gpu.c: read_sizes_from_set: propagate error instead of asserting
[ppcg.git] / gpu.c
blob1ac9016ad500a4b93b015ea38571a4456b733eb5
1 /*
2 * Copyright 2010-2011 INRIA Saclay
3 * Copyright 2012-2013 Ecole Normale Superieure
4 * Copyright 2015-2016 Sven Verdoolaege
6 * Use of this software is governed by the MIT license
8 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
9 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
10 * 91893 Orsay, France
11 * and Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France
14 #include <assert.h>
15 #include <stdlib.h>
16 #include <string.h>
18 #include <isl/polynomial.h>
19 #include <isl/union_set.h>
20 #include <isl/aff.h>
21 #include <isl/ilp.h>
22 #include <isl/flow.h>
23 #include <isl/schedule.h>
24 #include <isl/schedule_node.h>
25 #include <isl/options.h>
26 #include <isl/ast_build.h>
28 #include "cpu.h"
29 #include "gpu.h"
30 #include "gpu_array_tile.h"
31 #include "gpu_group.h"
32 #include "gpu_hybrid.h"
33 #include "gpu_tree.h"
34 #include "hybrid.h"
35 #include "schedule.h"
36 #include "ppcg_options.h"
37 #include "print.h"
38 #include "util.h"
40 struct gpu_array_info;
42 /* Return the name of the outer array (of structs) accessed by "access".
44 static const char *get_outer_array_name(__isl_keep isl_map *access)
46 isl_space *space;
47 const char *name;
49 space = isl_space_range(isl_map_get_space(access));
50 while (space && isl_space_is_wrapping(space))
51 space = isl_space_domain(isl_space_unwrap(space));
52 name = isl_space_get_tuple_name(space, isl_dim_set);
53 isl_space_free(space);
55 return name;
58 /* Collect all references to the given array and store pointers to them
59 * in array->refs.
61 static isl_stat collect_references(struct gpu_prog *prog,
62 struct gpu_array_info *array)
64 int i;
65 int n;
67 n = 0;
68 for (i = 0; i < prog->n_stmts; ++i) {
69 struct gpu_stmt *stmt = &prog->stmts[i];
70 struct gpu_stmt_access *access;
72 for (access = stmt->accesses; access; access = access->next) {
73 const char *name;
74 name = get_outer_array_name(access->access);
75 if (name && !strcmp(array->name, name))
76 n++;
80 array->refs = isl_alloc_array(prog->ctx, struct gpu_stmt_access *, n);
81 if (!array->refs)
82 return isl_stat_error;
83 array->n_ref = n;
85 n = 0;
86 for (i = 0; i < prog->n_stmts; ++i) {
87 struct gpu_stmt *stmt = &prog->stmts[i];
88 struct gpu_stmt_access *access;
90 for (access = stmt->accesses; access; access = access->next) {
91 const char *name;
92 name = get_outer_array_name(access->access);
93 if (!name || strcmp(array->name, name))
94 continue;
96 array->refs[n++] = access;
100 return isl_stat_ok;
103 /* Compute and return the extent of "array", taking into account the set of
104 * accessed elements.
106 * In particular, the extent in the outer dimension is taken
107 * from "accessed", while the extents in the remaining dimensions
108 * are taken from array->extent.
110 * The extent in the outer dimension cannot be taken from array->extent
111 * because that may be unbounded. Furthermore, even if it is bounded,
112 * it may be larger than the piece of the array that is being accessed.
114 static __isl_give isl_set *compute_extent(struct pet_array *array,
115 __isl_keep isl_set *accessed)
117 int n_index;
118 isl_id *id;
119 isl_set *outer;
120 isl_set *extent;
122 extent = isl_set_copy(array->extent);
124 n_index = isl_set_dim(accessed, isl_dim_set);
125 if (n_index == 0)
126 return extent;
128 extent = isl_set_project_out(extent, isl_dim_set, 0, 1);
129 outer = isl_set_copy(accessed);
130 outer = isl_set_project_out(outer, isl_dim_set, 1, n_index - 1);
131 extent = isl_set_flat_product(outer, extent);
132 id = isl_set_get_tuple_id(accessed);
133 extent = isl_set_set_tuple_id(extent, id);
135 return extent;
138 /* Is the array "array" being extracted a read-only scalar?
140 * That is, is "array" a scalar that is never possibly written to.
141 * An array containing structures is never considered to be a scalar.
143 static int is_read_only_scalar(struct gpu_array_info *array,
144 struct gpu_prog *prog)
146 isl_set *space;
147 isl_union_map *write;
148 int empty;
150 if (array->has_compound_element)
151 return 0;
152 if (array->n_index != 0)
153 return 0;
155 write = isl_union_map_copy(prog->may_write);
156 space = isl_set_universe(isl_space_copy(array->space));
157 write = isl_union_map_intersect_range(write,
158 isl_union_set_from_set(space));
159 empty = isl_union_map_is_empty(write);
160 isl_union_map_free(write);
162 return empty;
165 /* Is "array" only accessed as individual, fixed elements?
166 * That is, does each access to "array" access a single, fixed element?
168 static isl_bool only_fixed_element_accessed(struct gpu_array_info *array)
170 int i;
172 for (i = 0; i < array->n_ref; ++i)
173 if (!array->refs[i]->fixed_element)
174 return isl_bool_false;
176 return isl_bool_true;
179 /* Compute bounds on the host array "pa" based on the corresponding
180 * accessed elements in "arrays"
181 * and collect all references to the array.
182 * Store the results in "info".
184 * If the array is zero-dimensional and does not contain structures,
185 * i.e., if the array is a scalar, we check whether it is read-only.
186 * We also check whether the array is accessed at all.
188 static isl_stat extract_array_info(struct gpu_prog *prog,
189 struct gpu_array_info *info, struct pet_array *pa,
190 __isl_keep isl_union_set *arrays)
192 int empty;
193 const char *name;
194 int n_index;
195 isl_multi_pw_aff *bounds;
196 isl_set *accessed, *extent;
198 n_index = isl_set_dim(pa->extent, isl_dim_set);
199 name = isl_set_get_tuple_name(pa->extent);
201 info->space = isl_set_get_space(pa->extent);
202 info->name = strdup(name);
203 info->n_index = n_index;
204 info->linearize = prog->scop->options->linearize_device_arrays;
206 info->type = strdup(pa->element_type);
207 info->size = pa->element_size;
208 info->local = pa->declared && !pa->exposed;
209 info->has_compound_element = pa->element_is_record;
210 info->read_only_scalar = is_read_only_scalar(info, prog);
212 info->declared_extent = isl_set_copy(pa->extent);
213 accessed = isl_union_set_extract_set(arrays,
214 isl_space_copy(info->space));
215 empty = isl_set_is_empty(accessed);
216 extent = compute_extent(pa, accessed);
217 isl_set_free(accessed);
218 info->extent = extent;
219 if (empty < 0)
220 return isl_stat_error;
221 info->accessed = !empty;
222 bounds = ppcg_size_from_extent(isl_set_copy(extent));
223 bounds = isl_multi_pw_aff_gist(bounds, isl_set_copy(prog->context));
224 if (!bounds)
225 return isl_stat_error;
226 if (!isl_multi_pw_aff_is_cst(bounds))
227 info->linearize = 1;
228 info->bound = bounds;
230 if (collect_references(prog, info) < 0)
231 return isl_stat_error;
232 info->only_fixed_element = only_fixed_element_accessed(info);
234 return isl_stat_ok;
237 /* Remove independence from the order constraints "order" on array "array".
238 * Since the pairs of iterations in the filter relation of an independence
239 * are guaranteed to be completely independent by the user, there is
240 * no need to ensure that live ranges are ordered along those pairs.
241 * We make an exception for local variables, though, as the independence
242 * guarantee does not apply to those.
244 * The order constraints are used in two places.
245 * Those on scalars are used in check_scalar_live_ranges to check if
246 * we need to force the scalar to be private. Any non-local scalar
247 * should not be forced scalar if it only appears in independent loops.
248 * Those on non-scalars are added to the coincidence constraints
249 * in compute_schedule because we do not support any array expansion.
250 * Accesses to non-local arrays should not prevent a loop from being
251 * considered coincident so we should indeed remove those constraints
252 * from the order constraints.
254 static __isl_give isl_union_map *remove_independences(struct gpu_prog *prog,
255 struct gpu_array_info *array, __isl_take isl_union_map *order)
257 int i;
259 for (i = 0; i < prog->scop->pet->n_independence; ++i) {
260 struct pet_independence *pi = prog->scop->pet->independences[i];
261 if (isl_union_set_contains(pi->local, array->space))
262 continue;
264 order = isl_union_map_subtract(order,
265 isl_union_map_copy(pi->filter));
268 return order;
271 /* For each array in "prog", store the (untagged) order dependences
272 * derived from the array in array->dep_order.
273 * In particular, consider all references that access the given array
274 * and take the order dependences that have one of these references
275 * as source. (Since an order dependence relates two references to
276 * the same array, the target of these order dependences will also
277 * be one of these references.)
278 * Additionally, store the union of these array->dep_order relations
279 * for all arrays that cannot be mapped to private memory in prog->array_order.
281 void collect_order_dependences(struct gpu_prog *prog)
283 int i;
284 isl_space *space;
285 isl_union_map *accesses;
287 space = isl_union_map_get_space(prog->read);
288 prog->array_order = isl_union_map_empty(space);
290 accesses = isl_union_map_copy(prog->scop->tagged_reads);
291 accesses = isl_union_map_union(accesses,
292 isl_union_map_copy(prog->scop->tagged_may_writes));
293 accesses = isl_union_map_universe(accesses);
294 accesses = isl_union_map_apply_range(accesses,
295 isl_union_map_copy(prog->to_outer));
297 for (i = 0; i < prog->n_array; ++i) {
298 struct gpu_array_info *array = &prog->array[i];
299 isl_set *set;
300 isl_union_set *uset;
301 isl_union_map *order;
303 set = isl_set_universe(isl_space_copy(array->space));
304 uset = isl_union_set_from_set(set);
305 uset = isl_union_map_domain(
306 isl_union_map_intersect_range(isl_union_map_copy(accesses),
307 uset));
308 order = isl_union_map_copy(prog->scop->tagged_dep_order);
309 order = isl_union_map_intersect_domain(order, uset);
310 order = isl_union_map_zip(order);
311 order = isl_union_set_unwrap(isl_union_map_domain(order));
312 order = remove_independences(prog, array, order);
313 array->dep_order = order;
315 if (gpu_array_can_be_private(array))
316 continue;
318 prog->array_order = isl_union_map_union(prog->array_order,
319 isl_union_map_copy(array->dep_order));
322 isl_union_map_free(accesses);
325 /* Construct a gpu_array_info for each array referenced by prog->scop and
326 * collect them in prog->array.
328 * The sizes are based on the extents and the set of possibly accessed
329 * elements by "prog".
330 * If there are any member accesses involved, then they are first mapped
331 * to the outer arrays of structs.
332 * Only extract gpu_array_info entries for these outer arrays.
334 * If we are allowing live range reordering, then also set
335 * the dep_order field. Otherwise leave it NULL.
337 static isl_stat collect_array_info(struct gpu_prog *prog)
339 int i;
340 isl_stat r = isl_stat_ok;
341 isl_union_set *arrays;
343 prog->n_array = 0;
344 prog->array = isl_calloc_array(prog->ctx,
345 struct gpu_array_info, prog->scop->pet->n_array);
346 if (!prog->array)
347 return isl_stat_error;
349 arrays = isl_union_map_range(isl_union_map_copy(prog->read));
350 arrays = isl_union_set_union(arrays,
351 isl_union_map_range(isl_union_map_copy(prog->may_write)));
353 arrays = isl_union_set_apply(arrays,
354 isl_union_map_copy(prog->to_outer));
356 arrays = isl_union_set_coalesce(arrays);
358 for (i = 0; i < prog->scop->pet->n_array; ++i) {
359 isl_bool field;
361 field = isl_set_is_wrapping(prog->scop->pet->arrays[i]->extent);
362 if (field < 0)
363 break;
364 if (field)
365 continue;
366 if (extract_array_info(prog, &prog->array[prog->n_array++],
367 prog->scop->pet->arrays[i], arrays) < 0)
368 r = isl_stat_error;
370 if (i < prog->scop->pet->n_array)
371 r = isl_stat_error;
373 isl_union_set_free(arrays);
375 if (prog->scop->options->live_range_reordering)
376 collect_order_dependences(prog);
378 return r;
381 static void free_array_info(struct gpu_prog *prog)
383 int i;
385 for (i = 0; i < prog->n_array; ++i) {
386 free(prog->array[i].type);
387 free(prog->array[i].name);
388 isl_multi_pw_aff_free(prog->array[i].bound);
389 isl_ast_expr_free(prog->array[i].bound_expr);
390 isl_space_free(prog->array[i].space);
391 isl_set_free(prog->array[i].declared_extent);
392 isl_set_free(prog->array[i].extent);
393 isl_ast_expr_free(prog->array[i].declared_size);
394 free(prog->array[i].refs);
395 isl_union_map_free(prog->array[i].dep_order);
397 free(prog->array);
400 /* Check if a gpu array is a scalar. A scalar is a value that is not stored
401 * as an array or through a pointer reference, but as a single data element.
402 * At the moment, scalars are represented as zero-dimensional arrays.
403 * Note that the single data element may be an entire structure.
405 int gpu_array_is_scalar(struct gpu_array_info *array)
407 return array->n_index == 0;
410 /* Can "array" be mapped to private memory?
411 * That is, is it only accessed as individual elements with
412 * constant index expressions?
414 isl_bool gpu_array_can_be_private(struct gpu_array_info *array)
416 if (!array)
417 return isl_bool_error;
418 return array->only_fixed_element;
421 /* Is "array" a read-only scalar?
423 int gpu_array_is_read_only_scalar(struct gpu_array_info *array)
425 return array->read_only_scalar;
428 /* Does "array" need to be allocated on the device?
429 * If it is a read-only scalar, then it will be passed as an argument
430 * to the kernel and therefore does not require any allocation.
431 * If this device memory is not accessed at all, then it does not
432 * need to be allocated either.
434 int gpu_array_requires_device_allocation(struct gpu_array_info *array)
436 if (gpu_array_is_read_only_scalar(array))
437 return 0;
438 if (!array->global)
439 return 0;
440 return 1;
443 /* Return the set of parameter values for which the array has a positive
444 * size in all dimensions.
445 * If the sizes are only valid for some parameter values, then those
446 * constraints are also taken into account.
448 __isl_give isl_set *gpu_array_positive_size_guard(struct gpu_array_info *array)
450 int i;
451 isl_space *space;
452 isl_set *guard;
454 if (!array)
455 return NULL;
457 space = isl_space_params(isl_space_copy(array->space));
458 guard = isl_set_universe(space);
460 for (i = 0; i < array->n_index; ++i) {
461 isl_pw_aff *bound;
462 isl_set *guard_i, *zero;
464 bound = isl_multi_pw_aff_get_pw_aff(array->bound, i);
465 guard_i = isl_pw_aff_nonneg_set(isl_pw_aff_copy(bound));
466 zero = isl_pw_aff_zero_set(bound);
467 guard_i = isl_set_subtract(guard_i, zero);
468 guard = isl_set_intersect(guard, guard_i);
471 return guard;
474 /* Internal data structure for extract_size_of_type.
475 * "type" specifies the name of the space that we want to extract.
476 * "res" is used to store the subset of that space.
478 struct ppcg_extract_size_data {
479 const char *type;
480 isl_set *res;
483 /* This function is called for each set in a union_set.
484 * If the name of the set matches data->type, we store the
485 * set in data->res.
487 static isl_stat extract_size_of_type(__isl_take isl_set *size, void *user)
489 struct ppcg_extract_size_data *data = user;
490 const char *name;
492 name = isl_set_get_tuple_name(size);
493 if (name && !strcmp(name, data->type)) {
494 data->res = size;
495 return isl_stat_error;
498 isl_set_free(size);
499 return isl_stat_ok;
502 /* Given a union map { kernel[i] -> *[...] },
503 * return the range in the space called "type" for the kernel with
504 * sequence number "id".
506 static __isl_give isl_set *extract_sizes(__isl_keep isl_union_map *sizes,
507 const char *type, int id)
509 isl_space *space;
510 isl_set *dom;
511 isl_union_set *local_sizes;
512 struct ppcg_extract_size_data data = { type, NULL };
514 if (!sizes)
515 return NULL;
517 space = isl_union_map_get_space(sizes);
518 space = isl_space_set_from_params(space);
519 space = isl_space_add_dims(space, isl_dim_set, 1);
520 space = isl_space_set_tuple_name(space, isl_dim_set, "kernel");
521 dom = isl_set_universe(space);
522 dom = isl_set_fix_si(dom, isl_dim_set, 0, id);
524 local_sizes = isl_union_set_apply(isl_union_set_from_set(dom),
525 isl_union_map_copy(sizes));
526 isl_union_set_foreach_set(local_sizes, &extract_size_of_type, &data);
527 isl_union_set_free(local_sizes);
528 return data.res;
531 /* Given a singleton set, extract the first (at most *len) elements
532 * of the single integer tuple into *sizes and update *len if needed.
534 * If "set" is NULL, then the "sizes" array is not updated.
536 static isl_stat read_sizes_from_set(__isl_take isl_set *set, int *sizes,
537 int *len)
539 int i;
540 int dim;
542 if (!set)
543 return isl_stat_ok;
545 dim = isl_set_dim(set, isl_dim_set);
546 if (dim < *len)
547 *len = dim;
549 for (i = 0; i < *len; ++i) {
550 isl_val *v;
552 v = isl_set_plain_get_val_if_fixed(set, isl_dim_set, i);
553 if (!v)
554 goto error;
555 sizes[i] = isl_val_get_num_si(v);
556 isl_val_free(v);
559 isl_set_free(set);
560 return isl_stat_ok;
561 error:
562 isl_set_free(set);
563 return isl_stat_error;
566 /* Add the map { kernel[id] -> type[sizes] } to gen->used_sizes,
567 * if the option debug->dump_sizes is set.
569 static void set_used_sizes(struct gpu_gen *gen, const char *type, int id,
570 int *sizes, int len)
572 int i;
573 isl_space *space;
574 isl_map *map;
576 if (!gen->options->debug->dump_sizes)
577 return;
579 space = isl_union_map_get_space(gen->used_sizes);
580 space = isl_space_set_from_params(space);
581 space = isl_space_add_dims(space, isl_dim_set, 1);
582 space = isl_space_set_tuple_name(space, isl_dim_set, "kernel");
583 space = isl_space_from_domain(space);
584 space = isl_space_add_dims(space, isl_dim_out, len);
585 space = isl_space_set_tuple_name(space, isl_dim_out, type);
587 map = isl_map_universe(space);
588 map = isl_map_fix_si(map, isl_dim_in, 0, id);
589 for (i = 0; i < len; ++i)
590 map = isl_map_fix_si(map, isl_dim_out, i, sizes[i]);
592 gen->used_sizes = isl_union_map_add_map(gen->used_sizes, map);
595 /* Extract user specified "tile" sizes from the "sizes" command line option,
596 * defaulting to option->tile_size in each dimension.
597 * *tile_len contains the maximum number of tile sizes needed.
598 * Update *tile_len to the number of specified tile sizes, if any, and
599 * return a pointer to the tile sizes (or NULL on error).
600 * Add the effectively used sizes to gen->used_sizes.
602 static int *read_tile_sizes(struct gpu_gen *gen, int *tile_len)
604 int n;
605 int *tile_size;
606 isl_set *size;
608 tile_size = isl_alloc_array(gen->ctx, int, *tile_len);
609 if (!tile_size)
610 return NULL;
611 for (n = 0; n < *tile_len; ++n)
612 tile_size[n] = gen->options->tile_size;
614 size = extract_sizes(gen->sizes, "tile", gen->kernel_id);
615 if (read_sizes_from_set(size, tile_size, tile_len) < 0)
616 goto error;
617 set_used_sizes(gen, "tile", gen->kernel_id, tile_size, *tile_len);
619 return tile_size;
620 error:
621 free(tile_size);
622 return NULL;
625 /* Extract user specified "block" sizes from the "sizes" command line option,
626 * after filling in some potentially useful defaults.
628 static isl_stat read_block_sizes(struct ppcg_kernel *kernel,
629 __isl_keep isl_union_map *sizes)
631 isl_set *size;
633 if (kernel->n_block > 3)
634 kernel->n_block = 3;
635 switch (kernel->n_block) {
636 case 1:
637 kernel->block_dim[0] = 512;
638 break;
639 case 2:
640 kernel->block_dim[0] = 32;
641 kernel->block_dim[1] = 16;
642 break;
643 default:
644 kernel->block_dim[0] = 32;
645 kernel->block_dim[1] = 4;
646 kernel->block_dim[2] = 4;
647 break;
650 size = extract_sizes(sizes, "block", kernel->id);
651 return read_sizes_from_set(size, kernel->block_dim, &kernel->n_block);
654 /* Extract user specified "grid" sizes from the "sizes" command line option,
655 * after filling in some potentially useful defaults.
657 static isl_stat read_grid_sizes(struct ppcg_kernel *kernel,
658 __isl_keep isl_union_map *sizes)
660 isl_set *size;
662 if (kernel->n_grid > 2)
663 kernel->n_grid = 2;
664 switch (kernel->n_grid) {
665 case 1:
666 kernel->grid_dim[0] = 32768;
667 break;
668 default:
669 kernel->grid_dim[0] = 256;
670 kernel->grid_dim[1] = 256;
671 break;
674 size = extract_sizes(sizes, "grid", kernel->id);
675 return read_sizes_from_set(size, kernel->grid_dim, &kernel->n_grid);
678 /* Extract user specified grid and block sizes from the gen->sizes
679 * command line option after filling in some potentially useful defaults.
680 * Store the extracted sizes in "kernel".
681 * Add the effectively used sizes to gen->used_sizes.
683 static isl_stat read_grid_and_block_sizes(struct ppcg_kernel *kernel,
684 struct gpu_gen *gen)
686 if (read_block_sizes(kernel, gen->sizes) < 0)
687 return isl_stat_error;
688 if (read_grid_sizes(kernel, gen->sizes) < 0)
689 return isl_stat_error;
690 set_used_sizes(gen, "block", kernel->id,
691 kernel->block_dim, kernel->n_block);
692 set_used_sizes(gen, "grid", kernel->id,
693 kernel->grid_dim, kernel->n_grid);
694 return isl_stat_ok;
697 static void *free_stmts(struct gpu_stmt *stmts, int n)
699 int i;
701 if (!stmts)
702 return NULL;
704 for (i = 0; i < n; ++i) {
705 struct gpu_stmt_access *access, *next;
707 for (access = stmts[i].accesses; access; access = next) {
708 next = access->next;
709 isl_id_free(access->ref_id);
710 isl_map_free(access->access);
711 isl_map_free(access->tagged_access);
712 free(access);
715 isl_id_free(stmts[i].id);
717 free(stmts);
719 return NULL;
722 /* Add parameters p[i] with identifiers "ids" to "set",
723 * with bounds to 0 <= p[i] < size[i].
725 __isl_give isl_set *add_bounded_parameters(__isl_take isl_set *set,
726 int *size, __isl_keep isl_id_list *ids)
728 int i, len;
729 unsigned nparam;
731 len = isl_id_list_n_id(ids);
732 nparam = isl_set_dim(set, isl_dim_param);
733 set = isl_set_add_dims(set, isl_dim_param, len);
735 for (i = 0; i < len; ++i) {
736 isl_id *id;
738 id = isl_id_list_get_id(ids, i);
739 set = isl_set_set_dim_id(set, isl_dim_param, nparam + i, id);
740 set = isl_set_lower_bound_si(set, isl_dim_param, nparam + i, 0);
741 set = isl_set_upper_bound_si(set, isl_dim_param,
742 nparam + i, size[i] - 1);
745 return set;
748 /* Add "len" parameters p[i] with identifiers "ids" and intersect "set"
749 * with
751 * { : 0 <= p[i] < size[i] }
753 * or an overapproximation.
755 static __isl_give isl_set *add_bounded_parameters_dynamic(
756 __isl_take isl_set *set, __isl_keep isl_multi_pw_aff *size,
757 __isl_keep isl_id_list *ids)
759 int i, len;
760 unsigned nparam;
761 isl_space *space;
762 isl_local_space *ls;
764 len = isl_multi_pw_aff_dim(size, isl_dim_out);
765 nparam = isl_set_dim(set, isl_dim_param);
766 set = isl_set_add_dims(set, isl_dim_param, len);
768 for (i = 0; i < len; ++i) {
769 isl_id *id;
771 id = isl_id_list_get_id(ids, i);
772 set = isl_set_set_dim_id(set, isl_dim_param, nparam + i, id);
775 space = isl_space_params(isl_set_get_space(set));
776 ls = isl_local_space_from_space(space);
777 for (i = 0; i < len; ++i) {
778 isl_pw_aff *param, *size_i, *zero;
779 isl_set *bound;
781 param = isl_pw_aff_var_on_domain(isl_local_space_copy(ls),
782 isl_dim_param, nparam + i);
784 size_i = isl_multi_pw_aff_get_pw_aff(size, i);
785 bound = isl_pw_aff_lt_set(isl_pw_aff_copy(param), size_i);
786 bound = isl_set_from_basic_set(isl_set_simple_hull(bound));
787 set = isl_set_intersect_params(set, bound);
789 zero = isl_pw_aff_zero_on_domain(isl_local_space_copy(ls));
790 bound = isl_pw_aff_ge_set(param, zero);
791 set = isl_set_intersect_params(set, bound);
793 isl_local_space_free(ls);
795 return set;
798 /* Return the union of all tagged access relations in the group.
800 static __isl_give isl_union_map *group_tagged_access_relation(
801 struct gpu_array_ref_group *group)
803 int i;
804 isl_union_map *access;
806 access = isl_union_map_empty(isl_map_get_space(group->access));
807 for (i = 0; i < group->n_ref; ++i) {
808 isl_map *map_i;
810 map_i = isl_map_copy(group->refs[i]->tagged_access);
811 access = isl_union_map_union(access,
812 isl_union_map_from_map(map_i));
815 return access;
818 /* Return the extent of "array", recomputed from the bounds.
819 * The recomputed extent may be simpler than the original extent.
821 static __isl_give isl_set *array_extent(struct gpu_array_info *array)
823 int i;
824 isl_id *id;
825 isl_space *space;
826 isl_local_space *ls;
827 isl_set *extent;
829 id = isl_set_get_tuple_id(array->extent);
830 space = isl_set_get_space(array->extent);
831 extent = isl_set_universe(isl_space_copy(space));
832 ls = isl_local_space_from_space(space);
833 for (i = 0; i < array->n_index; ++i) {
834 isl_pw_aff *bound;
835 isl_aff *aff;
836 isl_pw_aff *index;
837 isl_set *lt;
839 extent = isl_set_lower_bound_si(extent, isl_dim_set, i, 0);
841 aff = isl_aff_var_on_domain(isl_local_space_copy(ls),
842 isl_dim_set, i);
843 index = isl_pw_aff_from_aff(aff);
844 bound = isl_multi_pw_aff_get_pw_aff(array->bound, i);
845 bound = isl_pw_aff_from_range(bound);
846 bound = isl_pw_aff_add_dims(bound, isl_dim_in, array->n_index);
847 bound = isl_pw_aff_set_tuple_id(bound, isl_dim_in,
848 isl_id_copy(id));
849 lt = isl_pw_aff_lt_set(index, bound);
850 extent = isl_set_intersect(extent, lt);
852 isl_local_space_free(ls);
853 isl_id_free(id);
855 return extent;
858 /* Return a map from the first group->shared_tile->depth dimensions
859 * of the computed schedule to the array tile in
860 * global memory that corresponds to the shared memory copy.
862 * In particular, return a map
864 * { D[i] -> A[a] }
866 * with constraints
868 * tile_offset(i) <= a <= tile_offset(i) + tile_size - 1 (1)
870 * and
872 * 0 <= a <= array_size - 1 (2)
874 * Note that if some stride has been detected (i.e., when
875 * group->shared_tile->bound[i].shift is set), then a in (1) refers
876 * to the shifted and scaled down version.
878 * Constraints (1) are obtained by mapping the size constraints on the
879 * shared/private memory tile back to the access relation.
880 * Constraints (2) are obtained from the (recomputed) extent.
882 static __isl_give isl_map *group_tile(struct gpu_array_ref_group *group)
884 int i;
885 int n_index = group->array->n_index;
886 isl_map *tile;
887 isl_space *space;
888 isl_set *local;
889 isl_set *extent;
891 space = isl_multi_aff_get_space(group->shared_tile->tiling);
892 space = isl_space_range(space);
893 local = isl_set_universe(space);
894 for (i = 0; i < n_index; ++i) {
895 isl_val *bound;
897 local = isl_set_lower_bound_si(local, isl_dim_set, i, 0);
898 bound = isl_val_copy(group->shared_tile->bound[i].size);
899 bound = isl_val_sub_ui(bound, 1);
900 local = isl_set_upper_bound_val(local, isl_dim_set, i, bound);
902 local = isl_set_preimage_multi_aff(local,
903 isl_multi_aff_copy(group->shared_tile->tiling));
904 tile = isl_set_unwrap(local);
905 extent = array_extent(group->array);
906 tile = isl_map_intersect_range(tile, extent);
908 return tile;
911 /* Given a mapping "iterator_map" from the AST schedule to a domain,
912 * return the corresponding mapping from the AST schedule to
913 * to the outer kernel->copy_schedule_dim dimensions of
914 * the schedule computed by PPCG for this kernel.
916 * Note that kernel->copy_schedule_dim is at least as large as
917 * the largest depth of any array reference group associated to the kernel.
918 * This is needed as the returned schedule is used to extract a mapping
919 * to the outer tile->depth dimensions in transform_index.
921 static __isl_give isl_pw_multi_aff *compute_sched_to_copy(
922 struct ppcg_kernel *kernel, __isl_take isl_pw_multi_aff *iterator_map)
924 isl_union_pw_multi_aff *upma;
925 isl_pw_multi_aff *pma;
926 isl_space *space;
928 space = isl_space_range(isl_pw_multi_aff_get_space(iterator_map));
929 space = isl_space_from_domain(space);
930 space = isl_space_add_dims(space, isl_dim_out,
931 kernel->copy_schedule_dim);
933 upma = isl_union_pw_multi_aff_copy(kernel->copy_schedule);
934 pma = isl_union_pw_multi_aff_extract_pw_multi_aff(upma, space);
935 isl_union_pw_multi_aff_free(upma);
937 return isl_pw_multi_aff_pullback_pw_multi_aff(pma, iterator_map);
940 /* If max_shared_memory is not set to infinity (-1), then make
941 * sure that the total amount of shared memory required by the
942 * array reference groups mapped to shared memory by "kernel"
943 * is no larger than this maximum.
945 * We apply a greedy approach and discard (keep in global memory)
946 * those groups that would result in a total memory size that
947 * is larger than the maximum.
949 * This function should be called after any function that may
950 * affect the decision on whether to place a reference group
951 * in private, shared or global memory.
953 static void check_shared_memory_bound(struct ppcg_kernel *kernel)
955 int i, j;
956 isl_val *left, *size;
958 if (kernel->options->max_shared_memory < 0)
959 return;
961 left = isl_val_int_from_si(kernel->ctx,
962 kernel->options->max_shared_memory);
964 for (i = 0; i < kernel->n_array; ++i) {
965 struct gpu_local_array_info *local = &kernel->array[i];
967 for (j = 0; j < local->n_group; ++j) {
968 struct gpu_array_ref_group *group;
969 enum ppcg_group_access_type type;
971 group = local->groups[j];
972 type = gpu_array_ref_group_type(group);
973 if (type != ppcg_access_shared)
974 continue;
976 size = gpu_array_tile_size(group->shared_tile);
977 size = isl_val_mul_ui(size, local->array->size);
979 if (isl_val_le(size, left)) {
980 left = isl_val_sub(left, size);
981 continue;
983 isl_val_free(size);
985 group->shared_tile =
986 gpu_array_tile_free(group->shared_tile);
990 isl_val_free(left);
993 /* Mark all arrays of "kernel" that have an array reference group
994 * that is not mapped to private or shared memory as
995 * accessing the corresponding global device memory.
997 static void mark_global_arrays(struct ppcg_kernel *kernel)
999 int i, j;
1001 for (i = 0; i < kernel->n_array; ++i) {
1002 struct gpu_local_array_info *local = &kernel->array[i];
1004 if (local->global)
1005 continue;
1006 for (j = 0; j < local->n_group; ++j) {
1007 if (gpu_array_ref_group_tile(local->groups[j]))
1008 continue;
1010 local->global = 1;
1011 local->array->global = 1;
1012 break;
1017 /* Compute a tiling for all the array reference groups in "kernel".
1019 static void compute_group_tilings(struct ppcg_kernel *kernel)
1021 int i, j;
1023 for (i = 0; i < kernel->n_array; ++i) {
1024 struct gpu_local_array_info *array = &kernel->array[i];
1026 for (j = 0; j < array->n_group; ++j)
1027 gpu_array_ref_group_compute_tiling(array->groups[j]);
1031 /* Compute the effective grid size as a list of the sizes in each dimension.
1033 * The grid size specified by the user or set by default
1034 * in read_grid_sizes() and applied by the block filter,
1035 * may be too large for the given code in the sense that
1036 * it may contain blocks that don't need to execute anything.
1037 * We therefore don't return this grid size, but instead the
1038 * smallest grid size that ensures that all blocks that actually
1039 * execute code are included in the grid.
1041 * We first extract a description of the grid, i.e., the possible values
1042 * of the block ids, from the domain elements in "domain" and
1043 * kernel->block_filter.
1044 * The block ids are parameters in kernel->block_filter.
1045 * We simply need to change them into set dimensions.
1047 * Then, for each block dimension, we compute the maximal value of the block id
1048 * and add one.
1050 static __isl_give isl_multi_pw_aff *extract_grid_size(
1051 struct ppcg_kernel *kernel, __isl_take isl_union_set *domain)
1053 int i;
1054 isl_set *grid;
1055 isl_set *context;
1056 isl_multi_pw_aff *size;
1058 domain = isl_union_set_intersect(domain,
1059 isl_union_set_copy(kernel->block_filter));
1060 grid = isl_union_set_params(domain);
1061 grid = isl_set_from_params(grid);
1062 grid = isl_set_add_dims(grid, isl_dim_set, kernel->n_grid);
1063 for (i = 0; i < kernel->n_grid; ++i) {
1064 int pos;
1065 isl_id *id;
1067 if (!grid)
1068 return NULL;
1070 id = isl_id_list_get_id(kernel->block_ids, i);
1071 pos = isl_set_find_dim_by_id(grid, isl_dim_param, id);
1072 isl_id_free(id);
1073 if (pos < 0)
1074 isl_die(isl_set_get_ctx(grid), isl_error_internal,
1075 "missing constraints on block identifier",
1076 grid = isl_set_free(grid));
1077 grid = isl_set_equate(grid, isl_dim_param, pos, isl_dim_set, i);
1078 grid = isl_set_project_out(grid, isl_dim_param, pos, 1);
1081 grid = isl_set_coalesce(grid);
1082 size = ppcg_size_from_extent(grid);
1083 context = isl_set_params(isl_set_copy(kernel->context));
1084 return isl_multi_pw_aff_gist(size, context);
1087 /* Compute the size of a fixed bounding box around the origin and "set",
1088 * where "set" is assumed to contain only non-negative elements,
1089 * and store the results in "size".
1090 * In particular, compute the maximal value of "set" in each direction
1091 * and add one.
1093 static void extract_fixed_size(__isl_take isl_set *set, int *size)
1095 int i, n;
1096 isl_local_space *ls;
1097 isl_aff *obj;
1099 n = isl_set_dim(set, isl_dim_set);
1100 ls = isl_local_space_from_space(isl_set_get_space(set));
1101 obj = isl_aff_zero_on_domain(ls);
1102 for (i = 0; i < n; ++i) {
1103 isl_val *max;
1105 obj = isl_aff_set_coefficient_si(obj, isl_dim_in, i, 1);
1106 max = isl_set_max_val(set, obj);
1107 size[i] = isl_val_get_num_si(max) + 1;
1108 isl_val_free(max);
1109 obj = isl_aff_set_coefficient_si(obj, isl_dim_in, i, 0);
1111 isl_aff_free(obj);
1112 isl_set_free(set);
1115 /* Compute the effective block size as a list of the sizes in each dimension
1116 * and store the sizes in kernel->block_dim.
1118 * The block size specified by the user or set by default
1119 * in read_block_sizes() and applied by the thread filter,
1120 * may be too large for the given code in the sense that
1121 * it may contain threads that don't need to execute anything.
1122 * We therefore update this block size in kernel->block_dim
1123 * to the smallest block size that ensures that all threads
1124 * that actually execute code are included in the block.
1126 * The set of possible values of the thread ids is obtained from
1127 * the domain elements "domain" and kernel->thread_filter.
1128 * The current implementation eliminates all parameters, ensuring
1129 * that the size is a fixed constant in each dimension.
1130 * In principle we could also compute parametric sizes.
1131 * We would have to make sure to project out all b%d and t%d parameters,
1132 * however.
1134 static isl_stat extract_block_size(struct ppcg_kernel *kernel,
1135 __isl_take isl_union_set *domain)
1137 int i;
1138 int nparam;
1139 isl_set *block;
1141 domain = isl_union_set_intersect(domain,
1142 isl_union_set_copy(kernel->thread_filter));
1143 block = isl_union_set_params(domain);
1144 block = isl_set_from_params(block);
1145 block = isl_set_add_dims(block, isl_dim_set, kernel->n_block);
1146 for (i = 0; i < kernel->n_block; ++i) {
1147 int pos;
1148 isl_id *id;
1150 if (!block)
1151 return isl_stat_error;
1153 id = isl_id_list_get_id(kernel->thread_ids, i);
1154 pos = isl_set_find_dim_by_id(block, isl_dim_param, id);
1155 isl_id_free(id);
1156 if (pos < 0)
1157 isl_die(isl_set_get_ctx(block), isl_error_internal,
1158 "missing constraints on thread identifier",
1159 block = isl_set_free(block));
1160 block = isl_set_equate(block, isl_dim_param, pos,
1161 isl_dim_set, i);
1163 nparam = isl_set_dim(block, isl_dim_param);
1164 block = isl_set_project_out(block, isl_dim_param, 0, nparam);
1166 if (!block)
1167 return isl_stat_error;
1169 extract_fixed_size(block, kernel->block_dim);
1171 return isl_stat_ok;
1174 struct ppcg_kernel *ppcg_kernel_free(struct ppcg_kernel *kernel)
1176 int i, j;
1178 if (!kernel)
1179 return NULL;
1181 isl_id_list_free(kernel->block_ids);
1182 isl_id_list_free(kernel->thread_ids);
1183 isl_multi_pw_aff_free(kernel->grid_size);
1184 isl_ast_expr_free(kernel->grid_size_expr);
1185 isl_set_free(kernel->context);
1186 isl_union_set_free(kernel->core);
1187 isl_union_set_free(kernel->arrays);
1188 isl_union_pw_multi_aff_free(kernel->contraction);
1189 isl_union_set_free(kernel->expanded_domain);
1190 isl_space_free(kernel->space);
1191 isl_ast_node_free(kernel->tree);
1192 isl_union_set_free(kernel->block_filter);
1193 isl_union_set_free(kernel->thread_filter);
1194 isl_union_pw_multi_aff_free(kernel->copy_schedule);
1195 isl_union_set_free(kernel->sync_writes);
1197 for (i = 0; i < kernel->n_array; ++i) {
1198 struct gpu_local_array_info *array = &kernel->array[i];
1200 for (j = 0; j < array->n_group; ++j)
1201 gpu_array_ref_group_free(array->groups[j]);
1202 free(array->groups);
1204 isl_multi_pw_aff_free(array->bound);
1205 isl_ast_expr_free(array->bound_expr);
1207 free(kernel->array);
1209 for (i = 0; i < kernel->n_var; ++i) {
1210 free(kernel->var[i].name);
1211 isl_vec_free(kernel->var[i].size);
1213 free(kernel->var);
1215 free(kernel);
1217 return NULL;
1220 /* Wrapper around ppcg_kernel_free for use as a isl_id_set_free_user callback.
1222 static void ppcg_kernel_free_wrap(void *user)
1224 struct ppcg_kernel *kernel = user;
1226 ppcg_kernel_free(kernel);
1229 static void create_kernel_var(isl_ctx *ctx, struct gpu_array_ref_group *group,
1230 struct ppcg_kernel_var *var)
1232 int j;
1233 struct gpu_array_tile *tile;
1234 isl_printer *p;
1236 var->array = group->array;
1238 var->type = gpu_array_ref_group_type(group);
1239 tile = gpu_array_ref_group_tile(group);
1241 p = isl_printer_to_str(ctx);
1242 p = gpu_array_ref_group_print_name(group, p);
1243 var->name = isl_printer_get_str(p);
1244 isl_printer_free(p);
1246 var->size = isl_vec_alloc(ctx, group->array->n_index);
1248 for (j = 0; j < group->array->n_index; ++j)
1249 var->size = isl_vec_set_element_val(var->size, j,
1250 isl_val_copy(tile->bound[j].size));
1253 static isl_stat create_kernel_vars(struct ppcg_kernel *kernel)
1255 int i, j, n;
1257 n = 0;
1258 for (i = 0; i < kernel->n_array; ++i) {
1259 struct gpu_local_array_info *array = &kernel->array[i];
1261 for (j = 0; j < array->n_group; ++j) {
1262 struct gpu_array_ref_group *group = array->groups[j];
1263 enum ppcg_group_access_type type;
1265 type = gpu_array_ref_group_type(group);
1266 if (type != ppcg_access_global)
1267 ++n;
1271 kernel->var = isl_calloc_array(kernel->ctx, struct ppcg_kernel_var, n);
1272 if (!kernel->var)
1273 return isl_stat_error;
1274 kernel->n_var = n;
1276 n = 0;
1277 for (i = 0; i < kernel->n_array; ++i) {
1278 struct gpu_local_array_info *array = &kernel->array[i];
1280 for (j = 0; j < array->n_group; ++j) {
1281 struct gpu_array_ref_group *group = array->groups[j];
1282 enum ppcg_group_access_type type;
1284 type = gpu_array_ref_group_type(group);
1285 if (type == ppcg_access_global)
1286 continue;
1287 create_kernel_var(kernel->ctx, group, &kernel->var[n]);
1288 ++n;
1292 return isl_stat_ok;
1295 /* Replace "pa" by the zero function defined over the universe domain
1296 * in the space of "pa".
1298 static __isl_give isl_pw_aff *set_universally_zero(__isl_take isl_pw_aff *pa)
1300 isl_space *space;
1301 isl_aff *zero;
1303 space = isl_space_domain(isl_pw_aff_get_space(pa));
1304 isl_pw_aff_free(pa);
1305 zero = isl_aff_zero_on_domain(isl_local_space_from_space(space));
1307 return isl_pw_aff_from_aff(zero);
1310 /* The sizes of the arrays on the host that have been computed by
1311 * extract_array_info may depend on the parameters. Use the extra
1312 * constraints on the parameters that are valid at "host_domain"
1313 * to simplify these expressions and store the results in kernel->array.
1315 * We only need these localized bounds for arrays that are accessed
1316 * by the current kernel. If we have found at least one reference group
1317 * then the array is accessed by the kernel.
1319 * The resulting sizes may be functions that are nowhere defined
1320 * in case the access function cannot possibly access anything inside
1321 * the kernel for some reason. If so, they are replaced by the zero
1322 * function. Since the access function cannot actually access anything,
1323 * there is no harm in printing the array sizes as zero.
1325 static void localize_bounds(struct ppcg_kernel *kernel,
1326 __isl_keep isl_set *host_domain)
1328 int i, j;
1329 isl_set *context;
1331 context = isl_set_copy(host_domain);
1332 context = isl_set_params(context);
1334 for (i = 0; i < kernel->n_array; ++i) {
1335 struct gpu_local_array_info *local = &kernel->array[i];
1336 isl_multi_pw_aff *bound;
1337 int n_index;
1339 if (local->n_group == 0)
1340 continue;
1342 n_index = local->array->n_index;
1343 bound = isl_multi_pw_aff_copy(local->array->bound);
1345 for (j = 0; j < n_index; ++j) {
1346 isl_pw_aff *pwaff;
1347 int empty;
1349 pwaff = isl_multi_pw_aff_get_pw_aff(bound, j);
1350 pwaff = isl_pw_aff_gist(pwaff, isl_set_copy(context));
1351 empty = isl_pw_aff_is_empty(pwaff);
1352 if (empty < 0)
1353 pwaff = isl_pw_aff_free(pwaff);
1354 else if (empty)
1355 pwaff = set_universally_zero(pwaff);
1356 bound = isl_multi_pw_aff_set_pw_aff(bound, j, pwaff);
1359 local->n_index = n_index;
1360 local->bound = bound;
1362 isl_set_free(context);
1365 /* Create the array of gpu_local_array_info structures "array"
1366 * inside "kernel". The number of elements in this array is
1367 * the same as the number of arrays in "prog".
1368 * Initialize the "array" field of each local array to point
1369 * to the corresponding array in "prog".
1371 static struct ppcg_kernel *ppcg_kernel_create_local_arrays(
1372 struct ppcg_kernel *kernel, struct gpu_prog *prog)
1374 int i;
1375 isl_ctx *ctx;
1377 if (!kernel)
1378 return NULL;
1380 ctx = isl_set_get_ctx(prog->context);
1381 kernel->array = isl_calloc_array(ctx,
1382 struct gpu_local_array_info, prog->n_array);
1383 if (!kernel->array)
1384 return ppcg_kernel_free(kernel);
1385 kernel->n_array = prog->n_array;
1387 for (i = 0; i < prog->n_array; ++i)
1388 kernel->array[i].array = &prog->array[i];
1390 return kernel;
1393 /* Does "kernel" need to be passed an argument corresponding to array "i"?
1395 * The argument is only needed if the kernel accesses this device memory.
1397 int ppcg_kernel_requires_array_argument(struct ppcg_kernel *kernel, int i)
1399 return kernel->array[i].global;
1402 /* Find the element in gen->stmt that has the given "id".
1403 * Return NULL if no such gpu_stmt can be found.
1405 static struct gpu_stmt *find_stmt(struct gpu_prog *prog, __isl_keep isl_id *id)
1407 int i;
1409 for (i = 0; i < prog->n_stmts; ++i) {
1410 if (id == prog->stmts[i].id)
1411 break;
1414 return i < prog->n_stmts ? &prog->stmts[i] : NULL;
1417 void ppcg_kernel_stmt_free(void *user)
1419 struct ppcg_kernel_stmt *stmt = user;
1421 if (!stmt)
1422 return;
1424 switch (stmt->type) {
1425 case ppcg_kernel_copy:
1426 isl_ast_expr_free(stmt->u.c.index);
1427 isl_ast_expr_free(stmt->u.c.local_index);
1428 break;
1429 case ppcg_kernel_domain:
1430 isl_id_to_ast_expr_free(stmt->u.d.ref2expr);
1431 break;
1432 case ppcg_kernel_sync:
1433 break;
1436 free(stmt);
1439 /* Return the gpu_stmt_access in the list "accesses" that corresponds
1440 * to "ref_id".
1442 static struct gpu_stmt_access *find_access(struct gpu_stmt_access *accesses,
1443 __isl_keep isl_id *ref_id)
1445 struct gpu_stmt_access *access;
1447 for (access = accesses; access; access = access->next)
1448 if (access->ref_id == ref_id)
1449 return access;
1451 return NULL;
1454 /* Return the index of the array called "name" in the list of arrays.
1456 static int find_array_index(struct ppcg_kernel *kernel, const char *name)
1458 int i;
1460 for (i = 0; i < kernel->n_array; ++i)
1461 if (!strcmp(name, kernel->array[i].array->name))
1462 return i;
1464 return -1;
1467 /* Internal data structure for the index and AST expression transformation
1468 * callbacks for pet_stmt_build_ast_exprs.
1470 * "kernel" is the kernel for which are computing AST expressions and
1471 * may be NULL if we are not inside a kernel.
1472 * "accesses" is the list of gpu_stmt_access in the statement.
1473 * "iterator_map" expresses the statement iterators in terms of
1474 * the AST loop iterators.
1475 * "sched2copy" expresses the outer copy_schedule_dim dimensions of
1476 * the kernel schedule in terms of the AST loop iterators and
1477 * may be NULL if we are not inside a kernel.
1479 * The following fields are set in transform_index and used in transform_expr.
1480 * "array" is the array that is being accessed.
1481 * "global" is set if the global array is accessed (rather than
1482 * shared/private memory).
1483 * "local_array" refers to information on the array specialized
1484 * to the current kernel.
1486 struct ppcg_transform_data {
1487 struct ppcg_kernel *kernel;
1488 struct gpu_stmt_access *accesses;
1489 isl_pw_multi_aff *iterator_map;
1490 isl_pw_multi_aff *sched2copy;
1492 struct gpu_array_info *array;
1493 int global;
1494 struct gpu_local_array_info *local_array;
1497 /* Return a pointer to the gpu_array_ref_group in "local"
1498 * that contains the reference "access".
1499 * Return NULL if no such group can be found.
1501 static struct gpu_array_ref_group *find_ref_group(
1502 struct gpu_local_array_info *local, struct gpu_stmt_access *access)
1504 int i, j;
1506 for (i = 0; i < local->n_group; ++i) {
1507 struct gpu_array_ref_group *group = local->groups[i];
1509 for (j = 0; j < group->n_ref; ++j)
1510 if (group->refs[j] == access)
1511 return group;
1514 return NULL;
1517 /* Given an index expression "index" of the form
1519 * L -> F(A),
1521 * with F(A) either A or some subfield of A and L the AST loop iterators,
1522 * and a tiling "tiling" of the form
1524 * [L -> A] -> T
1526 * apply the tiling to the outer array in the index expression to obtain
1528 * L -> T(A)
1530 * If F(A) is some subfield of A, then separate the member access
1531 * into the base index expression and the field index expression,
1532 * apply the tiling to the base index expression and combine the result
1533 * with the field index expression.
1535 * If F(A) is A, then modify index to keep track of the iterators
1537 * L -> [L -> A]
1539 * and combine the result with the tiling to obtain a tiled index expression
1540 * in terms of the AST loop iterators
1542 * L -> T
1544 static __isl_give isl_multi_pw_aff *tile_outer(
1545 __isl_take isl_multi_pw_aff *index, __isl_take isl_multi_pw_aff *tiling)
1547 isl_bool is_wrapping;
1548 isl_space *space;
1549 isl_multi_pw_aff *mpa;
1551 is_wrapping = isl_multi_pw_aff_range_is_wrapping(index);
1552 if (is_wrapping < 0)
1553 goto error;
1554 if (is_wrapping) {
1555 isl_multi_pw_aff *field;
1557 field = isl_multi_pw_aff_copy(index);
1558 field = isl_multi_pw_aff_range_factor_range(field);
1559 index = isl_multi_pw_aff_range_factor_domain(index);
1560 index = tile_outer(index, tiling);
1561 return isl_multi_pw_aff_range_product(index, field);
1564 space = isl_space_domain(isl_multi_pw_aff_get_space(index));
1565 space = isl_space_map_from_set(space);
1566 mpa = isl_multi_pw_aff_identity(space);
1567 index = isl_multi_pw_aff_range_product(mpa, index);
1568 index = isl_multi_pw_aff_pullback_multi_pw_aff(tiling, index);
1570 return index;
1571 error:
1572 isl_multi_pw_aff_free(index);
1573 isl_multi_pw_aff_free(tiling);
1574 return NULL;
1577 /* Index transformation callback for pet_stmt_build_ast_exprs.
1579 * "index" expresses the array indices in terms of statement iterators
1581 * We first reformulate "index" in terms of the AST loop iterators.
1582 * Then we check if we are accessing the global array or
1583 * a shared/private copy. In particular, if we are not inside a kernel
1584 * then we must be accessing a global array.
1585 * In the former case, we simply return
1586 * the updated index. If "index" is an affine expression rather
1587 * than an array access, then we also return the updated index here.
1589 * If no reference groups have been computed for the array,
1590 * then we can only be accessing the global array.
1592 * Otherwise, we apply the tiling to the index.
1593 * This tiling is of the form
1595 * [D -> A] -> T
1597 * where D corresponds to the outer tile->depth dimensions of
1598 * the kernel schedule.
1599 * The index is of the form
1601 * L -> A
1603 * We update the tiling to refer to the AST loop iterators
1605 * [L -> A] -> T
1607 * and combine it with the index to obtain a tiled index expression in terms
1608 * of the AST loop iterators
1610 * L -> T
1612 * Note that while the tiling applies directly to an outer array.
1613 * the index may refer to some subfield of this outer array.
1614 * In such cases, the result will refer to the same subfield of the tile.
1615 * That is, an index expression of the form L -> F(A) will be transformed
1616 * into an index expression of the form L -> F(T).
1618 static __isl_give isl_multi_pw_aff *transform_index(
1619 __isl_take isl_multi_pw_aff *index, __isl_keep isl_id *ref_id,
1620 void *user)
1622 struct ppcg_transform_data *data = user;
1623 struct gpu_stmt_access *access;
1624 struct gpu_array_ref_group *group;
1625 struct gpu_array_tile *tile;
1626 isl_pw_multi_aff *iterator_map;
1627 int i;
1628 int dim;
1629 const char *name;
1630 isl_space *space;
1631 isl_multi_pw_aff *tiling;
1632 isl_pw_multi_aff *pma;
1633 isl_pw_multi_aff *sched2depth;
1635 data->array = NULL;
1637 iterator_map = isl_pw_multi_aff_copy(data->iterator_map);
1638 index = isl_multi_pw_aff_pullback_pw_multi_aff(index, iterator_map);
1640 if (!data->kernel)
1641 return index;
1643 access = find_access(data->accesses, ref_id);
1644 if (!access)
1645 return index;
1646 if (!isl_map_has_tuple_name(access->access, isl_dim_out))
1647 return index;
1649 name = get_outer_array_name(access->access);
1650 if (!name)
1651 return isl_multi_pw_aff_free(index);
1652 i = find_array_index(data->kernel, name);
1653 if (i < 0)
1654 isl_die(isl_multi_pw_aff_get_ctx(index), isl_error_internal,
1655 "cannot find array",
1656 return isl_multi_pw_aff_free(index));
1657 data->local_array = &data->kernel->array[i];
1658 data->array = data->local_array->array;
1660 group = find_ref_group(data->local_array, access);
1661 if (!group) {
1662 data->global = 1;
1663 return index;
1666 tile = gpu_array_ref_group_tile(group);
1667 data->global = !tile;
1668 if (!tile)
1669 return index;
1671 space = isl_space_domain(isl_multi_aff_get_space(tile->tiling));
1672 space = isl_space_range(isl_space_unwrap(space));
1673 space = isl_space_map_from_set(space);
1674 pma = isl_pw_multi_aff_identity(space);
1675 sched2depth = isl_pw_multi_aff_copy(data->sched2copy);
1676 dim = isl_pw_multi_aff_dim(sched2depth, isl_dim_out);
1677 sched2depth = isl_pw_multi_aff_drop_dims(sched2depth, isl_dim_out,
1678 tile->depth, dim - tile->depth);
1679 pma = isl_pw_multi_aff_product(sched2depth, pma);
1680 tiling = isl_multi_pw_aff_from_multi_aff(
1681 isl_multi_aff_copy(tile->tiling));
1682 tiling = isl_multi_pw_aff_pullback_pw_multi_aff(tiling, pma);
1684 index = tile_outer(index, tiling);
1686 return index;
1689 /* Dereference "expr" by adding an index [0].
1690 * The original "expr" is assumed not to have any indices.
1692 * If "expr" is a member access, then the dereferencing needs
1693 * to be applied to the structure argument of this member access.
1695 static __isl_give isl_ast_expr *dereference(__isl_take isl_ast_expr *expr)
1697 isl_ctx *ctx;
1698 isl_ast_expr *arg0, *res;
1699 isl_ast_expr_list *list;
1701 arg0 = isl_ast_expr_get_op_arg(expr, 0);
1702 if (!arg0)
1703 return isl_ast_expr_free(expr);
1704 if (isl_ast_expr_get_type(arg0) == isl_ast_expr_op &&
1705 isl_ast_expr_get_op_type(arg0) == isl_ast_op_member) {
1706 isl_ast_expr *arg;
1708 arg = isl_ast_expr_get_op_arg(arg0, 0);
1709 arg = dereference(arg);
1710 arg0 = isl_ast_expr_set_op_arg(arg0, 0, arg);
1711 expr = isl_ast_expr_set_op_arg(expr, 0, arg0);
1713 return expr;
1715 isl_ast_expr_free(arg0);
1717 ctx = isl_ast_expr_get_ctx(expr);
1718 res = isl_ast_expr_from_val(isl_val_zero(ctx));
1719 list = isl_ast_expr_list_from_ast_expr(res);
1720 res = isl_ast_expr_get_op_arg(expr, 0);
1721 res = isl_ast_expr_access(res, list);
1722 isl_ast_expr_free(expr);
1724 return res;
1727 /* Linearize the index expression "expr" based on the array bounds
1728 * of "array".
1730 * That is, transform expression
1732 * A[i_0][i_1]...[i_n]
1734 * to
1736 * A[(..((i_0 * b_1 + i_1) ... ) * b_n + i_n]
1738 * where b_0, b_1, ..., b_n are the bounds on the array.
1740 * If the base of "expr" is a member access, then the linearization needs
1741 * to be applied to the structure argument of this member access.
1743 * In the base case, if "expr" has no arguments (other than the name of
1744 * the array), then we are passing an entire array to a function.
1745 * In this case, there is nothing to linearize.
1746 * Note that at this point an expression with no arguments can
1747 * only be an entire array because the scalar case and
1748 * the case of single struct are handled by the caller.
1750 * If the number of specified index expressions in "expr"
1751 * is smaller than the dimension of the accessed array,
1752 * then the missing i_j also do not appear in the linearized expression.
1753 * Furthermore, since such an expression does not refer to a single
1754 * element while the default linearized expression would refer to
1755 * a single element, we return the expression
1757 * A + (..((i_0 * b_1 + i_1) ... ) * b_l + i_l)
1759 * instead. Note that because of the special case handling above,
1760 * we can assume here that there is at least one index expression.
1762 __isl_give isl_ast_expr *gpu_local_array_info_linearize_index(
1763 struct gpu_local_array_info *array, __isl_take isl_ast_expr *expr)
1765 int i, n;
1766 isl_ast_expr *arg0;
1767 isl_ast_expr *res;
1768 isl_ast_expr_list *list;
1770 arg0 = isl_ast_expr_get_op_arg(expr, 0);
1771 if (isl_ast_expr_get_type(arg0) == isl_ast_expr_op &&
1772 isl_ast_expr_get_op_type(arg0) == isl_ast_op_member) {
1773 isl_ast_expr *arg;
1775 arg = isl_ast_expr_get_op_arg(arg0, 0);
1776 arg = gpu_local_array_info_linearize_index(array, arg);
1777 arg0 = isl_ast_expr_set_op_arg(arg0, 0, arg);
1778 expr = isl_ast_expr_set_op_arg(expr, 0, arg0);
1780 return expr;
1782 isl_ast_expr_free(arg0);
1784 if (isl_ast_expr_get_op_n_arg(expr) == 1)
1785 return expr;
1787 n = isl_ast_expr_get_op_n_arg(expr);
1788 res = isl_ast_expr_get_op_arg(expr, 1);
1789 for (i = 1; i < array->n_index; ++i) {
1790 isl_ast_expr *expr_i;
1792 expr_i = isl_ast_expr_get_op_arg(array->bound_expr, 1 + i);
1793 res = isl_ast_expr_mul(res, expr_i);
1795 if (i + 1 >= n)
1796 continue;
1797 expr_i = isl_ast_expr_get_op_arg(expr, i + 1);
1798 res = isl_ast_expr_add(res, expr_i);
1801 if (1 + array->n_index > n) {
1802 res = isl_ast_expr_add(isl_ast_expr_get_op_arg(expr, 0), res);
1803 } else {
1804 list = isl_ast_expr_list_from_ast_expr(res);
1805 res = isl_ast_expr_get_op_arg(expr, 0);
1806 res = isl_ast_expr_access(res, list);
1809 isl_ast_expr_free(expr);
1811 return res;
1814 /* AST expression transformation callback for pet_stmt_build_ast_exprs.
1816 * If the AST expression refers to an array that is not accessed
1817 * at all, then this means the value of the expression is not used,
1818 * so we might as well print zero (NULL pointer) instead.
1820 * If the AST expression refers to a global scalar that is not
1821 * a read-only scalar, then its address was passed to the kernel and
1822 * we need to dereference it.
1824 * If the AST expression refers to an access to a global array,
1825 * then we linearize the access exploiting the bounds in data->local_array.
1827 static __isl_give isl_ast_expr *transform_expr(__isl_take isl_ast_expr *expr,
1828 __isl_keep isl_id *id, void *user)
1830 struct ppcg_transform_data *data = user;
1832 if (!data->array)
1833 return expr;
1834 if (!data->array->accessed) {
1835 isl_ctx *ctx;
1837 ctx = isl_ast_expr_get_ctx(expr);
1838 isl_ast_expr_free(expr);
1839 return isl_ast_expr_from_val(isl_val_zero(ctx));
1841 if (gpu_array_is_read_only_scalar(data->array))
1842 return expr;
1843 if (!data->global)
1844 return expr;
1845 if (data->array->n_index == 0)
1846 return dereference(expr);
1847 if (!data->array->linearize)
1848 return expr;
1850 return gpu_local_array_info_linearize_index(data->local_array, expr);
1853 /* This function is called for each instance of a user statement
1854 * in the kernel "kernel", identified by "gpu_stmt".
1855 * "kernel" may be NULL if we are not inside a kernel.
1857 * We attach a struct ppcg_kernel_stmt to the "node", containing
1858 * a computed AST expression for each access, through an annotation
1859 * with name "user".
1860 * These AST expressions are computed from iterator_map,
1861 * which expresses the domain
1862 * elements in terms of the generated loops, and sched2copy,
1863 * which expresses the outer copy_schedule_dim dimensions of
1864 * the kernel schedule computed by PPCG in terms of the generated loops.
1866 static __isl_give isl_ast_node *create_domain_leaf(
1867 struct ppcg_kernel *kernel, __isl_take isl_ast_node *node,
1868 __isl_keep isl_ast_build *build, struct gpu_stmt *gpu_stmt)
1870 struct ppcg_transform_data data;
1871 struct ppcg_kernel_stmt *stmt;
1872 isl_ctx *ctx;
1873 isl_id *id;
1874 isl_pw_multi_aff *sched2copy;
1875 isl_map *map;
1876 isl_pw_multi_aff *iterator_map;
1877 isl_union_map *schedule;
1879 if (!node)
1880 return NULL;
1881 ctx = isl_ast_node_get_ctx(node);
1883 stmt = isl_calloc_type(ctx, struct ppcg_kernel_stmt);
1884 if (!stmt)
1885 return isl_ast_node_free(node);
1887 schedule = isl_ast_build_get_schedule(build);
1888 map = isl_map_reverse(isl_map_from_union_map(schedule));
1889 iterator_map = isl_pw_multi_aff_from_map(map);
1890 if (kernel)
1891 sched2copy = compute_sched_to_copy(kernel,
1892 isl_pw_multi_aff_copy(iterator_map));
1893 else
1894 sched2copy = NULL;
1896 stmt->type = ppcg_kernel_domain;
1897 stmt->u.d.stmt = gpu_stmt;
1899 data.kernel = kernel;
1900 data.accesses = stmt->u.d.stmt->accesses;
1901 data.iterator_map = iterator_map;
1902 data.sched2copy = sched2copy;
1903 stmt->u.d.ref2expr = pet_stmt_build_ast_exprs(stmt->u.d.stmt->stmt,
1904 build, &transform_index, &data,
1905 &transform_expr, &data);
1907 isl_pw_multi_aff_free(iterator_map);
1908 isl_pw_multi_aff_free(sched2copy);
1910 id = isl_id_alloc(ctx, "user", stmt);
1911 id = isl_id_set_free_user(id, &ppcg_kernel_stmt_free);
1912 if (!id)
1913 ppcg_kernel_stmt_free(stmt);
1914 return isl_ast_node_set_annotation(node, id);
1917 /* This function is called for each statement node in the AST
1918 * for copying to or from shared/private memory.
1919 * Attach a pointer to a ppcg_kernel_stmt representing the copy
1920 * statement to the node.
1921 * The statement name is "read" or "write", depending on whether we are
1922 * reading from global memory or writing to global memory.
1924 * The schedule is of the form
1926 * type[D -> A] -> L
1928 * where D corresponds to the outer tile->depth dimensions of
1929 * the kernel schedule, A to the global array and L to the outer
1930 * generated AST schedule.
1931 * We compute the inverse and strip off the type, resulting in
1933 * L -> [D -> A]
1935 * We combine this mapping with on the one hand the projection
1937 * [D -> A] -> A
1939 * and on the other hand the group tiling
1941 * [D -> A] -> T
1943 * resulting in
1945 * L -> A and L -> T
1947 * and store the corresponding expressions in stmt->index and stmt->local_index,
1948 * where stmt points to the ppcg_kernel_stmt that is attached to the node.
1949 * stmt->index is linearized if the global memory array is linearized.
1951 static __isl_give isl_ast_node *create_access_leaf(struct ppcg_kernel *kernel,
1952 struct gpu_array_ref_group *group, __isl_take isl_ast_node *node,
1953 __isl_keep isl_ast_build *build)
1955 struct ppcg_kernel_stmt *stmt;
1956 struct gpu_array_tile *tile;
1957 isl_id *id;
1958 isl_ast_expr *expr;
1959 isl_space *space;
1960 isl_map *access;
1961 isl_pw_multi_aff *pma, *pma2;
1962 const char *type;
1964 stmt = isl_calloc_type(kernel->ctx, struct ppcg_kernel_stmt);
1965 if (!stmt)
1966 return isl_ast_node_free(node);
1968 access = isl_map_from_union_map(isl_ast_build_get_schedule(build));
1969 type = isl_map_get_tuple_name(access, isl_dim_in);
1970 stmt->u.c.read = type && !strcmp(type, "read");
1971 access = isl_map_reverse(access);
1972 pma = isl_pw_multi_aff_from_map(access);
1973 pma = isl_pw_multi_aff_reset_tuple_id(pma, isl_dim_out);
1975 space = isl_space_range(isl_pw_multi_aff_get_space(pma));
1976 space = isl_space_unwrap(space);
1977 pma2 = isl_pw_multi_aff_range_map(space);
1978 pma2 = isl_pw_multi_aff_pullback_pw_multi_aff(pma2,
1979 isl_pw_multi_aff_copy(pma));
1980 expr = isl_ast_build_access_from_pw_multi_aff(build, pma2);
1981 if (group->array->linearize)
1982 expr = gpu_local_array_info_linearize_index(group->local_array,
1983 expr);
1984 stmt->u.c.index = expr;
1986 tile = gpu_array_ref_group_tile(group);
1987 pma2 = isl_pw_multi_aff_from_multi_aff(
1988 isl_multi_aff_copy(tile->tiling));
1989 pma2 = isl_pw_multi_aff_pullback_pw_multi_aff(pma2, pma);
1990 expr = isl_ast_build_access_from_pw_multi_aff(build, pma2);
1991 stmt->u.c.local_index = expr;
1993 stmt->u.c.array = group->array;
1994 stmt->u.c.local_array = group->local_array;
1995 stmt->type = ppcg_kernel_copy;
1997 id = isl_id_alloc(kernel->ctx, "copy", stmt);
1998 id = isl_id_set_free_user(id, &ppcg_kernel_stmt_free);
1999 if (!id)
2000 ppcg_kernel_stmt_free(stmt);
2001 return isl_ast_node_set_annotation(node, id);
2004 /* Create a synchronization ppcg_kernel_stmt and
2005 * attach it to the node "node" representing the synchronization.
2007 static __isl_give isl_ast_node *create_sync_leaf(
2008 struct ppcg_kernel *kernel, __isl_take isl_ast_node *node,
2009 __isl_keep isl_ast_build *build)
2011 struct ppcg_kernel_stmt *stmt;
2012 isl_id *id;
2014 stmt = isl_calloc_type(kernel->ctx, struct ppcg_kernel_stmt);
2015 if (!stmt)
2016 return isl_ast_node_free(node);
2018 stmt->type = ppcg_kernel_sync;
2019 id = isl_id_alloc(kernel->ctx, "sync", stmt);
2020 id = isl_id_set_free_user(id, &ppcg_kernel_stmt_free);
2021 if (!id)
2022 ppcg_kernel_stmt_free(stmt);
2023 return isl_ast_node_set_annotation(node, id);
2026 /* Build AST expressions for the device array sizes of all arrays in "prog"
2027 * that require allocation on the device using "build", as well as
2028 * for the original array sizes of all arrays that need to be declared
2029 * on the host.
2030 * "node" is freed in case of error.
2032 static __isl_give isl_ast_node *build_array_bounds(
2033 __isl_take isl_ast_node *node, struct gpu_prog *prog,
2034 __isl_keep isl_ast_build *build)
2036 int i;
2038 for (i = 0; i < prog->n_array; ++i) {
2039 struct gpu_array_info *array = &prog->array[i];
2040 isl_multi_pw_aff *size;
2041 isl_ast_expr *expr;
2043 if (!gpu_array_requires_device_allocation(array))
2044 continue;
2046 size = isl_multi_pw_aff_copy(array->bound);
2047 expr = ppcg_build_size_expr(size, build);
2048 array->bound_expr = expr;
2049 if (!expr)
2050 return isl_ast_node_free(node);
2053 for (i = 0; i < prog->n_array; ++i) {
2054 struct gpu_array_info *array = &prog->array[i];
2055 isl_set *extent;
2056 isl_multi_pw_aff *size;
2057 isl_ast_expr *expr;
2059 if (!array->declare_local)
2060 continue;
2061 extent = isl_set_copy(array->declared_extent);
2062 size = ppcg_size_from_extent(extent);
2063 expr = ppcg_build_size_expr(size, build);
2064 array->declared_size = expr;
2065 if (!expr)
2066 return isl_ast_node_free(node);
2069 return node;
2072 /* Internal data structure for at_domain.
2074 * "prog" represents the entire scop.
2075 * "kernel" points to the kernel to which the current schedule node
2076 * belongs. It is set by before_mark and reset by after_mark.
2077 * It may be NULL if we are outside any kernel.
2079 struct ppcg_at_domain_data {
2080 struct gpu_prog *prog;
2081 struct ppcg_kernel *kernel;
2084 /* This function is called for each instance of a user statement
2085 * in the kernel. This may be one of the original user statements
2086 * or a statement introduced by PPCG.
2088 * We first check if the statement id corresponds to a gpu statement,
2089 * which indicates the statement is an original user statement. Any statement
2090 * that is not an original user statement has been introduced by PPCG and
2091 * requires special handling.
2093 * If the user statement is one of the original user statements, then we call
2094 * create_domain_leaf. If it is "init_device", then we call
2095 * build_array_bounds. Otherwise, we check if it is a copy or synchronization
2096 * statement and call the appropriate functions. Statements that copy an array
2097 * to/from the device do not need any further treatment.
2098 * Neither does "clear_device".
2100 static __isl_give isl_ast_node *at_domain(__isl_take isl_ast_node *node,
2101 __isl_keep isl_ast_build *build, void *user)
2103 struct ppcg_at_domain_data *data = user;
2104 struct gpu_stmt *gpu_stmt;
2105 isl_ast_expr *expr, *arg;
2106 isl_id *id;
2107 int is_sync;
2108 const char *name;
2109 void *p;
2111 expr = isl_ast_node_user_get_expr(node);
2112 arg = isl_ast_expr_get_op_arg(expr, 0);
2113 id = isl_ast_expr_get_id(arg);
2114 name = isl_id_get_name(id);
2115 p = isl_id_get_user(id);
2116 isl_ast_expr_free(expr);
2117 isl_ast_expr_free(arg);
2119 gpu_stmt = find_stmt(data->prog, id);
2120 is_sync = gpu_tree_id_is_sync(id, data->kernel);
2121 isl_id_free(id);
2123 if (gpu_stmt)
2124 return create_domain_leaf(data->kernel, node, build, gpu_stmt);
2126 if (!prefixcmp(name, "to_device_") || !prefixcmp(name, "from_device_"))
2127 return node;
2128 if (!strcmp(name, "init_device"))
2129 return build_array_bounds(node, data->prog, build);
2130 if (!strcmp(name, "clear_device"))
2131 return node;
2132 if (is_sync < 0)
2133 return isl_ast_node_free(node);
2134 if (!strcmp(name, "read") || !strcmp(name, "write")) {
2135 struct gpu_array_ref_group *group = p;
2136 return create_access_leaf(data->kernel, group, node, build);
2138 if (!is_sync)
2139 isl_die(data->prog->ctx, isl_error_internal,
2140 "unknown statement type",
2141 return isl_ast_node_free(node));
2142 return create_sync_leaf(data->kernel, node, build);
2145 /* Given a set of wrapped references "ref", return the corresponding
2146 * access relations based on the tagged access relations "tagged".
2148 * The elements of "ref" are of the form
2150 * [D -> R]
2152 * with D an iteration domains and R a reference.
2153 * The elements of "tagged" are of the form
2155 * [D -> R] -> A
2157 * with A an array.
2159 * Extend "tagged" to include the iteration domain in the range, i.e.,
2161 * [D -> R] -> [D -> A]
2163 * apply the result to "ref" and then unwrap the resulting set
2164 * to obtain relations of the form
2166 * D -> A
2168 static __isl_give isl_union_map *wrapped_reference_to_access(
2169 __isl_take isl_union_set *ref, __isl_take isl_union_map *tagged)
2171 isl_union_map *tag2access;
2173 tag2access = isl_union_map_copy(tagged);
2174 tag2access = isl_union_map_universe(tag2access);
2175 tag2access = isl_union_set_unwrap(isl_union_map_domain(tag2access));
2176 tag2access = isl_union_map_domain_map(tag2access);
2177 tag2access = isl_union_map_range_product(tag2access, tagged);
2179 ref = isl_union_set_coalesce(ref);
2180 ref = isl_union_set_apply(ref, tag2access);
2182 return isl_union_set_unwrap(ref);
2185 /* Given an access relation "access" from one or more array reference groups,
2186 * remove those reads if ("read" is 1) or writes (if "read" is 0)
2187 * that are only needed to communicate data within
2188 * the same iteration of "sched".
2189 * The domain of "sched" corresponds to the original statement instances,
2190 * i.e., those that appear in the domains of the access relations.
2191 * "tagged" contains all tagged access relations to all
2192 * the array reference groups accessed by "access" from statement
2193 * instances scheduled by "sched".
2195 * If the access is a read then it is either an element of
2197 * live_in union (range flow)
2199 * where live_in and flow may be overapproximations, or
2200 * it reads an uninitialized value (that is not live-in because
2201 * there is an intermediate kill) or it reads a value that was
2202 * written within the same (compound) statement instance.
2203 * If the access is a write then it is either an element of
2205 * live_out union (domain flow)
2207 * or it writes a value that is never read (and is not live-out
2208 * because of an intermediate kill) or only
2209 * within the same (compound) statement instance.
2210 * In both cases, the access relation is also a subset of
2211 * the group access relation.
2213 * The cases where an uninitialized value is read or a value is written
2214 * that is never read or where the dataflow occurs within a statement
2215 * instance are also considered local and may also be removed.
2217 * Essentially, we compute the intersection of "access" with either
2219 * live_in union (range non-local-flow)
2221 * or
2223 * live_out union (domain non-local-flow)
2225 * We first construct a relation "local"
2227 * [[D -> R] -> [D' -> R']]
2229 * of pairs of domain iterations accessing the reference group
2230 * and references in the group that are coscheduled by "sched".
2232 * If this relation does not intersect the dataflow dependences,
2233 * then there is nothing we can possibly remove, unless the dataflow
2234 * dependences themselves only relate a subset of the accesses.
2235 * In particular, the accesses may not be involved in any dataflow
2236 * dependences, either because they are uninitialized reads/dead writes
2237 * or because the dataflow occurs inside a statement instance.
2239 * Since the computation below may break up the access relation
2240 * into smaller pieces, we only perform the intersection with
2241 * the non-local dependent accesses if the local pairs
2242 * intersect the dataflow dependences. Otherwise, we intersect
2243 * with the universe of the non-local dependent accesses.
2244 * This should at least remove accesses from statements that
2245 * do not participate in any dependences.
2247 * In particular, we remove the "local" dataflow dependences from
2248 * the set of all dataflow dependences, or at least those
2249 * that may contribute to a domain/range that intersects
2250 * the domain of "access".
2251 * Note that if the potential dataflow dependences are an overapproximation
2252 * of the actual dataflow dependences, then the result remains an
2253 * overapproximation of the non-local dataflow dependences.
2254 * Copying to/from global memory is only needed for the references
2255 * in the domain/range of the result or for accesses that are live out/in
2256 * for the entire scop.
2258 * We therefore map the domain/range of the "external" relation
2259 * to the corresponding access relation and take the union with
2260 * the live out/in relation.
2262 static __isl_give isl_union_map *remove_local_accesses(
2263 struct gpu_prog *prog, __isl_take isl_union_map *tagged,
2264 __isl_take isl_union_map *access, __isl_take isl_union_map *sched,
2265 int read)
2267 int empty;
2268 isl_union_pw_multi_aff *tagger;
2269 isl_union_set *domain, *access_domain;
2270 isl_union_map *local, *external, *universe;
2271 isl_union_set *tag_set;
2273 if (isl_union_map_is_empty(access)) {
2274 isl_union_map_free(sched);
2275 isl_union_map_free(tagged);
2276 return access;
2279 tagger = isl_union_pw_multi_aff_copy(prog->scop->tagger);
2280 domain = isl_union_map_domain(isl_union_map_copy(tagged));
2281 tagger = isl_union_pw_multi_aff_intersect_domain(tagger,
2282 isl_union_set_copy(domain));
2283 sched = isl_union_map_preimage_domain_union_pw_multi_aff(sched, tagger);
2285 local = isl_union_map_apply_range(sched,
2286 isl_union_map_reverse(isl_union_map_copy(sched)));
2287 local = isl_union_map_intersect(local,
2288 isl_union_map_copy(prog->scop->tagged_dep_flow));
2290 empty = isl_union_map_is_empty(local);
2292 external = isl_union_map_copy(prog->scop->tagged_dep_flow);
2293 universe = isl_union_map_universe(isl_union_map_copy(access));
2294 access_domain = isl_union_map_domain(universe);
2295 domain = isl_union_set_universe(domain);
2296 universe = isl_union_set_unwrap(domain);
2297 universe = isl_union_map_intersect_domain(universe, access_domain);
2298 domain = isl_union_map_wrap(universe);
2299 if (read)
2300 external = isl_union_map_intersect_range(external, domain);
2301 else
2302 external = isl_union_map_intersect_domain(external, domain);
2303 external = isl_union_map_intersect_params(external,
2304 isl_set_copy(prog->scop->context));
2305 external = isl_union_map_subtract(external, local);
2307 if (read) {
2308 tag_set = isl_union_map_range(external);
2309 external = wrapped_reference_to_access(tag_set, tagged);
2310 external = isl_union_map_union(external,
2311 isl_union_map_copy(prog->scop->live_in));
2312 } else {
2313 tag_set = isl_union_map_domain(external);
2314 external = wrapped_reference_to_access(tag_set, tagged);
2315 external = isl_union_map_union(external,
2316 isl_union_map_copy(prog->scop->live_out));
2319 if (empty < 0)
2320 external = isl_union_map_free(external);
2321 else if (empty)
2322 external = isl_union_map_universe(external);
2324 access = isl_union_map_intersect(access, external);
2326 return access;
2329 /* Given an access relation "access" from "group", remove those reads
2330 * if ("read" is 1) or writes (if "read" is 0) that are only needed to
2331 * communicate data within the same iteration of the schedule "prefix"
2332 * at the position where the copying of the group is inserted.
2333 * That is, the output dimension of "prefix"
2334 * is equal to tile->depth.
2335 * The domain of "prefix" corresponds to the original statement instances,
2336 * i.e., those that appear in the domains of the access relations.
2338 * Extract the tagged access relation of "group" and
2339 * then call remove_local_accesses.
2341 static __isl_give isl_union_map *remove_local_accesses_group(
2342 struct ppcg_kernel *kernel, struct gpu_array_ref_group *group,
2343 __isl_take isl_union_map *access, __isl_keep isl_union_map *prefix,
2344 int read)
2346 isl_union_map *sched, *tagged;
2348 if (isl_union_map_is_empty(access))
2349 return access;
2351 tagged = group_tagged_access_relation(group);
2352 sched = isl_union_map_copy(prefix);
2354 return remove_local_accesses(kernel->prog, tagged, access, sched, read);
2357 /* Build an access AST expression for the effective grid size using "build".
2358 * Store the result in kernel->grid_size_expr.
2360 static isl_stat build_grid_size(struct ppcg_kernel *kernel,
2361 __isl_keep isl_ast_build *build)
2363 isl_multi_pw_aff *size;
2365 size = isl_multi_pw_aff_copy(kernel->grid_size);
2366 size = isl_multi_pw_aff_set_tuple_name(size, isl_dim_out, "grid");
2367 kernel->grid_size_expr = ppcg_build_size_expr(size, build);
2369 if (!kernel->grid_size_expr)
2370 return isl_stat_error;
2371 return isl_stat_ok;
2374 /* Build access AST expressions for the localized array sizes using "build".
2375 * Store the result in local->bound_expr.
2376 * Only do this for arrays for which localized bounds have been computed.
2378 static isl_stat build_local_array_sizes(struct ppcg_kernel *kernel,
2379 __isl_keep isl_ast_build *build)
2381 int i;
2383 for (i = 0; i < kernel->n_array; ++i) {
2384 struct gpu_local_array_info *local = &kernel->array[i];
2385 isl_multi_pw_aff *size;
2387 if (local->n_group == 0)
2388 continue;
2389 size = isl_multi_pw_aff_copy(local->bound);
2390 local->bound_expr = ppcg_build_size_expr(size, build);
2391 if (!local->bound_expr)
2392 return isl_stat_error;
2395 return isl_stat_ok;
2398 /* Build access AST expressions for the effective grid size and
2399 * the localized array sizes using "build".
2401 static isl_stat build_grid_and_local_array_sizes(struct ppcg_kernel *kernel,
2402 __isl_keep isl_ast_build *build)
2404 if (build_grid_size(kernel, build) < 0)
2405 return isl_stat_error;
2406 if (build_local_array_sizes(kernel, build) < 0)
2407 return isl_stat_error;
2408 return isl_stat_ok;
2411 /* This function is called before the AST generator starts traversing
2412 * the schedule subtree of a node with mark "mark".
2414 * If the mark is called "kernel", store the kernel pointer in data->kernel
2415 * for use in at_domain and build AST expressions for the grid size and
2416 * the localized array sizes.
2418 static isl_stat before_mark(__isl_keep isl_id *mark,
2419 __isl_keep isl_ast_build *build, void *user)
2421 struct ppcg_at_domain_data *data = user;
2423 if (!mark)
2424 return isl_stat_error;
2425 if (!strcmp(isl_id_get_name(mark), "kernel")) {
2426 data->kernel = isl_id_get_user(mark);
2427 if (build_grid_and_local_array_sizes(data->kernel, build) < 0)
2428 return isl_stat_error;
2430 return isl_stat_ok;
2433 /* This function is called after the AST generator has finished traversing
2434 * the schedule subtree of a mark node. "node" points to the corresponding
2435 * mark AST node.
2437 * If the mark is called "kernel", then replace "node" by a user node
2438 * that "calls" the kernel, representing the launch of the kernel.
2439 * The original "node" is stored inside the kernel object so that
2440 * it can be used to print the device code.
2441 * Note that this assumes that a kernel is only launched once.
2442 * Also clear data->kernel.
2444 static __isl_give isl_ast_node *after_mark(__isl_take isl_ast_node *node,
2445 __isl_keep isl_ast_build *build, void *user)
2447 isl_ctx *ctx;
2448 isl_id *id;
2449 isl_ast_expr *expr;
2450 isl_ast_expr_list *list;
2451 struct ppcg_kernel *kernel;
2452 struct ppcg_at_domain_data *data = user;
2454 ctx = isl_ast_node_get_ctx(node);
2455 id = isl_ast_node_mark_get_id(node);
2456 if (!id)
2457 return isl_ast_node_free(node);
2458 if (strcmp(isl_id_get_name(id), "kernel") || !data->kernel) {
2459 isl_id_free(id);
2460 return node;
2462 kernel = data->kernel;
2463 data->kernel = NULL;
2464 kernel->space = isl_ast_build_get_schedule_space(build);
2465 kernel->tree = isl_ast_node_mark_get_node(node);
2466 isl_ast_node_free(node);
2468 expr = isl_ast_expr_from_id(isl_id_copy(id));
2469 list = isl_ast_expr_list_alloc(ctx, 0);
2470 expr = isl_ast_expr_call(expr, list);
2471 node = isl_ast_node_alloc_user(expr);
2472 node = isl_ast_node_set_annotation(node, id);
2474 return node;
2477 static isl_bool update_depth(__isl_keep isl_schedule_node *node, void *user)
2479 int *depth = user;
2480 int node_depth;
2482 if (isl_schedule_node_get_type(node) != isl_schedule_node_leaf)
2483 return isl_bool_true;
2484 node_depth = isl_schedule_node_get_schedule_depth(node);
2485 if (node_depth > *depth)
2486 *depth = node_depth;
2488 return isl_bool_false;
2491 /* Use isl to generate code for both the host and the device
2492 * from "schedule".
2493 * The device code is marked by "kernel" mark nodes in the schedule tree,
2494 * containing a pointer to a ppcg_kernel object.
2495 * The returned AST only contains the AST for the host code.
2496 * The ASTs for the device code are embedded in ppcg_kernel objects
2497 * attached to the leaf nodes that call "kernel".
2499 static __isl_give isl_ast_node *generate_code(struct gpu_gen *gen,
2500 __isl_take isl_schedule *schedule)
2502 struct ppcg_at_domain_data data;
2503 isl_ast_build *build;
2504 isl_ast_node *tree;
2505 isl_id_list *iterators;
2506 int depth;
2508 data.prog = gen->prog;
2509 data.kernel = NULL;
2511 depth = 0;
2512 if (isl_schedule_foreach_schedule_node_top_down(schedule, &update_depth,
2513 &depth) < 0)
2514 schedule = isl_schedule_free(schedule);
2515 build = isl_ast_build_alloc(gen->prog->ctx);
2516 iterators = ppcg_scop_generate_names(gen->prog->scop, depth, "c");
2517 build = isl_ast_build_set_iterators(build, iterators);
2518 build = isl_ast_build_set_at_each_domain(build, &at_domain, &data);
2519 build = isl_ast_build_set_before_each_mark(build, &before_mark, &data);
2520 build = isl_ast_build_set_after_each_mark(build, &after_mark, &data);
2521 if (gen->prog->scop->options->debug->dump_final_schedule)
2522 isl_schedule_dump(schedule);
2523 tree = isl_ast_build_node_from_schedule(build, schedule);
2524 isl_ast_build_free(build);
2526 return tree;
2529 __isl_give isl_union_map *extract_sizes_from_str(isl_ctx *ctx, const char *str)
2531 if (!str)
2532 return NULL;
2533 return isl_union_map_read_from_str(ctx, str);
2536 /* Can "node" be tiled and then mapped to block and thread identifiers?
2537 * That is, is it permutable with at least one coincident dimension?
2539 static isl_bool is_permutable(__isl_keep isl_schedule_node *node)
2541 if (!node)
2542 return isl_bool_error;
2544 if (isl_schedule_node_get_type(node) != isl_schedule_node_band)
2545 return isl_bool_false;
2546 if (!isl_schedule_node_band_get_permutable(node))
2547 return isl_bool_false;
2548 if (isl_schedule_node_band_n_member(node) < 1)
2549 return isl_bool_false;
2550 if (!isl_schedule_node_band_member_get_coincident(node, 0))
2551 return isl_bool_false;
2553 return isl_bool_true;
2556 /* Is "node" not a suitably permutable band?
2558 static isl_bool not_permutable(__isl_keep isl_schedule_node *node, void *user)
2560 return isl_bool_not(is_permutable(node));
2563 /* Does the subtree rooted at "node" have any suitably permutable band nodes?
2564 * That is, does it have any nodes that are permutable and that
2565 * have a least one coincident dimension?
2567 static isl_bool subtree_has_permutable_bands(__isl_keep isl_schedule_node *node)
2569 isl_bool all_non_permutable;
2571 all_non_permutable = isl_schedule_node_every_descendant(node,
2572 &not_permutable, NULL);
2573 return isl_bool_not(all_non_permutable);
2576 /* Does "schedule" contain any permutable band with at least one coincident
2577 * member?
2579 static isl_bool has_any_permutable_node(__isl_keep isl_schedule *schedule)
2581 isl_schedule_node *root;
2582 isl_bool any_permutable;
2584 root = isl_schedule_get_root(schedule);
2585 any_permutable = subtree_has_permutable_bands(root);
2586 isl_schedule_node_free(root);
2588 return any_permutable;
2591 /* Is "node" a candidate for mapping to block and thread identifiers?
2592 * In particular, is it permutable with at least one coincident dimension?
2593 * Alternatively, does the subtree rooted at "node" not contain
2594 * any such permutable node? Filter nodes are skipped in this case,
2595 * because a band node will be inserted in front of the returned
2596 * node and this is not possible for filter nodes that are children
2597 * of set or sequence nodes.
2599 static int is_candidate(__isl_keep isl_schedule_node *node)
2601 isl_bool permutable;
2603 if (isl_schedule_node_get_type(node) == isl_schedule_node_leaf)
2604 return 1;
2605 permutable = is_permutable(node);
2606 if (permutable < 0 || permutable)
2607 return permutable;
2608 if (isl_schedule_node_get_type(node) == isl_schedule_node_filter)
2609 return 0;
2610 permutable = subtree_has_permutable_bands(node);
2611 if (permutable < 0)
2612 return -1;
2613 return !permutable;
2616 /* Is "node" the outermost node in its branch that can be tiled
2617 * and then mapped to block and thread identifiers?
2618 * If there are no such nodes in the subtree at "node" and
2619 * if "node" is not a filter node, then it is accepted too.
2621 static int is_outer_tilable(__isl_keep isl_schedule_node *node)
2623 int tilable;
2624 isl_schedule_node *ancestor;
2626 tilable = is_candidate(node);
2627 if (tilable < 0)
2628 return -1;
2629 if (!tilable)
2630 return 0;
2632 tilable = 0;
2633 ancestor = isl_schedule_node_copy(node);
2634 while (isl_schedule_node_has_parent(ancestor)) {
2635 ancestor = isl_schedule_node_parent(ancestor);
2637 tilable = is_candidate(ancestor);
2638 if (tilable < 0 || tilable)
2639 break;
2642 isl_schedule_node_free(ancestor);
2643 return tilable < 0 ? -1 : !tilable;
2646 /* Collect the references to all writes in "group".
2647 * Each reference is represented by a universe set in a space
2649 * [S[i,j] -> R[]]
2651 * with S[i,j] the statement instance space and R[] the array reference.
2653 static __isl_give isl_union_set *group_tagged_writes(
2654 struct gpu_array_ref_group *group)
2656 int i;
2657 isl_space *space;
2658 isl_union_set *writes;
2660 space = isl_map_get_space(group->access);
2661 writes = isl_union_set_empty(space);
2662 for (i = 0; i < group->n_ref; ++i) {
2663 isl_space *space;
2664 isl_set *writes_i;
2666 if (!group->refs[i]->write)
2667 continue;
2669 space = isl_map_get_space(group->refs[i]->tagged_access);
2670 space = isl_space_domain(space);
2671 writes_i = isl_set_universe(space);
2672 writes = isl_union_set_add_set(writes, writes_i);
2675 return writes;
2678 /* Is there any write access in "group" that requires synchronization
2679 * on a write to global memory?
2680 * We currently take into account all writes that would require
2681 * synchronization at the thread level depth, but if the copying
2682 * for this group is performed at an outer level, then we do not
2683 * actually need to take into account dependences at intermediate levels.
2685 static int any_sync_writes_in_group(struct ppcg_kernel *kernel,
2686 struct gpu_array_ref_group *group)
2688 isl_union_set *writes;
2689 int empty, disjoint;
2691 empty = isl_union_set_is_empty(kernel->sync_writes);
2692 if (empty < 0)
2693 return -1;
2694 if (empty)
2695 return 0;
2697 writes = group_tagged_writes(group);
2698 disjoint = isl_union_set_is_disjoint(kernel->sync_writes, writes);
2699 isl_union_set_free(writes);
2701 return disjoint < 0 ? -1 : !disjoint;
2704 /* Collect the references to all writes in "kernel" that write directly
2705 * to global or shared memory, i.e., that are not mapped to private memory.
2706 * Each reference is represented by a universe set in a space
2708 * [S[i,j] -> R[]]
2710 * with S[i,j] the statement instance space and R[] the array reference.
2712 static __isl_give isl_union_set *collect_non_private_tagged_writes(
2713 struct ppcg_kernel *kernel)
2715 isl_union_set *writes;
2716 int i, j;
2718 writes = isl_union_set_empty(isl_union_set_get_space(kernel->arrays));
2720 for (i = 0; i < kernel->n_array; ++i) {
2721 struct gpu_local_array_info *array = &kernel->array[i];
2723 for (j = 0; j < array->n_group; ++j) {
2724 struct gpu_array_ref_group *group = array->groups[j];
2725 enum ppcg_group_access_type type;
2726 isl_union_set *writes_ij;
2728 if (!group->write)
2729 continue;
2730 type = gpu_array_ref_group_type(group);
2731 if (type == ppcg_access_private)
2732 continue;
2733 writes_ij = group_tagged_writes(group);
2734 writes = isl_union_set_union(writes, writes_ij);
2738 return writes;
2741 /* Are there any direct writes to global memory that require
2742 * synchronization?
2744 static int any_global_or_shared_sync_writes(struct ppcg_kernel *kernel)
2746 isl_union_set *writes;
2747 int empty, disjoint;
2749 empty = isl_union_set_is_empty(kernel->sync_writes);
2750 if (empty < 0)
2751 return -1;
2752 if (empty)
2753 return 0;
2755 writes = collect_non_private_tagged_writes(kernel);
2756 disjoint = isl_union_set_is_disjoint(kernel->sync_writes, writes);
2757 isl_union_set_free(writes);
2759 return disjoint < 0 ? -1 : !disjoint;
2762 /* Construct an isl_multi_val for use as tile sizes for tiling "node"
2763 * from the elements in "tile_size".
2765 static __isl_give isl_multi_val *construct_band_tiles_sizes(
2766 __isl_keep isl_schedule_node *node, int *tile_size)
2768 isl_space *space;
2770 if (!node)
2771 return NULL;
2773 space = isl_schedule_node_band_get_space(node);
2774 return ppcg_multi_val_from_int_list(space, tile_size);
2777 /* Replace the partial schedule S of the band node "node" by
2779 * floor(S/f)
2781 * or
2783 * f * floor(S/f)
2785 * if scale_tile_loops is set, with f the integers in "factor".
2786 * The list that "factor" points to is assumed to contain at least
2787 * as many elements as the number of members in the band.
2789 static __isl_give isl_schedule_node *snap_band_to_sizes(
2790 __isl_take isl_schedule_node *node, int *factor,
2791 struct ppcg_options *options)
2793 isl_multi_val *mv;
2795 mv = construct_band_tiles_sizes(node, factor);
2796 node = isl_schedule_node_band_scale_down(node, isl_multi_val_copy(mv));
2797 if (options->scale_tile_loops)
2798 node = isl_schedule_node_band_scale(node,
2799 isl_multi_val_copy(mv));
2800 isl_multi_val_free(mv);
2802 return node;
2805 /* Tile "band" with tile size specified by "sizes".
2807 * Since the tile loops will be mapped to block ids, we forcibly
2808 * turn off tile loop scaling. We may want to enable tile loop scaling
2809 * at some later point, but then we would have to support the detection
2810 * of strides during the mapping to block ids.
2811 * Similarly, since the point loops will be mapped to thread ids,
2812 * we forcibly shift the point loops so that they start at zero.
2814 static __isl_give isl_schedule_node *tile_band(
2815 __isl_take isl_schedule_node *node, __isl_take isl_multi_val *sizes)
2817 isl_ctx *ctx = isl_schedule_node_get_ctx(node);
2818 int scale_tile;
2819 int shift_point;
2821 scale_tile = isl_options_get_tile_scale_tile_loops(ctx);
2822 isl_options_set_tile_scale_tile_loops(ctx, 0);
2823 shift_point = isl_options_get_tile_shift_point_loops(ctx);
2824 isl_options_set_tile_shift_point_loops(ctx, 1);
2826 node = isl_schedule_node_band_tile(node, sizes);
2828 isl_options_set_tile_scale_tile_loops(ctx, scale_tile);
2829 isl_options_set_tile_shift_point_loops(ctx, shift_point);
2831 return node;
2834 /* Extract the set of parameter values and outer schedule dimensions
2835 * for which any statement instance
2836 * in the kernel inserted at "node" needs to be executed.
2837 * Intersect the set of parameter values derived from the host schedule
2838 * relation with the context of "prog".
2840 static __isl_give isl_set *extract_context(__isl_keep isl_schedule_node *node,
2841 struct gpu_prog *prog)
2843 isl_union_map *schedule;
2844 isl_union_set *schedule_domain;
2845 isl_set *context;
2846 int empty;
2848 schedule = isl_schedule_node_get_prefix_schedule_relation(node);
2849 schedule_domain = isl_union_map_range(schedule);
2850 empty = isl_union_set_is_empty(schedule_domain);
2851 if (empty < 0) {
2852 isl_union_set_free(schedule_domain);
2853 return NULL;
2855 if (empty) {
2856 int depth;
2857 isl_space *space;
2859 space = isl_union_set_get_space(schedule_domain);
2860 isl_union_set_free(schedule_domain);
2861 space = isl_space_set_from_params(space);
2862 depth = isl_schedule_node_get_schedule_depth(node);
2863 space = isl_space_add_dims(space, isl_dim_set, depth);
2864 context = isl_set_empty(space);
2865 } else {
2866 context = isl_set_from_union_set(schedule_domain);
2868 context = isl_set_intersect_params(context,
2869 isl_set_copy(prog->context));
2871 return context;
2874 /* Return the set of outer array elements accessed by
2875 * by the statement instances in "domain" in "prog".
2876 * The instances in "domain" are those that appear
2877 * in the domains of the access relations in "prog".
2879 static __isl_give isl_union_set *accessed_by_domain(
2880 __isl_take isl_union_set *domain, struct gpu_prog *prog)
2882 isl_union_map *access;
2883 isl_union_set *arrays;
2885 access = isl_union_map_union(isl_union_map_copy(prog->read),
2886 isl_union_map_copy(prog->may_write));
2887 access = isl_union_map_intersect_domain(access, domain);
2888 arrays = isl_union_map_range(access);
2889 arrays = isl_union_set_apply(arrays,
2890 isl_union_map_copy(prog->to_outer));
2892 return arrays;
2895 /* Return the number of outer band members of the band node "node"
2896 * that are marked coincident.
2898 static int n_outer_coincidence(__isl_keep isl_schedule_node *node)
2900 int i, n;
2902 n = isl_schedule_node_band_n_member(node);
2904 for (i = 0; i < n; ++i)
2905 if (!isl_schedule_node_band_member_get_coincident(node, i))
2906 break;
2908 return i;
2911 /* If the band node "node" has more than "n" members, then split off
2912 * the first "n" of them.
2914 static __isl_give isl_schedule_node *split_band(
2915 __isl_take isl_schedule_node *node, int n)
2917 int dim;
2919 dim = isl_schedule_node_band_n_member(node);
2920 if (n < dim)
2921 node = isl_schedule_node_band_split(node, n);
2923 return node;
2926 /* Scale a band node that may have been split by split_band.
2927 * "sizes" are the scaling factors for the original node.
2928 * "node" either points to the original band node, or the outer
2929 * of the two pieces after splitting.
2931 * If the number of elements in "node" is smaller than the number of
2932 * elements in "sizes", then some splitting has occurred and we split
2933 * "sizes" in the same way.
2935 static __isl_give isl_schedule_node *scale_band(
2936 __isl_take isl_schedule_node *node, __isl_take isl_multi_val *sizes)
2938 int n, dim;
2940 n = isl_multi_val_dim(sizes, isl_dim_set);
2941 dim = isl_schedule_node_band_n_member(node);
2942 if (n > dim) {
2943 isl_multi_val *sizes2;
2945 sizes2 = isl_multi_val_copy(sizes);
2946 sizes = isl_multi_val_drop_dims(sizes,
2947 isl_dim_set, dim, n - dim);
2948 sizes2 = isl_multi_val_drop_dims(sizes2, isl_dim_set, 0, dim);
2949 node = isl_schedule_node_child(node, 0);
2950 node = isl_schedule_node_band_scale(node, sizes2);
2951 node = isl_schedule_node_parent(node);
2954 return isl_schedule_node_band_scale(node, sizes);
2957 /* Return an isl_multi_aff, with as elements the parameters in "space"
2958 * that have the names specified by the elements in "names".
2959 * If (some of) these parameters do not already appear in "space",
2960 * then they are added first.
2962 static __isl_give isl_multi_aff *parameter_vector(__isl_take isl_space *space,
2963 __isl_keep isl_id_list *names)
2965 int i, n;
2966 isl_local_space *ls;
2967 isl_multi_aff *ma;
2969 if (!names)
2970 space = isl_space_free(space);
2972 n = isl_id_list_n_id(names);
2973 for (i = 0; i < n; ++i) {
2974 int pos;
2975 isl_id *id;
2977 id = isl_id_list_get_id(names, i);
2978 pos = isl_space_find_dim_by_id(space, isl_dim_param, id);
2979 if (pos >= 0) {
2980 isl_id_free(id);
2981 continue;
2983 pos = isl_space_dim(space, isl_dim_param);
2984 space = isl_space_add_dims(space, isl_dim_param, 1);
2985 space = isl_space_set_dim_id(space, isl_dim_param, pos, id);
2987 ma = isl_multi_aff_zero(isl_space_copy(space));
2988 ls = isl_local_space_from_space(isl_space_domain(space));
2989 for (i = 0; i < n; ++i) {
2990 int pos;
2991 isl_id *id;
2992 isl_aff *aff;
2994 id = isl_id_list_get_id(names, i);
2995 pos = isl_space_find_dim_by_id(space, isl_dim_param, id);
2996 isl_id_free(id);
2997 aff = isl_aff_var_on_domain(isl_local_space_copy(ls),
2998 isl_dim_param, pos);
2999 ma = isl_multi_aff_set_aff(ma, i, aff);
3001 isl_local_space_free(ls);
3003 return ma;
3006 /* Return constraints on the domain elements that equate a sequence of
3007 * parameters called "names", to the partial schedule
3008 * of "node" modulo the integers in "size".
3009 * The number of elements in the array "size" should be equal
3010 * to the number of elements in "names".
3011 * The number of members of the band node "node" should be smaller
3012 * than or equal to this number. If it is smaller, then the first
3013 * elements of "names" are equated to zero.
3015 static __isl_give isl_union_set *set_schedule_modulo(
3016 __isl_keep isl_schedule_node *node, __isl_keep isl_id_list *names,
3017 int *size)
3019 int n, n_zero;
3020 isl_space *space;
3021 isl_multi_aff *ma;
3022 isl_multi_union_pw_aff *mupa, *mupa2;
3023 isl_multi_val *mv;
3024 isl_union_set *domain;
3026 if (!node)
3027 return NULL;
3028 n = isl_id_list_n_id(names);
3029 if (n == 0)
3030 return isl_schedule_node_get_universe_domain(node);
3031 n_zero = n - isl_schedule_node_band_n_member(node);
3033 mupa = isl_schedule_node_band_get_partial_schedule(node);
3034 mv = construct_band_tiles_sizes(node, size + n_zero);
3035 mupa = isl_multi_union_pw_aff_mod_multi_val(mupa, mv);
3037 space = isl_multi_union_pw_aff_get_space(mupa);
3038 space = isl_space_params(space);
3039 space = isl_space_set_from_params(space);
3040 space = isl_space_add_dims(space, isl_dim_set, n_zero);
3041 ma = isl_multi_aff_zero(space);
3043 domain = isl_schedule_node_get_universe_domain(node);
3044 mupa2 = isl_multi_union_pw_aff_multi_aff_on_domain(
3045 isl_union_set_copy(domain), ma);
3046 mupa = isl_multi_union_pw_aff_range_product(mupa2, mupa);
3048 space = isl_multi_union_pw_aff_get_space(mupa);
3049 ma = parameter_vector(space, names);
3051 mupa2 = isl_multi_union_pw_aff_multi_aff_on_domain(domain, ma);
3052 mupa = isl_multi_union_pw_aff_sub(mupa, mupa2);
3054 return isl_multi_union_pw_aff_zero_union_set(mupa);
3057 /* Insert a context node at "node" introducing the block and thread
3058 * identifiers along with their bounds, which are stored in kernel->grid_size
3059 * and kernel->block_dim.
3060 * Note that the bounds on the block identifiers may implicitly impose
3061 * constraints on the parameters. A guard needs to be inserted
3062 * in the schedule tree to ensure that those bounds hold at "node".
3063 * This guard is inserted in insert_guard.
3065 static __isl_give isl_schedule_node *insert_context(struct ppcg_kernel *kernel,
3066 __isl_take isl_schedule_node *node)
3068 isl_set *context;
3070 context = isl_set_universe(isl_set_get_space(kernel->context));
3072 context = add_bounded_parameters_dynamic(context,
3073 kernel->grid_size, kernel->block_ids);
3074 context = add_bounded_parameters(context,
3075 kernel->block_dim, kernel->thread_ids);
3077 node = isl_schedule_node_insert_context(node, context);
3079 return node;
3082 /* Insert a guard that eliminates kernel launches where the kernel
3083 * obviously does not have any work to do.
3085 * In particular, eliminate kernel launches where there are obviously
3086 * zero blocks.
3087 * Use the same block size constraints that are used to create the context
3088 * to ensure that all constraints implicit in the constructed context
3089 * are imposed by the guard.
3091 * Additionally, add other constraints that are valid
3092 * for each executed instance ("context"), as long as this does not result
3093 * in a disjunction.
3095 static __isl_give isl_schedule_node *insert_guard(
3096 __isl_take isl_schedule_node *node, __isl_keep isl_set *context,
3097 __isl_keep isl_multi_pw_aff *size, struct ppcg_scop *scop)
3099 unsigned nparam, n;
3100 isl_set *guard;
3101 isl_id_list *ids;
3103 guard = isl_set_copy(context);
3104 guard = isl_set_compute_divs(guard);
3105 guard = isl_set_from_basic_set(isl_set_simple_hull(guard));
3107 nparam = isl_set_dim(guard, isl_dim_param);
3108 n = isl_multi_pw_aff_dim(size, isl_dim_out);
3109 ids = ppcg_scop_generate_names(scop, n, "__ppcg_tmp");
3110 guard = add_bounded_parameters_dynamic(guard, size, ids);
3111 isl_id_list_free(ids);
3112 guard = isl_set_project_out(guard, isl_dim_param, nparam, n);
3114 node = isl_schedule_node_insert_guard(node, guard);
3116 return node;
3119 /* Does any array reference group mapping require the band that is mapped
3120 * to threads to be unrolled?
3122 static int kernel_requires_unroll(struct ppcg_kernel *kernel)
3124 int i, j;
3126 for (i = 0; i < kernel->n_array; ++i) {
3127 struct gpu_local_array_info *array = &kernel->array[i];
3129 for (j = 0; j < array->n_group; ++j) {
3130 struct gpu_array_ref_group *group = array->groups[j];
3131 if (gpu_array_ref_group_requires_unroll(group))
3132 return 1;
3136 return 0;
3139 /* Mark the given band node "node" for unrolling by the AST generator and
3140 * then sink it to the leaves of the schedule tree.
3141 * All dimensions of "node" are assumed to be coincident, such that this
3142 * sinking is a valid operation.
3144 static __isl_give isl_schedule_node *unroll(__isl_take isl_schedule_node *node)
3146 node = ppcg_set_schedule_node_type(node, isl_ast_loop_unroll);
3148 node = isl_schedule_node_band_sink(node);
3150 return node;
3153 /* Insert a synchronization node in the schedule tree of "node"
3154 * after the core computation of "kernel" at the level of the band
3155 * that is mapped to threads, except if that level is equal to
3156 * that of the band that is mapped to blocks or if there are no writes
3157 * to global or shared memory in the core computation that require
3158 * synchronization.
3159 * If there are any writes to shared memory and the shared memory
3160 * copying is performed at the same level, then synchronization
3161 * is needed between the core and the copying anyway, so we might
3162 * as well add it here. If the copying is performed at a higher
3163 * level, then different iterations of intermediate schedule dimensions
3164 * may have a different mapping from between shared memory elements and
3165 * threads, such that synchronization is required after the core.
3166 * "node" is assumed to point to the kernel node.
3168 * If the shared and the thread mark point to the same node, then make
3169 * sure the synchronization is inserted outside of the shared mark.
3171 static __isl_give isl_schedule_node *add_sync(struct ppcg_kernel *kernel,
3172 __isl_take isl_schedule_node *node)
3174 int depth;
3175 int need_sync;
3177 need_sync = any_global_or_shared_sync_writes(kernel);
3178 if (need_sync < 0)
3179 return isl_schedule_node_free(node);
3180 if (!need_sync)
3181 return node;
3183 node = gpu_tree_move_down_to_thread(node, kernel->core);
3184 depth = isl_schedule_node_get_schedule_depth(node);
3185 node = gpu_tree_move_up_to_kernel(node);
3186 if (depth == isl_schedule_node_get_schedule_depth(node))
3187 return node;
3189 node = gpu_tree_move_down_to_depth(node, depth, kernel->core);
3190 node = gpu_tree_ensure_following_sync(node, kernel);
3192 node = gpu_tree_move_up_to_kernel(node);
3194 return node;
3197 /* Return a read ("read" is 1) or write access relation for "group"
3198 * with those accesses removed that are only needed to communicate data
3199 * within the subtree of the schedule rooted at "node".
3200 * Furthermore, include the prefix schedule at "node".
3201 * That is, return a relation of the form
3203 * S -> [D -> A]
3205 * with D the outer schedule dimensions at "node".
3207 static __isl_give isl_union_map *anchored_non_local_accesses(
3208 struct ppcg_kernel *kernel, struct gpu_array_ref_group *group,
3209 __isl_take isl_schedule_node *node, int read)
3211 isl_union_map *access;
3212 isl_union_map *prefix;
3214 prefix = isl_schedule_node_get_prefix_schedule_relation(node);
3215 prefix = isl_union_map_preimage_domain_union_pw_multi_aff(prefix,
3216 isl_union_pw_multi_aff_copy(kernel->contraction));
3217 access = gpu_array_ref_group_access_relation(group, read, !read);
3218 access = remove_local_accesses_group(kernel, group, access, prefix,
3219 read);
3220 access = isl_union_map_range_product(prefix, access);
3222 return access;
3225 /* Given an array reference group "group", create a mapping
3227 * read[D -> A] -> [D -> A]
3229 * if "read" is set or
3231 * write[D -> A] -> [D -> A]
3233 * if "read" is not set.
3234 * D corresponds to the outer tile->depth dimensions of
3235 * the kernel schedule.
3237 static __isl_give isl_multi_aff *create_from_access(isl_ctx *ctx,
3238 struct gpu_array_ref_group *group, int read)
3240 struct gpu_array_tile *tile;
3241 isl_space *space;
3242 isl_id *id;
3244 tile = gpu_array_ref_group_tile(group);
3245 space = isl_space_copy(group->array->space);
3246 space = isl_space_from_range(space);
3247 space = isl_space_add_dims(space, isl_dim_in, tile->depth);
3248 space = isl_space_wrap(space);
3249 space = isl_space_map_from_set(space);
3251 id = isl_id_alloc(ctx, read ? "read" : "write", group);
3252 space = isl_space_set_tuple_id(space, isl_dim_in, id);
3254 return isl_multi_aff_identity(space);
3257 /* If any writes in "group" require synchronization, then make sure
3258 * that there is a synchronization node for "kernel" after the node
3259 * following "node" in a sequence.
3261 * If "shared" is set and no synchronization is needed for
3262 * the writes to global memory, then add synchronization before
3263 * the kernel to protect shared memory from being overwritten
3264 * by the next iteration of the core computation.
3265 * No additional synchronization is needed to protect against
3266 * the next copy into shared memory because each element of
3267 * the shared memory tile is always copied by the same thread.
3269 static __isl_give isl_schedule_node *add_group_write_sync(
3270 __isl_take isl_schedule_node *node, struct ppcg_kernel *kernel,
3271 struct gpu_array_ref_group *group, int shared)
3273 int need_sync;
3275 need_sync = any_sync_writes_in_group(kernel, group);
3276 if (need_sync < 0)
3277 return isl_schedule_node_free(node);
3278 if (need_sync) {
3279 node = isl_schedule_node_parent(node);
3280 node = isl_schedule_node_next_sibling(node);
3281 node = isl_schedule_node_child(node, 0);
3282 node = gpu_tree_ensure_following_sync(node, kernel);
3283 } else if (shared) {
3284 struct gpu_array_tile *tile;
3286 tile = gpu_array_ref_group_tile(group);
3287 node = isl_schedule_node_parent(node);
3288 node = isl_schedule_node_parent(node);
3289 node = gpu_tree_move_down_to_depth(node, tile->depth,
3290 kernel->core);
3291 node = gpu_tree_move_left_to_sync(node, kernel);
3294 return node;
3297 /* Add copy statements to the schedule tree of "node"
3298 * for reading from global memory to private memory (if "read" is set) or
3299 * for writing back from private memory to global memory
3300 * (if "read" is not set) for the array reference group "group" that
3301 * is mapped to private memory.
3302 * On input, "node" points to the kernel node, and it is moved
3303 * back there on output.
3305 * The copies are performed in the order of the array elements.
3306 * The copy statement instances include a reference to the outer
3307 * tile->depth dimensions of the kernel schedule for ease of
3308 * combining them with the group tiling.
3310 * That is, the extra schedule is of the form
3312 * type[D -> A] -> A
3314 * where D corresponds to the outer tile->depth dimensions of
3315 * the kernel schedule and A to the global array.
3316 * This schedule is unrolled because registers are not addressable.
3318 * The copying is inserted in the schedule tree through an extension
3319 * of the form
3321 * D -> type[D -> A]
3323 * where the extra domain elements type[D -> A] are those accessed
3324 * by the group.
3325 * A filter is inserted on type[D -> A] to ensure that the element
3326 * is read/written by the same thread that needs the element.
3327 * This filter is obtained by applying
3329 * S -> type[D -> A]
3331 * to the thread filter for the core statements.
3333 * The extension is inserted before the core computation in case of a read
3334 * and after the core computation in case of a write.
3335 * In the latter case, we also make sure that there is a synchronization
3336 * node after the write to global memory, unless this write is performed
3337 * at the outer level of the kernel.
3338 * In principle, this synchronization could be inserted higher
3339 * in the schedule tree depending on where the corresponding reads
3340 * from global memory are performed.
3342 static __isl_give isl_schedule_node *add_copies_group_private(
3343 struct ppcg_kernel *kernel, struct gpu_array_ref_group *group,
3344 __isl_take isl_schedule_node *node, int read)
3346 struct gpu_array_tile *tile;
3347 isl_union_map *access;
3348 isl_union_set *domain;
3349 isl_space *space;
3350 isl_multi_aff *from_access;
3351 isl_multi_pw_aff *mpa;
3352 isl_multi_union_pw_aff *mupa;
3353 isl_union_pw_multi_aff *contraction;
3354 isl_schedule_node *graft;
3355 isl_union_set *filter;
3356 int kernel_depth;
3357 int empty;
3359 kernel_depth = isl_schedule_node_get_schedule_depth(node);
3360 tile = gpu_array_ref_group_tile(group);
3361 node = gpu_tree_move_down_to_depth(node, tile->depth, kernel->core);
3363 access = anchored_non_local_accesses(kernel, group, node, read);
3364 empty = isl_union_map_is_empty(access);
3365 if (empty < 0 || empty) {
3366 isl_union_map_free(access);
3367 if (empty < 0)
3368 return isl_schedule_node_free(node);
3369 return gpu_tree_move_up_to_kernel(node);
3372 group->array->global = 1;
3373 group->local_array->global = 1;
3375 from_access = create_from_access(kernel->ctx, group, read);
3376 space = isl_space_domain(isl_multi_aff_get_space(from_access));
3377 access = isl_union_map_preimage_range_multi_aff(access, from_access);
3379 filter = isl_union_set_copy(kernel->thread_filter);
3380 contraction = isl_union_pw_multi_aff_copy(kernel->contraction);
3381 filter = isl_union_set_preimage_union_pw_multi_aff(filter, contraction);
3382 filter = isl_union_set_apply(filter, isl_union_map_copy(access));
3383 filter = isl_union_set_detect_equalities(filter);
3384 filter = isl_union_set_coalesce(filter);
3386 domain = isl_union_map_range(access);
3387 access = isl_union_set_wrapped_domain_map(domain);
3388 access = isl_union_map_reverse(access);
3389 access = isl_union_map_coalesce(access);
3390 graft = isl_schedule_node_from_extension(access);
3392 space = isl_space_map_from_set(space);
3393 mpa = isl_multi_pw_aff_identity(space);
3394 mpa = isl_multi_pw_aff_range_factor_range(mpa);
3395 mupa = isl_multi_union_pw_aff_from_multi_pw_aff(mpa);
3397 graft = isl_schedule_node_child(graft, 0);
3398 graft = isl_schedule_node_insert_partial_schedule(graft, mupa);
3399 graft = unroll(graft);
3401 graft = isl_schedule_node_insert_filter(graft, filter);
3403 graft = isl_schedule_node_parent(graft);
3405 if (read)
3406 node = isl_schedule_node_graft_before(node, graft);
3407 else {
3408 node = isl_schedule_node_graft_after(node, graft);
3409 if (kernel_depth < tile->depth)
3410 node = add_group_write_sync(node, kernel, group, 0);
3413 node = gpu_tree_move_up_to_kernel(node);
3415 return node;
3418 /* Add copy statements to the schedule tree of "node"
3419 * for reading from global memory to shared memory (if "read" is set) or
3420 * for writing back from shared memory to global memory
3421 * (if "read" is not set) for the array reference group "group" that
3422 * is mapped to shared memory.
3423 * On input, "node" points to the kernel node, and it is moved
3424 * back there on output.
3426 * The copies are performed in the order of the corresponding shared
3427 * memory tile.
3428 * The copy statement instances include a reference to the outer
3429 * tile->depth dimensions of the kernel schedule for ease of
3430 * combining them with the group tiling.
3432 * If we are performing a read from global memory to shared memory and
3433 * if the array involved is not a scalar, then we copy
3434 * the entire tile to shared memory. This may result in some extra
3435 * elements getting copied, but it should lead to simpler code
3436 * (which means that fewer registers may be needed) and less divergence.
3438 * Otherwise, we only copy the elements that will be read or have been written
3439 * in the kernel.
3441 * That is, the extra schedule is of the form
3443 * type[D -> A] -> T
3445 * where D corresponds to the outer tile->depth dimensions of
3446 * the kernel schedule, A to the global array and T is the corresponding
3447 * shared memory tile.
3449 * The copying is inserted in the schedule tree through an extension
3450 * of the form
3452 * D -> type[D -> A]
3454 * where the extra domain elements type[D -> A] are those accessed
3455 * by the group. In the case of read from a non-scalar, this set
3456 * is replaced by the entire shared memory tile.
3458 * If the "unroll_copy_shared" option is set, then the AST generator
3459 * is instructed to unroll the copying code.
3461 * A filter is inserted on type[D -> A] to map the copy instances
3462 * to the threads. In particular, the thread identifiers are
3463 * equated to the position inside the shared memory tile (T)
3464 * modulo the block size.
3465 * We try to align the innermost tile dimension with the innermost
3466 * thread identifier (x) as a heuristic to improve coalescing.
3467 * In particular, if the dimension of the tile is greater than
3468 * the dimension of the block, then the schedule mapping to the tile
3469 * is broken up into two pieces and the filter is applied to the inner part.
3470 * If, on the other hand, the dimension of the tile is smaller than
3471 * the dimension of the block, then the initial thread identifiers
3472 * are equated to zero and the remaining thread identifiers are
3473 * matched to the memory tile.
3475 * The extension is inserted before the core computation in case of a read
3476 * and after the core computation in case of a write.
3477 * In the case of a read, we first need to make sure there is some
3478 * synchronization before the core computation such that we can put the read
3479 * from global memory to shared memory before that synchronization.
3480 * This ensures that all threads have finished copying into shared memory
3481 * before the shared memory is used.
3482 * We also need to make sure that there is a synchronization node after
3483 * the core computation to ensure that the next load into shared memory
3484 * only happens after all data has been used. There is no need for
3485 * this synchronization if we are at the outer level since then there
3486 * won't be a next load.
3487 * In the case of a write, we need to make sure there is some synchronization
3488 * after the core computation such that we can put the write from shared
3489 * memory to global memory after that synchronization.
3490 * Unless we are at the outer level, we also need a synchronization node
3491 * after the write to ensure the data is saved to global memory
3492 * before the next iteration writes to the same shared memory.
3493 * It also makes sure the data has arrived in global memory before
3494 * it is read in a subsequent iteration.
3496 static __isl_give isl_schedule_node *add_copies_group_shared(
3497 struct ppcg_kernel *kernel, struct gpu_array_ref_group *group,
3498 __isl_take isl_schedule_node *node, int read)
3500 struct gpu_array_tile *tile;
3501 isl_union_map *access;
3502 isl_union_set *domain;
3503 isl_multi_aff *ma;
3504 isl_multi_aff *from_access;
3505 isl_multi_pw_aff *mpa;
3506 isl_multi_union_pw_aff *mupa;
3507 isl_schedule_node *graft;
3508 isl_union_set *filter;
3509 int skip;
3510 int kernel_depth;
3511 int empty;
3513 tile = gpu_array_ref_group_tile(group);
3514 kernel_depth = isl_schedule_node_get_schedule_depth(node);
3515 node = gpu_tree_move_down_to_depth(node, tile->depth, kernel->core);
3517 access = anchored_non_local_accesses(kernel, group, node, read);
3518 empty = isl_union_map_is_empty(access);
3519 if (empty < 0 || empty) {
3520 isl_union_map_free(access);
3521 if (empty < 0)
3522 return isl_schedule_node_free(node);
3523 return gpu_tree_move_up_to_kernel(node);
3526 group->array->global = 1;
3527 group->local_array->global = 1;
3529 from_access = create_from_access(kernel->ctx, group, read);
3531 ma = isl_multi_aff_copy(tile->tiling);
3532 ma = isl_multi_aff_pullback_multi_aff(ma,
3533 isl_multi_aff_copy(from_access));
3534 mpa = isl_multi_pw_aff_from_multi_aff(ma);
3535 mupa = isl_multi_union_pw_aff_from_multi_pw_aff(mpa);
3537 domain = isl_union_map_range(access);
3539 if (read && !gpu_array_is_scalar(group->array)) {
3540 isl_map *map;
3541 isl_union_set_free(domain);
3542 map = group_tile(group);
3543 domain = isl_union_set_from_set(isl_map_wrap(map));
3546 domain = isl_union_set_preimage_multi_aff(domain, from_access);
3547 access = isl_union_set_wrapped_domain_map(domain);
3548 access = isl_union_map_reverse(access);
3549 access = isl_union_map_coalesce(access);
3550 graft = isl_schedule_node_from_extension(access);
3552 graft = isl_schedule_node_child(graft, 0);
3554 graft = isl_schedule_node_insert_partial_schedule(graft, mupa);
3555 if (kernel->options->unroll_copy_shared)
3556 graft = ppcg_set_schedule_node_type(graft, isl_ast_loop_unroll);
3558 if (tile->n > kernel->n_block && kernel->n_block > 0) {
3559 graft = isl_schedule_node_band_split(graft,
3560 tile->n - kernel->n_block);
3561 graft = isl_schedule_node_child(graft, 0);
3563 if (tile->n < kernel->n_block)
3564 skip = kernel->n_block - tile->n;
3565 else
3566 skip = 0;
3567 filter = set_schedule_modulo(graft, kernel->thread_ids,
3568 kernel->block_dim);
3569 if (!kernel->options->wrap)
3570 graft = snap_band_to_sizes(graft, kernel->block_dim + skip,
3571 kernel->options);
3572 if (tile->n > kernel->n_block && kernel->n_block > 0)
3573 graft = isl_schedule_node_parent(graft);
3574 graft = isl_schedule_node_insert_filter(graft, filter);
3576 while (graft && isl_schedule_node_has_parent(graft))
3577 graft = isl_schedule_node_parent(graft);
3579 if (read) {
3580 if (kernel_depth < tile->depth)
3581 node = gpu_tree_ensure_sync_after_core(node, kernel);
3582 node = gpu_tree_move_left_to_sync(node, kernel);
3583 node = isl_schedule_node_graft_before(node, graft);
3584 } else {
3585 node = gpu_tree_move_right_to_sync(node, kernel);
3586 node = isl_schedule_node_graft_after(node, graft);
3587 if (kernel_depth < tile->depth)
3588 node = add_group_write_sync(node, kernel, group, 1);
3591 node = gpu_tree_move_up_to_kernel(node);
3593 return node;
3596 /* Check whether the array reference group "group" is mapped to
3597 * private or shared memory and, if so,
3598 * add copy statements to the schedule tree of "node"
3599 * for reading from global memory to private or shared memory
3600 * (if "read" is set) or for writing back from private or shared memory
3601 * to global memory (if "read" is not set) for this group.
3602 * On input, "node" points to the kernel node, and it is moved
3603 * back there on output.
3605 static __isl_give isl_schedule_node *add_copies_group(
3606 struct ppcg_kernel *kernel, struct gpu_array_ref_group *group,
3607 __isl_take isl_schedule_node *node, int read)
3609 enum ppcg_group_access_type type;
3611 type = gpu_array_ref_group_type(group);
3612 if (type == ppcg_access_private)
3613 return add_copies_group_private(kernel, group, node, read);
3614 if (type == ppcg_access_shared)
3615 return add_copies_group_shared(kernel, group, node, read);
3616 return node;
3619 /* For each array reference group that is mapped to private or shared memory,
3620 * add copy statements to the schedule tree of "node"
3621 * for reading from global memory to private or shared memory
3622 * and for writing back.
3623 * On input, "node" points to the kernel node, and it is moved
3624 * back there on output.
3626 static __isl_give isl_schedule_node *add_copies(struct ppcg_kernel *kernel,
3627 __isl_take isl_schedule_node *node)
3629 int i, j;
3631 for (i = 0; i < kernel->n_array; ++i) {
3632 struct gpu_local_array_info *array = &kernel->array[i];
3634 for (j = 0; j < array->n_group; ++j) {
3635 struct gpu_array_ref_group *group = array->groups[j];
3637 node = add_copies_group(kernel, group, node, 1);
3638 if (!node)
3639 return NULL;
3640 node = add_copies_group(kernel, group, node, 0);
3641 if (!node)
3642 return NULL;
3646 return node;
3649 /* Mark all dimensions in the current band node atomic.
3651 static __isl_give isl_schedule_node *atomic(__isl_take isl_schedule_node *node)
3653 return ppcg_set_schedule_node_type(node, isl_ast_loop_atomic);
3656 /* Mark "node" atomic, if it is a band node.
3657 * Do the same for all ancestors.
3658 * Return a pointer to "node" (in the updated schedule tree).
3660 static __isl_give isl_schedule_node *atomic_ancestors(
3661 __isl_take isl_schedule_node *node)
3663 int pos;
3665 if (!node)
3666 return NULL;
3667 if (!isl_schedule_node_has_parent(node))
3668 return node;
3670 pos = isl_schedule_node_get_child_position(node);
3671 node = isl_schedule_node_parent(node);
3672 if (isl_schedule_node_get_type(node) == isl_schedule_node_band)
3673 node = atomic(node);
3674 node = atomic_ancestors(node);
3675 node = isl_schedule_node_child(node, pos);
3677 return node;
3680 /* Collect all write references that require synchronization.
3681 * "node" is assumed to point to the kernel node.
3682 * Each reference is represented by a universe set in a space
3684 * [S[i,j] -> R[]]
3686 * with S[i,j] the statement instance space and R[] the array reference.
3688 * This function should be called before block and thread filters are added.
3690 * Synchronization is needed after a write if there is a subsequent read
3691 * within the same block that may not be performed by the same thread.
3692 * There should not be any dependences between different blocks,
3693 * so we start with the flow dependences within the same kernel invocation
3694 * and we subtract from these those dependences that are mapped
3695 * to the same iteration of the bands where synchronization is inserted.
3696 * We do not remove pairs of instances that are known to map to
3697 * the same thread across different iterations of the intermediate
3698 * bands because the read may be performed by a different thread
3699 * than the one that needs the value if shared memory is involved.
3701 * We also consider all pairs of possible writes that access the same
3702 * memory location and that may be mapped to the same block but not
3703 * to the same iteration of the intermediate bands.
3704 * In theory, it would be possible for one thread to still be in
3705 * a previous iteration of a loop in these bands.
3706 * A write to global memory in this delayed thread could then overwrite
3707 * a write from another thread that has already moved on to
3708 * the next iteration.
3710 * After computing the above writes paired off with reads or writes
3711 * that depend on them, we project onto the domain writes.
3712 * Sychronization is needed after writes to global memory
3713 * through these references.
3715 static __isl_give isl_union_set *compute_sync_writes(
3716 struct ppcg_kernel *kernel, __isl_keep isl_schedule_node *node)
3718 isl_union_map *local;
3719 isl_union_map *may_writes, *shared_access;
3720 isl_union_map *kernel_prefix, *thread_prefix;
3721 isl_union_map *equal;
3722 isl_union_set *wrap;
3723 isl_union_set *domain;
3724 isl_union_pw_multi_aff *contraction;
3726 kernel_prefix = isl_schedule_node_get_prefix_schedule_union_map(node);
3727 node = isl_schedule_node_copy(node);
3728 node = gpu_tree_move_down_to_thread(node, kernel->core);
3729 thread_prefix = isl_schedule_node_get_prefix_schedule_union_map(node);
3730 isl_schedule_node_free(node);
3732 contraction = kernel->contraction;
3733 kernel_prefix = isl_union_map_preimage_domain_union_pw_multi_aff(
3734 kernel_prefix, isl_union_pw_multi_aff_copy(contraction));
3735 thread_prefix = isl_union_map_preimage_domain_union_pw_multi_aff(
3736 thread_prefix, isl_union_pw_multi_aff_copy(contraction));
3737 domain = isl_union_set_copy(kernel->expanded_domain);
3738 domain = isl_union_set_universe(domain);
3740 may_writes = isl_union_map_copy(kernel->prog->scop->tagged_may_writes);
3741 may_writes = isl_union_map_curry(may_writes);
3742 may_writes = isl_union_map_intersect_domain(may_writes, domain);
3743 may_writes = isl_union_map_uncurry(may_writes);
3744 shared_access = isl_union_map_copy(may_writes);
3745 shared_access = isl_union_map_apply_range(shared_access,
3746 isl_union_map_reverse(may_writes));
3748 local = isl_union_map_copy(kernel->prog->scop->tagged_dep_flow);
3749 local = isl_union_map_union(local, shared_access);
3750 local = isl_union_map_zip(local);
3752 equal = isl_union_map_apply_range(kernel_prefix,
3753 isl_union_map_reverse(isl_union_map_copy(kernel_prefix)));
3754 wrap = isl_union_map_wrap(equal);
3755 local = isl_union_map_intersect_domain(local, wrap);
3756 equal = isl_union_map_apply_range(thread_prefix,
3757 isl_union_map_reverse(isl_union_map_copy(thread_prefix)));
3758 wrap = isl_union_map_wrap(equal);
3759 local = isl_union_map_subtract_domain(local, wrap);
3761 local = isl_union_map_zip(local);
3762 local = isl_union_map_universe(local);
3764 return isl_union_map_domain(local);
3767 /* Group the domain elements into a single space, named kernelX,
3768 * with X the kernel sequence number "kernel_id".
3770 static __isl_give isl_schedule_node *group_statements(
3771 __isl_take isl_schedule_node *node, int kernel_id)
3773 char buffer[20];
3774 isl_id *id;
3776 if (!node)
3777 return NULL;
3779 snprintf(buffer, sizeof(buffer), "kernel%d", kernel_id);
3780 id = isl_id_alloc(isl_schedule_node_get_ctx(node), buffer, NULL);
3781 return isl_schedule_node_group(node, id);
3784 /* Create a ppcg_kernel representing the domain instances that reach "node"
3785 * and insert a mark node pointing to the ppcg_kernel before "node".
3786 * The band that "node" points to is the band that needs to be mapped
3787 * to block identifiers. The band that needs to be mapped to thread
3788 * identifiers should be marked by a "thread" mark by the caller.
3789 * The linear branch between the current node and the "thread" mark
3790 * may also have a "shared" mark. If present, the mapping to shared
3791 * memory is computed at that point.
3792 * Both marks are removed by this function.
3793 * If "scale" is set, then the band that "node" points to is scaled
3794 * by "sizes".
3796 * Mark all outer band nodes as atomic to ensure each kernel is only
3797 * scheduled once.
3798 * If the domain elements that reach "node" live in more than one space,
3799 * then group the domain elements into a single space, named kernelX,
3800 * with X the kernel sequence number.
3802 * Insert a guard node governing the kernel node to ensure that
3803 * no kernels with zero blocks are launched.
3805 * Insert a context node describing the block and thread
3806 * identifiers inside the kernel mark.
3807 * The context node needs to be inserted after the effective block size
3808 * has been determined such that the bounds on the thread identifiers
3809 * would reflect the effective block size.
3810 * Insert a filter node inside the context node mapping the statement
3811 * instances to block identifiers. In particular, the block identifiers
3812 * are equated to the partial schedule of band that was marked for mapping
3813 * to blocks modulo the grid size.
3814 * Insert a filter node inside the "thread" mark mapping the statement
3815 * instances to thread identifiers. In particular, the thread identifiers
3816 * are equated to the partial schedule of band that was marked for mapping
3817 * to threads modulo the block size.
3819 * Compute array reference groups for all arrays, set the local
3820 * array bounds based on the set of domain instances that reach
3821 * the kernel node, check the total amount of shared memory used
3822 * and compute all group tilings.
3823 * The array reference groups are computed after the block filter
3824 * has been inserted because it affects the mapping to shared or
3825 * private memory. This computation also requires the thread filter
3826 * (in the ppcg_kernel object), but this thread filter should not
3827 * have been added to the schedule tree yet since the computation
3828 * requires the schedule of the band that needs to be mapped to
3829 * threads before the privatization is applied.
3831 * If any array reference group requires the band mapped to threads
3832 * to be unrolled, then we perform the required unrolling.
3834 * We save a copy of the schedule that may influence the mappings
3835 * to shared or private memory in kernel->copy_schedule.
3837 * Finally, we add synchronization and copy statements to the schedule tree,
3838 * remove the "thread" mark and create representations for the local
3839 * variables in the kernel.
3841 * We keep a copy of the isl_id that points to the kernel to ensure
3842 * that the kernel does not get destroyed if the schedule node
3843 * is freed due to some error condition.
3845 __isl_give isl_schedule_node *gpu_create_kernel(struct gpu_gen *gen,
3846 __isl_take isl_schedule_node *node, int scale,
3847 __isl_keep isl_multi_val *sizes)
3849 struct ppcg_kernel *kernel;
3850 isl_id *id;
3851 isl_schedule_node *node_thread;
3852 isl_union_map *host_schedule;
3853 isl_union_pw_multi_aff *contraction;
3854 isl_set *host_domain;
3855 isl_union_set *domain, *expanded;
3856 int single_statement;
3858 node = gpu_tree_insert_shared_before_thread(node);
3859 if (!node)
3860 return NULL;
3862 kernel = isl_calloc_type(gen->ctx, struct ppcg_kernel);
3863 kernel = ppcg_kernel_create_local_arrays(kernel, gen->prog);
3864 if (!kernel)
3865 return isl_schedule_node_free(node);
3867 domain = isl_schedule_node_get_domain(node);
3868 single_statement = isl_union_set_n_set(domain) == 1;
3870 kernel->ctx = gen->ctx;
3871 kernel->prog = gen->prog;
3872 kernel->options = gen->options;
3873 kernel->context = extract_context(node, gen->prog);
3874 kernel->core = isl_union_set_universe(isl_union_set_copy(domain));
3875 contraction = isl_schedule_node_get_subtree_contraction(node);
3876 kernel->contraction = isl_union_pw_multi_aff_copy(contraction);
3877 expanded = isl_union_set_copy(domain);
3878 expanded = isl_union_set_preimage_union_pw_multi_aff(expanded,
3879 contraction);
3880 kernel->expanded_domain = isl_union_set_copy(expanded);
3881 kernel->arrays = accessed_by_domain(expanded, gen->prog);
3882 kernel->n_grid = n_outer_coincidence(node);
3883 node_thread = isl_schedule_node_copy(node);
3884 node_thread = gpu_tree_move_down_to_thread(node_thread, kernel->core);
3885 node_thread = isl_schedule_node_child(node_thread, 0);
3886 kernel->n_block = n_outer_coincidence(node_thread);
3887 isl_schedule_node_free(node_thread);
3888 kernel->id = gen->kernel_id++;
3889 if (read_grid_and_block_sizes(kernel, gen) < 0)
3890 node = isl_schedule_node_free(node);
3892 kernel->sync_writes = compute_sync_writes(kernel, node);
3894 host_schedule = isl_schedule_node_get_prefix_schedule_union_map(node);
3895 host_domain = isl_set_from_union_set(isl_union_map_range(
3896 host_schedule));
3898 node = atomic_ancestors(node);
3900 id = isl_id_alloc(gen->ctx, "kernel", kernel);
3901 id = isl_id_set_free_user(id, &ppcg_kernel_free_wrap);
3902 node = isl_schedule_node_insert_mark(node, isl_id_copy(id));
3904 if (!single_statement)
3905 node = group_statements(node, kernel->id);
3907 node = isl_schedule_node_child(node, 0);
3908 node = split_band(node, kernel->n_grid);
3909 kernel->block_ids = ppcg_scop_generate_names(gen->prog->scop,
3910 kernel->n_grid, "b");
3911 kernel->block_filter = set_schedule_modulo(node, kernel->block_ids,
3912 kernel->grid_dim);
3913 kernel->grid_size = extract_grid_size(kernel,
3914 isl_union_set_copy(domain));
3915 if (!kernel->options->wrap)
3916 node = snap_band_to_sizes(node, kernel->grid_dim,
3917 kernel->options);
3918 if (scale)
3919 node = scale_band(node, isl_multi_val_copy(sizes));
3920 node = isl_schedule_node_parent(node);
3921 if (!single_statement)
3922 node = isl_schedule_node_parent(node);
3923 node = insert_guard(node, kernel->context, kernel->grid_size,
3924 gen->prog->scop);
3925 node = gpu_tree_move_down_to_thread(node, kernel->core);
3926 node = isl_schedule_node_child(node, 0);
3927 node = split_band(node, kernel->n_block);
3928 kernel->thread_ids = ppcg_scop_generate_names(gen->prog->scop,
3929 kernel->n_block, "t");
3930 kernel->thread_filter = set_schedule_modulo(node, kernel->thread_ids,
3931 kernel->block_dim);
3932 if (extract_block_size(kernel, domain) < 0)
3933 node = isl_schedule_node_free(node);
3935 node = gpu_tree_move_up_to_kernel(node);
3936 node = isl_schedule_node_child(node, 0);
3937 node = insert_context(kernel, node);
3938 node = isl_schedule_node_child(node, 0);
3939 node = isl_schedule_node_insert_filter(node,
3940 isl_union_set_copy(kernel->block_filter));
3942 node = gpu_tree_move_up_to_kernel(node);
3944 if (gpu_group_references(kernel, node) < 0)
3945 node = isl_schedule_node_free(node);
3946 localize_bounds(kernel, host_domain);
3947 isl_set_free(host_domain);
3949 check_shared_memory_bound(kernel);
3950 mark_global_arrays(kernel);
3951 compute_group_tilings(kernel);
3953 node = gpu_tree_move_down_to_thread(node, kernel->core);
3954 node = isl_schedule_node_child(node, 0);
3955 if (!kernel->options->wrap)
3956 node = snap_band_to_sizes(node, kernel->block_dim,
3957 kernel->options);
3958 node = isl_schedule_node_insert_filter(node,
3959 isl_union_set_copy(kernel->thread_filter));
3960 if (kernel_requires_unroll(kernel)) {
3961 node = isl_schedule_node_child(node, 0);
3962 node = unroll(node);
3965 node = gpu_tree_move_up_to_thread(node);
3966 kernel->copy_schedule_dim = isl_schedule_node_get_schedule_depth(node);
3967 kernel->copy_schedule =
3968 isl_schedule_node_get_prefix_schedule_union_pw_multi_aff(node);
3969 contraction = isl_union_pw_multi_aff_copy(kernel->contraction);
3970 kernel->copy_schedule =
3971 isl_union_pw_multi_aff_pullback_union_pw_multi_aff(
3972 kernel->copy_schedule, contraction);
3974 node = gpu_tree_move_up_to_kernel(node);
3976 node = add_sync(kernel, node);
3977 node = add_copies(kernel, node);
3979 node = gpu_tree_move_down_to_shared(node, kernel->core);
3980 node = isl_schedule_node_delete(node);
3982 node = gpu_tree_move_down_to_thread(node, kernel->core);
3983 node = isl_schedule_node_delete(node);
3985 node = gpu_tree_move_up_to_kernel(node);
3987 if (create_kernel_vars(kernel) < 0)
3988 node = isl_schedule_node_free(node);
3990 if (!single_statement)
3991 node = isl_schedule_node_parent(node);
3992 node = isl_schedule_node_parent(node);
3994 isl_id_free(id);
3995 if (!id)
3996 ppcg_kernel_free(kernel);
3997 return node;
4000 /* Insert a zero-dimensional permutable band at "node".
4002 static __isl_give isl_schedule_node *insert_empty_permutable_band(
4003 __isl_take isl_schedule_node *node)
4005 isl_space *space;
4006 isl_schedule *schedule;
4007 isl_union_set *domain;
4008 isl_multi_union_pw_aff *mupa;
4010 schedule = isl_schedule_node_get_schedule(node);
4011 domain = isl_schedule_get_domain(schedule);
4012 space = isl_union_set_get_space(domain);
4013 isl_union_set_free(domain);
4014 isl_schedule_free(schedule);
4016 space = isl_space_set_from_params(space);
4017 mupa = isl_multi_union_pw_aff_zero(space);
4018 node = isl_schedule_node_insert_partial_schedule(node, mupa);
4019 node = isl_schedule_node_band_set_permutable(node, 1);
4021 return node;
4024 /* See if hybrid tiling can be performed on "node" and its parent.
4025 * If so, apply hybrid tiling and return the updated schedule tree.
4026 * If not, return the original schedule tree.
4027 * Return NULL on error.
4029 * First check if "node", together with its parent, meets
4030 * the basic requirements for hybrid tiling.
4031 * If so, compute the relative dependence distances of "node"
4032 * with respect to its parent and check if they are sufficiently bounded.
4033 * If so, apply hybrid tiling using user specified tile sizes.
4035 * The tile sizes are read before the dependence distance bounds are
4036 * computed, because the user may have specified fewer dimensions
4037 * than are available. In this case, the remaining schedule dimensions
4038 * are split off and the dependence distances should be computed
4039 * after these dimensions have been split off.
4041 static __isl_give isl_schedule_node *try_hybrid_tile(struct gpu_gen *gen,
4042 __isl_take isl_schedule_node *node)
4044 int tile_len;
4045 int *tile_size;
4046 isl_bool ok;
4047 isl_schedule_node *orig = node;
4048 ppcg_ht_bounds *bounds;
4050 ok = ppcg_ht_parent_has_input_pattern(node);
4051 if (ok < 0)
4052 return isl_schedule_node_free(node);
4053 if (!ok)
4054 return orig;
4056 tile_len = 1 + isl_schedule_node_band_n_member(node);
4057 tile_size = read_tile_sizes(gen, &tile_len);
4058 if (!tile_size)
4059 return isl_schedule_node_free(node);
4061 node = isl_schedule_node_copy(node);
4062 node = split_band(node, tile_len - 1);
4063 node = isl_schedule_node_parent(node);
4064 bounds = ppcg_ht_compute_bounds(gen->prog->scop, node);
4065 node = isl_schedule_node_child(node, 0);
4067 ok = ppcg_ht_bounds_is_valid(bounds);
4068 if (ok >= 0 && ok)
4069 node = gpu_hybrid_tile(gen, node, bounds, tile_size);
4070 else
4071 ppcg_ht_bounds_free(bounds);
4072 free(tile_size);
4074 if (ok >= 0 && !ok) {
4075 isl_schedule_node_free(node);
4076 return orig;
4078 isl_schedule_node_free(orig);
4079 if (ok < 0)
4080 return isl_schedule_node_free(node);
4081 return node;
4084 /* If "node" is the outermost permutable band that can be mapped to block and
4085 * thread identifiers in its branch (or the root of a subtree with
4086 * no such outer bands),
4087 * then mark the band as such, attaching a ppcg_kernel to the mark.
4089 * If hybrid tiling is allowed, then first try and apply it
4090 * to "node" and its parent.
4092 * If "node" is the root of a subtree without permutable bands,
4093 * then insert a zero-dimensional permutable band such that
4094 * we can assume that "node" always points to a band node.
4095 * This includes the case where "node" already points to a band node,
4096 * but one without any coincident dimension. In this case,
4097 * the extra node ensures that this original node does not get tiled.
4099 * Tile "node" using user specified tile sizes, after splitting the band
4100 * if the number of specified tile sizes is smaller than the dimension
4101 * of the band. Mark the point band of this tiling as the band that
4102 * needs to be mapped to threads and instruct the AST generator to unroll
4103 * the band if the "unroll_gpu_tile" option is set.
4104 * Create a kernel representing the domain instances that reach "node" and
4105 * insert a mark node pointing to the ppcg_kernel before the band node.
4107 static __isl_give isl_schedule_node *mark_outer_permutable(
4108 __isl_take isl_schedule_node *node, void *user)
4110 struct gpu_gen *gen = user;
4111 int outer;
4112 int scale;
4113 int tile_len;
4114 int *tile_size;
4115 isl_id *id;
4116 isl_multi_val *sizes;
4118 outer = is_outer_tilable(node);
4119 if (outer < 0)
4120 return isl_schedule_node_free(node);
4121 if (!outer)
4122 return node;
4124 if (gen->options->hybrid) {
4125 isl_schedule_node *saved = isl_schedule_node_copy(node);
4126 node = try_hybrid_tile(gen, node);
4127 isl_schedule_node_free(saved);
4128 if (node != saved)
4129 return node;
4132 if (isl_schedule_node_get_type(node) != isl_schedule_node_band ||
4133 !isl_schedule_node_band_member_get_coincident(node, 0))
4134 node = insert_empty_permutable_band(node);
4136 tile_len = isl_schedule_node_band_n_member(node);
4137 tile_size = read_tile_sizes(gen, &tile_len);
4138 if (!tile_size)
4139 return isl_schedule_node_free(node);
4140 if (tile_len < isl_schedule_node_band_n_member(node))
4141 node = isl_schedule_node_band_split(node, tile_len);
4142 sizes = construct_band_tiles_sizes(node, tile_size);
4143 node = tile_band(node, isl_multi_val_copy(sizes));
4144 node = isl_schedule_node_child(node, 0);
4145 if (gen->options->unroll_gpu_tile)
4146 node = ppcg_set_schedule_node_type(node, isl_ast_loop_unroll);
4147 id = isl_id_alloc(gen->ctx, "thread", NULL);
4148 node = isl_schedule_node_insert_mark(node, id);
4149 node = isl_schedule_node_parent(node);
4151 scale = gen->options->scale_tile_loops;
4152 node = gpu_create_kernel(gen, node, scale, sizes);
4153 isl_multi_val_free(sizes);
4154 free(tile_size);
4156 return node;
4159 /* Given a set or sequence node, return the union the filters of either all
4160 * (if "only_initial" is not set) or the initial (if "only_initial" is set)
4161 * direct subtrees that do not contain any suitably permutable bands
4162 * (according to subtree_has_permutable_bands).
4164 static __isl_give isl_union_set *get_non_parallel_subtree_filters(
4165 __isl_keep isl_schedule_node *node, int only_initial)
4167 isl_space *space;
4168 isl_union_set *filter;
4169 int i, n;
4171 n = isl_schedule_node_n_children(node);
4172 if (n < 0)
4173 return NULL;
4175 node = isl_schedule_node_copy(node);
4176 node = isl_schedule_node_child(node, 0);
4177 filter = isl_schedule_node_filter_get_filter(node);
4178 node = isl_schedule_node_parent(node);
4179 space = isl_union_set_get_space(filter);
4180 isl_union_set_free(filter);
4181 filter = isl_union_set_empty(space);
4183 for (i = 0; i < n; ++i) {
4184 int parallelism;
4186 node = isl_schedule_node_child(node, i);
4187 parallelism = subtree_has_permutable_bands(node);
4188 if (parallelism < 0) {
4189 filter = isl_union_set_free(filter);
4190 } else if (!parallelism) {
4191 isl_union_set *filter_i;
4192 filter_i = isl_schedule_node_filter_get_filter(node);
4193 filter = isl_union_set_union(filter, filter_i);
4194 } else if (only_initial)
4195 break;
4196 node = isl_schedule_node_parent(node);
4199 isl_schedule_node_free(node);
4201 return filter;
4204 /* Given a set or sequence node, return the union of the filters of
4205 * the direct subtrees that do not contain any suitably permutable bands
4206 * (according to subtree_has_permutable_bands).
4208 static __isl_give isl_union_set *get_all_non_parallel_subtree_filters(
4209 __isl_keep isl_schedule_node *node)
4211 return get_non_parallel_subtree_filters(node, 0);
4214 /* Given a set or sequence node, return the union of the filters of
4215 * the initial direct subtrees that do not contain any suitably permutable
4216 * bands (according to subtree_has_permutable_bands).
4218 static __isl_give isl_union_set *get_initial_non_parallel_subtree_filters(
4219 __isl_keep isl_schedule_node *node)
4221 return get_non_parallel_subtree_filters(node, 1);
4224 /* Mark all variables that are accessed by the statement instances in "domain"
4225 * and that are local to "prog" as requiring a declaration in the host code.
4226 * The statement instances in "domain" correspond to (a subset of)
4227 * the active instances at "node".
4228 * "node" is not modified by this function, except that NULL is returned
4229 * in case of error.
4231 static __isl_give isl_schedule_node *declare_accessed_local_variables(
4232 __isl_take isl_schedule_node *node, struct gpu_prog *prog,
4233 __isl_keep isl_union_set *domain)
4235 isl_union_pw_multi_aff *contraction;
4236 isl_union_set *arrays;
4237 int i;
4239 if (!ppcg_scop_any_hidden_declarations(prog->scop))
4240 return node;
4241 contraction = isl_schedule_node_get_subtree_contraction(node);
4242 domain = isl_union_set_copy(domain);
4243 domain = isl_union_set_preimage_union_pw_multi_aff(domain, contraction);
4244 arrays = accessed_by_domain(domain, prog);
4246 for (i = 0; i < prog->n_array; ++i) {
4247 isl_space *space;
4248 isl_set *set;
4249 int empty;
4251 if (!prog->array[i].local)
4252 continue;
4253 space = isl_set_get_space(prog->array[i].extent);
4254 set = isl_union_set_extract_set(arrays, space);
4255 empty = isl_set_plain_is_empty(set);
4256 isl_set_free(set);
4257 if (empty < 0)
4258 goto error;
4259 if (!empty)
4260 prog->array[i].declare_local = 1;
4263 isl_union_set_free(arrays);
4264 return node;
4265 error:
4266 isl_union_set_free(arrays);
4267 return isl_schedule_node_free(node);
4270 /* If "node" points to a set node, then separate its children
4271 * into subtrees that have suitably permutable bands and
4272 * those that do not.
4273 * Adjust the schedule tree in order to execute the second group
4274 * after the first group and return a pointer to the first group,
4275 * assuming there are any such subtrees.
4276 * If "node" points to a sequence node, then separate the initial
4277 * children that do not have suitably permutable bands and
4278 * return a pointer to the subsequence of children that do have such bands,
4279 * assuming there are any such subtrees.
4281 * In both cases, mark all local variables in "prog" that are accessed by
4282 * the group without permutable bands as requiring a declaration on the host.
4284 static __isl_give isl_schedule_node *isolate_permutable_subtrees(
4285 __isl_take isl_schedule_node *node, struct gpu_prog *prog)
4287 isl_union_set *filter;
4288 enum isl_schedule_node_type type;
4290 if (!node)
4291 return NULL;
4292 type = isl_schedule_node_get_type(node);
4293 if (type == isl_schedule_node_set) {
4294 filter = get_all_non_parallel_subtree_filters(node);
4295 node = declare_accessed_local_variables(node, prog, filter);
4296 node = isl_schedule_node_order_after(node, filter);
4297 } else if (type == isl_schedule_node_sequence) {
4298 filter = get_initial_non_parallel_subtree_filters(node);
4299 node = declare_accessed_local_variables(node, prog, filter);
4300 node = isl_schedule_node_order_before(node, filter);
4303 return node;
4306 /* Replace any reference to an array element in the range of "copy"
4307 * by a reference to all array elements (defined by the extent of the array).
4309 static __isl_give isl_union_map *approximate_copy_out(
4310 __isl_take isl_union_map *copy, struct gpu_prog *prog)
4312 int i;
4313 isl_union_map *res;
4315 res = isl_union_map_empty(isl_union_map_get_space(copy));
4317 for (i = 0; i < prog->n_array; ++i) {
4318 isl_space *space;
4319 isl_set *set;
4320 isl_union_map *copy_i;
4321 isl_union_set *extent, *domain;
4323 space = isl_space_copy(prog->array[i].space);
4324 extent = isl_union_set_from_set(isl_set_universe(space));
4325 copy_i = isl_union_map_copy(copy);
4326 copy_i = isl_union_map_intersect_range(copy_i, extent);
4327 set = isl_set_copy(prog->array[i].extent);
4328 extent = isl_union_set_from_set(set);
4329 domain = isl_union_map_domain(copy_i);
4330 copy_i = isl_union_map_from_domain_and_range(domain, extent);
4331 res = isl_union_map_union(res, copy_i);
4334 isl_union_map_free(copy);
4336 return res;
4339 /* Insert "kernel" marks that point to a ppcg_kernel structure
4340 * in front of all outermost tilable band that (by construction)
4341 * have at least one parallel loop.
4343 static __isl_give isl_schedule_node *mark_kernels(struct gpu_gen *gen,
4344 __isl_take isl_schedule_node *node)
4346 return isl_schedule_node_map_descendant_bottom_up(node,
4347 &mark_outer_permutable, gen);
4350 /* Construct schedule constraints from the dependences in prog->scop and
4351 * the array order dependences in prog->array_order.
4353 * If live range reordering is allowed, then we need to make sure
4354 * that live ranges on arrays are not run in parallel since doing
4355 * so would require array expansion. We therefore add the array
4356 * order dependences to the coincidence dependences. Non-zero array
4357 * order dependences will then prevent a schedule dimension from being
4358 * considered parallel.
4359 * Live ranges derived from scalars are allowed to be run in parallel
4360 * since we force the scalars to be mapped to private memory in
4361 * check_scalar_live_ranges.
4362 * If live range reordering is allowed, then the false dependences
4363 * are not added to the validity constraints as that would prevent
4364 * reordering. Instead, the external false dependences that enforce that reads
4365 * from potentially live-in data precede any later write and
4366 * that writes of potentially live-out data follow any other earlier write
4367 * are added to the validity and the coincidence constraints.
4368 * The false dependences are still added to the proximity constraints
4369 * for consistency with the case where live range reordering is not allowed.
4370 * The coincidence constraints then consist of flow dependences,
4371 * external false dependences and array order dependences.
4372 * The independences can be filtered out from the first two sets.
4373 * They have already been filtered out from the array order dependences
4374 * on a per array basis in collect_order_dependences.
4375 * There is no need for a per array handling of the other two sets
4376 * as there should be no flow or external false dependence on local
4377 * variables that can be filtered out.
4379 static __isl_give isl_schedule_constraints *construct_schedule_constraints(
4380 struct gpu_prog *prog)
4382 isl_union_set *domain;
4383 isl_union_map *dep_raw, *dep;
4384 isl_union_map *validity, *proximity, *coincidence;
4385 isl_schedule_constraints *sc;
4387 domain = isl_union_set_copy(prog->scop->domain);
4388 sc = isl_schedule_constraints_on_domain(domain);
4389 sc = isl_schedule_constraints_set_context(sc,
4390 isl_set_copy(prog->scop->context));
4391 if (prog->scop->options->live_range_reordering) {
4392 sc = isl_schedule_constraints_set_conditional_validity(sc,
4393 isl_union_map_copy(prog->scop->tagged_dep_flow),
4394 isl_union_map_copy(prog->scop->tagged_dep_order));
4395 proximity = isl_union_map_copy(prog->scop->dep_flow);
4396 validity = isl_union_map_copy(proximity);
4397 validity = isl_union_map_union(validity,
4398 isl_union_map_copy(prog->scop->dep_forced));
4399 proximity = isl_union_map_union(proximity,
4400 isl_union_map_copy(prog->scop->dep_false));
4401 coincidence = isl_union_map_copy(validity);
4402 coincidence = isl_union_map_subtract(coincidence,
4403 isl_union_map_copy(prog->scop->independence));
4404 coincidence = isl_union_map_union(coincidence,
4405 isl_union_map_copy(prog->array_order));
4406 } else {
4407 dep_raw = isl_union_map_copy(prog->scop->dep_flow);
4408 dep = isl_union_map_copy(prog->scop->dep_false);
4409 dep = isl_union_map_union(dep, dep_raw);
4410 dep = isl_union_map_coalesce(dep);
4411 proximity = isl_union_map_copy(dep);
4412 coincidence = isl_union_map_copy(dep);
4413 validity = dep;
4415 sc = isl_schedule_constraints_set_validity(sc, validity);
4416 sc = isl_schedule_constraints_set_coincidence(sc, coincidence);
4417 sc = isl_schedule_constraints_set_proximity(sc, proximity);
4419 return sc;
4422 /* Compute an appropriate schedule based on the accesses in
4423 * gen->read and gen->write.
4425 * We derive schedule constraints from the dependences in gen->prog->scop
4426 * and then use isl to compute a schedule that has a parallel loop
4427 * in each tilable band.
4428 * During the schedule construction, some statement instances
4429 * may be grouped first based on the input schedule.
4431 static __isl_give isl_schedule *compute_schedule(struct gpu_gen *gen)
4433 isl_schedule_constraints *sc;
4434 isl_schedule *schedule;
4436 sc = construct_schedule_constraints(gen->prog);
4437 schedule = gen->prog->scop->schedule;
4438 schedule = ppcg_compute_schedule(sc, schedule, gen->options);
4440 return schedule;
4443 /* If the band node "node" has exactly one member then mark it permutable.
4445 static __isl_give isl_schedule_node *band_set_permutable(
4446 __isl_take isl_schedule_node *node,
4447 __isl_keep isl_schedule_constraints *sc)
4449 if (isl_schedule_node_band_n_member(node) == 1)
4450 node = isl_schedule_node_band_set_permutable(node, 1);
4452 return node;
4455 /* Return the coincidence constraints between pairs of instances
4456 * that are scheduled together by the ancestors of "node".
4457 * That is, select those coincidence constraints that relate
4458 * pairs of instances that have the same value for the prefix schedule.
4459 * If the schedule depth is zero, then the prefix schedule does not
4460 * contain any information, so we intersect domain and range
4461 * of the schedule constraints with the reaching domain elements instead.
4463 static __isl_give isl_union_map *get_local_coincidence(
4464 __isl_keep isl_schedule_node *node,
4465 __isl_keep isl_schedule_constraints *sc)
4467 isl_union_map *coincidence;
4468 isl_multi_union_pw_aff *prefix;
4469 isl_union_pw_multi_aff *contraction;
4471 coincidence = isl_schedule_constraints_get_coincidence(sc);
4472 contraction = isl_schedule_node_get_subtree_contraction(node);
4473 if (isl_schedule_node_get_schedule_depth(node) == 0) {
4474 isl_union_set *domain;
4476 domain = isl_schedule_node_get_domain(node);
4477 domain = isl_union_set_preimage_union_pw_multi_aff(domain,
4478 contraction);
4479 coincidence = isl_union_map_intersect_domain(coincidence,
4480 isl_union_set_copy(domain));
4481 coincidence = isl_union_map_intersect_range(coincidence,
4482 domain);
4483 return coincidence;
4486 prefix = isl_schedule_node_get_prefix_schedule_multi_union_pw_aff(node);
4487 prefix = isl_multi_union_pw_aff_pullback_union_pw_multi_aff(prefix,
4488 contraction);
4489 return isl_union_map_eq_at_multi_union_pw_aff(coincidence, prefix);
4492 /* For each member in the band node "node", determine whether
4493 * it is coincident with respect to the outer nodes and mark
4494 * it accordingly.
4496 * That is, for each coincidence constraint between pairs
4497 * of instances that are scheduled together by the outer nodes,
4498 * check that domain and range are assigned the same value
4499 * by the band member. This test is performed by checking
4500 * that imposing the same value for the band member does not
4501 * remove any elements from the set of coincidence constraints.
4503 static __isl_give isl_schedule_node *band_set_coincident(
4504 __isl_take isl_schedule_node *node,
4505 __isl_keep isl_schedule_constraints *sc)
4507 isl_union_map *coincidence;
4508 isl_union_pw_multi_aff *contraction;
4509 isl_multi_union_pw_aff *partial;
4510 int i, n;
4512 coincidence = get_local_coincidence(node, sc);
4514 partial = isl_schedule_node_band_get_partial_schedule(node);
4515 contraction = isl_schedule_node_get_subtree_contraction(node);
4516 partial = isl_multi_union_pw_aff_pullback_union_pw_multi_aff(partial,
4517 contraction);
4518 n = isl_schedule_node_band_n_member(node);
4519 for (i = 0; i < n; ++i) {
4520 isl_union_map *coincidence_i;
4521 isl_union_pw_aff *upa;
4522 isl_multi_union_pw_aff *partial_i;
4523 int subset;
4525 upa = isl_multi_union_pw_aff_get_union_pw_aff(partial, i);
4526 partial_i = isl_multi_union_pw_aff_from_union_pw_aff(upa);
4527 coincidence_i = isl_union_map_copy(coincidence);
4528 coincidence_i = isl_union_map_eq_at_multi_union_pw_aff(
4529 coincidence_i, partial_i);
4530 subset = isl_union_map_is_subset(coincidence, coincidence_i);
4531 isl_union_map_free(coincidence_i);
4533 if (subset < 0)
4534 break;
4535 node = isl_schedule_node_band_member_set_coincident(node, i,
4536 subset);
4538 if (i < n)
4539 node = isl_schedule_node_free(node);
4540 isl_multi_union_pw_aff_free(partial);
4541 isl_union_map_free(coincidence);
4543 return node;
4546 /* If "node" is a band, then set its properties.
4548 * In particular, if the band has exactly one member, then mark it permutable.
4549 * Mark the band members coincident based on the coincidence constraints
4550 * of "sc".
4552 static __isl_give isl_schedule_node *set_band_properties(
4553 __isl_take isl_schedule_node *node, void *user)
4555 isl_schedule_constraints *sc = user;
4557 if (isl_schedule_node_get_type(node) != isl_schedule_node_band)
4558 return node;
4559 if (isl_schedule_node_band_n_member(node) == 0)
4560 return node;
4562 node = band_set_permutable(node, sc);
4563 node = band_set_coincident(node, sc);
4565 return node;
4568 /* Return the original schedule with all bands marked permutable and
4569 * all band members marked coincident based on the coincidence constraints.
4570 * The bands are explicitly marked permutable so that they will be considered
4571 * by mark_outer_permutable.
4573 static __isl_give isl_schedule *determine_properties_original_schedule(
4574 struct gpu_gen *gen)
4576 isl_schedule *schedule;
4577 isl_schedule_constraints *sc;
4579 schedule = isl_schedule_copy(gen->prog->scop->schedule);
4580 sc = construct_schedule_constraints(gen->prog);
4581 schedule = isl_schedule_map_schedule_node_bottom_up(schedule,
4582 &set_band_properties, sc);
4583 isl_schedule_constraints_free(sc);
4585 return schedule;
4588 /* Compute a schedule or determine the properties of the original schedule
4589 * depending on the value of the "reschedule" option.
4591 static __isl_give isl_schedule *compute_or_set_properties(void *user)
4593 struct gpu_gen *gen = user;
4595 if (gen->options->reschedule)
4596 return compute_schedule(gen);
4597 else
4598 return determine_properties_original_schedule(gen);
4601 /* Obtain a schedule for the scop, by reading it from
4602 * a file, by computing one or by determining the properties
4603 * of the original schedule.
4605 static __isl_give isl_schedule *get_schedule(struct gpu_gen *gen)
4607 return ppcg_get_schedule(gen->ctx, gen->options,
4608 &compute_or_set_properties, gen);
4611 /* Construct the string "<a>_<b>".
4613 static char *concat(isl_ctx *ctx, const char *a, const char *b)
4615 isl_printer *p;
4616 char *s;
4618 p = isl_printer_to_str(ctx);
4619 p = isl_printer_print_str(p, a);
4620 p = isl_printer_print_str(p, "_");
4621 p = isl_printer_print_str(p, b);
4622 s = isl_printer_get_str(p);
4623 isl_printer_free(p);
4625 return s;
4628 /* For each array in "prog" of which an element appears in "accessed" and
4629 * that is not a read only scalar, create a zero-dimensional universe set
4630 * of which the tuple id has name "<prefix>_<name of array>" and a user
4631 * pointer pointing to the array (gpu_array_info).
4633 * If the array is local to "prog", then make sure it will be declared
4634 * in the host code.
4636 * Return the list of these universe sets.
4638 static __isl_give isl_union_set_list *create_copy_filters(struct gpu_prog *prog,
4639 const char *prefix, __isl_take isl_union_set *accessed)
4641 int i;
4642 isl_ctx *ctx;
4643 isl_union_set_list *filters;
4645 ctx = prog->ctx;
4646 filters = isl_union_set_list_alloc(ctx, 0);
4647 for (i = 0; i < prog->n_array; ++i) {
4648 struct gpu_array_info *array = &prog->array[i];
4649 isl_space *space;
4650 isl_set *accessed_i;
4651 int empty;
4652 char *name;
4653 isl_id *id;
4654 isl_union_set *uset;
4656 if (gpu_array_is_read_only_scalar(array))
4657 continue;
4659 space = isl_space_copy(array->space);
4660 accessed_i = isl_union_set_extract_set(accessed, space);
4661 empty = isl_set_plain_is_empty(accessed_i);
4662 isl_set_free(accessed_i);
4663 if (empty < 0) {
4664 filters = isl_union_set_list_free(filters);
4665 break;
4667 if (empty)
4668 continue;
4670 array->global = 1;
4671 if (array->local)
4672 array->declare_local = 1;
4674 name = concat(ctx, prefix, array->name);
4675 id = name ? isl_id_alloc(ctx, name, array) : NULL;
4676 free(name);
4677 space = isl_space_set_alloc(ctx, 0, 0);
4678 space = isl_space_set_tuple_id(space, isl_dim_set, id);
4679 uset = isl_union_set_from_set(isl_set_universe(space));
4681 filters = isl_union_set_list_add(filters, uset);
4683 isl_union_set_free(accessed);
4685 return filters;
4688 /* Make sure that code for the statements in "filters" that
4689 * copy arrays to or from the device is only generated when
4690 * the size of the corresponding array is positive.
4691 * That is, add a set node underneath "graft" with "filters" as children
4692 * and for each child add a guard that the selects the parameter
4693 * values for which the corresponding array has a positive size.
4694 * The array is available in the user pointer of the statement identifier.
4695 * "depth" is the schedule depth of the position where "graft"
4696 * will be added.
4698 static __isl_give isl_schedule_node *insert_positive_size_guards(
4699 __isl_take isl_schedule_node *graft,
4700 __isl_take isl_union_set_list *filters, int depth)
4702 int i, n;
4704 graft = isl_schedule_node_child(graft, 0);
4705 graft = isl_schedule_node_insert_set(graft, filters);
4706 n = isl_schedule_node_n_children(graft);
4707 for (i = 0; i < n; ++i) {
4708 isl_union_set *filter;
4709 isl_set *domain, *guard;
4710 isl_id *id;
4711 struct gpu_array_info *array;
4713 graft = isl_schedule_node_child(graft, i);
4714 filter = isl_schedule_node_filter_get_filter(graft);
4715 domain = isl_set_from_union_set(filter);
4716 id = isl_set_get_tuple_id(domain);
4717 array = isl_id_get_user(id);
4718 isl_id_free(id);
4719 isl_set_free(domain);
4720 guard = gpu_array_positive_size_guard(array);
4721 guard = isl_set_from_params(guard);
4722 guard = isl_set_add_dims(guard, isl_dim_set, depth);
4723 graft = isl_schedule_node_child(graft, 0);
4724 graft = isl_schedule_node_insert_guard(graft, guard);
4725 graft = isl_schedule_node_parent(graft);
4726 graft = isl_schedule_node_parent(graft);
4728 graft = isl_schedule_node_parent(graft);
4730 return graft;
4733 /* Create a graft for copying arrays to or from the device,
4734 * whenever the size of the array is strictly positive.
4735 * Each statement is called "<prefix>_<name of array>" and
4736 * the identifier has a user pointer pointing to the array.
4737 * The graft will be added at the position specified by "node".
4738 * "copy" contains the array elements that need to be copied.
4739 * Only arrays of which some elements need to be copied
4740 * will have a corresponding statement in the graph.
4741 * Note though that each such statement will copy the entire array.
4743 static __isl_give isl_schedule_node *create_copy_device(struct gpu_prog *prog,
4744 __isl_keep isl_schedule_node *node, const char *prefix,
4745 __isl_take isl_union_set *copy)
4747 int depth;
4748 isl_ctx *ctx;
4749 isl_space *space;
4750 isl_union_set *all, *domain;
4751 isl_union_set_list *filters;
4752 isl_union_map *extension;
4753 isl_schedule_node *graft;
4755 ctx = prog->ctx;
4756 depth = isl_schedule_node_get_schedule_depth(node);
4757 filters = create_copy_filters(prog, prefix, copy);
4758 all = isl_union_set_list_union(isl_union_set_list_copy(filters));
4760 space = depth < 0 ? NULL : isl_space_set_alloc(ctx, 0, depth);
4761 domain = isl_union_set_from_set(isl_set_universe(space));
4762 extension = isl_union_map_from_domain_and_range(domain, all);
4763 graft = isl_schedule_node_from_extension(extension);
4765 if (!filters)
4766 return isl_schedule_node_free(graft);
4767 if (isl_union_set_list_n_union_set(filters) == 0) {
4768 isl_union_set_list_free(filters);
4769 return graft;
4772 return insert_positive_size_guards(graft, filters, depth);
4775 /* Return (the universe spaces of) the arrays that are declared
4776 * inside the scop corresponding to "prog" and for which all
4777 * potential writes inside the scop form a subset of "domain".
4779 static __isl_give isl_union_set *extract_local_accesses(struct gpu_prog *prog,
4780 __isl_keep isl_union_set *domain)
4782 int i;
4783 isl_union_set *local;
4785 local = isl_union_set_empty(isl_union_set_get_space(domain));
4787 for (i = 0; i < prog->n_array; ++i) {
4788 isl_set *set;
4789 isl_union_map *to_outer;
4790 isl_union_map *may_write;
4791 isl_union_set *write_domain;
4792 isl_union_set *fields;
4793 int subset;
4795 if (!prog->array[i].local)
4796 continue;
4798 set = isl_set_universe(isl_space_copy(prog->array[i].space));
4799 to_outer = isl_union_map_copy(prog->to_outer);
4800 to_outer = isl_union_map_intersect_range(to_outer,
4801 isl_union_set_from_set(isl_set_copy(set)));
4802 fields = isl_union_map_domain(to_outer);
4803 may_write = isl_union_map_copy(prog->may_write);
4804 may_write = isl_union_map_intersect_range(may_write, fields);
4805 write_domain = isl_union_map_domain(may_write);
4806 subset = isl_union_set_is_subset(write_domain, domain);
4807 isl_union_set_free(write_domain);
4809 if (subset < 0) {
4810 isl_set_free(set);
4811 return isl_union_set_free(local);
4812 } else if (subset) {
4813 local = isl_union_set_add_set(local, set);
4814 } else {
4815 isl_set_free(set);
4819 return local;
4822 /* Internal data structure for node_may_persist.
4824 * "tagger" maps tagged iteration domains to the corresponding untagged
4825 * iteration domain.
4827 * "may_persist_flow" is the set of all tagged dataflow dependences
4828 * with those dependences removed that either precede or follow
4829 * the kernel launch in a sequence.
4830 * "inner_band_flow" is the set of all tagged dataflow dependences
4831 * that are local to a given iteration of the outer band nodes
4832 * with respect to the current node.
4833 * "local_flow" is equal to "inner_band_flow", except that the domain
4834 * and the range have been intersected with intermediate filters
4835 * on children of sets or sequences.
4837 struct ppcg_may_persist_data {
4838 isl_union_pw_multi_aff *tagger;
4840 isl_union_map *local_flow;
4841 isl_union_map *inner_band_flow;
4842 isl_union_map *may_persist_flow;
4845 /* Update the information in "data" based on the band ancestor "node".
4847 * In particular, we restrict the dependences in data->local_flow
4848 * to those dependence where the source and the sink occur in
4849 * the same iteration of the given band node.
4850 * We also update data->inner_band_flow to the new value of
4851 * data->local_flow.
4853 static int update_may_persist_at_band(__isl_keep isl_schedule_node *node,
4854 struct ppcg_may_persist_data *data)
4856 isl_multi_union_pw_aff *partial;
4857 isl_union_pw_multi_aff *contraction;
4858 isl_union_map *flow;
4860 if (isl_schedule_node_band_n_member(node) == 0)
4861 return 0;
4863 partial = isl_schedule_node_band_get_partial_schedule(node);
4864 contraction = isl_schedule_node_get_subtree_contraction(node);
4865 partial = isl_multi_union_pw_aff_pullback_union_pw_multi_aff(partial,
4866 contraction);
4867 partial = isl_multi_union_pw_aff_pullback_union_pw_multi_aff(partial,
4868 isl_union_pw_multi_aff_copy(data->tagger));
4870 flow = data->local_flow;
4871 flow = isl_union_map_eq_at_multi_union_pw_aff(flow, partial);
4872 data->local_flow = flow;
4874 isl_union_map_free(data->inner_band_flow);
4875 data->inner_band_flow = isl_union_map_copy(data->local_flow);
4877 return 0;
4880 /* Given a set of local reaching domain elements "domain",
4881 * expand them to the corresponding leaf domain elements using "contraction"
4882 * and insert the array references tags using data->tagger.
4884 static __isl_give isl_union_set *expand_and_tag(
4885 __isl_take isl_union_set *domain,
4886 __isl_take isl_union_pw_multi_aff *contraction,
4887 struct ppcg_may_persist_data *data)
4889 domain = isl_union_set_preimage_union_pw_multi_aff(domain,
4890 contraction);
4891 domain = isl_union_set_preimage_union_pw_multi_aff(domain,
4892 isl_union_pw_multi_aff_copy(data->tagger));
4893 return domain;
4896 /* Given a filter node that is the child of a set or sequence node,
4897 * restrict data->local_flow to refer only to those elements
4898 * in the filter of the node.
4899 * "contraction" maps the leaf domain elements of the schedule tree
4900 * to the corresponding domain elements at (the parent of) "node".
4902 static int filter_flow(__isl_keep isl_schedule_node *node,
4903 struct ppcg_may_persist_data *data,
4904 __isl_take isl_union_pw_multi_aff *contraction)
4906 isl_union_set *filter;
4907 isl_union_map *flow;
4909 flow = data->local_flow;
4910 filter = isl_schedule_node_filter_get_filter(node);
4911 filter = expand_and_tag(filter, contraction, data);
4912 flow = isl_union_map_intersect_domain(flow, isl_union_set_copy(filter));
4913 flow = isl_union_map_intersect_range(flow, filter);
4914 data->local_flow = flow;
4916 return 0;
4919 /* Given a filter node "node", collect the filters on all preceding siblings
4920 * (which are also filter nodes), add them to "filters" and return the result.
4922 static __isl_give isl_union_set *add_previous_filters(
4923 __isl_take isl_union_set *filters, __isl_keep isl_schedule_node *node)
4925 isl_schedule_node *sibling;
4927 sibling = isl_schedule_node_copy(node);
4928 while (sibling && isl_schedule_node_has_previous_sibling(sibling)) {
4929 isl_union_set *filter;
4931 sibling = isl_schedule_node_previous_sibling(sibling);
4932 filter = isl_schedule_node_filter_get_filter(sibling);
4933 filters = isl_union_set_union(filters, filter);
4935 isl_schedule_node_free(sibling);
4936 if (!sibling)
4937 return isl_union_set_free(filters);
4939 return filters;
4942 /* Given a filter node "node", collect the filters on all following siblings
4943 * (which are also filter nodes), add them to "filters" and return the result.
4945 static __isl_give isl_union_set *add_next_filters(
4946 __isl_take isl_union_set *filters, __isl_keep isl_schedule_node *node)
4948 isl_schedule_node *sibling;
4950 sibling = isl_schedule_node_copy(node);
4951 while (sibling && isl_schedule_node_has_next_sibling(sibling)) {
4952 isl_union_set *filter;
4954 sibling = isl_schedule_node_next_sibling(sibling);
4955 filter = isl_schedule_node_filter_get_filter(sibling);
4956 filters = isl_union_set_union(filters, filter);
4958 isl_schedule_node_free(sibling);
4959 if (!sibling)
4960 return isl_union_set_free(filters);
4962 return filters;
4965 /* Remove those flow dependences from data->may_persist_flow
4966 * that flow between elements of "domain" within the same iteration
4967 * of all outer band nodes.
4968 * "contraction" maps the leaf domain elements of the schedule tree
4969 * to the corresponding elements "domain".
4971 static void remove_external_flow(struct ppcg_may_persist_data *data,
4972 __isl_take isl_union_set *domain,
4973 __isl_keep isl_union_pw_multi_aff *contraction)
4975 isl_union_map *flow;
4977 contraction = isl_union_pw_multi_aff_copy(contraction);
4978 domain = expand_and_tag(domain, contraction, data);
4979 flow = isl_union_map_copy(data->local_flow);
4980 flow = isl_union_map_intersect_domain(flow, isl_union_set_copy(domain));
4981 flow = isl_union_map_intersect_range(flow, domain);
4983 data->may_persist_flow = isl_union_map_subtract(data->may_persist_flow,
4984 flow);
4987 /* Update the information in "data" based on the filter ancestor "node".
4988 * We only need to modify anything if the filter is the child
4989 * of a set or sequence node.
4991 * In the case of a sequence, we remove the dependences between
4992 * statement instances that are both executed either before or
4993 * after the subtree that will be mapped to a kernel, within
4994 * the same iteration of outer bands.
4996 * In both cases, we restrict data->local_flow to the current child.
4998 static int update_may_persist_at_filter(__isl_keep isl_schedule_node *node,
4999 struct ppcg_may_persist_data *data)
5001 enum isl_schedule_node_type type;
5002 isl_schedule_node *parent;
5003 isl_space *space;
5004 isl_union_pw_multi_aff *contraction;
5005 isl_union_set *before, *after, *filter;
5007 type = isl_schedule_node_get_parent_type(node);
5008 if (type != isl_schedule_node_sequence && type != isl_schedule_node_set)
5009 return 0;
5011 parent = isl_schedule_node_copy(node);
5012 parent = isl_schedule_node_parent(parent);
5013 contraction = isl_schedule_node_get_subtree_contraction(parent);
5014 isl_schedule_node_free(parent);
5016 if (type == isl_schedule_node_set)
5017 return filter_flow(node, data, contraction);
5019 filter = isl_schedule_node_filter_get_filter(node);
5020 space = isl_union_set_get_space(filter);
5021 isl_union_set_free(filter);
5022 before = isl_union_set_empty(space);
5023 after = isl_union_set_copy(before);
5024 before = add_previous_filters(before, node);
5025 after = add_next_filters(after, node);
5027 remove_external_flow(data, before, contraction);
5028 remove_external_flow(data, after, contraction);
5030 return filter_flow(node, data, contraction);
5033 /* Update the information in "data" based on the ancestor "node".
5035 static isl_stat update_may_persist_at(__isl_keep isl_schedule_node *node,
5036 void *user)
5038 struct ppcg_may_persist_data *data = user;
5040 switch (isl_schedule_node_get_type(node)) {
5041 case isl_schedule_node_error:
5042 return isl_stat_error;
5043 case isl_schedule_node_context:
5044 case isl_schedule_node_domain:
5045 case isl_schedule_node_expansion:
5046 case isl_schedule_node_extension:
5047 case isl_schedule_node_guard:
5048 case isl_schedule_node_leaf:
5049 case isl_schedule_node_mark:
5050 case isl_schedule_node_sequence:
5051 case isl_schedule_node_set:
5052 break;
5053 case isl_schedule_node_band:
5054 if (update_may_persist_at_band(node, data) < 0)
5055 return isl_stat_error;
5056 break;
5057 case isl_schedule_node_filter:
5058 if (update_may_persist_at_filter(node, data) < 0)
5059 return isl_stat_error;
5060 break;
5063 return isl_stat_ok;
5066 /* Determine the set of array elements that may need to be perserved
5067 * by a kernel constructed from the subtree at "node".
5068 * This includes the set of array elements that may need to be preserved
5069 * by the entire scop (prog->may_persist) and the elements for which
5070 * there is a potential flow dependence that may cross a kernel launch.
5072 * To determine the second set, we start from all flow dependences.
5073 * From this set of dependences, we remove those that cannot possibly
5074 * require data to be preserved by a kernel launch.
5075 * In particular, we consider the following sets of dependences.
5076 * - dependences of which the write occurs inside the kernel.
5077 * If the data is needed outside the kernel, then it will
5078 * be copied out immediately after the kernel launch, so there
5079 * is no need for any special care.
5080 * - dependences of which the read occurs inside the kernel and the
5081 * corresponding write occurs inside the same iteration of the
5082 * outer band nodes. This means that the data is needed in
5083 * the first kernel launch after the write, which is already
5084 * taken care of by the standard copy-in. That is, the data
5085 * do not need to be preserved by any intermediate call to
5086 * the same kernel.
5087 * - dependences of which the write and the read either both occur
5088 * before the kernel launch or both occur after the kernel launch,
5089 * within the same iteration of the outer band nodes with respect
5090 * to the sequence that determines the ordering of the dependence
5091 * and the kernel launch. Such flow dependences cannot cross
5092 * any kernel launch.
5094 * For the remaining (tagged) dependences, we take the domain
5095 * (i.e., the tagged writes) and apply the tagged access relation
5096 * to obtain the accessed data elements.
5097 * These are then combined with the elements that may need to be
5098 * preserved by the entire scop.
5100 static __isl_give isl_union_set *node_may_persist(
5101 __isl_keep isl_schedule_node *node, struct gpu_prog *prog)
5103 struct ppcg_may_persist_data data;
5104 isl_union_pw_multi_aff *contraction;
5105 isl_union_set *domain;
5106 isl_union_set *persist;
5107 isl_union_map *flow, *local_flow;
5109 data.tagger = prog->scop->tagger;
5111 flow = isl_union_map_copy(prog->scop->tagged_dep_flow);
5112 data.local_flow = isl_union_map_copy(flow);
5113 data.inner_band_flow = isl_union_map_copy(flow);
5114 data.may_persist_flow = flow;
5115 if (isl_schedule_node_foreach_ancestor_top_down(node,
5116 &update_may_persist_at, &data) < 0)
5117 data.may_persist_flow =
5118 isl_union_map_free(data.may_persist_flow);
5119 flow = data.may_persist_flow;
5120 isl_union_map_free(data.local_flow);
5122 domain = isl_schedule_node_get_domain(node);
5123 contraction = isl_schedule_node_get_subtree_contraction(node);
5124 domain = isl_union_set_preimage_union_pw_multi_aff(domain,
5125 contraction);
5126 domain = isl_union_set_preimage_union_pw_multi_aff(domain,
5127 isl_union_pw_multi_aff_copy(data.tagger));
5128 flow = isl_union_map_subtract_domain(flow, isl_union_set_copy(domain));
5129 local_flow = data.inner_band_flow;
5130 local_flow = isl_union_map_intersect_range(local_flow, domain);
5131 flow = isl_union_map_subtract(flow, local_flow);
5133 persist = isl_union_map_domain(flow);
5134 persist = isl_union_set_apply(persist,
5135 isl_union_map_copy(prog->scop->tagged_may_writes));
5136 persist = isl_union_set_union(persist,
5137 isl_union_set_copy(prog->may_persist));
5139 return persist;
5142 /* Add nodes for copying outer arrays in and out of the device
5143 * before and after the subtree "node", which contains one or more kernels.
5144 * "domain" contains the original statement instances, i.e.,
5145 * those that correspond to the domains of the access relations in "prog".
5146 * In particular, the domain has not been contracted in any way.
5147 * "prefix" contains the prefix schedule at that point, in terms
5148 * of the same original statement instances.
5150 * We first compute the sets of outer array elements that need
5151 * to be copied in and out and then graft in the nodes for
5152 * performing this copying.
5154 * In particular, for each array that is possibly written anywhere in
5155 * the subtree "node" and that may be used after "node"
5156 * or that may be visible outside the corresponding scop,
5157 * we copy out its entire extent.
5159 * Any array elements that is read without first being written inside
5160 * the subtree "node" needs to be copied in.
5161 * Furthermore, if there are any array elements that
5162 * are copied out, but that may not be written inside "node, then
5163 * they also need to be copied in to ensure that the value after execution
5164 * is the same as the value before execution, at least for those array
5165 * elements that may have their values preserved by the scop or that
5166 * may be written before "node" and read after "node".
5167 * In case the array elements are structures, we need to take into
5168 * account that all members of the structures need to be written
5169 * by "node" before we can avoid copying the data structure in.
5171 * Note that the may_write relation is intersected with the domain,
5172 * which has been intersected with the context.
5173 * This helps in those cases where the arrays are declared with a fixed size,
5174 * while the accesses are parametric and the context assigns a fixed value
5175 * to the parameters.
5177 * If an element from a local array is read without first being written,
5178 * then there is no point in copying it in since it cannot have been
5179 * written prior to the scop. Warn about the uninitialized read instead.
5181 static __isl_give isl_schedule_node *add_to_from_device(
5182 __isl_take isl_schedule_node *node, __isl_take isl_union_set *domain,
5183 __isl_take isl_union_map *prefix, struct gpu_prog *prog)
5185 isl_union_set *local;
5186 isl_union_set *may_persist;
5187 isl_union_map *may_write, *must_write, *copy_out, *not_written;
5188 isl_union_map *read, *copy_in;
5189 isl_union_map *tagged;
5190 isl_union_map *local_uninitialized;
5191 isl_schedule_node *graft;
5193 tagged = isl_union_map_copy(prog->scop->tagged_reads);
5194 tagged = isl_union_map_union(tagged,
5195 isl_union_map_copy(prog->scop->tagged_may_writes));
5197 may_write = isl_union_map_copy(prog->may_write);
5198 may_write = isl_union_map_intersect_domain(may_write,
5199 isl_union_set_copy(domain));
5200 may_write = remove_local_accesses(prog,
5201 isl_union_map_copy(tagged), may_write,
5202 isl_union_map_copy(prefix), 0);
5203 may_write = isl_union_map_apply_range(may_write,
5204 isl_union_map_copy(prog->to_outer));
5205 may_write = isl_union_map_apply_domain(may_write,
5206 isl_union_map_copy(prefix));
5207 may_write = approximate_copy_out(may_write, prog);
5208 copy_out = isl_union_map_copy(may_write);
5209 may_write = isl_union_map_apply_range(may_write,
5210 isl_union_map_copy(prog->to_inner));
5211 must_write = isl_union_map_copy(prog->must_write);
5212 must_write = isl_union_map_apply_domain(must_write,
5213 isl_union_map_copy(prefix));
5214 may_persist = node_may_persist(node, prog);
5215 may_write = isl_union_map_intersect_range(may_write, may_persist);
5216 not_written = isl_union_map_subtract(may_write, must_write);
5218 local = extract_local_accesses(prog, domain);
5219 read = isl_union_map_copy(prog->read);
5220 read = isl_union_map_intersect_domain(read, domain);
5221 read = remove_local_accesses(prog, tagged, read,
5222 isl_union_map_copy(prefix), 1);
5223 local = isl_union_set_apply(local, isl_union_map_copy(prog->to_inner));
5224 local_uninitialized = isl_union_map_copy(prog->scop->live_in);
5225 local_uninitialized = isl_union_map_intersect_range(local_uninitialized,
5226 local);
5227 local_uninitialized = isl_union_map_intersect(local_uninitialized,
5228 isl_union_map_copy(read));
5229 if (!isl_union_map_is_empty(local_uninitialized)) {
5230 fprintf(stderr,
5231 "possibly uninitialized reads (not copied in):\n");
5232 isl_union_map_dump(local_uninitialized);
5234 read = isl_union_map_subtract(read, local_uninitialized);
5235 read = isl_union_map_apply_domain(read, prefix);
5236 copy_in = isl_union_map_union(read, not_written);
5237 copy_in = isl_union_map_apply_range(copy_in,
5238 isl_union_map_copy(prog->to_outer));
5240 graft = create_copy_device(prog, node, "to_device",
5241 isl_union_map_range(copy_in));
5242 node = isl_schedule_node_graft_before(node, graft);
5243 graft = create_copy_device(prog, node, "from_device",
5244 isl_union_map_range(copy_out));
5245 node = isl_schedule_node_graft_after(node, graft);
5247 return node;
5250 /* Add nodes for initializing ("init_device") and clearing ("clear_device")
5251 * the device before and after "node".
5253 static __isl_give isl_schedule_node *add_init_clear_device(
5254 __isl_take isl_schedule_node *node)
5256 isl_ctx *ctx;
5257 isl_space *space;
5258 isl_union_set *domain;
5259 isl_schedule_node *graft;
5261 ctx = isl_schedule_node_get_ctx(node);
5263 space = isl_space_set_alloc(ctx, 0, 0);
5264 space = isl_space_set_tuple_name(space, isl_dim_set, "init_device");
5265 domain = isl_union_set_from_set(isl_set_universe(space));
5266 graft = isl_schedule_node_from_domain(domain);
5268 node = isl_schedule_node_graft_before(node, graft);
5270 space = isl_space_set_alloc(ctx, 0, 0);
5271 space = isl_space_set_tuple_name(space, isl_dim_set, "clear_device");
5272 domain = isl_union_set_from_set(isl_set_universe(space));
5273 graft = isl_schedule_node_from_domain(domain);
5275 node = isl_schedule_node_graft_after(node, graft);
5277 return node;
5280 /* Update "schedule" for mapping to a GPU device.
5282 * In particular, insert a context node, create kernels for
5283 * each outermost tilable band and introduce nodes for copying arrays
5284 * in and out of the device and for initializing and clearing the device.
5285 * If the child of the initial root points to a set node,
5286 * then children of this node that do not contain any tilable bands
5287 * are separated from the other children and are not mapped to
5288 * the device.
5290 * The GPU code is generated in a context where at least one
5291 * statement instance is executed. The corresponding guard is inserted
5292 * around the entire schedule.
5294 static __isl_give isl_schedule *map_to_device(struct gpu_gen *gen,
5295 __isl_take isl_schedule *schedule)
5297 isl_schedule_node *node;
5298 isl_set *context;
5299 isl_set *guard;
5300 isl_union_set *domain;
5301 isl_union_map *prefix;
5302 isl_union_pw_multi_aff *contraction;
5303 struct gpu_prog *prog;
5305 context = isl_set_copy(gen->prog->context);
5306 context = isl_set_from_params(context);
5307 schedule = isl_schedule_insert_context(schedule, context);
5309 prog = gen->prog;
5310 guard = isl_union_set_params(isl_union_set_copy(prog->scop->domain));
5311 prog->context = isl_set_intersect(prog->context, isl_set_copy(guard));
5312 guard = isl_set_from_params(guard);
5314 node = isl_schedule_get_root(schedule);
5315 isl_schedule_free(schedule);
5316 node = isl_schedule_node_child(node, 0);
5317 node = isl_schedule_node_child(node, 0);
5318 node = isolate_permutable_subtrees(node, gen->prog);
5319 domain = isl_schedule_node_get_domain(node);
5320 contraction = isl_schedule_node_get_subtree_contraction(node);
5321 domain = isl_union_set_preimage_union_pw_multi_aff(domain,
5322 isl_union_pw_multi_aff_copy(contraction));
5323 prefix = isl_schedule_node_get_prefix_schedule_union_map(node);
5324 prefix = isl_union_map_preimage_domain_union_pw_multi_aff(prefix,
5325 contraction);
5326 node = mark_kernels(gen, node);
5327 node = add_to_from_device(node, domain, prefix, gen->prog);
5328 node = isl_schedule_node_root(node);
5329 node = isl_schedule_node_child(node, 0);
5330 node = isl_schedule_node_child(node, 0);
5331 node = isl_schedule_node_insert_guard(node, guard);
5332 node = isl_schedule_node_child(node, 0);
5333 node = add_init_clear_device(node);
5334 schedule = isl_schedule_node_get_schedule(node);
5335 isl_schedule_node_free(node);
5337 return schedule;
5340 /* Internal data structure for extract_access.
5341 * "next_access" points to the end of a linked list that is extended
5342 * by extract_access.
5343 * "single_expression" is set if the access expressions belong to
5344 * an expression statement (i.e., a statement without internal control).
5345 * "any_to_outer" maps all intermediate arrays to their outer arrays.
5347 struct ppcg_extract_access_data {
5348 struct gpu_stmt_access **next_access;
5349 int single_expression;
5350 isl_union_map *any_to_outer;
5353 /* Given a tagged access relation to a single array "tagged", extract it
5354 * as a map, taking into account that the input may be empty.
5355 * If the access relation is empty, then it does not contain
5356 * any space information, so we try to recover it from the index
5357 * expression.
5358 * The space of the index expression is of the form I -> A,
5359 * with I the statement instances and A the array, or [I -> F] -> A,
5360 * with F the filters corresponding to arguments.
5361 * We first drop F, if present, obtaining I -> A.
5362 * Then we construct I -> R, with R the reference tag,
5363 * combine the two into I -> [R -> A] and uncurry to obtain
5364 * the final result [I -> R] -> A.
5365 * Note that the index expression may have a lower dimension
5366 * than that of the array, but this dimension is not used
5367 * if the access relation is empty.
5369 static __isl_give isl_map *extract_single_tagged_access(
5370 __isl_take isl_union_map *tagged, __isl_keep pet_expr *expr)
5372 int empty;
5373 isl_id *id;
5374 isl_space *space, *space2;
5375 isl_multi_pw_aff *index;
5377 empty = isl_union_map_is_empty(tagged);
5378 if (empty < 0)
5379 goto error;
5380 if (!empty)
5381 return isl_map_from_union_map(tagged);
5382 isl_union_map_free(tagged);
5384 index = pet_expr_access_get_index(expr);
5385 space = isl_multi_pw_aff_get_space(index);
5386 isl_multi_pw_aff_free(index);
5387 if (isl_space_domain_is_wrapping(space))
5388 space = isl_space_domain_factor_domain(space);
5389 space2 = isl_space_copy(space);
5390 space2 = isl_space_from_domain(isl_space_domain(space));
5391 id = pet_expr_access_get_ref_id(expr);
5392 space2 = isl_space_set_tuple_id(space2, isl_dim_out, id);
5393 space = isl_space_range_product(space2, space);
5394 space = isl_space_uncurry(space);
5396 return isl_map_empty(space);
5397 error:
5398 isl_union_map_free(tagged);
5399 return NULL;
5402 /* Does the index expression "index" of "expr" represent an access
5403 * to a single element?
5404 * That is, is "index" completely specified?
5406 * If "expr" accesses elements from different spaces (i.e., fields
5407 * of a structure), then it does not access a single element.
5408 * Otherwise, if the single space of the access matches the space
5409 * of "index", then the index expression is completely specified
5410 * (no pointer to a lower-dimensional slice of the accessed array)
5411 * and a single element is being accessed.
5413 static isl_bool complete_index(__isl_keep pet_expr *expr,
5414 __isl_keep isl_multi_pw_aff *index)
5416 isl_union_map *read, *write, *all;
5417 isl_map *map;
5418 isl_space *space1, *space2;
5419 isl_bool complete;
5421 read = pet_expr_access_get_may_read(expr);
5422 write = pet_expr_access_get_may_write(expr);
5423 all = isl_union_map_union(read, write);
5424 if (!all)
5425 return isl_bool_error;
5426 if (isl_union_map_n_map(all) != 1) {
5427 isl_union_map_free(all);
5428 return isl_bool_false;
5430 map = isl_map_from_union_map(all);
5431 space1 = isl_map_get_space(map);
5432 isl_map_free(map);
5433 space2 = isl_multi_pw_aff_get_space(index);
5434 complete = isl_space_tuple_is_equal(space1, isl_dim_out,
5435 space2, isl_dim_out);
5436 isl_space_free(space1);
5437 isl_space_free(space2);
5439 return complete;
5442 /* Does "expr" access a single, fixed element (independently of the statement
5443 * instance)?
5444 * That is, does it have a completely specified constant index expression?
5446 * Note that it is not sufficient for the index expression to be
5447 * piecewise constant. isl_multi_pw_aff_is_cst can therefore not be used.
5449 static isl_bool accesses_fixed_element(__isl_keep pet_expr *expr)
5451 int i, n;
5452 isl_multi_pw_aff *index;
5453 isl_bool fixed = isl_bool_true;
5455 index = pet_expr_access_get_index(expr);
5456 if (index < 0)
5457 return isl_bool_error;
5458 n = isl_multi_pw_aff_dim(index, isl_dim_out);
5459 for (i = 0; i < n; ++i) {
5460 isl_pw_aff *pa;
5462 pa = isl_multi_pw_aff_get_pw_aff(index, 0);
5463 fixed = isl_pw_aff_n_piece(pa) == 1;
5464 if (fixed)
5465 fixed = isl_pw_aff_is_cst(pa);
5466 isl_pw_aff_free(pa);
5467 if (fixed < 0 || !fixed)
5468 break;
5470 if (fixed >= 0 && fixed)
5471 fixed = complete_index(expr, index);
5472 isl_multi_pw_aff_free(index);
5474 return fixed;
5477 /* Extract a gpu_stmt_access from "expr", append it to the list
5478 * that ends in *data->next_access and update the end of the list.
5479 * If the access expression performs a write, then it is considered
5480 * exact only if it appears in a single expression statement and
5481 * if its may access relation is equal to its must access relation.
5483 * The combined set of may accesses may be a union if member accesses
5484 * are involved, but the entire set is derived from a single reference and
5485 * therefore from a single index expression. These accesses therefore
5486 * all map to the same outer array.
5488 static int extract_access(__isl_keep pet_expr *expr, void *user)
5490 struct ppcg_extract_access_data *data = user;
5491 isl_union_map *tagged;
5492 struct gpu_stmt_access *access;
5493 isl_ctx *ctx = pet_expr_get_ctx(expr);
5494 isl_multi_pw_aff *index;
5496 access = isl_alloc_type(ctx, struct gpu_stmt_access);
5497 if (!access)
5498 return -1;
5499 access->next = NULL;
5500 access->read = pet_expr_access_is_read(expr);
5501 access->write = pet_expr_access_is_write(expr);
5502 tagged = pet_expr_access_get_tagged_may_read(expr);
5503 tagged = isl_union_map_union(tagged,
5504 pet_expr_access_get_tagged_may_write(expr));
5505 tagged = isl_union_map_apply_range(tagged,
5506 isl_union_map_copy(data->any_to_outer));
5507 if (!access->write) {
5508 access->exact_write = 1;
5509 } else if (!data->single_expression) {
5510 access->exact_write = 0;
5511 } else {
5512 isl_union_map *must, *may;
5513 may = isl_union_map_copy(tagged);
5514 may = isl_union_map_domain_factor_domain(may);
5515 must = pet_expr_access_get_must_write(expr);
5516 access->exact_write = isl_union_map_is_equal(must, may);
5517 isl_union_map_free(must);
5518 isl_union_map_free(may);
5520 index = pet_expr_access_get_index(expr);
5521 access->n_index = isl_multi_pw_aff_dim(index, isl_dim_out);
5522 isl_multi_pw_aff_free(index);
5523 access->ref_id = pet_expr_access_get_ref_id(expr);
5524 access->tagged_access = extract_single_tagged_access(tagged, expr);
5525 access->access = isl_map_copy(access->tagged_access);
5526 access->access = isl_map_domain_factor_domain(access->access);
5527 access->fixed_element = accesses_fixed_element(expr);
5529 *data->next_access = access;
5530 data->next_access = &(*data->next_access)->next;
5532 if (!access->access || access->fixed_element < 0)
5533 return -1;
5535 return 0;
5538 /* Construct a linked list of gpu_stmt_access objects,
5539 * one for each access expression in the statement body.
5540 * "any_to_outer" maps all intermediate arrays to their outer arrays.
5542 static int pet_stmt_extract_accesses(struct gpu_stmt *stmt,
5543 __isl_keep isl_union_map *any_to_outer)
5545 struct ppcg_extract_access_data data;
5547 stmt->accesses = NULL;
5548 data.next_access = &stmt->accesses;
5549 data.single_expression =
5550 pet_tree_get_type(stmt->stmt->body) == pet_tree_expr;
5551 data.any_to_outer = any_to_outer;
5552 return pet_tree_foreach_access_expr(stmt->stmt->body,
5553 &extract_access, &data);
5556 /* Has statement "stmt" been killed from "scop"?
5557 * That is, is the instance set of "scop" free from any
5558 * instances of "stmt"?
5560 static isl_bool is_stmt_killed(struct ppcg_scop *scop, struct pet_stmt *stmt)
5562 isl_space *space;
5563 isl_set *left;
5564 isl_bool empty;
5566 if (!scop || !stmt)
5567 return isl_bool_error;
5568 space = isl_set_get_space(stmt->domain);
5569 left = isl_union_set_extract_set(scop->domain, space);
5570 empty = isl_set_plain_is_empty(left);
5571 isl_set_free(left);
5573 return empty;
5576 /* Return an array of gpu_stmt representing the statements in "scop".
5577 * Do not collect array accesses for statements that have been killed.
5579 static struct gpu_stmt *extract_stmts(isl_ctx *ctx, struct ppcg_scop *scop,
5580 __isl_keep isl_union_map *any_to_outer)
5582 int i;
5583 struct gpu_stmt *stmts;
5585 stmts = isl_calloc_array(ctx, struct gpu_stmt, scop->pet->n_stmt);
5586 if (!stmts)
5587 return NULL;
5589 for (i = 0; i < scop->pet->n_stmt; ++i) {
5590 struct gpu_stmt *s = &stmts[i];
5591 isl_bool killed;
5593 s->id = isl_set_get_tuple_id(scop->pet->stmts[i]->domain);
5594 s->stmt = scop->pet->stmts[i];
5595 killed = is_stmt_killed(scop, scop->pet->stmts[i]);
5596 if (killed < 0)
5597 return free_stmts(stmts, i + 1);
5598 if (killed)
5599 continue;
5600 if (pet_stmt_extract_accesses(s, any_to_outer) < 0)
5601 return free_stmts(stmts, i + 1);
5604 return stmts;
5607 /* Generate CUDA code for "scop" and print it to "p".
5608 * After generating an AST for the transformed scop as explained below,
5609 * we call "gen->print" to print the AST in the desired output format
5610 * to "p".
5612 * If it turns out that it does not make sense to generate GPU code,
5613 * then we generate CPU code instead.
5615 * The declarations of the arrays that are visible outside of the scop
5616 * are printed outside of the code generated from the schedule,
5617 * because the generated code may involve a guard around the entire code.
5619 * We first compute a schedule that respects the dependences
5620 * of the original program and select the outermost bands
5621 * of tilable dimensions that have at least one parallel loop.
5622 * If the --load-schedule is specified, then the loaded schedule
5623 * is used instead of a computed schedule.
5625 * Each of these bands B is then tiled according to "tile" sizes, resulting
5626 * in two nested bands, with a kernel marker on top
5634 * We then split off at most 2 parallel dimensions from the T band and
5635 * at most 3 parallel dimension from the P band
5640 * T1
5642 * T2
5644 * P1
5646 * P2
5648 * A filter is introduced in front of T1 that maps the domain instances
5649 * to block identifiers. Similarly, a filter is introduced in front of P1
5650 * that maps the domain instances to thread identifiers.
5652 * For each iteration of the T2 band and for each array, we compute
5653 * the array elements accessed by that iteration, construct a rectangular
5654 * box around it and shift it to the origin. The result is used
5655 * as shared memory for the array.
5657 * Copying and synchronization statements are added to this schedule tree.
5658 * In principle, these are added in front of the P1 band, but some of
5659 * them may get hoisted up to higher levels.
5661 * The entire AST is then generated from the single resulting schedule tree.
5662 * During the generation the subtrees at kernel nodes (K) are saved
5663 * aside and replaced by kernel calls. The result is printed as host code
5664 * while the saved subtrees are printed as device code.
5666 static __isl_give isl_printer *generate(__isl_take isl_printer *p,
5667 struct gpu_gen *gen, struct ppcg_scop *scop,
5668 struct ppcg_options *options)
5670 struct gpu_prog *prog;
5671 isl_ctx *ctx;
5672 isl_schedule *schedule;
5673 isl_bool any_permutable;
5675 if (!scop)
5676 return isl_printer_free(p);
5678 ctx = isl_printer_get_ctx(p);
5679 prog = gpu_prog_alloc(ctx, scop);
5680 if (!prog)
5681 return isl_printer_free(p);
5683 gen->prog = prog;
5684 schedule = get_schedule(gen);
5686 any_permutable = has_any_permutable_node(schedule);
5687 if (any_permutable < 0 || !any_permutable) {
5688 if (any_permutable < 0)
5689 p = isl_printer_free(p);
5690 else
5691 p = print_cpu(p, scop, options);
5692 isl_schedule_free(schedule);
5693 } else {
5694 schedule = map_to_device(gen, schedule);
5695 gen->tree = generate_code(gen, schedule);
5696 p = ppcg_set_macro_names(p);
5697 p = ppcg_print_exposed_declarations(p, prog->scop);
5698 p = gen->print(p, gen->prog, gen->tree, &gen->types,
5699 gen->print_user);
5700 isl_ast_node_free(gen->tree);
5703 gpu_prog_free(prog);
5705 return p;
5708 /* Wrapper around generate for use as a ppcg_transform callback.
5710 static __isl_give isl_printer *generate_wrap(__isl_take isl_printer *p,
5711 struct ppcg_scop *scop, void *user)
5713 struct gpu_gen *gen = user;
5715 return generate(p, gen, scop, gen->options);
5718 /* Transform the code in the file called "input" by replacing
5719 * all scops by corresponding GPU code and write the results to "out".
5721 int generate_gpu(isl_ctx *ctx, const char *input, FILE *out,
5722 struct ppcg_options *options,
5723 __isl_give isl_printer *(*print)(__isl_take isl_printer *p,
5724 struct gpu_prog *prog, __isl_keep isl_ast_node *tree,
5725 struct gpu_types *types, void *user), void *user)
5727 struct gpu_gen gen;
5728 int r;
5729 int i;
5731 gen.ctx = ctx;
5732 gen.sizes = extract_sizes_from_str(ctx, options->sizes);
5733 gen.options = options;
5734 gen.kernel_id = 0;
5735 gen.print = print;
5736 gen.print_user = user;
5737 gen.types.n = 0;
5738 gen.types.name = NULL;
5740 if (options->debug->dump_sizes) {
5741 isl_space *space = isl_space_params_alloc(ctx, 0);
5742 gen.used_sizes = isl_union_map_empty(space);
5745 r = ppcg_transform(ctx, input, out, options, &generate_wrap, &gen);
5747 if (options->debug->dump_sizes) {
5748 isl_union_map_dump(gen.used_sizes);
5749 isl_union_map_free(gen.used_sizes);
5752 isl_union_map_free(gen.sizes);
5753 for (i = 0; i < gen.types.n; ++i)
5754 free(gen.types.name[i]);
5755 free(gen.types.name);
5757 return r;
5760 /* Compute the set of inner array elements that may have their values
5761 * preserved by "prog". In particular, collect the array elements of
5762 * arrays that are not local to "prog" and remove those elements that
5763 * are definitely killed or definitely written by "prog".
5765 static __isl_give isl_union_set *compute_may_persist(struct gpu_prog *prog)
5767 int i;
5768 isl_union_set *may_persist, *killed;
5769 isl_union_map *must_kill;
5771 may_persist = isl_union_set_empty(isl_set_get_space(prog->context));
5772 for (i = 0; i < prog->n_array; ++i) {
5773 isl_set *extent;
5775 if (prog->array[i].local)
5776 continue;
5778 extent = isl_set_copy(prog->array[i].extent);
5779 may_persist = isl_union_set_add_set(may_persist, extent);
5782 may_persist = isl_union_set_intersect_params(may_persist,
5783 isl_set_copy(prog->context));
5784 may_persist = isl_union_set_apply(may_persist,
5785 isl_union_map_copy(prog->to_inner));
5786 must_kill = isl_union_map_copy(prog->tagged_must_kill);
5787 killed = isl_union_map_range(must_kill);
5788 must_kill = isl_union_map_copy(prog->must_write);
5789 killed = isl_union_set_union(killed, isl_union_map_range(must_kill));
5791 may_persist = isl_union_set_subtract(may_persist, killed);
5792 return may_persist;
5795 struct gpu_prog *gpu_prog_alloc(isl_ctx *ctx, struct ppcg_scop *scop)
5797 struct gpu_prog *prog;
5798 isl_space *space;
5799 isl_map *id;
5801 if (!scop)
5802 return NULL;
5804 prog = isl_calloc_type(ctx, struct gpu_prog);
5805 assert(prog);
5807 prog->ctx = ctx;
5808 prog->scop = scop;
5809 prog->context = isl_set_copy(scop->context);
5810 prog->n_stmts = scop->pet->n_stmt;
5811 prog->any_to_outer = pet_scop_compute_outer_to_any(scop->pet);
5812 prog->any_to_outer = isl_union_map_reverse(prog->any_to_outer);
5813 space = isl_union_map_get_space(prog->any_to_outer);
5814 space = isl_space_set_from_params(space);
5815 space = isl_space_add_dims(space, isl_dim_set, 1);
5816 space = isl_space_map_from_set(space);
5817 id = isl_map_identity(space);
5818 prog->any_to_outer = isl_union_map_add_map(prog->any_to_outer, id);
5819 prog->stmts = extract_stmts(ctx, scop, prog->any_to_outer);
5820 prog->read = isl_union_map_copy(scop->reads);
5821 prog->may_write = isl_union_map_copy(scop->may_writes);
5822 prog->must_write = isl_union_map_copy(scop->must_writes);
5823 prog->tagged_must_kill = isl_union_map_copy(scop->tagged_must_kills);
5824 prog->to_inner = pet_scop_compute_outer_to_inner(scop->pet);
5825 prog->to_outer = isl_union_map_copy(prog->to_inner);
5826 prog->to_outer = isl_union_map_reverse(prog->to_outer);
5828 if (!prog->stmts)
5829 return gpu_prog_free(prog);
5831 if (collect_array_info(prog) < 0)
5832 return gpu_prog_free(prog);
5833 prog->may_persist = compute_may_persist(prog);
5835 return prog;
5838 void *gpu_prog_free(struct gpu_prog *prog)
5840 if (!prog)
5841 return NULL;
5842 free_array_info(prog);
5843 free_stmts(prog->stmts, prog->n_stmts);
5844 isl_union_map_free(prog->any_to_outer);
5845 isl_union_map_free(prog->to_outer);
5846 isl_union_map_free(prog->to_inner);
5847 isl_union_map_free(prog->read);
5848 isl_union_map_free(prog->may_write);
5849 isl_union_map_free(prog->must_write);
5850 isl_union_map_free(prog->tagged_must_kill);
5851 isl_union_map_free(prog->array_order);
5852 isl_union_set_free(prog->may_persist);
5853 isl_set_free(prog->context);
5854 free(prog);
5855 return NULL;