gpu: add functions for adding/detecting synchronization nodes in schedule tree
[ppcg.git] / gpu.c
blobd05b4733538477d08f9df46955fe6144069990d6
1 /*
2 * Copyright 2010-2011 INRIA Saclay
3 * Copyright 2012-2013 Ecole Normale Superieure
5 * Use of this software is governed by the MIT license
7 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
8 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
9 * 91893 Orsay, France
10 * and Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France
13 #include <assert.h>
14 #include <stdlib.h>
15 #include <string.h>
17 #include <isl/polynomial.h>
18 #include <isl/union_set.h>
19 #include <isl/aff.h>
20 #include <isl/ilp.h>
21 #include <isl/flow.h>
22 #include <isl/schedule.h>
23 #include <isl/schedule_node.h>
24 #include <isl/options.h>
25 #include <isl/ast_build.h>
27 #include "cpu.h"
28 #include "gpu.h"
29 #include "gpu_array_tile.h"
30 #include "gpu_group.h"
31 #include "gpu_tree.h"
32 #include "schedule.h"
33 #include "ppcg_options.h"
34 #include "print.h"
36 struct gpu_array_info;
38 /* Collect all references to the given array and store pointers to them
39 * in array->refs.
41 * If the array contains structures, then there is no need to collect
42 * the references since we will not be computing any reference groups.
44 static void collect_references(struct gpu_prog *prog,
45 struct gpu_array_info *array)
47 int i;
48 int n;
50 if (array->has_compound_element)
51 return;
53 n = 0;
54 for (i = 0; i < prog->n_stmts; ++i) {
55 struct gpu_stmt *stmt = &prog->stmts[i];
56 struct gpu_stmt_access *access;
58 for (access = stmt->accesses; access; access = access->next) {
59 const char *name;
60 name = isl_map_get_tuple_name(access->access,
61 isl_dim_out);
62 if (name && !strcmp(array->name, name))
63 n++;
67 array->n_ref = n;
68 array->refs = isl_alloc_array(prog->ctx, struct gpu_stmt_access *, n);
69 assert(array->refs);
71 n = 0;
72 for (i = 0; i < prog->n_stmts; ++i) {
73 struct gpu_stmt *stmt = &prog->stmts[i];
74 struct gpu_stmt_access *access;
76 for (access = stmt->accesses; access; access = access->next) {
77 const char *name;
78 name = isl_map_get_tuple_name(access->access,
79 isl_dim_out);
80 if (!name || strcmp(array->name, name))
81 continue;
83 array->refs[n++] = access;
88 /* Compute and return the extent of "array", taking into account the set of
89 * accessed elements.
91 * In particular, the extent in the outer dimension is taken
92 * from "accessed", while the extents in the remaining dimensions
93 * are taken from array->extent.
95 * The extent in the outer dimension cannot be taken from array->extent
96 * because that may be unbounded. Furthermore, even if it is bounded,
97 * it may be larger than the piece of the array that is being accessed.
99 static __isl_give isl_set *compute_extent(struct pet_array *array,
100 __isl_keep isl_set *accessed)
102 int n_index;
103 isl_id *id;
104 isl_set *outer;
105 isl_set *extent;
107 extent = isl_set_copy(array->extent);
109 n_index = isl_set_dim(accessed, isl_dim_set);
110 if (n_index == 0)
111 return extent;
113 extent = isl_set_project_out(extent, isl_dim_set, 0, 1);
114 outer = isl_set_copy(accessed);
115 outer = isl_set_project_out(outer, isl_dim_set, 1, n_index - 1);
116 extent = isl_set_flat_product(outer, extent);
117 id = isl_set_get_tuple_id(accessed);
118 extent = isl_set_set_tuple_id(extent, id);
120 return extent;
123 /* Is the array "array" being extracted a read-only scalar?
125 * That is, is "array" a scalar that is never possibly written to.
126 * An array containing structures is never considered to be a scalar.
128 static int is_read_only_scalar(struct gpu_array_info *array,
129 struct gpu_prog *prog)
131 isl_set *space;
132 isl_union_map *write;
133 int empty;
135 if (array->has_compound_element)
136 return 0;
137 if (array->n_index != 0)
138 return 0;
140 write = isl_union_map_copy(prog->may_write);
141 space = isl_set_universe(isl_space_copy(array->space));
142 write = isl_union_map_intersect_range(write,
143 isl_union_set_from_set(space));
144 empty = isl_union_map_is_empty(write);
145 isl_union_map_free(write);
147 return empty;
150 /* Compute bounds on the host array "pa" based on the corresponding
151 * accessed elements in "arrays"
152 * and collect all references to the array.
153 * Store the results in "info".
155 * If the array is zero-dimensional and does not contain structures,
156 * i.e., if the array is a scalar, we check whether it is read-only.
157 * We also check whether the array is accessed at all.
159 static int extract_array_info(struct gpu_prog *prog,
160 struct gpu_array_info *info, struct pet_array *pa,
161 __isl_keep isl_union_set *arrays)
163 int i, empty;
164 const char *name;
165 int n_index;
166 isl_pw_aff **bounds;
167 isl_set *accessed, *extent;
169 n_index = isl_set_dim(pa->extent, isl_dim_set);
170 name = isl_set_get_tuple_name(pa->extent);
171 bounds = isl_alloc_array(prog->ctx, isl_pw_aff *, n_index);
172 if (!bounds)
173 return -1;
175 info->space = isl_set_get_space(pa->extent);
176 info->name = strdup(name);
177 info->n_index = n_index;
178 info->bound = bounds;
179 info->linearize = prog->scop->options->linearize_device_arrays;
181 info->type = strdup(pa->element_type);
182 info->size = pa->element_size;
183 info->local = pa->declared && !pa->exposed;
184 info->has_compound_element = pa->element_is_record;
185 info->read_only_scalar = is_read_only_scalar(info, prog);
187 accessed = isl_union_set_extract_set(arrays,
188 isl_space_copy(info->space));
189 empty = isl_set_is_empty(accessed);
190 extent = compute_extent(pa, accessed);
191 isl_set_free(accessed);
192 info->extent = extent;
193 if (empty < 0)
194 return -1;
195 info->accessed = !empty;
196 for (i = 0; i < n_index; ++i) {
197 isl_set *dom;
198 isl_local_space *ls;
199 isl_aff *one;
200 isl_pw_aff *bound;
202 dom = isl_set_copy(extent);
203 dom = isl_set_project_out(dom, isl_dim_set, i + 1,
204 n_index - (i + 1));
205 dom = isl_set_project_out(dom, isl_dim_set, 0, i);
206 if (!isl_set_dim_has_upper_bound(dom, isl_dim_set, 0)) {
207 fprintf(stderr, "unable to determine extent of '%s' "
208 "in dimension %d\n", info->name, i);
209 dom = isl_set_free(dom);
211 bound = isl_set_dim_max(dom, 0);
212 dom = isl_pw_aff_domain(isl_pw_aff_copy(bound));
213 ls = isl_local_space_from_space(isl_set_get_space(dom));
214 one = isl_aff_zero_on_domain(ls);
215 one = isl_aff_add_constant_si(one, 1);
216 bound = isl_pw_aff_add(bound, isl_pw_aff_alloc(dom, one));
217 bound = isl_pw_aff_gist(bound, isl_set_copy(prog->context));
219 bounds[i] = bound;
220 if (!isl_pw_aff_is_cst(bound))
221 info->linearize = 1;
224 collect_references(prog, info);
226 return 0;
229 /* Remove independence from the order constraints "order" on array "array".
230 * Since the pairs of iterations in the filter relation of an independence
231 * are guaranteed to be completely independent by the user, there is
232 * no need to ensure that live ranges are ordered along thong pairs.
233 * We make an exception for local variables, though, as the independence
234 * guarantee does not apply to those.
236 * The order constraints are used in two places.
237 * Those on scalars are used in check_scalar_live_ranges to check if
238 * we need to force the scalar to be private. Any non-local scalar
239 * should not be forced scalar if it only appears in independent loops.
240 * Those on non-scalars are added to the coincidence constraints
241 * in compute_schedule because we do not support any array expansion.
242 * Accesses to non-local arrays should not prevent a loop from being
243 * considered coincident so we should indeed remove those constraints
244 * from the order constraints.
246 static __isl_give isl_union_map *remove_independences(struct gpu_prog *prog,
247 struct gpu_array_info *array, __isl_take isl_union_map *order)
249 int i;
251 for (i = 0; i < prog->scop->pet->n_independence; ++i) {
252 struct pet_independence *pi = prog->scop->pet->independences[i];
253 if (isl_union_set_contains(pi->local, array->space))
254 continue;
256 order = isl_union_map_subtract(order,
257 isl_union_map_copy(pi->filter));
260 return order;
263 /* For each array in "prog", store the (untagged) order dependences
264 * derived from the array in array->dep_order.
265 * In particular, consider all references that access the given array
266 * and take the order dependences that have one of these references
267 * as source. (Since an order dependence relates two references to
268 * the same array, the target of these order dependences will also
269 * be one of these references.)
270 * Additionally, store the union of these array->dep_order relations
271 * for all non-scalar arrays in prog->array_order.
273 void collect_order_dependences(struct gpu_prog *prog)
275 int i;
276 isl_space *space;
277 isl_union_map *accesses;
279 space = isl_union_map_get_space(prog->read);
280 prog->array_order = isl_union_map_empty(space);
282 accesses = isl_union_map_copy(prog->scop->tagged_reads);
283 accesses = isl_union_map_union(accesses,
284 isl_union_map_copy(prog->scop->tagged_may_writes));
285 accesses = isl_union_map_universe(accesses);
286 accesses = isl_union_map_apply_range(accesses,
287 isl_union_map_copy(prog->to_outer));
289 for (i = 0; i < prog->n_array; ++i) {
290 struct gpu_array_info *array = &prog->array[i];
291 isl_set *set;
292 isl_union_set *uset;
293 isl_union_map *order;
295 set = isl_set_universe(isl_space_copy(array->space));
296 uset = isl_union_set_from_set(set);
297 uset = isl_union_map_domain(
298 isl_union_map_intersect_range(isl_union_map_copy(accesses),
299 uset));
300 order = isl_union_map_copy(prog->scop->tagged_dep_order);
301 order = isl_union_map_intersect_domain(order, uset);
302 order = isl_union_map_zip(order);
303 order = isl_union_set_unwrap(isl_union_map_domain(order));
304 order = remove_independences(prog, array, order);
305 array->dep_order = order;
307 if (gpu_array_is_scalar(array) && !array->has_compound_element)
308 continue;
310 prog->array_order = isl_union_map_union(prog->array_order,
311 isl_union_map_copy(array->dep_order));
314 isl_union_map_free(accesses);
317 /* Construct a gpu_array_info for each array referenced by prog->scop and
318 * collect them in prog->array.
320 * The sizes are based on the extents and the set of possibly accessed
321 * elements by "prog".
322 * If there are any member accesses involved, then they are first mapped
323 * to the outer arrays of structs.
325 * If we are allowing live range reordering, then also set
326 * the dep_order field. Otherwise leave it NULL.
328 static int collect_array_info(struct gpu_prog *prog)
330 int i;
331 int r = 0;
332 isl_union_set *arrays;
334 arrays = isl_union_map_range(isl_union_map_copy(prog->read));
335 arrays = isl_union_set_union(arrays,
336 isl_union_map_range(isl_union_map_copy(prog->may_write)));
338 arrays = isl_union_set_apply(arrays,
339 isl_union_map_copy(prog->to_outer));
341 arrays = isl_union_set_coalesce(arrays);
343 prog->n_array = prog->scop->pet->n_array;
344 prog->array = isl_calloc_array(prog->ctx,
345 struct gpu_array_info, prog->n_array);
346 assert(prog->array);
347 for (i = 0; i < prog->scop->pet->n_array; ++i)
348 if (extract_array_info(prog, &prog->array[i],
349 prog->scop->pet->arrays[i], arrays) < 0)
350 r = -1;
352 isl_union_set_free(arrays);
354 if (prog->scop->options->live_range_reordering)
355 collect_order_dependences(prog);
357 return r;
360 static void free_array_info(struct gpu_prog *prog)
362 int i, j;
364 for (i = 0; i < prog->n_array; ++i) {
365 int n_index = prog->array[i].n_index;
366 free(prog->array[i].type);
367 free(prog->array[i].name);
368 for (j = 0; j < n_index; ++j)
369 isl_pw_aff_free(prog->array[i].bound[j]);
370 isl_space_free(prog->array[i].space);
371 isl_set_free(prog->array[i].extent);
372 free(prog->array[i].bound);
373 free(prog->array[i].refs);
374 isl_union_map_free(prog->array[i].dep_order);
376 free(prog->array);
379 /* Check if a gpu array is a scalar. A scalar is a value that is not stored
380 * as an array or through a pointer reference, but as a single data element.
381 * At the moment, scalars are represented as zero-dimensional arrays.
382 * Note that the single data element may be an entire structure.
384 int gpu_array_is_scalar(struct gpu_array_info *array)
386 return array->n_index == 0;
389 /* Is "array" a read-only scalar?
391 int gpu_array_is_read_only_scalar(struct gpu_array_info *array)
393 return array->read_only_scalar;
396 /* Return the set of parameter values for which the array has a positive
397 * size in all dimensions.
398 * If the sizes are only valid for some parameter values, then those
399 * constraints are also taken into account.
401 __isl_give isl_set *gpu_array_positive_size_guard(struct gpu_array_info *array)
403 int i;
404 isl_space *space;
405 isl_set *guard;
407 space = isl_space_params(isl_space_copy(array->space));
408 guard = isl_set_universe(space);
410 for (i = 0; i < array->n_index; ++i) {
411 isl_pw_aff *bound;
412 isl_set *guard_i, *zero;
414 bound = isl_pw_aff_copy(array->bound[i]);
415 guard_i = isl_pw_aff_nonneg_set(isl_pw_aff_copy(bound));
416 zero = isl_pw_aff_zero_set(bound);
417 guard_i = isl_set_subtract(guard_i, zero);
418 guard = isl_set_intersect(guard, guard_i);
421 return guard;
424 /* Internal data structure for extract_size_of_type.
425 * "type" specifies the name of the space that we want to extract.
426 * "res" is used to store the subset of that space.
428 struct ppcg_extract_size_data {
429 const char *type;
430 isl_set *res;
433 /* This function is called for each set in a union_set.
434 * If the name of the set matches data->type, we store the
435 * set in data->res.
437 static int extract_size_of_type(__isl_take isl_set *size, void *user)
439 struct ppcg_extract_size_data *data = user;
440 const char *name;
442 name = isl_set_get_tuple_name(size);
443 if (name && !strcmp(name, data->type)) {
444 data->res = size;
445 return -1;
448 isl_set_free(size);
449 return 0;
452 /* Given a union map { kernel[i] -> *[...] },
453 * return the range in the space called "type" for the kernel with
454 * sequence number "id".
456 static __isl_give isl_set *extract_sizes(__isl_keep isl_union_map *sizes,
457 const char *type, int id)
459 isl_space *space;
460 isl_set *dom;
461 isl_union_set *local_sizes;
462 struct ppcg_extract_size_data data = { type, NULL };
464 if (!sizes)
465 return NULL;
467 space = isl_union_map_get_space(sizes);
468 space = isl_space_set_from_params(space);
469 space = isl_space_add_dims(space, isl_dim_set, 1);
470 space = isl_space_set_tuple_name(space, isl_dim_set, "kernel");
471 dom = isl_set_universe(space);
472 dom = isl_set_fix_si(dom, isl_dim_set, 0, id);
474 local_sizes = isl_union_set_apply(isl_union_set_from_set(dom),
475 isl_union_map_copy(sizes));
476 isl_union_set_foreach_set(local_sizes, &extract_size_of_type, &data);
477 isl_union_set_free(local_sizes);
478 return data.res;
481 /* Given a singleton set, extract the first (at most *len) elements
482 * of the single integer tuple into *sizes and update *len if needed.
484 static void read_sizes_from_set(__isl_take isl_set *set, int *sizes, int *len)
486 int i;
487 int dim;
489 if (!set)
490 return;
492 dim = isl_set_dim(set, isl_dim_set);
493 if (dim < *len)
494 *len = dim;
496 for (i = 0; i < *len; ++i) {
497 isl_val *v;
499 v = isl_set_plain_get_val_if_fixed(set, isl_dim_set, i);
500 assert(v);
502 sizes[i] = isl_val_get_num_si(v);
503 isl_val_free(v);
506 isl_set_free(set);
509 /* Add the map { kernel[id] -> type[sizes] } to gen->used_sizes,
510 * if the option debug->dump_sizes is set.
512 static void set_used_sizes(struct gpu_gen *gen, const char *type, int id,
513 int *sizes, int len)
515 int i;
516 isl_space *space;
517 isl_map *map;
519 if (!gen->options->debug->dump_sizes)
520 return;
522 space = isl_union_map_get_space(gen->used_sizes);
523 space = isl_space_set_from_params(space);
524 space = isl_space_add_dims(space, isl_dim_set, 1);
525 space = isl_space_set_tuple_name(space, isl_dim_set, "kernel");
526 space = isl_space_from_domain(space);
527 space = isl_space_add_dims(space, isl_dim_out, len);
528 space = isl_space_set_tuple_name(space, isl_dim_out, type);
530 map = isl_map_universe(space);
531 map = isl_map_fix_si(map, isl_dim_in, 0, id);
532 for (i = 0; i < len; ++i)
533 map = isl_map_fix_si(map, isl_dim_out, i, sizes[i]);
535 gen->used_sizes = isl_union_map_add_map(gen->used_sizes, map);
538 /* Extract user specified "tile" sizes from the "sizes" command line option,
539 * defaulting to option->tile_size in each dimension.
540 * *tile_len contains the maximum number of tile sizes needed.
541 * Update *tile_len to the number of specified tile sizes, if any, and
542 * return a pointer to the tile sizes (or NULL on error).
543 * Add the effectively used sizes to gen->used_sizes.
545 static int *read_tile_sizes(struct gpu_gen *gen, int *tile_len)
547 int n;
548 int *tile_size;
549 isl_set *size;
551 tile_size = isl_alloc_array(gen->ctx, int, *tile_len);
552 if (!tile_size)
553 return NULL;
554 for (n = 0; n < *tile_len; ++n)
555 tile_size[n] = gen->options->tile_size;
557 size = extract_sizes(gen->sizes, "tile", gen->kernel_id);
558 read_sizes_from_set(size, tile_size, tile_len);
559 set_used_sizes(gen, "tile", gen->kernel_id, tile_size, *tile_len);
561 return tile_size;
564 /* Extract user specified "block" sizes from the "sizes" command line option,
565 * after filling in some potentially useful defaults.
567 static void read_block_sizes(struct ppcg_kernel *kernel,
568 __isl_keep isl_union_map *sizes)
570 isl_set *size;
572 if (kernel->n_block > 3)
573 kernel->n_block = 3;
574 switch (kernel->n_block) {
575 case 1:
576 kernel->block_dim[0] = 512;
577 break;
578 case 2:
579 kernel->block_dim[0] = 32;
580 kernel->block_dim[1] = 16;
581 break;
582 default:
583 kernel->block_dim[0] = 32;
584 kernel->block_dim[1] = 4;
585 kernel->block_dim[2] = 4;
586 break;
589 size = extract_sizes(sizes, "block", kernel->id);
590 read_sizes_from_set(size, kernel->block_dim, &kernel->n_block);
593 /* Extract user specified "grid" sizes from the "sizes" command line option,
594 * after filling in some potentially useful defaults.
596 static void read_grid_sizes(struct ppcg_kernel *kernel,
597 __isl_keep isl_union_map *sizes)
599 isl_set *size;
601 if (kernel->n_grid > 2)
602 kernel->n_grid = 2;
603 switch (kernel->n_grid) {
604 case 1:
605 kernel->grid_dim[0] = 32768;
606 break;
607 default:
608 kernel->grid_dim[0] = 256;
609 kernel->grid_dim[1] = 256;
610 break;
613 size = extract_sizes(sizes, "grid", kernel->id);
614 read_sizes_from_set(size, kernel->grid_dim, &kernel->n_grid);
617 /* Extract user specified grid and block sizes from the gen->sizes
618 * command line option after filling in some potentially useful defaults.
619 * Store the extracted sizes in "kernel".
620 * Add the effectively used sizes to gen->used_sizes.
622 static void read_grid_and_block_sizes(struct ppcg_kernel *kernel,
623 struct gpu_gen *gen)
625 read_block_sizes(kernel, gen->sizes);
626 read_grid_sizes(kernel, gen->sizes);
627 set_used_sizes(gen, "block", kernel->id,
628 kernel->block_dim, kernel->n_block);
629 set_used_sizes(gen, "grid", kernel->id,
630 kernel->grid_dim, kernel->n_grid);
633 static void *free_stmts(struct gpu_stmt *stmts, int n)
635 int i;
637 if (!stmts)
638 return NULL;
640 for (i = 0; i < n; ++i) {
641 struct gpu_stmt_access *access, *next;
643 for (access = stmts[i].accesses; access; access = next) {
644 next = access->next;
645 isl_id_free(access->ref_id);
646 isl_map_free(access->access);
647 isl_map_free(access->tagged_access);
648 free(access);
651 isl_id_free(stmts[i].id);
653 free(stmts);
655 return NULL;
658 /* Construct a map from a domain of dimensionality "len"
659 * to a domain of dimensionality "len" + "tile_len" that tiles
660 * the "tile_len" coordinates starting at "first".
661 * In particular, [s_i] -> [s_i / tile_size[i], s_i % tile_size[i]].
662 * "dim" prescribes the parameters.
664 static __isl_give isl_map *tile(__isl_take isl_space *dim, int len,
665 int first, int tile_len, int *tile_size)
667 int i;
668 isl_basic_map *bmap;
669 isl_constraint *c;
670 isl_local_space *ls;
672 dim = isl_space_add_dims(dim, isl_dim_in, len);
673 dim = isl_space_add_dims(dim, isl_dim_out, len + tile_len);
674 bmap = isl_basic_map_universe(isl_space_copy(dim));
675 ls = isl_local_space_from_space(dim);
677 for (i = 0; i < len - tile_len; ++i) {
678 int j = i < first ? i : i + tile_len;
679 int k = i < first ? i : i + 2 * tile_len;
681 c = isl_equality_alloc(isl_local_space_copy(ls));
682 c = isl_constraint_set_coefficient_si(c, isl_dim_in, j, -1);
683 c = isl_constraint_set_coefficient_si(c, isl_dim_out, k, 1);
684 bmap = isl_basic_map_add_constraint(bmap, c);
687 for (i = 0; i < tile_len; ++i) {
688 c = isl_equality_alloc(isl_local_space_copy(ls));
689 c = isl_constraint_set_coefficient_si(c, isl_dim_in,
690 first + i, -1);
691 c = isl_constraint_set_coefficient_si(c, isl_dim_out,
692 first + i, tile_size[i]);
693 c = isl_constraint_set_coefficient_si(c, isl_dim_out,
694 first + i + tile_len, 1);
695 bmap = isl_basic_map_add_constraint(bmap, c);
697 c = isl_inequality_alloc(isl_local_space_copy(ls));
698 c = isl_constraint_set_coefficient_si(c, isl_dim_out,
699 first + i + tile_len, 1);
700 bmap = isl_basic_map_add_constraint(bmap, c);
702 c = isl_inequality_alloc(isl_local_space_copy(ls));
703 c = isl_constraint_set_coefficient_si(c, isl_dim_out,
704 first + i + tile_len, -1);
705 c = isl_constraint_set_constant_si(c, tile_size[i] - 1);
706 bmap = isl_basic_map_add_constraint(bmap, c);
709 isl_local_space_free(ls);
711 return isl_map_from_basic_map(bmap);
714 /* Construct a map from a domain of dimensionality "len"
715 * to a domain of dimensionality "len" + "wrap_len" that "wraps"
716 * the "wrap_len" coordinates starting at "first" according to "wrap_size".
717 * In particular, [s_i] -> [s_i, s_i % wrap_size[i]].
718 * To do so, we need extra variables corresponding to [s_i / wrap_size[i]],
719 * that are projected out at the end.
720 * "dim" prescribes the parameters.
722 static __isl_give isl_map *wrap(__isl_take isl_space *dim, int len,
723 int first, int wrap_len, int *wrap_size)
725 int i;
726 isl_basic_map *bmap;
727 isl_constraint *c;
728 isl_local_space *ls;
730 dim = isl_space_add_dims(dim, isl_dim_in, len);
731 dim = isl_space_add_dims(dim, isl_dim_out, len + 2 * wrap_len);
732 bmap = isl_basic_map_universe(isl_space_copy(dim));
733 ls = isl_local_space_from_space(dim);
735 for (i = 0; i < len; ++i) {
736 int k = i < first + wrap_len ? i : i + 2 * wrap_len;
738 c = isl_equality_alloc(isl_local_space_copy(ls));
739 c = isl_constraint_set_coefficient_si(c, isl_dim_in, i, -1);
740 c = isl_constraint_set_coefficient_si(c, isl_dim_out, k, 1);
741 bmap = isl_basic_map_add_constraint(bmap, c);
744 for (i = 0; i < wrap_len; ++i) {
745 c = isl_equality_alloc(isl_local_space_copy(ls));
746 c = isl_constraint_set_coefficient_si(c, isl_dim_out,
747 first + i, -1);
748 c = isl_constraint_set_coefficient_si(c, isl_dim_out,
749 first + wrap_len + i, 1);
750 c = isl_constraint_set_coefficient_si(c, isl_dim_out,
751 first + 2 * wrap_len + i, wrap_size[i]);
752 bmap = isl_basic_map_add_constraint(bmap, c);
754 c = isl_inequality_alloc(isl_local_space_copy(ls));
755 c = isl_constraint_set_coefficient_si(c, isl_dim_out,
756 first + wrap_len + i, 1);
757 bmap = isl_basic_map_add_constraint(bmap, c);
759 c = isl_inequality_alloc(isl_local_space_copy(ls));
760 c = isl_constraint_set_coefficient_si(c, isl_dim_out,
761 first + wrap_len + i, -1);
762 c = isl_constraint_set_constant_si(c, wrap_size[i] - 1);
763 bmap = isl_basic_map_add_constraint(bmap, c);
766 isl_local_space_free(ls);
768 bmap = isl_basic_map_project_out(bmap, isl_dim_out,
769 first + 2 * wrap_len, wrap_len);
771 return isl_map_from_basic_map(bmap);
774 /* Tile the B loops over the tile sizes and then tile/wrap
775 * the T1 loops over the blocks.
777 static __isl_give isl_union_map *tile_schedule(struct gpu_gen *gen,
778 __isl_take isl_union_map *sched)
780 struct ppcg_kernel *kernel = gen->kernel;
781 isl_space *dim;
782 isl_map *tiling, *block_tiling;
784 dim = isl_union_map_get_space(sched);
785 tiling = tile(isl_space_copy(dim), gen->untiled_len,
786 gen->tile_first, kernel->tile_len, kernel->tile_size);
788 if (gen->options->wrap)
789 block_tiling = wrap(dim, gen->untiled_len + kernel->tile_len,
790 gen->tile_first, kernel->n_grid, kernel->grid_dim);
791 else
792 block_tiling = tile(dim, gen->untiled_len + kernel->tile_len,
793 gen->tile_first, kernel->n_grid, kernel->grid_dim);
795 gen->tiled_len = gen->untiled_len + kernel->tile_len + kernel->n_grid;
797 tiling = isl_map_apply_range(tiling, block_tiling);
799 sched = isl_union_map_apply_range(sched,
800 isl_union_map_from_map(tiling));
802 gen->shared_len = gen->tile_first + kernel->tile_len + kernel->n_grid;
804 return sched;
807 /* Equate the "T1P" iterators in the tiled schedule "sched"
808 * to the block dimensions.
810 static __isl_give isl_union_map *parametrize_tiled_schedule(
811 struct gpu_gen *gen, __isl_take isl_union_map *sched)
813 struct ppcg_kernel *kernel = gen->kernel;
814 isl_space *dim;
815 isl_set *par;
817 dim = isl_union_map_get_space(sched);
818 par = parametrization(dim, gen->tiled_len,
819 gen->tile_first + kernel->n_grid, kernel->block_ids);
820 sched = isl_union_map_intersect_range(sched,
821 isl_union_set_from_set(par));
823 return sched;
826 /* Tile/wrap the P1 loops over the threads.
828 static __isl_give isl_union_map *thread_tile_schedule(struct gpu_gen *gen,
829 __isl_take isl_union_map *sched)
831 struct ppcg_kernel *kernel = gen->kernel;
832 isl_space *dim;
833 isl_map *tiling;
834 isl_set *par;
836 dim = isl_union_map_get_space(sched);
838 if (gen->options->wrap)
839 tiling = wrap(isl_space_copy(dim), gen->tiled_len,
840 gen->shared_len, kernel->n_block, kernel->block_dim);
841 else
842 tiling = tile(isl_space_copy(dim), gen->tiled_len,
843 gen->shared_len, kernel->n_block, kernel->block_dim);
844 gen->thread_tiled_len = gen->tiled_len + kernel->n_block;
846 sched = isl_union_map_apply_range(sched,
847 isl_union_map_from_map(tiling));
849 par = parametrization(dim, gen->thread_tiled_len,
850 gen->tile_first + kernel->tile_len +
851 kernel->n_grid + kernel->n_block, kernel->thread_ids);
852 sched = isl_union_map_intersect_range(sched,
853 isl_union_set_from_set(par));
855 gen->shared_len = gen->tile_first + kernel->tile_len + kernel->n_grid;
857 return sched;
860 /* If the user asked for it, scale the shared memory tile loops
861 * (T1T and T2) of "sched" by kernel->tile_size[i].
862 * If we are not performing "wrapping", then additionally scale the T1P
863 * loops by kernel->grid_dim[i].
865 static __isl_give isl_union_map *scale_tile_loops(struct gpu_gen *gen,
866 __isl_take isl_union_map *sched)
868 struct ppcg_kernel *kernel = gen->kernel;
869 int i;
870 isl_space *dim;
871 isl_basic_map *scale;
872 isl_constraint *c;
873 isl_local_space *ls;
875 if (!gen->options->scale_tile_loops)
876 return sched;
878 dim = isl_union_map_get_space(sched);
879 dim = isl_space_add_dims(dim, isl_dim_in, gen->tiled_len);
880 dim = isl_space_add_dims(dim, isl_dim_out, gen->tiled_len);
881 scale = isl_basic_map_universe(isl_space_copy(dim));
882 ls = isl_local_space_from_space(dim);
884 for (i = 0; i < gen->tiled_len; ++i) {
885 int f = 1;
887 if (i >= gen->tile_first &&
888 i < gen->tile_first + kernel->n_grid) {
889 f = kernel->tile_size[i - gen->tile_first];
890 if (!gen->options->wrap)
891 f *= kernel->grid_dim[i - gen->tile_first];
892 } else if (i >= gen->tile_first + kernel->n_grid &&
893 i < gen->tile_first + kernel->n_grid +
894 kernel->tile_len) {
895 f = kernel->tile_size[i -
896 (gen->tile_first + kernel->n_grid)];
899 c = isl_equality_alloc(isl_local_space_copy(ls));
900 c = isl_constraint_set_coefficient_si(c, isl_dim_in, i, f);
901 c = isl_constraint_set_coefficient_si(c, isl_dim_out, i, -1);
902 scale = isl_basic_map_add_constraint(scale, c);
905 isl_local_space_free(ls);
907 sched = isl_union_map_apply_range(sched,
908 isl_union_map_from_map(isl_map_from_basic_map(scale)));
910 return sched;
913 /* If we are not performing "wrapping" and if the user asked for it,
914 * scale the thread tile loops (P1T) of "sched" by kernel->block_dim[i].
916 static __isl_give isl_union_map *scale_thread_tile_loops(struct gpu_gen *gen,
917 __isl_take isl_union_map *sched)
919 int i;
920 isl_space *dim;
921 isl_basic_map *scale;
922 isl_constraint *c;
923 isl_local_space *ls;
925 if (gen->options->wrap)
926 return sched;
927 if (!gen->options->scale_tile_loops)
928 return sched;
930 dim = isl_union_map_get_space(sched);
931 dim = isl_space_add_dims(dim, isl_dim_in, gen->thread_tiled_len);
932 dim = isl_space_add_dims(dim, isl_dim_out, gen->thread_tiled_len);
933 scale = isl_basic_map_universe(isl_space_copy(dim));
934 ls = isl_local_space_from_space(dim);
936 for (i = 0; i < gen->thread_tiled_len; ++i) {
937 int f = 1;
939 if (i >= gen->shared_len &&
940 i < gen->shared_len + gen->kernel->n_block)
941 f = gen->kernel->block_dim[i - gen->shared_len];
943 c = isl_equality_alloc(isl_local_space_copy(ls));
944 c = isl_constraint_set_coefficient_si(c, isl_dim_in, i, f);
945 c = isl_constraint_set_coefficient_si(c, isl_dim_out, i, -1);
946 scale = isl_basic_map_add_constraint(scale, c);
949 isl_local_space_free(ls);
951 sched = isl_union_map_apply_range(sched,
952 isl_union_map_from_map(isl_map_from_basic_map(scale)));
954 return sched;
957 /* If we are not performing "wrapping" and if the user asked for it,
958 * scale the "n_tile" loops starting at "first" of "sched" by gen->block_dim[i].
960 static __isl_give isl_union_map *scale_access_tile_loops(struct gpu_gen *gen,
961 __isl_take isl_union_map *sched, int len, int first, int n_tile)
963 int i;
964 isl_space *dim;
965 isl_basic_map *scale;
966 isl_constraint *c;
967 isl_local_space *ls;
969 if (gen->options->wrap)
970 return sched;
971 if (!gen->options->scale_tile_loops)
972 return sched;
974 dim = isl_union_map_get_space(sched);
975 dim = isl_space_add_dims(dim, isl_dim_in, len);
976 dim = isl_space_add_dims(dim, isl_dim_out, len);
977 scale = isl_basic_map_universe(isl_space_copy(dim));
978 ls = isl_local_space_from_space(dim);
980 for (i = 0; i < len; ++i) {
981 int f = 1;
983 if (i >= first && i < first + n_tile)
984 f = gen->kernel->block_dim[i - first];
986 c = isl_equality_alloc(isl_local_space_copy(ls));
987 c = isl_constraint_set_coefficient_si(c, isl_dim_in, i, f);
988 c = isl_constraint_set_coefficient_si(c, isl_dim_out, i, -1);
989 scale = isl_basic_map_add_constraint(scale, c);
992 isl_local_space_free(ls);
994 sched = isl_union_map_apply_range(sched,
995 isl_union_map_from_map(isl_map_from_basic_map(scale)));
997 return sched;
1000 /* Add parameters p[i] with identifiers "ids" to "set",
1001 * with bounds to 0 <= p[i] < size[i].
1003 __isl_give isl_set *add_bounded_parameters(__isl_take isl_set *set,
1004 int *size, __isl_keep isl_id_list *ids)
1006 int i, len;
1007 unsigned nparam;
1009 len = isl_id_list_n_id(ids);
1010 nparam = isl_set_dim(set, isl_dim_param);
1011 set = isl_set_add_dims(set, isl_dim_param, len);
1013 for (i = 0; i < len; ++i) {
1014 isl_id *id;
1016 id = isl_id_list_get_id(ids, i);
1017 set = isl_set_set_dim_id(set, isl_dim_param, nparam + i, id);
1018 set = isl_set_lower_bound_si(set, isl_dim_param, nparam + i, 0);
1019 set = isl_set_upper_bound_si(set, isl_dim_param,
1020 nparam + i, size[i] - 1);
1023 return set;
1026 /* Add "len" parameters p[i] with identifiers "ids" and intersect "set"
1027 * with
1029 * { : 0 <= p[i] < size[i] }
1031 * or an overapproximation.
1033 static __isl_give isl_set *add_bounded_parameters_dynamic(
1034 __isl_take isl_set *set, __isl_keep isl_multi_pw_aff *size,
1035 __isl_keep isl_id_list *ids)
1037 int i, len;
1038 unsigned nparam;
1039 isl_space *space;
1040 isl_local_space *ls;
1042 len = isl_multi_pw_aff_dim(size, isl_dim_out);
1043 nparam = isl_set_dim(set, isl_dim_param);
1044 set = isl_set_add_dims(set, isl_dim_param, len);
1046 for (i = 0; i < len; ++i) {
1047 isl_id *id;
1049 id = isl_id_list_get_id(ids, i);
1050 set = isl_set_set_dim_id(set, isl_dim_param, nparam + i, id);
1053 space = isl_space_params(isl_set_get_space(set));
1054 ls = isl_local_space_from_space(space);
1055 for (i = 0; i < len; ++i) {
1056 isl_pw_aff *param, *size_i, *zero;
1057 isl_set *bound;
1059 param = isl_pw_aff_var_on_domain(isl_local_space_copy(ls),
1060 isl_dim_param, nparam + i);
1062 size_i = isl_multi_pw_aff_get_pw_aff(size, i);
1063 bound = isl_pw_aff_lt_set(isl_pw_aff_copy(param), size_i);
1064 bound = isl_set_from_basic_set(isl_set_simple_hull(bound));
1065 set = isl_set_intersect_params(set, bound);
1067 zero = isl_pw_aff_zero_on_domain(isl_local_space_copy(ls));
1068 bound = isl_pw_aff_ge_set(param, zero);
1069 set = isl_set_intersect_params(set, bound);
1071 isl_local_space_free(ls);
1073 return set;
1076 /* Construct a map from an access to group->array to the corresponding
1077 * shared/private memory tile.
1078 * The map is of the form
1080 * { [D[i] -> A[a]] -> T[t] }
1082 * where D represents the initial shared_len dimensions
1083 * of the computed schedule.
1085 static __isl_give isl_map *shift_access(struct gpu_array_ref_group *group)
1087 struct gpu_array_tile *tile;
1088 isl_multi_aff *tiling;
1090 tile = group->private_tile;
1091 if (!tile)
1092 tile = group->shared_tile;
1094 tiling = isl_multi_aff_copy(tile->tiling);
1096 return isl_map_from_multi_aff(tiling);
1099 /* Given a schedule that iterates over all elements in a piece of an array,
1100 * perform tiling/wrapping over the threads.
1102 * In particular, we tile the final iterators so that the final thread
1103 * dimension runs over the final array dimension.
1104 * However, if those final iterators have only a single iteration,
1105 * we try to tile earlier iterators instead.
1107 static __isl_give isl_map *tile_access_schedule(struct gpu_gen *gen,
1108 __isl_take isl_map *sched)
1110 isl_space *dim;
1111 isl_union_map *usched;
1112 isl_map *tiling;
1113 isl_set *par;
1114 unsigned nvar = isl_map_dim(sched, isl_dim_out);
1115 int n_tile;
1116 int first;
1118 n_tile = gen->kernel->n_block;
1119 if (n_tile > nvar) {
1120 int i;
1121 sched = isl_map_insert_dims(sched,
1122 isl_dim_out, 0, n_tile - nvar);
1123 for (i = 0; i < n_tile - nvar; ++i)
1124 sched = isl_map_fix_si(sched, isl_dim_out, i, 0);
1125 nvar = n_tile;
1128 first = nvar - n_tile;
1130 for (; first > 0; first --)
1131 if (!map_plain_is_fixed(sched, isl_dim_out, first + n_tile - 1))
1132 break;
1134 dim = isl_map_get_space(sched);
1135 dim = isl_space_params(dim);
1136 if (gen->options->wrap)
1137 tiling = wrap(isl_space_copy(dim), nvar, first,
1138 n_tile, gen->kernel->block_dim);
1139 else
1140 tiling = tile(isl_space_copy(dim), nvar, first,
1141 n_tile, gen->kernel->block_dim);
1142 sched = isl_map_apply_range(sched, tiling);
1144 par = parametrization(dim, nvar + n_tile, first + n_tile,
1145 gen->kernel->thread_ids);
1146 sched = isl_map_intersect_range(sched, par);
1148 usched = isl_union_map_from_map(sched);
1149 usched = scale_access_tile_loops(gen, usched, nvar + n_tile,
1150 first, n_tile);
1151 sched = isl_map_from_union_map(usched);
1153 return sched;
1156 /* Return the union of all tagged access relations in the group.
1158 static __isl_give isl_union_map *group_tagged_access_relation(
1159 struct gpu_array_ref_group *group)
1161 int i;
1162 isl_union_map *access;
1164 access = isl_union_map_empty(isl_map_get_space(group->access));
1165 for (i = 0; i < group->n_ref; ++i) {
1166 isl_map *map_i;
1168 map_i = isl_map_copy(group->refs[i]->tagged_access);
1169 access = isl_union_map_union(access,
1170 isl_union_map_from_map(map_i));
1173 return access;
1176 /* Return the extent of "array", recomputed from the bounds.
1177 * The recomputed extent may be simpler than the original extent.
1179 static __isl_give isl_set *array_extent(struct gpu_array_info *array)
1181 int i;
1182 isl_id *id;
1183 isl_space *space;
1184 isl_local_space *ls;
1185 isl_set *extent;
1187 id = isl_set_get_tuple_id(array->extent);
1188 space = isl_set_get_space(array->extent);
1189 extent = isl_set_universe(isl_space_copy(space));
1190 ls = isl_local_space_from_space(space);
1191 for (i = 0; i < array->n_index; ++i) {
1192 isl_pw_aff *bound;
1193 isl_aff *aff;
1194 isl_pw_aff *index;
1195 isl_set *lt;
1197 extent = isl_set_lower_bound_si(extent, isl_dim_set, i, 0);
1199 aff = isl_aff_var_on_domain(isl_local_space_copy(ls),
1200 isl_dim_set, i);
1201 index = isl_pw_aff_from_aff(aff);
1202 bound = isl_pw_aff_copy(array->bound[i]);
1203 bound = isl_pw_aff_from_range(bound);
1204 bound = isl_pw_aff_add_dims(bound, isl_dim_in, array->n_index);
1205 bound = isl_pw_aff_set_tuple_id(bound, isl_dim_in,
1206 isl_id_copy(id));
1207 lt = isl_pw_aff_lt_set(index, bound);
1208 extent = isl_set_intersect(extent, lt);
1210 isl_local_space_free(ls);
1211 isl_id_free(id);
1213 return extent;
1216 /* Return a map from the first shared_len dimensions of the computed
1217 * schedule to the array tile in
1218 * global memory that corresponds to the shared memory copy.
1220 * In particular, return a map
1222 * { D[i] -> A[a] }
1224 * with constraints
1226 * tile_offset(i) <= a <= tile_offset(i) + tile_size - 1 (1)
1228 * and
1230 * 0 <= a <= array_size - 1 (2)
1232 * Note that if some stride has been detected (i.e., when
1233 * group->shared_tile->bound[i].shift is set), then a in (1) refers
1234 * to the shifted and scaled down version.
1236 * Constraints (1) are obtained by mapping the size constraints on the
1237 * shared/private memory tile back to the access relation.
1238 * Constraints (2) are obtained from the (recomputed) extent.
1240 static __isl_give isl_map *group_tile(struct gpu_array_ref_group *group)
1242 int i;
1243 int n_index = group->array->n_index;
1244 isl_map *tile;
1245 isl_space *space;
1246 isl_set *local;
1247 isl_set *extent;
1249 space = isl_multi_aff_get_space(group->shared_tile->tiling);
1250 space = isl_space_range(space);
1251 local = isl_set_universe(space);
1252 for (i = 0; i < n_index; ++i) {
1253 isl_val *bound;
1255 local = isl_set_lower_bound_si(local, isl_dim_set, i, 0);
1256 bound = isl_val_copy(group->shared_tile->bound[i].size);
1257 bound = isl_val_sub_ui(bound, 1);
1258 local = isl_set_upper_bound_val(local, isl_dim_set, i, bound);
1260 local = isl_set_preimage_multi_aff(local,
1261 isl_multi_aff_copy(group->shared_tile->tiling));
1262 tile = isl_set_unwrap(local);
1263 extent = array_extent(group->array);
1264 tile = isl_map_intersect_range(tile, extent);
1266 return tile;
1269 /* Given a mapping "iterator_map" from the AST schedule to a domain,
1270 * return the corresponding mapping from the AST schedule to
1271 * to the first shared_len dimensions of the schedule computed by PPCG.
1273 static __isl_give isl_pw_multi_aff *compute_sched_to_shared(struct gpu_gen *gen,
1274 __isl_take isl_pw_multi_aff *iterator_map)
1276 isl_union_map *umap;
1277 isl_space *space;
1278 isl_map *map, *sched;;
1280 space = isl_space_range(isl_pw_multi_aff_get_space(iterator_map));
1281 space = isl_space_from_domain(space);
1282 space = isl_space_add_dims(space, isl_dim_out, gen->shared_len);
1284 umap = isl_union_map_copy(gen->shared_sched);
1285 umap = isl_union_map_apply_range(umap,
1286 isl_union_map_copy(gen->shared_proj));
1287 map = isl_union_map_extract_map(umap, space);
1288 isl_union_map_free(umap);
1290 sched = isl_map_preimage_domain_pw_multi_aff(map, iterator_map);
1291 sched = isl_map_detect_equalities(sched);
1293 return isl_pw_multi_aff_from_map(sched);
1296 /* Set unroll[j] if the input dimension j is involved in
1297 * the index expression represented by ma.
1299 static int check_unroll(__isl_take isl_set *set, __isl_take isl_multi_aff *ma,
1300 void *user)
1302 int i, j;
1303 int n_in = isl_multi_aff_dim(ma, isl_dim_in);
1304 int n_out = isl_multi_aff_dim(ma, isl_dim_out);
1305 int *unroll = user;
1307 for (i = 0; i < n_out; ++i) {
1308 isl_aff *aff;
1310 aff = isl_multi_aff_get_aff(ma, i);
1311 for (j = 0; j < n_in; ++j)
1312 if (isl_aff_involves_dims(aff, isl_dim_in, j, 1))
1313 unroll[j] = 1;
1314 isl_aff_free(aff);
1317 isl_set_free(set);
1318 isl_multi_aff_free(ma);
1319 return 0;
1322 /* Given an array pos mapping input dimensions to the corresponding
1323 * output dimension, construct the corresponding map.
1325 static __isl_give isl_map *permutation(__isl_take isl_space *dim,
1326 int *pos, int len)
1328 int i;
1329 isl_constraint *c;
1330 isl_basic_map *bmap;
1331 isl_local_space *ls;
1333 dim = isl_space_add_dims(dim, isl_dim_in, len);
1334 dim = isl_space_add_dims(dim, isl_dim_out, len);
1335 bmap = isl_basic_map_universe(isl_space_copy(dim));
1336 ls = isl_local_space_from_space(dim);
1338 for (i = 0; i < len; ++i) {
1339 c = isl_equality_alloc(isl_local_space_copy(ls));
1340 c = isl_constraint_set_coefficient_si(c, isl_dim_in, i,
1341 -1);
1342 c = isl_constraint_set_coefficient_si(c, isl_dim_out, pos[i],
1344 bmap = isl_basic_map_add_constraint(bmap, c);
1346 isl_local_space_free(ls);
1348 return isl_map_from_basic_map(bmap);
1351 /* Find all loops involved in any of the index expressions for any of
1352 * the private accesses that require unrolling, move them innermost
1353 * and then mark them as requiring unrolling by setting gen->first_unroll.
1354 * The loops involved should all be parallel because of the checks
1355 * we performed in check_private_group_access. Moving them innermost
1356 * is therefore a valid transformation.
1358 * Loops up to gen->shared_len are generated before the mapping to
1359 * threads is applied. They should therefore be ignored.
1361 * We compute the hidden equalities of the schedule first
1362 * since we will need them in our calls to isl_pw_multi_aff_from_map
1363 * and because we want to make sure that the same equalities
1364 * are also available to the code generator.
1366 static __isl_give isl_union_map *interchange_for_unroll(struct gpu_gen *gen,
1367 __isl_take isl_union_map *sched)
1369 struct ppcg_kernel *kernel = gen->kernel;
1370 int i, j;
1371 int unroll[gen->thread_tiled_len];
1372 int perm[gen->thread_tiled_len];
1373 isl_space *dim;
1374 isl_map *permute;
1375 int len = gen->shared_len + kernel->n_parallel + kernel->n_block;
1377 gen->first_unroll = -1;
1379 sched = isl_union_map_detect_equalities(sched);
1380 for (i = 0; i < gen->thread_tiled_len; ++i)
1381 unroll[i] = 0;
1382 for (i = 0; i < kernel->n_array; ++i) {
1383 struct gpu_local_array_info *array = &kernel->array[i];
1385 for (j = 0; j < array->n_group; ++j) {
1386 isl_union_map *access;
1387 isl_map *acc;
1388 isl_pw_multi_aff *pma;
1389 struct gpu_array_ref_group *group = array->groups[j];
1391 if (!array->groups[j]->private_tile)
1392 continue;
1393 if (!gpu_array_ref_group_requires_unroll(group))
1394 continue;
1396 access = gpu_array_ref_group_access_relation(
1397 array->groups[j], 1, 1);
1398 access = isl_union_map_apply_domain(access,
1399 isl_union_map_copy(sched));
1401 acc = isl_map_from_union_map(access);
1402 pma = isl_pw_multi_aff_from_map(acc);
1403 isl_pw_multi_aff_foreach_piece(pma,
1404 &check_unroll, unroll);
1406 isl_pw_multi_aff_free(pma);
1410 for (i = gen->shared_len; i < len; ++i)
1411 if (unroll[i])
1412 break;
1414 if (i >= len)
1415 return sched;
1417 for (i = len; i < gen->thread_tiled_len; ++i)
1418 if (unroll[i])
1419 return sched;
1421 j = 0;
1422 for (i = 0; i < gen->shared_len; ++i)
1423 perm[i] = j++;
1424 for (i = gen->shared_len; i < gen->thread_tiled_len; ++i)
1425 if (!unroll[i])
1426 perm[i] = j++;
1427 gen->first_unroll = j - gen->shared_len;
1428 for (i = gen->shared_len; i < len; ++i)
1429 if (unroll[i])
1430 perm[i] = j++;
1432 dim = isl_union_map_get_space(sched);
1433 permute = permutation(dim, perm, gen->thread_tiled_len);
1434 sched = isl_union_map_apply_range(sched,
1435 isl_union_map_from_map(permute));
1437 return sched;
1440 /* Construct a map with input the shared tile loops and the loops that
1441 * will be wrapped around the threads that relates these later loops
1442 * to the thread indices and then projects them out.
1444 static __isl_give isl_map *compute_privatization(struct gpu_gen *gen)
1446 struct ppcg_kernel *kernel = gen->kernel;
1447 isl_map *priv;
1448 isl_map *tiling;
1449 isl_map *proj;
1450 isl_set *par;
1451 isl_space *dim;
1453 dim = isl_union_map_get_space(gen->shared_sched);
1455 if (gen->options->wrap)
1456 tiling = wrap(isl_space_copy(dim),
1457 gen->shared_len + kernel->n_block,
1458 gen->shared_len, kernel->n_block, kernel->block_dim);
1459 else
1460 tiling = tile(isl_space_copy(dim),
1461 gen->shared_len + kernel->n_block,
1462 gen->shared_len, kernel->n_block, kernel->block_dim);
1464 priv = tiling;
1466 par = parametrization(dim, gen->shared_len + 2 * kernel->n_block,
1467 gen->tile_first + kernel->tile_len +
1468 kernel->n_grid + kernel->n_block, kernel->thread_ids);
1470 priv = isl_map_align_params(priv, isl_set_get_space(par));
1471 priv = isl_map_intersect_range(priv, par);
1473 dim = isl_map_get_space(priv);
1474 dim = isl_space_drop_dims(dim, isl_dim_in, 0, isl_space_dim(dim, isl_dim_in));
1475 dim = isl_space_drop_dims(dim, isl_dim_out, 0, isl_space_dim(dim, isl_dim_out));
1476 proj = projection(dim, gen->shared_len + 2 * kernel->n_block,
1477 gen->shared_len);
1479 priv = isl_map_apply_range(priv, proj);
1481 return priv;
1484 /* If max_shared_memory is not set to infinity (-1), then make
1485 * sure that the total amount of shared memory required by the
1486 * array reference groups mapped to shared memory by "kernel"
1487 * is no larger than this maximum.
1489 * We apply a greedy approach and discard (keep in global memory)
1490 * those groups that would result in a total memory size that
1491 * is larger than the maximum.
1493 * This function should be called after any function that may
1494 * affect the decision on whether to place a reference group
1495 * in private, shared or global memory.
1497 static void check_shared_memory_bound(struct ppcg_kernel *kernel)
1499 int i, j;
1500 isl_val *left, *size;
1502 if (kernel->options->max_shared_memory < 0)
1503 return;
1505 left = isl_val_int_from_si(kernel->ctx,
1506 kernel->options->max_shared_memory);
1508 for (i = 0; i < kernel->n_array; ++i) {
1509 struct gpu_local_array_info *local = &kernel->array[i];
1511 for (j = 0; j < local->n_group; ++j) {
1512 struct gpu_array_ref_group *group;
1514 group = local->groups[j];
1515 if (group->private_tile)
1516 continue;
1517 if (!group->shared_tile)
1518 continue;
1520 size = gpu_array_tile_size(group->shared_tile);
1521 size = isl_val_mul_ui(size, local->array->size);
1523 if (isl_val_le(size, left)) {
1524 left = isl_val_sub(left, size);
1525 continue;
1527 isl_val_free(size);
1529 group->shared_tile =
1530 gpu_array_tile_free(group->shared_tile);
1534 isl_val_free(left);
1537 /* Compute a tiling for all the array reference groups in "kernel".
1539 static void compute_group_tilings(struct ppcg_kernel *kernel)
1541 int i, j;
1543 for (i = 0; i < kernel->n_array; ++i) {
1544 struct gpu_local_array_info *array = &kernel->array[i];
1546 for (j = 0; j < array->n_group; ++j)
1547 gpu_array_ref_group_compute_tiling(array->groups[j]);
1551 /* Take tiled_sched, project it onto the shared tile loops and
1552 * the loops that will be wrapped over the threads and
1553 * store the result in gen->shared_sched.
1554 * Also compute a projection that projects out the loops that will be
1555 * wrapped over the threads and store this projection in gen->shared_proj.
1557 static void compute_shared_sched(struct gpu_gen *gen)
1559 isl_space *dim;
1560 isl_map *proj;
1561 isl_set *par;
1562 isl_union_map *sched;
1564 sched = isl_union_map_copy(gen->tiled_sched);
1566 dim = isl_union_map_get_space(sched);
1567 proj = projection(dim, gen->tiled_len,
1568 gen->shared_len + gen->kernel->n_block);
1569 sched = isl_union_map_apply_range(sched, isl_union_map_from_map(proj));
1571 dim = isl_union_map_get_space(sched);
1572 proj = projection(dim, gen->shared_len + gen->kernel->n_block,
1573 gen->shared_len);
1575 gen->shared_sched = sched;
1576 gen->shared_proj = isl_union_map_from_map(proj);
1579 /* Compute the size of a bounding box around the origin and "set",
1580 * where "set" is assumed to contain only non-negative elements.
1581 * In particular, compute the maximal value of "set" in each direction
1582 * and add one.
1584 static __isl_give isl_multi_pw_aff *extract_size(__isl_take isl_set *set,
1585 __isl_take isl_set *context)
1587 int i, n;
1588 isl_multi_pw_aff *mpa;
1590 context = isl_set_params(context);
1591 n = isl_set_dim(set, isl_dim_set);
1592 mpa = isl_multi_pw_aff_zero(isl_set_get_space(set));
1593 for (i = 0; i < n; ++i) {
1594 isl_space *space;
1595 isl_aff *one;
1596 isl_pw_aff *bound;
1598 bound = isl_set_dim_max(isl_set_copy(set), i);
1599 bound = isl_pw_aff_coalesce(bound);
1600 bound = isl_pw_aff_gist(bound, isl_set_copy(context));
1602 space = isl_pw_aff_get_domain_space(bound);
1603 one = isl_aff_zero_on_domain(isl_local_space_from_space(space));
1604 one = isl_aff_add_constant_si(one, 1);
1605 bound = isl_pw_aff_add(bound, isl_pw_aff_from_aff(one));
1606 mpa = isl_multi_pw_aff_set_pw_aff(mpa, i, bound);
1608 isl_set_free(set);
1609 isl_set_free(context);
1611 return mpa;
1614 /* Compute the effective grid size as a list of the sizes in each dimension.
1616 * The grid size specified by the user or set by default
1617 * in read_grid_sizes() and applied by the block filter,
1618 * may be too large for the given code in the sense that
1619 * it may contain blocks that don't need to execute anything.
1620 * We therefore don't return this grid size, but instead the
1621 * smallest grid size that ensures that all blocks that actually
1622 * execute code are included in the grid.
1624 * We first extract a description of the grid, i.e., the possible values
1625 * of the block ids, from the domain elements in "domain" and
1626 * kernel->block_filter.
1627 * The block ids are parameters in kernel->block_filter.
1628 * We simply need to change them into set dimensions.
1630 * Then, for each block dimension, we compute the maximal value of the block id
1631 * and add one.
1633 static __isl_give isl_multi_pw_aff *extract_grid_size(
1634 struct ppcg_kernel *kernel, __isl_take isl_union_set *domain)
1636 int i;
1637 isl_set *grid;
1639 domain = isl_union_set_intersect(domain,
1640 isl_union_set_copy(kernel->block_filter));
1641 grid = isl_union_set_params(domain);
1642 grid = isl_set_from_params(grid);
1643 grid = isl_set_add_dims(grid, isl_dim_set, kernel->n_grid);
1644 for (i = 0; i < kernel->n_grid; ++i) {
1645 int pos;
1646 isl_id *id;
1648 id = isl_id_list_get_id(kernel->block_ids, i);
1649 pos = isl_set_find_dim_by_id(grid, isl_dim_param, id);
1650 isl_id_free(id);
1651 assert(pos >= 0);
1652 grid = isl_set_equate(grid, isl_dim_param, pos, isl_dim_set, i);
1653 grid = isl_set_project_out(grid, isl_dim_param, pos, 1);
1656 return extract_size(grid, isl_set_copy(kernel->context));
1659 /* Compute the size of a fixed bounding box around the origin and "set",
1660 * where "set" is assumed to contain only non-negative elements,
1661 * and store the results in "size".
1662 * In particular, compute the maximal value of "set" in each direction
1663 * and add one.
1665 static void extract_fixed_size(__isl_take isl_set *set, int *size)
1667 int i, n;
1668 isl_local_space *ls;
1669 isl_aff *obj;
1671 n = isl_set_dim(set, isl_dim_set);
1672 ls = isl_local_space_from_space(isl_set_get_space(set));
1673 obj = isl_aff_zero_on_domain(ls);
1674 for (i = 0; i < n; ++i) {
1675 isl_val *max;
1677 obj = isl_aff_set_coefficient_si(obj, isl_dim_in, i, 1);
1678 max = isl_set_max_val(set, obj);
1679 size[i] = isl_val_get_num_si(max) + 1;
1680 isl_val_free(max);
1681 obj = isl_aff_set_coefficient_si(obj, isl_dim_in, i, 0);
1683 isl_aff_free(obj);
1684 isl_set_free(set);
1687 /* Compute the effective block size as a list of the sizes in each dimension
1688 * and store the sizes in kernel->block_dim.
1690 * The block size specified by the user or set by default
1691 * in read_block_sizes() and applied by the thread filter,
1692 * may be too large for the given code in the sense that
1693 * it may contain threads that don't need to execute anything.
1694 * We therefore update this block size in kernel->block_dim
1695 * to the smallest block size that ensures that all threads
1696 * that actually execute code are included in the block.
1698 * The possible values of the thread ids is obtained from
1699 * the domain elements "domain" and kernel->thread_filter.
1700 * The current implementation eliminates all parameters, ensuring
1701 * that the size is a fixed constant in each dimension.
1702 * In principle we could also compute parametric sizes.
1703 * We would have to make sure to project out all b%d and t%d parameters,
1704 * however.
1706 static void extract_block_size(struct ppcg_kernel *kernel,
1707 __isl_take isl_union_set *domain)
1709 int i;
1710 int nparam;
1711 isl_set *block;
1713 domain = isl_union_set_intersect(domain,
1714 isl_union_set_copy(kernel->thread_filter));
1715 block = isl_union_set_params(domain);
1716 block = isl_set_from_params(block);
1717 block = isl_set_add_dims(block, isl_dim_set, kernel->n_block);
1718 for (i = 0; i < kernel->n_block; ++i) {
1719 int pos;
1720 isl_id *id;
1722 id = isl_id_list_get_id(kernel->thread_ids, i);
1723 pos = isl_set_find_dim_by_id(block, isl_dim_param, id);
1724 isl_id_free(id);
1725 assert(pos >= 0);
1726 block = isl_set_equate(block, isl_dim_param, pos,
1727 isl_dim_set, i);
1729 nparam = isl_set_dim(block, isl_dim_param);
1730 block = isl_set_project_out(block, isl_dim_param, 0, nparam);
1732 extract_fixed_size(block, kernel->block_dim);
1735 struct ppcg_kernel *ppcg_kernel_free(struct ppcg_kernel *kernel)
1737 int i, j;
1739 if (!kernel)
1740 return NULL;
1742 isl_id_list_free(kernel->block_ids);
1743 isl_id_list_free(kernel->thread_ids);
1744 isl_multi_pw_aff_free(kernel->grid_size);
1745 isl_set_free(kernel->context);
1746 isl_union_set_free(kernel->core);
1747 isl_union_set_free(kernel->arrays);
1748 isl_space_free(kernel->space);
1749 isl_ast_node_free(kernel->tree);
1750 isl_union_set_free(kernel->block_filter);
1751 isl_union_set_free(kernel->thread_filter);
1753 for (i = 0; i < kernel->n_array; ++i) {
1754 struct gpu_local_array_info *array = &kernel->array[i];
1756 for (j = 0; j < array->n_group; ++j)
1757 gpu_array_ref_group_free(array->groups[j]);
1758 free(array->groups);
1760 isl_pw_aff_list_free(array->bound);
1762 free(kernel->array);
1764 for (i = 0; i < kernel->n_var; ++i) {
1765 free(kernel->var[i].name);
1766 isl_vec_free(kernel->var[i].size);
1768 free(kernel->var);
1769 free(kernel->tile_size);
1771 free(kernel);
1773 return NULL;
1776 /* Wrapper around ppcg_kernel_free for use as a isl_id_set_free_user callback.
1778 static void ppcg_kernel_free_wrap(void *user)
1780 struct ppcg_kernel *kernel = user;
1782 ppcg_kernel_free(kernel);
1785 static void create_kernel_var(isl_ctx *ctx, struct gpu_array_ref_group *group,
1786 struct ppcg_kernel_var *var)
1788 int j;
1789 struct gpu_array_tile *tile;
1790 isl_printer *p;
1791 char *name;
1793 var->array = group->array;
1795 tile = group->private_tile;
1796 var->type = ppcg_access_private;
1797 if (!tile) {
1798 tile = group->shared_tile;
1799 var->type = ppcg_access_shared;
1802 p = isl_printer_to_str(ctx);
1803 p = gpu_array_ref_group_print_name(group, p);
1804 var->name = isl_printer_get_str(p);
1805 isl_printer_free(p);
1807 var->size = isl_vec_alloc(ctx, group->array->n_index);
1809 for (j = 0; j < group->array->n_index; ++j)
1810 var->size = isl_vec_set_element_val(var->size, j,
1811 isl_val_copy(tile->bound[j].size));
1814 static void create_kernel_vars(struct ppcg_kernel *kernel)
1816 int i, j, n;
1818 n = 0;
1819 for (i = 0; i < kernel->n_array; ++i) {
1820 struct gpu_local_array_info *array = &kernel->array[i];
1822 for (j = 0; j < array->n_group; ++j) {
1823 struct gpu_array_ref_group *group = array->groups[j];
1824 if (group->private_tile || group->shared_tile)
1825 ++n;
1829 kernel->n_var = n;
1830 kernel->var = isl_calloc_array(kernel->ctx, struct ppcg_kernel_var, n);
1831 assert(kernel->var);
1833 n = 0;
1834 for (i = 0; i < kernel->n_array; ++i) {
1835 struct gpu_local_array_info *array = &kernel->array[i];
1837 for (j = 0; j < array->n_group; ++j) {
1838 struct gpu_array_ref_group *group = array->groups[j];
1839 if (!group->private_tile && !group->shared_tile)
1840 continue;
1841 create_kernel_var(kernel->ctx, group, &kernel->var[n]);
1842 ++n;
1847 /* Replace "pa" by the zero function defined over the universe domain
1848 * in the space of "pa".
1850 static __isl_give isl_pw_aff *set_universally_zero(__isl_take isl_pw_aff *pa)
1852 isl_space *space;
1853 isl_aff *zero;
1855 space = isl_space_domain(isl_pw_aff_get_space(pa));
1856 isl_pw_aff_free(pa);
1857 zero = isl_aff_zero_on_domain(isl_local_space_from_space(space));
1859 return isl_pw_aff_from_aff(zero);
1862 /* The sizes of the arrays on the host that have been computed by
1863 * extract_array_info may depend on the parameters. Use the extra
1864 * constraints on the parameters that are valid at "host_domain"
1865 * to simplify these expressions and store the results in kernel->array.
1867 * We only need these localized bounds for arrays that are accessed
1868 * by the current kernel. If we have found at least one reference group
1869 * then the array is accessed by the kernel. If the array has compound
1870 * elements then we skipped the construction of array reference groups.
1872 * The resulting sizes may be functions that are nowhere defined
1873 * in case the access function cannot possibly access anything inside
1874 * the kernel for some reason. If so, they are replaced by the zero
1875 * function. Since the access function cannot actually access anything,
1876 * there is no harm in printing the array sizes as zero.
1878 static void localize_bounds(struct ppcg_kernel *kernel,
1879 __isl_keep isl_set *host_domain)
1881 int i, j;
1882 isl_set *context;
1884 context = isl_set_copy(host_domain);
1885 context = isl_set_params(context);
1887 for (i = 0; i < kernel->n_array; ++i) {
1888 struct gpu_local_array_info *local = &kernel->array[i];
1889 isl_pw_aff_list *bound;
1890 int n_index;
1892 if (local->n_group == 0 && !local->array->has_compound_element)
1893 continue;
1895 n_index = local->array->n_index;
1896 bound = isl_pw_aff_list_alloc(kernel->ctx, n_index);
1898 for (j = 0; j < n_index; ++j) {
1899 isl_pw_aff *pwaff;
1900 int empty;
1902 pwaff = isl_pw_aff_copy(local->array->bound[j]);
1903 pwaff = isl_pw_aff_gist(pwaff, isl_set_copy(context));
1904 empty = isl_pw_aff_is_empty(pwaff);
1905 if (empty < 0)
1906 pwaff = isl_pw_aff_free(pwaff);
1907 else if (empty)
1908 pwaff = set_universally_zero(pwaff);
1909 bound = isl_pw_aff_list_add(bound, pwaff);
1912 local->n_index = n_index;
1913 local->bound = bound;
1915 isl_set_free(context);
1918 /* Create the array of gpu_local_array_info structures "array"
1919 * inside "kernel". The number of elements in this array is
1920 * the same as the number of arrays in "prog".
1921 * Initialize the "array" field of each local array to point
1922 * to the corresponding array in "prog".
1924 static struct ppcg_kernel *ppcg_kernel_create_local_arrays(
1925 struct ppcg_kernel *kernel, struct gpu_prog *prog)
1927 int i;
1928 isl_ctx *ctx;
1930 ctx = isl_set_get_ctx(prog->context);
1931 kernel->array = isl_calloc_array(ctx,
1932 struct gpu_local_array_info, prog->n_array);
1933 if (!kernel->array)
1934 return ppcg_kernel_free(kernel);
1935 kernel->n_array = prog->n_array;
1937 for (i = 0; i < prog->n_array; ++i)
1938 kernel->array[i].array = &prog->array[i];
1940 return kernel;
1943 /* Find the element in gen->stmt that has the given "id".
1944 * Return NULL if no such gpu_stmt can be found.
1946 static struct gpu_stmt *find_stmt(struct gpu_prog *prog, __isl_keep isl_id *id)
1948 int i;
1950 for (i = 0; i < prog->n_stmts; ++i) {
1951 if (id == prog->stmts[i].id)
1952 break;
1955 return i < prog->n_stmts ? &prog->stmts[i] : NULL;
1958 void ppcg_kernel_stmt_free(void *user)
1960 int i;
1961 struct ppcg_kernel_stmt *stmt = user;
1963 if (!stmt)
1964 return;
1966 switch (stmt->type) {
1967 case ppcg_kernel_copy:
1968 isl_ast_expr_free(stmt->u.c.index);
1969 isl_ast_expr_free(stmt->u.c.local_index);
1970 break;
1971 case ppcg_kernel_domain:
1972 isl_id_to_ast_expr_free(stmt->u.d.ref2expr);
1973 break;
1974 case ppcg_kernel_sync:
1975 break;
1978 free(stmt);
1981 /* Set the options of "context" to
1983 * { space -> [x] : x >= first }
1985 static __isl_give isl_ast_build *set_unroll(
1986 __isl_take isl_ast_build *build, __isl_take isl_space *space,
1987 int first)
1989 isl_ctx *ctx;
1990 isl_map *unroll;
1991 isl_union_map *opt;
1993 ctx = isl_ast_build_get_ctx(build);
1995 space = isl_space_from_domain(space);
1996 space = isl_space_add_dims(space, isl_dim_out, 1);
1997 space = isl_space_set_tuple_name(space, isl_dim_out, "unroll");
1998 unroll = isl_map_universe(space);
1999 unroll = isl_map_lower_bound_si(unroll, isl_dim_out, 0, first);
2000 opt = isl_union_map_from_map(unroll);
2002 build = isl_ast_build_set_options(build, opt);
2004 return build;
2007 /* Extend the schedule "schedule" with the part of "extension"
2008 * starting at "first" up to "len".
2010 static __isl_give isl_union_map *extend_schedule(
2011 __isl_take isl_union_map *schedule,
2012 __isl_take isl_union_map *extension, int first, int len)
2014 isl_space *space;
2015 isl_map *proj;
2016 isl_union_map *umap;
2017 isl_set *set;
2019 space = isl_union_map_get_space(schedule);
2020 space = isl_space_set_from_params(space);
2021 space = isl_space_add_dims(space, isl_dim_set, len);
2022 proj = isl_set_identity(isl_set_universe(space));
2023 proj = isl_map_project_out(proj, isl_dim_out, 0, first);
2024 extension = isl_union_map_apply_range(extension,
2025 isl_union_map_from_map(proj));
2027 schedule = isl_union_map_range_product(schedule, extension);
2029 return schedule;
2032 /* Return the gpu_stmt_access in the list "accesses" that corresponds
2033 * to "ref_id".
2035 static struct gpu_stmt_access *find_access(struct gpu_stmt_access *accesses,
2036 __isl_keep isl_id *ref_id)
2038 struct gpu_stmt_access *access;
2040 for (access = accesses; access; access = access->next)
2041 if (access->ref_id == ref_id)
2042 return access;
2044 return NULL;
2047 /* Return the index of the array called "name" in the list of arrays.
2049 static int find_array_index(struct ppcg_kernel *kernel, const char *name)
2051 int i;
2053 for (i = 0; i < kernel->n_array; ++i)
2054 if (!strcmp(name, kernel->array[i].array->name))
2055 return i;
2057 return -1;
2060 /* Internal data structure for the index and AST expression transformation
2061 * callbacks for pet_stmt_build_ast_exprs.
2063 * "accesses" is the list of gpu_stmt_access in the statement.
2064 * "iterator_map" expresses the statement iterators in terms of
2065 * the AST loop iterators.
2066 * "sched2shared" expresses the first shared_len dimensions of
2067 * the computed schedule in terms of the AST loop iterators.
2069 * The following fields are set in transform_index and used in transform_expr.
2070 * "array" is the array that is being accessed.
2071 * "global" is set if the global array is accessed (rather than
2072 * shared/private memory).
2073 * "local_array" refers to information on the array specialized
2074 * to the current kernel.
2076 struct ppcg_transform_data {
2077 struct gpu_gen *gen;
2078 struct gpu_stmt_access *accesses;
2079 isl_pw_multi_aff *iterator_map;
2080 isl_pw_multi_aff *sched2shared;
2082 struct gpu_array_info *array;
2083 int global;
2084 struct gpu_local_array_info *local_array;
2087 /* Return the name of the outer array (of structs) accessed by "access".
2089 static const char *get_outer_array_name(__isl_keep isl_map *access)
2091 isl_space *space;
2092 const char *name;
2094 space = isl_space_range(isl_map_get_space(access));
2095 while (space && isl_space_is_wrapping(space))
2096 space = isl_space_domain(isl_space_unwrap(space));
2097 name = isl_space_get_tuple_name(space, isl_dim_set);
2098 isl_space_free(space);
2100 return name;
2103 /* Return a pointer to the gpu_array_ref_group in "local"
2104 * that contains the reference "access".
2105 * Return NULL if no such group can be found.
2107 static struct gpu_array_ref_group *find_ref_group(
2108 struct gpu_local_array_info *local, struct gpu_stmt_access *access)
2110 int i, j;
2112 for (i = 0; i < local->n_group; ++i) {
2113 struct gpu_array_ref_group *group = local->groups[i];
2115 for (j = 0; j < group->n_ref; ++j)
2116 if (group->refs[j] == access)
2117 return group;
2120 return NULL;
2123 /* Index transformation callback for pet_stmt_build_ast_exprs.
2125 * "index" expresses the array indices in terms of statement iterators
2127 * We first reformulate "index" in terms of the AST loop iterators.
2128 * Then we check if we are accessing the global array or
2129 * a shared/private copy. In the former case, we simply return
2130 * the updated index. If "index" is an affine expression rather
2131 * than an array access, then we also return the updated index here.
2133 * If no reference groups have been computed for the array,
2134 * then we can only be accessing the global array.
2136 * Otherwise, we apply the tiling to the index.
2137 * This tiling is of the form
2139 * [D -> A] -> T
2141 * The index is of the form
2143 * L -> A
2145 * We update the tiling to refer to the AST loop iterators
2147 * [L -> A] -> T
2149 * and modify index to keep track of those iterators
2151 * L -> [L -> A]
2153 * Combining these two yields a tiled index expression in terms
2154 * of the AST loop iterators
2156 * L -> T
2158 static __isl_give isl_multi_pw_aff *transform_index(
2159 __isl_take isl_multi_pw_aff *index, __isl_keep isl_id *ref_id,
2160 void *user)
2162 struct ppcg_transform_data *data = user;
2163 struct gpu_stmt_access *access;
2164 struct gpu_array_ref_group *group;
2165 struct gpu_array_tile *tile;
2166 isl_pw_multi_aff *iterator_map;
2167 int i;
2168 const char *name;
2169 isl_space *space;
2170 isl_multi_pw_aff *tiling;
2171 isl_pw_multi_aff *pma;
2172 isl_multi_pw_aff *mpa;
2174 data->array = NULL;
2176 iterator_map = isl_pw_multi_aff_copy(data->iterator_map);
2177 index = isl_multi_pw_aff_pullback_pw_multi_aff(index, iterator_map);
2179 access = find_access(data->accesses, ref_id);
2180 if (!access)
2181 return index;
2182 if (!isl_map_has_tuple_name(access->access, isl_dim_out))
2183 return index;
2185 name = get_outer_array_name(access->access);
2186 i = find_array_index(data->gen->kernel, name);
2187 if (i < 0)
2188 isl_die(isl_multi_pw_aff_get_ctx(index), isl_error_internal,
2189 "cannot find array",
2190 return isl_multi_pw_aff_free(index));
2191 data->array = &data->gen->prog->array[i];
2192 data->local_array = &data->gen->kernel->array[i];
2194 group = find_ref_group(data->local_array, access);
2195 if (!group) {
2196 data->global = 1;
2197 return index;
2200 tile = group->private_tile;
2201 if (!tile)
2202 tile = group->shared_tile;
2203 data->global = !tile;
2204 if (!tile)
2205 return index;
2207 space = isl_space_range(isl_multi_pw_aff_get_space(index));
2208 space = isl_space_map_from_set(space);
2209 pma = isl_pw_multi_aff_identity(space);
2210 pma = isl_pw_multi_aff_product(
2211 isl_pw_multi_aff_copy(data->sched2shared), pma);
2212 tiling = isl_multi_pw_aff_from_multi_aff(
2213 isl_multi_aff_copy(tile->tiling));
2214 tiling = isl_multi_pw_aff_pullback_pw_multi_aff(tiling, pma);
2216 space = isl_space_domain(isl_multi_pw_aff_get_space(index));
2217 space = isl_space_map_from_set(space);
2218 mpa = isl_multi_pw_aff_identity(space);
2219 index = isl_multi_pw_aff_range_product(mpa, index);
2220 index = isl_multi_pw_aff_pullback_multi_pw_aff(tiling, index);
2222 return index;
2225 /* Dereference "expr" by adding an index [0].
2226 * The original "expr" is assumed not to have any indices.
2228 * If "expr" is a member access, then the dereferencing needs
2229 * to be applied to the structure argument of this member access.
2231 static __isl_give isl_ast_expr *dereference(__isl_take isl_ast_expr *expr)
2233 isl_ctx *ctx;
2234 isl_ast_expr *arg0, *res;
2235 isl_ast_expr_list *list;
2237 arg0 = isl_ast_expr_get_op_arg(expr, 0);
2238 if (!arg0)
2239 return isl_ast_expr_free(expr);
2240 if (isl_ast_expr_get_type(arg0) == isl_ast_expr_op &&
2241 isl_ast_expr_get_op_type(arg0) == isl_ast_op_member) {
2242 isl_ast_expr *arg;
2244 arg = isl_ast_expr_get_op_arg(arg0, 0);
2245 arg = dereference(arg);
2246 arg0 = isl_ast_expr_set_op_arg(arg0, 0, arg);
2247 expr = isl_ast_expr_set_op_arg(expr, 0, arg0);
2249 return expr;
2251 isl_ast_expr_free(arg0);
2253 ctx = isl_ast_expr_get_ctx(expr);
2254 res = isl_ast_expr_from_val(isl_val_zero(ctx));
2255 list = isl_ast_expr_list_from_ast_expr(res);
2256 res = isl_ast_expr_get_op_arg(expr, 0);
2257 res = isl_ast_expr_access(res, list);
2258 isl_ast_expr_free(expr);
2260 return res;
2263 /* Linearize the index expression "expr" based on the array bounds
2264 * of "array".
2266 * That is, transform expression
2268 * A[i_0][i_1]...[i_n]
2270 * to
2272 * A[(..((i_0 * b_1 + i_1) ... ) * b_n + i_n]
2274 * where b_0, b_1, ..., b_n are the bounds on the array.
2276 * If the base of "expr" is a member access, then the linearization needs
2277 * to be applied to the structure argument of this member access.
2279 * In the base case, if "expr" has no arguments (other than the name of
2280 * the array), then we are passing an entire array to a function.
2281 * In this case, there is nothing to linearize.
2282 * Note that at this point an expression with no arguments can
2283 * only be an entire array because the scalar case and
2284 * the case of single struct are handled by the caller.
2286 * If the number of specified index expressions in "expr"
2287 * is smaller than the dimension of the accessed array,
2288 * then the missing i_j also do not appear in the linearized expression.
2289 * Furthermore, since such an expression does not refer to a single
2290 * element while the default linearized expression would refer to
2291 * a single element, we return the expression
2293 * A + (..((i_0 * b_1 + i_1) ... ) * b_n]
2295 * instead. Note that because of the special case handling above,
2296 * we can assume here that here that there is at least one index expression.
2298 __isl_give isl_ast_expr *gpu_local_array_info_linearize_index(
2299 struct gpu_local_array_info *array, __isl_take isl_ast_expr *expr)
2301 int i, n;
2302 isl_ctx *ctx;
2303 isl_set *context;
2304 isl_ast_expr *arg0;
2305 isl_ast_expr *res;
2306 isl_ast_expr_list *list;
2307 isl_ast_build *build;
2309 arg0 = isl_ast_expr_get_op_arg(expr, 0);
2310 if (isl_ast_expr_get_type(arg0) == isl_ast_expr_op &&
2311 isl_ast_expr_get_op_type(arg0) == isl_ast_op_member) {
2312 isl_ast_expr *arg;
2314 arg = isl_ast_expr_get_op_arg(arg0, 0);
2315 arg = gpu_local_array_info_linearize_index(array, arg);
2316 arg0 = isl_ast_expr_set_op_arg(arg0, 0, arg);
2317 expr = isl_ast_expr_set_op_arg(expr, 0, arg0);
2319 return expr;
2321 isl_ast_expr_free(arg0);
2323 if (isl_ast_expr_get_op_n_arg(expr) == 1)
2324 return expr;
2326 ctx = isl_ast_expr_get_ctx(expr);
2327 context = isl_set_universe(isl_space_params_alloc(ctx, 0));
2328 build = isl_ast_build_from_context(context);
2330 n = isl_ast_expr_get_op_n_arg(expr);
2331 res = isl_ast_expr_get_op_arg(expr, 1);
2332 for (i = 1; i < array->n_index; ++i) {
2333 isl_pw_aff *bound_i;
2334 isl_ast_expr *expr_i;
2336 bound_i = isl_pw_aff_list_get_pw_aff(array->bound, i);
2337 expr_i = isl_ast_build_expr_from_pw_aff(build, bound_i);
2338 res = isl_ast_expr_mul(res, expr_i);
2340 if (i + 1 >= n)
2341 continue;
2342 expr_i = isl_ast_expr_get_op_arg(expr, i + 1);
2343 res = isl_ast_expr_add(res, expr_i);
2346 isl_ast_build_free(build);
2348 if (1 + array->n_index > n) {
2349 res = isl_ast_expr_add(isl_ast_expr_get_op_arg(expr, 0), res);
2350 } else {
2351 list = isl_ast_expr_list_from_ast_expr(res);
2352 res = isl_ast_expr_get_op_arg(expr, 0);
2353 res = isl_ast_expr_access(res, list);
2356 isl_ast_expr_free(expr);
2358 return res;
2361 /* AST expression transformation callback for pet_stmt_build_ast_exprs.
2363 * If the AST expression refers to an array that is not accessed
2364 * at all, then this means the value of the expression is not used,
2365 * so we might as well print zero (NULL pointer) instead.
2367 * If the AST expression refers to a global scalar that is not
2368 * a read-only scalar, then its address was passed to the kernel and
2369 * we need to dereference it.
2371 * If the AST expression refers to an access to a global array,
2372 * then we linearize the access exploiting the bounds in data->local_array.
2374 static __isl_give isl_ast_expr *transform_expr(__isl_take isl_ast_expr *expr,
2375 __isl_keep isl_id *id, void *user)
2377 struct ppcg_transform_data *data = user;
2379 if (!data->array)
2380 return expr;
2381 if (!data->array->accessed) {
2382 isl_ctx *ctx;
2384 ctx = isl_ast_expr_get_ctx(expr);
2385 isl_ast_expr_free(expr);
2386 return isl_ast_expr_from_val(isl_val_zero(ctx));
2388 if (gpu_array_is_read_only_scalar(data->array))
2389 return expr;
2390 if (!data->global)
2391 return expr;
2392 if (data->array->n_index == 0)
2393 return dereference(expr);
2394 if (!data->array->linearize)
2395 return expr;
2397 return gpu_local_array_info_linearize_index(data->local_array, expr);
2400 /* This function is called for each instance of a user statement
2401 * in the kernel.
2403 * We attach a struct ppcg_kernel_stmt to the "node", containing
2404 * a computed AST expression for each access.
2405 * These AST expressions are computed from iterator_map,
2406 * which expresses the domain
2407 * elements in terms of the generated loops, and sched2shared,
2408 * which expresses the first shared_len dimensions of the schedule
2409 * computed by PPCG in terms of the generated loops.
2411 static __isl_give isl_ast_node *at_each_domain(__isl_take isl_ast_node *node,
2412 __isl_keep isl_ast_build *build, void *user)
2414 struct ppcg_transform_data data;
2415 struct gpu_gen *gen = (struct gpu_gen *) user;
2416 struct gpu_stmt *gpu_stmt;
2417 struct ppcg_kernel_stmt *stmt;
2418 isl_id *id;
2419 isl_pw_multi_aff *sched2shared;
2420 isl_map *map;
2421 isl_pw_multi_aff *iterator_map;
2422 isl_ast_expr *expr, *arg;
2423 isl_union_map *schedule;
2425 expr = isl_ast_node_user_get_expr(node);
2426 arg = isl_ast_expr_get_op_arg(expr, 0);
2427 id = isl_ast_expr_get_id(arg);
2428 gpu_stmt = find_stmt(gen->prog, id);
2429 isl_id_free(id);
2430 isl_ast_expr_free(arg);
2431 isl_ast_expr_free(expr);
2432 if (!gpu_stmt)
2433 isl_die(gen->ctx, isl_error_internal,
2434 "statement not found", return isl_ast_node_free(node));
2436 stmt = isl_calloc_type(gen->ctx, struct ppcg_kernel_stmt);
2437 if (!stmt)
2438 return isl_ast_node_free(node);
2440 schedule = isl_ast_build_get_schedule(build);
2441 map = isl_map_reverse(isl_map_from_union_map(schedule));
2442 iterator_map = isl_pw_multi_aff_from_map(map);
2443 sched2shared = compute_sched_to_shared(gen,
2444 isl_pw_multi_aff_copy(iterator_map));
2446 stmt->type = ppcg_kernel_domain;
2447 stmt->u.d.stmt = gpu_stmt;
2449 data.gen = gen;
2450 data.accesses = stmt->u.d.stmt->accesses;
2451 data.iterator_map = iterator_map;
2452 data.sched2shared = sched2shared;
2453 stmt->u.d.ref2expr = pet_stmt_build_ast_exprs(stmt->u.d.stmt->stmt,
2454 build, &transform_index, &data,
2455 &transform_expr, &data);
2457 isl_pw_multi_aff_free(iterator_map);
2458 isl_pw_multi_aff_free(sched2shared);
2460 id = isl_id_alloc(gen->ctx, NULL, stmt);
2461 id = isl_id_set_free_user(id, &ppcg_kernel_stmt_free);
2462 return isl_ast_node_set_annotation(node, id);
2465 /* This function is called when code has been generated for the shared
2466 * tile loops. The "schedule" refers only to the original statements.
2468 * We extend the schedule with that part of gen->local_sched that hasn't
2469 * been taken into account yet. This introduces parameters referring
2470 * to thread ids in the schedule, so we add them (with the appropriate
2471 * bounds to the context as well).
2472 * Finally, we set the appropriate unrolling options
2473 * if gen->first_unroll is set.
2475 static __isl_give isl_ast_node *create_domain_leaf(
2476 __isl_take isl_union_map *schedule, __isl_take isl_ast_build *build,
2477 void *user)
2479 struct gpu_gen *gen = (struct gpu_gen *) user;
2480 isl_space *space;
2481 isl_union_map *sched;
2482 isl_ast_node *tree;
2483 isl_set *set;
2484 isl_id_list *iterators;
2485 int n;
2487 schedule = extend_schedule(schedule,
2488 isl_union_map_copy(gen->local_sched),
2489 gen->shared_len, gen->thread_tiled_len);
2491 space = isl_ast_build_get_schedule_space(build);
2492 set = isl_set_universe(space);
2493 set = add_bounded_parameters(set, gen->kernel->block_dim,
2494 gen->kernel->thread_ids);
2495 build = isl_ast_build_restrict(build, set);
2497 n = gen->thread_tiled_len - gen->shared_len;
2499 if (gen->first_unroll >= 0) {
2500 space = isl_space_set_alloc(gen->ctx, 0, n);
2501 build = set_unroll(build, space, gen->first_unroll);
2503 iterators = ppcg_scop_generate_names(gen->prog->scop, n, "c");
2504 build = isl_ast_build_set_iterators(build, iterators);
2505 build = isl_ast_build_set_at_each_domain(build, &at_each_domain, gen);
2506 tree = isl_ast_build_node_from_schedule_map(build, schedule);
2507 isl_ast_build_free(build);
2509 return tree;
2512 /* This function is called for each statement node in the AST of the code
2513 * for copying to or from shared/private memory.
2514 * Attach a pointer to a ppcg_kernel_stmt representing the copy
2515 * statement to the node.
2516 * The statement name is "read" or "write", depending on whether we are
2517 * reading from global memory or writing to global memory.
2518 * The name of the T space is {shared,private}_<array>.
2520 * The schedule is of the form
2522 * type[A -> T] -> L
2524 * where A refers to a piece of an array and T to the corresponding
2525 * shifted tile. We split this schedule into mappings L -> A and L -> T
2526 * and store the corresponding expressions in stmt->index and stmt->local_index,
2527 * where stmt points to the ppcg_kernel_stmt that is attached to the node.
2529 static __isl_give isl_ast_node *attach_copy_stmt(__isl_take isl_ast_node *node,
2530 __isl_keep isl_ast_build *build, void *user)
2532 struct gpu_gen *gen = (struct gpu_gen *) user;
2533 struct ppcg_kernel_stmt *stmt;
2534 isl_id *id;
2535 isl_ast_expr *expr;
2536 isl_space *space;
2537 isl_map *access, *local_access, *map;
2538 isl_pw_multi_aff *pma;
2539 const char *type;
2541 stmt = isl_calloc_type(gen->ctx, struct ppcg_kernel_stmt);
2542 if (!stmt)
2543 return isl_ast_node_free(node);
2545 access = isl_map_from_union_map(isl_ast_build_get_schedule(build));
2546 type = isl_map_get_tuple_name(access, isl_dim_in);
2547 stmt->u.c.read = !strcmp(type, "read");
2548 access = isl_map_reverse(access);
2549 space = isl_space_unwrap(isl_space_range(isl_map_get_space(access)));
2550 local_access = isl_map_copy(access);
2552 map = isl_map_domain_map(isl_map_universe(isl_space_copy(space)));
2553 id = isl_map_get_tuple_id(access, isl_dim_out);
2554 map = isl_map_set_tuple_id(map, isl_dim_in, id);
2555 access = isl_map_apply_range(access, map);
2556 pma = isl_pw_multi_aff_from_map(access);
2557 expr = isl_ast_build_access_from_pw_multi_aff(build, pma);
2558 stmt->u.c.index = expr;
2560 map = isl_map_range_map(isl_map_universe(space));
2561 id = isl_map_get_tuple_id(local_access, isl_dim_out);
2562 map = isl_map_set_tuple_id(map, isl_dim_in, id);
2563 local_access = isl_map_apply_range(local_access, map);
2564 pma = isl_pw_multi_aff_from_map(local_access);
2565 expr = isl_ast_build_access_from_pw_multi_aff(build, pma);
2566 stmt->u.c.local_index = expr;
2568 stmt->u.c.array = gen->copy_group->array;
2569 stmt->u.c.local_array = gen->copy_group->local_array;
2570 stmt->type = ppcg_kernel_copy;
2572 id = isl_id_alloc(gen->ctx, NULL, stmt);
2573 id = isl_id_set_free_user(id, &ppcg_kernel_stmt_free);
2574 return isl_ast_node_set_annotation(node, id);
2577 /* Given a schedule of the form
2579 * [S -> A] -> L
2581 * (with S the first shared_len dimensions of the computed schedule,
2582 * A the array and L the schedule correponding to the generated loops),
2583 * indicating where to copy the array elements that need to be copied,
2584 * construct code for performing the copying.
2586 * "group" is the array reference group that is being copied
2587 * "type" is either "read" or "write"
2588 * private is set if copying needs to be performed to/from registers
2590 * We first construct a mapping to a shifted tile of the array,
2592 * [S -> A] -> T(S,A) (1)
2594 * If private is set, then we also use this mapping as a schedule
2595 * (which is already thread-specific and will be completely unrolled).
2596 * Otherwise, we wrap/tile the range over the threads.
2597 * The result is
2599 * [S -> A] -> T'(S,A)
2601 * Combined with the given schedule, we have
2603 * [S -> A] -> [L -> T'(S,A)] (2)
2605 * From the shifted tile mapping, we construct a mapping
2607 * [S -> A] -> [A -> T(S,A)]
2609 * and apply it to the schedule (2), obtaining
2611 * [A -> T(S(L),A)] -> [L -> T'(S(L),A)]
2613 * Note that we can project out S because it is uniquely defined by L.
2615 static __isl_give isl_ast_node *copy_access(struct gpu_gen *gen,
2616 __isl_take isl_map *sched,
2617 const char *type, struct gpu_array_ref_group *group,
2618 __isl_take isl_ast_build *build, int private)
2620 isl_space *space;
2621 isl_ast_node *tree;
2622 isl_map *schedule, *shift, *map;
2623 isl_set *set;
2624 isl_id_list *iterators;
2625 int n;
2627 shift = shift_access(group);
2629 schedule = isl_map_copy(shift);
2630 schedule = isl_map_reset_tuple_id(schedule, isl_dim_out);
2631 if (!private)
2632 schedule = tile_access_schedule(gen, schedule);
2634 n = isl_map_dim(schedule, isl_dim_out);
2635 set = isl_set_universe(isl_ast_build_get_schedule_space(build));
2636 set = add_bounded_parameters(set, gen->kernel->block_dim,
2637 gen->kernel->thread_ids);
2639 schedule = isl_map_range_product(sched, schedule);
2641 space = isl_space_domain(isl_map_get_space(shift));
2642 map = isl_map_range_map(isl_map_universe(isl_space_unwrap(space)));
2643 map = isl_map_range_product(map, shift);
2645 schedule = isl_map_apply_domain(schedule, map);
2647 schedule = isl_map_set_tuple_name(schedule, isl_dim_in, type);
2649 build = isl_ast_build_restrict(build, set);
2651 gen->copy_group = group;
2653 if (private) {
2654 space = isl_space_range(isl_map_get_space(schedule));
2655 space = isl_space_range(isl_space_unwrap(space));
2656 build = set_unroll(build, space, 0);
2658 iterators = ppcg_scop_generate_names(gen->prog->scop, n, "c");
2659 build = isl_ast_build_set_iterators(build, iterators);
2660 build = isl_ast_build_set_at_each_domain(build, &attach_copy_stmt, gen);
2661 tree = isl_ast_build_node_from_schedule_map(build,
2662 isl_union_map_from_map(schedule));
2663 isl_ast_build_free(build);
2665 return tree;
2668 /* Return code for reading into or writing from shared memory
2669 * the given array reference group.
2671 * If we are performing a read from global memory to shared memory and
2672 * if the array involved is not a scalar, then we copy
2673 * the entire tile to shared memory. This may result in some extra
2674 * elements getting copied, but it should lead to simpler code
2675 * (which means that fewer registers may be needed) and less divergence.
2677 * Otherwise, we only copy the elements that will be read or have been written
2678 * in the kernel.
2681 * The input "sched" is of the form.
2683 * type[S -> A] -> L
2685 * with S the first shared_len dimensions of the computed schedule,
2686 * A the array and L the schedule correponding to the generated loops.
2688 * We first drop "type",
2690 * [S -> A] -> L
2692 * If the above conditions are satisfied, we project out A,
2693 * resulting in
2695 * S -> L
2697 * and then introduce the group tile [S -> T], resulting in
2699 * [S -> T] -> L
2701 static __isl_give isl_ast_node *copy_group_shared_accesses(
2702 struct gpu_gen *gen, struct gpu_array_ref_group *group,
2703 __isl_take isl_map *sched, __isl_take isl_ast_build *build)
2705 const char *type;
2706 int read;
2707 isl_union_map *access;
2709 type = isl_map_get_tuple_name(sched, isl_dim_in);
2710 read = !strcmp(type, "read");
2712 sched = isl_map_reset_tuple_id(sched, isl_dim_in);
2714 if (read && !gpu_array_is_scalar(group->array)) {
2715 isl_space *space;
2716 isl_map *map;
2718 space = isl_space_domain(isl_map_get_space(sched));
2719 space = isl_space_unwrap(space);
2720 map = isl_map_domain_map(isl_map_universe(space));
2721 sched = isl_map_apply_domain(sched, map);
2723 map = group_tile(group);
2724 map = isl_map_reverse(isl_map_domain_map(map));
2725 sched = isl_map_apply_domain(sched, map);
2728 return copy_access(gen, sched, type, group, build, 0);
2731 /* Return code for reading into or writing from private memory
2732 * the given array reference group.
2734 * Let S be the first shared_len dimensions of the computed schedule,
2735 * D the iteration domains, A the array and L the schedule correponding
2736 * to the generated loops.
2737 * "sched" is of the form
2739 * type[S -> A] -> L
2741 * where type is either "read" or "write".
2742 * We apply the privatization D -> S(t), with t the thread ids,
2743 * to the access relation D -> A to obtain the privatized access relation
2745 * S(t) -> A
2747 * We drop the type from "sched" and intersect with the privatized access
2748 * relation to obtain
2750 * [S(t) -> A] -> L
2752 static __isl_give isl_ast_node *copy_group_private_accesses(
2753 struct gpu_gen *gen, struct gpu_array_ref_group *group,
2754 __isl_take isl_map *sched, __isl_take isl_ast_build *build)
2756 const char *type;
2757 int read;
2758 isl_union_map *priv;
2759 isl_union_map *access;
2760 isl_map *access_map;
2762 type = isl_map_get_tuple_name(sched, isl_dim_in);
2763 read = !strcmp(type, "read");
2765 priv = isl_union_map_from_map(isl_map_copy(gen->privatization));
2766 priv = isl_union_map_apply_range(isl_union_map_copy(gen->shared_sched),
2767 priv);
2769 access = gpu_array_ref_group_access_relation(group, read, !read);
2770 access = isl_union_map_apply_domain(access, priv);
2771 access_map = isl_map_from_union_map(access);
2773 sched = isl_map_reset_tuple_id(sched, isl_dim_in);
2774 sched = isl_map_intersect_domain(sched, isl_map_wrap(access_map));
2776 return copy_access(gen, sched, type, group, build, 1);
2779 /* Return code for reading into or writing from shared or private memory.
2781 * "schedule" is of the form
2783 * type[S -> A] -> L
2785 * with S be the first shared_len dimensions of the computed schedule,
2786 * A the array and L the schedule correponding to the generated loops.
2787 * The array reference group is attached to "type".
2789 static __isl_give isl_ast_node *create_access_leaf(
2790 struct gpu_gen *gen, __isl_take isl_map *schedule,
2791 __isl_take isl_ast_build *build)
2793 struct gpu_array_ref_group *group;
2794 isl_id *id;
2796 id = isl_map_get_tuple_id(schedule, isl_dim_in);
2797 group = isl_id_get_user(id);
2798 isl_id_free(id);
2800 if (group->private_tile)
2801 return copy_group_private_accesses(gen, group, schedule,
2802 build);
2803 else
2804 return copy_group_shared_accesses(gen, group, schedule,
2805 build);
2808 /* Create a domain node representing a synchronization.
2810 static __isl_give isl_ast_node *create_sync_leaf(
2811 struct gpu_gen *gen, __isl_take isl_map *schedule,
2812 __isl_take isl_ast_build *build)
2814 struct ppcg_kernel_stmt *stmt;
2815 isl_id *id;
2816 isl_space *space;
2817 isl_ast_node *node;
2818 isl_ast_expr *expr;
2820 isl_map_free(schedule);
2822 stmt = isl_calloc_type(gen->ctx, struct ppcg_kernel_stmt);
2823 if (!stmt)
2824 return NULL;
2826 stmt->type = ppcg_kernel_sync;
2828 space = isl_ast_build_get_schedule_space(build);
2829 space = isl_space_from_domain(space);
2830 space = isl_space_set_tuple_name(space, isl_dim_out, "sync");
2831 expr = isl_ast_build_call_from_pw_multi_aff(build,
2832 isl_pw_multi_aff_from_multi_aff(isl_multi_aff_zero(space)));
2833 node = isl_ast_node_alloc_user(expr);
2834 isl_ast_build_free(build);
2836 id = isl_id_alloc(gen->ctx, NULL, stmt);
2837 id = isl_id_set_free_user(id, &ppcg_kernel_stmt_free);
2838 return isl_ast_node_set_annotation(node, id);
2841 /* This function is called during the code generation at the point
2842 * where the schedule domain element is completely determined by
2843 * the generated code. The input schedule contains the original
2844 * statements as well as synchronization and copy "statements".
2845 * The latter are scheduled at different points than any of the original
2846 * statements, so they will only arrive here in isolation.
2848 * If the current schedule only refers to a single statement,
2849 * we check if it is a copy or synchronization statement and
2850 * call the appropriate functions.
2851 * Otherwise, we assume we are dealing with the original statements
2852 * and we call create_domain_leaf.
2854 static __isl_give isl_ast_node *create_kernel_leaf(
2855 __isl_take isl_ast_build *build, void *user)
2857 struct gpu_gen *gen = (struct gpu_gen *) user;
2858 isl_map *map;
2859 isl_union_map *schedule;
2860 const char *name;
2862 schedule = isl_ast_build_get_schedule(build);
2864 if (isl_union_map_n_map(schedule) != 1)
2865 return create_domain_leaf(schedule, build, user);
2867 map = isl_map_from_union_map(schedule);
2868 name = isl_map_get_tuple_name(map, isl_dim_in);
2869 if (!strcmp(name, "read") || !strcmp(name, "write"))
2870 return create_access_leaf(gen, map, build);
2871 if (!strcmp(name, "sync"))
2872 return create_sync_leaf(gen, map, build);
2874 return create_domain_leaf(isl_union_map_from_map(map), build, user);
2877 /* Mark all odd schedule dimensions as "atomic" (when the even dimensions
2878 * have value 0) and all even schedule dimensions as "unroll".
2880 * That is, the options look as follows
2882 * { [0, b, 0, d, ..., 0] -> atomic[i] : exists a : i = 2 a + 1;
2883 * [a, b, c, d, ..., z] -> unroll[i] : exists a : i = 2 a }
2885 * The even positions are used to be able to schedule copying blocks
2886 * and synchronization before or after each level of the shared memory
2887 * tile loops and we want to make sure that code for these is generated
2888 * separately (within each level).
2890 static __isl_give isl_ast_build *set_atomic_and_unroll(
2891 __isl_take isl_ast_build *build,
2892 __isl_take isl_space *space, int sched_len)
2894 isl_ctx *ctx;
2895 isl_map *map;
2896 isl_constraint *c;
2897 isl_union_map *opt;
2898 isl_local_space *ls;
2899 int i, n;
2901 ctx = isl_ast_build_get_ctx(build);
2903 space = isl_space_params(space);
2904 space = isl_space_add_dims(space, isl_dim_set, sched_len);
2905 space = isl_space_from_domain(space);
2906 space = isl_space_add_dims(space, isl_dim_out, 2);
2907 map = isl_map_universe(isl_space_copy(space));
2908 for (i = 0; i < sched_len; i += 2)
2909 map = isl_map_fix_si(map, isl_dim_in, i, 0);
2910 ls = isl_local_space_from_space(isl_map_get_space(map));
2911 c = isl_equality_alloc(ls);
2912 c = isl_constraint_set_coefficient_si(c, isl_dim_out, 0, 1);
2913 c = isl_constraint_set_coefficient_si(c, isl_dim_out, 1, 2);
2914 c = isl_constraint_set_constant_si(c, 1);
2915 map = isl_map_add_constraint(map, c);
2916 map = isl_map_project_out(map, isl_dim_out, 1, 1);
2917 map = isl_map_set_tuple_name(map, isl_dim_out, "atomic");
2918 opt = isl_union_map_from_map(map);
2920 map = isl_map_universe(space);
2921 ls = isl_local_space_from_space(isl_map_get_space(map));
2922 c = isl_equality_alloc(ls);
2923 c = isl_constraint_set_coefficient_si(c, isl_dim_out, 0, 1);
2924 c = isl_constraint_set_coefficient_si(c, isl_dim_out, 1, 2);
2925 map = isl_map_add_constraint(map, c);
2926 map = isl_map_project_out(map, isl_dim_out, 1, 1);
2927 map = isl_map_set_tuple_name(map, isl_dim_out, "unroll");
2928 opt = isl_union_map_add_map(opt, map);
2930 build = isl_ast_build_set_options(build, opt);
2932 return build;
2935 /* Return a map that maps a space of dimension gen->shared_len
2936 * to its last dimensions starting at gen->tile_first.
2937 * The range is of dimension
2939 * 2 * (gen->shared_len - gen->tile_first) + 1
2941 * The input dimensions are mapped to the odd dimensions in the output,
2942 * while the even dimensions (except 2*pos) are fixed to 0.
2943 * Output dimension 2*pos (if pos >= 0) is fixed to "val".
2944 * If pos >= 0, then only the pos first dimensions starting at gen->tile_first
2945 * are mapped to the output. The remaining input dimensions are projected
2946 * out and the corresponding output dimensions are fixed to 0.
2948 static __isl_give isl_map *insert_even(struct gpu_gen *gen,
2949 __isl_take isl_space *space, int pos, int val)
2951 int i, n;
2952 isl_map *proj;
2954 space = isl_space_set_from_params(space);
2955 space = isl_space_add_dims(space, isl_dim_set, gen->shared_len);
2956 space = isl_space_map_from_set(space);
2957 proj = isl_map_identity(space);
2958 proj = isl_map_project_out(proj, isl_dim_out, 0, gen->tile_first);
2959 n = gen->shared_len - gen->tile_first;
2960 for (i = 0; i <= n; ++i) {
2961 proj = isl_map_insert_dims(proj, isl_dim_out, 2 * i, 1);
2962 if (i == pos)
2963 proj = isl_map_fix_si(proj, isl_dim_out, 2 * i, val);
2964 else
2965 proj = isl_map_fix_si(proj, isl_dim_out, 2 * i, 0);
2968 if (pos < 0)
2969 return proj;
2971 proj = isl_map_eliminate(proj, isl_dim_in, gen->tile_first + pos,
2972 gen->shared_len - (gen->tile_first + pos));
2973 for (i = pos; i < n; ++i)
2974 proj = isl_map_fix_si(proj, isl_dim_out, 2 * i + 1, 0);
2976 return proj;
2979 /* Given the AST context schedule "schedule" and the mapping from
2980 * domains to the shared tile loops "shared_sched", add a schedule
2981 * for a synchronization operation at position "val" of loop level "pos".
2983 * schedule is of the form
2985 * D -> L
2987 * (with D the iteration domains and L the already generated loops),
2988 * while shared_sched is of the form
2990 * D -> S
2992 * We combine them into
2994 * L -> S
2996 * apply a mapping
2998 * [s_0,...] -> [0,s_{tile_first},0,..., val, 0, 0, ... 0]
3000 * and use the result as a schedule for "sync".
3002 static __isl_give isl_union_map *add_sync_schedule(struct gpu_gen *gen,
3003 __isl_take isl_union_map *res, __isl_keep isl_union_map *schedule,
3004 __isl_keep isl_union_map *shared_sched, int pos, int val)
3006 isl_space *space;
3007 isl_map *proj, *map;
3009 shared_sched = isl_union_map_copy(shared_sched);
3010 schedule = isl_union_map_copy(schedule);
3012 space = isl_union_map_get_space(shared_sched);
3013 schedule = isl_union_map_apply_domain(shared_sched, schedule);
3014 map = isl_map_from_union_map(schedule);
3016 proj = insert_even(gen, space, pos, val);
3017 map = isl_map_apply_range(map, proj);
3018 map = isl_map_from_range(isl_map_wrap(map));
3019 map = isl_map_set_tuple_name(map, isl_dim_in, "sync");
3021 res = isl_union_map_add_map(res, map);
3023 return res;
3026 /* Given a set of wrapped references "ref", return the corresponding
3027 * access relations based on the tagged access relations "tagged".
3029 * The elements of "ref" are of the form
3031 * [D -> R]
3033 * with D an iteration domains and R a reference.
3034 * The elements of "tagged" are of the form
3036 * [D -> R] -> A
3038 * with A an array.
3040 * Extend "tagged" to include the iteration domain in the range, i.e.,
3042 * [D -> R] -> [D -> A]
3044 * apply the result to "ref" and then unwrap the resulting set
3045 * to obtain relations of the form
3047 * D -> A
3049 static __isl_give isl_union_map *wrapped_reference_to_access(
3050 __isl_take isl_union_set *ref, __isl_take isl_union_map *tagged)
3052 isl_union_map *tag2access;
3054 tag2access = isl_union_map_copy(tagged);
3055 tag2access = isl_union_map_universe(tag2access);
3056 tag2access = isl_union_set_unwrap(isl_union_map_domain(tag2access));
3057 tag2access = isl_union_map_domain_map(tag2access);
3058 tag2access = isl_union_map_range_product(tag2access, tagged);
3060 ref = isl_union_set_coalesce(ref);
3061 ref = isl_union_set_apply(ref, tag2access);
3063 return isl_union_set_unwrap(ref);
3066 /* Given an access relation "access" from "group", remove those reads
3067 * if ("read" is 1) or writes (if "read" is 0) that are only needed to
3068 * communicate data within the same iteration of "sched".
3070 * If the access is a read then it is either an element of
3072 * live_in union (range flow)
3074 * where live_in and flow may be overapproximations, or
3075 * it reads an uninitialized value (that is not live-in because
3076 * there is an intermediate kill) or it reads a value that was
3077 * written within the same (compound) statement instance.
3078 * If the access is a write then it is either an element of
3080 * live_out union (domain flow)
3082 * or it writes a value that is never read (and is not live-out
3083 * because of an intermediate kill) or only
3084 * within the same (compound) statement instance.
3085 * In both cases, the access relation is also a subset of
3086 * the group access relation.
3088 * The cases where an uninitialized value is read or a value is written
3089 * that is never read or where the dataflow occurs within a statement
3090 * instance are also considered local and may also be removed.
3092 * Essentially, we compute the intersection of "access" with either
3094 * live_in union (range non-local-flow)
3096 * or
3098 * live_out union (domain non-local-flow)
3100 * We first construct a relation "local"
3102 * [[D -> R] -> [D' -> R']]
3104 * of pairs of domain iterations accessing the reference group
3105 * and references in the group that are coscheduled by "sched".
3107 * If this relation does not intersect the dataflow dependences,
3108 * then there is nothing we can possibly remove, unless the dataflow
3109 * dependences themselves only relate a subset of the accesses.
3110 * In particular, the accesses may not be involved in any dataflow
3111 * dependences, either because they are uninitialized reads/dead writes
3112 * or because the dataflow occurs inside a statement instance.
3114 * Since the computation below may break up the access relation
3115 * into smaller pieces, we only perform the intersection with
3116 * the non-local dependent accesses if the local pairs
3117 * intersect the dataflow dependences. Otherwise, we intersect
3118 * with the universe of the non-local dependent accesses.
3119 * This should at least remove accesses from statements that
3120 * do not participate in any dependences.
3122 * In particular, we remove the "local" dataflow dependences from
3123 * the set of all dataflow dependences.
3124 * Note that if the potential dataflow dependences are an overapproximation
3125 * of the actual dataflow dependences, then the result remains an
3126 * overapproximation of the non-local dataflow dependences.
3127 * Copying to/from global memory is only needed for the references
3128 * in the domain/range of the result or for accesses that are live out/in
3129 * for the entire scop.
3131 * We therefore map the domain/range of the "external" relation
3132 * to the corresponding access relation and take the union with
3133 * the live out/in relation.
3135 static __isl_give isl_union_map *remove_local_accesses(
3136 struct gpu_prog *prog, struct gpu_array_ref_group *group,
3137 __isl_take isl_union_map *access, __isl_take isl_union_map *sched,
3138 int read)
3140 int empty;
3141 isl_union_pw_multi_aff *tagger;
3142 isl_union_set *domain;
3143 isl_union_map *local, *tagged, *external;
3144 isl_union_set *tag_set;
3146 if (isl_union_map_is_empty(access)) {
3147 isl_union_map_free(sched);
3148 return access;
3151 tagged = group_tagged_access_relation(group);
3153 tagger = isl_union_pw_multi_aff_copy(prog->scop->tagger);
3154 domain = isl_union_map_domain(isl_union_map_copy(tagged));
3155 tagger = isl_union_pw_multi_aff_intersect_domain(tagger, domain);
3156 sched = isl_union_map_preimage_domain_union_pw_multi_aff(sched, tagger);
3158 local = isl_union_map_apply_range(sched,
3159 isl_union_map_reverse(isl_union_map_copy(sched)));
3160 local = isl_union_map_intersect(local,
3161 isl_union_map_copy(prog->scop->tagged_dep_flow));
3163 empty = isl_union_map_is_empty(local);
3165 external = isl_union_map_copy(prog->scop->tagged_dep_flow);
3166 external = isl_union_map_intersect_params(external,
3167 isl_set_copy(prog->scop->context));
3168 external = isl_union_map_subtract(external, local);
3170 if (read) {
3171 tag_set = isl_union_map_range(external);
3172 external = wrapped_reference_to_access(tag_set, tagged);
3173 external = isl_union_map_union(external,
3174 isl_union_map_copy(prog->scop->live_in));
3175 } else {
3176 tag_set = isl_union_map_domain(external);
3177 external = wrapped_reference_to_access(tag_set, tagged);
3178 external = isl_union_map_union(external,
3179 isl_union_map_copy(prog->scop->live_out));
3182 if (empty < 0)
3183 external = isl_union_map_free(external);
3184 else if (empty)
3185 external = isl_union_map_universe(external);
3187 access = isl_union_map_intersect(access, external);
3189 return access;
3192 /* Given an access relation "access" from "group", remove those reads
3193 * if ("read" is 1) or writes (if "read" is 0) that are only needed to
3194 * communicate data within the same iteration of the schedule at the
3195 * position where the copying of the group is inserted.
3197 * We extract a schedule that picks out the iterations of the outer
3198 * group->depth dimensions and call remove_local_accesses.
3200 static __isl_give isl_union_map *remove_local_accesses_group(
3201 struct gpu_gen *gen, struct gpu_array_ref_group *group,
3202 __isl_take isl_union_map *access, int read)
3204 isl_union_map *sched;
3205 isl_space *space;
3206 isl_map *proj;
3208 if (isl_union_map_is_empty(access))
3209 return access;
3211 sched = isl_union_map_copy(gen->sched);
3213 space = isl_union_map_get_space(sched);
3214 proj = projection(space, gen->untiled_len, group->depth);
3215 sched = isl_union_map_apply_range(sched, isl_union_map_from_map(proj));
3217 return remove_local_accesses(gen->prog, group, access, sched, read);
3220 /* Given the AST context schedule "schedule" and the mapping from
3221 * domains to the shared tile loops "shared_sched", add a schedule
3222 * for copying an array reference group to/from shared/private memory.
3223 * "read" is set if data should be copied from global memory
3224 * to shared/private memory.
3225 * "k" represents the current group
3226 * "s" is the total number of groups
3228 * We schedule an operation before or after the innermost loop
3229 * of "shared_sched" that affects the tile of the array reference group.
3231 * schedule is of the form
3233 * D -> L
3235 * (with D the iteration domains and L the already generated loops),
3236 * while shared_sched is of the form
3238 * D -> S
3240 * We first compute the access relation for the reference group
3242 * D -> A
3244 * and remove from this access relation those reads or writes
3245 * that only needed to communicate data within the same iteration
3246 * of the outer part of the schedule where the copying for the group
3247 * is inserted.
3248 * We then combine what is left with shared_sched into
3250 * D -> [S -> A]
3252 * If this results in an empty relation, no copying needs to be performed
3253 * at this point.
3254 * Otherwise, we invert the relation and combine it with "schedule" into
3256 * [S -> A] -> L
3258 * The actual additional piece of the schedule is obtained from combining
3260 * [S -> A] -> S
3262 * with a mapping
3264 * [s_0,...] -> [0,s_{tile_first},0,..., val, 0, 0, ... 0]
3266 * The position of "val" corresponds to the innermost loop that affects
3267 * the tile and the value indicates where the copying is scheduled
3268 * with respect to the actual kernel code (at value 0).
3269 * Reads are schedule before the code, writes to global memory from
3270 * private memory are scheduled at values 1 to s, writes to global
3271 * memory from shared memory are scheduled at values s + 2 to 2 * s + 1.
3273 * If we are scheduling a read from global memory to shared memory,
3274 * we insert a synchronization before the kernel code (at the innermost
3275 * level).
3276 * If we are scheduling a write to global memory, then we add
3277 * a synchronization after all writes (at value 2 *s + 2).
3278 * However, there is no need for a synchronization after the outermost loop.
3279 * A write to global memory from private memory at the innermost level
3280 * does not require a synchronization, because it is covered by
3281 * the synchronization after the kernel inserted by body_schedule.
3283 static __isl_give isl_union_map *add_group_schedule(struct gpu_gen *gen,
3284 __isl_take isl_union_map *res, __isl_keep isl_union_map *schedule,
3285 __isl_keep isl_union_map *shared_sched,
3286 struct gpu_array_ref_group *group, int read, int k, int s)
3288 int n;
3289 int pos, val;
3290 isl_space *space;
3291 isl_union_map *access;
3292 isl_map *map, *proj, *access_map;
3293 isl_id *id;
3295 access = gpu_array_ref_group_access_relation(group, read, !read);
3296 access = remove_local_accesses_group(gen, group, access, read);
3297 access = isl_union_map_range_product(isl_union_map_copy(shared_sched),
3298 access);
3300 if (isl_union_map_is_empty(access)) {
3301 isl_union_map_free(access);
3302 return res;
3305 access = isl_union_map_reverse(access);
3306 access = isl_union_map_apply_range(access,
3307 isl_union_map_copy(schedule));
3308 access_map = isl_map_from_union_map(access);
3310 space = isl_space_copy(group->array->space);
3311 space = isl_space_from_range(space);
3312 space = isl_space_add_dims(space, isl_dim_in, gen->shared_len);
3313 map = isl_map_domain_map(isl_map_universe(space));
3315 space = isl_union_map_get_space(schedule);
3316 pos = group->depth - gen->tile_first;
3317 assert(pos >= 0);
3318 if (read)
3319 val = -2 - k;
3320 else if (group->private_tile)
3321 val = 1 + k;
3322 else
3323 val = 1 + s + 1 + k;
3324 proj = insert_even(gen, space, pos, val);
3325 map = isl_map_apply_range(map, proj);
3327 access_map = isl_map_range_product(access_map, map);
3329 id = isl_id_alloc(gen->ctx, read ? "read" : "write", group);
3330 access_map = isl_map_set_tuple_id(access_map, isl_dim_in, id);
3332 res = isl_union_map_add_map(res, access_map);
3334 n = gen->shared_len - gen->tile_first;
3335 if (read) {
3336 if (!group->private_tile)
3337 res = add_sync_schedule(gen, res, schedule,
3338 shared_sched, n, -1);
3339 } else {
3340 if (pos == 0)
3341 return res;
3342 if (pos == n && group->private_tile)
3343 return res;
3344 res = add_sync_schedule(gen, res, schedule, shared_sched,
3345 pos, 2 * s + 2);
3348 return res;
3351 /* Return a schedule for the shared tile loops based on the current
3352 * AST context schedule.
3354 * We create a "shared_sched" that maps the domains to the first
3355 * shared_len dimensions of the computed schedule, project out the
3356 * first tile_first dimensions (as these are already covered by
3357 * the host code) and insert "statement-level" dimensions at even
3358 * positions so that we can schedule copy blocks and synchronization
3359 * before/after each level.
3361 * In particular, copy blocks are inserted inside the innermost
3362 * level that affect the tile. For the copying to global memory,
3363 * those from private memory are scheduled before those from shared
3364 * memory such that synchronization can be inserted between the two
3365 * at the innermost level.
3366 * Synchronization is inserted at the innermost level before the
3367 * actual kernel code if there is any copying from global memory
3368 * to shared memory. It is inserted unconditionally at the innermost
3369 * level after the actual kernel code and the copying to global memory
3370 * from private memory (if any). Finally, it is inserted after
3371 * any copying to global memory, except at the outermost level
3372 * and at the innermost level if there is no copying from shared
3373 * memory. The copying from private memory is covered by the unconditional
3374 * synchronization at the innermost level.
3376 static __isl_give isl_union_map *body_schedule(struct gpu_gen *gen,
3377 __isl_take isl_union_map *schedule)
3379 isl_space *space;
3380 isl_union_map *res;
3381 isl_union_map *shared_sched;
3382 isl_union_map *sched;
3383 isl_map *proj, *map;
3384 int i, j, k, s;
3386 shared_sched = isl_union_map_copy(gen->tiled_sched);
3387 proj = projection(isl_union_map_get_space(shared_sched),
3388 gen->tiled_len, gen->shared_len);
3389 shared_sched = isl_union_map_apply_range(shared_sched,
3390 isl_union_map_from_map(proj));
3391 space = isl_union_map_get_space(shared_sched);
3392 proj = insert_even(gen, space, -1, 0);
3393 sched = isl_union_map_apply_range(isl_union_map_copy(shared_sched),
3394 isl_union_map_from_map(proj));
3396 res = isl_union_map_range_product(isl_union_map_copy(schedule), sched);
3398 s = 0;
3399 for (i = 0; i < gen->kernel->n_array; ++i)
3400 s += gen->kernel->array[i].n_group;
3402 k = 0;
3403 for (i = 0; i < gen->kernel->n_array; ++i) {
3404 struct gpu_local_array_info *array = &gen->kernel->array[i];
3406 for (j = 0; j < array->n_group; ++j) {
3407 struct gpu_array_ref_group *group;
3409 group = array->groups[j];
3410 if (!group->private_tile && !group->shared_tile)
3411 continue;
3412 res = add_group_schedule(gen, res, schedule,
3413 shared_sched, group, 0, k, s);
3414 res = add_group_schedule(gen, res, schedule,
3415 shared_sched, group, 1, k, s);
3416 ++k;
3420 res = add_sync_schedule(gen, res, schedule, shared_sched,
3421 gen->shared_len - gen->tile_first, 1 + s);
3423 isl_union_map_free(shared_sched);
3424 isl_union_map_free(schedule);
3426 return res;
3429 /* Generate code for "kernel" in the given "context".
3431 * We first generate code for the shared tile loops (T1T, T1P and T2)
3432 * in a context that includes the block ids.
3433 * Within each iteration of these loops an additional code generation
3434 * is performed (within create_kernel_leaf) for the rest of the schedule
3435 * in a context that includes the thread ids.
3437 static __isl_give isl_ast_node *generate_kernel(struct gpu_gen *gen,
3438 __isl_keep isl_ast_build *build, __isl_keep isl_set *host_domain,
3439 __isl_keep isl_multi_pw_aff *grid_size)
3441 isl_space *space;
3442 isl_set *set;
3443 isl_id_list *iterators;
3444 isl_union_map *schedule;
3445 isl_ast_node *tree;
3446 int sched_len;
3448 schedule = isl_ast_build_get_schedule(build);
3450 build = isl_ast_build_copy(build);
3451 build = isl_ast_build_restrict(build, isl_set_copy(host_domain));
3452 space = isl_ast_build_get_schedule_space(build);
3453 set = isl_set_universe(isl_space_copy(space));
3454 set = add_bounded_parameters_dynamic(set, grid_size,
3455 gen->kernel->block_ids);
3456 build = isl_ast_build_restrict(build, set);
3458 schedule = body_schedule(gen, schedule);
3460 sched_len = 2 * (gen->shared_len - gen->tile_first) + 1;
3462 build = set_atomic_and_unroll(build, space, sched_len);
3463 iterators = ppcg_scop_generate_names(gen->prog->scop, sched_len, "g");
3464 build = isl_ast_build_set_iterators(build, iterators);
3465 build = isl_ast_build_set_create_leaf(build, &create_kernel_leaf, gen);
3466 tree = isl_ast_build_node_from_schedule_map(build, schedule);
3467 isl_ast_build_free(build);
3469 return tree;
3472 /* Attach "id" to the given node.
3474 static __isl_give isl_ast_node *attach_id(__isl_take isl_ast_node *node,
3475 __isl_keep isl_ast_build *build, void *user)
3477 isl_id *id = user;
3479 node = isl_ast_node_set_annotation(node, id);
3481 return node;
3484 /* Construct an AST node for performing a kernel launch and attach
3485 * the information about the kernel to that node.
3486 * "kernel_id" has name "kernel" and contains a pointer
3487 * to the ppcg_kernel structure.
3489 * The kernel AST has been constructed in the context of the range
3490 * of "schedule". In particular, the grid size has been computed
3491 * in the context. We therefore still need to make sure that these
3492 * constraints are expressed in the code. We do this by creating a schedule
3494 * kernel[] -> [S -> []]
3496 * where S is the schedule domain, i.e., the range of "schedule".
3497 * The AST generation will then create a single call surrounded by
3498 * all the condition in "S" that have not been expressed yet.
3500 * The kernel information is attached to this node in attach_id.
3502 static __isl_give isl_ast_node *construct_launch(
3503 __isl_take isl_ast_build *build, __isl_take isl_union_map *schedule,
3504 __isl_take isl_id *kernel_id)
3506 isl_ctx *ctx;
3507 isl_union_set *domain;
3508 isl_set *set;
3509 isl_map *map;
3510 isl_ast_node *node;
3512 ctx = isl_ast_build_get_ctx(build);
3514 domain = isl_union_map_range(schedule);
3515 set = isl_set_from_union_set(domain);
3516 map = isl_map_from_domain(set);
3517 map = isl_map_from_range(isl_map_wrap(map));
3518 map = isl_map_set_tuple_name(map, isl_dim_in, "kernel");
3519 schedule = isl_union_map_from_map(map);
3521 build = isl_ast_build_set_at_each_domain(build, &attach_id, kernel_id);
3522 node = isl_ast_build_node_from_schedule_map(build, schedule);
3523 isl_ast_build_free(build);
3525 return node;
3528 /* This function is called for each leaf in the AST of the host code.
3529 * We first specialize the schedule to the site of the leaf, compute
3530 * the size of shared memory and then construct the body of the host code
3531 * and the associated kernel.
3533 * The necessary information for printing the kernel launch is
3534 * stored in the struct ppcg_kernel that was created in create_kernel and
3535 * attached to an outer mark node in the schedule tree.
3536 * Note that this assumes that a kernel is only launched once.
3537 * The kernel pointer itself is stored in gen->kernel by before_mark,
3538 * while the isl_id containing this pointer is stored in gen->kernel_mark.
3539 * The latter is attached to the leaf AST node created to represent the launch.
3541 static __isl_give isl_ast_node *create_host_leaf(
3542 __isl_take isl_ast_build *build, void *user)
3544 struct gpu_gen *gen = (struct gpu_gen *) user;
3545 isl_id *id;
3546 isl_ast_node *node;
3547 struct ppcg_kernel *kernel;
3548 isl_set *host_domain;
3549 isl_union_map *schedule;
3550 isl_union_map *local_sched;
3551 isl_union_set *domain;
3552 int i;
3554 schedule = isl_ast_build_get_schedule(build);
3556 kernel = gen->kernel;
3557 if (!kernel)
3558 goto error;
3560 domain = isl_union_map_domain(isl_union_map_copy(schedule));
3562 local_sched = isl_union_map_copy(gen->sched);
3563 local_sched = isl_union_map_intersect_domain(local_sched, domain);
3565 gen->tiled_sched = tile_schedule(gen, local_sched);
3566 gen->tiled_sched = parametrize_tiled_schedule(gen, gen->tiled_sched);
3567 gen->tiled_sched = scale_tile_loops(gen, gen->tiled_sched);
3569 gen->local_sched = isl_union_map_copy(gen->tiled_sched);
3570 gen->local_sched = thread_tile_schedule(gen, gen->local_sched);
3571 gen->local_sched = scale_thread_tile_loops(gen, gen->local_sched);
3573 kernel->space = isl_ast_build_get_schedule_space(build);
3575 compute_shared_sched(gen);
3576 gen->privatization = compute_privatization(gen);
3577 if (gpu_group_references(gen) < 0)
3578 schedule = isl_union_map_free(schedule);
3579 host_domain = isl_set_from_union_set(isl_union_map_range(
3580 isl_union_map_copy(schedule)));
3581 localize_bounds(kernel, host_domain);
3583 gen->local_sched = interchange_for_unroll(gen, gen->local_sched);
3584 check_shared_memory_bound(gen->kernel);
3585 compute_group_tilings(gen->kernel);
3587 kernel->tree = generate_kernel(gen, build, host_domain,
3588 kernel->grid_size);
3589 create_kernel_vars(kernel);
3591 isl_map_free(gen->privatization);
3592 isl_union_map_free(gen->local_sched);
3593 isl_union_map_free(gen->tiled_sched);
3594 isl_union_map_free(gen->shared_sched);
3595 isl_union_map_free(gen->shared_proj);
3596 isl_set_free(host_domain);
3598 node = construct_launch(build, schedule, isl_id_copy(gen->kernel_mark));
3600 return node;
3601 error:
3602 isl_union_map_free(schedule);
3603 return NULL;
3606 /* This function is called before the AST generator starts traversing
3607 * the schedule subtree of a node with mark "mark".
3609 * If the mark is called "kernel", store the mark itself in gen->kernel_mark
3610 * and the kernel pointer in gen->kernel for use in create_host_leaf.
3612 static int before_mark(__isl_keep isl_id *mark,
3613 __isl_keep isl_ast_build *build, void *user)
3615 struct gpu_gen *gen = user;
3617 if (!mark)
3618 return -1;
3619 if (!strcmp(isl_id_get_name(mark), "kernel")) {
3620 gen->kernel_mark = isl_id_copy(mark);
3621 gen->kernel = isl_id_get_user(mark);
3623 return 0;
3626 /* This function is called after the AST generator has finished traversing
3627 * the schedule subtree of a mark node. "node" points to the corresponding
3628 * mark AST node.
3630 * If the mark is called "kernel", then clear kernel and gen->kernel_mark.
3632 static __isl_give isl_ast_node *after_mark(__isl_take isl_ast_node *node,
3633 __isl_keep isl_ast_build *build, void *user)
3635 struct gpu_gen *gen = user;
3636 isl_id *id;
3638 id = isl_ast_node_mark_get_id(node);
3639 if (!id)
3640 return isl_ast_node_free(node);
3641 if (!strcmp(isl_id_get_name(id), "kernel") && gen->kernel) {
3642 gen->kernel_mark = isl_id_free(gen->kernel_mark);
3643 gen->kernel = NULL;
3646 isl_id_free(id);
3647 return node;
3650 /* Use isl to generate host code from gen->host_schedule, which corresponds to
3651 * the outer gen->tile_first loops of the global schedule in gen->sched.
3652 * Within each iteration of this partial schedule, i.e., for each kernel
3653 * launch, create_host_leaf takes care of generating the kernel code.
3654 * The ppcg_kernel objects are stored in mark nodes in the schedule
3655 * tree and are extracted in before_mark.
3657 static __isl_give isl_ast_node *generate_host_code(struct gpu_gen *gen)
3659 isl_ast_build *build;
3660 isl_ast_node *tree;
3661 isl_schedule *schedule;
3662 isl_id_list *iterators;
3664 isl_options_set_ast_build_group_coscheduled(gen->ctx, 1);
3665 build = isl_ast_build_from_context(isl_set_copy(gen->prog->context));
3666 iterators = ppcg_scop_generate_names(gen->prog->scop,
3667 gen->tile_first, "h");
3668 build = isl_ast_build_set_iterators(build, iterators);
3669 build = isl_ast_build_set_create_leaf(build, &create_host_leaf, gen);
3670 build = isl_ast_build_set_before_each_mark(build, &before_mark, gen);
3671 build = isl_ast_build_set_after_each_mark(build, &after_mark, gen);
3672 schedule = isl_schedule_copy(gen->host_schedule);
3673 tree = isl_ast_build_node_from_schedule(build, schedule);
3674 isl_ast_build_free(build);
3676 return tree;
3679 __isl_give isl_union_map *extract_sizes_from_str(isl_ctx *ctx, const char *str)
3681 if (!str)
3682 return NULL;
3683 return isl_union_map_read_from_str(ctx, str);
3686 /* Information about the outermost tilable bands in the forest of bands.
3688 * prefix is the (padded) schedule leading up to the outermost tilable bands.
3690 * tile_first is the number of schedule dimensions in prefix.
3692 * suffix is the schedule of the outermost tilable bands and their descendants.
3694 struct band_info {
3695 struct gpu_gen *gen;
3696 int tile_first;
3697 isl_union_map *prefix;
3698 isl_union_map *suffix;
3701 /* Construct an isl_multi_val for use as tile sizes for tiling "node"
3702 * from the elements in "tile_size".
3704 static __isl_give isl_multi_val *construct_band_tiles_sizes(
3705 __isl_keep isl_schedule_node *node, int *tile_size)
3707 int i, n;
3708 isl_ctx *ctx;
3709 isl_space *space;
3710 isl_multi_val *mv;
3712 if (!node)
3713 return NULL;
3715 ctx = isl_schedule_node_get_ctx(node);
3716 space = isl_schedule_node_band_get_space(node);
3717 n = isl_schedule_node_band_n_member(node);
3718 mv = isl_multi_val_zero(space);
3719 for (i = 0; i < n; ++i) {
3720 isl_val *v;
3722 v = isl_val_int_from_si(ctx, tile_size[i]);
3723 mv = isl_multi_val_set_val(mv, i, v);
3726 return mv;
3729 /* Replace the partial schedule S of the band node "node" by
3731 * floor(S/f)
3733 * or
3735 * f * floor(S/f)
3737 * if scale_tile_loops is set, with f the integers in "factor".
3738 * The list that "factor" points to is assumed to contain at least
3739 * as many elements as the number of members in the band.
3741 static __isl_give isl_schedule_node *snap_band_to_sizes(
3742 __isl_take isl_schedule_node *node, int *factor,
3743 struct ppcg_options *options)
3745 isl_multi_val *mv;
3747 mv = construct_band_tiles_sizes(node, factor);
3748 node = isl_schedule_node_band_scale_down(node, isl_multi_val_copy(mv));
3749 if (options->scale_tile_loops)
3750 node = isl_schedule_node_band_scale(node,
3751 isl_multi_val_copy(mv));
3752 isl_multi_val_free(mv);
3754 return node;
3757 /* Tile "band" with tile size specified by "sizes".
3759 * Since the tile loops will be mapped to block ids, we forcibly
3760 * turn off tile loop scaling. We may want to enable tile loop scaling
3761 * at some later point, but then we would have to support the detection
3762 * of strides during the mapping to block ids.
3763 * Similarly, since the point loops will be mapped to thread ids,
3764 * we forcibly shift the point loops so that they start at zero.
3766 static __isl_give isl_schedule_node *tile_band(
3767 __isl_take isl_schedule_node *node, __isl_take isl_multi_val *sizes)
3769 isl_ctx *ctx = isl_schedule_node_get_ctx(node);
3770 int scale_tile;
3771 int shift_point;
3773 scale_tile = isl_options_get_tile_scale_tile_loops(ctx);
3774 isl_options_set_tile_scale_tile_loops(ctx, 0);
3775 shift_point = isl_options_get_tile_shift_point_loops(ctx);
3776 isl_options_set_tile_shift_point_loops(ctx, 1);
3778 node = isl_schedule_node_band_tile(node, sizes);
3780 isl_options_set_tile_scale_tile_loops(ctx, scale_tile);
3781 isl_options_set_tile_shift_point_loops(ctx, shift_point);
3783 return node;
3786 /* Extract the set of parameter values and outer schedule dimensions
3787 * for which any statement instance
3788 * in the kernel inserted at "node" needs to be executed.
3789 * Intersect the set of parameter values derived from the host schedule
3790 * relation with the context of "prog".
3792 static __isl_give isl_set *extract_context(__isl_keep isl_schedule_node *node,
3793 struct gpu_prog *prog)
3795 isl_union_map *schedule;
3796 isl_union_set *schedule_domain;
3797 isl_set *context;
3798 int empty;
3800 schedule = isl_schedule_node_get_prefix_schedule_relation(node);
3801 schedule_domain = isl_union_map_range(schedule);
3802 empty = isl_union_set_is_empty(schedule_domain);
3803 if (empty < 0) {
3804 isl_union_set_free(schedule_domain);
3805 return NULL;
3807 if (empty) {
3808 int depth;
3809 isl_space *space;
3811 space = isl_union_set_get_space(schedule_domain);
3812 isl_union_set_free(schedule_domain);
3813 space = isl_space_set_from_params(space);
3814 depth = isl_schedule_node_get_schedule_depth(node);
3815 space = isl_space_add_dims(space, isl_dim_set, depth);
3816 context = isl_set_empty(space);
3817 } else {
3818 context = isl_set_from_union_set(schedule_domain);
3820 context = isl_set_intersect_params(context,
3821 isl_set_copy(prog->context));
3823 return context;
3826 /* Return the set of outer array elements accessed by
3827 * by the statement instance in "domain" in "prog".
3829 static __isl_give isl_union_set *accessed_by_domain(
3830 __isl_take isl_union_set *domain, struct gpu_prog *prog)
3832 isl_union_map *access;
3833 isl_union_set *arrays;
3835 access = isl_union_map_union(isl_union_map_copy(prog->read),
3836 isl_union_map_copy(prog->may_write));
3837 access = isl_union_map_intersect_domain(access, domain);
3838 arrays = isl_union_map_range(access);
3839 arrays = isl_union_set_apply(arrays,
3840 isl_union_map_copy(prog->to_outer));
3842 return arrays;
3845 /* Return the number of outer band members of the band node "node"
3846 * that are marked coincident.
3848 static int n_outer_coincidence(__isl_keep isl_schedule_node *node)
3850 int i, n;
3852 n = isl_schedule_node_band_n_member(node);
3854 for (i = 0; i < n; ++i)
3855 if (!isl_schedule_node_band_member_get_coincident(node, i))
3856 break;
3858 return i;
3861 /* If the band node "node" has more than "n" members, then split off
3862 * the first "n" of them.
3864 static __isl_give isl_schedule_node *split_band(
3865 __isl_take isl_schedule_node *node, int n)
3867 int dim;
3869 dim = isl_schedule_node_band_n_member(node);
3870 if (n < dim)
3871 node = isl_schedule_node_band_split(node, n);
3873 return node;
3876 /* Scale a band node that may have been split by split_band.
3877 * "sizes" are the scaling factors for the original node.
3878 * "node" either points to the original band node, or the outer
3879 * of the two pieces after splitting.
3881 * If the number of elements in "node" is smaller than the number of
3882 * elements in "sizes", then some splitting has occurred and we split
3883 * "sizes" in the same way.
3885 static __isl_give isl_schedule_node *scale_band(
3886 __isl_take isl_schedule_node *node, __isl_take isl_multi_val *sizes)
3888 int n, dim;
3890 n = isl_multi_val_dim(sizes, isl_dim_set);
3891 dim = isl_schedule_node_band_n_member(node);
3892 if (n > dim) {
3893 isl_multi_val *sizes2;
3895 sizes2 = isl_multi_val_copy(sizes);
3896 sizes = isl_multi_val_drop_dims(sizes,
3897 isl_dim_set, dim, n - dim);
3898 sizes2 = isl_multi_val_drop_dims(sizes2, isl_dim_set, 0, dim);
3899 node = isl_schedule_node_child(node, 0);
3900 node = isl_schedule_node_band_scale(node, sizes2);
3901 node = isl_schedule_node_parent(node);
3904 return isl_schedule_node_band_scale(node, sizes);
3907 /* Return an isl_multi_aff, with as elements the parameters in "space"
3908 * that have the names specified by the elements in "names".
3909 * If (some of) these parameters do not already appear in "space",
3910 * then they are added first.
3912 static __isl_give isl_multi_aff *parameter_vector(__isl_take isl_space *space,
3913 __isl_keep isl_id_list *names)
3915 int i, n;
3916 isl_local_space *ls;
3917 isl_multi_aff *ma;
3919 if (!names)
3920 space = isl_space_free(space);
3922 n = isl_id_list_n_id(names);
3923 for (i = 0; i < n; ++i) {
3924 int pos;
3925 isl_id *id;
3927 id = isl_id_list_get_id(names, i);
3928 pos = isl_space_find_dim_by_id(space, isl_dim_param, id);
3929 if (pos >= 0) {
3930 isl_id_free(id);
3931 continue;
3933 pos = isl_space_dim(space, isl_dim_param);
3934 space = isl_space_add_dims(space, isl_dim_param, 1);
3935 space = isl_space_set_dim_id(space, isl_dim_param, pos, id);
3937 ma = isl_multi_aff_zero(isl_space_copy(space));
3938 ls = isl_local_space_from_space(isl_space_domain(space));
3939 for (i = 0; i < n; ++i) {
3940 int pos;
3941 isl_id *id;
3942 isl_aff *aff;
3944 id = isl_id_list_get_id(names, i);
3945 pos = isl_space_find_dim_by_id(space, isl_dim_param, id);
3946 isl_id_free(id);
3947 aff = isl_aff_var_on_domain(isl_local_space_copy(ls),
3948 isl_dim_param, pos);
3949 ma = isl_multi_aff_set_aff(ma, i, aff);
3951 isl_local_space_free(ls);
3953 return ma;
3956 /* Return constraints on the domain elements that equate a sequence of
3957 * parameters called "names", to the partial schedule
3958 * of "node" modulo the integers in "size".
3959 * The number of elements in the array "size" should be equal
3960 * to the number of members of the band node "node" and
3961 * to the number of elements in "names".
3963 static __isl_give isl_union_set *set_schedule_modulo(
3964 __isl_keep isl_schedule_node *node, __isl_keep isl_id_list *names,
3965 int *size)
3967 isl_space *space;
3968 isl_multi_aff *ma;
3969 isl_multi_union_pw_aff *mupa, *mupa2;
3970 isl_multi_val *mv;
3971 isl_union_set *domain;
3973 if (!node)
3974 return NULL;
3975 if (isl_schedule_node_band_n_member(node) == 0)
3976 return isl_schedule_node_get_universe_domain(node);
3978 mupa = isl_schedule_node_band_get_partial_schedule(node);
3979 mv = construct_band_tiles_sizes(node, size);
3980 mupa = isl_multi_union_pw_aff_mod_multi_val(mupa, mv);
3982 space = isl_multi_union_pw_aff_get_space(mupa);
3983 ma = parameter_vector(space, names);
3985 domain = isl_schedule_node_get_universe_domain(node);
3987 mupa2 = isl_multi_union_pw_aff_multi_aff_on_domain(domain, ma);
3988 mupa = isl_multi_union_pw_aff_sub(mupa, mupa2);
3990 return isl_multi_union_pw_aff_zero_union_set(mupa);
3993 /* Insert a context node at "node" introducing the block and thread
3994 * identifiers along with their bounds, which are stored in kernel->grid_size
3995 * and kernel->block_dim.
3996 * Note that the bounds on the block identifiers may implicitly impose
3997 * constraints on the parameters. A guard needs to be inserted
3998 * in the schedule tree to ensure that those bounds hold at "node".
3999 * This guard is inserted in insert_guard.
4001 static __isl_give isl_schedule_node *insert_context(struct ppcg_kernel *kernel,
4002 __isl_take isl_schedule_node *node)
4004 isl_set *context;
4006 context = isl_set_universe(isl_set_get_space(kernel->context));
4008 context = add_bounded_parameters_dynamic(context,
4009 kernel->grid_size, kernel->block_ids);
4010 context = add_bounded_parameters(context,
4011 kernel->block_dim, kernel->thread_ids);
4013 node = isl_schedule_node_insert_context(node, context);
4015 return node;
4018 /* Insert a guard that eliminates kernel launches where the kernel
4019 * obviously does not have any work to do.
4021 * In particular, eliminate kernel launches where there are obviously
4022 * zero blocks.
4023 * Use the same block size constraints that are used to create the context
4024 * to ensure that all constraints implicit in the constructed context
4025 * are imposed by the guard.
4027 * Additionally, add other constraints that are valid
4028 * for each executed instance ("context"), as long as this does not result
4029 * in a disjunction.
4031 static __isl_give isl_schedule_node *insert_guard(
4032 __isl_take isl_schedule_node *node, __isl_keep isl_set *context,
4033 __isl_keep isl_multi_pw_aff *size, struct ppcg_scop *scop)
4035 unsigned nparam, n;
4036 isl_set *guard;
4037 isl_id_list *ids;
4039 guard = isl_set_copy(context);
4040 guard = isl_set_compute_divs(guard);
4041 guard = isl_set_from_basic_set(isl_set_simple_hull(guard));
4043 nparam = isl_set_dim(guard, isl_dim_param);
4044 n = isl_multi_pw_aff_dim(size, isl_dim_out);
4045 ids = ppcg_scop_generate_names(scop, n, "__ppcg_tmp");
4046 guard = add_bounded_parameters_dynamic(guard, size, ids);
4047 isl_id_list_free(ids);
4048 guard = isl_set_project_out(guard, isl_dim_param, nparam, n);
4050 node = isl_schedule_node_insert_guard(node, guard);
4052 return node;
4055 /* Mark all dimensions in the current band node atomic.
4057 static __isl_give isl_schedule_node *atomic(__isl_take isl_schedule_node *node)
4059 int i, n;
4061 n = isl_schedule_node_band_n_member(node);
4062 for (i = 0; i < n; ++i)
4063 node = isl_schedule_node_band_member_set_ast_loop_type(node, i,
4064 isl_ast_loop_atomic);
4066 return node;
4069 /* Mark "node" atomic, if it is a band node.
4070 * Do the same for all ancestors.
4071 * Return a pointer to "node" (in the updated schedule tree).
4073 static __isl_give isl_schedule_node *atomic_ancestors(
4074 __isl_take isl_schedule_node *node)
4076 int pos;
4078 if (!node)
4079 return NULL;
4080 if (!isl_schedule_node_has_parent(node))
4081 return node;
4083 pos = isl_schedule_node_get_child_position(node);
4084 node = isl_schedule_node_parent(node);
4085 if (isl_schedule_node_get_type(node) == isl_schedule_node_band)
4086 node = atomic(node);
4087 node = atomic_ancestors(node);
4088 node = isl_schedule_node_child(node, pos);
4090 return node;
4093 /* Group the domain elements into a single space, named kernelX,
4094 * with X the kernel sequence number "kernel_id".
4096 static __isl_give isl_schedule_node *group_statements(
4097 __isl_take isl_schedule_node *node, int kernel_id)
4099 char buffer[20];
4100 isl_id *id;
4102 if (!node)
4103 return NULL;
4105 snprintf(buffer, sizeof(buffer), "kernel%d", kernel_id);
4106 id = isl_id_alloc(isl_schedule_node_get_ctx(node), buffer, NULL);
4107 return isl_schedule_node_group(node, id);
4110 /* Create a ppcg_kernel representing the domain instances that reach "node"
4111 * and replace the subtree at "node" by a mark node pointing
4112 * to the ppcg_kernel.
4113 * The band that "node" points to is the band that needs to be mapped
4114 * to block identifiers. The band that needs to be mapped to thread
4115 * identifiers should be marked by a "thread" mark by the caller.
4116 * If "scale" is set, then the band that "node" points to is scaled
4117 * by "sizes".
4119 * Mark all outer band nodes as atomic to ensure each kernel is only
4120 * scheduled once.
4121 * If the domain elements that reach "node" live in more than one space,
4122 * then group the domain elements into a single space, named kernelX,
4123 * with X the kernel sequence number.
4125 * Insert a guard node governing the kernel node to ensure that
4126 * no kernels with zero blocks are launched.
4128 * Temporarily adjust the schedule tree underneath the kernel mark as follows.
4129 * Insert a context node describing the block and thread
4130 * identifiers inside the kernel mark.
4131 * The context node needs to be inserted after the effective block size
4132 * has been determined such that the bounds on the thread identifiers
4133 * would reflect the effective block size.
4134 * Insert a filter node inside the context node mapping the statement
4135 * instances to block identifiers. In particular, the block identifiers
4136 * are equated to the partial schedule of band that was marked for mapping
4137 * to blocks modulo the grid size.
4138 * Insert a filter node inside the "thread" mark mapping the statement
4139 * instances to thread identifiers. In particular, the thread identifiers
4140 * are equated to the partial schedule of band that was marked for mapping
4141 * to threads modulo the block size.
4143 * Store a pointer to the created ppcg_kernel in gen->kernel.
4145 * We keep a copy of the isl_id that points to the kernel to ensure
4146 * that the kernel does not get destroyed if the schedule node
4147 * is freed due to some error condition.
4149 static __isl_give isl_schedule_node *create_kernel(struct gpu_gen *gen,
4150 __isl_take isl_schedule_node *node, int scale,
4151 __isl_keep isl_multi_val *sizes)
4153 struct ppcg_kernel *kernel;
4154 isl_id *id;
4155 isl_schedule_node *node_thread;
4156 isl_union_set *domain;
4157 int single_statement;
4159 kernel = isl_calloc_type(gen->ctx, struct ppcg_kernel);
4160 kernel = ppcg_kernel_create_local_arrays(kernel, gen->prog);
4161 if (!kernel)
4162 return isl_schedule_node_free(node);
4164 domain = isl_schedule_node_get_domain(node);
4165 single_statement = isl_union_set_n_set(domain) == 1;
4167 kernel->ctx = gen->ctx;
4168 kernel->options = gen->options;
4169 kernel->context = extract_context(node, gen->prog);
4170 kernel->core = isl_union_set_universe(isl_union_set_copy(domain));
4171 kernel->arrays = accessed_by_domain(isl_union_set_copy(domain),
4172 gen->prog);
4173 kernel->tile_len = isl_schedule_node_band_n_member(node);
4174 kernel->n_parallel = n_outer_coincidence(node);
4175 kernel->n_grid = kernel->n_parallel;
4176 node_thread = isl_schedule_node_copy(node);
4177 node_thread = gpu_tree_move_down_to_thread(node_thread, kernel->core);
4178 node_thread = isl_schedule_node_child(node_thread, 0);
4179 kernel->n_block = n_outer_coincidence(node_thread);
4180 isl_schedule_node_free(node_thread);
4181 kernel->id = gen->kernel_id++;
4182 read_grid_and_block_sizes(kernel, gen);
4184 gen->kernel = kernel;
4186 node = atomic_ancestors(node);
4188 id = isl_id_alloc(gen->ctx, "kernel", kernel);
4189 id = isl_id_set_free_user(id, &ppcg_kernel_free_wrap);
4190 node = isl_schedule_node_insert_mark(node, isl_id_copy(id));
4192 if (!single_statement)
4193 node = group_statements(node, kernel->id);
4195 node = isl_schedule_node_child(node, 0);
4196 node = split_band(node, kernel->n_grid);
4197 kernel->block_ids = ppcg_scop_generate_names(gen->prog->scop,
4198 kernel->n_grid, "b");
4199 kernel->block_filter = set_schedule_modulo(node, kernel->block_ids,
4200 kernel->grid_dim);
4201 kernel->grid_size = extract_grid_size(kernel,
4202 isl_union_set_copy(domain));
4203 if (!kernel->options->wrap)
4204 node = snap_band_to_sizes(node, kernel->grid_dim,
4205 kernel->options);
4206 if (scale)
4207 node = scale_band(node, isl_multi_val_copy(sizes));
4208 node = isl_schedule_node_parent(node);
4209 if (!single_statement)
4210 node = isl_schedule_node_parent(node);
4211 node = insert_guard(node, kernel->context, kernel->grid_size,
4212 gen->prog->scop);
4213 node = gpu_tree_move_down_to_thread(node, kernel->core);
4214 node = isl_schedule_node_child(node, 0);
4215 node = split_band(node, kernel->n_block);
4216 kernel->thread_ids = ppcg_scop_generate_names(gen->prog->scop,
4217 kernel->n_block, "t");
4218 kernel->thread_filter = set_schedule_modulo(node, kernel->thread_ids,
4219 kernel->block_dim);
4220 extract_block_size(kernel, domain);
4222 node = gpu_tree_move_up_to_kernel(node);
4223 node = isl_schedule_node_child(node, 0);
4224 node = insert_context(kernel, node);
4225 node = isl_schedule_node_child(node, 0);
4226 node = isl_schedule_node_insert_filter(node,
4227 isl_union_set_copy(kernel->block_filter));
4229 node = gpu_tree_move_down_to_thread(node, kernel->core);
4230 node = isl_schedule_node_child(node, 0);
4231 if (!kernel->options->wrap)
4232 node = snap_band_to_sizes(node, kernel->block_dim,
4233 kernel->options);
4234 node = isl_schedule_node_insert_filter(node,
4235 isl_union_set_copy(kernel->thread_filter));
4237 node = gpu_tree_move_up_to_kernel(node);
4239 node = isl_schedule_node_child(node, 0);
4240 node = isl_schedule_node_cut(node);
4241 node = isl_schedule_node_parent(node);
4243 if (!single_statement)
4244 node = isl_schedule_node_parent(node);
4245 node = isl_schedule_node_parent(node);
4247 isl_id_free(id);
4248 return node;
4251 /* Insert a zero-dimensional permutable band at "node".
4253 static __isl_give isl_schedule_node *insert_empty_permutable_band(
4254 __isl_take isl_schedule_node *node)
4256 isl_space *space;
4257 isl_schedule *schedule;
4258 isl_union_set *domain;
4259 isl_multi_union_pw_aff *mupa;
4261 schedule = isl_schedule_node_get_schedule(node);
4262 domain = isl_schedule_get_domain(schedule);
4263 space = isl_union_set_get_space(domain);
4264 isl_union_set_free(domain);
4265 isl_schedule_free(schedule);
4267 space = isl_space_set_from_params(space);
4268 mupa = isl_multi_union_pw_aff_zero(space);
4269 node = isl_schedule_node_insert_partial_schedule(node, mupa);
4270 node = isl_schedule_node_band_set_permutable(node, 1);
4272 return node;
4275 /* Mark "node" as outer permutable.
4277 * If "node" originally points to a leaf, then insert a zero-dimensional
4278 * permutable band such that we can assume that "node" always
4279 * points to a band node.
4281 * Tile "node" using user specified tile sizes, after splitting the band
4282 * if the number of specified tile sizes is smaller than the dimension
4283 * of the band. Mark the point band of this tiling as the band that
4284 * needs to be mapped to threads.
4285 * Create a kernel representing the domain instances that reach "node" and
4286 * replace the band node with a mark node pointing to the kernel.
4288 static __isl_give isl_schedule_node *mark_outer_permutable(
4289 struct gpu_gen *gen, __isl_take isl_schedule_node *node)
4291 struct ppcg_kernel *kernel;
4292 int scale;
4293 int tile_len;
4294 int *tile_size;
4295 isl_id *id;
4296 isl_multi_val *sizes;
4298 if (isl_schedule_node_get_type(node) == isl_schedule_node_leaf)
4299 node = insert_empty_permutable_band(node);
4301 tile_len = isl_schedule_node_band_n_member(node);
4302 tile_size = read_tile_sizes(gen, &tile_len);
4303 if (!tile_size)
4304 return isl_schedule_node_free(node);
4305 if (tile_len < isl_schedule_node_band_n_member(node))
4306 node = isl_schedule_node_band_split(node, tile_len);
4307 sizes = construct_band_tiles_sizes(node, tile_size);
4308 node = tile_band(node, isl_multi_val_copy(sizes));
4309 node = isl_schedule_node_child(node, 0);
4310 id = isl_id_alloc(gen->ctx, "thread", NULL);
4311 node = isl_schedule_node_insert_mark(node, id);
4312 node = isl_schedule_node_parent(node);
4314 scale = gen->options->scale_tile_loops;
4315 node = create_kernel(gen, node, scale, sizes);
4316 isl_multi_val_free(sizes);
4317 if (!node)
4318 return NULL;
4319 kernel = gen->kernel;
4320 kernel->tile_len = tile_len;
4321 kernel->tile_size = tile_size;
4323 return node;
4326 static __isl_give isl_schedule_node *select_outer_band(struct gpu_gen *gen,
4327 __isl_take isl_schedule_node *node, int pos, struct band_info *info);
4329 /* Check if this band node is tilable and has any parallel loops. If so,
4330 * take it as the outermost tilable band. If not, continue looking for the
4331 * outermost tilable band in the children of the current band.
4332 * Return a pointer to the same node in a tree where all outermost tilable
4333 * bands in the current subtree have been replaced by mark nodes
4334 * containing a pointer to a ppcg_kernel object.
4336 static __isl_give isl_schedule_node *band_select_outer_band(struct gpu_gen *gen,
4337 __isl_take isl_schedule_node *node, int pos, struct band_info *info)
4339 int n = isl_schedule_node_band_n_member(node);
4340 int n_parallel;
4342 n_parallel = n_outer_coincidence(node);
4344 if (!isl_schedule_node_band_get_permutable(node) || n_parallel == 0) {
4345 node = isl_schedule_node_child(node, 0);
4346 node = select_outer_band(gen, node, pos + n, info);
4347 return isl_schedule_node_parent(node);
4350 gen->any_parallelism = 1;
4351 info->gen = gen;
4352 info->tile_first = pos;
4353 info->prefix = isl_schedule_node_get_prefix_schedule_union_map(node);
4354 info->suffix = isl_schedule_node_get_subtree_schedule_union_map(node);
4356 node = mark_outer_permutable(gen, node);
4358 return node;
4361 /* Extend "umap" with coordinates with fixed value "val"
4362 * to a total length of "dst_len", assuming the original dimension is "src_len".
4364 static __isl_give isl_union_map *extend_range(
4365 __isl_take isl_union_map *umap, int src_len, int dst_len, int val)
4367 isl_space *dim;
4368 isl_map *map;
4369 int i;
4371 dim = isl_union_map_get_space(umap);
4372 map = isl_map_reverse(projection(dim, dst_len, src_len));
4373 for (i = src_len; i < dst_len; ++i)
4374 map = isl_map_fix_si(map, isl_dim_out, i, val);
4376 umap = isl_union_map_apply_range(umap, isl_union_map_from_map(map));
4378 return umap;
4381 /* Select the outermost bands in the elements of the sequence or set
4382 * node "node", align their prefix schedules and combine the resulting
4383 * prefix and suffix schedules into a single pair of prefix and
4384 * suffix schedules for the entire list.
4385 * Return a pointer to the same node in a tree where all outermost tilable
4386 * bands in the current subtree have been replaced by mark nodes
4387 * containing a pointer to a ppcg_kernel object.
4389 static __isl_give isl_schedule_node *list_select_outer_band(
4390 struct gpu_gen *gen, __isl_take isl_schedule_node *node, int pos,
4391 struct band_info *list_info)
4393 int i;
4394 int n = isl_schedule_node_n_children(node);
4395 isl_ctx *ctx = isl_schedule_node_get_ctx(node);
4396 struct band_info *info;
4397 int max_tile_first;
4398 isl_union_map *prefix;
4399 isl_union_map *suffix;
4401 assert(n >= 1);
4402 info = isl_calloc_array(ctx, struct band_info, n);
4403 assert(info);
4405 max_tile_first = 0;
4406 for (i = 0; i < n; ++i) {
4407 node = isl_schedule_node_child(node, i);
4408 node = select_outer_band(gen, node, pos, &info[i]);
4409 if (info[i].tile_first > max_tile_first)
4410 max_tile_first = info[i].tile_first;
4411 node = isl_schedule_node_parent(node);
4414 for (i = 0; i < n; ++i) {
4415 if (info[i].tile_first == max_tile_first)
4416 continue;
4417 info[i].prefix = extend_range(info[i].prefix,
4418 info[i].tile_first, max_tile_first, 0);
4419 info[i].tile_first = max_tile_first;
4422 prefix = info[0].prefix;
4423 suffix = info[0].suffix;
4425 for (i = 1; i < n; ++i) {
4426 prefix = isl_union_map_union(prefix, info[i].prefix);
4427 suffix = isl_union_map_union(suffix, info[i].suffix);
4430 list_info->tile_first = info[0].tile_first;
4431 list_info->prefix = prefix;
4432 list_info->suffix = suffix;
4434 free(info);
4435 return node;
4438 /* If we reach a leaf node, then we have not found any outer tilable
4439 * band with parallel loops, so consider the leaf node as the outermost
4440 * tilable band.
4441 * Return a pointer to a mark node containing a pointer
4442 * to a ppcg_kernel object inserted at the original leaf node.
4444 static __isl_give isl_schedule_node *leaf_select_outer_band(struct gpu_gen *gen,
4445 __isl_take isl_schedule_node *node, int pos, struct band_info *info)
4447 info->gen = gen;
4448 info->tile_first = pos;
4449 info->prefix = isl_schedule_node_get_prefix_schedule_union_map(node);
4450 info->suffix = isl_schedule_node_get_subtree_schedule_union_map(node);
4452 node = mark_outer_permutable(gen, node);
4454 return node;
4457 /* Select the outermost tilable band in the subtree that "node" points to and
4458 * return a pointer to the same node in a tree where all outermost tilable
4459 * bands in the current subtree have been replaced by mark nodes
4460 * containing a pointer to a ppcg_kernel object.
4462 static __isl_give isl_schedule_node *select_outer_band(struct gpu_gen *gen,
4463 __isl_take isl_schedule_node *node, int pos, struct band_info *info)
4465 enum isl_schedule_node_type type;
4467 type = isl_schedule_node_get_type(node);
4468 switch (type) {
4469 case isl_schedule_node_domain:
4470 case isl_schedule_node_filter:
4471 node = isl_schedule_node_child(node, 0);
4472 node = select_outer_band(gen, node, pos, info);
4473 return isl_schedule_node_parent(node);
4474 case isl_schedule_node_leaf:
4475 return leaf_select_outer_band(gen, node, pos, info);
4476 case isl_schedule_node_band:
4477 return band_select_outer_band(gen, node, pos, info);
4478 case isl_schedule_node_set:
4479 case isl_schedule_node_sequence:
4480 return list_select_outer_band(gen, node, pos, info);
4481 default:
4482 isl_die(isl_schedule_node_get_ctx(node),
4483 isl_error_unsupported, "unhandled schedule node type",
4484 node = node);
4485 case isl_schedule_node_error:
4486 info->prefix = NULL;
4487 info->suffix = NULL;
4488 break;
4491 return isl_schedule_node_free(node);
4494 /* Select the outermost tilable band that (by construction)
4495 * has at least one parallel loop.
4496 * The starting position of the aligned band is stored in the pair
4497 * gen->tile_first.
4498 * The sizes and number of parallel loops may be different in different
4499 * parts of the band forest and are therefore stored in the gpu_stmts.
4501 * Return the complete schedule, with the tilable bands aligned
4502 * at gen->tile_first and padded with zero, if needed.
4503 * Store a schedule tree corresponding to the outer gen->tile_first
4504 * dimensions, with mark nodes containing pointers to ppcg_kernel objects,
4505 * in gen->host_schedule.
4507 static __isl_give isl_union_map *select_outer_tilable_band(struct gpu_gen *gen,
4508 __isl_keep isl_schedule *schedule)
4510 isl_schedule_node *node;
4511 struct band_info info;
4513 node = isl_schedule_get_root(schedule);
4514 node = select_outer_band(gen, node, 0, &info);
4515 gen->host_schedule = isl_schedule_node_get_schedule(node);
4516 isl_schedule_node_free(node);
4518 gen->tile_first = info.tile_first;
4519 info.suffix = align_range(info.suffix);
4521 return isl_union_map_flat_range_product(info.prefix, info.suffix);
4524 /* Set gen->untiled_len to the number of scheduling dimensions
4525 * for the schedule of the first domain.
4526 * We assume here that this number is the same for all domains.
4528 static int set_untiled_len(__isl_take isl_map *map, void *user)
4530 unsigned *untiled_len = user;
4532 *untiled_len = isl_map_dim(map, isl_dim_out);
4534 isl_map_free(map);
4535 return -1;
4538 /* Compute an appropriate schedule based on the accesses in
4539 * gen->read and gen->write.
4541 * We use the dependences in gen->prog->scop to compute
4542 * a schedule that has a parallel loop in each tilable band.
4543 * Finally, we select the outermost tilable band.
4545 * If live range reordering is allowed, then we need to make sure
4546 * that live ranges on arrays are not run in parallel since doing
4547 * so would require array expansion. We therefore add the array
4548 * order dependences to the coincidence dependences. Non-zero array
4549 * order dependences will then prevent a schedule dimension from being
4550 * considered parallel.
4551 * Live ranges derived from scalars are allowed to be run in parallel
4552 * since we force the scalars to be mapped to private memory in
4553 * check_scalar_live_ranges.
4554 * If live range reordering is allowed, then the false dependences
4555 * are not added to the validity constraints as that would prevent
4556 * reordering. Instead, the external false dependences that enforce that reads
4557 * from potentially live-in data precede any later write and
4558 * that writes of potentially live-out data follow any other earlier write
4559 * are added to the validity and the coincidence constraints.
4560 * The false dependences are still added to the proximity constraints
4561 * for consistency with the case where live range reordering is not allowed.
4562 * The coincidence constraints then consist of flow dependences,
4563 * external false dependences and array order dependences.
4564 * The independences can be filtered out from the first two sets.
4565 * They have already been filtered out from the array order dependences
4566 * on a per array basis in collect_order_dependences.
4567 * There is no need for a per array handling of the other two sets
4568 * as there should be no flow or external false dependence on local
4569 * variables that can be filtered out.
4571 static void compute_schedule(struct gpu_gen *gen)
4573 isl_union_set *domain;
4574 isl_union_map *dep_raw, *dep;
4575 isl_union_map *validity, *proximity, *coincidence;
4576 isl_union_map *sched;
4577 isl_schedule_constraints *sc;
4578 isl_schedule *schedule;
4580 domain = isl_union_set_copy(gen->prog->scop->domain);
4581 sc = isl_schedule_constraints_on_domain(isl_union_set_copy(domain));
4582 sc = isl_schedule_constraints_set_context(sc,
4583 isl_set_copy(gen->prog->scop->context));
4584 if (gen->options->live_range_reordering) {
4585 sc = isl_schedule_constraints_set_conditional_validity(sc,
4586 isl_union_map_copy(gen->prog->scop->tagged_dep_flow),
4587 isl_union_map_copy(gen->prog->scop->tagged_dep_order));
4588 proximity = isl_union_map_copy(gen->prog->scop->dep_flow);
4589 validity = isl_union_map_copy(proximity);
4590 validity = isl_union_map_union(validity,
4591 isl_union_map_copy(gen->prog->scop->dep_forced));
4592 proximity = isl_union_map_union(proximity,
4593 isl_union_map_copy(gen->prog->scop->dep_false));
4594 coincidence = isl_union_map_copy(validity);
4595 coincidence = isl_union_map_subtract(coincidence,
4596 isl_union_map_copy(gen->prog->scop->independence));
4597 coincidence = isl_union_map_union(coincidence,
4598 isl_union_map_copy(gen->prog->array_order));
4599 } else {
4600 dep_raw = isl_union_map_copy(gen->prog->scop->dep_flow);
4601 dep = isl_union_map_copy(gen->prog->scop->dep_false);
4602 dep = isl_union_map_union(dep, dep_raw);
4603 dep = isl_union_map_coalesce(dep);
4604 proximity = isl_union_map_copy(dep);
4605 coincidence = isl_union_map_copy(dep);
4606 validity = dep;
4608 sc = isl_schedule_constraints_set_validity(sc, validity);
4609 sc = isl_schedule_constraints_set_coincidence(sc, coincidence);
4610 sc = isl_schedule_constraints_set_proximity(sc, proximity);
4612 if (gen->options->debug->dump_schedule_constraints)
4613 isl_schedule_constraints_dump(sc);
4614 schedule = isl_schedule_constraints_compute_schedule(sc);
4615 if (gen->options->debug->dump_schedule)
4616 isl_schedule_dump(schedule);
4618 sched = select_outer_tilable_band(gen, schedule);
4620 isl_union_map_foreach_map(sched, &set_untiled_len, &gen->untiled_len);
4621 sched = isl_union_map_intersect_domain(sched, domain);
4622 gen->sched = sched;
4624 isl_schedule_free(schedule);
4627 /* Compute the sets of outer array elements that need to be copied in and out.
4629 * In particular, for each array that is possibly written anywhere in
4630 * gen->prog and that is visible outside the corresponding scop,
4631 * we copy out its entire extent.
4633 * Any array elements that is read without first being written needs
4634 * to be copied in. Furthermore, if there are any array elements that
4635 * are copied out, but that may not be written inside gen->prog, then
4636 * they also need to be copied in to ensure that the value after execution
4637 * is the same as the value before execution, at least for those array
4638 * elements that may have their values preserved by the scop.
4639 * In case the array elements are structures, we need to take into
4640 * account that all members of the structures need to be written
4641 * by gen->prog before we can avoid copying the data structure in.
4643 * While computing the set of array elements that are copied out but
4644 * not necessarily written, we intersect both sets with the context.
4645 * This helps in those cases where the arrays are declared with a fixed size,
4646 * while the accesses are parametric and the context assigns a fixed value
4647 * to the parameters.
4649 * If an element from a local array is read without first being written,
4650 * then there is no point in copying it in since it cannot have been
4651 * written prior to the scop. Warn about the uninitialized read instead.
4653 static void compute_copy_in_and_out(struct gpu_gen *gen)
4655 int i;
4656 isl_union_set *local;
4657 isl_union_set *may_write, *must_write;
4658 isl_union_set *copy_in, *copy_out;
4659 isl_union_set *not_written;
4660 isl_union_map *uninitialized;
4661 isl_union_map *local_uninitialized;
4663 must_write = isl_union_map_range(
4664 isl_union_map_copy(gen->prog->must_write));
4665 must_write = isl_union_set_intersect_params(must_write,
4666 isl_set_copy(gen->prog->context));
4667 may_write = isl_union_map_range(
4668 isl_union_map_copy(gen->prog->may_write));
4669 may_write = isl_union_set_intersect_params(may_write,
4670 isl_set_copy(gen->prog->context));
4671 may_write = isl_union_set_universe(may_write);
4672 may_write = isl_union_set_apply(may_write,
4673 isl_union_map_copy(gen->prog->to_outer));
4674 copy_out = isl_union_set_empty(isl_union_set_get_space(may_write));
4675 local = isl_union_set_copy(copy_out);
4677 for (i = 0; i < gen->prog->n_array; ++i) {
4678 isl_space *space;
4679 isl_set *write_i;
4680 int empty;
4682 space = isl_space_copy(gen->prog->array[i].space);
4684 if (gen->prog->array[i].local) {
4685 isl_set *set;
4687 set = isl_set_universe(space);
4688 local = isl_union_set_add_set(local, set);
4689 continue;
4692 write_i = isl_union_set_extract_set(may_write, space);
4693 empty = isl_set_plain_is_empty(write_i);
4694 isl_set_free(write_i);
4695 if (empty)
4696 continue;
4698 write_i = isl_set_copy(gen->prog->array[i].extent);
4699 copy_out = isl_union_set_add_set(copy_out, write_i);
4701 isl_union_set_free(may_write);
4703 copy_out = isl_union_set_intersect_params(copy_out,
4704 isl_set_copy(gen->prog->context));
4706 gen->prog->copy_out = isl_union_set_copy(copy_out);
4708 copy_out = isl_union_set_apply(copy_out,
4709 isl_union_map_copy(gen->prog->to_inner));
4710 copy_out = isl_union_set_intersect(copy_out,
4711 isl_union_set_copy(gen->prog->may_persist));
4712 not_written = isl_union_set_subtract(copy_out, must_write);
4714 uninitialized = isl_union_map_copy(gen->prog->scop->live_in);
4715 local_uninitialized = isl_union_map_copy(uninitialized);
4717 local = isl_union_set_apply(local,
4718 isl_union_map_copy(gen->prog->to_inner));
4719 local_uninitialized = isl_union_map_intersect_range(local_uninitialized,
4720 local);
4721 if (!isl_union_map_is_empty(local_uninitialized)) {
4722 fprintf(stderr,
4723 "possibly uninitialized reads (not copied in):\n");
4724 isl_union_map_dump(local_uninitialized);
4726 uninitialized = isl_union_map_subtract(uninitialized,
4727 local_uninitialized);
4728 copy_in = isl_union_map_range(uninitialized);
4729 copy_in = isl_union_set_union(copy_in, not_written);
4730 copy_in = isl_union_set_apply(copy_in,
4731 isl_union_map_copy(gen->prog->to_outer));
4733 gen->prog->copy_in = copy_in;
4736 /* Internal data structure for extract_access.
4737 * "next_access" points to the end of a linked list that is extended
4738 * by extract_access.
4739 * "single_expression" is set if the access expressions belong to
4740 * an expression statement (i.e., a statement without internal control).
4741 * "any_to_outer" maps all intermediate arrays to their outer arrays.
4743 struct ppcg_extract_access_data {
4744 struct gpu_stmt_access **next_access;
4745 int single_expression;
4746 isl_union_map *any_to_outer;
4749 /* Given a tagged access relation to a single array "tagged", extract it
4750 * as a map, taking into account that the input may be empty.
4751 * If the access relation is empty, then it does not contain
4752 * any space information, so we try to recover it from the index
4753 * expression.
4754 * The space of the index expression is of the form I -> A,
4755 * with I the statement instances and A the array, or [I -> F] -> A,
4756 * with F the filters corresponding to arguments.
4757 * We first drop F, if present, obtaining I -> A.
4758 * Then we construct I -> R, with R the reference tag,
4759 * combine the two into I -> [R -> A] and uncurry to obtain
4760 * the final result [I -> R] -> A.
4761 * Note that the index expression may have a lower dimension
4762 * than that of the array, but this dimension is not used
4763 * if the access relation is empty.
4765 static __isl_give isl_map *extract_single_tagged_access(
4766 __isl_take isl_union_map *tagged, __isl_keep pet_expr *expr)
4768 int empty;
4769 isl_id *id;
4770 isl_space *space, *space2;
4771 isl_multi_pw_aff *index;
4773 empty = isl_union_map_is_empty(tagged);
4774 if (empty < 0)
4775 goto error;
4776 if (!empty)
4777 return isl_map_from_union_map(tagged);
4778 isl_union_map_free(tagged);
4780 index = pet_expr_access_get_index(expr);
4781 space = isl_multi_pw_aff_get_space(index);
4782 isl_multi_pw_aff_free(index);
4783 if (isl_space_domain_is_wrapping(space))
4784 space = isl_space_domain_factor_domain(space);
4785 space2 = isl_space_copy(space);
4786 space2 = isl_space_from_domain(isl_space_domain(space));
4787 id = pet_expr_access_get_ref_id(expr);
4788 space2 = isl_space_set_tuple_id(space2, isl_dim_out, id);
4789 space = isl_space_range_product(space2, space);
4790 space = isl_space_uncurry(space);
4792 return isl_map_empty(space);
4793 error:
4794 isl_union_map_free(tagged);
4795 return NULL;
4798 /* Extract a gpu_stmt_access from "expr", append it to the list
4799 * that ends in *data->next_access and update the end of the list.
4800 * If the access expression performs a write, then it is considered
4801 * exact only if it appears in a single expression statement and
4802 * if its may access relation is equal to its must access relation.
4804 * The combined set of may accesses may be union if member accesses
4805 * are involved, but the entire set is derived from a single reference and
4806 * therefore from a single index expression. These accesses therefore
4807 * all map to the same outer array.
4809 static int extract_access(__isl_keep pet_expr *expr, void *user)
4811 struct ppcg_extract_access_data *data = user;
4812 isl_union_map *tagged;
4813 struct gpu_stmt_access *access;
4814 isl_ctx *ctx = pet_expr_get_ctx(expr);
4815 isl_multi_pw_aff *index;
4817 access = isl_alloc_type(ctx, struct gpu_stmt_access);
4818 assert(access);
4819 access->next = NULL;
4820 access->read = pet_expr_access_is_read(expr);
4821 access->write = pet_expr_access_is_write(expr);
4822 tagged = pet_expr_access_get_tagged_may_read(expr);
4823 tagged = isl_union_map_union(tagged,
4824 pet_expr_access_get_tagged_may_write(expr));
4825 tagged = isl_union_map_apply_range(tagged,
4826 isl_union_map_copy(data->any_to_outer));
4827 if (!access->write) {
4828 access->exact_write = 1;
4829 } else if (!data->single_expression) {
4830 access->exact_write = 0;
4831 } else {
4832 isl_union_map *must, *may;
4833 may = isl_union_map_copy(tagged);
4834 may = isl_union_map_domain_factor_domain(may);
4835 must = pet_expr_access_get_must_write(expr);
4836 access->exact_write = isl_union_map_is_equal(must, may);
4837 isl_union_map_free(must);
4838 isl_union_map_free(may);
4840 index = pet_expr_access_get_index(expr);
4841 access->n_index = isl_multi_pw_aff_dim(index, isl_dim_out);
4842 isl_multi_pw_aff_free(index);
4843 access->ref_id = pet_expr_access_get_ref_id(expr);
4844 access->tagged_access = extract_single_tagged_access(tagged, expr);
4845 access->access = isl_map_copy(access->tagged_access);
4846 access->access = isl_map_domain_factor_domain(access->access);
4848 *data->next_access = access;
4849 data->next_access = &(*data->next_access)->next;
4851 if (!access->access)
4852 return -1;
4854 return 0;
4857 /* Construct a linked list of gpu_stmt_access objects,
4858 * one for each access expression in the statement body.
4859 * "any_to_outer" maps all intermediate arrays to their outer arrays.
4861 static int pet_stmt_extract_accesses(struct gpu_stmt *stmt,
4862 __isl_keep isl_union_map *any_to_outer)
4864 struct ppcg_extract_access_data data;
4866 stmt->accesses = NULL;
4867 data.next_access = &stmt->accesses;
4868 data.single_expression =
4869 pet_tree_get_type(stmt->stmt->body) == pet_tree_expr;
4870 data.any_to_outer = any_to_outer;
4871 return pet_tree_foreach_access_expr(stmt->stmt->body,
4872 &extract_access, &data);
4875 /* Return an array of gpu_stmt representing the statements in "scop".
4877 static struct gpu_stmt *extract_stmts(isl_ctx *ctx, struct ppcg_scop *scop,
4878 __isl_keep isl_set *context, __isl_keep isl_union_map *any_to_outer)
4880 int i;
4881 struct gpu_stmt *stmts;
4883 stmts = isl_calloc_array(ctx, struct gpu_stmt, scop->pet->n_stmt);
4884 if (!stmts)
4885 return NULL;
4887 for (i = 0; i < scop->pet->n_stmt; ++i) {
4888 struct gpu_stmt *s = &stmts[i];
4890 s->id = isl_set_get_tuple_id(scop->pet->stmts[i]->domain);
4891 s->stmt = scop->pet->stmts[i];
4892 if (pet_stmt_extract_accesses(s, any_to_outer) < 0)
4893 return free_stmts(stmts, i + 1);
4896 return stmts;
4899 /* Callback for ppcg_print_guarded that calls the callback for generate_gpu.
4901 static __isl_give isl_printer *print_gpu(__isl_take isl_printer *p, void *user)
4903 struct gpu_gen *gen = user;
4905 return gen->print(p, gen->prog, gen->tree, &gen->types,
4906 gen->print_user);
4909 /* Generate CUDA code for "scop" and print it to "p".
4910 * After generating an AST for the transformed scop as explained below,
4911 * we call "gen->print" to print the AST in the desired output format
4912 * to "p".
4914 * If it turns out that it does not make sense to generate GPU code,
4915 * then we generate CPU code instead.
4917 * The GPU code is generated in a context where at least one
4918 * statement instance is executed. The corresponding guard (if any) is printed
4919 * around the entire generated GPU code, except for the declaration
4920 * of the arrays that are visible outside of the scop and that therefore
4921 * cannot be declared inside the body of any possible guard.
4923 * We first compute a schedule that respects the dependences
4924 * of the original program and select the outermost band
4925 * of tilable dimensions that has at least one parallel loop.
4926 * We then have three blocks of dimensions
4928 * H B G
4930 * The tilable band "B" is first tiled according to "tile" sizes, resulting
4931 * in
4933 * H T P G
4935 * For each iteration of the T loop and for each array, we compute
4936 * the array elements accessed by that iteration, construct a rectangular
4937 * box around it and shift it to the origin. The result is used
4938 * as shared memory for the array.
4940 * We then split off at most 2 parallel loops from the T loops and
4941 * at most 3 parallel loops from the P loops
4943 * H T1 T2 P1 P2 G
4945 * The T1/P1 loops are then tiled or "wrapped" over the blocks/threads,
4946 * according to "grid"/"block" sizes.
4948 * H T1T T1P T2 P1T P1P P2 G
4950 * Finally, the T1P and P1P iterators are equated to the block and
4951 * thread dimensions respectively and so are effectively removed.
4952 * The H loops are run on the host. The T1T, T2, P1T, P2 and G loops
4953 * are run on the GPU.
4955 * Code is generated in three stages. We first generate code for the
4956 * host (the H loops), with iterators h%d. Then, for each leaf node
4957 * of the resulting AST, we generate code for the shared loops (up to
4958 * and including T2), with iterators g%d and after equating the H loops
4959 * to h%d parameters and the T1P loops to the block dimensions.
4960 * Finally, we generate code for the remaining loops in a similar fashion.
4962 static __isl_give isl_printer *generate(__isl_take isl_printer *p,
4963 struct gpu_gen *gen, struct ppcg_scop *scop,
4964 struct ppcg_options *options)
4966 struct gpu_prog *prog;
4967 isl_ctx *ctx;
4968 isl_set *context, *guard;
4970 if (!scop)
4971 return isl_printer_free(p);
4973 ctx = isl_printer_get_ctx(p);
4974 prog = gpu_prog_alloc(ctx, scop);
4975 if (!prog)
4976 return isl_printer_free(p);
4978 context = isl_set_copy(prog->context);
4979 guard = isl_union_set_params(isl_union_set_copy(prog->scop->domain));
4980 prog->context = isl_set_intersect(prog->context, isl_set_copy(guard));
4982 gen->prog = prog;
4983 gen->any_parallelism = 0;
4984 compute_schedule(gen);
4986 if (!gen->any_parallelism) {
4987 isl_set_free(context);
4988 isl_set_free(guard);
4989 p = print_cpu(p, scop, options);
4990 } else {
4991 compute_copy_in_and_out(gen);
4992 gen->tree = generate_host_code(gen);
4993 p = ppcg_print_exposed_declarations(p, prog->scop);
4994 p = ppcg_print_guarded(p, guard, context, &print_gpu, gen);
4995 isl_ast_node_free(gen->tree);
4998 isl_union_map_free(gen->sched);
4999 isl_schedule_free(gen->host_schedule);
5001 gpu_prog_free(prog);
5003 return p;
5006 /* Wrapper around generate for use as a ppcg_transform callback.
5008 static __isl_give isl_printer *generate_wrap(__isl_take isl_printer *p,
5009 struct ppcg_scop *scop, void *user)
5011 struct gpu_gen *gen = user;
5013 return generate(p, gen, scop, gen->options);
5016 /* Transform the code in the file called "input" by replacing
5017 * all scops by corresponding GPU code and write the results to "out".
5019 int generate_gpu(isl_ctx *ctx, const char *input, FILE *out,
5020 struct ppcg_options *options,
5021 __isl_give isl_printer *(*print)(__isl_take isl_printer *p,
5022 struct gpu_prog *prog, __isl_keep isl_ast_node *tree,
5023 struct gpu_types *types, void *user), void *user)
5025 struct gpu_gen gen;
5026 int r;
5027 int i;
5029 gen.ctx = ctx;
5030 gen.sizes = extract_sizes_from_str(ctx, options->sizes);
5031 gen.options = options;
5032 gen.kernel_id = 0;
5033 gen.print = print;
5034 gen.print_user = user;
5035 gen.types.n = 0;
5036 gen.types.name = NULL;
5038 if (options->debug->dump_sizes) {
5039 isl_space *space = isl_space_params_alloc(ctx, 0);
5040 gen.used_sizes = isl_union_map_empty(space);
5043 r = ppcg_transform(ctx, input, out, options, &generate_wrap, &gen);
5045 if (options->debug->dump_sizes) {
5046 isl_union_map_dump(gen.used_sizes);
5047 isl_union_map_free(gen.used_sizes);
5050 isl_union_map_free(gen.sizes);
5051 for (i = 0; i < gen.types.n; ++i)
5052 free(gen.types.name[i]);
5053 free(gen.types.name);
5055 return r;
5058 /* Compute the set of inner array elements that may have their values
5059 * preserved by "prog". In particular, collect the array elements of
5060 * arrays that are not local to "prog" and remove those elements that
5061 * are definitely killed or definitely written by "prog".
5063 static __isl_give isl_union_set *compute_may_persist(struct gpu_prog *prog)
5065 int i;
5066 isl_union_set *may_persist, *killed;
5067 isl_union_map *must_kill;
5069 may_persist = isl_union_set_empty(isl_set_get_space(prog->context));
5070 for (i = 0; i < prog->n_array; ++i) {
5071 isl_set *extent;
5073 if (prog->array[i].local)
5074 continue;
5076 extent = isl_set_copy(prog->array[i].extent);
5077 may_persist = isl_union_set_add_set(may_persist, extent);
5080 may_persist = isl_union_set_intersect_params(may_persist,
5081 isl_set_copy(prog->context));
5082 may_persist = isl_union_set_apply(may_persist,
5083 isl_union_map_copy(prog->to_inner));
5084 must_kill = isl_union_map_copy(prog->tagged_must_kill);
5085 killed = isl_union_map_range(must_kill);
5086 must_kill = isl_union_map_copy(prog->must_write);
5087 killed = isl_union_set_union(killed, isl_union_map_range(must_kill));
5089 may_persist = isl_union_set_subtract(may_persist, killed);
5090 return may_persist;
5093 struct gpu_prog *gpu_prog_alloc(isl_ctx *ctx, struct ppcg_scop *scop)
5095 struct gpu_prog *prog;
5096 isl_space *space;
5097 isl_map *id;
5099 if (!scop)
5100 return NULL;
5102 prog = isl_calloc_type(ctx, struct gpu_prog);
5103 assert(prog);
5105 prog->ctx = ctx;
5106 prog->scop = scop;
5107 prog->context = isl_set_copy(scop->context);
5108 prog->n_stmts = scop->pet->n_stmt;
5109 prog->any_to_outer = pet_scop_compute_outer_to_any(scop->pet);
5110 prog->any_to_outer = isl_union_map_reverse(prog->any_to_outer);
5111 space = isl_union_map_get_space(prog->any_to_outer);
5112 space = isl_space_set_from_params(space);
5113 space = isl_space_add_dims(space, isl_dim_set, 1);
5114 space = isl_space_map_from_set(space);
5115 id = isl_map_identity(space);
5116 prog->any_to_outer = isl_union_map_add_map(prog->any_to_outer, id);
5117 prog->stmts = extract_stmts(ctx, scop,
5118 prog->context, prog->any_to_outer);
5119 prog->read = isl_union_map_copy(scop->reads);
5120 prog->may_write = isl_union_map_copy(scop->may_writes);
5121 prog->must_write = isl_union_map_copy(scop->must_writes);
5122 prog->tagged_must_kill = isl_union_map_copy(scop->tagged_must_kills);
5123 prog->to_inner = pet_scop_compute_outer_to_inner(scop->pet);
5124 prog->to_outer = isl_union_map_copy(prog->to_inner);
5125 prog->to_outer = isl_union_map_reverse(prog->to_outer);
5127 if (!prog->stmts)
5128 return gpu_prog_free(prog);
5130 if (collect_array_info(prog) < 0)
5131 return gpu_prog_free(prog);
5132 prog->may_persist = compute_may_persist(prog);
5134 return prog;
5137 void *gpu_prog_free(struct gpu_prog *prog)
5139 if (!prog)
5140 return NULL;
5141 free_array_info(prog);
5142 free_stmts(prog->stmts, prog->n_stmts);
5143 isl_union_map_free(prog->any_to_outer);
5144 isl_union_map_free(prog->to_outer);
5145 isl_union_map_free(prog->to_inner);
5146 isl_union_set_free(prog->copy_in);
5147 isl_union_set_free(prog->copy_out);
5148 isl_union_map_free(prog->read);
5149 isl_union_map_free(prog->may_write);
5150 isl_union_map_free(prog->must_write);
5151 isl_union_map_free(prog->tagged_must_kill);
5152 isl_union_map_free(prog->array_order);
5153 isl_union_set_free(prog->may_persist);
5154 isl_set_free(prog->context);
5155 free(prog);
5156 return NULL;