array_bound *bound;
76 isl_multi_aff *tiling;
79 struct gpu_array_info;
81 /* A group of array references in a kernel that should be handled together.
82 * If private_tile is not NULL, then it is mapped to registers.
83 * Otherwise, if shared_tile is not NULL, it is mapped to shared memory.
84 * Otherwise, it is accessed from global memory.
86 struct gpu_array_ref_group {
87 /* The references in this group access this array. */
88 struct gpu_array_info *array;
89 /* Position of this group in the list of reference groups of array. */
90 int nr;
92 /* The following fields are use during the construction of the groups.
93 * access is the combined access relation relative to the shared
94 * memory tiling. In particular, the domain of the map corresponds
95 * to the first shared_len dimensions of the computed schedule.
96 * write is set if any access in the group is a write.
98 isl_map *access;
99 int write;
101 /* The shared memory tile, NULL if none. */
102 struct gpu_array_tile *shared_tile;
104 /* The private memory tile, NULL if none. */
105 struct gpu_array_tile *private_tile;
107 /* References in this group; point to elements of a linked list. */
108 int n_ref;
109 struct gpu_stmt_access **refs;
111 /* Last shared memory tile dimension that affects tile of this group. */
112 int last_shared;
115 struct gpu_gen {
116 isl_ctx *ctx;
117 struct ppcg_options *options;
119 /* Callback for printing of AST in appropriate format. */
120 __isl_give isl_printer *(*print)(__isl_take isl_printer *p,
121 struct gpu_prog *prog, __isl_keep isl_ast_node *tree,
122 struct gpu_types *types, void *user);
123 void *print_user;
125 struct gpu_prog *prog;
126 /* The generated AST. */
127 isl_ast_node *tree;
129 /* The sequence of types for which a definition has been printed. */
130 struct gpu_types types;
132 /* tile, grid and block sizes for each kernel */
133 isl_union_map *sizes;
135 /* Identifier of current kernel. */
136 int kernel_id;
137 /* Pointer to the current kernel. */
138 struct ppcg_kernel *kernel;
139 /* Does the computed schedule exhibit any parallelism? */
140 int any_parallelism;
142 /* First tile dimension. */
143 int tile_first;
144 /* Number of tile dimensions. */
145 int tile_len;
146 /* Number of initial parallel loops among tile dimensions. */
147 int n_parallel;
149 /* Number of dimensions determining shared memory. */
150 int shared_len;
152 /* Number of rows in the untiled schedule. */
153 int untiled_len;
154 /* Number of rows in the tiled schedule. */
155 int tiled_len;
156 /* Number of rows in schedule after tiling/wrapping over threads. */
157 int thread_tiled_len;
159 /* Global untiled schedule. */
160 isl_union_map *sched;
161 /* Local (per kernel launch) tiled schedule. */
162 isl_union_map *tiled_sched;
163 /* Local schedule per shared memory tile loop iteration. */
164 isl_union_map *local_sched;
166 /* Local tiled schedule projected onto the shared tile loops and
167 * the loops that will be wrapped over the threads,
168 * with all shared tile loops parametrized.
170 isl_union_map *shared_sched;
171 /* Projects out the loops that will be wrapped over the threads
172 * from shared_sched.
174 isl_union_map *shared_proj;
176 /* A map that takes the range of shared_sched as input,
177 * wraps the appropriate loops over the threads and then projects
178 * out these loops.
180 isl_map *privatization;
182 /* A map from the shared memory tile loops and the thread indices
183 * (as parameters) to the set of accessed memory elements that
184 * will be accessed through private copies.
186 isl_union_map *private_access;
188 /* The schedule for the current private/shared access
189 * (within print_private_access or print_shared_access).
191 isl_map *copy_sched;
192 /* The array reference group corresponding to copy_sched. */
193 struct gpu_array_ref_group *copy_group;
195 /* First loop to unroll (or -1 if none) in the current part of the
196 * schedule.
198 int first_unroll;
200 int n_grid;
201 int n_block;
202 /* Note: in the input file, the sizes of the grid and the blocks
203 * are specified in the order x, y, z, but internally, the sizes
204 * are stored in reverse order, so that the last element always
205 * refers to the x dimension.
207 int grid_dim[2];
208 int block_dim[3];
209 int *tile_size;
212 /* Print the name of the local copy of a given group of array references.
214 static __isl_give isl_printer *print_array_name(__isl_take isl_printer *p,
215 struct gpu_array_ref_group *group)
217 int global = 0;
219 if (group->private_tile)
220 p = isl_printer_print_str(p, "private_");
221 else if (group->shared_tile)
222 p = isl_printer_print_str(p, "shared_");
223 else
224 global = 1;
225 p = isl_printer_print_str(p, group->array->name);
226 if (!global && group->array->n_group > 1) {
227 p = isl_printer_print_str(p, "_");
228 p = isl_printer_print_int(p, group->nr);
231 return p;
234 /* Collect all references to the given array and store pointers to them
235 * in array->refs.
237 * If the array contains structures, then there is no need to collect
238 * the references since we will not be computing any reference groups.
240 static void collect_references(struct gpu_prog *prog,
241 struct gpu_array_info *array)
243 int i;
244 int n;
246 if (array->has_compound_element)
247 return;
249 n = 0;
250 for (i = 0; i < prog->n_stmts; ++i) {
251 struct gpu_stmt *stmt = &prog->stmts[i];
252 struct gpu_stmt_access *access;
254 for (access = stmt->accesses; access; access = access->next) {
255 const char *name;
256 name = isl_map_get_tuple_name(access->access,
257 isl_dim_out);
258 if (name && !strcmp(array->name, name))
259 n++;
263 array->n_ref = n;
264 array->refs = isl_alloc_array(prog->ctx, struct gpu_stmt_access *, n);
265 assert(array->refs);
267 n = 0;
268 for (i = 0; i < prog->n_stmts; ++i) {
269 struct gpu_stmt *stmt = &prog->stmts[i];
270 struct gpu_stmt_access *access;
272 for (access = stmt->accesses; access; access = access->next) {
273 const char *name;
274 name = isl_map_get_tuple_name(access->access,
275 isl_dim_out);
276 if (!name || strcmp(array->name, name))
277 continue;
279 array->refs[n++] = access;
284 /* Create a gpu_array_tile for an array of dimension "n_index".
286 static struct gpu_array_tile *create_tile(isl_ctx *ctx, int n_index)
288 int i;
289 struct gpu_array_tile *tile;
291 tile = isl_calloc_type(ctx, struct gpu_array_tile);
292 assert(tile);
294 tile->n = n_index;
296 tile->bound = isl_alloc_array(ctx, struct gpu_array_bound, n_index);
297 assert(tile->bound);
299 for (i = 0; i < n_index; ++i) {
300 tile->bound[i].size = NULL;
301 tile->bound[i].lb = NULL;
302 tile->bound[i].stride = NULL;
303 tile->bound[i].shift = NULL;
304 tile->bound[i].shift_map = NULL;
307 return tile;
310 static void *free_tile(struct gpu_array_tile *tile)
312 int j;
314 if (!tile)
315 return NULL;
317 for (j = 0; j < tile->n; ++j) {
318 isl_val_free(tile->bound[j].size);
319 isl_val_free(tile->bound[j].stride);
320 isl_aff_free(tile->bound[j].lb);
321 isl_aff_free(tile->bound[j].shift);
322 isl_basic_map_free(tile->bound[j].shift_map);
324 free(tile->bound);
325 isl_multi_aff_free(tile->tiling);
326 free(tile);
328 return NULL;
331 static struct pet_array *find_array(struct ppcg_scop *scop,
332 __isl_keep isl_set *accessed)
334 int i;
335 isl_id *id;
337 id = isl_set_get_tuple_id(accessed);
339 for (i = 0; i < scop->n_array; ++i) {
340 isl_id *id_i;
342 id_i = isl_set_get_tuple_id(scop->arrays[i]->extent);
343 isl_id_free(id_i);
344 if (id == id_i)
345 break;
347 isl_id_free(id);
349 return i < scop->n_array ? scop->arrays[i] : NULL;
352 /* Compute and return the extent of "array", taking into account the set of
353 * accessed elements.
355 * In particular, the extent in the outer dimension is taken
356 * from "accessed", while then extent in the remaing dimensions
357 * are taken from array->extent.
359 * The extent in the outer dimension cannot be taken from array->extent
360 * because that may be unbounded. Furthermore, even if it is bounded,
361 * it may be larger than the piece of the array that is being accessed.
363 static __isl_give isl_set *compute_extent(struct pet_array *array,
364 __isl_keep isl_set *accessed)
366 int n_index;
367 isl_id *id;
368 isl_set *outer;
369 isl_set *extent;
371 extent = isl_set_copy(array->extent);
373 n_index = isl_set_dim(accessed, isl_dim_set);
374 if (n_index == 0)
375 return extent;
377 extent = isl_set_project_out(extent, isl_dim_set, 0, 1);
378 outer = isl_set_copy(accessed);
379 outer = isl_set_project_out(outer, isl_dim_set, 1, n_index - 1);
380 extent = isl_set_flat_product(outer, extent);
381 id = isl_set_get_tuple_id(accessed);
382 extent = isl_set_set_tuple_id(extent, id);
384 return extent;
387 /* Is the array "array" being extracted a read-only scalar?
389 * That is, is "array" a scalar that is never written to.
390 * An array containing structures is never considered to be a scalar.
392 static int is_read_only_scalar(struct gpu_array_info *array,
393 struct gpu_prog *prog)
395 isl_set *space;
396 isl_union_map *write;
397 int empty;
399 if (array->has_compound_element)
400 return 0;
401 if (array->n_index != 0)
402 return 0;
404 write = isl_union_map_copy(prog->write);
405 space = isl_set_universe(isl_space_copy(array->space));
406 write = isl_union_map_intersect_range(write,
407 isl_union_set_from_set(space));
408 empty = isl_union_map_is_empty(write);
409 isl_union_map_free(write);
411 return empty;
414 /* Compute bounds on the host arrays based on the accessed elements
415 * and collect all references to the array.
417 * If the array is zero-dimensional and does not contain structures,
418 * i.e., if the array is a scalar, we check whether it is read-only.
420 static int extract_array_info(__isl_take isl_set *array, void *user)
422 int i;
423 struct gpu_prog *prog = (struct gpu_prog *)user;
424 const char *name;
425 int n_index;
426 isl_pw_aff **bounds;
427 struct pet_array *pa;
428 struct gpu_array_info *info;
429 isl_set *extent;
431 info = &prog->array[prog->n_array];
432 prog->n_array++;
434 n_index = isl_set_dim(array, isl_dim_set);
435 name = isl_set_get_tuple_name(array);
436 bounds = isl_alloc_array(isl_set_get_ctx(array),
437 isl_pw_aff *, n_index);
438 if (!bounds)
439 goto error;
441 info->space = isl_set_get_space(array);
442 info->name = strdup(name);
443 info->n_index = n_index;
444 info->bound = bounds;
445 info->linearize = prog->scop->options->linearize_device_arrays;
447 pa = find_array(prog->scop, array);
448 if (!pa)
449 isl_die(isl_set_get_ctx(array), isl_error_internal,
450 "unable to find array in scop", goto error);
452 info->type = strdup(pa->element_type);
453 info->size = pa->element_size;
454 info->local = pa->declared && !pa->exposed;
455 info->has_compound_element = pa->element_is_record;
456 info->read_only_scalar = is_read_only_scalar(info, prog);
458 extent = compute_extent(pa, array);
459 for (i = 0; i < n_index; ++i) {
460 isl_set *dom;
461 isl_local_space *ls;
462 isl_aff *one;
463 isl_pw_aff *bound;
465 bound = isl_set_dim_max(isl_set_copy(extent), i);
466 assert(bound);
467 dom = isl_pw_aff_domain(isl_pw_aff_copy(bound));
468 ls = isl_local_space_from_space(isl_set_get_space(dom));
469 one = isl_aff_zero_on_domain(ls);
470 one = isl_aff_add_constant_si(one, 1);
471 bound = isl_pw_aff_add(bound, isl_pw_aff_alloc(dom, one));
472 bound = isl_pw_aff_gist(bound, isl_set_copy(prog->context));
474 bounds[i] = bound;
475 if (!isl_pw_aff_is_cst(bound))
476 info->linearize = 1;
478 info->extent = extent;
480 collect_references(prog, info);
482 isl_set_free(array);
483 return 0;
484 error:
485 isl_set_free(array);
486 return -1;
489 /* Compute a mapping from all outer arrays (of structs) in scop
490 * to their innermost arrays.
492 * In particular, for each array of a primitive type, the result
493 * contains the identity mapping on that array.
494 * For each array involving member accesses, the result
495 * contains a mapping from the elements of the outer array of structs
496 * to all corresponding elements of the innermost nested arrays.
498 static __isl_give isl_union_map *compute_to_inner(struct ppcg_scop *scop)
500 int i;
501 isl_union_map *to_inner;
503 to_inner = isl_union_map_empty(isl_set_get_space(scop->context));
505 for (i = 0; i < scop->n_array; ++i) {
506 struct pet_array *array = scop->arrays[i];
507 isl_set *set;
508 isl_map *map;
510 if (array->element_is_record)
511 continue;
513 set = isl_set_copy(array->extent);
514 map = isl_set_identity(isl_set_copy(set));
516 while (set && isl_set_is_wrapping(set)) {
517 isl_id *id;
518 isl_map *wrapped;
520 id = isl_set_get_tuple_id(set);
521 wrapped = isl_set_unwrap(set);
522 wrapped = isl_map_domain_map(wrapped);
523 wrapped = isl_map_set_tuple_id(wrapped, isl_dim_in, id);
524 map = isl_map_apply_domain(map, wrapped);
525 set = isl_map_domain(isl_map_copy(map));
528 map = isl_map_gist_domain(map, set);
530 to_inner = isl_union_map_add_map(to_inner, map);
533 return to_inner;
536 /* Construct a gpu_array_info for each array accessed by "prog" and
537 * collect them in prog->array.
539 * If there are any member accesses involved, then they are first mapped
540 * to the outer arrays of structs.
542 static int collect_array_info(struct gpu_prog *prog)
544 int r;
545 isl_union_set *arrays;
547 arrays = isl_union_map_range(isl_union_map_copy(prog->read));
548 arrays = isl_union_set_union(arrays,
549 isl_union_map_range(isl_union_map_copy(prog->write)));
551 arrays = isl_union_set_apply(arrays,
552 isl_union_map_copy(prog->to_outer));
554 arrays = isl_union_set_coalesce(arrays);
556 prog->n_array = isl_union_set_n_set(arrays);
557 prog->array = isl_calloc_array(prog->ctx,
558 struct gpu_array_info, prog->n_array);
559 assert(prog->array);
560 prog->n_array = 0;
561 r = isl_union_set_foreach_set(arrays, &extract_array_info, prog);
562 isl_union_set_free(arrays);
564 return r;
567 static void free_array_info(struct gpu_prog *prog)
569 int i, j;
571 for (i = 0; i < prog->n_array; ++i) {
572 int n_index = prog->array[i].n_index;
573 free(prog->array[i].type);
574 free(prog->array[i].name);
575 for (j = 0; j < n_index; ++j)
576 isl_pw_aff_free(prog->array[i].bound[j]);
577 isl_space_free(prog->array[i].space);
578 isl_set_free(prog->array[i].extent);
579 free(prog->array[i].bound);
580 free(prog->array[i].refs);
582 free(prog->array);
585 /* Check if a gpu array is a scalar. A scalar is a value that is not stored
586 * as an array or through a pointer reference, but as a single data element.
587 * At the moment, scalars are represented as zero-dimensional arrays.
588 * A zero-dimensional array containing structures is not considered
589 * to be a scalar.
591 int gpu_array_is_scalar(struct gpu_array_info *array)
593 return !array->has_compound_element && array->n_index == 0;
596 /* Is "array" a read-only scalar?
598 int gpu_array_is_read_only_scalar(struct gpu_array_info *array)
600 return array->read_only_scalar;
603 /* Internal data structure for extract_size_of_type.
604 * "type" specifies the name of the space that we want to extract.
605 * "res" is used to store the subset of that space.
607 struct ppcg_extract_size_data {
608 const char *type;
609 isl_set *res;
612 /* This function is called for each set in a union_set.
613 * If the name of the set matches data->type, we store the
614 * set in data->res.
616 static int extract_size_of_type(__isl_take isl_set *size, void *user)
618 struct ppcg_extract_size_data *data = user;
619 const char *name;
621 name = isl_set_get_tuple_name(size);
622 if (name && !strcmp(name, data->type)) {
623 data->res = size;
624 return -1;
627 isl_set_free(size);
628 return 0;
631 /* Given a union map { kernel[i] -> *[...] },
632 * return the range in the space called "type" for the kernel with
633 * sequence number "id".
635 static __isl_give isl_set *extract_sizes(__isl_keep isl_union_map *sizes,
636 const char *type, int id)
638 isl_space *space;
639 isl_set *dom;
640 isl_union_set *local_sizes;
641 struct ppcg_extract_size_data data = { type, NULL };
643 if (!sizes)
644 return NULL;
646 space = isl_union_map_get_space(sizes);
647 space = isl_space_set_from_params(space);
648 space = isl_space_add_dims(space, isl_dim_set, 1);
649 space = isl_space_set_tuple_name(space, isl_dim_set, "kernel");
650 dom = isl_set_universe(space);
651 dom = isl_set_fix_si(dom, isl_dim_set, 0, id);
653 local_sizes = isl_union_set_apply(isl_union_set_from_set(dom),
654 isl_union_map_copy(sizes));
655 isl_union_set_foreach_set(local_sizes, &extract_size_of_type, &data);
656 isl_union_set_free(local_sizes);
657 return data.res;
660 /* Given a singleton set, extract the first (at most *len) elements
661 * of the single integer tuple into *sizes and update *len if needed.
663 static void read_sizes_from_set(__isl_take isl_set *set, int *sizes, int *len)
665 int i;
666 int dim;
668 if (!set)
669 return;
671 dim = isl_set_dim(set, isl_dim_set);
672 if (dim < *len)
673 *len = dim;
675 for (i = 0; i < *len; ++i) {
676 isl_val *v;
678 v = isl_set_plain_get_val_if_fixed(set, isl_dim_set, i);
679 assert(v);
681 sizes[i] = isl_val_get_num_si(v);
682 isl_val_free(v);
685 isl_set_free(set);
688 /* Extract user specified "tile" sizes from the "sizes" command line option,
689 * defaulting to option->tile_size in each dimension.
691 static void read_tile_sizes(struct gpu_gen *gen)
693 int n;
694 isl_set *size;
696 gen->tile_size = isl_alloc_array(gen->ctx, int, gen->tile_len);
697 assert(gen->tile_size);
698 for (n = 0; n < gen->tile_len; ++n)
699 gen->tile_size[n] = gen->options->tile_size;
701 size = extract_sizes(gen->sizes, "tile", gen->kernel_id);
702 read_sizes_from_set(size, gen->tile_size, &gen->tile_len);
704 if (gen->n_parallel > gen->tile_len)
705 gen->n_parallel = gen->tile_len;
708 /* Extract user specified "block" sizes from the "sizes" command line option,
709 * after filling in some potentially useful defaults.
711 static void read_block_sizes(struct gpu_gen *gen)
713 int n;
714 isl_set *size;
716 n = gen->n_parallel;
717 gen->n_block = (n <= 3) ? n : 3;
718 switch (gen->n_block) {
719 case 1:
720 gen->block_dim[0] = 512;
721 break;
722 case 2:
723 gen->block_dim[0] = 32;
724 gen->block_dim[1] = 16;
725 break;
726 default:
727 gen->block_dim[0] = 32;
728 gen->block_dim[1] = 4;
729 gen->block_dim[2] = 4;
730 break;
733 size = extract_sizes(gen->sizes, "block", gen->kernel_id);
734 read_sizes_from_set(size, gen->block_dim, &gen->n_block);
737 /* Extract user specified "grid" sizes from the "sizes" command line option,
738 * after filling in some potentially useful defaults.
740 static void read_grid_sizes(struct gpu_gen *gen)
742 int n = gen->n_parallel;
743 isl_set *size;
745 gen->n_grid = (n <= 2) ? n : 2;
746 switch (gen->n_grid) {
747 case 1:
748 gen->grid_dim[0] = 32768;
749 break;
750 default:
751 gen->grid_dim[0] = 256;
752 gen->grid_dim[1] = 256;
753 break;
756 size = extract_sizes(gen->sizes, "grid", gen->kernel_id);
757 read_sizes_from_set(size, gen->grid_dim, &gen->n_grid);
760 /* Extract user specified sizes from the "sizes" command line option
761 * after filling in some potentially useful defaults.
763 static void read_sizes(struct gpu_gen *gen)
765 read_tile_sizes(gen);
766 read_block_sizes(gen);
767 read_grid_sizes(gen);
770 static void *free_stmts(struct gpu_stmt *stmts, int n)
772 int i;
774 if (!stmts)
775 return NULL;
777 for (i = 0; i < n; ++i) {
778 struct gpu_stmt_access *access, *next;
780 for (access = stmts[i].accesses; access; access = next) {
781 next = access->next;
782 isl_id_free(access->ref_id);
783 isl_map_free(access->access);
784 free(access);
787 isl_id_free(stmts[i].id);
789 free(stmts);
791 return NULL;
794 /* Construct a map from a domain of dimensionality "len"
795 * to a domain of dimensionality "len" + "tile_len" that tiles
796 * the "tile_len" coordinates starting at "first".
797 * In particular, [s_i] -> [s_i / tile_size[i], s_i % tile_size[i]].
798 * "dim" prescribes the parameters.
800 static __isl_give isl_map *tile(__isl_take isl_space *dim, int len,
801 int first, int tile_len, int *tile_size)
803 int i;
804 isl_basic_map *bmap;
805 isl_constraint *c;
806 isl_local_space *ls;
808 dim = isl_space_add_dims(dim, isl_dim_in, len);
809 dim = isl_space_add_dims(dim, isl_dim_out, len + tile_len);
810 bmap = isl_basic_map_universe(isl_space_copy(dim));
811 ls = isl_local_space_from_space(dim);
813 for (i = 0; i < len - tile_len; ++i) {
814 int j = i < first ? i : i + tile_len;
815 int k = i < first ? i : i + 2 * tile_len;
817 c = isl_equality_alloc(isl_local_space_copy(ls));
818 c = isl_constraint_set_coefficient_si(c, isl_dim_in, j, -1);
819 c = isl_constraint_set_coefficient_si(c, isl_dim_out, k, 1);
820 bmap = isl_basic_map_add_constraint(bmap, c);
823 for (i = 0; i < tile_len; ++i) {
824 c = isl_equality_alloc(isl_local_space_copy(ls));
825 c = isl_constraint_set_coefficient_si(c, isl_dim_in,
826 first + i, -1);
827 c = isl_constraint_set_coefficient_si(c, isl_dim_out,
828 first + i, tile_size[i]);
829 c = isl_constraint_set_coefficient_si(c, isl_dim_out,
830 first + i + tile_len, 1);
831 bmap = isl_basic_map_add_constraint(bmap, c);
833 c = isl_inequality_alloc(isl_local_space_copy(ls));
834 c = isl_constraint_set_coefficient_si(c, isl_dim_out,
835 first + i + tile_len, 1);
836 bmap = isl_basic_map_add_constraint(bmap, c);
838 c = isl_inequality_alloc(isl_local_space_copy(ls));
839 c = isl_constraint_set_coefficient_si(c, isl_dim_out,
840 first + i + tile_len, -1);
841 c = isl_constraint_set_constant_si(c, tile_size[i] - 1);
842 bmap = isl_basic_map_add_constraint(bmap, c);
845 isl_local_space_free(ls);
847 return isl_map_from_basic_map(bmap);
850 /* Construct a map from a domain of dimensionality "len"
851 * to a domain of dimensionality "len" + "wrap_len" that "wraps"
852 * the "wrap_len" coordinates starting at "first" according to "wrap_size".
853 * In particular, [s_i] -> [s_i, s_i % wrap_size[i]].
854 * To do so, we need extra variables corresponding to [s_i / wrap_size[i]],
855 * that are projected out at the end.
856 * "dim" prescribes the parameters.
858 static __isl_give isl_map *wrap(__isl_take isl_space *dim, int len,
859 int first, int wrap_len, int *wrap_size)
861 int i;
862 isl_basic_map *bmap;
863 isl_constraint *c;
864 isl_local_space *ls;
866 dim = isl_space_add_dims(dim, isl_dim_in, len);
867 dim = isl_space_add_dims(dim, isl_dim_out, len + 2 * wrap_len);
868 bmap = isl_basic_map_universe(isl_space_copy(dim));
869 ls = isl_local_space_from_space(dim);
871 for (i = 0; i < len; ++i) {
872 int k = i < first + wrap_len ? i : i + 2 * wrap_len;
874 c = isl_equality_alloc(isl_local_space_copy(ls));
875 c = isl_constraint_set_coefficient_si(c, isl_dim_in, i, -1);
876 c = isl_constraint_set_coefficient_si(c, isl_dim_out, k, 1);
877 bmap = isl_basic_map_add_constraint(bmap, c);
880 for (i = 0; i < wrap_len; ++i) {
881 c = isl_equality_alloc(isl_local_space_copy(ls));
882 c = isl_constraint_set_coefficient_si(c, isl_dim_out,
883 first + i, -1);
884 c = isl_constraint_set_coefficient_si(c, isl_dim_out,
885 first + wrap_len + i, 1);
886 c = isl_constraint_set_coefficient_si(c, isl_dim_out,
887 first + 2 * wrap_len + i, wrap_size[i]);
888 bmap = isl_basic_map_add_constraint(bmap, c);
890 c = isl_inequality_alloc(isl_local_space_copy(ls));
891 c = isl_constraint_set_coefficient_si(c, isl_dim_out,
892 first + wrap_len + i, 1);
893 bmap = isl_basic_map_add_constraint(bmap, c);
895 c = isl_inequality_alloc(isl_local_space_copy(ls));
896 c = isl_constraint_set_coefficient_si(c, isl_dim_out,
897 first + wrap_len + i, -1);
898 c = isl_constraint_set_constant_si(c, wrap_size[i] - 1);
899 bmap = isl_basic_map_add_constraint(bmap, c);
902 isl_local_space_free(ls);
904 bmap = isl_basic_map_project_out(bmap, isl_dim_out,
905 first + 2 * wrap_len, wrap_len);
907 return isl_map_from_basic_map(bmap);
910 /* Add "n" parameters named prefix%d.
912 static __isl_give isl_set *add_params( __isl_take isl_set *set,
913 int n, const char *prefix)
915 int i;
916 unsigned nparam;
917 char name[20];
919 nparam = isl_set_dim(set, isl_dim_param);
920 set = isl_set_add_dims(set, isl_dim_param, n);
922 for (i = 0; i < n; ++i) {
923 snprintf(name, sizeof(name), "%s%d", prefix, i);
924 set = isl_set_set_dim_name(set, isl_dim_param,
925 nparam + i, name);
928 return set;
931 /* Equate the "n" dimensions of "set" starting at "first" to
932 * freshly created parameters named prefix%d.
934 static __isl_give isl_set *parametrize(__isl_take isl_set *set,
935 int first, int n, const char *prefix)
937 int i;
938 unsigned nparam;
940 nparam = isl_set_dim(set, isl_dim_param);
942 set = add_params(set, n, prefix);
944 for (i = 0; i < n; ++i)
945 set = isl_set_equate(set, isl_dim_param, nparam + i,
946 isl_dim_set, first + i);
948 return set;
951 /* Given a parameter space "space", create a set of dimension "len"
952 * of which the "n" dimensions starting at "first" are equated to
953 * freshly created parameters named prefix%d.
955 static __isl_give isl_set *parametrization(__isl_take isl_space *space,
956 int len, int first, int n, const char *prefix)
958 isl_set *set;
960 space = isl_space_set_from_params(space);
961 space = isl_space_add_dims(space, isl_dim_set, len);
962 set = isl_set_universe(space);
964 return parametrize(set, first, n, prefix);
967 /* Tile the B loops over the tile sizes and then tile/wrap
968 * the T1 loops over the blocks.
970 static __isl_give isl_union_map *tile_schedule(struct gpu_gen *gen,
971 __isl_take isl_union_map *sched)
973 isl_space *dim;
974 isl_map *tiling, *block_tiling;
976 dim = isl_union_map_get_space(sched);
977 tiling = tile(isl_space_copy(dim), gen->untiled_len,
978 gen->tile_first, gen->tile_len, gen->tile_size);
980 if (gen->options->wrap)
981 block_tiling = wrap(dim, gen->untiled_len + gen->tile_len,
982 gen->tile_first, gen->n_grid, gen->grid_dim);
983 else
984 block_tiling = tile(dim, gen->untiled_len + gen->tile_len,
985 gen->tile_first, gen->n_grid, gen->grid_dim);
987 gen->tiled_len = gen->untiled_len + gen->tile_len + gen->n_grid;
989 tiling = isl_map_apply_range(tiling, block_tiling);
991 sched = isl_union_map_apply_range(sched,
992 isl_union_map_from_map(tiling));
994 gen->shared_len = gen->tile_first + gen->tile_len + gen->n_grid;
996 return sched;
999 /* Equate the "T1P" iterators in the tiled schedule "sched"
1000 * to the block dimensions.
1002 static __isl_give isl_union_map *parametrize_tiled_schedule(
1003 struct gpu_gen *gen, __isl_take isl_union_map *sched)
1005 isl_space *dim;
1006 isl_set *par;
1008 dim = isl_union_map_get_space(sched);
1009 par = parametrization(dim, gen->tiled_len,
1010 gen->tile_first + gen->n_grid, gen->n_grid, "b");
1011 sched = isl_union_map_intersect_range(sched,
1012 isl_union_set_from_set(par));
1014 return sched;
1017 /* Tile/wrap the P1 loops over the threads.
1019 static __isl_give isl_union_map *thread_tile_schedule(struct gpu_gen *gen,
1020 __isl_take isl_union_map *sched)
1022 isl_space *dim;
1023 isl_map *tiling;
1024 isl_set *par;
1026 dim = isl_union_map_get_space(sched);
1028 if (gen->options->wrap)
1029 tiling = wrap(isl_space_copy(dim), gen->tiled_len,
1030 gen->shared_len, gen->n_block, gen->block_dim);
1031 else
1032 tiling = tile(isl_space_copy(dim), gen->tiled_len,
1033 gen->shared_len, gen->n_block, gen->block_dim);
1034 gen->thread_tiled_len = gen->tiled_len + gen->n_block;
1036 sched = isl_union_map_apply_range(sched,
1037 isl_union_map_from_map(tiling));
1039 par = parametrization(dim, gen->thread_tiled_len,
1040 gen->tile_first + gen->tile_len + gen->n_grid + gen->n_block,
1041 gen->n_block, "t");
1042 sched = isl_union_map_intersect_range(sched,
1043 isl_union_set_from_set(par));
1045 gen->shared_len = gen->tile_first + gen->tile_len + gen->n_grid;
1047 return sched;
1050 /* If the user asked for it, scale the shared memory tile loops
1051 * (T1T and T2) of "sched" by gen->tile_size[i].
1052 * If we are not performing "wrapping", then additionally scale the T1P
1053 * loops by gen->grid_dim[i].
1055 static __isl_give isl_union_map *scale_tile_loops(struct gpu_gen *gen,
1056 __isl_take isl_union_map *sched)
1058 int i;
1059 isl_space *dim;
1060 isl_basic_map *scale;
1061 isl_constraint *c;
1062 isl_local_space *ls;
1064 if (!gen->options->scale_tile_loops)
1065 return sched;
1067 dim = isl_union_map_get_space(sched);
1068 dim = isl_space_add_dims(dim, isl_dim_in, gen->tiled_len);
1069 dim = isl_space_add_dims(dim, isl_dim_out, gen->tiled_len);
1070 scale = isl_basic_map_universe(isl_space_copy(dim));
1071 ls = isl_local_space_from_space(dim);
1073 for (i = 0; i < gen->tiled_len; ++i) {
1074 int f = 1;
1076 if (i >= gen->tile_first && i < gen->tile_first + gen->n_grid) {
1077 f = gen->tile_size[i - gen->tile_first];
1078 if (!gen->options->wrap)
1079 f *= gen->grid_dim[i - gen->tile_first];
1080 } else if (i >= gen->tile_first + gen->n_grid &&
1081 i < gen->tile_first + gen->n_grid + gen->tile_len) {
1082 f = gen->tile_size[i - (gen->tile_first + gen->n_grid)];
1085 c = isl_equality_alloc(isl_local_space_copy(ls));
1086 c = isl_constraint_set_coefficient_si(c, isl_dim_in, i, f);
1087 c = isl_constraint_set_coefficient_si(c, isl_dim_out, i, -1);
1088 scale = isl_basic_map_add_constraint(scale, c);
1091 isl_local_space_free(ls);
1093 sched = isl_union_map_apply_range(sched,
1094 isl_union_map_from_map(isl_map_from_basic_map(scale)));
1096 return sched;
1099 /* If we are not performing "wrapping" and if the user asked for it,
1100 * scale the thread tile loops (P1T) of "sched" by gen->block_dim[i].
1102 static __isl_give isl_union_map *scale_thread_tile_loops(struct gpu_gen *gen,
1103 __isl_take isl_union_map *sched)
1105 int i;
1106 isl_space *dim;
1107 isl_basic_map *scale;
1108 isl_constraint *c;
1109 isl_local_space *ls;
1111 if (gen->options->wrap)
1112 return sched;
1113 if (!gen->options->scale_tile_loops)
1114 return sched;
1116 dim = isl_union_map_get_space(sched);
1117 dim = isl_space_add_dims(dim, isl_dim_in, gen->thread_tiled_len);
1118 dim = isl_space_add_dims(dim, isl_dim_out, gen->thread_tiled_len);
1119 scale = isl_basic_map_universe(isl_space_copy(dim));
1120 ls = isl_local_space_from_space(dim);
1122 for (i = 0; i < gen->thread_tiled_len; ++i) {
1123 int f = 1;
1125 if (i >= gen->shared_len &&
1126 i < gen->shared_len + gen->n_block)
1127 f = gen->block_dim[i - gen->shared_len];
1129 c = isl_equality_alloc(isl_local_space_copy(ls));
1130 c = isl_constraint_set_coefficient_si(c, isl_dim_in, i, f);
1131 c = isl_constraint_set_coefficient_si(c, isl_dim_out, i, -1);
1132 scale = isl_basic_map_add_constraint(scale, c);
1135 isl_local_space_free(ls);
1137 sched = isl_union_map_apply_range(sched,
1138 isl_union_map_from_map(isl_map_from_basic_map(scale)));
1140 return sched;
1143 /* If we are not performing "wrapping" and if the user asked for it,
1144 * scale the "n_tile" loops starting at "first" of "sched" by gen->block_dim[i].
1146 static __isl_give isl_union_map *scale_access_tile_loops(struct gpu_gen *gen,
1147 __isl_take isl_union_map *sched, int len, int first, int n_tile)
1149 int i;
1150 isl_space *dim;
1151 isl_basic_map *scale;
1152 isl_constraint *c;
1153 isl_local_space *ls;
1155 if (gen->options->wrap)
1156 return sched;
1157 if (!gen->options->scale_tile_loops)
1158 return sched;
1160 dim = isl_union_map_get_space(sched);
1161 dim = isl_space_add_dims(dim, isl_dim_in, len);
1162 dim = isl_space_add_dims(dim, isl_dim_out, len);
1163 scale = isl_basic_map_universe(isl_space_copy(dim));
1164 ls = isl_local_space_from_space(dim);
1166 for (i = 0; i < len; ++i) {
1167 int f = 1;
1169 if (i >= first && i < first + n_tile)
1170 f = gen->kernel->block_dim[i - first];
1172 c = isl_equality_alloc(isl_local_space_copy(ls));
1173 c = isl_constraint_set_coefficient_si(c, isl_dim_in, i, f);
1174 c = isl_constraint_set_coefficient_si(c, isl_dim_out, i, -1);
1175 scale = isl_basic_map_add_constraint(scale, c);
1178 isl_local_space_free(ls);
1180 sched = isl_union_map_apply_range(sched,
1181 isl_union_map_from_map(isl_map_from_basic_map(scale)));
1183 return sched;
1186 /* Add "len" parameters p[i] called prefix%d,
1187 * with bounds to 0 <= p[i] < size[i].
1189 __isl_give isl_set *add_bounded_parameters(__isl_take isl_set *set,
1190 int len, int *size, const char *prefix)
1192 int i;
1193 unsigned nparam;
1194 isl_space *dim;
1195 isl_basic_set *bset;
1196 isl_constraint *c;
1197 isl_local_space *ls;
1198 char name[20];
1200 nparam = isl_set_dim(set, isl_dim_param);
1201 set = isl_set_add_dims(set, isl_dim_param, len);
1203 for (i = 0; i < len; ++i) {
1204 snprintf(name, sizeof(name), "%s%d", prefix, i);
1205 set = isl_set_set_dim_name(set, isl_dim_param,
1206 nparam + i, name);
1209 dim = isl_set_get_space(set);
1210 bset = isl_basic_set_universe(isl_space_copy(dim));
1211 ls = isl_local_space_from_space(dim);
1213 for (i = 0; i < len; ++i) {
1214 c = isl_inequality_alloc(isl_local_space_copy(ls));
1215 c = isl_constraint_set_coefficient_si(c, isl_dim_param,
1216 nparam + i, 1);
1217 bset = isl_basic_set_add_constraint(bset, c);
1219 c = isl_inequality_alloc(isl_local_space_copy(ls));
1220 c = isl_constraint_set_coefficient_si(c, isl_dim_param,
1221 nparam + i, -1);
1222 c = isl_constraint_set_constant_si(c, size[i] - 1);
1223 bset = isl_basic_set_add_constraint(bset, c);
1226 isl_local_space_free(ls);
1228 return isl_set_intersect(set, isl_set_from_basic_set(bset));
1231 /* Add "len" parameters p[i] called prefix%d,
1232 * with bounds to 0 <= p[i] < size[i].
1234 static __isl_give isl_set *add_bounded_parameters_dynamic(
1235 __isl_take isl_set *set, __isl_keep isl_multi_pw_aff *size,
1236 const char *prefix)
1238 int i, len;
1239 unsigned nparam;
1240 isl_space *space;
1241 isl_local_space *ls;
1242 char name[20];
1244 len = isl_multi_pw_aff_dim(size, isl_dim_out);
1245 nparam = isl_set_dim(set, isl_dim_param);
1246 set = isl_set_add_dims(set, isl_dim_param, len);
1248 for (i = 0; i < len; ++i) {
1249 snprintf(name, sizeof(name), "%s%d", prefix, i);
1250 set = isl_set_set_dim_name(set, isl_dim_param,
1251 nparam + i, name);
1254 space = isl_space_params(isl_set_get_space(set));
1255 ls = isl_local_space_from_space(space);
1256 for (i = 0; i < len; ++i) {
1257 isl_pw_aff *param, *size_i, *zero;
1258 isl_set *bound;
1260 param = isl_pw_aff_var_on_domain(isl_local_space_copy(ls),
1261 isl_dim_param, nparam + i);
1263 size_i = isl_multi_pw_aff_get_pw_aff(size, i);
1264 bound = isl_pw_aff_lt_set(isl_pw_aff_copy(param), size_i);
1265 set = isl_set_intersect_params(set, bound);
1267 zero = isl_pw_aff_zero_on_domain(isl_local_space_copy(ls));
1268 bound = isl_pw_aff_ge_set(param, zero);
1269 set = isl_set_intersect_params(set, bound);
1271 isl_local_space_free(ls);
1273 return set;
1276 /* Construct a map from an access to group->array to the corresponding
1277 * shared/private memory tile.
1278 * The map is of the form
1280 * { [D[i] -> A[a]] -> T[t] }
1282 * where D represents the initial shared_len dimensions
1283 * of the computed schedule.
1285 static __isl_give isl_map *shift_access(struct gpu_array_ref_group *group)
1287 struct gpu_array_tile *tile;
1288 isl_multi_aff *tiling;
1290 tile = group->private_tile;
1291 if (!tile)
1292 tile = group->shared_tile;
1294 tiling = isl_multi_aff_copy(tile->tiling);
1296 return isl_map_from_multi_aff(tiling);
1299 /* Does "map" have an obviously fixed value at variable "pos" of "type"?
1301 static int map_plain_is_fixed(isl_map *map, enum isl_dim_type type,
1302 unsigned pos)
1304 isl_val *v;
1305 int fixed;
1307 v = isl_map_plain_get_val_if_fixed(map, type, pos);
1308 if (!v)
1309 return -1;
1310 fixed = isl_val_is_int(v);
1311 isl_val_free(v);
1313 return fixed;
1316 /* Given a schedule that iterates over all elements in a piece of an array,
1317 * perform tiling/wrapping over the threads.
1319 * In particular, we tile the final iterators so that the final thread
1320 * dimension runs over the final array dimension.
1321 * However, if those final iterators have only a single iteration,
1322 * we try to tile earlier iterators instead.
1324 static __isl_give isl_map *tile_access_schedule(struct gpu_gen *gen,
1325 __isl_take isl_map *sched)
1327 isl_space *dim;
1328 isl_union_map *usched;
1329 isl_map *tiling;
1330 isl_set *par;
1331 unsigned nvar = isl_map_dim(sched, isl_dim_out);
1332 int n_tile;
1333 int first;
1335 n_tile = gen->kernel->n_block;
1336 if (n_tile > nvar) {
1337 int i;
1338 sched = isl_map_insert_dims(sched,
1339 isl_dim_out, 0, n_tile - nvar);
1340 for (i = 0; i < n_tile - nvar; ++i)
1341 sched = isl_map_fix_si(sched, isl_dim_out, i, 0);
1342 nvar = n_tile;
1345 first = nvar - n_tile;
1347 for (; first > 0; first --)
1348 if (!map_plain_is_fixed(sched, isl_dim_out, first + n_tile - 1))
1349 break;
1351 dim = isl_map_get_space(sched);
1352 dim = isl_space_params(dim);
1353 if (gen->options->wrap)
1354 tiling = wrap(isl_space_copy(dim), nvar, first,
1355 n_tile, gen->kernel->block_dim);
1356 else
1357 tiling = tile(isl_space_copy(dim), nvar, first,
1358 n_tile, gen->kernel->block_dim);
1359 sched = isl_map_apply_range(sched, tiling);
1361 par = parametrization(dim, nvar + n_tile, first + n_tile, n_tile, "t");
1362 sched = isl_map_intersect_range(sched, par);
1364 usched = isl_union_map_from_map(sched);
1365 usched = scale_access_tile_loops(gen, usched, nvar + n_tile,
1366 first, n_tile);
1367 sched = isl_map_from_union_map(usched);
1369 return sched;
1372 /* Return the union of all read (read = 1) and/or write (write = 1)
1373 * access relations in the group.
1375 static __isl_give isl_union_map *group_access_relation(
1376 struct gpu_array_ref_group *group, int read, int write)
1378 int i;
1379 isl_union_map *access;
1381 access = isl_union_map_empty(isl_map_get_space(group->access));
1382 for (i = 0; i < group->n_ref; ++i) {
1383 isl_map *map_i;
1385 if (!((read && group->refs[i]->read) ||
1386 (write && group->refs[i]->write)))
1387 continue;
1388 map_i = isl_map_copy(group->refs[i]->access);
1389 access = isl_union_map_union(access,
1390 isl_union_map_from_map(map_i));
1393 return access;
1396 /* Return the extent of "array", recomputed from the bounds.
1397 * The recomputed extent may be simpler than the original extent.
1399 static __isl_give isl_set *array_extent(struct gpu_array_info *array)
1401 int i;
1402 isl_id *id;
1403 isl_space *space;
1404 isl_local_space *ls;
1405 isl_set *extent;
1407 id = isl_set_get_tuple_id(array->extent);
1408 space = isl_set_get_space(array->extent);
1409 extent = isl_set_universe(isl_space_copy(space));
1410 ls = isl_local_space_from_space(space);
1411 for (i = 0; i < array->n_index; ++i) {
1412 isl_pw_aff *bound;
1413 isl_aff *aff;
1414 isl_pw_aff *index;
1415 isl_set *lt;
1417 extent = isl_set_lower_bound_si(extent, isl_dim_set, i, 0);
1419 aff = isl_aff_var_on_domain(isl_local_space_copy(ls),
1420 isl_dim_set, i);
1421 index = isl_pw_aff_from_aff(aff);
1422 bound = isl_pw_aff_copy(array->bound[i]);
1423 bound = isl_pw_aff_from_range(bound);
1424 bound = isl_pw_aff_add_dims(bound, isl_dim_in, array->n_index);
1425 bound = isl_pw_aff_set_tuple_id(bound, isl_dim_in,
1426 isl_id_copy(id));
1427 lt = isl_pw_aff_lt_set(index, bound);
1428 extent = isl_set_intersect(extent, lt);
1430 isl_local_space_free(ls);
1431 isl_id_free(id);
1433 return extent;
1436 /* Return a map from the first shared_len dimensions of the computed
1437 * schedule to the array tile in
1438 * global memory that corresponds to the shared memory copy.
1440 * In particular, return a map
1442 * { D[i] -> A[a] }
1444 * with constraints
1446 * tile_offset(i) <= a <= tile_offset(i) + tile_size - 1 (1)
1448 * and
1450 * 0 <= a <= array_size - 1 (2)
1452 * Note that if some stride has been detected (i.e., when
1453 * group->shared_tile->bound[i].shift is set), then a in (1) refers
1454 * to the shifted and scaled down version.
1456 * Constraints (1) are obtained by mapping the size constraints on the
1457 * shared/private memory tile back to the access relation.
1458 * Constraints (2) are obtained from the (recomputed) extent.
1460 static __isl_give isl_map *group_tile(struct gpu_array_ref_group *group)
1462 int i;
1463 int n_index = group->array->n_index;
1464 isl_map *tile;
1465 isl_space *space;
1466 isl_set *local;
1467 isl_set *extent;
1469 space = isl_multi_aff_get_space(group->shared_tile->tiling);
1470 space = isl_space_range(space);
1471 local = isl_set_universe(space);
1472 for (i = 0; i < n_index; ++i) {
1473 isl_val *bound;
1475 local = isl_set_lower_bound_si(local, isl_dim_set, i, 0);
1476 bound = isl_val_copy(group->shared_tile->bound[i].size);
1477 bound = isl_val_sub_ui(bound, 1);
1478 local = isl_set_upper_bound_val(local, isl_dim_set, i, bound);
1480 local = isl_set_preimage_multi_aff(local,
1481 isl_multi_aff_copy(group->shared_tile->tiling));
1482 tile = isl_set_unwrap(local);
1483 extent = array_extent(group->array);
1484 tile = isl_map_intersect_range(tile, extent);
1486 return tile;
1489 /* Given a mapping "iterator_map" from the AST schedule to a domain,
1490 * return the corresponding mapping from the AST schedule to
1491 * to the first shared_len dimensions of the schedule computed by PPCG.
1493 static __isl_give isl_pw_multi_aff *compute_sched_to_shared(struct gpu_gen *gen,
1494 __isl_take isl_pw_multi_aff *iterator_map)
1496 isl_union_map *umap;
1497 isl_space *space;
1498 isl_map *map, *sched;;
1500 space = isl_space_range(isl_pw_multi_aff_get_space(iterator_map));
1501 space = isl_space_from_domain(space);
1502 space = isl_space_add_dims(space, isl_dim_out, gen->shared_len);
1504 umap = isl_union_map_copy(gen->shared_sched);
1505 umap = isl_union_map_apply_range(umap,
1506 isl_union_map_copy(gen->shared_proj));
1507 map = isl_union_map_extract_map(umap, space);
1508 isl_union_map_free(umap);
1510 sched = isl_map_preimage_domain_pw_multi_aff(map, iterator_map);
1511 sched = isl_map_detect_equalities(sched);
1513 return isl_pw_multi_aff_from_map(sched);
1516 /* Set unroll[j] if the input dimension j is involved in
1517 * the index expression represented by ma.
1519 static int check_unroll(__isl_take isl_set *set, __isl_take isl_multi_aff *ma,
1520 void *user)
1522 int i, j;
1523 int n_in = isl_multi_aff_dim(ma, isl_dim_in);
1524 int n_out = isl_multi_aff_dim(ma, isl_dim_out);
1525 int *unroll = user;
1527 for (i = 0; i < n_out; ++i) {
1528 isl_aff *aff;
1530 aff = isl_multi_aff_get_aff(ma, i);
1531 for (j = 0; j < n_in; ++j)
1532 if (isl_aff_involves_dims(aff, isl_dim_in, j, 1))
1533 unroll[j] = 1;
1534 isl_aff_free(aff);
1537 isl_set_free(set);
1538 isl_multi_aff_free(ma);
1539 return 0;
1542 /* Given an array pos mapping input dimensions to the corresponding
1543 * output dimension, construct the corresponding map.
1545 static __isl_give isl_map *permutation(__isl_take isl_space *dim,
1546 int *pos, int len)
1548 int i;
1549 isl_constraint *c;
1550 isl_basic_map *bmap;
1551 isl_local_space *ls;
1553 dim = isl_space_add_dims(dim, isl_dim_in, len);
1554 dim = isl_space_add_dims(dim, isl_dim_out, len);
1555 bmap = isl_basic_map_universe(isl_space_copy(dim));
1556 ls = isl_local_space_from_space(dim);
1558 for (i = 0; i < len; ++i) {
1559 c = isl_equality_alloc(isl_local_space_copy(ls));
1560 c = isl_constraint_set_coefficient_si(c, isl_dim_in, i,
1561 -1);
1562 c = isl_constraint_set_coefficient_si(c, isl_dim_out, pos[i],
1564 bmap = isl_basic_map_add_constraint(bmap, c);
1566 isl_local_space_free(ls);
1568 return isl_map_from_basic_map(bmap);
1571 /* Find all loops involved in any of the index expressions for any of
1572 * the private accesses, move them innermost and then mark them as
1573 * requiring unrolling by setting gen->first_unroll.
1574 * The loops involved should all be parallel because of the checks
1575 * we performed in check_private_group_access. Moving them innermost
1576 * is therefore a valid transformation.
1578 * Loops up to gen->shared_len are generated before the mapping to
1579 * threads is applied. They should therefore be ignored.
1581 * We compute the hidden equalities of the schedule first
1582 * since we will need them in our calls to isl_pw_multi_aff_from_map
1583 * and because we want to make sure that the same equalities
1584 * are also available to the code generator.
1586 static __isl_give isl_union_map *interchange_for_unroll(struct gpu_gen *gen,
1587 __isl_take isl_union_map *sched)
1589 int i, j;
1590 int unroll[gen->thread_tiled_len];
1591 int perm[gen->thread_tiled_len];
1592 isl_space *dim;
1593 isl_map *permute;
1594 int len = gen->shared_len + gen->n_parallel + gen->n_block;
1596 gen->first_unroll = -1;
1598 sched = isl_union_map_detect_equalities(sched);
1599 for (i = 0; i < gen->thread_tiled_len; ++i)
1600 unroll[i] = 0;
1601 for (i = 0; i < gen->prog->n_array; ++i) {
1602 struct gpu_array_info *array = &gen->prog->array[i];
1604 for (j = 0; j < array->n_group; ++j) {
1605 isl_union_map *access;
1606 isl_map *acc;
1607 isl_pw_multi_aff *pma;
1609 if (!array->groups[j]->private_tile)
1610 continue;
1612 access = group_access_relation(array->groups[j], 1, 1);
1613 access = isl_union_map_apply_domain(access,
1614 isl_union_map_copy(sched));
1616 acc = isl_map_from_union_map(access);
1617 pma = isl_pw_multi_aff_from_map(acc);
1618 isl_pw_multi_aff_foreach_piece(pma,
1619 &check_unroll, unroll);
1621 isl_pw_multi_aff_free(pma);
1625 for (i = gen->shared_len; i < len; ++i)
1626 if (unroll[i])
1627 break;
1629 if (i >= len)
1630 return sched;
1632 for (i = len; i < gen->thread_tiled_len; ++i)
1633 if (unroll[i])
1634 return sched;
1636 j = 0;
1637 for (i = 0; i < gen->shared_len; ++i)
1638 perm[i] = j++;
1639 for (i = gen->shared_len; i < gen->thread_tiled_len; ++i)
1640 if (!unroll[i])
1641 perm[i] = j++;
1642 gen->first_unroll = j - gen->shared_len;
1643 for (i = gen->shared_len; i < len; ++i)
1644 if (unroll[i])
1645 perm[i] = j++;
1647 dim = isl_union_map_get_space(sched);
1648 permute = permutation(dim, perm, gen->thread_tiled_len);
1649 sched = isl_union_map_apply_range(sched,
1650 isl_union_map_from_map(permute));
1652 return sched;
1655 /* Given a constraint
1657 * a(p,i) + j = g f(e)
1659 * or -a(p,i) - j = g f(e) if sign < 0,
1660 * store a(p,i) in bound->shift and g (stride) in bound->stride.
1661 * a(p,i) is assumed to be an expression in only the parameters
1662 * and the input dimensions.
1664 static void extract_stride(__isl_keep isl_constraint *c,
1665 struct gpu_array_bound *bound, __isl_keep isl_val *stride, int sign)
1667 int i;
1668 isl_val *v;
1669 isl_space *space;
1670 unsigned nparam;
1671 unsigned nvar;
1672 isl_aff *aff;
1674 isl_val_free(bound->stride);
1675 bound->stride = isl_val_copy(stride);
1677 space = isl_constraint_get_space(c);
1678 space = isl_space_domain(space);
1680 nparam = isl_space_dim(space, isl_dim_param);
1681 nvar = isl_space_dim(space, isl_dim_set);
1683 v = isl_constraint_get_constant_val(c);
1684 if (sign < 0)
1685 v = isl_val_neg(v);
1686 aff = isl_aff_zero_on_domain(isl_local_space_from_space(space));
1687 aff = isl_aff_set_constant_val(aff, v);
1689 for (i = 0; i < nparam; ++i) {
1690 if (!isl_constraint_involves_dims(c, isl_dim_param, i, 1))
1691 continue;
1692 v = isl_constraint_get_coefficient_val(c, isl_dim_param, i);
1693 if (sign < 0)
1694 v = isl_val_neg(v);
1695 aff = isl_aff_add_coefficient_val(aff, isl_dim_param, i, v);
1698 for (i = 0; i < nvar; ++i) {
1699 if (!isl_constraint_involves_dims(c, isl_dim_in, i, 1))
1700 continue;
1701 v = isl_constraint_get_coefficient_val(c, isl_dim_in, i);
1702 if (sign < 0)
1703 v = isl_val_neg(v);
1704 aff = isl_aff_add_coefficient_val(aff, isl_dim_in, i, v);
1707 bound->shift = aff;
1710 /* Given an equality constraint of a map with a single output dimension j,
1711 * check if the constraint is of the form
1713 * a(p,i) + j = g f(e)
1715 * with a(p,i) an expression in the parameters and input dimensions
1716 * and f(e) an expression in the existentially quantified variables.
1717 * If so, and if g is larger than any such g from a previously considered
1718 * constraint, then call extract_stride to record the stride information
1719 * in bound.
1721 static int check_stride_constraint(__isl_take isl_constraint *c, void *user)
1723 int i;
1724 isl_ctx *ctx;
1725 isl_val *v;
1726 unsigned n_div;
1727 struct gpu_array_bound *bound = user;
1729 ctx = isl_constraint_get_ctx(c);
1730 n_div = isl_constraint_dim(c, isl_dim_div);
1731 v = isl_constraint_get_coefficient_val(c, isl_dim_out, 0);
1733 if (n_div && (isl_val_is_one(v) || isl_val_is_negone(v))) {
1734 int s = isl_val_sgn(v);
1735 isl_val *stride = isl_val_zero(ctx);
1737 isl_val_free(v);
1738 for (i = 0; i < n_div; ++i) {
1739 v = isl_constraint_get_coefficient_val(c,
1740 isl_dim_div, i);
1741 stride = isl_val_gcd(stride, v);
1743 if (!isl_val_is_zero(stride) &&
1744 isl_val_gt(stride, bound->stride))
1745 extract_stride(c, bound, stride, s);
1747 isl_val_free(stride);
1748 } else
1749 isl_val_free(v);
1751 isl_constraint_free(c);
1752 return 0;
1755 /* Given contraints on an array index i, check if we can find
1756 * a shift a(p) and a stride g such that
1758 * a(p) + i = 0 mod g
1760 * If so, record the information in bound and apply the mapping
1761 * i -> (i + a(p))/g to the array index in bounds and return
1762 * the new constraints.
1763 * If not, simply return the original constraints.
1765 * If bounds is a subset of the space
1767 * D -> i
1769 * then the bound recorded in bound->shift is of the form
1771 * D -> s(D)
1773 * with s(D) equal to a(p) above.
1774 * The mapping recorded in bound->shift_map is of the form
1776 * [D -> i] -> [D -> (i + S(D))/g]
1778 * This mapping is computed as follows.
1779 * We first introduce "i" in the domain through precomposition
1780 * with [D -> i] -> D obtaining
1782 * [D -> i] -> s(D)
1784 * Adding [D -> i] -> i produces
1786 * [D -> i] -> i + s(D)
1788 * and the domain product with [D -> i] -> D yields
1790 * [D -> i] -> [D -> i + s(D)]
1792 * Composition with [D -> i] -> [D -> i/g] gives the desired result.
1794 static __isl_give isl_basic_map *check_stride(struct gpu_array_bound *bound,
1795 __isl_take isl_basic_map *bounds)
1797 isl_space *space;
1798 isl_basic_map *hull;
1799 isl_basic_map *shift, *id, *bmap, *scale;
1800 isl_basic_set *bset;
1801 isl_aff *aff;
1803 bound->stride = NULL;
1805 hull = isl_basic_map_affine_hull(isl_basic_map_copy(bounds));
1807 isl_basic_map_foreach_constraint(hull, &check_stride_constraint, bound);
1809 isl_basic_map_free(hull);
1811 if (!bound->stride)
1812 return bounds;
1814 shift = isl_basic_map_from_aff(isl_aff_copy(bound->shift));
1815 space = isl_basic_map_get_space(bounds);
1816 bmap = isl_basic_map_domain_map(isl_basic_map_universe(space));
1817 shift = isl_basic_map_apply_range(bmap, shift);
1818 space = isl_basic_map_get_space(bounds);
1819 id = isl_basic_map_range_map(isl_basic_map_universe(space));
1820 shift = isl_basic_map_sum(id, shift);
1821 space = isl_basic_map_get_space(bounds);
1822 id = isl_basic_map_domain_map(isl_basic_map_universe(space));
1823 shift = isl_basic_map_range_product(id, shift);
1825 space = isl_space_domain(isl_basic_map_get_space(bounds));
1826 id = isl_basic_map_identity(isl_space_map_from_set(space));
1827 space = isl_space_range(isl_basic_map_get_space(bounds));
1828 aff = isl_aff_zero_on_domain(isl_local_space_from_space(space));
1829 aff = isl_aff_add_coefficient_si(aff, isl_dim_in, 0, 1);
1830 aff = isl_aff_scale_down_val(aff, isl_val_copy(bound->stride));
1831 scale = isl_basic_map_from_aff(aff);
1832 scale = isl_basic_map_product(id, scale);
1834 bound->shift_map = isl_basic_map_apply_range(shift, scale);
1835 bmap = isl_basic_map_copy(bound->shift_map);
1836 bset = isl_basic_set_apply(isl_basic_map_wrap(bounds), bmap);
1837 bounds = isl_basic_set_unwrap(bset);
1839 return bounds;
1842 /* Data used in compute_array_dim_size and compute_size_in_direction.
1844 * pos is the position of the variable representing the array index,
1845 * i.e., the variable for which want to compute the size. This variable
1846 * is also the last variable in the set.
1848 struct gpu_size_info {
1849 isl_basic_set *bset;
1850 struct gpu_array_bound *bound;
1851 int pos;
1854 /* Given a constraint from the basic set describing the bounds on
1855 * an array index, check if it is a lower bound, say m i >= b(x), and,
1856 * if so, check whether the expression "i - ceil(b(x)/m) + 1" has a constant
1857 * upper bound. If so, and if this bound is smaller than any bound
1858 * derived from earlier constraints, set the size to this bound on
1859 * the expression and the lower bound to ceil(b(x)/m).
1861 static int compute_size_in_direction(__isl_take isl_constraint *c, void *user)
1863 struct gpu_size_info *size = user;
1864 unsigned nparam;
1865 unsigned n_div;
1866 isl_val *v;
1867 isl_aff *aff;
1868 isl_aff *lb;
1870 nparam = isl_basic_set_dim(size->bset, isl_dim_param);
1871 n_div = isl_constraint_dim(c, isl_dim_div);
1873 if (isl_constraint_involves_dims(c, isl_dim_div, 0, n_div) ||
1874 !isl_constraint_is_lower_bound(c, isl_dim_set, size->pos)) {
1875 isl_constraint_free(c);
1876 return 0;
1879 aff = isl_constraint_get_bound(c, isl_dim_set, size->pos);
1880 aff = isl_aff_ceil(aff);
1882 lb = isl_aff_copy(aff);
1884 aff = isl_aff_neg(aff);
1885 aff = isl_aff_add_coefficient_si(aff, isl_dim_in, size->pos, 1);
1887 v = isl_basic_set_max_val(size->bset, aff);
1888 isl_aff_free(aff);
1890 if (isl_val_is_int(v)) {
1891 v = isl_val_add_ui(v, 1);
1892 if (!size->bound->size || isl_val_lt(v, size->bound->size)) {
1893 isl_val_free(size->bound->size);
1894 size->bound->size = isl_val_copy(v);
1895 lb = isl_aff_drop_dims(lb, isl_dim_in, size->pos, 1);
1896 isl_aff_free(size->bound->lb);
1897 size->bound->lb = isl_aff_copy(lb);
1900 isl_val_free(v);
1901 isl_aff_free(lb);
1903 isl_constraint_free(c);
1905 return 0;
1908 /* Given a basic map "bounds" that maps parameters and input dimensions
1909 * to a single output dimension, look for an expression in the parameters
1910 * and input dimensions such that the range of the output dimension shifted
1911 * by this expression is a constant.
1913 * In particular, we currently only consider lower bounds on the output
1914 * dimension as candidate expressions.
1916 static int compute_array_dim_size(struct gpu_array_bound *bound,
1917 __isl_take isl_basic_map *bounds)
1919 struct gpu_size_info size;
1921 bounds = isl_basic_map_detect_equalities(bounds);
1922 bounds = check_stride(bound, bounds);
1924 bound->size = NULL;
1925 bound->lb = NULL;
1927 size.bound = bound;
1928 size.pos = isl_basic_map_dim(bounds, isl_dim_in);
1929 size.bset = isl_basic_map_wrap(bounds);
1930 size.bset = isl_basic_set_flatten(size.bset);
1931 size.bset = isl_set_simple_hull(isl_basic_set_compute_divs(size.bset));
1932 isl_basic_set_foreach_constraint(size.bset, &compute_size_in_direction,
1933 &size);
1934 isl_basic_set_free(size.bset);
1936 return bound->size ? 0 : -1;
1939 /* Check if we can find a memory tile for the given array
1940 * based on the given accesses, and if so, put the results in "tile".
1942 * We project the accesses on each index in turn and look for a parametric
1943 * offset such that the size is constant.
1945 static int can_tile(__isl_keep isl_map *access, struct gpu_array_tile *tile)
1947 int i;
1949 for (i = 0; i < tile->n; ++i) {
1950 isl_map *access_i;
1951 isl_basic_map *hull;
1953 access_i = isl_map_copy(access);
1954 access_i = isl_map_project_out(access_i, isl_dim_out, 0, i);
1955 access_i = isl_map_project_out(access_i, isl_dim_out,
1956 1, tile->n - (i + 1));
1957 access_i = isl_map_compute_divs(access_i);
1958 hull = isl_map_simple_hull(access_i);
1959 if (compute_array_dim_size(&tile->bound[i], hull) < 0)
1960 return 0;
1963 return 1;
1966 /* Construct a map with input the shared tile loops and the loops that
1967 * will be wrapped around the threads that relates these later loops
1968 * to the thread indices and then projects them out.
1970 static __isl_give isl_map *compute_privatization(struct gpu_gen *gen)
1972 isl_map *priv;
1973 isl_map *tiling;
1974 isl_map *proj;
1975 isl_set *par;
1976 isl_space *dim;
1978 dim = isl_union_map_get_space(gen->shared_sched);
1980 if (gen->options->wrap)
1981 tiling = wrap(isl_space_copy(dim), gen->shared_len + gen->n_block,
1982 gen->shared_len, gen->n_block, gen->block_dim);
1983 else
1984 tiling = tile(isl_space_copy(dim), gen->shared_len + gen->n_block,
1985 gen->shared_len, gen->n_block, gen->block_dim);
1987 priv = tiling;
1989 par = parametrization(dim, gen->shared_len + 2 * gen->n_block,
1990 gen->tile_first + gen->tile_len + gen->n_grid + gen->n_block,
1991 gen->n_block, "t");
1993 priv = isl_map_align_params(priv, isl_set_get_space(par));
1994 priv = isl_map_intersect_range(priv, par);
1996 dim = isl_map_get_space(priv);
1997 dim = isl_space_drop_dims(dim, isl_dim_in, 0, isl_space_dim(dim, isl_dim_in));
1998 dim = isl_space_drop_dims(dim, isl_dim_out, 0, isl_space_dim(dim, isl_dim_out));
1999 proj = projection(dim, gen->shared_len + 2 * gen->n_block,
2000 gen->shared_len);
2002 priv = isl_map_apply_range(priv, proj);
2004 return priv;
2007 /* Construct a map from domain_dim to domain_dim that increments
2008 * the dimension at position "pos" and leaves all other dimensions
2009 * constant.
2011 static __isl_give isl_map *next(__isl_take isl_space *domain_dim, int pos)
2013 int i;
2014 int len = isl_space_dim(domain_dim, isl_dim_set);
2015 isl_space *dim;
2016 isl_basic_map *next;
2017 isl_local_space *ls;
2019 dim = isl_space_map_from_set(domain_dim);
2020 next = isl_basic_map_universe(isl_space_copy(dim));
2021 ls = isl_local_space_from_space(dim);
2023 for (i = 0; i < len; ++i) {
2024 isl_constraint *c;
2026 c = isl_equality_alloc(isl_local_space_copy(ls));
2027 c = isl_constraint_set_coefficient_si(c, isl_dim_in, i, 1);
2028 c = isl_constraint_set_coefficient_si(c, isl_dim_out, i, -1);
2029 if (i == pos)
2030 c = isl_constraint_set_constant_si(c, 1);
2031 next = isl_basic_map_add_constraint(next, c);
2034 isl_local_space_free(ls);
2036 return isl_map_from_basic_map(next);
2039 /* Check if the given access is coalesced.
2040 * That is, check whether incrementing the dimension that will get
2041 * wrapped over the last thread index results in incrementing
2042 * the last array index.
2044 * This function is only called for access relations without reuse.
2046 static int access_is_coalesced(struct gpu_gen *gen,
2047 __isl_keep isl_union_map *access)
2049 isl_space *dim;
2050 isl_map *access_map;
2051 isl_map *next_thread_x;
2052 isl_map *next_element;
2053 isl_map *map;
2054 int coalesced;
2056 access = isl_union_map_copy(access);
2057 access = isl_union_map_apply_domain(access,
2058 isl_union_map_copy(gen->tiled_sched));
2059 access_map = isl_map_from_union_map(access);
2061 dim = isl_map_get_space(access_map);
2062 dim = isl_space_domain(dim);
2063 next_thread_x = next(dim, gen->shared_len + gen->n_block - 1);
2065 dim = isl_map_get_space(access_map);
2066 dim = isl_space_range(dim);
2067 next_element = next(dim, isl_space_dim(dim, isl_dim_set) - 1);
2069 map = isl_map_apply_domain(next_thread_x, isl_map_copy(access_map));
2070 map = isl_map_apply_range(map, access_map);
2072 coalesced = isl_map_is_subset(map, next_element);
2074 isl_map_free(next_element);
2075 isl_map_free(map);
2077 return coalesced;
2080 /* Given an access relation in terms of the first gen->shared_len + gen->n_block
2081 * dimensions of the computed schedule, check if it is bijective for
2082 * fixed values of the first gen->shared_len dimensions.
2083 * We perform this check by equating these dimensions to parameters.
2085 static int access_is_bijective(struct gpu_gen *gen, __isl_keep isl_map *access)
2087 int res;
2088 isl_set *par;
2089 isl_space *space;
2091 access = isl_map_copy(access);
2092 space = isl_space_params(isl_map_get_space(access));
2093 par = parametrization(space, gen->shared_len + gen->n_block,
2094 0, gen->shared_len, "s");
2095 access = isl_map_intersect_domain(access, par);
2096 res = isl_map_is_bijective(access);
2097 isl_map_free(access);
2099 return res;
2102 /* Look for the last shared tile loop that affects the offset of "tile"
2103 * and return the result.
2104 * If there is no such loop, then return the index of the loop
2105 * before the first shared tile loop, in particular gen->tile_first - 1.
2107 static int compute_tile_last_shared(struct gpu_gen *gen,
2108 struct gpu_array_tile *tile)
2110 int i, j;
2112 for (j = gen->shared_len - 1; j >= gen->tile_first; --j) {
2113 for (i = 0; i < tile->n; ++i) {
2114 isl_aff *lb;
2115 isl_aff *shift;
2117 lb = tile->bound[i].lb;
2118 if (isl_aff_involves_dims(lb, isl_dim_in, j, 1))
2119 break;
2121 shift = tile->bound[i].shift;
2122 if (!shift)
2123 continue;
2124 if (isl_aff_involves_dims(shift, isl_dim_in, j, 1))
2125 break;
2127 if (i < tile->n)
2128 break;
2131 return j;
2134 /* Look for the last shared tile loop that affects the offset of the
2135 * shared or private tile and store the result in group->last_shared.
2136 * If there is no such loop, then group->last_shared is set to a value
2137 * before the first shared tile loop, in particular gen->tile_first - 1.
2138 * If there is no tile defined on the array reference group,
2139 * then set group->last_shared to gen->shared_len - 1.
2141 static void set_last_shared(struct gpu_gen *gen,
2142 struct gpu_array_ref_group *group)
2144 struct gpu_array_tile *tile;
2146 group->last_shared = gen->shared_len - 1;
2148 tile = group->private_tile;
2149 if (!tile)
2150 tile = group->shared_tile;
2151 if (!tile)
2152 return;
2154 group->last_shared = compute_tile_last_shared(gen, tile);
2157 /* Compute a privatized copy of all access relations from reference groups that
2158 * are mapped to private memory and store the result in gen->privatization.
2160 * Read-only scalars and arrays containing structures are not mapped
2161 * to private memory.
2163 static void compute_private_access(struct gpu_gen *gen)
2165 int i, j;
2166 isl_union_map *private;
2168 if (!gen->options->use_private_memory)
2169 return;
2171 private = isl_union_map_empty(isl_union_map_get_space(gen->shared_sched));
2173 for (i = 0; i < gen->prog->n_array; ++i) {
2174 struct gpu_array_info *array = &gen->prog->array[i];
2176 if (gpu_array_is_read_only_scalar(array))
2177 continue;
2178 if (array->has_compound_element)
2179 continue;
2181 for (j = 0; j < array->n_group; ++j) {
2182 if (!array->groups[j]->private_tile)
2183 continue;
2185 private = isl_union_map_union(private,
2186 group_access_relation(array->groups[j], 1, 1));
2190 if (isl_union_map_is_empty(private))
2191 isl_union_map_free(private);
2192 else {
2193 isl_union_map *priv;
2195 private = isl_union_map_apply_domain(private,
2196 isl_union_map_copy(gen->shared_sched));
2197 priv = isl_union_map_from_map(isl_map_copy(gen->privatization));
2198 private = isl_union_map_apply_domain(private, priv);
2199 gen->private_access = private;
2203 /* Compute the size of the tile specified by "tile"
2204 * in number of elements and return the result.
2206 static __isl_give isl_val *tile_size(isl_ctx *ctx, struct gpu_array_tile *tile)
2208 int i;
2209 isl_val *size;
2211 size = isl_val_one(ctx);
2213 for (i = 0; i < tile->n; ++i)
2214 size = isl_val_mul(size, isl_val_copy(tile->bound[i].size));
2216 return size;
2219 /* If max_shared_memory is not set to infinity (-1), then make
2220 * sure that the total amount of shared memory required by the
2221 * array reference groups mapped to shared memory is no larger
2222 * than this maximum.
2224 * We apply a greedy approach and discard (keep in global memory)
2225 * those groups that would result in a total memory size that
2226 * is larger than the maximum.
2228 static void check_shared_memory_bound(struct gpu_gen *gen)
2230 int i, j;
2231 isl_val *left, *size;
2233 if (gen->options->max_shared_memory < 0)
2234 return;
2236 left = isl_val_int_from_si(gen->ctx, gen->options->max_shared_memory);
2238 for (i = 0; i < gen->prog->n_array; ++i) {
2239 struct gpu_array_info *array = &gen->prog->array[i];
2241 for (j = 0; j < array->n_group; ++j) {
2242 struct gpu_array_ref_group *group;
2244 group = array->groups[j];
2245 if (group->private_tile)
2246 continue;
2247 if (!group->shared_tile)
2248 continue;
2250 size = tile_size(gen->ctx, group->shared_tile);
2251 size = isl_val_mul_ui(size, array->size);
2253 if (isl_val_le(size, left)) {
2254 left = isl_val_sub(left, size);
2255 continue;
2257 isl_val_free(size);
2259 group->shared_tile = free_tile(group->shared_tile);
2263 isl_val_free(left);
2266 /* Given a description of an array tile "tile" and the "space"
2268 * { D -> A }
2270 * where D represents the first shared_len schedule dimensions
2271 * and A represents the array, construct an isl_multi_aff
2273 * { [D[i] -> A[a]] -> A'[a'] }
2275 * with A' a scaled down copy of A according to the shifts and strides
2276 * in "tile". In particular,
2278 * a' = (a + shift(i))/stride
2280 * "insert_array" represents
2282 * { [D -> A] -> D }
2284 * and is used to insert A into the domain of functions that only
2285 * reference D.
2287 static __isl_give isl_multi_aff *strided_tile(
2288 struct gpu_array_tile *tile, __isl_keep isl_space *space,
2289 __isl_keep isl_multi_aff *insert_array)
2291 int i;
2292 isl_ctx *ctx;
2293 isl_multi_aff *shift;
2294 isl_multi_val *stride;
2295 isl_space *space2;
2296 isl_local_space *ls;
2297 isl_multi_aff *tiling;
2299 ctx = isl_space_get_ctx(space);
2300 space2 = isl_space_domain(isl_space_copy(space));
2301 ls = isl_local_space_from_space(space2);
2302 space2 = isl_space_range(isl_space_copy(space));
2303 stride = isl_multi_val_zero(space2);
2304 shift = isl_multi_aff_zero(isl_space_copy(space));
2306 for (i = 0; i < tile->n; ++i) {
2307 struct gpu_array_bound *bound = &tile->bound[i];
2308 isl_val *stride_i;
2309 isl_aff *shift_i;
2311 if (tile->bound[i].shift) {
2312 stride_i = isl_val_copy(bound->stride);
2313 shift_i = isl_aff_copy(bound->shift);
2314 } else {
2315 stride_i = isl_val_one(ctx);
2316 shift_i = isl_aff_zero_on_domain(
2317 isl_local_space_copy(ls));
2320 stride = isl_multi_val_set_val(stride, i, stride_i);
2321 shift = isl_multi_aff_set_aff(shift, i, shift_i);
2323 isl_local_space_free(ls);
2325 shift = isl_multi_aff_pullback_multi_aff(shift,
2326 isl_multi_aff_copy(insert_array));
2328 tiling = isl_multi_aff_range_map(isl_space_copy(space));
2329 tiling = isl_multi_aff_add(tiling, shift);
2330 tiling = isl_multi_aff_scale_down_multi_val(tiling, stride);
2332 return tiling;
2335 /* Compute a tiling for the array reference group "group".
2337 * The tiling is of the form
2339 * { [D[i] -> A[a]] -> T[t] }
2341 * where D represents the first shared_len schedule dimensions,
2342 * A represents the global array and T represents the shared or
2343 * private memory tile. The name of T is the name of the local
2344 * array.
2346 * If there is any stride in the accesses, then the mapping is
2348 * t = (a + shift(i))/stride - lb(i)
2350 * otherwise, it is simply
2352 * t = a - lb(i)
2354 static void compute_group_tiling(struct gpu_array_ref_group *group)
2356 int i;
2357 struct gpu_array_tile *tile;
2358 struct gpu_array_info *array = group->array;
2359 isl_space *space;
2360 isl_multi_aff *tiling, *lb, *insert_array;
2361 isl_printer *p;
2362 char *local_name;
2364 tile = group->private_tile;
2365 if (!tile)
2366 tile = group->shared_tile;
2367 if (!tile)
2368 return;
2370 space = isl_map_get_space(group->access);
2371 insert_array = isl_multi_aff_domain_map(isl_space_copy(space));
2373 for (i = 0; i < tile->n; ++i)
2374 if (tile->bound[i].shift)
2375 break;
2377 if (i < tile->n)
2378 tiling = strided_tile(tile, space, insert_array);
2379 else
2380 tiling = isl_multi_aff_range_map(isl_space_copy(space));
2382 lb = isl_multi_aff_zero(space);
2383 for (i = 0; i < tile->n; ++i) {
2384 isl_aff *lb_i = isl_aff_copy(tile->bound[i].lb);
2385 lb = isl_multi_aff_set_aff(lb, i, lb_i);
2387 lb = isl_multi_aff_pullback_multi_aff(lb, insert_array);
2389 tiling = isl_multi_aff_sub(tiling, lb);
2391 p = isl_printer_to_str(isl_multi_aff_get_ctx(tiling));
2392 p = print_array_name(p, group);
2393 local_name = isl_printer_get_str(p);
2394 isl_printer_free(p);
2395 tiling = isl_multi_aff_set_tuple_name(tiling, isl_dim_out, local_name);
2396 free(local_name);
2398 tile->tiling = tiling;
2401 /* Compute a tiling for all the array reference groups.
2403 static void compute_group_tilings(struct gpu_gen *gen)
2405 int i, j;
2407 for (i = 0; i < gen->prog->n_array; ++i) {
2408 struct gpu_array_info *array = &gen->prog->array[i];
2410 for (j = 0; j < array->n_group; ++j)
2411 compute_group_tiling(array->groups[j]);
2415 /* Fill up the groups array with singleton groups, i.e., one group
2416 * per reference, initializing the array, access, write, n_ref and refs fields.
2417 * In particular the access field is initialized to the scheduled
2418 * access relation of the array reference.
2420 * Return the number of elements initialized, i.e., the number of
2421 * active references in the current kernel.
2423 static int populate_array_references(struct gpu_array_info *array,
2424 __isl_keep isl_union_map *sched, struct gpu_array_ref_group **groups)
2426 int i;
2427 int n;
2428 isl_ctx *ctx = isl_union_map_get_ctx(sched);
2430 n = 0;
2431 for (i = 0; i < array->n_ref; ++i) {
2432 isl_union_map *umap;
2433 isl_map *map;
2434 struct gpu_array_ref_group *group;
2435 struct gpu_stmt_access *access = array->refs[i];
2437 map = isl_map_copy(access->access);
2438 umap = isl_union_map_from_map(map);
2439 umap = isl_union_map_apply_domain(umap,
2440 isl_union_map_copy(sched));
2442 if (isl_union_map_is_empty(umap)) {
2443 isl_union_map_free(umap);
2444 continue;
2447 map = isl_map_from_union_map(umap);
2448 map = isl_map_detect_equalities(map);
2450 group = isl_calloc_type(ctx, struct gpu_array_ref_group);
2451 assert(group);
2452 group->array = array;
2453 group->access = map;
2454 group->write = access->write;
2455 group->refs = &array->refs[i];
2456 group->n_ref = 1;
2458 groups[n++] = group;
2461 return n;
2464 /* If group->n_ref == 1, then group->refs was set by
2465 * populate_array_references to point directly into
2466 * group->array->refs and should not be freed.
2467 * If group->n_ref > 1, then group->refs was set by join_groups
2468 * to point to a newly allocated array.
2470 static void free_array_ref_group(struct gpu_array_ref_group *group)
2472 if (!group)
2473 return;
2474 free_tile(group->shared_tile);
2475 free_tile(group->private_tile);
2476 isl_map_free(group->access);
2477 if (group->n_ref > 1)
2478 free(group->refs);
2479 free(group);
2482 /* Given a map where the input dimensions represent the tile loops,
2483 * eliminate the innermost of those that have a fixed value
2484 * until we reach one that does not (obviously) have a fixed value.
2486 static __isl_give isl_map *eliminate_fixed_inner_loops(
2487 __isl_take isl_map *access)
2489 int i, n;
2491 n = isl_map_dim(access, isl_dim_in);
2493 for (i = n - 1; i >= 0; --i) {
2494 if (!map_plain_is_fixed(access, isl_dim_in, i))
2495 break;
2496 access = isl_map_eliminate(access, isl_dim_in, i, 1);
2498 return access;
2501 /* Check if the access relations of group1 and group2 overlap within
2502 * the innermost loop. In particular, ignore any inner dimension
2503 * with a fixed value.
2504 * The copying to and from shared memory will be performed within
2505 * the innermost actual loop so we are only allowed to consider
2506 * the dimensions up to that innermost loop while checking whether
2507 * two access relations overlap.
2509 static int accesses_overlap(struct gpu_array_ref_group *group1,
2510 struct gpu_array_ref_group *group2)
2512 int empty;
2513 isl_map *access1, *access2;
2515 access1 = isl_map_copy(group1->access);
2516 access1 = eliminate_fixed_inner_loops(access1);
2517 access2 = isl_map_copy(group2->access);
2518 access2 = eliminate_fixed_inner_loops(access2);
2519 access1 = isl_map_intersect(access1, access2);
2520 empty = isl_map_is_empty(access1);
2521 isl_map_free(access1);
2523 return !empty;
2526 /* Combine the given two groups into a single group, containing
2527 * the references of both groups.
2529 static struct gpu_array_ref_group *join_groups(
2530 struct gpu_array_ref_group *group1,
2531 struct gpu_array_ref_group *group2)
2533 int i;
2534 isl_ctx *ctx;
2535 struct gpu_array_ref_group *group;
2537 ctx = isl_map_get_ctx(group1->access);
2538 group = isl_calloc_type(ctx, struct gpu_array_ref_group);
2539 assert(group);
2540 group->array = group1->array;
2541 group->access = isl_map_union(isl_map_copy(group1->access),
2542 isl_map_copy(group2->access));
2543 group->write = group1->write || group2->write;
2544 group->n_ref = group1->n_ref + group2->n_ref;
2545 group->refs = isl_alloc_array(ctx, struct gpu_stmt_access *,
2546 group->n_ref);
2547 assert(group->refs);
2548 for (i = 0; i < group1->n_ref; ++i)
2549 group->refs[i] = group1->refs[i];
2550 for (i = 0; i < group2->n_ref; ++i)
2551 group->refs[group1->n_ref + i] = group2->refs[i];
2553 return group;
2556 /* Combine the given two groups into a single group and free
2557 * the original two groups.
2559 static struct gpu_array_ref_group *join_groups_and_free(
2560 struct gpu_array_ref_group *group1,
2561 struct gpu_array_ref_group *group2)
2563 struct gpu_array_ref_group *group;
2565 group = join_groups(group1, group2);
2566 free_array_ref_group(group1);
2567 free_array_ref_group(group2);
2568 return group;
2571 /* Compute the private and/or shared memory tiles for the array
2572 * reference group "group" of array "array".
2574 * If the array is a read-only scalar or if the user requested
2575 * not to use shared or private memory, then we do not need to do anything.
2577 * We only try to compute a shared memory tile if there is any reuse
2578 * or if the access is not coalesced.
2580 * For computing a private memory tile, we also require that there is
2581 * some reuse. Moreover, we require that the access is private
2582 * to the thread. That is, we check that any given array element
2583 * is only accessed by a single thread.
2584 * We compute an access relation that maps the shared tile loop iterators
2585 * and the shared point loop iterators that will be wrapped over the
2586 * threads to the array elements.
2587 * We actually check that those iterators that will be wrapped
2588 * partition the array space. This check is stricter than necessary
2589 * since several iterations may be mapped onto the same thread
2590 * and then they could be allowed to access the same memory elements,
2591 * but our check does not allow this situation.
2593 * We also check that the index expression only depends on parallel
2594 * loops. That way, we can move those loops innermost and unroll them.
2595 * Again, we use a test that is stricter than necessary.
2596 * We actually check whether the index expression only depends
2597 * on the iterators that are wrapped over the threads.
2598 * These are necessarily parallel, but there may be more parallel loops.
2600 * Combining the injectivity of the first test with the single-valuedness
2601 * of the second test, we simply test for bijectivity.
2603 * If it turns out we can use registers, we compute the private memory
2604 * tile size using can_tile, after introducing a dependence
2605 * on the thread indices.
2607 static void compute_group_bounds_core(struct gpu_gen *gen,
2608 struct gpu_array_ref_group *group)
2610 isl_ctx *ctx = isl_space_get_ctx(group->array->space);
2611 isl_union_map *access;
2612 int n_index = group->array->n_index;
2613 int no_reuse;
2614 isl_map *acc;
2615 int use_shared = gen->options->use_shared_memory;
2616 int use_private = gen->options->use_private_memory;
2618 if (!use_shared && !use_private)
2619 return;
2620 if (gpu_array_is_read_only_scalar(group->array))
2621 return;
2623 access = group_access_relation(group, 1, 1);
2624 no_reuse = isl_union_map_is_injective(access);
2626 if (use_shared && (!no_reuse || !access_is_coalesced(gen, access))) {
2627 group->shared_tile = create_tile(ctx, group->array->n_index);
2628 if (!can_tile(group->access, group->shared_tile))
2629 group->shared_tile = free_tile(group->shared_tile);
2632 if (!use_private || no_reuse) {
2633 isl_union_map_free(access);
2634 return;
2637 access = isl_union_map_apply_domain(access,
2638 isl_union_map_copy(gen->shared_sched));
2640 acc = isl_map_from_union_map(access);
2642 if (!access_is_bijective(gen, acc)) {
2643 isl_map_free(acc);
2644 return;
2647 group->private_tile = create_tile(gen->ctx, n_index);
2648 acc = isl_map_apply_domain(acc, isl_map_copy(gen->privatization));
2649 if (!can_tile(acc, group->private_tile))
2650 group->private_tile = free_tile(group->private_tile);
2652 isl_map_free(acc);
2655 /* Compute the private and/or shared memory tiles for the array
2656 * reference group "group" of array "array" and set last_shared.
2658 static void compute_group_bounds(struct gpu_gen *gen,
2659 struct gpu_array_ref_group *group)
2661 compute_group_bounds_core(gen, group);
2662 set_last_shared(gen, group);
2665 /* If two groups have overlapping access relations (as determined by
2666 * the "overlap" function) and if one of them involves a write,
2667 * then merge the two groups into one.
2668 * If "compute_bounds" is set, then call compute_group_bounds
2669 * on the merged groups.
2671 * Return the updated number of groups.
2673 static int group_writes(struct gpu_gen *gen,
2674 int n, struct gpu_array_ref_group **groups,
2675 int (*overlap)(struct gpu_array_ref_group *group1,
2676 struct gpu_array_ref_group *group2), int compute_bounds)
2678 int i, j;
2680 for (i = 0; i < n; ++i) {
2681 for (j = n - 1; j > i; --j) {
2682 if (!groups[i]->write && !groups[j]->write)
2683 continue;
2685 if (!overlap(groups[i], groups[j]))
2686 continue;
2688 groups[i] = join_groups_and_free(groups[i], groups[j]);
2689 if (compute_bounds)
2690 compute_group_bounds(gen, groups[i]);
2691 if (j != n - 1)
2692 groups[j] = groups[n - 1];
2693 n--;
2697 return n;
2700 /* If two groups have overlapping access relations (within the innermost
2701 * loop) and if one of them involves a write, then merge the two groups
2702 * into one.
2704 * Return the updated number of groups.
2706 static int group_overlapping_writes(struct gpu_gen *gen,
2707 int n, struct gpu_array_ref_group **groups)
2709 return group_writes(gen, n, groups, &accesses_overlap, 0);
2712 /* Check if the access relations of group1 and group2 overlap within
2713 * the outermost min(group1->last_shared, group2->last_shared) loops.
2715 static int last_shared_accesses_overlap(struct gpu_array_ref_group *group1,
2716 struct gpu_array_ref_group *group2)
2718 int last_shared;
2719 int dim;
2720 int empty;
2721 isl_map *map_i, *map_j, *map;
2723 last_shared = group1->last_shared;
2724 if (group2->last_shared < last_shared)
2725 last_shared = group2->last_shared;
2726 map_i = isl_map_copy(group1->access);
2727 dim = isl_map_dim(map_i, isl_dim_in);
2728 map_i = isl_map_eliminate(map_i, isl_dim_in,
2729 last_shared + 1, dim - (last_shared + 1));
2730 map_j = isl_map_copy(group2->access);
2731 map_j = isl_map_eliminate(map_j, isl_dim_in,
2732 last_shared + 1, dim - (last_shared + 1));
2733 map = isl_map_intersect(map_i, map_j);
2734 empty = isl_map_is_empty(map);
2735 isl_map_free(map);
2737 return !empty;
2740 /* If two groups have overlapping access relations (within the outer
2741 * last_shared loops) and if one of them involves a write,
2742 * then merge the two groups into one.
2744 * Return the updated number of groups.
2746 static int group_last_shared_overlapping_writes(struct gpu_gen *gen, int n,
2747 struct gpu_array_ref_group **groups)
2749 return group_writes(gen, n, groups, &last_shared_accesses_overlap, 1);
2752 /* Is the size of the tile specified by "tile" smaller than the sum of
2753 * the sizes of the tiles specified by "tile1" and "tile2"?
2755 static int smaller_tile(isl_ctx *ctx, struct gpu_array_tile *tile,
2756 struct gpu_array_tile *tile1, struct gpu_array_tile *tile2)
2758 int smaller;
2759 isl_val *size, *size1, *size2;
2761 size = tile_size(ctx, tile);
2762 size1 = tile_size(ctx, tile1);
2763 size2 = tile_size(ctx, tile2);
2765 size = isl_val_sub(size, size1);
2766 size = isl_val_sub(size, size2);
2767 smaller = isl_val_is_neg(size);
2769 isl_val_free(size);
2771 return smaller;
2774 /* Given an initial grouping of array references and shared memory tiles
2775 * for each group that allows for a shared memory tile, merge two groups
2776 * if both have a shared memory tile, the merged group also has
2777 * a shared memory tile and the size of the tile for the merge group
2778 * is smaller than the sum of the tile sizes of the individual groups.
2780 * If merging two groups decreases the "last_shared" dimension of
2781 * one or both of the two groups, then we need to check for overlapping
2782 * writes again.
2784 * Return the number of groups after merging.
2786 static int group_common_shared_memory_tile(struct gpu_gen *gen,
2787 struct gpu_array_info *array, int n,
2788 struct gpu_array_ref_group **groups)
2790 int i, j;
2791 int recompute_overlap = 0;
2792 isl_ctx *ctx = isl_space_get_ctx(array->space);
2794 for (i = 0; i < n; ++i) {
2795 if (!groups[i]->shared_tile)
2796 continue;
2797 for (j = n - 1; j > i; --j) {
2798 isl_map *map;
2799 int empty;
2800 struct gpu_array_ref_group *group;
2802 if (!groups[j]->shared_tile)
2803 continue;
2805 map = isl_map_intersect(isl_map_copy(groups[i]->access),
2806 isl_map_copy(groups[j]->access));
2807 empty = isl_map_is_empty(map);
2808 isl_map_free(map);
2810 if (empty)
2811 continue;
2813 group = join_groups(groups[i], groups[j]);
2814 compute_group_bounds(gen, group);
2815 if (!group->shared_tile ||
2816 !smaller_tile(ctx, group->shared_tile,
2817 groups[i]->shared_tile,
2818 groups[j]->shared_tile)) {
2819 free_array_ref_group(group);
2820 continue;
2823 if (group->last_shared < groups[i]->last_shared ||
2824 group->last_shared < groups[j]->last_shared)
2825 recompute_overlap = 1;
2826 free_array_ref_group(groups[i]);
2827 free_array_ref_group(groups[j]);
2828 groups[i] = group;
2829 if (j != n - 1)
2830 groups[j] = groups[n - 1];
2831 n--;
2835 if (recompute_overlap)
2836 n = group_last_shared_overlapping_writes(gen, n, groups);
2837 return n;
2840 /* Set array->n_group and array->groups to n and groups.
2842 * Additionally, set the "nr" field of each group
2843 * and the "group" field of each reference in each group.
2845 static void set_array_groups(struct gpu_array_info *array,
2846 int n, struct gpu_array_ref_group **groups)
2848 int i, j;
2850 array->n_group = n;
2851 array->groups = groups;
2853 for (i = 0; i < n; ++i) {
2854 groups[i]->nr = i;
2856 for (j = 0; j < groups[i]->n_ref; ++j)
2857 groups[i]->refs[j]->group = i;
2861 /* Group array references that should be considered together when
2862 * deciding whether to access them from private, shared or global memory.
2864 * In particular, if two array references overlap and if one of them
2865 * is a write, then the two references are grouped together.
2866 * We first perform an initial grouping based only on the access relation.
2867 * After computing shared and private memory tiles, we check for
2868 * overlapping writes again, but this time taking into account
2869 * the "last_shared" property.
2871 * Furthermore, if two groups admit a shared memory tile and if the
2872 * combination of the two also admits a shared memory tile, we merge
2873 * the two groups.
2875 * If the array contains structures, then there is no need to compute
2876 * reference groups since we do not map such arrays to private or shared
2877 * memory.
2879 static void group_array_references(struct gpu_gen *gen,
2880 struct gpu_array_info *array, __isl_keep isl_union_map *sched)
2882 int i;
2883 int n;
2884 isl_ctx *ctx = isl_union_map_get_ctx(sched);
2885 struct gpu_array_ref_group **groups;
2887 if (array->has_compound_element)
2888 return;
2890 groups = isl_calloc_array(ctx, struct gpu_array_ref_group *,
2891 array->n_ref);
2892 assert(groups);
2894 n = populate_array_references(array, sched, groups);
2896 n = group_overlapping_writes(gen, n, groups);
2898 for (i = 0; i < n; ++i)
2899 compute_group_bounds(gen, groups[i]);
2901 n = group_last_shared_overlapping_writes(gen, n, groups);
2903 n = group_common_shared_memory_tile(gen, array, n, groups);
2905 set_array_groups(array, n, groups);
2908 /* Take tiled_sched, project it onto the shared tile loops and
2909 * the loops that will be wrapped over the threads and
2910 * store the result in gen->shared_sched.
2911 * Also compute a projection that projects out the loops that will be
2912 * wrapped over the threads and store this projection in gen->shared_proj.
2914 static void compute_shared_sched(struct gpu_gen *gen)
2916 isl_space *dim;
2917 isl_map *proj;
2918 isl_set *par;
2919 isl_union_map *sched;
2921 sched = isl_union_map_copy(gen->tiled_sched);
2923 dim = isl_union_map_get_space(sched);
2924 proj = projection(dim, gen->tiled_len, gen->shared_len + gen->n_block);
2925 sched = isl_union_map_apply_range(sched, isl_union_map_from_map(proj));
2927 dim = isl_union_map_get_space(sched);
2928 proj = projection(dim, gen->shared_len + gen->n_block, gen->shared_len);
2930 gen->shared_sched = sched;
2931 gen->shared_proj = isl_union_map_from_map(proj);
2934 /* Group references of all arrays in the program.
2936 static void group_references(struct gpu_gen *gen)
2938 int i;
2939 isl_union_map *sched;
2941 sched = isl_union_map_apply_range(isl_union_map_copy(gen->shared_sched),
2942 isl_union_map_copy(gen->shared_proj));
2944 for (i = 0; i < gen->prog->n_array; ++i)
2945 group_array_references(gen, &gen->prog->array[i], sched);
2947 isl_union_map_free(sched);
2950 /* Free all array information that is local to the current kernel.
2952 static void free_local_array_info(struct gpu_gen *gen)
2954 int i, j;
2956 for (i = 0; i < gen->prog->n_array; ++i) {
2957 struct gpu_array_info *array = &gen->prog->array[i];
2959 for (j = 0; j < array->n_group; ++j)
2960 free_array_ref_group(array->groups[j]);
2961 free(array->groups);
2965 /* Compute the size of a bounding box around the origin and "set",
2966 * where "set" is assumed to contain only non-negative elements.
2967 * In particular, compute the maximal value of "set" in each direction
2968 * and add one.
2970 static __isl_give isl_multi_pw_aff *extract_size(__isl_take isl_set *set,
2971 __isl_keep isl_set *context)
2973 int i, n;
2974 isl_multi_pw_aff *mpa;
2976 n = isl_set_dim(set, isl_dim_set);
2977 mpa = isl_multi_pw_aff_zero(isl_set_get_space(set));
2978 for (i = 0; i < n; ++i) {
2979 isl_space *space;
2980 isl_aff *one;
2981 isl_pw_aff *bound;
2983 bound = isl_set_dim_max(isl_set_copy(set), i);
2984 bound = isl_pw_aff_coalesce(bound);
2985 bound = isl_pw_aff_gist(bound, isl_set_copy(context));
2987 space = isl_pw_aff_get_domain_space(bound);
2988 one = isl_aff_zero_on_domain(isl_local_space_from_space(space));
2989 one = isl_aff_add_constant_si(one, 1);
2990 bound = isl_pw_aff_add(bound, isl_pw_aff_from_aff(one));
2991 mpa = isl_multi_pw_aff_set_pw_aff(mpa, i, bound);
2993 isl_set_free(set);
2995 return mpa;
2998 /* Compute the effective grid size as a list of the sizes in each dimension.
3000 * The grid size specified by the user or set by default
3001 * in read_grid_sizes() and applied in tile_schedule(),
3002 * may be too large for the given code in the sense that
3003 * it may contain blocks that don't need to execute anything.
3004 * We therefore don't return this grid size, but instead the
3005 * smallest grid size that ensures that all blocks that actually
3006 * execute code are included in the grid.
3008 * We first extract a description of the grid, i.e., the possible values
3009 * of the block ids, from gen->tiled_sched.
3010 * The block ids are parameters in gen->tiled_sched.
3011 * We simply need to change them into set dimensions.
3013 * Then, for each block dimension, we compute the maximal value of the block id
3014 * and add one.
3016 static __isl_give isl_multi_pw_aff *extract_grid_size(struct gpu_gen *gen,
3017 struct ppcg_kernel *kernel)
3019 int i;
3020 isl_set *grid;
3022 grid = isl_union_map_params(isl_union_map_copy(gen->tiled_sched));
3023 grid = isl_set_from_params(grid);
3024 grid = isl_set_add_dims(grid, isl_dim_set, gen->n_grid);
3025 for (i = 0; i < gen->n_grid; ++i) {
3026 int pos;
3027 char name[20];
3029 snprintf(name, sizeof(name), "b%d", i);
3030 pos = isl_set_find_dim_by_name(grid, isl_dim_param, name);
3031 assert(pos >= 0);
3032 grid = isl_set_equate(grid, isl_dim_param, pos, isl_dim_set, i);
3033 grid = isl_set_project_out(grid, isl_dim_param, pos, 1);
3036 return extract_size(grid, kernel->context);
3039 /* Compute the size of a fixed bounding box around the origin and "set",
3040 * where "set" is assumed to contain only non-negative elements,
3041 * and store the results in "size".
3042 * In particular, compute the maximal value of "set" in each direction
3043 * and add one.
3045 static void extract_fixed_size(__isl_take isl_set *set, int *size)
3047 int i, n;
3048 isl_local_space *ls;
3049 isl_aff *obj;
3051 n = isl_set_dim(set, isl_dim_set);
3052 ls = isl_local_space_from_space(isl_set_get_space(set));
3053 obj = isl_aff_zero_on_domain(ls);
3054 for (i = 0; i < n; ++i) {
3055 isl_val *max;
3057 obj = isl_aff_set_coefficient_si(obj, isl_dim_in, i, 1);
3058 max = isl_set_max_val(set, obj);
3059 size[i] = isl_val_get_num_si(max) + 1;
3060 isl_val_free(max);
3061 obj = isl_aff_set_coefficient_si(obj, isl_dim_in, i, 0);
3063 isl_aff_free(obj);
3064 isl_set_free(set);
3067 /* Compute the effective block size as a list of the sizes in each dimension
3068 * and store the sizes in kernel->block_dim.
3070 * The block size specified by the user or set by default
3071 * in read_block_sizes() and applied in thread_tile_schedule(),
3072 * may be too large for the given code in the sense that
3073 * it may contain threads that don't need to execute anything.
3074 * We therefore don't store this block size in kernel->block_dim,
3075 * but instead the smallest block size that ensures that all threads
3076 * that actually execute code are included in the block.
3078 * The current implementation eliminates all parameters, ensuring
3079 * that the size is a fixed constant in each dimension.
3080 * In principle we could also compute parametric sizes.
3081 * We would have to make sure to project out all b%d and t%d parameters,
3082 * however.
3084 static void extract_block_size(struct gpu_gen *gen, struct ppcg_kernel *kernel)
3086 int i;
3087 int nparam;
3088 isl_set *block;
3089 isl_multi_pw_aff *mpa;
3091 block = isl_union_map_params(isl_union_map_copy(gen->local_sched));
3092 block = isl_set_from_params(block);
3093 block = isl_set_add_dims(block, isl_dim_set, gen->n_block);
3094 kernel->n_block = gen->n_block;
3095 for (i = 0; i < gen->n_block; ++i) {
3096 int pos;
3097 char name[20];
3099 snprintf(name, sizeof(name), "t%d", i);
3100 pos = isl_set_find_dim_by_name(block, isl_dim_param, name);
3101 assert(pos >= 0);
3102 block = isl_set_equate(block, isl_dim_param, pos,
3103 isl_dim_set, i);
3105 nparam = isl_set_dim(block, isl_dim_param);
3106 block = isl_set_project_out(block, isl_dim_param, 0, nparam);
3108 extract_fixed_size(block, kernel->block_dim);
3111 void ppcg_kernel_free(void *user)
3113 struct ppcg_kernel *kernel = user;
3114 int i;
3116 if (!kernel)
3117 return;
3119 isl_multi_pw_aff_free(kernel->grid_size);
3120 isl_set_free(kernel->context);
3121 isl_union_set_free(kernel->arrays);
3122 isl_space_free(kernel->space);
3123 isl_ast_node_free(kernel->tree);
3125 for (i = 0; i < kernel->n_array; ++i)
3126 isl_pw_aff_list_free(kernel->array[i].bound);
3127 free(kernel->array);
3129 for (i = 0; i < kernel->n_var; ++i) {
3130 free(kernel->var[i].name);
3131 isl_vec_free(kernel->var[i].size);
3133 free(kernel->var);
3135 free(kernel);
3138 static void create_kernel_var(isl_ctx *ctx, struct gpu_array_ref_group *group,
3139 struct ppcg_kernel_var *var)
3141 int j;
3142 struct gpu_array_tile *tile;
3143 isl_printer *p;
3144 char *name;
3146 var->array = group->array;
3148 tile = group->private_tile;
3149 var->type = ppcg_access_private;
3150 if (!tile) {
3151 tile = group->shared_tile;
3152 var->type = ppcg_access_shared;
3155 p = isl_printer_to_str(ctx);
3156 p = print_array_name(p, group);
3157 var->name = isl_printer_get_str(p);
3158 isl_printer_free(p);
3160 var->size = isl_vec_alloc(ctx, group->array->n_index);
3162 for (j = 0; j < group->array->n_index; ++j)
3163 var->size = isl_vec_set_element_val(var->size, j,
3164 isl_val_copy(tile->bound[j].size));
3167 static void create_kernel_vars(struct gpu_gen *gen, struct ppcg_kernel *kernel)
3169 int i, j, n;
3171 n = 0;
3172 for (i = 0; i < gen->prog->n_array; ++i) {
3173 struct gpu_array_info *array = &gen->prog->array[i];
3175 for (j = 0; j < array->n_group; ++j) {
3176 struct gpu_array_ref_group *group = array->groups[j];
3177 if (group->private_tile || group->shared_tile)
3178 ++n;
3182 kernel->n_var = n;
3183 kernel->var = isl_calloc_array(gen->ctx, struct ppcg_kernel_var, n);
3184 assert(kernel->var);
3186 n = 0;
3187 for (i = 0; i < gen->prog->n_array; ++i) {
3188 struct gpu_array_info *array = &gen->prog->array[i];
3190 for (j = 0; j < array->n_group; ++j) {
3191 struct gpu_array_ref_group *group = array->groups[j];
3192 if (!group->private_tile && !group->shared_tile)
3193 continue;
3194 create_kernel_var(gen->ctx, group, &kernel->var[n]);
3195 ++n;
3200 /* The sizes of the arrays on the host that have been computed by
3201 * extract_array_info may depend on the parameters. Use the extra
3202 * constraints on the parameters that are valid at "host_domain"
3203 * to simplify these expressions and store the results in kernel->array.
3205 * We only need these localized bounds for arrays that are accessed
3206 * by the current kernel. If we have found at least one reference group
3207 * then the array is accessed by the kernel. If the array has compound
3208 * elements then we skipped the construction of array reference groups.
3210 static void localize_bounds(struct gpu_gen *gen, struct ppcg_kernel *kernel,
3211 __isl_keep isl_set *host_domain)
3213 int i, j;
3214 isl_set *context;
3216 kernel->array = isl_calloc_array(gen->ctx,
3217 struct gpu_local_array_info, gen->prog->n_array);
3218 assert(kernel->array);
3219 kernel->n_array = gen->prog->n_array;
3221 context = isl_set_copy(host_domain);
3222 context = isl_set_params(context);
3224 for (i = 0; i < gen->prog->n_array; ++i) {
3225 struct gpu_array_info *array = &gen->prog->array[i];
3226 isl_pw_aff_list *local;
3228 if (array->n_group == 0 && !array->has_compound_element)
3229 continue;
3231 local = isl_pw_aff_list_alloc(gen->ctx, array->n_index);
3233 for (j = 0; j < array->n_index; ++j) {
3234 isl_pw_aff *pwaff;
3236 pwaff = isl_pw_aff_copy(array->bound[j]);
3237 pwaff = isl_pw_aff_gist(pwaff, isl_set_copy(context));
3238 local = isl_pw_aff_list_add(local, pwaff);
3241 kernel->array[i].bound = local;
3243 isl_set_free(context);
3246 /* Find the element in gen->stmt that has the given "id".
3247 * Return NULL if no such gpu_stmt can be found.
3249 static struct gpu_stmt *find_stmt(struct gpu_prog *prog, __isl_keep isl_id *id)
3251 int i;
3253 for (i = 0; i < prog->n_stmts; ++i) {
3254 if (id == prog->stmts[i].id)
3255 break;
3258 return i < prog->n_stmts ? &prog->stmts[i] : NULL;
3261 /* Set gen->tile_len and gen->n_parallel to those of the statement
3262 * affected by the first map (part of the schedule)
3263 * on which this function is called.
3264 * Because of the way the schedule is constructed, the other statements
3265 * in the list, if any, should have the same values for these properties.
3267 static int extract_tile_len(__isl_take isl_map *map, void *user)
3269 struct gpu_gen *gen = (struct gpu_gen *) user;
3270 isl_id *id;
3271 struct gpu_stmt *stmt;
3273 id = isl_map_get_tuple_id(map, isl_dim_in);
3274 stmt = find_stmt(gen->prog, id);
3275 isl_id_free(id);
3277 isl_map_free(map);
3279 if (!stmt)
3280 isl_die(gen->ctx, isl_error_unknown,
3281 "statement not found", return -1);
3283 gen->tile_len = stmt->tile_len;
3284 gen->n_parallel = stmt->n_parallel;
3286 return -1;
3289 void ppcg_kernel_stmt_free(void *user)
3291 int i;
3292 struct ppcg_kernel_stmt *stmt = user;
3294 if (!stmt)
3295 return;
3297 switch (stmt->type) {
3298 case ppcg_kernel_copy:
3299 isl_ast_expr_free(stmt->u.c.index);
3300 isl_ast_expr_free(stmt->u.c.local_index);
3301 break;
3302 case ppcg_kernel_domain:
3303 isl_id_to_ast_expr_free(stmt->u.d.ref2expr);
3304 break;
3305 case ppcg_kernel_sync:
3306 break;
3309 free(stmt);
3312 /* Set the options of "context" to
3314 * { space -> [x] : x >= first }
3316 static __isl_give isl_ast_build *set_unroll(
3317 __isl_take isl_ast_build *build, __isl_take isl_space *space,
3318 int first)
3320 isl_ctx *ctx;
3321 isl_map *unroll;
3322 isl_union_map *opt;
3324 ctx = isl_ast_build_get_ctx(build);
3326 space = isl_space_from_domain(space);
3327 space = isl_space_add_dims(space, isl_dim_out, 1);
3328 space = isl_space_set_tuple_name(space, isl_dim_out, "unroll");
3329 unroll = isl_map_universe(space);
3330 unroll = isl_map_lower_bound_si(unroll, isl_dim_out, 0, first);
3331 opt = isl_union_map_from_map(unroll);
3333 build = isl_ast_build_set_options(build, opt);
3335 return build;
3338 /* Return a list of isl_ids of the form "prefix%d".
3340 static __isl_give isl_id_list *generate_names(isl_ctx *ctx,
3341 int n, const char *prefix)
3343 int i;
3344 char name[10];
3345 isl_id_list *names;
3347 names = isl_id_list_alloc(ctx, n);
3348 for (i = 0; i < n; ++i) {
3349 isl_id *id;
3351 snprintf(name, sizeof(name), "%s%d", prefix, i);
3352 id = isl_id_alloc(ctx, name, NULL);
3353 names = isl_id_list_add(names, id);
3356 return names;
3359 /* Extend the schedule "schedule" with the part of "extension"
3360 * starting at "first" up to "len".
3362 static __isl_give isl_union_map *extend_schedule(
3363 __isl_take isl_union_map *schedule,
3364 __isl_take isl_union_map *extension, int first, int len)
3366 isl_space *space;
3367 isl_map *proj;
3368 isl_union_map *umap;
3369 isl_set *set;
3371 space = isl_union_map_get_space(schedule);
3372 space = isl_space_set_from_params(space);
3373 space = isl_space_add_dims(space, isl_dim_set, len);
3374 proj = isl_set_identity(isl_set_universe(space));
3375 proj = isl_map_project_out(proj, isl_dim_out, 0, first);
3376 extension = isl_union_map_apply_range(extension,
3377 isl_union_map_from_map(proj));
3379 schedule = isl_union_map_range_product(schedule, extension);
3381 return schedule;
3384 /* Return the gpu_stmt_access in the list "accesses" that corresponds
3385 * to "ref_id".
3387 static struct gpu_stmt_access *find_access(struct gpu_stmt_access *accesses,
3388 __isl_keep isl_id *ref_id)
3390 struct gpu_stmt_access *access;
3392 for (access = accesses; access; access = access->next)
3393 if (access->ref_id == ref_id)
3394 return access;
3396 return NULL;
3399 /* Return the index of the array called "name" in the list of arrays.
3401 static int find_array_index(struct gpu_gen *gen, const char *name)
3403 int i;
3405 for (i = 0; i < gen->prog->n_array; ++i)
3406 if (!strcmp(name, gen->prog->array[i].name))
3407 return i;
3409 return -1;
3412 /* Internal data structure for the index and AST expression transformation
3413 * callbacks for pet_stmt_build_ast_exprs.
3415 * "accesses" is the list of gpu_stmt_access in the statement.
3416 * "iterator_map" expresses the statement iterators in terms of
3417 * the AST loop iterators.
3418 * "sched2shared" expresses the first shared_len dimensions of
3419 * the computed schedule in terms of the AST loop iterators.
3421 * The following fields are set in transform_index and used in transform_expr.
3422 * "array" is the array that is being accessed.
3423 * "global" is set if the global array is accessed (rather than
3424 * shared/private memory).
3425 * "local_array" refers to information on the array specialized
3426 * to the current kernel.
3428 struct ppcg_transform_data {
3429 struct gpu_gen *gen;
3430 struct gpu_stmt_access *accesses;
3431 isl_pw_multi_aff *iterator_map;
3432 isl_pw_multi_aff *sched2shared;
3434 struct gpu_array_info *array;
3435 int global;
3436 struct gpu_local_array_info *local_array;
3439 /* Return the name of the outer array (of structs) accessed by "access".
3441 static const char *get_outer_array_name(__isl_keep isl_map *access)
3443 isl_space *space;
3444 const char *name;
3446 space = isl_space_range(isl_map_get_space(access));
3447 while (space && isl_space_is_wrapping(space))
3448 space = isl_space_domain(isl_space_unwrap(space));
3449 name = isl_space_get_tuple_name(space, isl_dim_set);
3450 isl_space_free(space);
3452 return name;
3455 /* Index transformation callback for pet_stmt_build_ast_exprs.
3457 * "index" expresses the array indices in terms of statement iterators
3459 * We first reformulate "index" in terms of the AST loop iterators.
3460 * Then we check if we are accessing the global array or
3461 * a shared/private copy. In the former case, we simply return
3462 * the updated index. If "index" is an affine expression rather
3463 * than an array access, then we also return the updated index here.
3465 * If no reference groups have been computed for the array,
3466 * then we can only be accessing the global array.
3468 * Otherwise, we apply the tiling to the index.
3469 * This tiling is of the form
3471 * [D -> A] -> T
3473 * The index is of the form
3475 * L -> A
3477 * We update the tiling to refer to the AST loop iteratos
3479 * [L -> A] -> T
3481 * and modify index to keep track of those iterators
3483 * L -> [L -> A]
3485 * Combining these two yields a tiled index expression in terms
3486 * of the AST loop iterators
3488 * L -> T
3490 static __isl_give isl_multi_pw_aff *transform_index(
3491 __isl_take isl_multi_pw_aff *index, __isl_keep isl_id *ref_id,
3492 void *user)
3494 struct ppcg_transform_data *data = user;
3495 struct gpu_stmt_access *access;
3496 struct gpu_array_ref_group *group;
3497 struct gpu_array_tile *tile;
3498 isl_pw_multi_aff *iterator_map;
3499 int i;
3500 const char *name;
3501 isl_space *space;
3502 isl_multi_pw_aff *tiling;
3503 isl_pw_multi_aff *pma;
3504 isl_multi_pw_aff *mpa;
3506 data->array = NULL;
3508 iterator_map = isl_pw_multi_aff_copy(data->iterator_map);
3509 index = isl_multi_pw_aff_pullback_pw_multi_aff(index, iterator_map);
3511 access = find_access(data->accesses, ref_id);
3512 if (!access)
3513 return index;
3514 if (!isl_map_has_tuple_name(access->access, isl_dim_out))
3515 return index;
3517 name = get_outer_array_name(access->access);
3518 i = find_array_index(data->gen, name);
3519 if (i < 0)
3520 isl_die(isl_multi_pw_aff_get_ctx(index), isl_error_internal,
3521 "cannot find array",
3522 return isl_multi_pw_aff_free(index));
3523 data->array = &data->gen->prog->array[i];
3524 data->local_array = &data->gen->kernel->array[i];
3526 if (access->group < 0) {
3527 data->global = 1;
3528 return index;
3531 group = data->array->groups[access->group];
3532 tile = group->private_tile;
3533 if (!tile)
3534 tile = group->shared_tile;
3535 data->global = !tile;
3536 if (!tile)
3537 return index;
3539 space = isl_space_range(isl_multi_pw_aff_get_space(index));
3540 space = isl_space_map_from_set(space);
3541 pma = isl_pw_multi_aff_identity(space);
3542 pma = isl_pw_multi_aff_product(
3543 isl_pw_multi_aff_copy(data->sched2shared), pma);
3544 tiling = isl_multi_pw_aff_from_multi_aff(
3545 isl_multi_aff_copy(tile->tiling));
3546 tiling = isl_multi_pw_aff_pullback_pw_multi_aff(tiling, pma);
3548 space = isl_space_domain(isl_multi_pw_aff_get_space(index));
3549 space = isl_space_map_from_set(space);
3550 mpa = isl_multi_pw_aff_identity(space);
3551 index = isl_multi_pw_aff_range_product(mpa, index);
3552 index = isl_multi_pw_aff_pullback_multi_pw_aff(tiling, index);
3554 return index;
3557 /* Dereference "expr" by adding an index [0].
3558 * The original "expr" is assumed not to have any indices.
3560 * If "expr" is a member access, then the dereferencing needs
3561 * to be applied to the structure argument of this member access.
3563 static __isl_give isl_ast_expr *dereference(__isl_take isl_ast_expr *expr)
3565 isl_ctx *ctx;
3566 isl_ast_expr *res;
3567 isl_ast_expr_list *list;
3569 if (isl_ast_expr_get_op_type(expr) == isl_ast_op_member) {
3570 isl_ast_expr *arg;
3572 arg = isl_ast_expr_get_op_arg(expr, 0);
3573 arg = dereference(arg);
3574 expr = isl_ast_expr_set_op_arg(expr, 0, arg);
3576 return expr;
3579 ctx = isl_ast_expr_get_ctx(expr);
3580 res = isl_ast_expr_from_val(isl_val_zero(ctx));
3581 list = isl_ast_expr_list_from_ast_expr(res);
3582 res = isl_ast_expr_get_op_arg(expr, 0);
3583 res = isl_ast_expr_access(res, list);
3584 isl_ast_expr_free(expr);
3586 return res;
3589 /* Linearize the index expression "expr" based on the array bounds
3590 * of "array".
3592 * That is, transform expression
3594 * A[i_0][i_1]...[i_n]
3596 * to
3598 * A[(..((i_0 * b_1 + i_1) ... ) * b_n + i_n]
3600 * where b_0, b_1, ..., b_n are the bounds on the array.
3602 * If the base of "expr" is a member access, then the linearization needs
3603 * to be applied to the structure argument of this member access.
3605 __isl_give isl_ast_expr *gpu_local_array_info_linearize_index(
3606 struct gpu_local_array_info *array, __isl_take isl_ast_expr *expr)
3608 int i, n;
3609 isl_ctx *ctx;
3610 isl_set *context;
3611 isl_ast_expr *arg0;
3612 isl_ast_expr *res;
3613 isl_ast_expr_list *list;
3614 isl_ast_build *build;
3616 arg0 = isl_ast_expr_get_op_arg(expr, 0);
3617 if (isl_ast_expr_get_type(arg0) == isl_ast_expr_op &&
3618 isl_ast_expr_get_op_type(arg0) == isl_ast_op_member) {
3619 isl_ast_expr *arg;
3621 arg = isl_ast_expr_get_op_arg(arg0, 0);
3622 arg = gpu_local_array_info_linearize_index(array, arg);
3623 arg0 = isl_ast_expr_set_op_arg(arg0, 0, arg);
3624 expr = isl_ast_expr_set_op_arg(expr, 0, arg0);
3626 return expr;
3628 isl_ast_expr_free(arg0);
3630 ctx = isl_ast_expr_get_ctx(expr);
3631 context = isl_set_universe(isl_space_params_alloc(ctx, 0));
3632 build = isl_ast_build_from_context(context);
3634 n = isl_ast_expr_get_op_n_arg(expr);
3635 res = isl_ast_expr_get_op_arg(expr, 1);
3636 for (i = 2; i < n; ++i) {
3637 isl_pw_aff *bound_i;
3638 isl_ast_expr *expr_i;
3640 bound_i = isl_pw_aff_list_get_pw_aff(array->bound, i - 1);
3641 expr_i = isl_ast_build_expr_from_pw_aff(build, bound_i);
3642 res = isl_ast_expr_mul(res, expr_i);
3643 expr_i = isl_ast_expr_get_op_arg(expr, i);
3644 res = isl_ast_expr_add(res, expr_i);
3647 isl_ast_build_free(build);
3649 list = isl_ast_expr_list_from_ast_expr(res);
3650 res = isl_ast_expr_get_op_arg(expr, 0);
3651 res = isl_ast_expr_access(res, list);
3653 isl_ast_expr_free(expr);
3655 return res;
3658 /* AST expression transformation callback for pet_stmt_build_ast_exprs.
3660 * If the AST expression refers to a global scalar that is not
3661 * a read-only scalar, then its address was passed to the kernel and
3662 * we need to dereference it.
3664 * If the AST expression refers to an access to a global array,
3665 * then we linearize the access exploiting the bounds in data->local_array.
3667 static __isl_give isl_ast_expr *transform_expr(__isl_take isl_ast_expr *expr,
3668 __isl_keep isl_id *id, void *user)
3670 struct ppcg_transform_data *data = user;
3672 if (!data->array)
3673 return expr;
3674 if (gpu_array_is_read_only_scalar(data->array))
3675 return expr;
3676 if (!data->global)
3677 return expr;
3678 if (data->array->n_index == 0)
3679 return dereference(expr);
3680 if (!data->array->linearize)
3681 return expr;
3683 return gpu_local_array_info_linearize_index(data->local_array, expr);
3686 /* This function is called for each instance of a user statement
3687 * in the kernel.
3689 * We attach a struct ppcg_kernel_stmt to the "node", containing
3690 * a computed AST expression for each access.
3691 * These AST expressions are computed from iterator_map,
3692 * which expresses the domain
3693 * elements in terms of the generated loops, and sched2shared,
3694 * which expresses the first shared_len dimensions of the schedule
3695 * computed by PPCG in terms of the generated loops.
3697 static __isl_give isl_ast_node *at_each_domain(__isl_take isl_ast_node *node,
3698 __isl_keep isl_ast_build *build, void *user)
3700 struct ppcg_transform_data data;
3701 struct gpu_gen *gen = (struct gpu_gen *) user;
3702 struct ppcg_kernel_stmt *stmt;
3703 isl_id *id;
3704 isl_pw_multi_aff *sched2shared;
3705 isl_map *map;
3706 isl_pw_multi_aff *iterator_map;
3707 isl_ast_expr *expr, *arg;
3708 isl_union_map *schedule;
3709 int i, n;
3710 struct gpu_stmt_access *access;
3712 stmt = isl_calloc_type(gen->ctx, struct ppcg_kernel_stmt);
3713 if (!stmt)
3714 return isl_ast_node_free(node);
3716 expr = isl_ast_node_user_get_expr(node);
3717 arg = isl_ast_expr_get_op_arg(expr, 0);
3718 id = isl_ast_expr_get_id(arg);
3720 schedule = isl_ast_build_get_schedule(build);
3721 map = isl_map_reverse(isl_map_from_union_map(schedule));
3722 iterator_map = isl_pw_multi_aff_from_map(map);
3723 sched2shared = compute_sched_to_shared(gen,
3724 isl_pw_multi_aff_copy(iterator_map));
3726 stmt->type = ppcg_kernel_domain;
3727 stmt->u.d.stmt = find_stmt(gen->prog, id);
3728 if (!stmt->u.d.stmt)
3729 goto error;
3731 data.gen = gen;
3732 data.accesses = stmt->u.d.stmt->accesses;
3733 data.iterator_map = iterator_map;
3734 data.sched2shared = sched2shared;
3735 stmt->u.d.ref2expr = pet_stmt_build_ast_exprs(stmt->u.d.stmt->stmt,
3736 build, &transform_index, &data,
3737 &transform_expr, &data);
3739 isl_id_free(id);
3740 isl_pw_multi_aff_free(iterator_map);
3741 isl_pw_multi_aff_free(sched2shared);
3742 isl_ast_expr_free(arg);
3743 isl_ast_expr_free(expr);
3745 id = isl_id_alloc(gen->ctx, NULL, stmt);
3746 id = isl_id_set_free_user(id, &ppcg_kernel_stmt_free);
3747 return isl_ast_node_set_annotation(node, id);
3748 error:
3749 isl_id_free(id);
3750 isl_pw_multi_aff_free(iterator_map);
3751 ppcg_kernel_stmt_free(stmt);
3752 isl_pw_multi_aff_free(sched2shared);
3753 return isl_ast_node_free(node);
3756 /* This function is called when code has been generated for the shared
3757 * tile loops. The "schedule" refers only to the original statements.
3759 * We extend the schedule with that part of gen->local_sched that hasn't
3760 * been taken into account yet. This introduces parameters referring
3761 * to thread ids in the schedule, so we add them (with the appropriate
3762 * bounds to the context as well).
3763 * Finally, we set the appropriate unrolling options
3764 * if gen->first_unroll is set.
3766 static __isl_give isl_ast_node *create_domain_leaf(
3767 __isl_take isl_union_map *schedule, __isl_take isl_ast_build *build,
3768 void *user)
3770 struct gpu_gen *gen = (struct gpu_gen *) user;
3771 isl_space *space;
3772 isl_union_map *sched;
3773 isl_ast_node *tree;
3774 isl_set *set;
3775 isl_id_list *iterators;
3776 int n;
3778 schedule = extend_schedule(schedule,
3779 isl_union_map_copy(gen->local_sched),
3780 gen->shared_len, gen->thread_tiled_len);
3782 space = isl_ast_build_get_schedule_space(build);
3783 set = isl_set_universe(space);
3784 set = add_bounded_parameters(set, gen->kernel->n_block,
3785 gen->kernel->block_dim, "t");
3786 build = isl_ast_build_restrict(build, set);
3788 n = gen->thread_tiled_len - gen->shared_len;
3790 if (gen->first_unroll >= 0) {
3791 space = isl_space_set_alloc(gen->ctx, 0, n);
3792 build = set_unroll(build, space, gen->first_unroll);
3794 iterators = generate_names(gen->ctx, n, "c");
3795 build = isl_ast_build_set_iterators(build, iterators);
3796 build = isl_ast_build_set_at_each_domain(build, &at_each_domain, gen);
3797 tree = isl_ast_build_ast_from_schedule(build, schedule);
3798 isl_ast_build_free(build);
3800 return tree;
3803 /* This function is called for each statement node in the AST of the code
3804 * for copying to or from shared/private memory.
3805 * Attach a pointer to a ppcg_kernel_stmt representing the copy
3806 * statement to the node.
3807 * The statement name is "read" or "write", depending on whether we are
3808 * reading from global memory or writing to global memory.
3809 * The name of the T space is {shared,private}_<array>.
3811 * The schedule is of the form
3813 * type[A -> T] -> L
3815 * where A refers to a piece of an array and T to the corresponding
3816 * shifted tile. We split this schedule into mappings L -> A and L -> T
3817 * and store the corresponding expressions in stmt->index and stmt->local_index,
3818 * where stmt points to the ppcg_kernel_stmt that is attached to the node.
3820 static __isl_give isl_ast_node *attach_copy_stmt(__isl_take isl_ast_node *node,
3821 __isl_keep isl_ast_build *build, void *user)
3823 struct gpu_gen *gen = (struct gpu_gen *) user;
3824 struct ppcg_kernel_stmt *stmt;
3825 isl_id *id;
3826 isl_ast_expr *expr;
3827 isl_space *space;
3828 isl_map *access, *local_access, *map;
3829 isl_pw_multi_aff *pma;
3830 const char *type;
3831 int array_index;
3833 stmt = isl_calloc_type(gen->ctx, struct ppcg_kernel_stmt);
3834 if (!stmt)
3835 return isl_ast_node_free(node);
3837 access = isl_map_from_union_map(isl_ast_build_get_schedule(build));
3838 type = isl_map_get_tuple_name(access, isl_dim_in);
3839 stmt->u.c.read = !strcmp(type, "read");
3840 access = isl_map_reverse(access);
3841 space = isl_space_unwrap(isl_space_range(isl_map_get_space(access)));
3842 local_access = isl_map_copy(access);
3844 map = isl_map_domain_map(isl_map_universe(isl_space_copy(space)));
3845 id = isl_map_get_tuple_id(access, isl_dim_out);
3846 map = isl_map_set_tuple_id(map, isl_dim_in, id);
3847 access = isl_map_apply_range(access, map);
3848 pma = isl_pw_multi_aff_from_map(access);
3849 expr = isl_ast_build_access_from_pw_multi_aff(build, pma);
3850 stmt->u.c.index = expr;
3852 map = isl_map_range_map(isl_map_universe(space));
3853 id = isl_map_get_tuple_id(local_access, isl_dim_out);
3854 map = isl_map_set_tuple_id(map, isl_dim_in, id);
3855 local_access = isl_map_apply_range(local_access, map);
3856 pma = isl_pw_multi_aff_from_map(local_access);
3857 expr = isl_ast_build_access_from_pw_multi_aff(build, pma);
3858 stmt->u.c.local_index = expr;
3860 stmt->u.c.array = gen->copy_group->array;
3861 array_index = stmt->u.c.array - gen->prog->array;
3862 stmt->u.c.local_array = &gen->kernel->array[array_index];
3863 stmt->type = ppcg_kernel_copy;
3865 id = isl_id_alloc(gen->ctx, NULL, stmt);
3866 id = isl_id_set_free_user(id, &ppcg_kernel_stmt_free);
3867 return isl_ast_node_set_annotation(node, id);
3870 /* Given a schedule of the form
3872 * [S -> A] -> L
3874 * (with S the first shared_len dimensions of the computed schedule,
3875 * A the array and L the schedule correponding to the generated loops),
3876 * indicating where to copy the array elements that need to be copied,
3877 * construct code for performing the copying.
3879 * "group" is the array reference group that is being copied
3880 * "type" is either "read" or "write"
3881 * private is set if copying needs to be performed to/from registers
3883 * We first construct a mapping to a shifted tile of the array,
3885 * [S -> A] -> T(S,A) (1)
3887 * If private is set, then we also use this mapping as a schedule
3888 * (which is already thread-specific and will be completely unrolled).
3889 * Otherwise, we wrap/tile the range over the threads.
3890 * The result is
3892 * [S -> A] -> T'(S,A)
3894 * Combined with the given schedule, we have
3896 * [S -> A] -> [L -> T'(S,A)] (2)
3898 * From the shifted tile mapping, we construct a mapping
3900 * [S -> A] -> [A -> T(S,A)]
3902 * and apply it to the schedule (2), obtaining
3904 * [A -> T(S(L),A)] -> [L -> T'(S(L),A)]
3906 * Note that we can project out S because it is uniquely defined by L.
3908 static __isl_give isl_ast_node *copy_access(struct gpu_gen *gen,
3909 __isl_take isl_map *sched,
3910 const char *type, struct gpu_array_ref_group *group,
3911 __isl_take isl_ast_build *build, int private)
3913 isl_space *space;
3914 isl_ast_node *tree;
3915 isl_map *schedule, *shift, *map;
3916 isl_set *set;
3917 isl_id_list *iterators;
3918 int n;
3920 shift = shift_access(group);
3922 schedule = isl_map_copy(shift);
3923 schedule = isl_map_reset_tuple_id(schedule, isl_dim_out);
3924 if (!private)
3925 schedule = tile_access_schedule(gen, schedule);
3927 n = isl_map_dim(schedule, isl_dim_out);
3928 set = isl_set_universe(isl_ast_build_get_schedule_space(build));
3929 set = add_bounded_parameters(set, gen->kernel->n_block,
3930 gen->kernel->block_dim, "t");
3932 schedule = isl_map_range_product(sched, schedule);
3934 space = isl_space_domain(isl_map_get_space(shift));
3935 map = isl_map_range_map(isl_map_universe(isl_space_unwrap(space)));
3936 map = isl_map_range_product(map, shift);
3938 schedule = isl_map_apply_domain(schedule, map);
3940 schedule = isl_map_set_tuple_name(schedule, isl_dim_in, type);
3942 build = isl_ast_build_restrict(build, set);
3944 gen->copy_group = group;
3946 if (private) {
3947 space = isl_space_range(isl_map_get_space(schedule));
3948 space = isl_space_range(isl_space_unwrap(space));
3949 build = set_unroll(build, space, 0);
3951 iterators = generate_names(gen->ctx, n, "c");
3952 build = isl_ast_build_set_iterators(build, iterators);
3953 build = isl_ast_build_set_at_each_domain(build, &attach_copy_stmt, gen);
3954 tree = isl_ast_build_ast_from_schedule(build,
3955 isl_union_map_from_map(schedule));
3956 isl_ast_build_free(build);
3958 return tree;
3961 /* Return code for reading into or writing from shared memory
3962 * the given array reference group.
3964 * If we are performing a read from global memory to shared memory and
3965 * if the array involved is not a scalar, then we copy
3966 * the entire tile to shared memory. This may result in some extra
3967 * elements getting copied, but it should lead to simpler code
3968 * (which means that fewer registers may be needed) and less divergence.
3970 * Otherwise, we only copy the elements that will be read or have been written
3971 * in the kernel.
3974 * The input "sched" is of the form.
3976 * type[S -> A] -> L
3978 * with S the first shared_len dimensions of the computed schedule,
3979 * A the array and L the schedule correponding to the generated loops.
3981 * We first drop "type",
3983 * [S -> A] -> L
3985 * If the above conditions are satisfied, we project out A,
3986 * resulting in
3988 * S -> L
3990 * and then introduce the group tile [S -> T], resulting in
3992 * [S -> T] -> L
3994 static __isl_give isl_ast_node *copy_group_shared_accesses(
3995 struct gpu_gen *gen, struct gpu_array_ref_group *group,
3996 __isl_take isl_map *sched, __isl_take isl_ast_build *build)
3998 const char *type;
3999 int read;
4000 isl_union_map *access;
4002 type = isl_map_get_tuple_name(sched, isl_dim_in);
4003 read = !strcmp(type, "read");
4005 sched = isl_map_reset_tuple_id(sched, isl_dim_in);
4007 if (read && !gpu_array_is_scalar(group->array)) {
4008 isl_space *space;
4009 isl_map *map;
4011 space = isl_space_domain(isl_map_get_space(sched));
4012 space = isl_space_unwrap(space);
4013 map = isl_map_domain_map(isl_map_universe(space));
4014 sched = isl_map_apply_domain(sched, map);
4016 map = group_tile(group);
4017 map = isl_map_reverse(isl_map_domain_map(map));
4018 sched = isl_map_apply_domain(sched, map);
4021 return copy_access(gen, sched, type, group, build, 0);
4024 /* Return code for reading into or writing from private memory
4025 * the given array reference group.
4027 * Let S be the first shared_len dimensions of the computed schedule,
4028 * D the iteration domains, A the array and L the schedule correponding
4029 * to the generated loops.
4030 * "sched" is of the form
4032 * type[S -> A] -> L
4034 * where type is either "read" or "write".
4035 * We apply the privatization D -> S(t), with t the thread ids,
4036 * to the access relation D -> A to obtain the privatized access relation
4038 * S(t) -> A
4040 * We drop the type from "sched" and intersect with the privatized access
4041 * relation to obtain
4043 * [S(t) -> A] -> L
4045 static __isl_give isl_ast_node *copy_group_private_accesses(
4046 struct gpu_gen *gen, struct gpu_array_ref_group *group,
4047 __isl_take isl_map *sched, __isl_take isl_ast_build *build)
4049 const char *type;
4050 int read;
4051 isl_union_map *priv;
4052 isl_union_map *access;
4053 isl_map *access_map;
4055 type = isl_map_get_tuple_name(sched, isl_dim_in);
4056 read = !strcmp(type, "read");
4058 priv = isl_union_map_from_map(isl_map_copy(gen->privatization));
4059 priv = isl_union_map_apply_range(isl_union_map_copy(gen->shared_sched),
4060 priv);
4062 access = group_access_relation(group, read, !read);
4063 access = isl_union_map_apply_domain(access, priv);
4064 access_map = isl_map_from_union_map(access);
4066 sched = isl_map_reset_tuple_id(sched, isl_dim_in);
4067 sched = isl_map_intersect_domain(sched, isl_map_wrap(access_map));
4069 return copy_access(gen, sched, type, group, build, 1);
4072 /* Return code for reading into or writing from shared or private memory.
4074 * "schedule" is of the form
4076 * type[S -> A] -> L
4078 * with S be the first shared_len dimensions of the computed schedule,
4079 * A the array and L the schedule correponding to the generated loops.
4080 * The array reference group is attached to "type".
4082 static __isl_give isl_ast_node *create_access_leaf(
4083 struct gpu_gen *gen, __isl_take isl_map *schedule,
4084 __isl_take isl_ast_build *build)
4086 struct gpu_array_ref_group *group;
4087 isl_id *id;
4089 id = isl_map_get_tuple_id(schedule, isl_dim_in);
4090 group = isl_id_get_user(id);
4091 isl_id_free(id);
4093 if (group->private_tile)
4094 return copy_group_private_accesses(gen, group, schedule,
4095 build);
4096 else
4097 return copy_group_shared_accesses(gen, group, schedule,
4098 build);
4101 /* Create a domain node representing a synchronization.
4103 static __isl_give isl_ast_node *create_sync_leaf(
4104 struct gpu_gen *gen, __isl_take isl_map *schedule,
4105 __isl_take isl_ast_build *build)
4107 struct ppcg_kernel_stmt *stmt;
4108 isl_id *id;
4109 isl_space *space;
4110 isl_ast_node *node;
4111 isl_ast_expr *expr;
4113 isl_map_free(schedule);
4115 stmt = isl_calloc_type(gen->ctx, struct ppcg_kernel_stmt);
4116 if (!stmt)
4117 return NULL;
4119 stmt->type = ppcg_kernel_sync;
4121 space = isl_ast_build_get_schedule_space(build);
4122 space = isl_space_from_domain(space);
4123 space = isl_space_set_tuple_name(space, isl_dim_out, "sync");
4124 expr = isl_ast_build_call_from_pw_multi_aff(build,
4125 isl_pw_multi_aff_from_multi_aff(isl_multi_aff_zero(space)));
4126 node = isl_ast_node_alloc_user(expr);
4127 isl_ast_build_free(build);
4129 id = isl_id_alloc(gen->ctx, NULL, stmt);
4130 id = isl_id_set_free_user(id, &ppcg_kernel_stmt_free);
4131 return isl_ast_node_set_annotation(node, id);
4134 /* This function is called during the code generation at the point
4135 * where the schedule domain element is completely determined by
4136 * the generated code. The input schedule contains the original
4137 * statements as well as synchronization and copy "statements".
4138 * The latter are scheduled at different points than any of the original
4139 * statements, so they will only arrive here in isolation.
4141 * If the current schedule only refers to a single statement,
4142 * we check if it is a copy or synchronization statement and
4143 * call the appropriate functions.
4144 * Otherwise, we assume we are dealing with the original statements
4145 * and we call create_domain_leaf.
4147 static __isl_give isl_ast_node *create_kernel_leaf(
4148 __isl_take isl_ast_build *build, void *user)
4150 struct gpu_gen *gen = (struct gpu_gen *) user;
4151 isl_map *map;
4152 isl_union_map *schedule;
4153 const char *name;
4155 schedule = isl_ast_build_get_schedule(build);
4157 if (isl_union_map_n_map(schedule) != 1)
4158 return create_domain_leaf(schedule, build, user);
4160 map = isl_map_from_union_map(schedule);
4161 name = isl_map_get_tuple_name(map, isl_dim_in);
4162 if (!strcmp(name, "read") || !strcmp(name, "write"))
4163 return create_access_leaf(gen, map, build);
4164 if (!strcmp(name, "sync"))
4165 return create_sync_leaf(gen, map, build);
4167 return create_domain_leaf(isl_union_map_from_map(map), build, user);
4170 /* Mark all odd schedule dimensions as "atomic" (when the even dimensions
4171 * have value 0) and all even schedule dimensions as "unroll".
4173 * That is, the options look as follows
4175 * { [0, b, 0, d, ..., 0] -> atomic[i] : exists a : i = 2 a + 1;
4176 * [a, b, c, d, ..., z] -> unroll[i] : exists a : i = 2 a }
4178 * The even positions are used to be able to schedule copying blocks
4179 * and synchronization before or after each level of the shared memory
4180 * tile loops and we want to make sure that code for these is generated
4181 * separately (within each level).
4183 static __isl_give isl_ast_build *set_atomic_and_unroll(
4184 __isl_take isl_ast_build *build,
4185 __isl_take isl_space *space, int sched_len)
4187 isl_ctx *ctx;
4188 isl_map *map;
4189 isl_constraint *c;
4190 isl_union_map *opt;
4191 isl_local_space *ls;
4192 int i, n;
4194 ctx = isl_ast_build_get_ctx(build);
4196 space = isl_space_params(space);
4197 space = isl_space_add_dims(space, isl_dim_set, sched_len);
4198 space = isl_space_from_domain(space);
4199 space = isl_space_add_dims(space, isl_dim_out, 2);
4200 map = isl_map_universe(isl_space_copy(space));
4201 for (i = 0; i < sched_len; i += 2)
4202 map = isl_map_fix_si(map, isl_dim_in, i, 0);
4203 ls = isl_local_space_from_space(isl_map_get_space(map));
4204 c = isl_equality_alloc(ls);
4205 c = isl_constraint_set_coefficient_si(c, isl_dim_out, 0, 1);
4206 c = isl_constraint_set_coefficient_si(c, isl_dim_out, 1, 2);
4207 c = isl_constraint_set_constant_si(c, 1);
4208 map = isl_map_add_constraint(map, c);
4209 map = isl_map_project_out(map, isl_dim_out, 1, 1);
4210 map = isl_map_set_tuple_name(map, isl_dim_out, "atomic");
4211 opt = isl_union_map_from_map(map);
4213 map = isl_map_universe(space);
4214 ls = isl_local_space_from_space(isl_map_get_space(map));
4215 c = isl_equality_alloc(ls);
4216 c = isl_constraint_set_coefficient_si(c, isl_dim_out, 0, 1);
4217 c = isl_constraint_set_coefficient_si(c, isl_dim_out, 1, 2);
4218 map = isl_map_add_constraint(map, c);
4219 map = isl_map_project_out(map, isl_dim_out, 1, 1);
4220 map = isl_map_set_tuple_name(map, isl_dim_out, "unroll");
4221 opt = isl_union_map_add_map(opt, map);
4223 build = isl_ast_build_set_options(build, opt);
4225 return build;
4228 /* Return a map that maps a space of dimension gen->shared_len
4229 * to its last dimensions starting at gen->tile_first.
4230 * The range is of dimension
4232 * 2 * (gen->shared_len - gen->tile_first) + 1
4234 * The input dimensions are mapped to the odd dimensions in the output,
4235 * while the even dimensions (except 2*pos) are fixed to 0.
4236 * Output dimension 2*pos (if pos >= 0) is fixed to "val".
4237 * If pos >= 0, then only the pos first dimensions starting at gen->tile_first
4238 * are mapped to the output. The remaining input dimensions are projected
4239 * out and the corresponding output dimensions are fixed to 0.
4241 static __isl_give isl_map *insert_even(struct gpu_gen *gen,
4242 __isl_take isl_space *space, int pos, int val)
4244 int i, n;
4245 isl_map *proj;
4247 space = isl_space_set_from_params(space);
4248 space = isl_space_add_dims(space, isl_dim_set, gen->shared_len);
4249 space = isl_space_map_from_set(space);
4250 proj = isl_map_identity(space);
4251 proj = isl_map_project_out(proj, isl_dim_out, 0, gen->tile_first);
4252 n = gen->shared_len - gen->tile_first;
4253 for (i = 0; i <= n; ++i) {
4254 proj = isl_map_insert_dims(proj, isl_dim_out, 2 * i, 1);
4255 if (i == pos)
4256 proj = isl_map_fix_si(proj, isl_dim_out, 2 * i, val);
4257 else
4258 proj = isl_map_fix_si(proj, isl_dim_out, 2 * i, 0);
4261 if (pos < 0)
4262 return proj;
4264 proj = isl_map_eliminate(proj, isl_dim_in, gen->tile_first + pos,
4265 gen->shared_len - (gen->tile_first + pos));
4266 for (i = pos; i < n; ++i)
4267 proj = isl_map_fix_si(proj, isl_dim_out, 2 * i + 1, 0);
4269 return proj;
4272 /* Given the AST context schedule "schedule" and the mapping from
4273 * domains to the shared tile loops "shared_sched", add a schedule
4274 * for a synchronization operation at position "val" of loop level "pos".
4276 * schedule is of the form
4278 * D -> L
4280 * (with D the iteration domains and L the already generated loops),
4281 * while shared_sched is of the form
4283 * D -> S
4285 * We combine them into
4287 * L -> S
4289 * apply a mapping
4291 * [s_0,...] -> [0,s_{tile_first},0,..., val, 0, 0, ... 0]
4293 * and use the result as a schedule for "sync".
4295 static __isl_give isl_union_map *add_sync_schedule(struct gpu_gen *gen,
4296 __isl_take isl_union_map *res, __isl_keep isl_union_map *schedule,
4297 __isl_keep isl_union_map *shared_sched, int pos, int val)
4299 isl_space *space;
4300 isl_map *proj, *map;
4302 shared_sched = isl_union_map_copy(shared_sched);
4303 schedule = isl_union_map_copy(schedule);
4305 space = isl_union_map_get_space(shared_sched);
4306 schedule = isl_union_map_apply_domain(shared_sched, schedule);
4307 map = isl_map_from_union_map(schedule);
4309 proj = insert_even(gen, space, pos, val);
4310 map = isl_map_apply_range(map, proj);
4311 map = isl_map_from_range(isl_map_wrap(map));
4312 map = isl_map_set_tuple_name(map, isl_dim_in, "sync");
4314 res = isl_union_map_add_map(res, map);
4316 return res;
4319 /* Given the AST context schedule "schedule" and the mapping from
4320 * domains to the shared tile loops "shared_sched", add a schedule
4321 * for copying an array reference group to/from shared/private memory.
4322 * "read" is set if data should be copied from global memory
4323 * to shared/private memory.
4324 * "k" represents the current group
4325 * "s" is the total number of groups
4327 * We schedule an operation before or after the innermost loop
4328 * of "shared_sched" that affects the tile of the array reference group.
4330 * schedule is of the form
4332 * D -> L
4334 * (with D the iteration domains and L the already generated loops),
4335 * while shared_sched is of the form
4337 * D -> S
4339 * We first compute the access relation for the reference group
4341 * D -> A
4343 * and combine it with shared_sched into
4345 * D -> [S -> A]
4347 * If this results in an empty relation, no copying needs to be performed
4348 * at this point.
4349 * Otherwise, we invert the relation and combine it with "schedule" into
4351 * [S -> A] -> L
4353 * The actual additional piece of the schedule is obtained from combining
4355 * [S -> A] -> S
4357 * with a mapping
4359 * [s_0,...] -> [0,s_{tile_first},0,..., val, 0, 0, ... 0]
4361 * The position of "val" corresponds to the innermost loop that affects
4362 * the tile and the value indicates where the copying is scheduled
4363 * with respect to the actual kernel code (at value 0).
4364 * Reads are schedule before the code, writes to global memory from
4365 * private memory are scheduled at values 1 to s, writes to global
4366 * memory from shared memory are scheduled at values s + 2 to 2 * s + 1.
4368 * If we are scheduling a read from global memory to shared memory,
4369 * we insert a synchronization before the kernel code (at the innermost
4370 * level).
4371 * If we are scheduling a write to global memory, then we add
4372 * a synchronization after all writes (at value 2 *s + 2).
4373 * However, there is no need for a synchronization after the outermost loop.
4374 * A write to global memory from private memory at the innermost level
4375 * does not require a synchronization, because it is covered by
4376 * the synchronization after the kernel inserted by body_schedule.
4378 static __isl_give isl_union_map *add_group_schedule(struct gpu_gen *gen,
4379 __isl_take isl_union_map *res, __isl_keep isl_union_map *schedule,
4380 __isl_keep isl_union_map *shared_sched,
4381 struct gpu_array_ref_group *group, int read, int k, int s)
4383 int n;
4384 int pos, val;
4385 isl_space *space;
4386 isl_union_map *access;
4387 isl_map *map, *proj, *access_map;
4388 isl_id *id;
4390 access = group_access_relation(group, read, !read);
4391 access = isl_union_map_range_product(isl_union_map_copy(shared_sched),
4392 access);
4394 if (isl_union_map_is_empty(access)) {
4395 isl_union_map_free(access);
4396 return res;
4399 access = isl_union_map_reverse(access);
4400 access = isl_union_map_apply_range(access,
4401 isl_union_map_copy(schedule));
4402 access_map = isl_map_from_union_map(access);
4404 space = isl_space_copy(group->array->space);
4405 space = isl_space_from_range(space);
4406 space = isl_space_add_dims(space, isl_dim_in, gen->shared_len);
4407 map = isl_map_domain_map(isl_map_universe(space));
4409 space = isl_union_map_get_space(schedule);
4410 pos = group->last_shared + 1 - gen->tile_first;
4411 assert(pos >= 0);
4412 if (read)
4413 val = -2 - k;
4414 else if (group->private_tile)
4415 val = 1 + k;
4416 else
4417 val = 1 + s + 1 + k;
4418 proj = insert_even(gen, space, pos, val);
4419 map = isl_map_apply_range(map, proj);
4421 access_map = isl_map_range_product(access_map, map);
4423 id = isl_id_alloc(gen->ctx, read ? "read" : "write", group);
4424 access_map = isl_map_set_tuple_id(access_map, isl_dim_in, id);
4426 res = isl_union_map_add_map(res, access_map);
4428 n = gen->shared_len - gen->tile_first;
4429 if (read) {
4430 if (!group->private_tile)
4431 res = add_sync_schedule(gen, res, schedule,
4432 shared_sched, n, -1);
4433 } else {
4434 if (pos == 0)
4435 return res;
4436 if (pos == n && group->private_tile)
4437 return res;
4438 res = add_sync_schedule(gen, res, schedule, shared_sched,
4439 pos, 2 * s + 2);
4442 return res;
4445 /* Return a schedule for the shared tile loops based on the current
4446 * AST context schedule.
4448 * We create a "shared_sched" that maps the domains to the first
4449 * shared_len dimensions of the computed schedule, project out the
4450 * first tile_first dimensions (as these are already covered by
4451 * the host code) and insert "statement-level" dimensions at even
4452 * positions so that we can schedule copy blocks and synchronization
4453 * before/after each level.
4455 * In particular, copy blocks are inserted inside the innermost
4456 * level that affect the tile. For the copying to global memory,
4457 * those from private memory are scheduled before those from shared
4458 * memory such that synchronization can be inserted between the two
4459 * at the innermost level.
4460 * Synchronization is inserted at the innermost level before the
4461 * actual kernel code if there is any copying from global memory
4462 * to shared memory. It is inserted unconditionally at the innermost
4463 * level after the actual kernel code and the copying to global memory
4464 * from private memory (if any). Finally, it is inserted after
4465 * any copying to global memory, except at the outermost level
4466 * and at the innermost level if there is no copying from shared
4467 * memory. The copying from private memory is covered by the unconditional
4468 * synchronization at the innermost level.
4470 static __isl_give isl_union_map *body_schedule(struct gpu_gen *gen,
4471 __isl_take isl_union_map *schedule)
4473 isl_space *space;
4474 isl_union_map *res;
4475 isl_union_map *shared_sched;
4476 isl_union_map *sched;
4477 isl_map *proj, *map;
4478 int i, j, k, s;
4480 shared_sched = isl_union_map_copy(gen->tiled_sched);
4481 proj = projection(isl_union_map_get_space(shared_sched),
4482 gen->tiled_len, gen->shared_len);
4483 shared_sched = isl_union_map_apply_range(shared_sched,
4484 isl_union_map_from_map(proj));
4485 space = isl_union_map_get_space(shared_sched);
4486 proj = insert_even(gen, space, -1, 0);
4487 sched = isl_union_map_apply_range(isl_union_map_copy(shared_sched),
4488 isl_union_map_from_map(proj));
4490 res = isl_union_map_range_product(isl_union_map_copy(schedule), sched);
4492 s = 0;
4493 for (i = 0; i < gen->prog->n_array; ++i)
4494 s += gen->prog->array[i].n_group;
4496 k = 0;
4497 for (i = 0; i < gen->prog->n_array; ++i) {
4498 struct gpu_array_info *array = &gen->prog->array[i];
4500 for (j = 0; j < array->n_group; ++j) {
4501 struct gpu_array_ref_group *group;
4503 group = array->groups[j];
4504 if (!group->private_tile && !group->shared_tile)
4505 continue;
4506 res = add_group_schedule(gen, res, schedule,
4507 shared_sched, group, 0, k, s);
4508 res = add_group_schedule(gen, res, schedule,
4509 shared_sched, group, 1, k, s);
4510 ++k;
4514 res = add_sync_schedule(gen, res, schedule, shared_sched,
4515 gen->shared_len - gen->tile_first, 1 + s);
4517 isl_union_map_free(shared_sched);
4518 isl_union_map_free(schedule);
4520 return res;
4523 /* Generate code for "kernel" in the given "context".
4525 * We first generate code for the shared tile loops (T1T, T1P and T2)
4526 * in a context that includes the block ids.
4527 * Within each iteration of these loops an additional code generation
4528 * is performed (within create_kernel_leaf) for the rest of the schedule
4529 * in a context that includes the thread ids.
4531 static __isl_give isl_ast_node *generate_kernel(struct gpu_gen *gen,
4532 __isl_keep isl_ast_build *build, __isl_keep isl_set *host_domain,
4533 __isl_keep isl_multi_pw_aff *grid_size)
4535 isl_space *space;
4536 isl_set *set;
4537 isl_id_list *iterators;
4538 isl_union_map *schedule;
4539 isl_ast_node *tree;
4540 int sched_len;
4542 schedule = isl_ast_build_get_schedule(build);
4544 build = isl_ast_build_copy(build);
4545 build = isl_ast_build_restrict(build, isl_set_copy(host_domain));
4546 space = isl_ast_build_get_schedule_space(build);
4547 set = isl_set_universe(isl_space_copy(space));
4548 set = add_bounded_parameters_dynamic(set, grid_size, "b");
4549 build = isl_ast_build_restrict(build, set);
4551 schedule = body_schedule(gen, schedule);
4553 sched_len = 2 * (gen->shared_len - gen->tile_first) + 1;
4555 build = set_atomic_and_unroll(build, space, sched_len);
4556 iterators = generate_names(gen->ctx, sched_len, "g");
4557 build = isl_ast_build_set_iterators(build, iterators);
4558 build = isl_ast_build_set_create_leaf(build, &create_kernel_leaf, gen);
4559 tree = isl_ast_build_ast_from_schedule(build, schedule);
4560 isl_ast_build_free(build);
4562 return tree;
4565 /* Attach "id" to the given node.
4567 static __isl_give isl_ast_node *attach_id(__isl_take isl_ast_node *node,
4568 __isl_keep isl_ast_build *build, void *user)
4570 isl_id *id = user;
4572 node = isl_ast_node_set_annotation(node, id);
4574 return node;
4577 /* Construct an AST node for performing a kernel launch and attach
4578 * the information about the kernel to that node.
4580 * The kernel AST has been constructed in the context of the range
4581 * of "schedule". In particular, the grid size has been computed
4582 * in the context. We therefore still need to make sure that these
4583 * constraints are expressed in the code. We do this by creating a schedule
4585 * kernel[] -> [S -> []]
4587 * where S is the schedule domain, i.e., the range of "schedule".
4588 * The AST generation will then create a single call surrounded by
4589 * all the condition in "S" that have not been expressed yet.
4591 * The kernel information is attached to this node in attach_id.
4593 static __isl_give isl_ast_node *construct_launch(
4594 __isl_take isl_ast_build *build, __isl_take isl_union_map *schedule,
4595 __isl_take struct ppcg_kernel *kernel)
4597 isl_id *id;
4598 isl_ctx *ctx;
4599 isl_union_set *domain;
4600 isl_set *set;
4601 isl_map *map;
4602 isl_ast_node *node;
4604 ctx = isl_ast_build_get_ctx(build);
4606 id = isl_id_alloc(ctx, NULL, kernel);
4607 id = isl_id_set_free_user(id, &ppcg_kernel_free);
4609 domain = isl_union_map_range(schedule);
4610 set = isl_set_from_union_set(domain);
4611 map = isl_map_from_domain(set);
4612 map = isl_map_from_range(isl_map_wrap(map));
4613 map = isl_map_set_tuple_name(map, isl_dim_in, "kernel");
4614 schedule = isl_union_map_from_map(map);
4616 build = isl_ast_build_set_at_each_domain(build, &attach_id, id);
4617 node = isl_ast_build_ast_from_schedule(build, schedule);
4618 isl_ast_build_free(build);
4620 return node;
4623 /* This function is called for each leaf in the AST of the host code.
4624 * We first specialize the schedule to the site of the leaf, compute
4625 * the size of shared memory and then construct the body of the host code
4626 * and the associated kernel.
4628 * The necessary information for printing the kernel launch is
4629 * stored in a struct ppcg_kernel and attached to the leaf node
4630 * created to represent the launch.
4632 static __isl_give isl_ast_node *create_host_leaf(
4633 __isl_take isl_ast_build *build, void *user)
4635 struct gpu_gen *gen = (struct gpu_gen *) user;
4636 isl_id *id;
4637 isl_ast_node *node;
4638 struct ppcg_kernel *kernel;
4639 isl_set *host_domain;
4640 isl_union_map *schedule;
4641 isl_union_map *local_sched;
4642 isl_union_map *access;
4643 isl_union_set *domain;
4644 int i;
4646 schedule = isl_ast_build_get_schedule(build);
4648 isl_union_map_foreach_map(schedule, &extract_tile_len, gen);
4649 read_sizes(gen);
4651 domain = isl_union_map_domain(isl_union_map_copy(schedule));
4653 local_sched = isl_union_map_copy(gen->sched);
4654 local_sched = isl_union_map_intersect_domain(local_sched, domain);
4655 access = isl_union_map_union(isl_union_map_copy(gen->prog->read),
4656 isl_union_map_copy(gen->prog->write));
4657 access = isl_union_map_apply_domain(access,
4658 isl_union_map_copy(local_sched));
4660 gen->tiled_sched = tile_schedule(gen, local_sched);
4661 gen->tiled_sched = parametrize_tiled_schedule(gen, gen->tiled_sched);
4662 gen->tiled_sched = scale_tile_loops(gen, gen->tiled_sched);
4664 gen->local_sched = isl_union_map_copy(gen->tiled_sched);
4665 gen->local_sched = thread_tile_schedule(gen, gen->local_sched);
4666 gen->local_sched = scale_thread_tile_loops(gen, gen->local_sched);
4668 kernel = gen->kernel = isl_calloc_type(gen->ctx, struct ppcg_kernel);
4669 if (!kernel)
4670 goto error;
4672 kernel->id = gen->kernel_id++;
4673 kernel->context = isl_union_map_params(isl_union_map_copy(schedule));
4674 kernel->grid_size = extract_grid_size(gen, kernel);
4675 extract_block_size(gen, kernel);
4676 kernel->arrays = isl_union_map_range(access);
4677 kernel->arrays = isl_union_set_apply(kernel->arrays,
4678 isl_union_map_copy(gen->prog->to_outer));
4679 kernel->space = isl_ast_build_get_schedule_space(build);
4681 gen->private_access = NULL;
4682 compute_shared_sched(gen);
4683 gen->privatization = compute_privatization(gen);
4684 group_references(gen);
4685 compute_private_access(gen);
4686 check_shared_memory_bound(gen);
4687 compute_group_tilings(gen);
4688 host_domain = isl_set_from_union_set(isl_union_map_range(
4689 isl_union_map_copy(schedule)));
4690 localize_bounds(gen, kernel, host_domain);
4692 gen->local_sched = interchange_for_unroll(gen, gen->local_sched);
4694 kernel->tree = generate_kernel(gen, build, host_domain,
4695 kernel->grid_size);
4696 create_kernel_vars(gen, kernel);
4698 free_local_array_info(gen);
4699 isl_map_free(gen->privatization);
4700 isl_union_map_free(gen->private_access);
4701 isl_union_map_free(gen->local_sched);
4702 isl_union_map_free(gen->tiled_sched);
4703 isl_union_map_free(gen->shared_sched);
4704 isl_union_map_free(gen->shared_proj);
4705 isl_set_free(host_domain);
4706 free(gen->tile_size);
4708 node = construct_launch(build, schedule, kernel);
4710 return node;
4711 error:
4712 isl_union_map_free(schedule);
4713 return NULL;
4716 /* Use isl to generate code for the outer gen->tile_first loops
4717 * of the global schedule in gen->sched, resulting in the host code.
4718 * Within each iteration of this partial schedule, i.e., for each kernel
4719 * launch, create_host_leaf takes care of generating the kernel code.
4721 static __isl_give isl_ast_node *generate_host_code(struct gpu_gen *gen)
4723 isl_ast_build *build;
4724 isl_ast_node *tree;
4725 isl_union_map *sched;
4726 isl_map *proj;
4727 isl_id_list *iterators;
4729 sched = isl_union_map_copy(gen->sched);
4730 proj = projection(isl_union_map_get_space(sched),
4731 gen->untiled_len, gen->tile_first);
4732 sched = isl_union_map_apply_range(sched, isl_union_map_from_map(proj));
4734 isl_options_set_ast_build_group_coscheduled(gen->ctx, 1);
4735 build = isl_ast_build_from_context(isl_set_copy(gen->prog->context));
4736 iterators = generate_names(gen->ctx, gen->tile_first, "h");
4737 build = isl_ast_build_set_iterators(build, iterators);
4738 build = isl_ast_build_set_create_leaf(build, &create_host_leaf, gen);
4739 tree = isl_ast_build_ast_from_schedule(build, sched);
4740 isl_ast_build_free(build);
4742 return tree;
4745 __isl_give isl_union_map *extract_sizes_from_str(isl_ctx *ctx, const char *str)
4747 if (!str)
4748 return NULL;
4749 return isl_union_map_read_from_str(ctx, str);
4752 /* Information about the outermost tilable bands in the forest of bands.
4754 * tile_len and n_parallel are only sets on band_info structures
4755 * that correspond to outermost bands. For other bands (in particular,
4756 * ancestors of the outermost bands), n_parallal is set to 0.
4758 * prefix is the (padded) schedule leading up to the outermost tilable bands.
4760 * tile_first is the number of schedule dimensions in prefix.
4762 * suffix is the schedule of the outermost tilable bands and their descendants.
4764 struct band_info {
4765 struct gpu_gen *gen;
4766 int tile_first;
4767 int tile_len;
4768 int n_parallel;
4769 isl_union_map *prefix;
4770 isl_union_map *suffix;
4773 /* Set tile_len and n_parallel of the statement to that of
4774 * their outermost band, recorded in the band_info.
4776 static int set_stmt_tile_len(__isl_take isl_map *map, void *user)
4778 struct band_info *info = user;
4779 struct gpu_stmt *stmt;
4780 isl_id *id;
4782 id = isl_map_get_tuple_id(map, isl_dim_in);
4783 stmt = find_stmt(info->gen->prog, id);
4784 isl_id_free(id);
4786 stmt->tile_len = info->tile_len;
4787 stmt->n_parallel = info->n_parallel;
4789 isl_map_free(map);
4791 return 0;
4794 static void list_select_outer_band(struct gpu_gen *gen,
4795 __isl_take isl_band_list *list, int pos, struct band_info *list_info);
4797 /* Check if this band has any parallel loops. If so, take it as
4798 * the outermost tilable band. If not, continue looking for the
4799 * outermost tilable band in the children of the current band.
4801 static void band_select_outer_band(struct gpu_gen *gen,
4802 __isl_take isl_band *band, int pos, struct band_info *info)
4804 int n = isl_band_n_member(band);
4805 int n_parallel;
4807 for (n_parallel = 0; n_parallel < n; ++n_parallel)
4808 if (!isl_band_member_is_coincident(band, n_parallel))
4809 break;
4811 info->n_parallel = n_parallel;
4812 if (n_parallel) {
4813 gen->any_parallelism = 1;
4814 info->gen = gen;
4815 info->tile_first = pos;
4816 info->tile_len = n;
4817 info->prefix = isl_band_get_prefix_schedule(band);
4818 info->suffix = isl_union_map_flat_range_product(
4819 isl_band_get_partial_schedule(band),
4820 isl_band_get_suffix_schedule(band));
4821 isl_union_map_foreach_map(info->prefix,
4822 &set_stmt_tile_len, info);
4823 } else if (isl_band_has_children(band)) {
4824 isl_band_list *children;
4825 children = isl_band_get_children(band);
4826 list_select_outer_band(gen, children, pos + n, info);
4827 } else {
4828 info->gen = gen;
4829 info->tile_first = pos + n;
4830 info->tile_len = 0;
4831 info->prefix = isl_union_map_flat_range_product(
4832 isl_band_get_prefix_schedule(band),
4833 isl_band_get_partial_schedule(band));
4834 info->suffix = isl_band_get_suffix_schedule(band);
4835 isl_union_map_foreach_map(info->prefix,
4836 &set_stmt_tile_len, info);
4839 isl_band_free(band);
4842 /* Comparison function that returns a non-zero value for band_infos
4843 * with different tile_len fields or different n_parallel fields.
4845 static int cmp_band(const void *p1, const void *p2)
4847 const struct band_info *info1 = p1;
4848 const struct band_info *info2 = p2;
4850 if (info1->tile_len != info2->tile_len)
4851 return info1->tile_len - info2->tile_len;
4853 return info1->n_parallel - info2->n_parallel;
4856 /* Extend "umap" with coordinates with fixed value "val"
4857 * to a total length of "dst_len", assuming the original dimension is "src_len".
4859 static __isl_give isl_union_map *extend_range(
4860 __isl_take isl_union_map *umap, int src_len, int dst_len, int val)
4862 isl_space *dim;
4863 isl_map *map;
4864 int i;
4866 dim = isl_union_map_get_space(umap);
4867 map = isl_map_reverse(projection(dim, dst_len, src_len));
4868 for (i = src_len; i < dst_len; ++i)
4869 map = isl_map_fix_si(map, isl_dim_out, i, val);
4871 umap = isl_union_map_apply_range(umap, isl_union_map_from_map(map));
4873 return umap;
4876 /* Group bands with the same values for tile_len and n_parallel.
4877 * The prefix schedule is then extended with a fixed coordinate that
4878 * is different for each such group.
4879 * Note that the actual values for this coordinate are not important.
4880 * The bands have already been effectively separated at a higher level
4881 * or they are independent and may be executed in parallel.
4882 * The list of band_info has been sorted before this functions is called.
4884 static void separate_bands(struct band_info *info, int n)
4886 int i;
4887 int j = 0;
4889 for (i = 0; i < n; ++i) {
4890 int l = info[i].tile_first;
4892 if (i &&
4893 (info[i].tile_len != info[i - 1].tile_len ||
4894 info[i].n_parallel != info[i - 1].n_parallel))
4895 j++;
4897 info[i].prefix = extend_range(info[i].prefix,
4898 l, l + 1, j);
4899 info[i].tile_first = l + 1;
4903 /* Select the outermost bands in the elements of the list, align
4904 * their prefix schedules, separate bands with different values
4905 * for tile_len and/or n_parallel and then combine the resulting
4906 * prefix and suffix schedules into a single pair of prefix and
4907 * suffix schedules for the entire list.
4909 static void list_select_outer_band(struct gpu_gen *gen,
4910 __isl_take isl_band_list *list, int pos, struct band_info *list_info)
4912 isl_band *band;
4913 int i;
4914 int n = isl_band_list_n_band(list);
4915 isl_ctx *ctx = isl_band_list_get_ctx(list);
4916 struct band_info *info;
4917 int max_tile_first;
4918 isl_union_map *prefix;
4919 isl_union_map *suffix;
4921 assert(n >= 1);
4922 info = isl_calloc_array(ctx, struct band_info, n);
4923 assert(info);
4925 max_tile_first = 0;
4926 for (i = 0; i < n; ++i) {
4927 band = isl_band_list_get_band(list, i);
4928 band_select_outer_band(gen, band, pos, &info[i]);
4929 if (info[i].tile_first > max_tile_first)
4930 max_tile_first = info[i].tile_first;
4933 for (i = 0; i < n; ++i) {
4934 if (info[i].tile_first == max_tile_first)
4935 continue;
4936 info[i].prefix = extend_range(info[i].prefix,
4937 info[i].tile_first, max_tile_first, 0);
4938 info[i].tile_first = max_tile_first;
4941 qsort(info, n, sizeof(struct band_info), &cmp_band);
4943 for (i = 0; i < n - 1; ++i)
4944 if (info[i].tile_len != info[i + 1].tile_len ||
4945 info[i].n_parallel != info[i + 1].n_parallel)
4946 break;
4948 if (i < n -1)
4949 separate_bands(info, n);
4951 prefix = info[0].prefix;
4952 suffix = info[0].suffix;
4954 for (i = 1; i < n; ++i) {
4955 prefix = isl_union_map_union(prefix, info[i].prefix);
4956 suffix = isl_union_map_union(suffix, info[i].suffix);
4959 list_info->tile_first = info[0].tile_first;
4960 list_info->tile_len = -1;
4961 list_info->prefix = prefix;
4962 list_info->suffix = suffix;
4964 isl_band_list_free(list);
4965 free(info);
4968 /* Select the outermost tilable band that (by construction)
4969 * has at least one parallel loop.
4970 * The starting position of the aligned band is stored in the pair
4971 * gen->tile_first.
4972 * The sizes and number of parallel loops may be different in different
4973 * parts of the band forest and are therefore stored in the gpu_stmts.
4975 * Return the complete schedule, with the tilable bands aligned
4976 * at gen->tile_first and padded with zero, if needed.
4978 static __isl_give isl_union_map *select_outer_tilable_band(struct gpu_gen *gen,
4979 __isl_keep isl_schedule *schedule)
4981 isl_band_list *list;
4982 struct band_info info;
4984 gen->n_parallel = 0;
4985 gen->tile_len = -1;
4987 list = isl_schedule_get_band_forest(schedule);
4989 if (isl_band_list_n_band(list) == 0) {
4990 isl_band_list_free(list);
4991 return isl_schedule_get_map(schedule);
4994 list_select_outer_band(gen, list, 0, &info);
4996 gen->tile_first = info.tile_first;
4997 info.suffix = align_range(info.suffix);
4999 return isl_union_map_flat_range_product(info.prefix, info.suffix);
5002 /* Set gen->untiled_len to the number of scheduling dimensions
5003 * for the schedule of the first domain.
5004 * We assume here that this number is the same for all domains.
5006 static int set_untiled_len(__isl_take isl_map *map, void *user)
5008 unsigned *untiled_len = user;
5010 *untiled_len = isl_map_dim(map, isl_dim_out);
5012 isl_map_free(map);
5013 return -1;
5016 /* Compute an appropriate schedule based on the accesses in
5017 * gen->read and gen->write.
5019 * We use the dependences in gen->prog->scop to compute
5020 * a schedule that has a parallel loop in each tilable band.
5021 * Finally, we select the outermost tilable band.
5023 static void compute_schedule(struct gpu_gen *gen)
5025 isl_union_set *domain;
5026 isl_union_map *dep_raw, *dep;
5027 isl_union_map *sched;
5028 isl_schedule_constraints *sc;
5029 isl_schedule *schedule;
5031 dep_raw = isl_union_map_copy(gen->prog->scop->dep_flow);
5033 dep = isl_union_map_copy(gen->prog->scop->dep_false);
5034 dep = isl_union_map_union(dep, dep_raw);
5035 dep = isl_union_map_coalesce(dep);
5037 domain = isl_union_set_copy(gen->prog->scop->domain);
5038 domain = isl_union_set_intersect_params(domain,
5039 isl_set_copy(gen->prog->scop->context));
5040 sc = isl_schedule_constraints_on_domain(isl_union_set_copy(domain));
5041 sc = isl_schedule_constraints_set_validity(sc, isl_union_map_copy(dep));
5042 sc = isl_schedule_constraints_set_coincidence(sc,
5043 isl_union_map_copy(dep));
5044 sc = isl_schedule_constraints_set_proximity(sc, dep);
5046 if (gen->options->debug->dump_schedule_constraints)
5047 isl_schedule_constraints_dump(sc);
5048 schedule = isl_schedule_constraints_compute_schedule(sc);
5049 if (gen->options->debug->dump_schedule)
5050 isl_schedule_dump(schedule);
5052 sched = select_outer_tilable_band(gen, schedule);
5054 isl_union_map_foreach_map(sched, &set_untiled_len, &gen->untiled_len);
5055 sched = isl_union_map_intersect_domain(sched, domain);
5056 gen->sched = sched;
5058 isl_schedule_free(schedule);
5061 /* Compute the sets of outer array elements that need to be copied in and out.
5063 * In particular, for each array that is written anywhere in gen->prog and
5064 * that is visible outside the corresponding scop, we copy out its entire
5065 * extent.
5067 * Any array elements that is read without first being written needs
5068 * to be copied in. Furthermore, if there are any array elements that
5069 * are copied out, but that are not written inside gen->prog, then
5070 * they also need to be copied in to ensure that the value after execution
5071 * is the same as the value before execution.
5072 * In case the array elements are structures, we need to take into
5073 * account that all members of the structures need to be written
5074 * by gen->prog before we can avoid copying the data structure in.
5076 * While computing the set of array elements that
5077 * are copied out but not written, we intersect both sets with the context.
5078 * This helps in those cases where the arrays are declared with a fixed size,
5079 * while the accesses are parametric and the context assigns a fixed value
5080 * to the parameters.
5082 * If an element from a local array is read without first being written,
5083 * then there is no point in copying it in since it cannot have been
5084 * written prior to the scop. Warn about the uninitialized read instead.
5086 static void compute_copy_in_and_out(struct gpu_gen *gen)
5088 int i;
5089 isl_union_set *local;
5090 isl_union_set *may_write, *write;
5091 isl_union_set *copy_in, *copy_out;
5092 isl_union_set *not_written;
5093 isl_union_map *uninitialized;
5094 isl_union_map *local_uninitialized;
5096 write = isl_union_map_range(isl_union_map_copy(gen->prog->write));
5097 write = isl_union_set_intersect_params(write,
5098 isl_set_copy(gen->prog->context));
5099 may_write = isl_union_set_universe(isl_union_set_copy(write));
5100 may_write = isl_union_set_apply(may_write,
5101 isl_union_map_copy(gen->prog->to_outer));
5102 copy_out = isl_union_set_empty(isl_union_set_get_space(may_write));
5103 local = isl_union_set_copy(copy_out);
5105 for (i = 0; i < gen->prog->n_array; ++i) {
5106 isl_space *space;
5107 isl_set *write_i;
5108 int empty;
5110 space = isl_space_copy(gen->prog->array[i].space);
5112 if (gen->prog->array[i].local) {
5113 isl_set *set;
5115 set = isl_set_universe(space);
5116 local = isl_union_set_add_set(local, set);
5117 continue;
5120 write_i = isl_union_set_extract_set(may_write, space);
5121 empty = isl_set_fast_is_empty(write_i);
5122 isl_set_free(write_i);
5123 if (empty)
5124 continue;
5126 write_i = isl_set_copy(gen->prog->array[i].extent);
5127 copy_out = isl_union_set_add_set(copy_out, write_i);
5129 isl_union_set_free(may_write);
5131 copy_out = isl_union_set_intersect_params(copy_out,
5132 isl_set_copy(gen->prog->context));
5134 gen->prog->copy_out = isl_union_set_copy(copy_out);
5136 copy_out = isl_union_set_apply(copy_out,
5137 isl_union_map_copy(gen->prog->to_inner));
5138 not_written = isl_union_set_subtract(copy_out, write);
5140 uninitialized = isl_union_map_copy(gen->prog->scop->live_in);
5141 local_uninitialized = isl_union_map_copy(uninitialized);
5143 local = isl_union_set_apply(local,
5144 isl_union_map_copy(gen->prog->to_inner));
5145 local_uninitialized = isl_union_map_intersect_range(local_uninitialized,
5146 local);
5147 if (!isl_union_map_is_empty(local_uninitialized)) {
5148 fprintf(stderr, "uninitialized reads (not copied in):\n");
5149 isl_union_map_dump(local_uninitialized);
5151 uninitialized = isl_union_map_subtract(uninitialized,
5152 local_uninitialized);
5153 copy_in = isl_union_map_range(uninitialized);
5154 copy_in = isl_union_set_union(copy_in, not_written);
5155 copy_in = isl_union_set_apply(copy_in,
5156 isl_union_map_copy(gen->prog->to_outer));
5158 gen->prog->copy_in = copy_in;
5161 static struct gpu_stmt_access **expr_extract_access(struct pet_expr *expr,
5162 struct gpu_stmt_access **next_access)
5164 struct gpu_stmt_access *access;
5165 isl_ctx *ctx = isl_map_get_ctx(expr->acc.access);
5167 access = isl_alloc_type(ctx, struct gpu_stmt_access);
5168 assert(access);
5169 access->next = NULL;
5170 access->read = expr->acc.read;
5171 access->write = expr->acc.write;
5172 access->access = isl_map_copy(expr->acc.access);
5173 access->ref_id = isl_id_copy(expr->acc.ref_id);
5174 access->group = -1;
5176 *next_access = access;
5177 next_access = &(*next_access)->next;
5178 return next_access;
5181 static struct gpu_stmt_access **expr_extract_accesses(struct pet_expr *expr,
5182 struct gpu_stmt_access **next_access)
5184 int i;
5186 for (i = 0; i < expr->n_arg; ++i)
5187 next_access = expr_extract_accesses(expr->args[i],
5188 next_access);
5190 if (expr->type == pet_expr_access)
5191 next_access = expr_extract_access(expr, next_access);
5193 return next_access;
5196 static void pet_stmt_extract_accesses(struct gpu_stmt *stmt)
5198 struct gpu_stmt_access **next_access = &stmt->accesses;
5200 stmt->accesses = NULL;
5201 expr_extract_accesses(stmt->stmt->body, next_access);
5204 /* Return an array of gpu_stmt representing the statements in "scop".
5206 static struct gpu_stmt *extract_stmts(isl_ctx *ctx, struct ppcg_scop *scop,
5207 __isl_keep isl_set *context)
5209 int i;
5210 struct gpu_stmt *stmts;
5212 stmts = isl_calloc_array(ctx, struct gpu_stmt, scop->n_stmt);
5213 if (!stmts)
5214 return NULL;
5216 for (i = 0; i < scop->n_stmt; ++i) {
5217 struct gpu_stmt *s = &stmts[i];
5219 s->id = isl_set_get_tuple_id(scop->stmts[i]->domain);
5220 s->stmt = scop->stmts[i];
5221 pet_stmt_extract_accesses(s);
5224 return stmts;
5227 /* Callback for ppcg_print_guarded that calls the callback for generate_gpu.
5229 static __isl_give isl_printer *print_gpu(__isl_take isl_printer *p, void *user)
5231 struct gpu_gen *gen = user;
5233 return gen->print(p, gen->prog, gen->tree, &gen->types,
5234 gen->print_user);
5237 /* Generate CUDA code for "scop" and print it to "p".
5238 * After generating an AST for the transformed scop as explained below,
5239 * we call "gen->print" to print the AST in the desired output format
5240 * to "p".
5242 * If it turns out that it does not make sense to generate GPU code,
5243 * then we generate CPU code instead.
5245 * The GPU code is generated in a context where at least one
5246 * statement instance is executed. The corresponding guard (if any) is printed
5247 * around the entire generated GPU code, except for the declaration
5248 * of the arrays that are visible outside of the scop and that therefore
5249 * cannot be declared inside the body of any possible guard.
5251 * We first compute a schedule that respects the dependences
5252 * of the original program and select the outermost band
5253 * of tilable dimensions that has at least one parallel loop.
5254 * We then have three blocks of dimensions
5256 * H B G
5258 * The tilable band "B" is first tiled according to "tile" sizes, resulting
5259 * in
5261 * H T P G
5263 * For each iteration of the T loop and for each array, we compute
5264 * the array elements accessed by that iteration, construct a rectangular
5265 * box around it and shift it to the origin. The result is used
5266 * as shared memory for the array.
5268 * We then split off at most 2 parallel loops from the T loops and
5269 * at most 3 parallel loops from the P loops
5271 * H T1 T2 P1 P2 G
5273 * The T1/P1 loops are then tiled or "wrapped" over the blocks/threads,
5274 * according to "grid"/"block" sizes.
5276 * H T1T T1P T2 P1T P1P P2 G
5278 * Finally, the T1P and P1P iterators are equated to the block and
5279 * thread dimensions respectively and so are effectively removed.
5280 * The H loops are run on the host. The T1T, T2, P1T, P2 and G loops
5281 * are run on the GPU.
5283 * Code is generated in three stages. We first generate code for the
5284 * host (the H loops), with iterators h%d. Then, for each leaf node
5285 * of the resulting AST, we generate code for the shared loops (up to
5286 * and including T2), with iterators g%d and after equating the H loops
5287 * to h%d parameters and the T1P loops to the block dimensions.
5288 * Finally, we generate code for the remaining loops in a similar fashion.
5290 static __isl_give isl_printer *generate(__isl_take isl_printer *p,
5291 struct gpu_gen *gen, struct ppcg_scop *scop,
5292 struct ppcg_options *options)
5294 struct gpu_prog *prog;
5295 isl_ctx *ctx;
5296 isl_set *context, *guard;
5298 if (!scop)
5299 return isl_printer_free(p);
5301 ctx = isl_printer_get_ctx(p);
5302 prog = gpu_prog_alloc(ctx, scop);
5303 if (!prog)
5304 return isl_printer_free(p);
5306 context = isl_set_copy(prog->context);
5307 guard = isl_union_set_params(isl_union_set_copy(prog->scop->domain));
5308 prog->context = isl_set_intersect(prog->context, isl_set_copy(guard));
5310 gen->prog = prog;
5311 gen->any_parallelism = 0;
5312 compute_schedule(gen);
5314 if (!gen->any_parallelism) {
5315 isl_set_free(context);
5316 isl_set_free(guard);
5317 p = print_cpu(p, scop, options);
5318 } else {
5319 compute_copy_in_and_out(gen);
5320 gen->tree = generate_host_code(gen);
5321 p = ppcg_print_exposed_declarations(p, prog->scop);
5322 p = ppcg_print_guarded(p, guard, context, &print_gpu, gen);
5323 isl_ast_node_free(gen->tree);
5326 isl_union_map_free(gen->sched);
5328 gpu_prog_free(prog);
5330 return p;
5333 /* Wrapper around generate for use as a ppcg_transform callback.
5335 static __isl_give isl_printer *generate_wrap(__isl_take isl_printer *p,
5336 struct ppcg_scop *scop, void *user)
5338 struct gpu_gen *gen = user;
5340 return generate(p, gen, scop, gen->options);
5343 /* Transform the code in the file called "input" by replacing
5344 * all scops by corresponding GPU code and write the results to "out".
5346 int generate_gpu(isl_ctx *ctx, const char *input, FILE *out,
5347 struct ppcg_options *options,
5348 __isl_give isl_printer *(*print)(__isl_take isl_printer *p,
5349 struct gpu_prog *prog, __isl_keep isl_ast_node *tree,
5350 struct gpu_types *types, void *user), void *user)
5352 struct gpu_gen gen;
5353 int r;
5354 int i;
5356 gen.ctx = ctx;
5357 gen.sizes = extract_sizes_from_str(ctx, options->sizes);
5358 gen.options = options;
5359 gen.kernel_id = 0;
5360 gen.print = print;
5361 gen.print_user = user;
5362 gen.types.n = 0;
5363 gen.types.name = NULL;
5365 r = ppcg_transform(ctx, input, out, options, &generate_wrap, &gen);
5367 isl_union_map_free(gen.sizes);
5368 for (i = 0; i < gen.types.n; ++i)
5369 free(gen.types.name[i]);
5370 free(gen.types.name);
5372 return r;
5375 struct gpu_prog *gpu_prog_alloc(isl_ctx *ctx, struct ppcg_scop *scop)
5377 struct gpu_prog *prog;
5379 if (!scop)
5380 return NULL;
5382 prog = isl_calloc_type(ctx, struct gpu_prog);
5383 assert(prog);
5385 prog->ctx = ctx;
5386 prog->scop = scop;
5387 prog->context = isl_set_copy(scop->context);
5388 prog->n_stmts = scop->n_stmt;
5389 prog->stmts = extract_stmts(ctx, scop, prog->context);
5390 prog->read = isl_union_map_copy(scop->reads);
5391 prog->write = isl_union_map_copy(scop->writes);
5392 prog->to_inner = compute_to_inner(scop);
5393 prog->to_outer = isl_union_map_copy(prog->to_inner);
5394 prog->to_outer = isl_union_map_reverse(prog->to_outer);
5396 if (!prog->stmts)
5397 return gpu_prog_free(prog);
5399 if (collect_array_info(prog) < 0)
5400 return gpu_prog_free(prog);
5402 return prog;
5405 void *gpu_prog_free(struct gpu_prog *prog)
5407 if (!prog)
5408 return NULL;
5409 free_array_info(prog);
5410 free_stmts(prog->stmts, prog->n_stmts);
5411 isl_union_map_free(prog->to_outer);
5412 isl_union_map_free(prog->to_inner);
5413 isl_union_set_free(prog->copy_in);
5414 isl_union_set_free(prog->copy_out);
5415 isl_union_map_free(prog->read);
5416 isl_union_map_free(prog->write);
5417 isl_set_free(prog->context);
5418 free(prog);
5419 return NULL;