gpu backend: declare local variables that are used on the host
[ppcg.git] / gpu.c
blobb9cfe64752a54236ec115846392eeca11adb5493
1 /*
2 * Copyright 2010-2011 INRIA Saclay
3 * Copyright 2012-2013 Ecole Normale Superieure
5 * Use of this software is governed by the MIT license
7 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
8 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
9 * 91893 Orsay, France
10 * and Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France
13 #include <assert.h>
14 #include <stdlib.h>
15 #include <string.h>
17 #include <isl/polynomial.h>
18 #include <isl/union_set.h>
19 #include <isl/aff.h>
20 #include <isl/ilp.h>
21 #include <isl/flow.h>
22 #include <isl/schedule.h>
23 #include <isl/schedule_node.h>
24 #include <isl/options.h>
25 #include <isl/ast_build.h>
27 #include "cpu.h"
28 #include "gpu.h"
29 #include "gpu_array_tile.h"
30 #include "gpu_group.h"
31 #include "gpu_tree.h"
32 #include "schedule.h"
33 #include "ppcg_options.h"
34 #include "print.h"
35 #include "util.h"
37 struct gpu_array_info;
39 /* Collect all references to the given array and store pointers to them
40 * in array->refs.
42 * If the array contains structures, then there is no need to collect
43 * the references since we will not be computing any reference groups.
45 static void collect_references(struct gpu_prog *prog,
46 struct gpu_array_info *array)
48 int i;
49 int n;
51 if (array->has_compound_element)
52 return;
54 n = 0;
55 for (i = 0; i < prog->n_stmts; ++i) {
56 struct gpu_stmt *stmt = &prog->stmts[i];
57 struct gpu_stmt_access *access;
59 for (access = stmt->accesses; access; access = access->next) {
60 const char *name;
61 name = isl_map_get_tuple_name(access->access,
62 isl_dim_out);
63 if (name && !strcmp(array->name, name))
64 n++;
68 array->n_ref = n;
69 array->refs = isl_alloc_array(prog->ctx, struct gpu_stmt_access *, n);
70 assert(array->refs);
72 n = 0;
73 for (i = 0; i < prog->n_stmts; ++i) {
74 struct gpu_stmt *stmt = &prog->stmts[i];
75 struct gpu_stmt_access *access;
77 for (access = stmt->accesses; access; access = access->next) {
78 const char *name;
79 name = isl_map_get_tuple_name(access->access,
80 isl_dim_out);
81 if (!name || strcmp(array->name, name))
82 continue;
84 array->refs[n++] = access;
89 /* Compute and return the extent of "array", taking into account the set of
90 * accessed elements.
92 * In particular, the extent in the outer dimension is taken
93 * from "accessed", while the extents in the remaining dimensions
94 * are taken from array->extent.
96 * The extent in the outer dimension cannot be taken from array->extent
97 * because that may be unbounded. Furthermore, even if it is bounded,
98 * it may be larger than the piece of the array that is being accessed.
100 static __isl_give isl_set *compute_extent(struct pet_array *array,
101 __isl_keep isl_set *accessed)
103 int n_index;
104 isl_id *id;
105 isl_set *outer;
106 isl_set *extent;
108 extent = isl_set_copy(array->extent);
110 n_index = isl_set_dim(accessed, isl_dim_set);
111 if (n_index == 0)
112 return extent;
114 extent = isl_set_project_out(extent, isl_dim_set, 0, 1);
115 outer = isl_set_copy(accessed);
116 outer = isl_set_project_out(outer, isl_dim_set, 1, n_index - 1);
117 extent = isl_set_flat_product(outer, extent);
118 id = isl_set_get_tuple_id(accessed);
119 extent = isl_set_set_tuple_id(extent, id);
121 return extent;
124 /* Is the array "array" being extracted a read-only scalar?
126 * That is, is "array" a scalar that is never possibly written to.
127 * An array containing structures is never considered to be a scalar.
129 static int is_read_only_scalar(struct gpu_array_info *array,
130 struct gpu_prog *prog)
132 isl_set *space;
133 isl_union_map *write;
134 int empty;
136 if (array->has_compound_element)
137 return 0;
138 if (array->n_index != 0)
139 return 0;
141 write = isl_union_map_copy(prog->may_write);
142 space = isl_set_universe(isl_space_copy(array->space));
143 write = isl_union_map_intersect_range(write,
144 isl_union_set_from_set(space));
145 empty = isl_union_map_is_empty(write);
146 isl_union_map_free(write);
148 return empty;
151 /* Compute bounds on the host array "pa" based on the corresponding
152 * accessed elements in "arrays"
153 * and collect all references to the array.
154 * Store the results in "info".
156 * If the array is zero-dimensional and does not contain structures,
157 * i.e., if the array is a scalar, we check whether it is read-only.
158 * We also check whether the array is accessed at all.
160 static int extract_array_info(struct gpu_prog *prog,
161 struct gpu_array_info *info, struct pet_array *pa,
162 __isl_keep isl_union_set *arrays)
164 int i, empty;
165 const char *name;
166 int n_index;
167 isl_pw_aff **bounds;
168 isl_set *accessed, *extent;
170 n_index = isl_set_dim(pa->extent, isl_dim_set);
171 name = isl_set_get_tuple_name(pa->extent);
172 bounds = isl_alloc_array(prog->ctx, isl_pw_aff *, n_index);
173 if (!bounds)
174 return -1;
176 info->space = isl_set_get_space(pa->extent);
177 info->name = strdup(name);
178 info->n_index = n_index;
179 info->bound = bounds;
180 info->linearize = prog->scop->options->linearize_device_arrays;
182 info->type = strdup(pa->element_type);
183 info->size = pa->element_size;
184 info->local = pa->declared && !pa->exposed;
185 info->has_compound_element = pa->element_is_record;
186 info->read_only_scalar = is_read_only_scalar(info, prog);
188 accessed = isl_union_set_extract_set(arrays,
189 isl_space_copy(info->space));
190 empty = isl_set_is_empty(accessed);
191 extent = compute_extent(pa, accessed);
192 isl_set_free(accessed);
193 info->extent = extent;
194 if (empty < 0)
195 return -1;
196 info->accessed = !empty;
197 for (i = 0; i < n_index; ++i) {
198 isl_set *dom;
199 isl_local_space *ls;
200 isl_aff *one;
201 isl_pw_aff *bound;
203 dom = isl_set_copy(extent);
204 dom = isl_set_project_out(dom, isl_dim_set, i + 1,
205 n_index - (i + 1));
206 dom = isl_set_project_out(dom, isl_dim_set, 0, i);
207 if (!isl_set_dim_has_upper_bound(dom, isl_dim_set, 0)) {
208 fprintf(stderr, "unable to determine extent of '%s' "
209 "in dimension %d\n", info->name, i);
210 dom = isl_set_free(dom);
212 bound = isl_set_dim_max(dom, 0);
213 dom = isl_pw_aff_domain(isl_pw_aff_copy(bound));
214 ls = isl_local_space_from_space(isl_set_get_space(dom));
215 one = isl_aff_zero_on_domain(ls);
216 one = isl_aff_add_constant_si(one, 1);
217 bound = isl_pw_aff_add(bound, isl_pw_aff_alloc(dom, one));
218 bound = isl_pw_aff_gist(bound, isl_set_copy(prog->context));
220 bounds[i] = bound;
221 if (!isl_pw_aff_is_cst(bound))
222 info->linearize = 1;
225 collect_references(prog, info);
227 return 0;
230 /* Remove independence from the order constraints "order" on array "array".
231 * Since the pairs of iterations in the filter relation of an independence
232 * are guaranteed to be completely independent by the user, there is
233 * no need to ensure that live ranges are ordered along thong pairs.
234 * We make an exception for local variables, though, as the independence
235 * guarantee does not apply to those.
237 * The order constraints are used in two places.
238 * Those on scalars are used in check_scalar_live_ranges to check if
239 * we need to force the scalar to be private. Any non-local scalar
240 * should not be forced scalar if it only appears in independent loops.
241 * Those on non-scalars are added to the coincidence constraints
242 * in compute_schedule because we do not support any array expansion.
243 * Accesses to non-local arrays should not prevent a loop from being
244 * considered coincident so we should indeed remove those constraints
245 * from the order constraints.
247 static __isl_give isl_union_map *remove_independences(struct gpu_prog *prog,
248 struct gpu_array_info *array, __isl_take isl_union_map *order)
250 int i;
252 for (i = 0; i < prog->scop->pet->n_independence; ++i) {
253 struct pet_independence *pi = prog->scop->pet->independences[i];
254 if (isl_union_set_contains(pi->local, array->space))
255 continue;
257 order = isl_union_map_subtract(order,
258 isl_union_map_copy(pi->filter));
261 return order;
264 /* For each array in "prog", store the (untagged) order dependences
265 * derived from the array in array->dep_order.
266 * In particular, consider all references that access the given array
267 * and take the order dependences that have one of these references
268 * as source. (Since an order dependence relates two references to
269 * the same array, the target of these order dependences will also
270 * be one of these references.)
271 * Additionally, store the union of these array->dep_order relations
272 * for all non-scalar arrays in prog->array_order.
274 void collect_order_dependences(struct gpu_prog *prog)
276 int i;
277 isl_space *space;
278 isl_union_map *accesses;
280 space = isl_union_map_get_space(prog->read);
281 prog->array_order = isl_union_map_empty(space);
283 accesses = isl_union_map_copy(prog->scop->tagged_reads);
284 accesses = isl_union_map_union(accesses,
285 isl_union_map_copy(prog->scop->tagged_may_writes));
286 accesses = isl_union_map_universe(accesses);
287 accesses = isl_union_map_apply_range(accesses,
288 isl_union_map_copy(prog->to_outer));
290 for (i = 0; i < prog->n_array; ++i) {
291 struct gpu_array_info *array = &prog->array[i];
292 isl_set *set;
293 isl_union_set *uset;
294 isl_union_map *order;
296 set = isl_set_universe(isl_space_copy(array->space));
297 uset = isl_union_set_from_set(set);
298 uset = isl_union_map_domain(
299 isl_union_map_intersect_range(isl_union_map_copy(accesses),
300 uset));
301 order = isl_union_map_copy(prog->scop->tagged_dep_order);
302 order = isl_union_map_intersect_domain(order, uset);
303 order = isl_union_map_zip(order);
304 order = isl_union_set_unwrap(isl_union_map_domain(order));
305 order = remove_independences(prog, array, order);
306 array->dep_order = order;
308 if (gpu_array_is_scalar(array) && !array->has_compound_element)
309 continue;
311 prog->array_order = isl_union_map_union(prog->array_order,
312 isl_union_map_copy(array->dep_order));
315 isl_union_map_free(accesses);
318 /* Construct a gpu_array_info for each array referenced by prog->scop and
319 * collect them in prog->array.
321 * The sizes are based on the extents and the set of possibly accessed
322 * elements by "prog".
323 * If there are any member accesses involved, then they are first mapped
324 * to the outer arrays of structs.
326 * If we are allowing live range reordering, then also set
327 * the dep_order field. Otherwise leave it NULL.
329 static int collect_array_info(struct gpu_prog *prog)
331 int i;
332 int r = 0;
333 isl_union_set *arrays;
335 arrays = isl_union_map_range(isl_union_map_copy(prog->read));
336 arrays = isl_union_set_union(arrays,
337 isl_union_map_range(isl_union_map_copy(prog->may_write)));
339 arrays = isl_union_set_apply(arrays,
340 isl_union_map_copy(prog->to_outer));
342 arrays = isl_union_set_coalesce(arrays);
344 prog->n_array = prog->scop->pet->n_array;
345 prog->array = isl_calloc_array(prog->ctx,
346 struct gpu_array_info, prog->n_array);
347 assert(prog->array);
348 for (i = 0; i < prog->scop->pet->n_array; ++i)
349 if (extract_array_info(prog, &prog->array[i],
350 prog->scop->pet->arrays[i], arrays) < 0)
351 r = -1;
353 isl_union_set_free(arrays);
355 if (prog->scop->options->live_range_reordering)
356 collect_order_dependences(prog);
358 return r;
361 static void free_array_info(struct gpu_prog *prog)
363 int i, j;
365 for (i = 0; i < prog->n_array; ++i) {
366 int n_index = prog->array[i].n_index;
367 free(prog->array[i].type);
368 free(prog->array[i].name);
369 for (j = 0; j < n_index; ++j)
370 isl_pw_aff_free(prog->array[i].bound[j]);
371 isl_space_free(prog->array[i].space);
372 isl_set_free(prog->array[i].extent);
373 free(prog->array[i].bound);
374 free(prog->array[i].refs);
375 isl_union_map_free(prog->array[i].dep_order);
377 free(prog->array);
380 /* Check if a gpu array is a scalar. A scalar is a value that is not stored
381 * as an array or through a pointer reference, but as a single data element.
382 * At the moment, scalars are represented as zero-dimensional arrays.
383 * Note that the single data element may be an entire structure.
385 int gpu_array_is_scalar(struct gpu_array_info *array)
387 return array->n_index == 0;
390 /* Is "array" a read-only scalar?
392 int gpu_array_is_read_only_scalar(struct gpu_array_info *array)
394 return array->read_only_scalar;
397 /* Return the set of parameter values for which the array has a positive
398 * size in all dimensions.
399 * If the sizes are only valid for some parameter values, then those
400 * constraints are also taken into account.
402 __isl_give isl_set *gpu_array_positive_size_guard(struct gpu_array_info *array)
404 int i;
405 isl_space *space;
406 isl_set *guard;
408 if (!array)
409 return NULL;
411 space = isl_space_params(isl_space_copy(array->space));
412 guard = isl_set_universe(space);
414 for (i = 0; i < array->n_index; ++i) {
415 isl_pw_aff *bound;
416 isl_set *guard_i, *zero;
418 bound = isl_pw_aff_copy(array->bound[i]);
419 guard_i = isl_pw_aff_nonneg_set(isl_pw_aff_copy(bound));
420 zero = isl_pw_aff_zero_set(bound);
421 guard_i = isl_set_subtract(guard_i, zero);
422 guard = isl_set_intersect(guard, guard_i);
425 return guard;
428 /* Internal data structure for extract_size_of_type.
429 * "type" specifies the name of the space that we want to extract.
430 * "res" is used to store the subset of that space.
432 struct ppcg_extract_size_data {
433 const char *type;
434 isl_set *res;
437 /* This function is called for each set in a union_set.
438 * If the name of the set matches data->type, we store the
439 * set in data->res.
441 static int extract_size_of_type(__isl_take isl_set *size, void *user)
443 struct ppcg_extract_size_data *data = user;
444 const char *name;
446 name = isl_set_get_tuple_name(size);
447 if (name && !strcmp(name, data->type)) {
448 data->res = size;
449 return -1;
452 isl_set_free(size);
453 return 0;
456 /* Given a union map { kernel[i] -> *[...] },
457 * return the range in the space called "type" for the kernel with
458 * sequence number "id".
460 static __isl_give isl_set *extract_sizes(__isl_keep isl_union_map *sizes,
461 const char *type, int id)
463 isl_space *space;
464 isl_set *dom;
465 isl_union_set *local_sizes;
466 struct ppcg_extract_size_data data = { type, NULL };
468 if (!sizes)
469 return NULL;
471 space = isl_union_map_get_space(sizes);
472 space = isl_space_set_from_params(space);
473 space = isl_space_add_dims(space, isl_dim_set, 1);
474 space = isl_space_set_tuple_name(space, isl_dim_set, "kernel");
475 dom = isl_set_universe(space);
476 dom = isl_set_fix_si(dom, isl_dim_set, 0, id);
478 local_sizes = isl_union_set_apply(isl_union_set_from_set(dom),
479 isl_union_map_copy(sizes));
480 isl_union_set_foreach_set(local_sizes, &extract_size_of_type, &data);
481 isl_union_set_free(local_sizes);
482 return data.res;
485 /* Given a singleton set, extract the first (at most *len) elements
486 * of the single integer tuple into *sizes and update *len if needed.
488 static void read_sizes_from_set(__isl_take isl_set *set, int *sizes, int *len)
490 int i;
491 int dim;
493 if (!set)
494 return;
496 dim = isl_set_dim(set, isl_dim_set);
497 if (dim < *len)
498 *len = dim;
500 for (i = 0; i < *len; ++i) {
501 isl_val *v;
503 v = isl_set_plain_get_val_if_fixed(set, isl_dim_set, i);
504 assert(v);
506 sizes[i] = isl_val_get_num_si(v);
507 isl_val_free(v);
510 isl_set_free(set);
513 /* Add the map { kernel[id] -> type[sizes] } to gen->used_sizes,
514 * if the option debug->dump_sizes is set.
516 static void set_used_sizes(struct gpu_gen *gen, const char *type, int id,
517 int *sizes, int len)
519 int i;
520 isl_space *space;
521 isl_map *map;
523 if (!gen->options->debug->dump_sizes)
524 return;
526 space = isl_union_map_get_space(gen->used_sizes);
527 space = isl_space_set_from_params(space);
528 space = isl_space_add_dims(space, isl_dim_set, 1);
529 space = isl_space_set_tuple_name(space, isl_dim_set, "kernel");
530 space = isl_space_from_domain(space);
531 space = isl_space_add_dims(space, isl_dim_out, len);
532 space = isl_space_set_tuple_name(space, isl_dim_out, type);
534 map = isl_map_universe(space);
535 map = isl_map_fix_si(map, isl_dim_in, 0, id);
536 for (i = 0; i < len; ++i)
537 map = isl_map_fix_si(map, isl_dim_out, i, sizes[i]);
539 gen->used_sizes = isl_union_map_add_map(gen->used_sizes, map);
542 /* Extract user specified "tile" sizes from the "sizes" command line option,
543 * defaulting to option->tile_size in each dimension.
544 * *tile_len contains the maximum number of tile sizes needed.
545 * Update *tile_len to the number of specified tile sizes, if any, and
546 * return a pointer to the tile sizes (or NULL on error).
547 * Add the effectively used sizes to gen->used_sizes.
549 static int *read_tile_sizes(struct gpu_gen *gen, int *tile_len)
551 int n;
552 int *tile_size;
553 isl_set *size;
555 tile_size = isl_alloc_array(gen->ctx, int, *tile_len);
556 if (!tile_size)
557 return NULL;
558 for (n = 0; n < *tile_len; ++n)
559 tile_size[n] = gen->options->tile_size;
561 size = extract_sizes(gen->sizes, "tile", gen->kernel_id);
562 read_sizes_from_set(size, tile_size, tile_len);
563 set_used_sizes(gen, "tile", gen->kernel_id, tile_size, *tile_len);
565 return tile_size;
568 /* Extract user specified "block" sizes from the "sizes" command line option,
569 * after filling in some potentially useful defaults.
571 static void read_block_sizes(struct ppcg_kernel *kernel,
572 __isl_keep isl_union_map *sizes)
574 isl_set *size;
576 if (kernel->n_block > 3)
577 kernel->n_block = 3;
578 switch (kernel->n_block) {
579 case 1:
580 kernel->block_dim[0] = 512;
581 break;
582 case 2:
583 kernel->block_dim[0] = 32;
584 kernel->block_dim[1] = 16;
585 break;
586 default:
587 kernel->block_dim[0] = 32;
588 kernel->block_dim[1] = 4;
589 kernel->block_dim[2] = 4;
590 break;
593 size = extract_sizes(sizes, "block", kernel->id);
594 read_sizes_from_set(size, kernel->block_dim, &kernel->n_block);
597 /* Extract user specified "grid" sizes from the "sizes" command line option,
598 * after filling in some potentially useful defaults.
600 static void read_grid_sizes(struct ppcg_kernel *kernel,
601 __isl_keep isl_union_map *sizes)
603 isl_set *size;
605 if (kernel->n_grid > 2)
606 kernel->n_grid = 2;
607 switch (kernel->n_grid) {
608 case 1:
609 kernel->grid_dim[0] = 32768;
610 break;
611 default:
612 kernel->grid_dim[0] = 256;
613 kernel->grid_dim[1] = 256;
614 break;
617 size = extract_sizes(sizes, "grid", kernel->id);
618 read_sizes_from_set(size, kernel->grid_dim, &kernel->n_grid);
621 /* Extract user specified grid and block sizes from the gen->sizes
622 * command line option after filling in some potentially useful defaults.
623 * Store the extracted sizes in "kernel".
624 * Add the effectively used sizes to gen->used_sizes.
626 static void read_grid_and_block_sizes(struct ppcg_kernel *kernel,
627 struct gpu_gen *gen)
629 read_block_sizes(kernel, gen->sizes);
630 read_grid_sizes(kernel, gen->sizes);
631 set_used_sizes(gen, "block", kernel->id,
632 kernel->block_dim, kernel->n_block);
633 set_used_sizes(gen, "grid", kernel->id,
634 kernel->grid_dim, kernel->n_grid);
637 static void *free_stmts(struct gpu_stmt *stmts, int n)
639 int i;
641 if (!stmts)
642 return NULL;
644 for (i = 0; i < n; ++i) {
645 struct gpu_stmt_access *access, *next;
647 for (access = stmts[i].accesses; access; access = next) {
648 next = access->next;
649 isl_id_free(access->ref_id);
650 isl_map_free(access->access);
651 isl_map_free(access->tagged_access);
652 free(access);
655 isl_id_free(stmts[i].id);
657 free(stmts);
659 return NULL;
662 /* Add parameters p[i] with identifiers "ids" to "set",
663 * with bounds to 0 <= p[i] < size[i].
665 __isl_give isl_set *add_bounded_parameters(__isl_take isl_set *set,
666 int *size, __isl_keep isl_id_list *ids)
668 int i, len;
669 unsigned nparam;
671 len = isl_id_list_n_id(ids);
672 nparam = isl_set_dim(set, isl_dim_param);
673 set = isl_set_add_dims(set, isl_dim_param, len);
675 for (i = 0; i < len; ++i) {
676 isl_id *id;
678 id = isl_id_list_get_id(ids, i);
679 set = isl_set_set_dim_id(set, isl_dim_param, nparam + i, id);
680 set = isl_set_lower_bound_si(set, isl_dim_param, nparam + i, 0);
681 set = isl_set_upper_bound_si(set, isl_dim_param,
682 nparam + i, size[i] - 1);
685 return set;
688 /* Add "len" parameters p[i] with identifiers "ids" and intersect "set"
689 * with
691 * { : 0 <= p[i] < size[i] }
693 * or an overapproximation.
695 static __isl_give isl_set *add_bounded_parameters_dynamic(
696 __isl_take isl_set *set, __isl_keep isl_multi_pw_aff *size,
697 __isl_keep isl_id_list *ids)
699 int i, len;
700 unsigned nparam;
701 isl_space *space;
702 isl_local_space *ls;
704 len = isl_multi_pw_aff_dim(size, isl_dim_out);
705 nparam = isl_set_dim(set, isl_dim_param);
706 set = isl_set_add_dims(set, isl_dim_param, len);
708 for (i = 0; i < len; ++i) {
709 isl_id *id;
711 id = isl_id_list_get_id(ids, i);
712 set = isl_set_set_dim_id(set, isl_dim_param, nparam + i, id);
715 space = isl_space_params(isl_set_get_space(set));
716 ls = isl_local_space_from_space(space);
717 for (i = 0; i < len; ++i) {
718 isl_pw_aff *param, *size_i, *zero;
719 isl_set *bound;
721 param = isl_pw_aff_var_on_domain(isl_local_space_copy(ls),
722 isl_dim_param, nparam + i);
724 size_i = isl_multi_pw_aff_get_pw_aff(size, i);
725 bound = isl_pw_aff_lt_set(isl_pw_aff_copy(param), size_i);
726 bound = isl_set_from_basic_set(isl_set_simple_hull(bound));
727 set = isl_set_intersect_params(set, bound);
729 zero = isl_pw_aff_zero_on_domain(isl_local_space_copy(ls));
730 bound = isl_pw_aff_ge_set(param, zero);
731 set = isl_set_intersect_params(set, bound);
733 isl_local_space_free(ls);
735 return set;
738 /* Return the union of all tagged access relations in the group.
740 static __isl_give isl_union_map *group_tagged_access_relation(
741 struct gpu_array_ref_group *group)
743 int i;
744 isl_union_map *access;
746 access = isl_union_map_empty(isl_map_get_space(group->access));
747 for (i = 0; i < group->n_ref; ++i) {
748 isl_map *map_i;
750 map_i = isl_map_copy(group->refs[i]->tagged_access);
751 access = isl_union_map_union(access,
752 isl_union_map_from_map(map_i));
755 return access;
758 /* Return the extent of "array", recomputed from the bounds.
759 * The recomputed extent may be simpler than the original extent.
761 static __isl_give isl_set *array_extent(struct gpu_array_info *array)
763 int i;
764 isl_id *id;
765 isl_space *space;
766 isl_local_space *ls;
767 isl_set *extent;
769 id = isl_set_get_tuple_id(array->extent);
770 space = isl_set_get_space(array->extent);
771 extent = isl_set_universe(isl_space_copy(space));
772 ls = isl_local_space_from_space(space);
773 for (i = 0; i < array->n_index; ++i) {
774 isl_pw_aff *bound;
775 isl_aff *aff;
776 isl_pw_aff *index;
777 isl_set *lt;
779 extent = isl_set_lower_bound_si(extent, isl_dim_set, i, 0);
781 aff = isl_aff_var_on_domain(isl_local_space_copy(ls),
782 isl_dim_set, i);
783 index = isl_pw_aff_from_aff(aff);
784 bound = isl_pw_aff_copy(array->bound[i]);
785 bound = isl_pw_aff_from_range(bound);
786 bound = isl_pw_aff_add_dims(bound, isl_dim_in, array->n_index);
787 bound = isl_pw_aff_set_tuple_id(bound, isl_dim_in,
788 isl_id_copy(id));
789 lt = isl_pw_aff_lt_set(index, bound);
790 extent = isl_set_intersect(extent, lt);
792 isl_local_space_free(ls);
793 isl_id_free(id);
795 return extent;
798 /* Return a map from the first group->depth dimensions of the computed
799 * schedule to the array tile in
800 * global memory that corresponds to the shared memory copy.
802 * In particular, return a map
804 * { D[i] -> A[a] }
806 * with constraints
808 * tile_offset(i) <= a <= tile_offset(i) + tile_size - 1 (1)
810 * and
812 * 0 <= a <= array_size - 1 (2)
814 * Note that if some stride has been detected (i.e., when
815 * group->shared_tile->bound[i].shift is set), then a in (1) refers
816 * to the shifted and scaled down version.
818 * Constraints (1) are obtained by mapping the size constraints on the
819 * shared/private memory tile back to the access relation.
820 * Constraints (2) are obtained from the (recomputed) extent.
822 static __isl_give isl_map *group_tile(struct gpu_array_ref_group *group)
824 int i;
825 int n_index = group->array->n_index;
826 isl_map *tile;
827 isl_space *space;
828 isl_set *local;
829 isl_set *extent;
831 space = isl_multi_aff_get_space(group->shared_tile->tiling);
832 space = isl_space_range(space);
833 local = isl_set_universe(space);
834 for (i = 0; i < n_index; ++i) {
835 isl_val *bound;
837 local = isl_set_lower_bound_si(local, isl_dim_set, i, 0);
838 bound = isl_val_copy(group->shared_tile->bound[i].size);
839 bound = isl_val_sub_ui(bound, 1);
840 local = isl_set_upper_bound_val(local, isl_dim_set, i, bound);
842 local = isl_set_preimage_multi_aff(local,
843 isl_multi_aff_copy(group->shared_tile->tiling));
844 tile = isl_set_unwrap(local);
845 extent = array_extent(group->array);
846 tile = isl_map_intersect_range(tile, extent);
848 return tile;
851 /* Given a mapping "iterator_map" from the AST schedule to a domain,
852 * return the corresponding mapping from the AST schedule to
853 * to the outer kernel->shared_schedule_dim dimensions of
854 * the schedule computed by PPCG for this kernel.
856 * Note that kernel->shared_schedule_dim is at least as large as
857 * the largest depth of any array reference group associated to the kernel.
858 * This is needed as the returned schedule is used to extract a mapping
859 * to the outer group->depth dimensions in transform_index.
861 static __isl_give isl_pw_multi_aff *compute_sched_to_shared(
862 struct ppcg_kernel *kernel, __isl_take isl_pw_multi_aff *iterator_map)
864 isl_union_pw_multi_aff *upma;
865 isl_pw_multi_aff *pma;
866 isl_space *space;
868 space = isl_space_range(isl_pw_multi_aff_get_space(iterator_map));
869 space = isl_space_from_domain(space);
870 space = isl_space_add_dims(space, isl_dim_out,
871 kernel->shared_schedule_dim);
873 upma = isl_union_pw_multi_aff_copy(kernel->shared_schedule);
874 pma = isl_union_pw_multi_aff_extract_pw_multi_aff(upma, space);
875 isl_union_pw_multi_aff_free(upma);
877 return isl_pw_multi_aff_pullback_pw_multi_aff(pma, iterator_map);
880 /* If max_shared_memory is not set to infinity (-1), then make
881 * sure that the total amount of shared memory required by the
882 * array reference groups mapped to shared memory by "kernel"
883 * is no larger than this maximum.
885 * We apply a greedy approach and discard (keep in global memory)
886 * those groups that would result in a total memory size that
887 * is larger than the maximum.
889 * This function should be called after any function that may
890 * affect the decision on whether to place a reference group
891 * in private, shared or global memory.
893 static void check_shared_memory_bound(struct ppcg_kernel *kernel)
895 int i, j;
896 isl_val *left, *size;
898 if (kernel->options->max_shared_memory < 0)
899 return;
901 left = isl_val_int_from_si(kernel->ctx,
902 kernel->options->max_shared_memory);
904 for (i = 0; i < kernel->n_array; ++i) {
905 struct gpu_local_array_info *local = &kernel->array[i];
907 for (j = 0; j < local->n_group; ++j) {
908 struct gpu_array_ref_group *group;
910 group = local->groups[j];
911 if (group->private_tile)
912 continue;
913 if (!group->shared_tile)
914 continue;
916 size = gpu_array_tile_size(group->shared_tile);
917 size = isl_val_mul_ui(size, local->array->size);
919 if (isl_val_le(size, left)) {
920 left = isl_val_sub(left, size);
921 continue;
923 isl_val_free(size);
925 group->shared_tile =
926 gpu_array_tile_free(group->shared_tile);
930 isl_val_free(left);
933 /* Compute a tiling for all the array reference groups in "kernel".
935 static void compute_group_tilings(struct ppcg_kernel *kernel)
937 int i, j;
939 for (i = 0; i < kernel->n_array; ++i) {
940 struct gpu_local_array_info *array = &kernel->array[i];
942 for (j = 0; j < array->n_group; ++j)
943 gpu_array_ref_group_compute_tiling(array->groups[j]);
947 /* Compute the size of a bounding box around the origin and "set",
948 * where "set" is assumed to contain only non-negative elements.
949 * In particular, compute the maximal value of "set" in each direction
950 * and add one.
952 static __isl_give isl_multi_pw_aff *extract_size(__isl_take isl_set *set,
953 __isl_take isl_set *context)
955 int i, n;
956 isl_multi_pw_aff *mpa;
958 context = isl_set_params(context);
959 n = isl_set_dim(set, isl_dim_set);
960 mpa = isl_multi_pw_aff_zero(isl_set_get_space(set));
961 for (i = 0; i < n; ++i) {
962 isl_space *space;
963 isl_aff *one;
964 isl_pw_aff *bound;
966 bound = isl_set_dim_max(isl_set_copy(set), i);
967 bound = isl_pw_aff_coalesce(bound);
968 bound = isl_pw_aff_gist(bound, isl_set_copy(context));
970 space = isl_pw_aff_get_domain_space(bound);
971 one = isl_aff_zero_on_domain(isl_local_space_from_space(space));
972 one = isl_aff_add_constant_si(one, 1);
973 bound = isl_pw_aff_add(bound, isl_pw_aff_from_aff(one));
974 mpa = isl_multi_pw_aff_set_pw_aff(mpa, i, bound);
976 isl_set_free(set);
977 isl_set_free(context);
979 return mpa;
982 /* Compute the effective grid size as a list of the sizes in each dimension.
984 * The grid size specified by the user or set by default
985 * in read_grid_sizes() and applied by the block filter,
986 * may be too large for the given code in the sense that
987 * it may contain blocks that don't need to execute anything.
988 * We therefore don't return this grid size, but instead the
989 * smallest grid size that ensures that all blocks that actually
990 * execute code are included in the grid.
992 * We first extract a description of the grid, i.e., the possible values
993 * of the block ids, from the domain elements in "domain" and
994 * kernel->block_filter.
995 * The block ids are parameters in kernel->block_filter.
996 * We simply need to change them into set dimensions.
998 * Then, for each block dimension, we compute the maximal value of the block id
999 * and add one.
1001 static __isl_give isl_multi_pw_aff *extract_grid_size(
1002 struct ppcg_kernel *kernel, __isl_take isl_union_set *domain)
1004 int i;
1005 isl_set *grid;
1007 domain = isl_union_set_intersect(domain,
1008 isl_union_set_copy(kernel->block_filter));
1009 grid = isl_union_set_params(domain);
1010 grid = isl_set_from_params(grid);
1011 grid = isl_set_add_dims(grid, isl_dim_set, kernel->n_grid);
1012 for (i = 0; i < kernel->n_grid; ++i) {
1013 int pos;
1014 isl_id *id;
1016 id = isl_id_list_get_id(kernel->block_ids, i);
1017 pos = isl_set_find_dim_by_id(grid, isl_dim_param, id);
1018 isl_id_free(id);
1019 assert(pos >= 0);
1020 grid = isl_set_equate(grid, isl_dim_param, pos, isl_dim_set, i);
1021 grid = isl_set_project_out(grid, isl_dim_param, pos, 1);
1024 return extract_size(grid, isl_set_copy(kernel->context));
1027 /* Compute the size of a fixed bounding box around the origin and "set",
1028 * where "set" is assumed to contain only non-negative elements,
1029 * and store the results in "size".
1030 * In particular, compute the maximal value of "set" in each direction
1031 * and add one.
1033 static void extract_fixed_size(__isl_take isl_set *set, int *size)
1035 int i, n;
1036 isl_local_space *ls;
1037 isl_aff *obj;
1039 n = isl_set_dim(set, isl_dim_set);
1040 ls = isl_local_space_from_space(isl_set_get_space(set));
1041 obj = isl_aff_zero_on_domain(ls);
1042 for (i = 0; i < n; ++i) {
1043 isl_val *max;
1045 obj = isl_aff_set_coefficient_si(obj, isl_dim_in, i, 1);
1046 max = isl_set_max_val(set, obj);
1047 size[i] = isl_val_get_num_si(max) + 1;
1048 isl_val_free(max);
1049 obj = isl_aff_set_coefficient_si(obj, isl_dim_in, i, 0);
1051 isl_aff_free(obj);
1052 isl_set_free(set);
1055 /* Compute the effective block size as a list of the sizes in each dimension
1056 * and store the sizes in kernel->block_dim.
1058 * The block size specified by the user or set by default
1059 * in read_block_sizes() and applied by the thread filter,
1060 * may be too large for the given code in the sense that
1061 * it may contain threads that don't need to execute anything.
1062 * We therefore update this block size in kernel->block_dim
1063 * to the smallest block size that ensures that all threads
1064 * that actually execute code are included in the block.
1066 * The possible values of the thread ids is obtained from
1067 * the domain elements "domain" and kernel->thread_filter.
1068 * The current implementation eliminates all parameters, ensuring
1069 * that the size is a fixed constant in each dimension.
1070 * In principle we could also compute parametric sizes.
1071 * We would have to make sure to project out all b%d and t%d parameters,
1072 * however.
1074 static void extract_block_size(struct ppcg_kernel *kernel,
1075 __isl_take isl_union_set *domain)
1077 int i;
1078 int nparam;
1079 isl_set *block;
1081 domain = isl_union_set_intersect(domain,
1082 isl_union_set_copy(kernel->thread_filter));
1083 block = isl_union_set_params(domain);
1084 block = isl_set_from_params(block);
1085 block = isl_set_add_dims(block, isl_dim_set, kernel->n_block);
1086 for (i = 0; i < kernel->n_block; ++i) {
1087 int pos;
1088 isl_id *id;
1090 id = isl_id_list_get_id(kernel->thread_ids, i);
1091 pos = isl_set_find_dim_by_id(block, isl_dim_param, id);
1092 isl_id_free(id);
1093 assert(pos >= 0);
1094 block = isl_set_equate(block, isl_dim_param, pos,
1095 isl_dim_set, i);
1097 nparam = isl_set_dim(block, isl_dim_param);
1098 block = isl_set_project_out(block, isl_dim_param, 0, nparam);
1100 extract_fixed_size(block, kernel->block_dim);
1103 struct ppcg_kernel *ppcg_kernel_free(struct ppcg_kernel *kernel)
1105 int i, j;
1107 if (!kernel)
1108 return NULL;
1110 isl_id_list_free(kernel->block_ids);
1111 isl_id_list_free(kernel->thread_ids);
1112 isl_multi_pw_aff_free(kernel->grid_size);
1113 isl_set_free(kernel->context);
1114 isl_union_set_free(kernel->core);
1115 isl_union_set_free(kernel->arrays);
1116 isl_space_free(kernel->space);
1117 isl_ast_node_free(kernel->tree);
1118 isl_union_set_free(kernel->block_filter);
1119 isl_union_set_free(kernel->thread_filter);
1120 isl_union_pw_multi_aff_free(kernel->shared_schedule);
1121 isl_union_set_free(kernel->sync_writes);
1123 for (i = 0; i < kernel->n_array; ++i) {
1124 struct gpu_local_array_info *array = &kernel->array[i];
1126 for (j = 0; j < array->n_group; ++j)
1127 gpu_array_ref_group_free(array->groups[j]);
1128 free(array->groups);
1130 isl_pw_aff_list_free(array->bound);
1132 free(kernel->array);
1134 for (i = 0; i < kernel->n_var; ++i) {
1135 free(kernel->var[i].name);
1136 isl_vec_free(kernel->var[i].size);
1138 free(kernel->var);
1140 free(kernel);
1142 return NULL;
1145 /* Wrapper around ppcg_kernel_free for use as a isl_id_set_free_user callback.
1147 static void ppcg_kernel_free_wrap(void *user)
1149 struct ppcg_kernel *kernel = user;
1151 ppcg_kernel_free(kernel);
1154 static void create_kernel_var(isl_ctx *ctx, struct gpu_array_ref_group *group,
1155 struct ppcg_kernel_var *var)
1157 int j;
1158 struct gpu_array_tile *tile;
1159 isl_printer *p;
1160 char *name;
1162 var->array = group->array;
1164 tile = group->private_tile;
1165 var->type = ppcg_access_private;
1166 if (!tile) {
1167 tile = group->shared_tile;
1168 var->type = ppcg_access_shared;
1171 p = isl_printer_to_str(ctx);
1172 p = gpu_array_ref_group_print_name(group, p);
1173 var->name = isl_printer_get_str(p);
1174 isl_printer_free(p);
1176 var->size = isl_vec_alloc(ctx, group->array->n_index);
1178 for (j = 0; j < group->array->n_index; ++j)
1179 var->size = isl_vec_set_element_val(var->size, j,
1180 isl_val_copy(tile->bound[j].size));
1183 static int create_kernel_vars(struct ppcg_kernel *kernel)
1185 int i, j, n;
1187 n = 0;
1188 for (i = 0; i < kernel->n_array; ++i) {
1189 struct gpu_local_array_info *array = &kernel->array[i];
1191 for (j = 0; j < array->n_group; ++j) {
1192 struct gpu_array_ref_group *group = array->groups[j];
1193 if (group->private_tile || group->shared_tile)
1194 ++n;
1198 kernel->n_var = n;
1199 kernel->var = isl_calloc_array(kernel->ctx, struct ppcg_kernel_var, n);
1200 if (!kernel->var)
1201 return -1;
1203 n = 0;
1204 for (i = 0; i < kernel->n_array; ++i) {
1205 struct gpu_local_array_info *array = &kernel->array[i];
1207 for (j = 0; j < array->n_group; ++j) {
1208 struct gpu_array_ref_group *group = array->groups[j];
1209 if (!group->private_tile && !group->shared_tile)
1210 continue;
1211 create_kernel_var(kernel->ctx, group, &kernel->var[n]);
1212 ++n;
1216 return 0;
1219 /* Replace "pa" by the zero function defined over the universe domain
1220 * in the space of "pa".
1222 static __isl_give isl_pw_aff *set_universally_zero(__isl_take isl_pw_aff *pa)
1224 isl_space *space;
1225 isl_aff *zero;
1227 space = isl_space_domain(isl_pw_aff_get_space(pa));
1228 isl_pw_aff_free(pa);
1229 zero = isl_aff_zero_on_domain(isl_local_space_from_space(space));
1231 return isl_pw_aff_from_aff(zero);
1234 /* The sizes of the arrays on the host that have been computed by
1235 * extract_array_info may depend on the parameters. Use the extra
1236 * constraints on the parameters that are valid at "host_domain"
1237 * to simplify these expressions and store the results in kernel->array.
1239 * We only need these localized bounds for arrays that are accessed
1240 * by the current kernel. If we have found at least one reference group
1241 * then the array is accessed by the kernel. If the array has compound
1242 * elements then we skipped the construction of array reference groups.
1244 * The resulting sizes may be functions that are nowhere defined
1245 * in case the access function cannot possibly access anything inside
1246 * the kernel for some reason. If so, they are replaced by the zero
1247 * function. Since the access function cannot actually access anything,
1248 * there is no harm in printing the array sizes as zero.
1250 static void localize_bounds(struct ppcg_kernel *kernel,
1251 __isl_keep isl_set *host_domain)
1253 int i, j;
1254 isl_set *context;
1256 context = isl_set_copy(host_domain);
1257 context = isl_set_params(context);
1259 for (i = 0; i < kernel->n_array; ++i) {
1260 struct gpu_local_array_info *local = &kernel->array[i];
1261 isl_pw_aff_list *bound;
1262 int n_index;
1264 if (local->n_group == 0 && !local->array->has_compound_element)
1265 continue;
1267 n_index = local->array->n_index;
1268 bound = isl_pw_aff_list_alloc(kernel->ctx, n_index);
1270 for (j = 0; j < n_index; ++j) {
1271 isl_pw_aff *pwaff;
1272 int empty;
1274 pwaff = isl_pw_aff_copy(local->array->bound[j]);
1275 pwaff = isl_pw_aff_gist(pwaff, isl_set_copy(context));
1276 empty = isl_pw_aff_is_empty(pwaff);
1277 if (empty < 0)
1278 pwaff = isl_pw_aff_free(pwaff);
1279 else if (empty)
1280 pwaff = set_universally_zero(pwaff);
1281 bound = isl_pw_aff_list_add(bound, pwaff);
1284 local->n_index = n_index;
1285 local->bound = bound;
1287 isl_set_free(context);
1290 /* Create the array of gpu_local_array_info structures "array"
1291 * inside "kernel". The number of elements in this array is
1292 * the same as the number of arrays in "prog".
1293 * Initialize the "array" field of each local array to point
1294 * to the corresponding array in "prog".
1296 static struct ppcg_kernel *ppcg_kernel_create_local_arrays(
1297 struct ppcg_kernel *kernel, struct gpu_prog *prog)
1299 int i;
1300 isl_ctx *ctx;
1302 ctx = isl_set_get_ctx(prog->context);
1303 kernel->array = isl_calloc_array(ctx,
1304 struct gpu_local_array_info, prog->n_array);
1305 if (!kernel->array)
1306 return ppcg_kernel_free(kernel);
1307 kernel->n_array = prog->n_array;
1309 for (i = 0; i < prog->n_array; ++i)
1310 kernel->array[i].array = &prog->array[i];
1312 return kernel;
1315 /* Find the element in gen->stmt that has the given "id".
1316 * Return NULL if no such gpu_stmt can be found.
1318 static struct gpu_stmt *find_stmt(struct gpu_prog *prog, __isl_keep isl_id *id)
1320 int i;
1322 for (i = 0; i < prog->n_stmts; ++i) {
1323 if (id == prog->stmts[i].id)
1324 break;
1327 return i < prog->n_stmts ? &prog->stmts[i] : NULL;
1330 void ppcg_kernel_stmt_free(void *user)
1332 int i;
1333 struct ppcg_kernel_stmt *stmt = user;
1335 if (!stmt)
1336 return;
1338 switch (stmt->type) {
1339 case ppcg_kernel_copy:
1340 isl_ast_expr_free(stmt->u.c.index);
1341 isl_ast_expr_free(stmt->u.c.local_index);
1342 break;
1343 case ppcg_kernel_domain:
1344 isl_id_to_ast_expr_free(stmt->u.d.ref2expr);
1345 break;
1346 case ppcg_kernel_sync:
1347 break;
1350 free(stmt);
1353 /* Return the gpu_stmt_access in the list "accesses" that corresponds
1354 * to "ref_id".
1356 static struct gpu_stmt_access *find_access(struct gpu_stmt_access *accesses,
1357 __isl_keep isl_id *ref_id)
1359 struct gpu_stmt_access *access;
1361 for (access = accesses; access; access = access->next)
1362 if (access->ref_id == ref_id)
1363 return access;
1365 return NULL;
1368 /* Return the index of the array called "name" in the list of arrays.
1370 static int find_array_index(struct ppcg_kernel *kernel, const char *name)
1372 int i;
1374 for (i = 0; i < kernel->n_array; ++i)
1375 if (!strcmp(name, kernel->array[i].array->name))
1376 return i;
1378 return -1;
1381 /* Internal data structure for the index and AST expression transformation
1382 * callbacks for pet_stmt_build_ast_exprs.
1384 * "kernel" is the kernel for which are computing AST expressions.
1385 * "accesses" is the list of gpu_stmt_access in the statement.
1386 * "iterator_map" expresses the statement iterators in terms of
1387 * the AST loop iterators.
1388 * "sched2shared" expresses the outer shared_schedule_dim dimensions of
1389 * the kernel schedule in terms of the AST loop iterators.
1391 * The following fields are set in transform_index and used in transform_expr.
1392 * "array" is the array that is being accessed.
1393 * "global" is set if the global array is accessed (rather than
1394 * shared/private memory).
1395 * "local_array" refers to information on the array specialized
1396 * to the current kernel.
1398 struct ppcg_transform_data {
1399 struct ppcg_kernel *kernel;
1400 struct gpu_stmt_access *accesses;
1401 isl_pw_multi_aff *iterator_map;
1402 isl_pw_multi_aff *sched2shared;
1404 struct gpu_array_info *array;
1405 int global;
1406 struct gpu_local_array_info *local_array;
1409 /* Return the name of the outer array (of structs) accessed by "access".
1411 static const char *get_outer_array_name(__isl_keep isl_map *access)
1413 isl_space *space;
1414 const char *name;
1416 space = isl_space_range(isl_map_get_space(access));
1417 while (space && isl_space_is_wrapping(space))
1418 space = isl_space_domain(isl_space_unwrap(space));
1419 name = isl_space_get_tuple_name(space, isl_dim_set);
1420 isl_space_free(space);
1422 return name;
1425 /* Return a pointer to the gpu_array_ref_group in "local"
1426 * that contains the reference "access".
1427 * Return NULL if no such group can be found.
1429 static struct gpu_array_ref_group *find_ref_group(
1430 struct gpu_local_array_info *local, struct gpu_stmt_access *access)
1432 int i, j;
1434 for (i = 0; i < local->n_group; ++i) {
1435 struct gpu_array_ref_group *group = local->groups[i];
1437 for (j = 0; j < group->n_ref; ++j)
1438 if (group->refs[j] == access)
1439 return group;
1442 return NULL;
1445 /* Index transformation callback for pet_stmt_build_ast_exprs.
1447 * "index" expresses the array indices in terms of statement iterators
1449 * We first reformulate "index" in terms of the AST loop iterators.
1450 * Then we check if we are accessing the global array or
1451 * a shared/private copy. In the former case, we simply return
1452 * the updated index. If "index" is an affine expression rather
1453 * than an array access, then we also return the updated index here.
1455 * If no reference groups have been computed for the array,
1456 * then we can only be accessing the global array.
1458 * Otherwise, we apply the tiling to the index.
1459 * This tiling is of the form
1461 * [D -> A] -> T
1463 * where D corresponds to the outer group->depth dimensions of
1464 * the kernel schedule.
1465 * The index is of the form
1467 * L -> A
1469 * We update the tiling to refer to the AST loop iterators
1471 * [L -> A] -> T
1473 * and modify index to keep track of those iterators
1475 * L -> [L -> A]
1477 * Combining these two yields a tiled index expression in terms
1478 * of the AST loop iterators
1480 * L -> T
1482 static __isl_give isl_multi_pw_aff *transform_index(
1483 __isl_take isl_multi_pw_aff *index, __isl_keep isl_id *ref_id,
1484 void *user)
1486 struct ppcg_transform_data *data = user;
1487 struct gpu_stmt_access *access;
1488 struct gpu_array_ref_group *group;
1489 struct gpu_array_tile *tile;
1490 isl_pw_multi_aff *iterator_map;
1491 int i;
1492 int dim;
1493 const char *name;
1494 isl_space *space;
1495 isl_multi_pw_aff *tiling;
1496 isl_pw_multi_aff *pma;
1497 isl_multi_pw_aff *mpa;
1498 isl_pw_multi_aff *sched2depth;
1500 data->array = NULL;
1502 iterator_map = isl_pw_multi_aff_copy(data->iterator_map);
1503 index = isl_multi_pw_aff_pullback_pw_multi_aff(index, iterator_map);
1505 access = find_access(data->accesses, ref_id);
1506 if (!access)
1507 return index;
1508 if (!isl_map_has_tuple_name(access->access, isl_dim_out))
1509 return index;
1511 name = get_outer_array_name(access->access);
1512 i = find_array_index(data->kernel, name);
1513 if (i < 0)
1514 isl_die(isl_multi_pw_aff_get_ctx(index), isl_error_internal,
1515 "cannot find array",
1516 return isl_multi_pw_aff_free(index));
1517 data->local_array = &data->kernel->array[i];
1518 data->array = data->local_array->array;
1520 group = find_ref_group(data->local_array, access);
1521 if (!group) {
1522 data->global = 1;
1523 return index;
1526 tile = group->private_tile;
1527 if (!tile)
1528 tile = group->shared_tile;
1529 data->global = !tile;
1530 if (!tile)
1531 return index;
1533 space = isl_space_range(isl_multi_pw_aff_get_space(index));
1534 space = isl_space_map_from_set(space);
1535 pma = isl_pw_multi_aff_identity(space);
1536 sched2depth = isl_pw_multi_aff_copy(data->sched2shared);
1537 dim = isl_pw_multi_aff_dim(sched2depth, isl_dim_out);
1538 sched2depth = isl_pw_multi_aff_drop_dims(sched2depth, isl_dim_out,
1539 group->depth, dim - group->depth);
1540 pma = isl_pw_multi_aff_product(sched2depth, pma);
1541 tiling = isl_multi_pw_aff_from_multi_aff(
1542 isl_multi_aff_copy(tile->tiling));
1543 tiling = isl_multi_pw_aff_pullback_pw_multi_aff(tiling, pma);
1545 space = isl_space_domain(isl_multi_pw_aff_get_space(index));
1546 space = isl_space_map_from_set(space);
1547 mpa = isl_multi_pw_aff_identity(space);
1548 index = isl_multi_pw_aff_range_product(mpa, index);
1549 index = isl_multi_pw_aff_pullback_multi_pw_aff(tiling, index);
1551 return index;
1554 /* Dereference "expr" by adding an index [0].
1555 * The original "expr" is assumed not to have any indices.
1557 * If "expr" is a member access, then the dereferencing needs
1558 * to be applied to the structure argument of this member access.
1560 static __isl_give isl_ast_expr *dereference(__isl_take isl_ast_expr *expr)
1562 isl_ctx *ctx;
1563 isl_ast_expr *arg0, *res;
1564 isl_ast_expr_list *list;
1566 arg0 = isl_ast_expr_get_op_arg(expr, 0);
1567 if (!arg0)
1568 return isl_ast_expr_free(expr);
1569 if (isl_ast_expr_get_type(arg0) == isl_ast_expr_op &&
1570 isl_ast_expr_get_op_type(arg0) == isl_ast_op_member) {
1571 isl_ast_expr *arg;
1573 arg = isl_ast_expr_get_op_arg(arg0, 0);
1574 arg = dereference(arg);
1575 arg0 = isl_ast_expr_set_op_arg(arg0, 0, arg);
1576 expr = isl_ast_expr_set_op_arg(expr, 0, arg0);
1578 return expr;
1580 isl_ast_expr_free(arg0);
1582 ctx = isl_ast_expr_get_ctx(expr);
1583 res = isl_ast_expr_from_val(isl_val_zero(ctx));
1584 list = isl_ast_expr_list_from_ast_expr(res);
1585 res = isl_ast_expr_get_op_arg(expr, 0);
1586 res = isl_ast_expr_access(res, list);
1587 isl_ast_expr_free(expr);
1589 return res;
1592 /* Linearize the index expression "expr" based on the array bounds
1593 * of "array".
1595 * That is, transform expression
1597 * A[i_0][i_1]...[i_n]
1599 * to
1601 * A[(..((i_0 * b_1 + i_1) ... ) * b_n + i_n]
1603 * where b_0, b_1, ..., b_n are the bounds on the array.
1605 * If the base of "expr" is a member access, then the linearization needs
1606 * to be applied to the structure argument of this member access.
1608 * In the base case, if "expr" has no arguments (other than the name of
1609 * the array), then we are passing an entire array to a function.
1610 * In this case, there is nothing to linearize.
1611 * Note that at this point an expression with no arguments can
1612 * only be an entire array because the scalar case and
1613 * the case of single struct are handled by the caller.
1615 * If the number of specified index expressions in "expr"
1616 * is smaller than the dimension of the accessed array,
1617 * then the missing i_j also do not appear in the linearized expression.
1618 * Furthermore, since such an expression does not refer to a single
1619 * element while the default linearized expression would refer to
1620 * a single element, we return the expression
1622 * A + (..((i_0 * b_1 + i_1) ... ) * b_n]
1624 * instead. Note that because of the special case handling above,
1625 * we can assume here that here that there is at least one index expression.
1627 __isl_give isl_ast_expr *gpu_local_array_info_linearize_index(
1628 struct gpu_local_array_info *array, __isl_take isl_ast_expr *expr)
1630 int i, n;
1631 isl_ctx *ctx;
1632 isl_set *context;
1633 isl_ast_expr *arg0;
1634 isl_ast_expr *res;
1635 isl_ast_expr_list *list;
1636 isl_ast_build *build;
1638 arg0 = isl_ast_expr_get_op_arg(expr, 0);
1639 if (isl_ast_expr_get_type(arg0) == isl_ast_expr_op &&
1640 isl_ast_expr_get_op_type(arg0) == isl_ast_op_member) {
1641 isl_ast_expr *arg;
1643 arg = isl_ast_expr_get_op_arg(arg0, 0);
1644 arg = gpu_local_array_info_linearize_index(array, arg);
1645 arg0 = isl_ast_expr_set_op_arg(arg0, 0, arg);
1646 expr = isl_ast_expr_set_op_arg(expr, 0, arg0);
1648 return expr;
1650 isl_ast_expr_free(arg0);
1652 if (isl_ast_expr_get_op_n_arg(expr) == 1)
1653 return expr;
1655 ctx = isl_ast_expr_get_ctx(expr);
1656 context = isl_set_universe(isl_space_params_alloc(ctx, 0));
1657 build = isl_ast_build_from_context(context);
1659 n = isl_ast_expr_get_op_n_arg(expr);
1660 res = isl_ast_expr_get_op_arg(expr, 1);
1661 for (i = 1; i < array->n_index; ++i) {
1662 isl_pw_aff *bound_i;
1663 isl_ast_expr *expr_i;
1665 bound_i = isl_pw_aff_list_get_pw_aff(array->bound, i);
1666 expr_i = isl_ast_build_expr_from_pw_aff(build, bound_i);
1667 res = isl_ast_expr_mul(res, expr_i);
1669 if (i + 1 >= n)
1670 continue;
1671 expr_i = isl_ast_expr_get_op_arg(expr, i + 1);
1672 res = isl_ast_expr_add(res, expr_i);
1675 isl_ast_build_free(build);
1677 if (1 + array->n_index > n) {
1678 res = isl_ast_expr_add(isl_ast_expr_get_op_arg(expr, 0), res);
1679 } else {
1680 list = isl_ast_expr_list_from_ast_expr(res);
1681 res = isl_ast_expr_get_op_arg(expr, 0);
1682 res = isl_ast_expr_access(res, list);
1685 isl_ast_expr_free(expr);
1687 return res;
1690 /* AST expression transformation callback for pet_stmt_build_ast_exprs.
1692 * If the AST expression refers to an array that is not accessed
1693 * at all, then this means the value of the expression is not used,
1694 * so we might as well print zero (NULL pointer) instead.
1696 * If the AST expression refers to a global scalar that is not
1697 * a read-only scalar, then its address was passed to the kernel and
1698 * we need to dereference it.
1700 * If the AST expression refers to an access to a global array,
1701 * then we linearize the access exploiting the bounds in data->local_array.
1703 static __isl_give isl_ast_expr *transform_expr(__isl_take isl_ast_expr *expr,
1704 __isl_keep isl_id *id, void *user)
1706 struct ppcg_transform_data *data = user;
1708 if (!data->array)
1709 return expr;
1710 if (!data->array->accessed) {
1711 isl_ctx *ctx;
1713 ctx = isl_ast_expr_get_ctx(expr);
1714 isl_ast_expr_free(expr);
1715 return isl_ast_expr_from_val(isl_val_zero(ctx));
1717 if (gpu_array_is_read_only_scalar(data->array))
1718 return expr;
1719 if (!data->global)
1720 return expr;
1721 if (data->array->n_index == 0)
1722 return dereference(expr);
1723 if (!data->array->linearize)
1724 return expr;
1726 return gpu_local_array_info_linearize_index(data->local_array, expr);
1729 /* This function is called for each instance of a user statement
1730 * in the kernel "kernel", identified by "gpu_stmt".
1732 * We attach a struct ppcg_kernel_stmt to the "node", containing
1733 * a computed AST expression for each access.
1734 * These AST expressions are computed from iterator_map,
1735 * which expresses the domain
1736 * elements in terms of the generated loops, and sched2shared,
1737 * which expresses the outer shared_schedule_dim dimensions of
1738 * the kernel schedule computed by PPCG in terms of the generated loops.
1740 static __isl_give isl_ast_node *create_domain_leaf(
1741 struct ppcg_kernel *kernel, __isl_take isl_ast_node *node,
1742 __isl_keep isl_ast_build *build, struct gpu_stmt *gpu_stmt)
1744 struct ppcg_transform_data data;
1745 struct ppcg_kernel_stmt *stmt;
1746 isl_id *id;
1747 isl_pw_multi_aff *sched2shared;
1748 isl_map *map;
1749 isl_pw_multi_aff *iterator_map;
1750 isl_union_map *schedule;
1752 stmt = isl_calloc_type(kernel->ctx, struct ppcg_kernel_stmt);
1753 if (!stmt)
1754 return isl_ast_node_free(node);
1756 schedule = isl_ast_build_get_schedule(build);
1757 map = isl_map_reverse(isl_map_from_union_map(schedule));
1758 iterator_map = isl_pw_multi_aff_from_map(map);
1759 sched2shared = compute_sched_to_shared(kernel,
1760 isl_pw_multi_aff_copy(iterator_map));
1762 stmt->type = ppcg_kernel_domain;
1763 stmt->u.d.stmt = gpu_stmt;
1765 data.kernel = kernel;
1766 data.accesses = stmt->u.d.stmt->accesses;
1767 data.iterator_map = iterator_map;
1768 data.sched2shared = sched2shared;
1769 stmt->u.d.ref2expr = pet_stmt_build_ast_exprs(stmt->u.d.stmt->stmt,
1770 build, &transform_index, &data,
1771 &transform_expr, &data);
1773 isl_pw_multi_aff_free(iterator_map);
1774 isl_pw_multi_aff_free(sched2shared);
1776 id = isl_id_alloc(kernel->ctx, NULL, stmt);
1777 id = isl_id_set_free_user(id, &ppcg_kernel_stmt_free);
1778 return isl_ast_node_set_annotation(node, id);
1781 /* This function is called for each statement node in the AST
1782 * for copying to or from shared/private memory.
1783 * Attach a pointer to a ppcg_kernel_stmt representing the copy
1784 * statement to the node.
1785 * The statement name is "read" or "write", depending on whether we are
1786 * reading from global memory or writing to global memory.
1788 * The schedule is of the form
1790 * type[D -> A] -> L
1792 * where D corresponds to the outer group->depth dimensions of
1793 * the kernel schedule, A to the global array and L to the outer
1794 * generated AST schedule.
1795 * We compute the inverse and strip off the type, resulting in
1797 * L -> [D -> A]
1799 * We combine this mapping with on the one hand the projection
1801 * [D -> A] -> A
1803 * and on the other hand the group tiling
1805 * [D -> A] -> T
1807 * resulting in
1809 * L -> A and L -> T
1811 * and store the corresponding expressions in stmt->index and stmt->local_index,
1812 * where stmt points to the ppcg_kernel_stmt that is attached to the node.
1814 static __isl_give isl_ast_node *create_access_leaf(struct ppcg_kernel *kernel,
1815 struct gpu_array_ref_group *group, __isl_take isl_ast_node *node,
1816 __isl_keep isl_ast_build *build)
1818 struct ppcg_kernel_stmt *stmt;
1819 struct gpu_array_tile *tile;
1820 isl_id *id;
1821 isl_ast_expr *expr;
1822 isl_space *space;
1823 isl_map *access;
1824 isl_pw_multi_aff *pma, *pma2;
1825 const char *type;
1827 stmt = isl_calloc_type(kernel->ctx, struct ppcg_kernel_stmt);
1828 if (!stmt)
1829 return isl_ast_node_free(node);
1831 access = isl_map_from_union_map(isl_ast_build_get_schedule(build));
1832 type = isl_map_get_tuple_name(access, isl_dim_in);
1833 stmt->u.c.read = !strcmp(type, "read");
1834 access = isl_map_reverse(access);
1835 pma = isl_pw_multi_aff_from_map(access);
1836 pma = isl_pw_multi_aff_reset_tuple_id(pma, isl_dim_out);
1838 space = isl_space_range(isl_pw_multi_aff_get_space(pma));
1839 space = isl_space_unwrap(space);
1840 pma2 = isl_pw_multi_aff_range_map(space);
1841 pma2 = isl_pw_multi_aff_pullback_pw_multi_aff(pma2,
1842 isl_pw_multi_aff_copy(pma));
1843 expr = isl_ast_build_access_from_pw_multi_aff(build, pma2);
1844 stmt->u.c.index = expr;
1846 tile = gpu_array_ref_group_tile(group);
1847 pma2 = isl_pw_multi_aff_from_multi_aff(
1848 isl_multi_aff_copy(tile->tiling));
1849 pma2 = isl_pw_multi_aff_pullback_pw_multi_aff(pma2, pma);
1850 expr = isl_ast_build_access_from_pw_multi_aff(build, pma2);
1851 stmt->u.c.local_index = expr;
1853 stmt->u.c.array = group->array;
1854 stmt->u.c.local_array = group->local_array;
1855 stmt->type = ppcg_kernel_copy;
1857 id = isl_id_alloc(kernel->ctx, NULL, stmt);
1858 id = isl_id_set_free_user(id, &ppcg_kernel_stmt_free);
1859 return isl_ast_node_set_annotation(node, id);
1862 /* Create a synchronization ppcg_kernel_stmt and
1863 * attach it to the node "node" representing the synchronization.
1865 static __isl_give isl_ast_node *create_sync_leaf(
1866 struct ppcg_kernel *kernel, __isl_take isl_ast_node *node,
1867 __isl_keep isl_ast_build *build)
1869 struct ppcg_kernel_stmt *stmt;
1870 isl_id *id;
1872 stmt = isl_calloc_type(kernel->ctx, struct ppcg_kernel_stmt);
1873 if (!stmt)
1874 return isl_ast_node_free(node);
1876 stmt->type = ppcg_kernel_sync;
1877 id = isl_id_alloc(kernel->ctx, NULL, stmt);
1878 id = isl_id_set_free_user(id, &ppcg_kernel_stmt_free);
1879 return isl_ast_node_set_annotation(node, id);
1882 /* Internal data structure for at_domain.
1884 * "prog" represents the entire scop.
1885 * "kernel" points to the kernel to which the current schedule node
1886 * belongs. It is set by before_mark and reset by after_mark.
1888 struct ppcg_at_domain_data {
1889 struct gpu_prog *prog;
1890 struct ppcg_kernel *kernel;
1893 /* This function is called for each instance of a user statement
1894 * in the kernel. This may be one of the original user statements
1895 * or a statement introduced by PPCG.
1897 * We assume that the original user statements only have a name
1898 * and no user pointer. The statements introduced by PPCG
1899 * on the other hand all have a user pointer.
1901 * If the user statement is one of the original user statements
1902 * (one with no user pointer), then we call create_domain_leaf. Otherwise,
1903 * we check if it is a copy or synchronization statement and
1904 * call the appropriate functions.
1905 * Statements that copy an array to/from the device do not need
1906 * any further treatment.
1908 static __isl_give isl_ast_node *at_domain(__isl_take isl_ast_node *node,
1909 __isl_keep isl_ast_build *build, void *user)
1911 struct ppcg_at_domain_data *data = user;
1912 isl_ast_expr *expr, *arg;
1913 isl_id *id;
1914 int is_sync;
1915 const char *name;
1916 void *p;
1918 expr = isl_ast_node_user_get_expr(node);
1919 arg = isl_ast_expr_get_op_arg(expr, 0);
1920 id = isl_ast_expr_get_id(arg);
1921 name = isl_id_get_name(id);
1922 p = isl_id_get_user(id);
1923 isl_ast_expr_free(expr);
1924 isl_ast_expr_free(arg);
1926 if (!p) {
1927 struct gpu_stmt *gpu_stmt;
1929 gpu_stmt = find_stmt(data->prog, id);
1930 isl_id_free(id);
1931 if (!gpu_stmt)
1932 isl_die(data->prog->ctx, isl_error_internal,
1933 "statement not found",
1934 return isl_ast_node_free(node));
1936 return create_domain_leaf(data->kernel, node, build, gpu_stmt);
1939 is_sync = gpu_tree_id_is_sync(id, data->kernel);
1940 isl_id_free(id);
1941 if (!prefixcmp(name, "to_device_") || !prefixcmp(name, "from_device_"))
1942 return node;
1943 if (is_sync < 0)
1944 return isl_ast_node_free(node);
1945 if (!strcmp(name, "read") || !strcmp(name, "write")) {
1946 struct gpu_array_ref_group *group = p;
1947 return create_access_leaf(data->kernel, group, node, build);
1949 if (!is_sync)
1950 isl_die(data->prog->ctx, isl_error_internal,
1951 "unknown statement type",
1952 return isl_ast_node_free(node));
1953 return create_sync_leaf(data->kernel, node, build);
1956 /* Given a set of wrapped references "ref", return the corresponding
1957 * access relations based on the tagged access relations "tagged".
1959 * The elements of "ref" are of the form
1961 * [D -> R]
1963 * with D an iteration domains and R a reference.
1964 * The elements of "tagged" are of the form
1966 * [D -> R] -> A
1968 * with A an array.
1970 * Extend "tagged" to include the iteration domain in the range, i.e.,
1972 * [D -> R] -> [D -> A]
1974 * apply the result to "ref" and then unwrap the resulting set
1975 * to obtain relations of the form
1977 * D -> A
1979 static __isl_give isl_union_map *wrapped_reference_to_access(
1980 __isl_take isl_union_set *ref, __isl_take isl_union_map *tagged)
1982 isl_union_map *tag2access;
1984 tag2access = isl_union_map_copy(tagged);
1985 tag2access = isl_union_map_universe(tag2access);
1986 tag2access = isl_union_set_unwrap(isl_union_map_domain(tag2access));
1987 tag2access = isl_union_map_domain_map(tag2access);
1988 tag2access = isl_union_map_range_product(tag2access, tagged);
1990 ref = isl_union_set_coalesce(ref);
1991 ref = isl_union_set_apply(ref, tag2access);
1993 return isl_union_set_unwrap(ref);
1996 /* Given an access relation "access" from one or more array reference groups,
1997 * remove those reads if ("read" is 1) or writes (if "read" is 0)
1998 * that are only needed to communicate data within
1999 * the same iteration of "sched".
2000 * "tagged" contains all tagged access relations to all
2001 * the array reference groups accessed by "access" from statement
2002 * instances scheduled by "sched".
2004 * If the access is a read then it is either an element of
2006 * live_in union (range flow)
2008 * where live_in and flow may be overapproximations, or
2009 * it reads an uninitialized value (that is not live-in because
2010 * there is an intermediate kill) or it reads a value that was
2011 * written within the same (compound) statement instance.
2012 * If the access is a write then it is either an element of
2014 * live_out union (domain flow)
2016 * or it writes a value that is never read (and is not live-out
2017 * because of an intermediate kill) or only
2018 * within the same (compound) statement instance.
2019 * In both cases, the access relation is also a subset of
2020 * the group access relation.
2022 * The cases where an uninitialized value is read or a value is written
2023 * that is never read or where the dataflow occurs within a statement
2024 * instance are also considered local and may also be removed.
2026 * Essentially, we compute the intersection of "access" with either
2028 * live_in union (range non-local-flow)
2030 * or
2032 * live_out union (domain non-local-flow)
2034 * We first construct a relation "local"
2036 * [[D -> R] -> [D' -> R']]
2038 * of pairs of domain iterations accessing the reference group
2039 * and references in the group that are coscheduled by "sched".
2041 * If this relation does not intersect the dataflow dependences,
2042 * then there is nothing we can possibly remove, unless the dataflow
2043 * dependences themselves only relate a subset of the accesses.
2044 * In particular, the accesses may not be involved in any dataflow
2045 * dependences, either because they are uninitialized reads/dead writes
2046 * or because the dataflow occurs inside a statement instance.
2048 * Since the computation below may break up the access relation
2049 * into smaller pieces, we only perform the intersection with
2050 * the non-local dependent accesses if the local pairs
2051 * intersect the dataflow dependences. Otherwise, we intersect
2052 * with the universe of the non-local dependent accesses.
2053 * This should at least remove accesses from statements that
2054 * do not participate in any dependences.
2056 * In particular, we remove the "local" dataflow dependences from
2057 * the set of all dataflow dependences.
2058 * Note that if the potential dataflow dependences are an overapproximation
2059 * of the actual dataflow dependences, then the result remains an
2060 * overapproximation of the non-local dataflow dependences.
2061 * Copying to/from global memory is only needed for the references
2062 * in the domain/range of the result or for accesses that are live out/in
2063 * for the entire scop.
2065 * We therefore map the domain/range of the "external" relation
2066 * to the corresponding access relation and take the union with
2067 * the live out/in relation.
2069 static __isl_give isl_union_map *remove_local_accesses(
2070 struct gpu_prog *prog, __isl_take isl_union_map *tagged,
2071 __isl_take isl_union_map *access, __isl_take isl_union_map *sched,
2072 int read)
2074 int empty;
2075 isl_union_pw_multi_aff *tagger;
2076 isl_union_set *domain;
2077 isl_union_map *local, *external;
2078 isl_union_set *tag_set;
2080 if (isl_union_map_is_empty(access)) {
2081 isl_union_map_free(sched);
2082 isl_union_map_free(tagged);
2083 return access;
2086 tagger = isl_union_pw_multi_aff_copy(prog->scop->tagger);
2087 domain = isl_union_map_domain(isl_union_map_copy(tagged));
2088 tagger = isl_union_pw_multi_aff_intersect_domain(tagger, domain);
2089 sched = isl_union_map_preimage_domain_union_pw_multi_aff(sched, tagger);
2091 local = isl_union_map_apply_range(sched,
2092 isl_union_map_reverse(isl_union_map_copy(sched)));
2093 local = isl_union_map_intersect(local,
2094 isl_union_map_copy(prog->scop->tagged_dep_flow));
2096 empty = isl_union_map_is_empty(local);
2098 external = isl_union_map_copy(prog->scop->tagged_dep_flow);
2099 external = isl_union_map_intersect_params(external,
2100 isl_set_copy(prog->scop->context));
2101 external = isl_union_map_subtract(external, local);
2103 if (read) {
2104 tag_set = isl_union_map_range(external);
2105 external = wrapped_reference_to_access(tag_set, tagged);
2106 external = isl_union_map_union(external,
2107 isl_union_map_copy(prog->scop->live_in));
2108 } else {
2109 tag_set = isl_union_map_domain(external);
2110 external = wrapped_reference_to_access(tag_set, tagged);
2111 external = isl_union_map_union(external,
2112 isl_union_map_copy(prog->scop->live_out));
2115 if (empty < 0)
2116 external = isl_union_map_free(external);
2117 else if (empty)
2118 external = isl_union_map_universe(external);
2120 access = isl_union_map_intersect(access, external);
2122 return access;
2125 /* Given an access relation "access" from "group", remove those reads
2126 * if ("read" is 1) or writes (if "read" is 0) that are only needed to
2127 * communicate data within the same iteration of the schedule at the
2128 * position where the copying of the group is inserted.
2129 * "node" points to this position, i.e., the depth at "node"
2130 * is equal to group->depth.
2132 * We extract a schedule that picks out the iterations of the outer
2133 * group->depth dimensions and call remove_local_accesses.
2135 static __isl_give isl_union_map *remove_local_accesses_group(
2136 struct ppcg_kernel *kernel, struct gpu_array_ref_group *group,
2137 __isl_take isl_union_map *access, __isl_keep isl_schedule_node *node,
2138 int read)
2140 isl_union_map *sched, *tagged;
2142 if (isl_union_map_is_empty(access))
2143 return access;
2145 tagged = group_tagged_access_relation(group);
2146 sched = isl_schedule_node_get_prefix_schedule_relation(node);
2148 return remove_local_accesses(kernel->prog, tagged, access, sched, read);
2151 /* This function is called before the AST generator starts traversing
2152 * the schedule subtree of a node with mark "mark".
2154 * If the mark is called "kernel", store the kernel pointer in data->kernel
2155 * for use in at_domain.
2157 static int before_mark(__isl_keep isl_id *mark,
2158 __isl_keep isl_ast_build *build, void *user)
2160 struct ppcg_at_domain_data *data = user;
2162 if (!mark)
2163 return -1;
2164 if (!strcmp(isl_id_get_name(mark), "kernel"))
2165 data->kernel = isl_id_get_user(mark);
2166 return 0;
2169 /* This function is called after the AST generator has finished traversing
2170 * the schedule subtree of a mark node. "node" points to the corresponding
2171 * mark AST node.
2173 * If the mark is called "kernel", then replace "node" by a user node
2174 * that "calls" the kernel, representing the launch of the kernel.
2175 * The original "node" is stored inside the kernel object so that
2176 * it can be used to print the device code.
2177 * Note that this assumes that a kernel is only launched once.
2178 * Also clear data->kernel.
2180 static __isl_give isl_ast_node *after_mark(__isl_take isl_ast_node *node,
2181 __isl_keep isl_ast_build *build, void *user)
2183 isl_ctx *ctx;
2184 isl_id *id;
2185 isl_ast_expr *expr;
2186 isl_ast_expr_list *list;
2187 struct ppcg_kernel *kernel;
2188 struct ppcg_at_domain_data *data = user;
2190 ctx = isl_ast_node_get_ctx(node);
2191 id = isl_ast_node_mark_get_id(node);
2192 if (!id)
2193 return isl_ast_node_free(node);
2194 if (strcmp(isl_id_get_name(id), "kernel") || !data->kernel) {
2195 isl_id_free(id);
2196 return node;
2198 kernel = data->kernel;
2199 data->kernel = NULL;
2200 kernel->space = isl_ast_build_get_schedule_space(build);
2201 kernel->tree = isl_ast_node_mark_get_node(node);
2202 isl_ast_node_free(node);
2204 expr = isl_ast_expr_from_id(isl_id_copy(id));
2205 list = isl_ast_expr_list_alloc(ctx, 0);
2206 expr = isl_ast_expr_call(expr, list);
2207 node = isl_ast_node_alloc_user(expr);
2208 node = isl_ast_node_set_annotation(node, id);
2210 return node;
2213 static int update_depth(__isl_keep isl_schedule_node *node, void *user)
2215 int *depth = user;
2216 int node_depth;
2218 if (isl_schedule_node_get_type(node) != isl_schedule_node_leaf)
2219 return 1;
2220 node_depth = isl_schedule_node_get_schedule_depth(node);
2221 if (node_depth > *depth)
2222 *depth = node_depth;
2224 return 0;
2227 /* Use isl to generate code for both the host and the device
2228 * from "schedule".
2229 * The device code is marked by "kernel" mark nodes in the schedule tree,
2230 * containing a pointer to a ppcg_kernel object.
2231 * The returned AST only contains the AST for the host code.
2232 * The ASTs for the device code are embedded in ppcg_kernel objects
2233 * attached to the leaf nodes that call "kernel".
2235 static __isl_give isl_ast_node *generate_code(struct gpu_gen *gen,
2236 __isl_take isl_schedule *schedule)
2238 struct ppcg_at_domain_data data;
2239 isl_ast_build *build;
2240 isl_ast_node *tree;
2241 isl_id_list *iterators;
2242 int depth;
2244 data.prog = gen->prog;
2245 data.kernel = NULL;
2247 depth = 0;
2248 if (isl_schedule_foreach_schedule_node(schedule, &update_depth,
2249 &depth) < 0)
2250 return NULL;
2251 build = isl_ast_build_alloc(gen->prog->ctx);
2252 iterators = ppcg_scop_generate_names(gen->prog->scop, depth, "c");
2253 build = isl_ast_build_set_iterators(build, iterators);
2254 build = isl_ast_build_set_at_each_domain(build, &at_domain, &data);
2255 build = isl_ast_build_set_before_each_mark(build, &before_mark, &data);
2256 build = isl_ast_build_set_after_each_mark(build, &after_mark, &data);
2257 if (gen->prog->scop->options->debug->dump_final_schedule)
2258 isl_schedule_dump(schedule);
2259 tree = isl_ast_build_node_from_schedule(build, schedule);
2260 isl_ast_build_free(build);
2262 return tree;
2265 __isl_give isl_union_map *extract_sizes_from_str(isl_ctx *ctx, const char *str)
2267 if (!str)
2268 return NULL;
2269 return isl_union_map_read_from_str(ctx, str);
2272 /* Can "node" be tiled and then mapped to block and thread identifiers?
2273 * That is, is it permutable with at least one coincident dimension?
2275 static int is_permutable(__isl_keep isl_schedule_node *node)
2277 if (!node)
2278 return -1;
2280 if (isl_schedule_node_get_type(node) != isl_schedule_node_band)
2281 return 0;
2282 if (!isl_schedule_node_band_get_permutable(node))
2283 return 0;
2284 if (isl_schedule_node_band_n_member(node) < 1)
2285 return 0;
2286 if (!isl_schedule_node_band_member_get_coincident(node, 0))
2287 return 0;
2289 return 1;
2292 /* A isl_schedule_foreach_schedule_node callback
2293 * for setting *any_permutable and aborting the search
2294 * if "node" is a permutable band with coincident dimensions.
2295 * Otherwise, continue searching.
2297 static int set_permutable(__isl_keep isl_schedule_node *node, void *user)
2299 int *any_permutable = user;
2300 int permutable;
2302 permutable = is_permutable(node);
2303 if (permutable < 0)
2304 return -1;
2305 if (!permutable)
2306 return 1;
2308 *any_permutable = 1;
2310 return -1;
2313 /* Does "schedule" contain any permutable band with at least one coincident
2314 * member?
2316 static int has_any_permutable_node(__isl_keep isl_schedule *schedule)
2318 int any_permutable = 0;
2320 if (isl_schedule_foreach_schedule_node(schedule, &set_permutable,
2321 &any_permutable) < 0 &&
2322 !any_permutable)
2323 return -1;
2325 return any_permutable;
2328 /* Is "node" a leaf or can it be tiled and then mapped to
2329 * block and thread identifiers?
2331 static int is_leaf_or_tilable(__isl_keep isl_schedule_node *node)
2333 if (isl_schedule_node_get_type(node) == isl_schedule_node_leaf)
2334 return 1;
2335 return is_permutable(node);
2338 /* Is "node" the outermost node in its branch that can be tiled
2339 * and then mapped to block and thread identifiers?
2340 * If there are no such nodes in the branch and if "node" is a leaf,
2341 * then it is accepted too.
2343 static int is_outer_tilable(__isl_keep isl_schedule_node *node)
2345 int tilable;
2346 isl_schedule_node *ancestor;
2348 tilable = is_leaf_or_tilable(node);
2349 if (tilable < 0)
2350 return -1;
2351 if (!tilable)
2352 return 0;
2354 tilable = 0;
2355 ancestor = isl_schedule_node_copy(node);
2356 while (isl_schedule_node_has_parent(ancestor)) {
2357 ancestor = isl_schedule_node_parent(ancestor);
2359 tilable = is_permutable(ancestor);
2360 if (tilable < 0 || tilable)
2361 break;
2364 isl_schedule_node_free(ancestor);
2365 return tilable < 0 ? -1 : !tilable;
2368 /* Collect the references to all writes in "group".
2369 * Each reference is represented by a universe set in a space
2371 * [S[i,j] -> R[]]
2373 * with S[i,j] the statement instance space and R[] the array reference.
2375 static __isl_give isl_union_set *group_tagged_writes(
2376 struct gpu_array_ref_group *group)
2378 int i;
2379 isl_space *space;
2380 isl_union_set *writes;
2382 space = isl_map_get_space(group->access);
2383 writes = isl_union_set_empty(space);
2384 for (i = 0; i < group->n_ref; ++i) {
2385 isl_space *space;
2386 isl_set *writes_i;
2388 if (!group->refs[i]->write)
2389 continue;
2391 space = isl_map_get_space(group->refs[i]->tagged_access);
2392 space = isl_space_domain(space);
2393 writes_i = isl_set_universe(space);
2394 writes = isl_union_set_add_set(writes, writes_i);
2397 return writes;
2400 /* Is there any write access in "group" that requires synchronization
2401 * on a write to global memory?
2402 * We currently take into account all writes that would require
2403 * synchronization at the thread level depth, but if the copying
2404 * for this group is performed at an outer level, then we do not
2405 * actually need to take into account dependences at intermediate levels.
2407 static int any_sync_writes_in_group(struct ppcg_kernel *kernel,
2408 struct gpu_array_ref_group *group)
2410 isl_union_set *writes;
2411 int empty, disjoint;
2413 empty = isl_union_set_is_empty(kernel->sync_writes);
2414 if (empty < 0)
2415 return -1;
2416 if (empty)
2417 return 0;
2419 writes = group_tagged_writes(group);
2420 disjoint = isl_union_set_is_disjoint(kernel->sync_writes, writes);
2421 isl_union_set_free(writes);
2423 return disjoint < 0 ? -1 : !disjoint;
2426 /* Collect the references to all writes in "kernel" that write directly
2427 * to global or shared memory, i.e., that are not mapped to private memory.
2428 * Each reference is represented by a universe set in a space
2430 * [S[i,j] -> R[]]
2432 * with S[i,j] the statement instance space and R[] the array reference.
2434 static __isl_give isl_union_set *collect_non_private_tagged_writes(
2435 struct ppcg_kernel *kernel)
2437 isl_union_set *writes;
2438 int i, j;
2440 writes = isl_union_set_empty(isl_union_set_get_space(kernel->arrays));
2442 for (i = 0; i < kernel->n_array; ++i) {
2443 struct gpu_local_array_info *array = &kernel->array[i];
2445 for (j = 0; j < array->n_group; ++j) {
2446 struct gpu_array_ref_group *group = array->groups[j];
2447 isl_union_set *writes_ij;
2449 if (!group->write)
2450 continue;
2451 if (group->private_tile)
2452 continue;
2453 writes_ij = group_tagged_writes(group);
2454 writes = isl_union_set_union(writes, writes_ij);
2458 return writes;
2461 /* Are there any direct writes to global memory that require
2462 * synchronization?
2464 static int any_global_or_shared_sync_writes(struct ppcg_kernel *kernel)
2466 isl_union_set *writes;
2467 int empty, disjoint;
2469 empty = isl_union_set_is_empty(kernel->sync_writes);
2470 if (empty < 0)
2471 return -1;
2472 if (empty)
2473 return 0;
2475 writes = collect_non_private_tagged_writes(kernel);
2476 disjoint = isl_union_set_is_disjoint(kernel->sync_writes, writes);
2477 isl_union_set_free(writes);
2479 return disjoint < 0 ? -1 : !disjoint;
2482 /* Construct an isl_multi_val for use as tile sizes for tiling "node"
2483 * from the elements in "tile_size".
2485 static __isl_give isl_multi_val *construct_band_tiles_sizes(
2486 __isl_keep isl_schedule_node *node, int *tile_size)
2488 int i, n;
2489 isl_ctx *ctx;
2490 isl_space *space;
2491 isl_multi_val *mv;
2493 if (!node)
2494 return NULL;
2496 ctx = isl_schedule_node_get_ctx(node);
2497 space = isl_schedule_node_band_get_space(node);
2498 n = isl_schedule_node_band_n_member(node);
2499 mv = isl_multi_val_zero(space);
2500 for (i = 0; i < n; ++i) {
2501 isl_val *v;
2503 v = isl_val_int_from_si(ctx, tile_size[i]);
2504 mv = isl_multi_val_set_val(mv, i, v);
2507 return mv;
2510 /* Replace the partial schedule S of the band node "node" by
2512 * floor(S/f)
2514 * or
2516 * f * floor(S/f)
2518 * if scale_tile_loops is set, with f the integers in "factor".
2519 * The list that "factor" points to is assumed to contain at least
2520 * as many elements as the number of members in the band.
2522 static __isl_give isl_schedule_node *snap_band_to_sizes(
2523 __isl_take isl_schedule_node *node, int *factor,
2524 struct ppcg_options *options)
2526 isl_multi_val *mv;
2528 mv = construct_band_tiles_sizes(node, factor);
2529 node = isl_schedule_node_band_scale_down(node, isl_multi_val_copy(mv));
2530 if (options->scale_tile_loops)
2531 node = isl_schedule_node_band_scale(node,
2532 isl_multi_val_copy(mv));
2533 isl_multi_val_free(mv);
2535 return node;
2538 /* Tile "band" with tile size specified by "sizes".
2540 * Since the tile loops will be mapped to block ids, we forcibly
2541 * turn off tile loop scaling. We may want to enable tile loop scaling
2542 * at some later point, but then we would have to support the detection
2543 * of strides during the mapping to block ids.
2544 * Similarly, since the point loops will be mapped to thread ids,
2545 * we forcibly shift the point loops so that they start at zero.
2547 static __isl_give isl_schedule_node *tile_band(
2548 __isl_take isl_schedule_node *node, __isl_take isl_multi_val *sizes)
2550 isl_ctx *ctx = isl_schedule_node_get_ctx(node);
2551 int scale_tile;
2552 int shift_point;
2554 scale_tile = isl_options_get_tile_scale_tile_loops(ctx);
2555 isl_options_set_tile_scale_tile_loops(ctx, 0);
2556 shift_point = isl_options_get_tile_shift_point_loops(ctx);
2557 isl_options_set_tile_shift_point_loops(ctx, 1);
2559 node = isl_schedule_node_band_tile(node, sizes);
2561 isl_options_set_tile_scale_tile_loops(ctx, scale_tile);
2562 isl_options_set_tile_shift_point_loops(ctx, shift_point);
2564 return node;
2567 /* Extract the set of parameter values and outer schedule dimensions
2568 * for which any statement instance
2569 * in the kernel inserted at "node" needs to be executed.
2570 * Intersect the set of parameter values derived from the host schedule
2571 * relation with the context of "prog".
2573 static __isl_give isl_set *extract_context(__isl_keep isl_schedule_node *node,
2574 struct gpu_prog *prog)
2576 isl_union_map *schedule;
2577 isl_union_set *schedule_domain;
2578 isl_set *context;
2579 int empty;
2581 schedule = isl_schedule_node_get_prefix_schedule_relation(node);
2582 schedule_domain = isl_union_map_range(schedule);
2583 empty = isl_union_set_is_empty(schedule_domain);
2584 if (empty < 0) {
2585 isl_union_set_free(schedule_domain);
2586 return NULL;
2588 if (empty) {
2589 int depth;
2590 isl_space *space;
2592 space = isl_union_set_get_space(schedule_domain);
2593 isl_union_set_free(schedule_domain);
2594 space = isl_space_set_from_params(space);
2595 depth = isl_schedule_node_get_schedule_depth(node);
2596 space = isl_space_add_dims(space, isl_dim_set, depth);
2597 context = isl_set_empty(space);
2598 } else {
2599 context = isl_set_from_union_set(schedule_domain);
2601 context = isl_set_intersect_params(context,
2602 isl_set_copy(prog->context));
2604 return context;
2607 /* Return the set of outer array elements accessed by
2608 * by the statement instance in "domain" in "prog".
2610 static __isl_give isl_union_set *accessed_by_domain(
2611 __isl_take isl_union_set *domain, struct gpu_prog *prog)
2613 isl_union_map *access;
2614 isl_union_set *arrays;
2616 access = isl_union_map_union(isl_union_map_copy(prog->read),
2617 isl_union_map_copy(prog->may_write));
2618 access = isl_union_map_intersect_domain(access, domain);
2619 arrays = isl_union_map_range(access);
2620 arrays = isl_union_set_apply(arrays,
2621 isl_union_map_copy(prog->to_outer));
2623 return arrays;
2626 /* Return the number of outer band members of the band node "node"
2627 * that are marked coincident.
2629 static int n_outer_coincidence(__isl_keep isl_schedule_node *node)
2631 int i, n;
2633 n = isl_schedule_node_band_n_member(node);
2635 for (i = 0; i < n; ++i)
2636 if (!isl_schedule_node_band_member_get_coincident(node, i))
2637 break;
2639 return i;
2642 /* If the band node "node" has more than "n" members, then split off
2643 * the first "n" of them.
2645 static __isl_give isl_schedule_node *split_band(
2646 __isl_take isl_schedule_node *node, int n)
2648 int dim;
2650 dim = isl_schedule_node_band_n_member(node);
2651 if (n < dim)
2652 node = isl_schedule_node_band_split(node, n);
2654 return node;
2657 /* Scale a band node that may have been split by split_band.
2658 * "sizes" are the scaling factors for the original node.
2659 * "node" either points to the original band node, or the outer
2660 * of the two pieces after splitting.
2662 * If the number of elements in "node" is smaller than the number of
2663 * elements in "sizes", then some splitting has occurred and we split
2664 * "sizes" in the same way.
2666 static __isl_give isl_schedule_node *scale_band(
2667 __isl_take isl_schedule_node *node, __isl_take isl_multi_val *sizes)
2669 int n, dim;
2671 n = isl_multi_val_dim(sizes, isl_dim_set);
2672 dim = isl_schedule_node_band_n_member(node);
2673 if (n > dim) {
2674 isl_multi_val *sizes2;
2676 sizes2 = isl_multi_val_copy(sizes);
2677 sizes = isl_multi_val_drop_dims(sizes,
2678 isl_dim_set, dim, n - dim);
2679 sizes2 = isl_multi_val_drop_dims(sizes2, isl_dim_set, 0, dim);
2680 node = isl_schedule_node_child(node, 0);
2681 node = isl_schedule_node_band_scale(node, sizes2);
2682 node = isl_schedule_node_parent(node);
2685 return isl_schedule_node_band_scale(node, sizes);
2688 /* Return an isl_multi_aff, with as elements the parameters in "space"
2689 * that have the names specified by the elements in "names".
2690 * If (some of) these parameters do not already appear in "space",
2691 * then they are added first.
2693 static __isl_give isl_multi_aff *parameter_vector(__isl_take isl_space *space,
2694 __isl_keep isl_id_list *names)
2696 int i, n;
2697 isl_local_space *ls;
2698 isl_multi_aff *ma;
2700 if (!names)
2701 space = isl_space_free(space);
2703 n = isl_id_list_n_id(names);
2704 for (i = 0; i < n; ++i) {
2705 int pos;
2706 isl_id *id;
2708 id = isl_id_list_get_id(names, i);
2709 pos = isl_space_find_dim_by_id(space, isl_dim_param, id);
2710 if (pos >= 0) {
2711 isl_id_free(id);
2712 continue;
2714 pos = isl_space_dim(space, isl_dim_param);
2715 space = isl_space_add_dims(space, isl_dim_param, 1);
2716 space = isl_space_set_dim_id(space, isl_dim_param, pos, id);
2718 ma = isl_multi_aff_zero(isl_space_copy(space));
2719 ls = isl_local_space_from_space(isl_space_domain(space));
2720 for (i = 0; i < n; ++i) {
2721 int pos;
2722 isl_id *id;
2723 isl_aff *aff;
2725 id = isl_id_list_get_id(names, i);
2726 pos = isl_space_find_dim_by_id(space, isl_dim_param, id);
2727 isl_id_free(id);
2728 aff = isl_aff_var_on_domain(isl_local_space_copy(ls),
2729 isl_dim_param, pos);
2730 ma = isl_multi_aff_set_aff(ma, i, aff);
2732 isl_local_space_free(ls);
2734 return ma;
2737 /* Return constraints on the domain elements that equate a sequence of
2738 * parameters called "names", to the partial schedule
2739 * of "node" modulo the integers in "size".
2740 * The number of elements in the array "size" should be equal
2741 * to the number of elements in "names".
2742 * The number of members of the band node "node" should be smaller
2743 * than or equal to this number. If it is smaller, then the first
2744 * elements of "names" are equated to zero.
2746 static __isl_give isl_union_set *set_schedule_modulo(
2747 __isl_keep isl_schedule_node *node, __isl_keep isl_id_list *names,
2748 int *size)
2750 int n, n_zero;
2751 isl_space *space;
2752 isl_multi_aff *ma;
2753 isl_multi_union_pw_aff *mupa, *mupa2;
2754 isl_multi_val *mv;
2755 isl_union_set *domain;
2757 if (!node)
2758 return NULL;
2759 n = isl_id_list_n_id(names);
2760 if (n == 0)
2761 return isl_schedule_node_get_universe_domain(node);
2762 n_zero = n - isl_schedule_node_band_n_member(node);
2764 mupa = isl_schedule_node_band_get_partial_schedule(node);
2765 mv = construct_band_tiles_sizes(node, size + n_zero);
2766 mupa = isl_multi_union_pw_aff_mod_multi_val(mupa, mv);
2768 space = isl_multi_union_pw_aff_get_space(mupa);
2769 space = isl_space_params(space);
2770 space = isl_space_set_from_params(space);
2771 space = isl_space_add_dims(space, isl_dim_set, n_zero);
2772 ma = isl_multi_aff_zero(space);
2774 domain = isl_schedule_node_get_universe_domain(node);
2775 mupa2 = isl_multi_union_pw_aff_multi_aff_on_domain(
2776 isl_union_set_copy(domain), ma);
2777 mupa = isl_multi_union_pw_aff_range_product(mupa2, mupa);
2779 space = isl_multi_union_pw_aff_get_space(mupa);
2780 ma = parameter_vector(space, names);
2782 mupa2 = isl_multi_union_pw_aff_multi_aff_on_domain(domain, ma);
2783 mupa = isl_multi_union_pw_aff_sub(mupa, mupa2);
2785 return isl_multi_union_pw_aff_zero_union_set(mupa);
2788 /* Insert a context node at "node" introducing the block and thread
2789 * identifiers along with their bounds, which are stored in kernel->grid_size
2790 * and kernel->block_dim.
2791 * Note that the bounds on the block identifiers may implicitly impose
2792 * constraints on the parameters. A guard needs to be inserted
2793 * in the schedule tree to ensure that those bounds hold at "node".
2794 * This guard is inserted in insert_guard.
2796 static __isl_give isl_schedule_node *insert_context(struct ppcg_kernel *kernel,
2797 __isl_take isl_schedule_node *node)
2799 isl_set *context;
2801 context = isl_set_universe(isl_set_get_space(kernel->context));
2803 context = add_bounded_parameters_dynamic(context,
2804 kernel->grid_size, kernel->block_ids);
2805 context = add_bounded_parameters(context,
2806 kernel->block_dim, kernel->thread_ids);
2808 node = isl_schedule_node_insert_context(node, context);
2810 return node;
2813 /* Insert a guard that eliminates kernel launches where the kernel
2814 * obviously does not have any work to do.
2816 * In particular, eliminate kernel launches where there are obviously
2817 * zero blocks.
2818 * Use the same block size constraints that are used to create the context
2819 * to ensure that all constraints implicit in the constructed context
2820 * are imposed by the guard.
2822 * Additionally, add other constraints that are valid
2823 * for each executed instance ("context"), as long as this does not result
2824 * in a disjunction.
2826 static __isl_give isl_schedule_node *insert_guard(
2827 __isl_take isl_schedule_node *node, __isl_keep isl_set *context,
2828 __isl_keep isl_multi_pw_aff *size, struct ppcg_scop *scop)
2830 unsigned nparam, n;
2831 isl_set *guard;
2832 isl_id_list *ids;
2834 guard = isl_set_copy(context);
2835 guard = isl_set_compute_divs(guard);
2836 guard = isl_set_from_basic_set(isl_set_simple_hull(guard));
2838 nparam = isl_set_dim(guard, isl_dim_param);
2839 n = isl_multi_pw_aff_dim(size, isl_dim_out);
2840 ids = ppcg_scop_generate_names(scop, n, "__ppcg_tmp");
2841 guard = add_bounded_parameters_dynamic(guard, size, ids);
2842 isl_id_list_free(ids);
2843 guard = isl_set_project_out(guard, isl_dim_param, nparam, n);
2845 node = isl_schedule_node_insert_guard(node, guard);
2847 return node;
2850 /* Does any array reference group mapping require the band that is mapped
2851 * to threads to be unrolled?
2853 static int kernel_requires_unroll(struct ppcg_kernel *kernel)
2855 int i, j;
2857 for (i = 0; i < kernel->n_array; ++i) {
2858 struct gpu_local_array_info *array = &kernel->array[i];
2860 for (j = 0; j < array->n_group; ++j) {
2861 struct gpu_array_ref_group *group = array->groups[j];
2862 if (gpu_array_ref_group_requires_unroll(group))
2863 return 1;
2867 return 0;
2870 /* Mark the given band node "node" for unrolling by the AST generator and
2871 * then sink it to the leaves of the schedule tree.
2872 * All dimensions of "node" are assumed to be coincident, such that this
2873 * sinking is a valid operation.
2875 static __isl_give isl_schedule_node *unroll(__isl_take isl_schedule_node *node)
2877 int i, n;
2879 n = isl_schedule_node_band_n_member(node);
2880 for (i = 0; i < n; ++i)
2881 node = isl_schedule_node_band_member_set_ast_loop_type(node, i,
2882 isl_ast_loop_unroll);
2884 node = isl_schedule_node_band_sink(node);
2886 return node;
2889 /* Insert a synchronization node in the schedule tree of "node"
2890 * after the core computation of "kernel" at the level of the band
2891 * that is mapped to threads, except if that level is equal to
2892 * that of the band that is mapped to blocks or if there are no writes
2893 * to global or shared memory in the core computation that require
2894 * synchronization.
2895 * If there are any writes to shared memory and the shared memory
2896 * copying is performed at the same level, then synchronization
2897 * is needed between the core and the copying anyway, so we might
2898 * as well add it here. If the copying is performed at a higher
2899 * level, then different iterations of intermediate schedule dimensions
2900 * may have a different mapping from between shared memory elements and
2901 * threads, such that synchronization is required after the core.
2902 * "node" is assumed to point to the kernel node.
2904 static __isl_give isl_schedule_node *add_sync(struct ppcg_kernel *kernel,
2905 __isl_take isl_schedule_node *node)
2907 int kernel_depth;
2908 int need_sync;
2910 need_sync = any_global_or_shared_sync_writes(kernel);
2911 if (need_sync < 0)
2912 return isl_schedule_node_free(node);
2913 if (!need_sync)
2914 return node;
2916 kernel_depth = isl_schedule_node_get_schedule_depth(node);
2918 node = gpu_tree_move_down_to_thread(node, kernel->core);
2919 if (kernel_depth == isl_schedule_node_get_schedule_depth(node))
2920 return gpu_tree_move_up_to_kernel(node);
2922 node = gpu_tree_ensure_following_sync(node, kernel);
2924 node = gpu_tree_move_up_to_kernel(node);
2926 return node;
2929 /* Return a read ("read" is 1) or write access relation for "group"
2930 * with those accesses removed that are only needed to communicate data
2931 * within the subtree of the schedule rooted at "node".
2932 * Furthermore, include the prefix schedule at "node".
2933 * That is, return a relation of the form
2935 * S -> [D -> A]
2937 * with D the outer schedule dimensions at "node".
2939 static __isl_give isl_union_map *anchored_non_local_accesses(
2940 struct ppcg_kernel *kernel, struct gpu_array_ref_group *group,
2941 __isl_take isl_schedule_node *node, int read)
2943 isl_union_map *access;
2944 isl_union_map *prefix;
2946 access = gpu_array_ref_group_access_relation(group, read, !read);
2947 access = remove_local_accesses_group(kernel, group, access, node, read);
2948 prefix = isl_schedule_node_get_prefix_schedule_relation(node);
2949 access = isl_union_map_range_product(prefix, access);
2951 return access;
2954 /* Given an array reference group "group", create a mapping
2956 * read[D -> A] -> [D -> A]
2958 * if "read" is set or
2960 * write[D -> A] -> [D -> A]
2962 * if "read" is not set.
2963 * D corresponds to the outer group->depth dimensions of
2964 * the kernel schedule.
2966 static __isl_give isl_multi_aff *create_from_access(isl_ctx *ctx,
2967 struct gpu_array_ref_group *group, int read)
2969 isl_space *space;
2970 isl_id *id;
2972 space = isl_space_copy(group->array->space);
2973 space = isl_space_from_range(space);
2974 space = isl_space_add_dims(space, isl_dim_in, group->depth);
2975 space = isl_space_wrap(space);
2976 space = isl_space_map_from_set(space);
2978 id = isl_id_alloc(ctx, read ? "read" : "write", group);
2979 space = isl_space_set_tuple_id(space, isl_dim_in, id);
2981 return isl_multi_aff_identity(space);
2984 /* If any writes in "group" require synchronization, then make sure
2985 * that there is a synchronization node for "kernel" after the node
2986 * following "node" in a sequence.
2988 * If "shared" is set and no synchronization is needed for
2989 * the writes to global memory, then add synchronization before
2990 * the kernel to protect shared memory from being overwritten
2991 * by the next iteration of the core computation.
2992 * No additional synchronization is needed to protect against
2993 * the next copy into shared memory because each element of
2994 * the shared memory tile is always copied by the same thread.
2996 static __isl_give isl_schedule_node *add_group_write_sync(
2997 __isl_take isl_schedule_node *node, struct ppcg_kernel *kernel,
2998 struct gpu_array_ref_group *group, int shared)
3000 int need_sync;
3002 need_sync = any_sync_writes_in_group(kernel, group);
3003 if (need_sync < 0)
3004 return isl_schedule_node_free(node);
3005 if (need_sync) {
3006 node = isl_schedule_node_parent(node);
3007 node = isl_schedule_node_next_sibling(node);
3008 node = isl_schedule_node_child(node, 0);
3009 node = gpu_tree_ensure_following_sync(node, kernel);
3010 } else if (shared) {
3011 node = isl_schedule_node_parent(node);
3012 node = isl_schedule_node_parent(node);
3013 node = gpu_tree_move_down_to_depth(node, group->depth,
3014 kernel->core);
3015 node = gpu_tree_move_left_to_sync(node, kernel);
3018 return node;
3021 /* Add copy statements to the schedule tree of "node"
3022 * for reading from global memory to private memory (if "read" is set) or
3023 * for writing back from private memory to global memory
3024 * (if "read" is not set) for the array reference group "group" that
3025 * is mapped to private memory.
3026 * On input, "node" points to the kernel node, and it is moved
3027 * back there on output.
3029 * The copies are performed in the order of the array elements.
3030 * The copy statement instances include a reference to the outer
3031 * group->depth dimensions of the kernel schedule for ease of
3032 * combining them with the group tiling.
3034 * That is, the extra schedule is of the form
3036 * type[D -> A] -> A
3038 * where D corresponds to the outer group->depth dimensions of
3039 * the kernel schedule and A to the global array.
3040 * This schedule is unrolled because registers are not addressable.
3042 * The copying is inserted in the schedule tree through an extension
3043 * of the form
3045 * D -> type[D -> A]
3047 * where the extra domain elements type[D -> A] are those accessed
3048 * by the group.
3049 * A filter is inserted on type[D -> A] to ensure that the element
3050 * is read/written by the same thread that needs the element.
3051 * This filter is obtained by applying
3053 * S -> type[D -> A]
3055 * to the thread filter for the core statements.
3057 * The extension is inserted before the core computation in case of a read
3058 * and after the core computation in case of a write.
3059 * In the latter case, we also make sure that there is a synchronization
3060 * node after the write to global memory, unless this write is performed
3061 * at the outer level of the kernel.
3062 * In principle, this synchronization could be inserted higher
3063 * in the schedule tree depending on where the corresponding reads
3064 * from global memory are performed.
3066 static __isl_give isl_schedule_node *add_copies_group_private(
3067 struct ppcg_kernel *kernel, struct gpu_array_ref_group *group,
3068 __isl_take isl_schedule_node *node, int read)
3070 isl_union_map *access;
3071 isl_union_map *prefix;
3072 isl_union_set *domain;
3073 isl_space *space;
3074 isl_multi_aff *from_access;
3075 isl_multi_pw_aff *mpa;
3076 isl_multi_union_pw_aff *mupa;
3077 isl_schedule_node *graft;
3078 isl_union_set *filter;
3079 int kernel_depth;
3080 int empty;
3082 kernel_depth = isl_schedule_node_get_schedule_depth(node);
3083 node = gpu_tree_move_down_to_depth(node, group->depth, kernel->core);
3085 access = anchored_non_local_accesses(kernel, group, node, read);
3086 empty = isl_union_map_is_empty(access);
3087 if (empty < 0 || empty) {
3088 isl_union_map_free(access);
3089 if (empty < 0)
3090 return isl_schedule_node_free(node);
3091 return gpu_tree_move_up_to_kernel(node);
3094 from_access = create_from_access(kernel->ctx, group, read);
3095 space = isl_space_domain(isl_multi_aff_get_space(from_access));
3096 access = isl_union_map_preimage_range_multi_aff(access, from_access);
3098 filter = isl_union_set_copy(kernel->thread_filter);
3099 filter = isl_union_set_apply(filter, isl_union_map_copy(access));
3100 filter = isl_union_set_detect_equalities(filter);
3101 filter = isl_union_set_coalesce(filter);
3103 domain = isl_union_map_range(access);
3104 access = isl_union_set_wrapped_domain_map(domain);
3105 access = isl_union_map_reverse(access);
3106 access = isl_union_map_coalesce(access);
3107 graft = isl_schedule_node_from_extension(access);
3109 space = isl_space_map_from_set(space);
3110 mpa = isl_multi_pw_aff_identity(space);
3111 mpa = isl_multi_pw_aff_range_factor_range(mpa);
3112 mupa = isl_multi_union_pw_aff_from_multi_pw_aff(mpa);
3114 graft = isl_schedule_node_child(graft, 0);
3115 graft = isl_schedule_node_insert_partial_schedule(graft, mupa);
3116 graft = unroll(graft);
3118 graft = isl_schedule_node_insert_filter(graft, filter);
3120 graft = isl_schedule_node_parent(graft);
3122 if (read)
3123 node = isl_schedule_node_graft_before(node, graft);
3124 else {
3125 node = isl_schedule_node_graft_after(node, graft);
3126 if (kernel_depth < group->depth)
3127 node = add_group_write_sync(node, kernel, group, 0);
3130 node = gpu_tree_move_up_to_kernel(node);
3132 return node;
3135 /* Add copy statements to the schedule tree of "node"
3136 * for reading from global memory to shared memory (if "read" is set) or
3137 * for writing back from shared memory to global memory
3138 * (if "read" is not set) for the array reference group "group" that
3139 * is mapped to shared memory.
3140 * On input, "node" points to the kernel node, and it is moved
3141 * back there on output.
3143 * The copies are performed in the order of the corresponding shared
3144 * memory tile.
3145 * The copy statement instances include a reference to the outer
3146 * group->depth dimensions of the kernel schedule for ease of
3147 * combining them with the group tiling.
3149 * If we are performing a read from global memory to shared memory and
3150 * if the array involved is not a scalar, then we copy
3151 * the entire tile to shared memory. This may result in some extra
3152 * elements getting copied, but it should lead to simpler code
3153 * (which means that fewer registers may be needed) and less divergence.
3155 * Otherwise, we only copy the elements that will be read or have been written
3156 * in the kernel.
3158 * That is, the extra schedule is of the form
3160 * type[D -> A] -> T
3162 * where D corresponds to the outer group->depth dimensions of
3163 * the kernel schedule, A to the global array and T is the corresponding
3164 * shared memory tile.
3166 * The copying is inserted in the schedule tree through an extension
3167 * of the form
3169 * D -> type[D -> A]
3171 * where the extra domain elements type[D -> A] are those accessed
3172 * by the group. In the case of read from a non-scalar, this set
3173 * is replaced by the entire shared memory tile.
3175 * A filter is inserted on type[D -> A] to map the copy instances
3176 * to the threads. In particular, the thread identifiers are
3177 * equated to the position inside the shared memory tile (T)
3178 * modulo the block size.
3179 * We try to align the innermost tile dimension with the innermost
3180 * thread identifier (x) as a heuristic to improve coalescing.
3181 * In particular, if the dimension of the tile is greater than
3182 * the dimension of the block, then the schedule mapping to the tile
3183 * is broken up into two pieces and the filter is applied to the inner part.
3184 * If, on the other hand, the dimension of the tile is smaller than
3185 * the dimension of the block, then the initial thread identifiers
3186 * are equated to zero and the remaining thread identifiers are
3187 * matched to the memory tile.
3189 * The extension is inserted before the core computation in case of a read
3190 * and after the core computation in case of a write.
3191 * In the case of a read, we first need to make sure there is some
3192 * synchronization before the core computation such that we can put the read
3193 * from global memory to shared memory before that synchronization.
3194 * This ensures that all threads have finished copying into shared memory
3195 * before the shared memory is used.
3196 * We also need to make sure that there is a synchronization node after
3197 * the core computation to ensure that the next load into shared memory
3198 * only happens after all data has been used. There is no need for
3199 * this synchronization if we are at the outer level since then there
3200 * won't be a next load.
3201 * In the case of a write, we need to make sure there is some synchronization
3202 * after the core computation such taht we can put the write from shared
3203 * memory to global memory after that synchronization.
3204 * Unless we are at the outer level, we also need a synchronization node
3205 * after the write to ensure the data is saved to global memory
3206 * before the next iteration write to the same shared memory.
3207 * It also makes sure the data has arrived in global memory before
3208 * it is read in a subsequent iteration.
3210 static __isl_give isl_schedule_node *add_copies_group_shared(
3211 struct ppcg_kernel *kernel, struct gpu_array_ref_group *group,
3212 __isl_take isl_schedule_node *node, int read)
3214 struct gpu_array_tile *tile;
3215 isl_union_map *access;
3216 isl_union_set *domain;
3217 isl_union_set *sync;
3218 isl_multi_aff *ma;
3219 isl_multi_aff *from_access;
3220 isl_multi_pw_aff *mpa;
3221 isl_multi_union_pw_aff *mupa;
3222 isl_schedule_node *graft;
3223 isl_union_set *filter;
3224 int skip;
3225 int kernel_depth;
3226 int empty;
3228 kernel_depth = isl_schedule_node_get_schedule_depth(node);
3229 node = gpu_tree_move_down_to_depth(node, group->depth, kernel->core);
3231 access = anchored_non_local_accesses(kernel, group, node, read);
3232 empty = isl_union_map_is_empty(access);
3233 if (empty < 0 || empty) {
3234 isl_union_map_free(access);
3235 if (empty < 0)
3236 return isl_schedule_node_free(node);
3237 return gpu_tree_move_up_to_kernel(node);
3240 from_access = create_from_access(kernel->ctx, group, read);
3242 tile = gpu_array_ref_group_tile(group);
3243 ma = isl_multi_aff_copy(tile->tiling);
3244 ma = isl_multi_aff_pullback_multi_aff(ma,
3245 isl_multi_aff_copy(from_access));
3246 mpa = isl_multi_pw_aff_from_multi_aff(ma);
3247 mupa = isl_multi_union_pw_aff_from_multi_pw_aff(mpa);
3249 domain = isl_union_map_range(access);
3251 if (read && !gpu_array_is_scalar(group->array)) {
3252 isl_map *map;
3253 isl_union_set_free(domain);
3254 map = group_tile(group);
3255 domain = isl_union_set_from_set(isl_map_wrap(map));
3258 domain = isl_union_set_preimage_multi_aff(domain, from_access);
3259 access = isl_union_set_wrapped_domain_map(domain);
3260 access = isl_union_map_reverse(access);
3261 access = isl_union_map_coalesce(access);
3262 graft = isl_schedule_node_from_extension(access);
3264 graft = isl_schedule_node_child(graft, 0);
3266 graft = isl_schedule_node_insert_partial_schedule(graft, mupa);
3268 if (tile->n > kernel->n_block && kernel->n_block > 0) {
3269 graft = isl_schedule_node_band_split(graft,
3270 tile->n - kernel->n_block);
3271 graft = isl_schedule_node_child(graft, 0);
3273 if (tile->n < kernel->n_block)
3274 skip = kernel->n_block - tile->n;
3275 else
3276 skip = 0;
3277 filter = set_schedule_modulo(graft, kernel->thread_ids,
3278 kernel->block_dim);
3279 if (!kernel->options->wrap)
3280 graft = snap_band_to_sizes(graft, kernel->block_dim + skip,
3281 kernel->options);
3282 if (tile->n > kernel->n_block && kernel->n_block > 0)
3283 graft = isl_schedule_node_parent(graft);
3284 graft = isl_schedule_node_insert_filter(graft, filter);
3286 while (graft && isl_schedule_node_has_parent(graft))
3287 graft = isl_schedule_node_parent(graft);
3289 if (read) {
3290 if (kernel_depth < group->depth)
3291 node = gpu_tree_ensure_sync_after_core(node, kernel);
3292 node = gpu_tree_move_left_to_sync(node, kernel);
3293 node = isl_schedule_node_graft_before(node, graft);
3294 } else {
3295 node = gpu_tree_move_right_to_sync(node, kernel);
3296 node = isl_schedule_node_graft_after(node, graft);
3297 if (kernel_depth < group->depth)
3298 node = add_group_write_sync(node, kernel, group, 1);
3301 node = gpu_tree_move_up_to_kernel(node);
3303 return node;
3306 /* Check whether the array reference group "group" is mapped to
3307 * private or shared memory and, if so,
3308 * add copy statements to the schedule tree of "node"
3309 * for reading from global memory to private or shared memory
3310 * (if "read" is set) or for writing back from private or shared memory
3311 * to global memory (if "read" is not set) for this group.
3312 * On input, "node" points to the kernel node, and it is moved
3313 * back there on output.
3315 static __isl_give isl_schedule_node *add_copies_group(
3316 struct ppcg_kernel *kernel, struct gpu_array_ref_group *group,
3317 __isl_take isl_schedule_node *node, int read)
3319 if (group->private_tile)
3320 return add_copies_group_private(kernel, group, node, read);
3321 if (group->shared_tile)
3322 return add_copies_group_shared(kernel, group, node, read);
3323 return node;
3326 /* For each array reference group that is mapped to private or shared memory,
3327 * add copy statements to the schedule tree of "node"
3328 * for reading from global memory to private or shared memory
3329 * and for writing back.
3330 * On input, "node" points to the kernel node, and it is moved
3331 * back there on output.
3333 static __isl_give isl_schedule_node *add_copies(struct ppcg_kernel *kernel,
3334 __isl_take isl_schedule_node *node)
3336 int i, j;
3338 for (i = 0; i < kernel->n_array; ++i) {
3339 struct gpu_local_array_info *array = &kernel->array[i];
3341 for (j = 0; j < array->n_group; ++j) {
3342 struct gpu_array_ref_group *group = array->groups[j];
3344 node = add_copies_group(kernel, group, node, 1);
3345 if (!node)
3346 return NULL;
3347 node = add_copies_group(kernel, group, node, 0);
3348 if (!node)
3349 return NULL;
3353 return node;
3356 /* Mark all dimensions in the current band node atomic.
3358 static __isl_give isl_schedule_node *atomic(__isl_take isl_schedule_node *node)
3360 int i, n;
3362 n = isl_schedule_node_band_n_member(node);
3363 for (i = 0; i < n; ++i)
3364 node = isl_schedule_node_band_member_set_ast_loop_type(node, i,
3365 isl_ast_loop_atomic);
3367 return node;
3370 /* Mark "node" atomic, if it is a band node.
3371 * Do the same for all ancestors.
3372 * Return a pointer to "node" (in the updated schedule tree).
3374 static __isl_give isl_schedule_node *atomic_ancestors(
3375 __isl_take isl_schedule_node *node)
3377 int pos;
3379 if (!node)
3380 return NULL;
3381 if (!isl_schedule_node_has_parent(node))
3382 return node;
3384 pos = isl_schedule_node_get_child_position(node);
3385 node = isl_schedule_node_parent(node);
3386 if (isl_schedule_node_get_type(node) == isl_schedule_node_band)
3387 node = atomic(node);
3388 node = atomic_ancestors(node);
3389 node = isl_schedule_node_child(node, pos);
3391 return node;
3394 /* Collect all write references that require synchronization.
3395 * "node" is assumed to point to the kernel node.
3396 * Each reference is represented by a universe set in a space
3398 * [S[i,j] -> R[]]
3400 * with S[i,j] the statement instance space and R[] the array reference.
3402 * This function should be called before block and thread filters are added.
3404 * Synchronization is needed after a write if there is a subsequent read
3405 * within the same block that may not be performed by the same thread.
3406 * There should not be any dependences between different blocks,
3407 * so we start with the flow dependences within the same kernel invocation
3408 * and we subtract from these those dependences that are mapped
3409 * to the same iteration of the bands where synchronization is inserted.
3410 * We do not remove pairs of instances that are known to map to
3411 * the same thread across different iterations of the intermediate
3412 * bands because the read may be performed by a different thread
3413 * than the one that needs the value if shared memory is involved.
3415 * We also consider all pairs of possible writes that access the same
3416 * memory location and that may be mapped to the same block but not
3417 * to the same iteration of the intermediate bands.
3418 * In theory, it would be possible for one thread to still be in
3419 * a previous iteration of a loop in these bands.
3420 * A write to global memory in this delayed thread could then overwrite
3421 * a write from another thread that has already moved on to
3422 * the next iteration.
3424 * After computing the above writes paired off with reads or writes
3425 * that depend on them, we project onto the domain writes.
3426 * Sychronization is needed after writes to global memory
3427 * through these references.
3429 static __isl_give isl_union_set *compute_sync_writes(
3430 struct ppcg_kernel *kernel, __isl_keep isl_schedule_node *node)
3432 isl_union_map *local;
3433 isl_union_map *may_writes, *shared_access;
3434 isl_union_map *kernel_prefix, *thread_prefix;
3435 isl_union_map *equal;
3436 isl_union_set *wrap;
3437 isl_union_set *domain;
3439 domain = isl_schedule_node_get_universe_domain(node);
3440 kernel_prefix = isl_schedule_node_get_prefix_schedule_union_map(node);
3441 node = isl_schedule_node_copy(node);
3442 node = gpu_tree_move_down_to_thread(node, kernel->core);
3443 thread_prefix = isl_schedule_node_get_prefix_schedule_union_map(node);
3444 isl_schedule_node_free(node);
3446 may_writes = isl_union_map_copy(kernel->prog->scop->tagged_may_writes);
3447 may_writes = isl_union_map_curry(may_writes);
3448 may_writes = isl_union_map_intersect_domain(may_writes, domain);
3449 may_writes = isl_union_map_uncurry(may_writes);
3450 shared_access = isl_union_map_copy(may_writes);
3451 shared_access = isl_union_map_apply_range(shared_access,
3452 isl_union_map_reverse(may_writes));
3454 local = isl_union_map_copy(kernel->prog->scop->tagged_dep_flow);
3455 local = isl_union_map_union(local, shared_access);
3456 local = isl_union_map_zip(local);
3458 equal = isl_union_map_apply_range(kernel_prefix,
3459 isl_union_map_reverse(isl_union_map_copy(kernel_prefix)));
3460 wrap = isl_union_map_wrap(equal);
3461 local = isl_union_map_intersect_domain(local, wrap);
3462 equal = isl_union_map_apply_range(thread_prefix,
3463 isl_union_map_reverse(isl_union_map_copy(thread_prefix)));
3464 wrap = isl_union_map_wrap(equal);
3465 local = isl_union_map_subtract_domain(local, wrap);
3467 local = isl_union_map_zip(local);
3468 local = isl_union_map_universe(local);
3470 return isl_union_map_domain(local);
3473 /* Group the domain elements into a single space, named kernelX,
3474 * with X the kernel sequence number "kernel_id".
3476 static __isl_give isl_schedule_node *group_statements(
3477 __isl_take isl_schedule_node *node, int kernel_id)
3479 char buffer[20];
3480 isl_id *id;
3482 if (!node)
3483 return NULL;
3485 snprintf(buffer, sizeof(buffer), "kernel%d", kernel_id);
3486 id = isl_id_alloc(isl_schedule_node_get_ctx(node), buffer, NULL);
3487 return isl_schedule_node_group(node, id);
3490 /* Create a ppcg_kernel representing the domain instances that reach "node"
3491 * and insert a mark node pointing to the ppcg_kernel before "node".
3492 * The band that "node" points to is the band that needs to be mapped
3493 * to block identifiers. The band that needs to be mapped to thread
3494 * identifiers should be marked by a "thread" mark by the caller.
3495 * This mark is removed by this function.
3496 * If "scale" is set, then the band that "node" points to is scaled
3497 * by "sizes".
3499 * Mark all outer band nodes as atomic to ensure each kernel is only
3500 * scheduled once.
3501 * If the domain elements that reach "node" live in more than one space,
3502 * then group the domain elements into a single space, named kernelX,
3503 * with X the kernel sequence number.
3505 * Insert a guard node governing the kernel node to ensure that
3506 * no kernels with zero blocks are launched.
3508 * Insert a context node describing the block and thread
3509 * identifiers inside the kernel mark.
3510 * The context node needs to be inserted after the effective block size
3511 * has been determined such that the bounds on the thread identifiers
3512 * would reflect the effective block size.
3513 * Insert a filter node inside the context node mapping the statement
3514 * instances to block identifiers. In particular, the block identifiers
3515 * are equated to the partial schedule of band that was marked for mapping
3516 * to blocks modulo the grid size.
3517 * Insert a filter node inside the "thread" mark mapping the statement
3518 * instances to thread identifiers. In particular, the thread identifiers
3519 * are equated to the partial schedule of band that was marked for mapping
3520 * to threads modulo the block size.
3522 * Compute array reference groups for all arrays, set the local
3523 * array bounds based on the set of domain instances that reach
3524 * the kernel node, check the total amount of shared memory used
3525 * and compute all group tilings.
3526 * The array reference groups are computed after the block filter
3527 * has been inserted because it affects the mapping to shared or
3528 * private memory. This computation also requires the thread filter
3529 * (in the ppcg_kernel object), but this thread filter should not
3530 * have been added to the schedule tree yet since the computation
3531 * requires the schedule of the band that needs to be mapped to
3532 * threads before the privatization is applied.
3534 * If any array reference group requires the band mapped to threads
3535 * to be unrolled, then we perform the required unrolling.
3537 * We save a copy of the schedule that may influence the mappings
3538 * to shared or private memory in kernel->shared_schedule.
3540 * Finally, we add synchronization and copy statements to the schedule tree,
3541 * remove the "thread" mark and create representations for the local
3542 * variables in the kernel.
3544 * We keep a copy of the isl_id that points to the kernel to ensure
3545 * that the kernel does not get destroyed if the schedule node
3546 * is freed due to some error condition.
3548 static __isl_give isl_schedule_node *create_kernel(struct gpu_gen *gen,
3549 __isl_take isl_schedule_node *node, int scale,
3550 __isl_keep isl_multi_val *sizes)
3552 struct ppcg_kernel *kernel;
3553 isl_id *id;
3554 isl_schedule_node *node_thread;
3555 isl_union_map *host_schedule;
3556 isl_set *host_domain;
3557 isl_union_set *domain;
3558 int single_statement;
3560 kernel = isl_calloc_type(gen->ctx, struct ppcg_kernel);
3561 kernel = ppcg_kernel_create_local_arrays(kernel, gen->prog);
3562 if (!kernel)
3563 return isl_schedule_node_free(node);
3565 domain = isl_schedule_node_get_domain(node);
3566 single_statement = isl_union_set_n_set(domain) == 1;
3568 kernel->ctx = gen->ctx;
3569 kernel->prog = gen->prog;
3570 kernel->options = gen->options;
3571 kernel->context = extract_context(node, gen->prog);
3572 kernel->core = isl_union_set_universe(isl_union_set_copy(domain));
3573 kernel->arrays = accessed_by_domain(isl_union_set_copy(domain),
3574 gen->prog);
3575 kernel->n_grid = n_outer_coincidence(node);
3576 node_thread = isl_schedule_node_copy(node);
3577 node_thread = gpu_tree_move_down_to_thread(node_thread, kernel->core);
3578 node_thread = isl_schedule_node_child(node_thread, 0);
3579 kernel->n_block = n_outer_coincidence(node_thread);
3580 isl_schedule_node_free(node_thread);
3581 kernel->id = gen->kernel_id++;
3582 read_grid_and_block_sizes(kernel, gen);
3584 kernel->sync_writes = compute_sync_writes(kernel, node);
3586 host_schedule = isl_schedule_node_get_prefix_schedule_union_map(node);
3587 host_domain = isl_set_from_union_set(isl_union_map_range(
3588 host_schedule));
3590 node = atomic_ancestors(node);
3592 id = isl_id_alloc(gen->ctx, "kernel", kernel);
3593 id = isl_id_set_free_user(id, &ppcg_kernel_free_wrap);
3594 node = isl_schedule_node_insert_mark(node, isl_id_copy(id));
3596 if (!single_statement)
3597 node = group_statements(node, kernel->id);
3599 node = isl_schedule_node_child(node, 0);
3600 node = split_band(node, kernel->n_grid);
3601 kernel->block_ids = ppcg_scop_generate_names(gen->prog->scop,
3602 kernel->n_grid, "b");
3603 kernel->block_filter = set_schedule_modulo(node, kernel->block_ids,
3604 kernel->grid_dim);
3605 kernel->grid_size = extract_grid_size(kernel,
3606 isl_union_set_copy(domain));
3607 if (!kernel->options->wrap)
3608 node = snap_band_to_sizes(node, kernel->grid_dim,
3609 kernel->options);
3610 if (scale)
3611 node = scale_band(node, isl_multi_val_copy(sizes));
3612 node = isl_schedule_node_parent(node);
3613 if (!single_statement)
3614 node = isl_schedule_node_parent(node);
3615 node = insert_guard(node, kernel->context, kernel->grid_size,
3616 gen->prog->scop);
3617 node = gpu_tree_move_down_to_thread(node, kernel->core);
3618 node = isl_schedule_node_child(node, 0);
3619 node = split_band(node, kernel->n_block);
3620 kernel->thread_ids = ppcg_scop_generate_names(gen->prog->scop,
3621 kernel->n_block, "t");
3622 kernel->thread_filter = set_schedule_modulo(node, kernel->thread_ids,
3623 kernel->block_dim);
3624 extract_block_size(kernel, domain);
3626 node = gpu_tree_move_up_to_kernel(node);
3627 node = isl_schedule_node_child(node, 0);
3628 node = insert_context(kernel, node);
3629 node = isl_schedule_node_child(node, 0);
3630 node = isl_schedule_node_insert_filter(node,
3631 isl_union_set_copy(kernel->block_filter));
3633 node = gpu_tree_move_up_to_kernel(node);
3635 if (gpu_group_references(kernel, node) < 0)
3636 node = isl_schedule_node_free(node);
3637 localize_bounds(kernel, host_domain);
3638 isl_set_free(host_domain);
3640 check_shared_memory_bound(kernel);
3641 compute_group_tilings(kernel);
3643 node = gpu_tree_move_down_to_thread(node, kernel->core);
3644 node = isl_schedule_node_child(node, 0);
3645 if (!kernel->options->wrap)
3646 node = snap_band_to_sizes(node, kernel->block_dim,
3647 kernel->options);
3648 node = isl_schedule_node_insert_filter(node,
3649 isl_union_set_copy(kernel->thread_filter));
3650 if (kernel_requires_unroll(kernel)) {
3651 node = isl_schedule_node_child(node, 0);
3652 node = unroll(node);
3655 node = gpu_tree_move_up_to_thread(node);
3656 kernel->shared_schedule_dim =
3657 isl_schedule_node_get_schedule_depth(node);
3658 kernel->shared_schedule =
3659 isl_schedule_node_get_prefix_schedule_union_pw_multi_aff(node);
3661 node = gpu_tree_move_up_to_kernel(node);
3663 node = add_sync(kernel, node);
3664 node = add_copies(kernel, node);
3666 node = gpu_tree_move_down_to_thread(node, kernel->core);
3667 node = isl_schedule_node_delete(node);
3669 node = gpu_tree_move_up_to_kernel(node);
3671 if (create_kernel_vars(kernel) < 0)
3672 node = isl_schedule_node_free(node);
3674 if (!single_statement)
3675 node = isl_schedule_node_parent(node);
3676 node = isl_schedule_node_parent(node);
3678 isl_id_free(id);
3679 return node;
3682 /* Insert a zero-dimensional permutable band at "node".
3684 static __isl_give isl_schedule_node *insert_empty_permutable_band(
3685 __isl_take isl_schedule_node *node)
3687 isl_space *space;
3688 isl_schedule *schedule;
3689 isl_union_set *domain;
3690 isl_multi_union_pw_aff *mupa;
3692 schedule = isl_schedule_node_get_schedule(node);
3693 domain = isl_schedule_get_domain(schedule);
3694 space = isl_union_set_get_space(domain);
3695 isl_union_set_free(domain);
3696 isl_schedule_free(schedule);
3698 space = isl_space_set_from_params(space);
3699 mupa = isl_multi_union_pw_aff_zero(space);
3700 node = isl_schedule_node_insert_partial_schedule(node, mupa);
3701 node = isl_schedule_node_band_set_permutable(node, 1);
3703 return node;
3706 /* If "node" is the outermost permutable band that can be mapped to block and
3707 * thread identifiers in its branch (or a leaf with no such outer bands),
3708 * then mark the band as such, attaching a ppcg_kernel to the mark.
3710 * If "node" originally points to a leaf, then insert a zero-dimensional
3711 * permutable band such that we can assume that "node" always
3712 * points to a band node.
3714 * Tile "node" using user specified tile sizes, after splitting the band
3715 * if the number of specified tile sizes is smaller than the dimension
3716 * of the band. Mark the point band of this tiling as the band that
3717 * needs to be mapped to threads.
3718 * Create a kernel representing the domain instances that reach "node" and
3719 * insert a mark node pointing to the ppcg_kernel before the band node.
3721 static __isl_give isl_schedule_node *mark_outer_permutable(
3722 __isl_take isl_schedule_node *node, void *user)
3724 struct gpu_gen *gen = user;
3725 int outer;
3726 int scale;
3727 int tile_len;
3728 int *tile_size;
3729 isl_id *id;
3730 isl_multi_val *sizes;
3732 outer = is_outer_tilable(node);
3733 if (outer < 0)
3734 return isl_schedule_node_free(node);
3735 if (!outer)
3736 return node;
3738 if (isl_schedule_node_get_type(node) == isl_schedule_node_leaf)
3739 node = insert_empty_permutable_band(node);
3741 tile_len = isl_schedule_node_band_n_member(node);
3742 tile_size = read_tile_sizes(gen, &tile_len);
3743 if (!tile_size)
3744 return isl_schedule_node_free(node);
3745 if (tile_len < isl_schedule_node_band_n_member(node))
3746 node = isl_schedule_node_band_split(node, tile_len);
3747 sizes = construct_band_tiles_sizes(node, tile_size);
3748 node = tile_band(node, isl_multi_val_copy(sizes));
3749 node = isl_schedule_node_child(node, 0);
3750 id = isl_id_alloc(gen->ctx, "thread", NULL);
3751 node = isl_schedule_node_insert_mark(node, id);
3752 node = isl_schedule_node_parent(node);
3754 scale = gen->options->scale_tile_loops;
3755 node = create_kernel(gen, node, scale, sizes);
3756 isl_multi_val_free(sizes);
3757 free(tile_size);
3759 return node;
3762 /* Replace any reference to an array element in the range of "copy"
3763 * by a reference to all array elements (defined by the extent of the array).
3765 static __isl_give isl_union_map *approximate_copy_out(
3766 __isl_take isl_union_map *copy, struct gpu_prog *prog)
3768 int i;
3769 isl_union_map *res;
3771 res = isl_union_map_empty(isl_union_map_get_space(copy));
3773 for (i = 0; i < prog->n_array; ++i) {
3774 isl_space *space;
3775 isl_set *set;
3776 isl_union_map *copy_i;
3777 isl_union_set *extent, *domain;
3779 space = isl_space_copy(prog->array[i].space);
3780 extent = isl_union_set_from_set(isl_set_universe(space));
3781 copy_i = isl_union_map_copy(copy);
3782 copy_i = isl_union_map_intersect_range(copy_i, extent);
3783 set = isl_set_copy(prog->array[i].extent);
3784 extent = isl_union_set_from_set(set);
3785 domain = isl_union_map_domain(copy_i);
3786 copy_i = isl_union_map_from_domain_and_range(domain, extent);
3787 res = isl_union_map_union(res, copy_i);
3790 isl_union_map_free(copy);
3792 return res;
3795 /* Insert "kernel" marks that point to a ppcg_kernel structure
3796 * in front of all outermost tilable band that (by construction)
3797 * have at least one parallel loop.
3799 static __isl_give isl_schedule_node *mark_kernels(struct gpu_gen *gen,
3800 __isl_take isl_schedule_node *node)
3802 return isl_schedule_node_map_descendant(node,
3803 &mark_outer_permutable, gen);
3806 /* Save the schedule "schedule" to a file called "filename".
3807 * The schedule is printed in block style.
3809 static void save_schedule(__isl_keep isl_schedule *schedule,
3810 const char *filename)
3812 FILE *file;
3813 isl_ctx *ctx;
3814 isl_printer *p;
3816 if (!schedule)
3817 return;
3819 file = fopen(filename, "w");
3820 if (!file) {
3821 fprintf(stderr, "Unable to open '%s' for writing\n", filename);
3822 return;
3824 ctx = isl_schedule_get_ctx(schedule);
3825 p = isl_printer_to_file(ctx, file);
3826 p = isl_printer_set_yaml_style(p, ISL_YAML_STYLE_BLOCK);
3827 p = isl_printer_print_schedule(p, schedule);
3828 isl_printer_free(p);
3829 fclose(file);
3832 /* Load and return a schedule from a file called "filename".
3834 static __isl_give isl_schedule *load_schedule(isl_ctx *ctx,
3835 const char *filename)
3837 FILE *file;
3838 isl_schedule *schedule;
3840 file = fopen(filename, "r");
3841 if (!file) {
3842 fprintf(stderr, "Unable to open '%s' for reading\n", filename);
3843 return NULL;
3845 schedule = isl_schedule_read_from_file(ctx, file);
3846 fclose(file);
3848 return schedule;
3851 /* Compute an appropriate schedule based on the accesses in
3852 * gen->read and gen->write.
3854 * We use the dependences in gen->prog->scop to compute
3855 * a schedule that has a parallel loop in each tilable band and
3856 * return this schedule.
3858 * If live range reordering is allowed, then we need to make sure
3859 * that live ranges on arrays are not run in parallel since doing
3860 * so would require array expansion. We therefore add the array
3861 * order dependences to the coincidence dependences. Non-zero array
3862 * order dependences will then prevent a schedule dimension from being
3863 * considered parallel.
3864 * Live ranges derived from scalars are allowed to be run in parallel
3865 * since we force the scalars to be mapped to private memory in
3866 * check_scalar_live_ranges.
3867 * If live range reordering is allowed, then the false dependences
3868 * are not added to the validity constraints as that would prevent
3869 * reordering. Instead, the external false dependences that enforce that reads
3870 * from potentially live-in data precede any later write and
3871 * that writes of potentially live-out data follow any other earlier write
3872 * are added to the validity and the coincidence constraints.
3873 * The false dependences are still added to the proximity constraints
3874 * for consistency with the case where live range reordering is not allowed.
3875 * The coincidence constraints then consist of flow dependences,
3876 * external false dependences and array order dependences.
3877 * The independences can be filtered out from the first two sets.
3878 * They have already been filtered out from the array order dependences
3879 * on a per array basis in collect_order_dependences.
3880 * There is no need for a per array handling of the other two sets
3881 * as there should be no flow or external false dependence on local
3882 * variables that can be filtered out.
3884 static __isl_give isl_schedule *compute_schedule(struct gpu_gen *gen)
3886 isl_union_set *domain;
3887 isl_union_map *dep_raw, *dep;
3888 isl_union_map *validity, *proximity, *coincidence;
3889 isl_schedule_constraints *sc;
3890 isl_schedule *schedule;
3892 domain = isl_union_set_copy(gen->prog->scop->domain);
3893 sc = isl_schedule_constraints_on_domain(domain);
3894 sc = isl_schedule_constraints_set_context(sc,
3895 isl_set_copy(gen->prog->scop->context));
3896 if (gen->options->live_range_reordering) {
3897 sc = isl_schedule_constraints_set_conditional_validity(sc,
3898 isl_union_map_copy(gen->prog->scop->tagged_dep_flow),
3899 isl_union_map_copy(gen->prog->scop->tagged_dep_order));
3900 proximity = isl_union_map_copy(gen->prog->scop->dep_flow);
3901 validity = isl_union_map_copy(proximity);
3902 validity = isl_union_map_union(validity,
3903 isl_union_map_copy(gen->prog->scop->dep_forced));
3904 proximity = isl_union_map_union(proximity,
3905 isl_union_map_copy(gen->prog->scop->dep_false));
3906 coincidence = isl_union_map_copy(validity);
3907 coincidence = isl_union_map_subtract(coincidence,
3908 isl_union_map_copy(gen->prog->scop->independence));
3909 coincidence = isl_union_map_union(coincidence,
3910 isl_union_map_copy(gen->prog->array_order));
3911 } else {
3912 dep_raw = isl_union_map_copy(gen->prog->scop->dep_flow);
3913 dep = isl_union_map_copy(gen->prog->scop->dep_false);
3914 dep = isl_union_map_union(dep, dep_raw);
3915 dep = isl_union_map_coalesce(dep);
3916 proximity = isl_union_map_copy(dep);
3917 coincidence = isl_union_map_copy(dep);
3918 validity = dep;
3920 sc = isl_schedule_constraints_set_validity(sc, validity);
3921 sc = isl_schedule_constraints_set_coincidence(sc, coincidence);
3922 sc = isl_schedule_constraints_set_proximity(sc, proximity);
3924 if (gen->options->debug->dump_schedule_constraints)
3925 isl_schedule_constraints_dump(sc);
3926 schedule = isl_schedule_constraints_compute_schedule(sc);
3928 return schedule;
3931 /* Obtain a schedule for the scop, either by reading it from
3932 * a file or by computing one.
3934 static __isl_give isl_schedule *get_schedule(struct gpu_gen *gen)
3936 isl_schedule *schedule;
3938 if (gen->options->load_schedule_file) {
3939 schedule = load_schedule(gen->ctx,
3940 gen->options->load_schedule_file);
3941 } else {
3942 schedule = compute_schedule(gen);
3943 if (gen->options->save_schedule_file)
3944 save_schedule(schedule,
3945 gen->options->save_schedule_file);
3947 if (gen->options->debug->dump_schedule)
3948 isl_schedule_dump(schedule);
3950 return schedule;
3953 /* Construct the string "<a>_<b>".
3955 static char *concat(isl_ctx *ctx, const char *a, const char *b)
3957 isl_printer *p;
3958 char *s;
3960 p = isl_printer_to_str(ctx);
3961 p = isl_printer_print_str(p, a);
3962 p = isl_printer_print_str(p, "_");
3963 p = isl_printer_print_str(p, b);
3964 s = isl_printer_get_str(p);
3965 isl_printer_free(p);
3967 return s;
3970 /* For each array in "prog" of which an element appears in "accessed" and
3971 * that is not a read only scalar, create a zero-dimensional universe set
3972 * of which the tuple id has name "<prefix>_<name of array>" and a user
3973 * pointer pointing to the array (gpu_array_info).
3975 * If the array is local to "prog", then make sure it will be declared
3976 * in the host code.
3978 * Return the list of these universe sets.
3980 static __isl_give isl_union_set_list *create_copy_filters(struct gpu_prog *prog,
3981 const char *prefix, __isl_take isl_union_set *accessed)
3983 int i;
3984 isl_ctx *ctx;
3985 isl_union_set_list *filters;
3987 ctx = prog->ctx;
3988 filters = isl_union_set_list_alloc(ctx, 0);
3989 for (i = 0; i < prog->n_array; ++i) {
3990 struct gpu_array_info *array = &prog->array[i];
3991 isl_space *space;
3992 isl_set *accessed_i;
3993 int empty;
3994 char *name;
3995 isl_id *id;
3996 isl_union_set *uset;
3998 if (gpu_array_is_read_only_scalar(array))
3999 continue;
4001 space = isl_space_copy(array->space);
4002 accessed_i = isl_union_set_extract_set(accessed, space);
4003 empty = isl_set_plain_is_empty(accessed_i);
4004 isl_set_free(accessed_i);
4005 if (empty < 0) {
4006 filters = isl_union_set_list_free(filters);
4007 break;
4009 if (empty)
4010 continue;
4012 if (array->local)
4013 array->declare_local = 1;
4015 name = concat(ctx, prefix, array->name);
4016 id = name ? isl_id_alloc(ctx, name, array) : NULL;
4017 free(name);
4018 space = isl_space_set_alloc(ctx, 0, 0);
4019 space = isl_space_set_tuple_id(space, isl_dim_set, id);
4020 uset = isl_union_set_from_set(isl_set_universe(space));
4022 filters = isl_union_set_list_add(filters, uset);
4024 isl_union_set_free(accessed);
4026 return filters;
4029 /* Make sure that code for the statements in "filters" that
4030 * copy arrays to or from the device is only generated when
4031 * the size of the corresponding array is positive.
4032 * That is, add a set node underneath "graft" with "filters" as children
4033 * and for each child add a guard that the selects the parameter
4034 * values for which the corresponding array has a positive size.
4035 * The array is available in the user pointer of the statement identifier.
4036 * "depth" is the schedule depth of the position where "graft"
4037 * will be added.
4039 static __isl_give isl_schedule_node *insert_positive_size_guards(
4040 __isl_take isl_schedule_node *graft,
4041 __isl_take isl_union_set_list *filters, int depth)
4043 int i, n;
4045 graft = isl_schedule_node_child(graft, 0);
4046 graft = isl_schedule_node_insert_set(graft, filters);
4047 n = isl_schedule_node_n_children(graft);
4048 for (i = 0; i < n; ++i) {
4049 isl_union_set *filter;
4050 isl_set *domain, *guard;
4051 isl_id *id;
4052 struct gpu_array_info *array;
4054 graft = isl_schedule_node_child(graft, i);
4055 filter = isl_schedule_node_filter_get_filter(graft);
4056 domain = isl_set_from_union_set(filter);
4057 id = isl_set_get_tuple_id(domain);
4058 array = isl_id_get_user(id);
4059 isl_id_free(id);
4060 isl_set_free(domain);
4061 guard = gpu_array_positive_size_guard(array);
4062 guard = isl_set_from_params(guard);
4063 guard = isl_set_add_dims(guard, isl_dim_set, depth);
4064 graft = isl_schedule_node_child(graft, 0);
4065 graft = isl_schedule_node_insert_guard(graft, guard);
4066 graft = isl_schedule_node_parent(graft);
4067 graft = isl_schedule_node_parent(graft);
4069 graft = isl_schedule_node_parent(graft);
4071 return graft;
4074 /* Create a graft for copying arrays to or from the device,
4075 * whenever the size of the array is strictly positive.
4076 * Each statement is called "<prefix>_<name of array>" and
4077 * the identifier has a user pointer pointing to the array.
4078 * The graft will be added at the position specified by "node".
4079 * "copy" contains the array elements that need to be copied.
4080 * Only arrays of which some elements need to be copied
4081 * will have a corresponding statement in the graph.
4082 * Note though that each such statement will copy the entire array.
4084 static __isl_give isl_schedule_node *create_copy_device(struct gpu_prog *prog,
4085 __isl_keep isl_schedule_node *node, const char *prefix,
4086 __isl_take isl_union_set *copy)
4088 int depth;
4089 isl_ctx *ctx;
4090 isl_space *space;
4091 isl_union_set *all, *domain;
4092 isl_union_set_list *filters;
4093 isl_union_map *extension;
4094 isl_schedule_node *graft;
4096 ctx = prog->ctx;
4097 depth = isl_schedule_node_get_schedule_depth(node);
4098 filters = create_copy_filters(prog, prefix, copy);
4099 all = isl_union_set_list_union(isl_union_set_list_copy(filters));
4101 space = depth < 0 ? NULL : isl_space_set_alloc(ctx, 0, depth);
4102 domain = isl_union_set_from_set(isl_set_universe(space));
4103 extension = isl_union_map_from_domain_and_range(domain, all);
4104 graft = isl_schedule_node_from_extension(extension);
4106 if (!filters)
4107 return isl_schedule_node_free(graft);
4108 if (isl_union_set_list_n_union_set(filters) == 0) {
4109 isl_union_set_list_free(filters);
4110 return graft;
4113 return insert_positive_size_guards(graft, filters, depth);
4116 /* Return (the universe spaces of) the arrays that are declared
4117 * inside the scop corresponding to "prog" and for which all
4118 * potential writes inside the scop form a subset of "domain".
4120 static __isl_give isl_union_set *extract_local_accesses(struct gpu_prog *prog,
4121 __isl_keep isl_union_set *domain)
4123 int i;
4124 isl_union_set *local;
4126 local = isl_union_set_empty(isl_union_set_get_space(domain));
4128 for (i = 0; i < prog->n_array; ++i) {
4129 isl_set *set;
4130 isl_union_map *to_outer;
4131 isl_union_map *may_write;
4132 isl_union_set *write_domain;
4133 isl_union_set *fields;
4134 int subset;
4136 if (!prog->array[i].local)
4137 continue;
4139 set = isl_set_universe(isl_space_copy(prog->array[i].space));
4140 to_outer = isl_union_map_copy(prog->to_outer);
4141 to_outer = isl_union_map_intersect_range(to_outer,
4142 isl_union_set_from_set(isl_set_copy(set)));
4143 fields = isl_union_map_domain(to_outer);
4144 may_write = isl_union_map_copy(prog->may_write);
4145 may_write = isl_union_map_intersect_range(may_write, fields);
4146 write_domain = isl_union_map_domain(may_write);
4147 subset = isl_union_set_is_subset(write_domain, domain);
4148 isl_union_set_free(write_domain);
4150 if (subset < 0) {
4151 isl_set_free(set);
4152 return isl_union_set_free(local);
4153 } else if (subset) {
4154 local = isl_union_set_add_set(local, set);
4155 } else {
4156 isl_set_free(set);
4160 return local;
4163 /* Internal data structure for node_may_persist.
4165 * "tagger" maps tagged iteration domains to the corresponding untagged
4166 * iteration domain.
4168 * "may_persist_flow" is the set of all tagged dataflow dependences
4169 * with those dependences removed that either precede or follow
4170 * the kernel launch in a sequence.
4171 * "inner_band_flow" is the set of all tagged dataflow dependences
4172 * that are local to a given iteration of the outer band nodes
4173 * with respect to the current node.
4174 * "local_flow" is equal to "inner_band_flow", except that the domain
4175 * and the range have been intersected with intermediate filters
4176 * on children of sets or sequences.
4178 struct ppcg_may_persist_data {
4179 isl_union_pw_multi_aff *tagger;
4181 isl_union_map *local_flow;
4182 isl_union_map *inner_band_flow;
4183 isl_union_map *may_persist_flow;
4186 /* Update the information in "data" based on the band ancestor "node".
4188 * In particular, we restrict the dependences in data->local_flow
4189 * to those dependence where the source and the sink occur in
4190 * the same iteration of the given band node.
4191 * We also update data->inner_band_flow to the new value of
4192 * data->local_flow.
4194 static int update_may_persist_at_band(__isl_keep isl_schedule_node *node,
4195 struct ppcg_may_persist_data *data)
4197 isl_multi_union_pw_aff *partial;
4198 isl_union_pw_multi_aff *contraction;
4199 isl_union_map *flow;
4201 if (isl_schedule_node_band_n_member(node) == 0)
4202 return 0;
4204 partial = isl_schedule_node_band_get_partial_schedule(node);
4205 contraction = isl_schedule_node_get_subtree_contraction(node);
4206 partial = isl_multi_union_pw_aff_pullback_union_pw_multi_aff(partial,
4207 contraction);
4208 partial = isl_multi_union_pw_aff_pullback_union_pw_multi_aff(partial,
4209 isl_union_pw_multi_aff_copy(data->tagger));
4211 flow = data->local_flow;
4212 flow = isl_union_map_eq_at_multi_union_pw_aff(flow, partial);
4213 data->local_flow = flow;
4215 isl_union_map_free(data->inner_band_flow);
4216 data->inner_band_flow = isl_union_map_copy(data->local_flow);
4218 return 0;
4221 /* Given a set of local reaching domain elements "domain",
4222 * expand them to the corresponding leaf domain elements using "contraction"
4223 * and insert the array references tags using data->tagger.
4225 static __isl_give isl_union_set *expand_and_tag(
4226 __isl_take isl_union_set *domain,
4227 __isl_take isl_union_pw_multi_aff *contraction,
4228 struct ppcg_may_persist_data *data)
4230 domain = isl_union_set_preimage_union_pw_multi_aff(domain,
4231 contraction);
4232 domain = isl_union_set_preimage_union_pw_multi_aff(domain,
4233 isl_union_pw_multi_aff_copy(data->tagger));
4234 return domain;
4237 /* Given a filter node that is the child of a set or sequence node,
4238 * restrict data->local_flow to refer only to those elements
4239 * in the filter of the node.
4240 * "contraction" maps the leaf domain elements of the schedule tree
4241 * to the corresponding domain elements at (the parent of) "node".
4243 static int filter_flow(__isl_keep isl_schedule_node *node,
4244 struct ppcg_may_persist_data *data,
4245 __isl_take isl_union_pw_multi_aff *contraction)
4247 isl_union_set *filter;
4248 isl_union_map *flow;
4250 flow = data->local_flow;
4251 filter = isl_schedule_node_filter_get_filter(node);
4252 filter = expand_and_tag(filter, contraction, data);
4253 flow = isl_union_map_intersect_domain(flow, isl_union_set_copy(filter));
4254 flow = isl_union_map_intersect_range(flow, filter);
4255 data->local_flow = flow;
4257 return 0;
4260 /* Given a filter node "node", collect the filters on all preceding siblings
4261 * (which are also filter nodes), add them to "filters" and return the result.
4263 static __isl_give isl_union_set *add_previous_filters(
4264 __isl_take isl_union_set *filters, __isl_keep isl_schedule_node *node)
4266 isl_schedule_node *sibling;
4268 sibling = isl_schedule_node_copy(node);
4269 while (sibling && isl_schedule_node_has_previous_sibling(sibling)) {
4270 isl_union_set *filter;
4272 sibling = isl_schedule_node_previous_sibling(sibling);
4273 filter = isl_schedule_node_filter_get_filter(sibling);
4274 filters = isl_union_set_union(filters, filter);
4276 isl_schedule_node_free(sibling);
4277 if (!sibling)
4278 return isl_union_set_free(filters);
4280 return filters;
4283 /* Given a filter node "node", collect the filters on all following siblings
4284 * (which are also filter nodes), add them to "filters" and return the result.
4286 static __isl_give isl_union_set *add_next_filters(
4287 __isl_take isl_union_set *filters, __isl_keep isl_schedule_node *node)
4289 isl_schedule_node *sibling;
4291 sibling = isl_schedule_node_copy(node);
4292 while (sibling && isl_schedule_node_has_next_sibling(sibling)) {
4293 isl_union_set *filter;
4295 sibling = isl_schedule_node_next_sibling(sibling);
4296 filter = isl_schedule_node_filter_get_filter(sibling);
4297 filters = isl_union_set_union(filters, filter);
4299 isl_schedule_node_free(sibling);
4300 if (!sibling)
4301 return isl_union_set_free(filters);
4303 return filters;
4306 /* Remove those flow dependences from data->may_persist_flow
4307 * that flow between elements of "domain" within the same iteration
4308 * of all outer band nodes.
4309 * "contraction" maps the leaf domain elements of the schedule tree
4310 * to the corresponding elements "domain".
4312 static void remove_external_flow(struct ppcg_may_persist_data *data,
4313 __isl_take isl_union_set *domain,
4314 __isl_keep isl_union_pw_multi_aff *contraction)
4316 isl_union_map *flow;
4318 contraction = isl_union_pw_multi_aff_copy(contraction);
4319 domain = expand_and_tag(domain, contraction, data);
4320 flow = isl_union_map_copy(data->local_flow);
4321 flow = isl_union_map_intersect_domain(flow, isl_union_set_copy(domain));
4322 flow = isl_union_map_intersect_range(flow, domain);
4324 data->may_persist_flow = isl_union_map_subtract(data->may_persist_flow,
4325 flow);
4328 /* Update the information in "data" based on the filter ancestor "node".
4329 * We only need to modify anything if the filter is the child
4330 * of a set or sequence node.
4332 * In the case of a sequence, we remove the dependences between
4333 * statement instances that are both executed either before or
4334 * after the subtree that will be mapped to a kernel, within
4335 * the same iteration of outer bands.
4337 * In both cases, we restrict data->local_flow to the current child.
4339 static int update_may_persist_at_filter(__isl_keep isl_schedule_node *node,
4340 struct ppcg_may_persist_data *data)
4342 enum isl_schedule_node_type type;
4343 isl_schedule_node *parent;
4344 isl_space *space;
4345 isl_union_pw_multi_aff *contraction;
4346 isl_union_set *before, *after, *filter;
4347 isl_union_map *flow;
4349 type = isl_schedule_node_get_parent_type(node);
4350 if (type != isl_schedule_node_sequence && type != isl_schedule_node_set)
4351 return 0;
4353 parent = isl_schedule_node_copy(node);
4354 parent = isl_schedule_node_parent(parent);
4355 contraction = isl_schedule_node_get_subtree_contraction(parent);
4356 isl_schedule_node_free(parent);
4358 if (type == isl_schedule_node_set)
4359 return filter_flow(node, data, contraction);
4361 filter = isl_schedule_node_filter_get_filter(node);
4362 space = isl_union_set_get_space(filter);
4363 isl_union_set_free(filter);
4364 before = isl_union_set_empty(space);
4365 after = isl_union_set_copy(before);
4366 before = add_previous_filters(before, node);
4367 after = add_next_filters(after, node);
4369 remove_external_flow(data, before, contraction);
4370 remove_external_flow(data, after, contraction);
4372 return filter_flow(node, data, contraction);
4375 /* Update the information in "data" based on the ancestor "node".
4377 static int update_may_persist_at(__isl_keep isl_schedule_node *node, void *user)
4379 struct ppcg_may_persist_data *data = user;
4381 switch (isl_schedule_node_get_type(node)) {
4382 case isl_schedule_node_error:
4383 return -1;
4384 case isl_schedule_node_context:
4385 case isl_schedule_node_domain:
4386 case isl_schedule_node_expansion:
4387 case isl_schedule_node_extension:
4388 case isl_schedule_node_guard:
4389 case isl_schedule_node_leaf:
4390 case isl_schedule_node_mark:
4391 case isl_schedule_node_sequence:
4392 case isl_schedule_node_set:
4393 break;
4394 case isl_schedule_node_band:
4395 if (update_may_persist_at_band(node, data) < 0)
4396 return -1;
4397 break;
4398 case isl_schedule_node_filter:
4399 if (update_may_persist_at_filter(node, data) < 0)
4400 return -1;
4401 break;
4404 return 0;
4407 /* Determine the set of array elements that may need to be perserved
4408 * by a kernel constructed from the subtree at "node".
4409 * This includes the set of array elements that may need to be preserved
4410 * by the entire scop (prog->may_persist) and the elements for which
4411 * there is a potential flow dependence that may cross a kernel launch.
4413 * To determine the second set, we start from all flow dependences.
4414 * From this set of dependences, we remove those that cannot possibly
4415 * require data to be preserved by a kernel launch.
4416 * In particular, we consider the following sets of dependences.
4417 * - dependences of which the write occurs inside the kernel.
4418 * If the data is needed outside the kernel, then it will
4419 * be copied out immediately after the kernel launch, so there
4420 * is no need for any special care.
4421 * - dependences of which the read occurs inside the kernel and the
4422 * corresponding write occurs inside the same iteration of the
4423 * outer band nodes. This means that the data is needed in
4424 * the first kernel launch after the write, which is already
4425 * taken care of by the standard copy-in. That is, the data
4426 * do not need to be preserved by any intermediate call to
4427 * the same kernel.
4428 * - dependences of which the write and the read either both occur
4429 * before the kernel launch or both occur after the kernel launch,
4430 * within the same iteration of the outer band nodes with respect
4431 * to the sequence that determines the ordering of the dependence
4432 * and the kernel launch. Such flow dependences cannot cross
4433 * any kernel launch.
4435 * For the remaining (tagged) dependences, we take the domain
4436 * (i.e., the tagged writes) and apply the tagged access relation
4437 * to obtain the accessed data elements.
4438 * These are then combined with the elements that may need to be
4439 * preserved by the entire scop.
4441 static __isl_give isl_union_set *node_may_persist(
4442 __isl_keep isl_schedule_node *node, struct gpu_prog *prog)
4444 struct ppcg_may_persist_data data;
4445 isl_schedule_node *root;
4446 isl_union_pw_multi_aff *contraction;
4447 isl_union_set *domain;
4448 isl_union_set *persist;
4449 isl_union_map *flow, *local_flow;
4451 data.tagger = prog->scop->tagger;
4453 flow = isl_union_map_copy(prog->scop->tagged_dep_flow);
4454 data.local_flow = isl_union_map_copy(flow);
4455 data.inner_band_flow = isl_union_map_copy(flow);
4456 data.may_persist_flow = flow;
4457 if (isl_schedule_node_foreach_ancestor_top_down(node,
4458 &update_may_persist_at, &data) < 0)
4459 data.may_persist_flow =
4460 isl_union_map_free(data.may_persist_flow);
4461 flow = data.may_persist_flow;
4462 isl_union_map_free(data.local_flow);
4464 domain = isl_schedule_node_get_domain(node);
4465 contraction = isl_schedule_node_get_subtree_contraction(node);
4466 domain = isl_union_set_preimage_union_pw_multi_aff(domain,
4467 contraction);
4468 domain = isl_union_set_preimage_union_pw_multi_aff(domain,
4469 isl_union_pw_multi_aff_copy(data.tagger));
4470 flow = isl_union_map_subtract_domain(flow, isl_union_set_copy(domain));
4471 local_flow = data.inner_band_flow;
4472 local_flow = isl_union_map_intersect_range(local_flow, domain);
4473 flow = isl_union_map_subtract(flow, local_flow);
4475 persist = isl_union_map_domain(flow);
4476 persist = isl_union_set_apply(persist,
4477 isl_union_map_copy(prog->scop->tagged_may_writes));
4478 persist = isl_union_set_union(persist,
4479 isl_union_set_copy(prog->may_persist));
4481 return persist;
4484 /* Add nodes for copying outer arrays in and out of the device
4485 * before and after the subtree "node", which contains one or more kernels.
4486 * "domain" contains the original reaching domain elements before
4487 * the kernels were created, i.e., before the contraction that
4488 * may have been performed in creating the kernels has been applied.
4489 * "prefix" contains the prefix schedule at that point, in terms
4490 * of the same original reaching domain elements.
4492 * We first compute the sets of outer array elements that need
4493 * to be copied in and out and then graft in the nodes for
4494 * performing this copying.
4496 * In particular, for each array that is possibly written anywhere in
4497 * the subtree "node" and that may be used after "node"
4498 * or that may be visible outside the corresponding scop,
4499 * we copy out its entire extent.
4501 * Any array elements that is read without first being written inside
4502 * the subtree "node" needs to be copied in.
4503 * Furthermore, if there are any array elements that
4504 * are copied out, but that may not be written inside "node, then
4505 * they also need to be copied in to ensure that the value after execution
4506 * is the same as the value before execution, at least for those array
4507 * elements that may have their values preserved by the scop or that
4508 * may be written before "node" and read after "node".
4509 * In case the array elements are structures, we need to take into
4510 * account that all members of the structures need to be written
4511 * by "node" before we can avoid copying the data structure in.
4513 * Note that the may_write relation is intersected with the domain,
4514 * which has been intersected with the context.
4515 * This helps in those cases where the arrays are declared with a fixed size,
4516 * while the accesses are parametric and the context assigns a fixed value
4517 * to the parameters.
4519 * If an element from a local array is read without first being written,
4520 * then there is no point in copying it in since it cannot have been
4521 * written prior to the scop. Warn about the uninitialized read instead.
4523 static __isl_give isl_schedule_node *add_to_from_device(
4524 __isl_take isl_schedule_node *node, __isl_take isl_union_set *domain,
4525 __isl_take isl_union_map *prefix, struct gpu_prog *prog)
4527 isl_union_set *local;
4528 isl_union_set *to_device, *from_device, *may_persist;
4529 isl_union_map *may_write, *must_write, *copy_out, *not_written;
4530 isl_union_map *read, *copy_in;
4531 isl_union_map *tagged;
4532 isl_union_map *local_uninitialized;
4533 isl_schedule_node *graft;
4535 tagged = isl_union_map_copy(prog->scop->tagged_reads);
4536 tagged = isl_union_map_union(tagged,
4537 isl_union_map_copy(prog->scop->tagged_may_writes));
4539 may_write = isl_union_map_copy(prog->may_write);
4540 may_write = isl_union_map_intersect_domain(may_write,
4541 isl_union_set_copy(domain));
4542 may_write = remove_local_accesses(prog,
4543 isl_union_map_copy(tagged), may_write,
4544 isl_union_map_copy(prefix), 0);
4545 may_write = isl_union_map_apply_range(may_write,
4546 isl_union_map_copy(prog->to_outer));
4547 may_write = isl_union_map_apply_domain(may_write,
4548 isl_union_map_copy(prefix));
4549 may_write = approximate_copy_out(may_write, prog);
4550 copy_out = isl_union_map_copy(may_write);
4551 may_write = isl_union_map_apply_range(may_write,
4552 isl_union_map_copy(prog->to_inner));
4553 must_write = isl_union_map_copy(prog->must_write);
4554 must_write = isl_union_map_apply_domain(must_write,
4555 isl_union_map_copy(prefix));
4556 may_persist = node_may_persist(node, prog);
4557 may_write = isl_union_map_intersect_range(may_write, may_persist);
4558 not_written = isl_union_map_subtract(may_write, must_write);
4560 local = extract_local_accesses(prog, domain);
4561 read = isl_union_map_copy(prog->read);
4562 read = isl_union_map_intersect_domain(read, domain);
4563 read = remove_local_accesses(prog, tagged, read,
4564 isl_union_map_copy(prefix), 1);
4565 local = isl_union_set_apply(local, isl_union_map_copy(prog->to_inner));
4566 local_uninitialized = isl_union_map_copy(prog->scop->live_in);
4567 local_uninitialized = isl_union_map_intersect_range(local_uninitialized,
4568 local);
4569 local_uninitialized = isl_union_map_intersect(local_uninitialized,
4570 isl_union_map_copy(read));
4571 if (!isl_union_map_is_empty(local_uninitialized)) {
4572 fprintf(stderr,
4573 "possibly uninitialized reads (not copied in):\n");
4574 isl_union_map_dump(local_uninitialized);
4576 read = isl_union_map_subtract(read, local_uninitialized);
4577 read = isl_union_map_apply_domain(read, prefix);
4578 copy_in = isl_union_map_union(read, not_written);
4579 copy_in = isl_union_map_apply_range(copy_in,
4580 isl_union_map_copy(prog->to_outer));
4582 graft = create_copy_device(prog, node, "to_device",
4583 isl_union_map_range(copy_in));
4584 node = isl_schedule_node_graft_before(node, graft);
4585 graft = create_copy_device(prog, node, "from_device",
4586 isl_union_map_range(copy_out));
4587 node = isl_schedule_node_graft_after(node, graft);
4589 return node;
4592 /* Update "schedule" for mapping to a GPU device.
4594 * In particular, insert a context node, create kernels for
4595 * each outermost tilable band and introduce node for copying array
4596 * in and out of the device.
4598 static __isl_give isl_schedule *map_to_device(struct gpu_gen *gen,
4599 __isl_take isl_schedule *schedule)
4601 isl_schedule_node *node;
4602 isl_set *context;
4603 isl_union_set *domain;
4604 isl_union_map *prefix;
4606 context = isl_set_copy(gen->prog->context);
4607 context = isl_set_from_params(context);
4608 schedule = isl_schedule_insert_context(schedule, context);
4610 node = isl_schedule_get_root(schedule);
4611 isl_schedule_free(schedule);
4612 node = isl_schedule_node_child(node, 0);
4613 if (isl_schedule_node_get_type(node) == isl_schedule_node_context)
4614 node = isl_schedule_node_child(node, 0);
4615 domain = isl_schedule_node_get_domain(node);
4616 prefix = isl_schedule_node_get_prefix_schedule_union_map(node);
4617 node = mark_kernels(gen, node);
4618 node = add_to_from_device(node, domain, prefix, gen->prog);
4619 schedule = isl_schedule_node_get_schedule(node);
4620 isl_schedule_node_free(node);
4622 return schedule;
4625 /* Internal data structure for extract_access.
4626 * "next_access" points to the end of a linked list that is extended
4627 * by extract_access.
4628 * "single_expression" is set if the access expressions belong to
4629 * an expression statement (i.e., a statement without internal control).
4630 * "any_to_outer" maps all intermediate arrays to their outer arrays.
4632 struct ppcg_extract_access_data {
4633 struct gpu_stmt_access **next_access;
4634 int single_expression;
4635 isl_union_map *any_to_outer;
4638 /* Given a tagged access relation to a single array "tagged", extract it
4639 * as a map, taking into account that the input may be empty.
4640 * If the access relation is empty, then it does not contain
4641 * any space information, so we try to recover it from the index
4642 * expression.
4643 * The space of the index expression is of the form I -> A,
4644 * with I the statement instances and A the array, or [I -> F] -> A,
4645 * with F the filters corresponding to arguments.
4646 * We first drop F, if present, obtaining I -> A.
4647 * Then we construct I -> R, with R the reference tag,
4648 * combine the two into I -> [R -> A] and uncurry to obtain
4649 * the final result [I -> R] -> A.
4650 * Note that the index expression may have a lower dimension
4651 * than that of the array, but this dimension is not used
4652 * if the access relation is empty.
4654 static __isl_give isl_map *extract_single_tagged_access(
4655 __isl_take isl_union_map *tagged, __isl_keep pet_expr *expr)
4657 int empty;
4658 isl_id *id;
4659 isl_space *space, *space2;
4660 isl_multi_pw_aff *index;
4662 empty = isl_union_map_is_empty(tagged);
4663 if (empty < 0)
4664 goto error;
4665 if (!empty)
4666 return isl_map_from_union_map(tagged);
4667 isl_union_map_free(tagged);
4669 index = pet_expr_access_get_index(expr);
4670 space = isl_multi_pw_aff_get_space(index);
4671 isl_multi_pw_aff_free(index);
4672 if (isl_space_domain_is_wrapping(space))
4673 space = isl_space_domain_factor_domain(space);
4674 space2 = isl_space_copy(space);
4675 space2 = isl_space_from_domain(isl_space_domain(space));
4676 id = pet_expr_access_get_ref_id(expr);
4677 space2 = isl_space_set_tuple_id(space2, isl_dim_out, id);
4678 space = isl_space_range_product(space2, space);
4679 space = isl_space_uncurry(space);
4681 return isl_map_empty(space);
4682 error:
4683 isl_union_map_free(tagged);
4684 return NULL;
4687 /* Extract a gpu_stmt_access from "expr", append it to the list
4688 * that ends in *data->next_access and update the end of the list.
4689 * If the access expression performs a write, then it is considered
4690 * exact only if it appears in a single expression statement and
4691 * if its may access relation is equal to its must access relation.
4693 * The combined set of may accesses may be union if member accesses
4694 * are involved, but the entire set is derived from a single reference and
4695 * therefore from a single index expression. These accesses therefore
4696 * all map to the same outer array.
4698 static int extract_access(__isl_keep pet_expr *expr, void *user)
4700 struct ppcg_extract_access_data *data = user;
4701 isl_union_map *tagged;
4702 struct gpu_stmt_access *access;
4703 isl_ctx *ctx = pet_expr_get_ctx(expr);
4704 isl_multi_pw_aff *index;
4706 access = isl_alloc_type(ctx, struct gpu_stmt_access);
4707 assert(access);
4708 access->next = NULL;
4709 access->read = pet_expr_access_is_read(expr);
4710 access->write = pet_expr_access_is_write(expr);
4711 tagged = pet_expr_access_get_tagged_may_read(expr);
4712 tagged = isl_union_map_union(tagged,
4713 pet_expr_access_get_tagged_may_write(expr));
4714 tagged = isl_union_map_apply_range(tagged,
4715 isl_union_map_copy(data->any_to_outer));
4716 if (!access->write) {
4717 access->exact_write = 1;
4718 } else if (!data->single_expression) {
4719 access->exact_write = 0;
4720 } else {
4721 isl_union_map *must, *may;
4722 may = isl_union_map_copy(tagged);
4723 may = isl_union_map_domain_factor_domain(may);
4724 must = pet_expr_access_get_must_write(expr);
4725 access->exact_write = isl_union_map_is_equal(must, may);
4726 isl_union_map_free(must);
4727 isl_union_map_free(may);
4729 index = pet_expr_access_get_index(expr);
4730 access->n_index = isl_multi_pw_aff_dim(index, isl_dim_out);
4731 isl_multi_pw_aff_free(index);
4732 access->ref_id = pet_expr_access_get_ref_id(expr);
4733 access->tagged_access = extract_single_tagged_access(tagged, expr);
4734 access->access = isl_map_copy(access->tagged_access);
4735 access->access = isl_map_domain_factor_domain(access->access);
4737 *data->next_access = access;
4738 data->next_access = &(*data->next_access)->next;
4740 if (!access->access)
4741 return -1;
4743 return 0;
4746 /* Construct a linked list of gpu_stmt_access objects,
4747 * one for each access expression in the statement body.
4748 * "any_to_outer" maps all intermediate arrays to their outer arrays.
4750 static int pet_stmt_extract_accesses(struct gpu_stmt *stmt,
4751 __isl_keep isl_union_map *any_to_outer)
4753 struct ppcg_extract_access_data data;
4755 stmt->accesses = NULL;
4756 data.next_access = &stmt->accesses;
4757 data.single_expression =
4758 pet_tree_get_type(stmt->stmt->body) == pet_tree_expr;
4759 data.any_to_outer = any_to_outer;
4760 return pet_tree_foreach_access_expr(stmt->stmt->body,
4761 &extract_access, &data);
4764 /* Return an array of gpu_stmt representing the statements in "scop".
4766 static struct gpu_stmt *extract_stmts(isl_ctx *ctx, struct ppcg_scop *scop,
4767 __isl_keep isl_set *context, __isl_keep isl_union_map *any_to_outer)
4769 int i;
4770 struct gpu_stmt *stmts;
4772 stmts = isl_calloc_array(ctx, struct gpu_stmt, scop->pet->n_stmt);
4773 if (!stmts)
4774 return NULL;
4776 for (i = 0; i < scop->pet->n_stmt; ++i) {
4777 struct gpu_stmt *s = &stmts[i];
4779 s->id = isl_set_get_tuple_id(scop->pet->stmts[i]->domain);
4780 s->stmt = scop->pet->stmts[i];
4781 if (pet_stmt_extract_accesses(s, any_to_outer) < 0)
4782 return free_stmts(stmts, i + 1);
4785 return stmts;
4788 /* Callback for ppcg_print_guarded that calls the callback for generate_gpu.
4790 static __isl_give isl_printer *print_gpu(__isl_take isl_printer *p, void *user)
4792 struct gpu_gen *gen = user;
4794 return gen->print(p, gen->prog, gen->tree, &gen->types,
4795 gen->print_user);
4798 /* Generate CUDA code for "scop" and print it to "p".
4799 * After generating an AST for the transformed scop as explained below,
4800 * we call "gen->print" to print the AST in the desired output format
4801 * to "p".
4803 * If it turns out that it does not make sense to generate GPU code,
4804 * then we generate CPU code instead.
4806 * The GPU code is generated in a context where at least one
4807 * statement instance is executed. The corresponding guard (if any) is printed
4808 * around the entire generated GPU code, except for the declaration
4809 * of the arrays that are visible outside of the scop and that therefore
4810 * cannot be declared inside the body of any possible guard.
4812 * We first compute a schedule that respects the dependences
4813 * of the original program and select the outermost bands
4814 * of tilable dimensions that have at least one parallel loop.
4815 * If the --load-schedule is specified, then the loaded schedule
4816 * is used instead of a computed schedule.
4818 * Each of these bands B is then tiled according to "tile" sizes, resulting
4819 * in two nested bands, with a kernel marker on top
4827 * We then split off at most 2 parallel dimensions from the T band and
4828 * at most 3 parallel dimension from the P band
4833 * T1
4835 * T2
4837 * P1
4839 * P2
4841 * A filter is introduced in front of T1 that maps the domain instances
4842 * to block identifiers. Similarly, a filter is introduced in front of P1
4843 * that maps the domain instances to thread identifiers.
4845 * For each iteration of the T2 band and for each array, we compute
4846 * the array elements accessed by that iteration, construct a rectangular
4847 * box around it and shift it to the origin. The result is used
4848 * as shared memory for the array.
4850 * Copying and synchronization statements are added to this schedule tree.
4851 * In principle, these are added in front of the P1 band, but some of
4852 * them may get hoisted up to higher levels.
4854 * The entire AST is then generated from the single resulting schedule tree.
4855 * During the generation the subtrees at kernel nodes (K) are saved
4856 * aside and replaced by kernel calls. The result is printed as host code
4857 * while the saved subtrees are printed as device code.
4859 static __isl_give isl_printer *generate(__isl_take isl_printer *p,
4860 struct gpu_gen *gen, struct ppcg_scop *scop,
4861 struct ppcg_options *options)
4863 struct gpu_prog *prog;
4864 isl_ctx *ctx;
4865 isl_set *context, *guard;
4866 isl_schedule *schedule;
4867 int any_permutable;
4869 if (!scop)
4870 return isl_printer_free(p);
4872 ctx = isl_printer_get_ctx(p);
4873 prog = gpu_prog_alloc(ctx, scop);
4874 if (!prog)
4875 return isl_printer_free(p);
4877 context = isl_set_copy(prog->context);
4878 guard = isl_union_set_params(isl_union_set_copy(prog->scop->domain));
4879 prog->context = isl_set_intersect(prog->context, isl_set_copy(guard));
4881 gen->prog = prog;
4882 schedule = get_schedule(gen);
4884 any_permutable = has_any_permutable_node(schedule);
4885 if (any_permutable < 0 || !any_permutable) {
4886 isl_set_free(context);
4887 isl_set_free(guard);
4888 if (any_permutable < 0)
4889 p = isl_printer_free(p);
4890 else
4891 p = print_cpu(p, scop, options);
4892 isl_schedule_free(schedule);
4893 } else {
4894 schedule = map_to_device(gen, schedule);
4895 gen->tree = generate_code(gen, schedule);
4896 p = ppcg_print_exposed_declarations(p, prog->scop);
4897 p = ppcg_print_guarded(p, guard, context, &print_gpu, gen);
4898 isl_ast_node_free(gen->tree);
4901 gpu_prog_free(prog);
4903 return p;
4906 /* Wrapper around generate for use as a ppcg_transform callback.
4908 static __isl_give isl_printer *generate_wrap(__isl_take isl_printer *p,
4909 struct ppcg_scop *scop, void *user)
4911 struct gpu_gen *gen = user;
4913 return generate(p, gen, scop, gen->options);
4916 /* Transform the code in the file called "input" by replacing
4917 * all scops by corresponding GPU code and write the results to "out".
4919 int generate_gpu(isl_ctx *ctx, const char *input, FILE *out,
4920 struct ppcg_options *options,
4921 __isl_give isl_printer *(*print)(__isl_take isl_printer *p,
4922 struct gpu_prog *prog, __isl_keep isl_ast_node *tree,
4923 struct gpu_types *types, void *user), void *user)
4925 struct gpu_gen gen;
4926 int r;
4927 int i;
4929 gen.ctx = ctx;
4930 gen.sizes = extract_sizes_from_str(ctx, options->sizes);
4931 gen.options = options;
4932 gen.kernel_id = 0;
4933 gen.print = print;
4934 gen.print_user = user;
4935 gen.types.n = 0;
4936 gen.types.name = NULL;
4938 if (options->debug->dump_sizes) {
4939 isl_space *space = isl_space_params_alloc(ctx, 0);
4940 gen.used_sizes = isl_union_map_empty(space);
4943 r = ppcg_transform(ctx, input, out, options, &generate_wrap, &gen);
4945 if (options->debug->dump_sizes) {
4946 isl_union_map_dump(gen.used_sizes);
4947 isl_union_map_free(gen.used_sizes);
4950 isl_union_map_free(gen.sizes);
4951 for (i = 0; i < gen.types.n; ++i)
4952 free(gen.types.name[i]);
4953 free(gen.types.name);
4955 return r;
4958 /* Compute the set of inner array elements that may have their values
4959 * preserved by "prog". In particular, collect the array elements of
4960 * arrays that are not local to "prog" and remove those elements that
4961 * are definitely killed or definitely written by "prog".
4963 static __isl_give isl_union_set *compute_may_persist(struct gpu_prog *prog)
4965 int i;
4966 isl_union_set *may_persist, *killed;
4967 isl_union_map *must_kill;
4969 may_persist = isl_union_set_empty(isl_set_get_space(prog->context));
4970 for (i = 0; i < prog->n_array; ++i) {
4971 isl_set *extent;
4973 if (prog->array[i].local)
4974 continue;
4976 extent = isl_set_copy(prog->array[i].extent);
4977 may_persist = isl_union_set_add_set(may_persist, extent);
4980 may_persist = isl_union_set_intersect_params(may_persist,
4981 isl_set_copy(prog->context));
4982 may_persist = isl_union_set_apply(may_persist,
4983 isl_union_map_copy(prog->to_inner));
4984 must_kill = isl_union_map_copy(prog->tagged_must_kill);
4985 killed = isl_union_map_range(must_kill);
4986 must_kill = isl_union_map_copy(prog->must_write);
4987 killed = isl_union_set_union(killed, isl_union_map_range(must_kill));
4989 may_persist = isl_union_set_subtract(may_persist, killed);
4990 return may_persist;
4993 struct gpu_prog *gpu_prog_alloc(isl_ctx *ctx, struct ppcg_scop *scop)
4995 struct gpu_prog *prog;
4996 isl_space *space;
4997 isl_map *id;
4999 if (!scop)
5000 return NULL;
5002 prog = isl_calloc_type(ctx, struct gpu_prog);
5003 assert(prog);
5005 prog->ctx = ctx;
5006 prog->scop = scop;
5007 prog->context = isl_set_copy(scop->context);
5008 prog->n_stmts = scop->pet->n_stmt;
5009 prog->any_to_outer = pet_scop_compute_outer_to_any(scop->pet);
5010 prog->any_to_outer = isl_union_map_reverse(prog->any_to_outer);
5011 space = isl_union_map_get_space(prog->any_to_outer);
5012 space = isl_space_set_from_params(space);
5013 space = isl_space_add_dims(space, isl_dim_set, 1);
5014 space = isl_space_map_from_set(space);
5015 id = isl_map_identity(space);
5016 prog->any_to_outer = isl_union_map_add_map(prog->any_to_outer, id);
5017 prog->stmts = extract_stmts(ctx, scop,
5018 prog->context, prog->any_to_outer);
5019 prog->read = isl_union_map_copy(scop->reads);
5020 prog->may_write = isl_union_map_copy(scop->may_writes);
5021 prog->must_write = isl_union_map_copy(scop->must_writes);
5022 prog->tagged_must_kill = isl_union_map_copy(scop->tagged_must_kills);
5023 prog->to_inner = pet_scop_compute_outer_to_inner(scop->pet);
5024 prog->to_outer = isl_union_map_copy(prog->to_inner);
5025 prog->to_outer = isl_union_map_reverse(prog->to_outer);
5027 if (!prog->stmts)
5028 return gpu_prog_free(prog);
5030 if (collect_array_info(prog) < 0)
5031 return gpu_prog_free(prog);
5032 prog->may_persist = compute_may_persist(prog);
5034 return prog;
5037 void *gpu_prog_free(struct gpu_prog *prog)
5039 if (!prog)
5040 return NULL;
5041 free_array_info(prog);
5042 free_stmts(prog->stmts, prog->n_stmts);
5043 isl_union_map_free(prog->any_to_outer);
5044 isl_union_map_free(prog->to_outer);
5045 isl_union_map_free(prog->to_inner);
5046 isl_union_map_free(prog->read);
5047 isl_union_map_free(prog->may_write);
5048 isl_union_map_free(prog->must_write);
5049 isl_union_map_free(prog->tagged_must_kill);
5050 isl_union_map_free(prog->array_order);
5051 isl_union_set_free(prog->may_persist);
5052 isl_set_free(prog->context);
5053 free(prog);
5054 return NULL;