gpu: stop setting group_coscheduled AST build option on host code
[ppcg.git] / gpu_group.c
blob6285854d809fd20f79d15ec694c1c27f798f5883
1 #include <isl/ilp.h>
3 #include "gpu_array_tile.h"
4 #include "gpu_group.h"
5 #include "schedule.h"
7 /* Print the name of the local copy of a given group of array references.
8 */
9 __isl_give isl_printer *gpu_array_ref_group_print_name(
10 struct gpu_array_ref_group *group, __isl_take isl_printer *p)
12 int global = 0;
14 if (group->private_tile)
15 p = isl_printer_print_str(p, "private_");
16 else if (group->shared_tile)
17 p = isl_printer_print_str(p, "shared_");
18 else
19 global = 1;
20 p = isl_printer_print_str(p, group->array->name);
21 if (!global && group->local_array->n_group > 1) {
22 p = isl_printer_print_str(p, "_");
23 p = isl_printer_print_int(p, group->nr);
26 return p;
29 /* Return the union of all read (read = 1) and/or write (write = 1)
30 * access relations in the group.
32 __isl_give isl_union_map *gpu_array_ref_group_access_relation(
33 struct gpu_array_ref_group *group, int read, int write)
35 int i;
36 isl_union_map *access;
38 access = isl_union_map_empty(isl_map_get_space(group->access));
39 for (i = 0; i < group->n_ref; ++i) {
40 isl_map *map_i;
42 if (!((read && group->refs[i]->read) ||
43 (write && group->refs[i]->write)))
44 continue;
45 map_i = isl_map_copy(group->refs[i]->access);
46 access = isl_union_map_union(access,
47 isl_union_map_from_map(map_i));
50 return access;
53 /* Return the effective gpu_array_tile associated to "group" or
54 * NULL if there is no such gpu_array_tile.
55 * If we have computed both a private and a shared tile, then
56 * the private tile is used.
58 struct gpu_array_tile *gpu_array_ref_group_tile(
59 struct gpu_array_ref_group *group)
61 if (group->private_tile)
62 return group->private_tile;
63 if (group->shared_tile)
64 return group->shared_tile;
65 return NULL;
68 /* Does the tile associated to "group" require unrolling of the schedule
69 * dimensions mapped to threads?
70 * Note that this can only happen for private tiles.
72 int gpu_array_ref_group_requires_unroll(struct gpu_array_ref_group *group)
74 struct gpu_array_tile *tile;
76 tile = gpu_array_ref_group_tile(group);
77 if (!tile)
78 return 0;
79 return tile->requires_unroll;
82 /* Given a constraint
84 * a(p,i) + j = g f(e)
86 * or -a(p,i) - j = g f(e) if sign < 0,
87 * store a(p,i) in bound->shift and g (stride) in bound->stride.
88 * a(p,i) is assumed to be an expression in only the parameters
89 * and the input dimensions.
91 static void extract_stride(__isl_keep isl_constraint *c,
92 struct gpu_array_bound *bound, __isl_keep isl_val *stride, int sign)
94 int i;
95 isl_val *v;
96 isl_space *space;
97 unsigned nparam;
98 unsigned nvar;
99 isl_aff *aff;
101 isl_val_free(bound->stride);
102 bound->stride = isl_val_copy(stride);
104 space = isl_constraint_get_space(c);
105 space = isl_space_domain(space);
107 nparam = isl_space_dim(space, isl_dim_param);
108 nvar = isl_space_dim(space, isl_dim_set);
110 v = isl_constraint_get_constant_val(c);
111 if (sign < 0)
112 v = isl_val_neg(v);
113 aff = isl_aff_zero_on_domain(isl_local_space_from_space(space));
114 aff = isl_aff_set_constant_val(aff, v);
116 for (i = 0; i < nparam; ++i) {
117 if (!isl_constraint_involves_dims(c, isl_dim_param, i, 1))
118 continue;
119 v = isl_constraint_get_coefficient_val(c, isl_dim_param, i);
120 if (sign < 0)
121 v = isl_val_neg(v);
122 aff = isl_aff_add_coefficient_val(aff, isl_dim_param, i, v);
125 for (i = 0; i < nvar; ++i) {
126 if (!isl_constraint_involves_dims(c, isl_dim_in, i, 1))
127 continue;
128 v = isl_constraint_get_coefficient_val(c, isl_dim_in, i);
129 if (sign < 0)
130 v = isl_val_neg(v);
131 aff = isl_aff_add_coefficient_val(aff, isl_dim_in, i, v);
134 bound->shift = aff;
137 /* Given an equality constraint of a map with a single output dimension j,
138 * check if the constraint is of the form
140 * a(p,i) + j = g f(e)
142 * with a(p,i) an expression in the parameters and input dimensions
143 * and f(e) an expression in the existentially quantified variables.
144 * If so, and if g is larger than any such g from a previously considered
145 * constraint, then call extract_stride to record the stride information
146 * in bound.
148 static int check_stride_constraint(__isl_take isl_constraint *c, void *user)
150 int i;
151 isl_ctx *ctx;
152 isl_val *v;
153 unsigned n_div;
154 struct gpu_array_bound *bound = user;
156 ctx = isl_constraint_get_ctx(c);
157 n_div = isl_constraint_dim(c, isl_dim_div);
158 v = isl_constraint_get_coefficient_val(c, isl_dim_out, 0);
160 if (n_div && (isl_val_is_one(v) || isl_val_is_negone(v))) {
161 int s = isl_val_sgn(v);
162 isl_val *stride = isl_val_zero(ctx);
164 isl_val_free(v);
165 for (i = 0; i < n_div; ++i) {
166 v = isl_constraint_get_coefficient_val(c,
167 isl_dim_div, i);
168 stride = isl_val_gcd(stride, v);
170 if (!isl_val_is_zero(stride) &&
171 isl_val_gt(stride, bound->stride))
172 extract_stride(c, bound, stride, s);
174 isl_val_free(stride);
175 } else
176 isl_val_free(v);
178 isl_constraint_free(c);
179 return 0;
182 /* Given contraints on an array index i, check if we can find
183 * a shift a(p) and a stride g such that
185 * a(p) + i = 0 mod g
187 * If so, record the information in bound and apply the mapping
188 * i -> (i + a(p))/g to the array index in bounds and return
189 * the new constraints.
190 * If not, simply return the original constraints.
192 * If bounds is a subset of the space
194 * D -> i
196 * then the bound recorded in bound->shift is of the form
198 * D -> s(D)
200 * with s(D) equal to a(p) above.
201 * Next, we construct a mapping of the form
203 * [D -> i] -> [D -> (i + S(D))/g]
205 * This mapping is computed as follows.
206 * We first introduce "i" in the domain through precomposition
207 * with [D -> i] -> D obtaining
209 * [D -> i] -> s(D)
211 * Adding [D -> i] -> i produces
213 * [D -> i] -> i + s(D)
215 * and the domain product with [D -> i] -> D yields
217 * [D -> i] -> [D -> i + s(D)]
219 * Composition with [D -> i] -> [D -> i/g] gives the desired result.
221 static __isl_give isl_basic_map *check_stride(struct gpu_array_bound *bound,
222 __isl_take isl_basic_map *bounds)
224 isl_space *space;
225 isl_basic_map *hull;
226 isl_basic_map *shift, *id, *bmap, *scale;
227 isl_basic_set *bset;
228 isl_aff *aff;
230 bound->stride = NULL;
232 hull = isl_basic_map_affine_hull(isl_basic_map_copy(bounds));
234 isl_basic_map_foreach_constraint(hull, &check_stride_constraint, bound);
236 isl_basic_map_free(hull);
238 if (!bound->stride)
239 return bounds;
241 shift = isl_basic_map_from_aff(isl_aff_copy(bound->shift));
242 space = isl_basic_map_get_space(bounds);
243 bmap = isl_basic_map_domain_map(isl_basic_map_universe(space));
244 shift = isl_basic_map_apply_range(bmap, shift);
245 space = isl_basic_map_get_space(bounds);
246 id = isl_basic_map_range_map(isl_basic_map_universe(space));
247 shift = isl_basic_map_sum(id, shift);
248 space = isl_basic_map_get_space(bounds);
249 id = isl_basic_map_domain_map(isl_basic_map_universe(space));
250 shift = isl_basic_map_range_product(id, shift);
252 space = isl_space_domain(isl_basic_map_get_space(bounds));
253 id = isl_basic_map_identity(isl_space_map_from_set(space));
254 space = isl_space_range(isl_basic_map_get_space(bounds));
255 aff = isl_aff_zero_on_domain(isl_local_space_from_space(space));
256 aff = isl_aff_add_coefficient_si(aff, isl_dim_in, 0, 1);
257 aff = isl_aff_scale_down_val(aff, isl_val_copy(bound->stride));
258 scale = isl_basic_map_from_aff(aff);
259 scale = isl_basic_map_product(id, scale);
261 bmap = isl_basic_map_apply_range(shift, scale);
262 bset = isl_basic_set_apply(isl_basic_map_wrap(bounds), bmap);
263 bounds = isl_basic_set_unwrap(bset);
265 return bounds;
268 /* Data used in compute_array_dim_size and compute_size_in_direction.
270 * pos is the position of the variable representing the array index,
271 * i.e., the variable for which want to compute the size. This variable
272 * is also the last variable in the set.
274 struct gpu_size_info {
275 isl_basic_set *bset;
276 struct gpu_array_bound *bound;
277 int pos;
280 /* Given a constraint from the basic set describing the bounds on
281 * an array index, check if it is a lower bound, say m i >= b(x), and,
282 * if so, check whether the expression "i - ceil(b(x)/m) + 1" has a constant
283 * upper bound. If so, and if this bound is smaller than any bound
284 * derived from earlier constraints, set the size to this bound on
285 * the expression and the lower bound to ceil(b(x)/m).
287 static int compute_size_in_direction(__isl_take isl_constraint *c, void *user)
289 struct gpu_size_info *size = user;
290 unsigned nparam;
291 unsigned n_div;
292 isl_val *v;
293 isl_aff *aff;
294 isl_aff *lb;
296 nparam = isl_basic_set_dim(size->bset, isl_dim_param);
297 n_div = isl_constraint_dim(c, isl_dim_div);
299 if (isl_constraint_involves_dims(c, isl_dim_div, 0, n_div) ||
300 !isl_constraint_is_lower_bound(c, isl_dim_set, size->pos)) {
301 isl_constraint_free(c);
302 return 0;
305 aff = isl_constraint_get_bound(c, isl_dim_set, size->pos);
306 aff = isl_aff_ceil(aff);
308 lb = isl_aff_copy(aff);
310 aff = isl_aff_neg(aff);
311 aff = isl_aff_add_coefficient_si(aff, isl_dim_in, size->pos, 1);
313 v = isl_basic_set_max_val(size->bset, aff);
314 isl_aff_free(aff);
316 if (isl_val_is_int(v)) {
317 v = isl_val_add_ui(v, 1);
318 if (!size->bound->size || isl_val_lt(v, size->bound->size)) {
319 isl_val_free(size->bound->size);
320 size->bound->size = isl_val_copy(v);
321 lb = isl_aff_drop_dims(lb, isl_dim_in, size->pos, 1);
322 isl_aff_free(size->bound->lb);
323 size->bound->lb = isl_aff_copy(lb);
326 isl_val_free(v);
327 isl_aff_free(lb);
329 isl_constraint_free(c);
331 return 0;
334 /* Given a basic map "bounds" that maps parameters and input dimensions
335 * to a single output dimension, look for an expression in the parameters
336 * and input dimensions such that the range of the output dimension shifted
337 * by this expression is a constant.
339 * In particular, we currently only consider lower bounds on the output
340 * dimension as candidate expressions.
342 static int compute_array_dim_size(struct gpu_array_bound *bound,
343 __isl_take isl_basic_map *bounds)
345 struct gpu_size_info size;
347 bounds = isl_basic_map_detect_equalities(bounds);
348 bounds = check_stride(bound, bounds);
350 bound->size = NULL;
351 bound->lb = NULL;
353 size.bound = bound;
354 size.pos = isl_basic_map_dim(bounds, isl_dim_in);
355 size.bset = isl_basic_map_wrap(bounds);
356 size.bset = isl_basic_set_flatten(size.bset);
357 size.bset = isl_set_simple_hull(isl_basic_set_compute_divs(size.bset));
358 isl_basic_set_foreach_constraint(size.bset, &compute_size_in_direction,
359 &size);
360 isl_basic_set_free(size.bset);
362 return bound->size ? 0 : -1;
365 /* Check if we can find a memory tile for the given array
366 * based on the given accesses, and if so, put the results in "tile".
368 * We project the accesses on each index in turn and look for a parametric
369 * offset such that the size is constant.
371 static int can_tile(__isl_keep isl_map *access, struct gpu_array_tile *tile)
373 int i;
375 for (i = 0; i < tile->n; ++i) {
376 isl_map *access_i;
377 isl_basic_map *hull;
379 access_i = isl_map_copy(access);
380 access_i = isl_map_project_out(access_i, isl_dim_out, 0, i);
381 access_i = isl_map_project_out(access_i, isl_dim_out,
382 1, tile->n - (i + 1));
383 access_i = isl_map_compute_divs(access_i);
384 hull = isl_map_simple_hull(access_i);
385 if (compute_array_dim_size(&tile->bound[i], hull) < 0)
386 return 0;
389 return 1;
392 /* Internal data structure for gpu_group_references.
394 * scop represents the input scop.
395 * kernel_depth is the schedule depth where the kernel launch will
396 * be introduced, i.e., it is the depth of the band that is mapped
397 * to blocks.
398 * thread_depth is the schedule depth where the thread mark is located,
399 * i.e., it is the depth of the band that is mapped to threads and also
400 * the schedule depth at which the copying to/from shared/private memory
401 * is computed. The copy operation may then later be hoisted to
402 * a higher level.
403 * n_thread is the number of schedule dimensions in the band that
404 * is mapped to threads.
405 * privatization lives in the range of thread_sched (i.e., it is
406 * of dimension thread_depth + n_thread) and encodes the mapping
407 * to thread identifiers (as parameters).
408 * shared_sched contains the first thread_depth dimensions of the
409 * kernel schedule.
410 * thread_sched contains the first (thread_depth + n_thread) dimensions
411 * of the kernel schedule.
412 * full_sched is a union_map representation of the entire kernel schedule.
414 struct gpu_group_data {
415 struct ppcg_scop *scop;
416 int kernel_depth;
417 int thread_depth;
418 int n_thread;
419 isl_set *privatization;
420 isl_union_map *shared_sched;
421 isl_union_map *thread_sched;
422 isl_union_map *full_sched;
425 /* Construct a map from domain_dim to domain_dim that increments
426 * the dimension at position "pos" and leaves all other dimensions
427 * constant.
429 static __isl_give isl_map *next(__isl_take isl_space *domain_dim, int pos)
431 int i;
432 int len = isl_space_dim(domain_dim, isl_dim_set);
433 isl_space *dim;
434 isl_basic_map *next;
435 isl_local_space *ls;
437 dim = isl_space_map_from_set(domain_dim);
438 next = isl_basic_map_universe(isl_space_copy(dim));
439 ls = isl_local_space_from_space(dim);
441 for (i = 0; i < len; ++i) {
442 isl_constraint *c;
444 c = isl_equality_alloc(isl_local_space_copy(ls));
445 c = isl_constraint_set_coefficient_si(c, isl_dim_in, i, 1);
446 c = isl_constraint_set_coefficient_si(c, isl_dim_out, i, -1);
447 if (i == pos)
448 c = isl_constraint_set_constant_si(c, 1);
449 next = isl_basic_map_add_constraint(next, c);
452 isl_local_space_free(ls);
454 return isl_map_from_basic_map(next);
457 /* Check if the given access is coalesced.
458 * That is, check whether incrementing the dimension that will get
459 * wrapped over the last thread index results in incrementing
460 * the last array index.
462 * This function is only called for access relations without reuse and
463 * kernels with at least one thread identifier.
465 static int access_is_coalesced(struct gpu_group_data *data,
466 __isl_keep isl_union_map *access)
468 isl_space *dim;
469 isl_map *access_map;
470 isl_map *next_thread_x;
471 isl_map *next_element;
472 isl_map *map;
473 int coalesced;
475 access = isl_union_map_copy(access);
476 access = isl_union_map_apply_domain(access,
477 isl_union_map_copy(data->full_sched));
478 access_map = isl_map_from_union_map(access);
480 dim = isl_map_get_space(access_map);
481 dim = isl_space_domain(dim);
482 next_thread_x = next(dim, data->thread_depth + data->n_thread - 1);
484 dim = isl_map_get_space(access_map);
485 dim = isl_space_range(dim);
486 next_element = next(dim, isl_space_dim(dim, isl_dim_set) - 1);
488 map = isl_map_apply_domain(next_thread_x, isl_map_copy(access_map));
489 map = isl_map_apply_range(map, access_map);
491 coalesced = isl_map_is_subset(map, next_element);
493 isl_map_free(next_element);
494 isl_map_free(map);
496 return coalesced;
499 /* Given an access relation in terms of at least data->thread_depth initial
500 * dimensions of the computed schedule, check if it is bijective for
501 * fixed values of the first data->thread_depth dimensions.
502 * We perform this check by equating these dimensions to parameters.
504 static int access_is_bijective(struct gpu_group_data *data,
505 __isl_keep isl_map *access)
507 int res;
508 int dim;
509 isl_set *par;
510 isl_space *space;
511 isl_id_list *ids;
513 access = isl_map_copy(access);
514 space = isl_space_params(isl_map_get_space(access));
515 ids = ppcg_scop_generate_names(data->scop, data->thread_depth, "s");
516 dim = isl_map_dim(access, isl_dim_in);
517 par = parametrization(space, dim, 0, ids);
518 isl_id_list_free(ids);
519 access = isl_map_intersect_domain(access, par);
520 res = isl_map_is_bijective(access);
521 isl_map_free(access);
523 return res;
526 /* Compute the number of outer schedule tile dimensions that affect
527 * the offset of "tile".
528 * If there is no such dimension, then return the index
529 * of the first kernel dimension, i.e., data->kernel_depth.
531 static int compute_tile_depth(struct gpu_group_data *data,
532 struct gpu_array_tile *tile)
534 int i, j;
536 for (j = data->thread_depth - 1; j >= data->kernel_depth; --j) {
537 for (i = 0; i < tile->n; ++i) {
538 isl_aff *lb;
539 isl_aff *shift;
541 lb = tile->bound[i].lb;
542 if (isl_aff_involves_dims(lb, isl_dim_in, j, 1))
543 break;
545 shift = tile->bound[i].shift;
546 if (!shift)
547 continue;
548 if (isl_aff_involves_dims(shift, isl_dim_in, j, 1))
549 break;
551 if (i < tile->n)
552 break;
555 return ++j;
558 /* Determine the number of schedule dimensions that affect the offset of the
559 * shared or private tile and store the result in group->depth, with
560 * a lower bound of data->kernel_depth.
561 * If there is no tile defined on the array reference group,
562 * then set group->depth to data->thread_depth.
564 static void set_depth(struct gpu_group_data *data,
565 struct gpu_array_ref_group *group)
567 struct gpu_array_tile *tile;
569 group->depth = data->thread_depth;
571 tile = gpu_array_ref_group_tile(group);
572 if (!tile)
573 return;
575 group->depth = compute_tile_depth(data, tile);
578 /* Fill up the groups array with singleton groups, i.e., one group
579 * per reference, initializing the array, access, write, n_ref and refs fields.
580 * In particular the access field is initialized to the scheduled
581 * access relation of the array reference.
583 * Return the number of elements initialized, i.e., the number of
584 * active references in the current kernel.
586 static int populate_array_references(struct gpu_local_array_info *local,
587 struct gpu_array_ref_group **groups, struct gpu_group_data *data)
589 int i;
590 int n;
591 isl_ctx *ctx = isl_union_map_get_ctx(data->shared_sched);
593 n = 0;
594 for (i = 0; i < local->array->n_ref; ++i) {
595 isl_union_map *umap;
596 isl_map *map;
597 struct gpu_array_ref_group *group;
598 struct gpu_stmt_access *access = local->array->refs[i];
600 map = isl_map_copy(access->access);
601 umap = isl_union_map_from_map(map);
602 umap = isl_union_map_apply_domain(umap,
603 isl_union_map_copy(data->shared_sched));
605 if (isl_union_map_is_empty(umap)) {
606 isl_union_map_free(umap);
607 continue;
610 map = isl_map_from_union_map(umap);
611 map = isl_map_detect_equalities(map);
613 group = isl_calloc_type(ctx, struct gpu_array_ref_group);
614 if (!group)
615 return -1;
616 group->local_array = local;
617 group->array = local->array;
618 group->access = map;
619 group->write = access->write;
620 group->exact_write = access->exact_write;
621 group->slice = access->n_index < local->array->n_index;
622 group->refs = &local->array->refs[i];
623 group->n_ref = 1;
625 groups[n++] = group;
628 return n;
631 /* If group->n_ref == 1, then group->refs was set by
632 * populate_array_references to point directly into
633 * group->array->refs and should not be freed.
634 * If group->n_ref > 1, then group->refs was set by join_groups
635 * to point to a newly allocated array.
637 struct gpu_array_ref_group *gpu_array_ref_group_free(
638 struct gpu_array_ref_group *group)
640 if (!group)
641 return NULL;
642 gpu_array_tile_free(group->shared_tile);
643 gpu_array_tile_free(group->private_tile);
644 isl_map_free(group->access);
645 if (group->n_ref > 1)
646 free(group->refs);
647 free(group);
648 return NULL;
651 /* Given a map where the input dimensions represent the tile loops,
652 * eliminate the innermost of those that have a fixed value
653 * until we reach one that does not (obviously) have a fixed value.
655 static __isl_give isl_map *eliminate_fixed_inner_loops(
656 __isl_take isl_map *access)
658 int i, n;
660 n = isl_map_dim(access, isl_dim_in);
662 for (i = n - 1; i >= 0; --i) {
663 if (!map_plain_is_fixed(access, isl_dim_in, i))
664 break;
665 access = isl_map_eliminate(access, isl_dim_in, i, 1);
667 return access;
670 /* Check if the access relations of group1 and group2 overlap within
671 * the innermost loop. In particular, ignore any inner dimension
672 * with a fixed value.
673 * The copying to and from shared memory will be performed within
674 * the innermost actual loop so we are only allowed to consider
675 * the dimensions up to that innermost loop while checking whether
676 * two access relations overlap.
678 static int accesses_overlap(struct gpu_array_ref_group *group1,
679 struct gpu_array_ref_group *group2)
681 int empty;
682 isl_map *access1, *access2;
684 access1 = isl_map_copy(group1->access);
685 access1 = eliminate_fixed_inner_loops(access1);
686 access2 = isl_map_copy(group2->access);
687 access2 = eliminate_fixed_inner_loops(access2);
688 access1 = isl_map_intersect(access1, access2);
689 empty = isl_map_is_empty(access1);
690 isl_map_free(access1);
692 return !empty;
695 /* Combine the given two groups into a single group, containing
696 * the references of both groups.
698 static struct gpu_array_ref_group *join_groups(
699 struct gpu_array_ref_group *group1,
700 struct gpu_array_ref_group *group2)
702 int i;
703 isl_ctx *ctx;
704 struct gpu_array_ref_group *group;
706 ctx = isl_map_get_ctx(group1->access);
707 group = isl_calloc_type(ctx, struct gpu_array_ref_group);
708 if (!group)
709 return NULL;
710 group->local_array = group1->local_array;
711 group->array = group1->array;
712 group->access = isl_map_union(isl_map_copy(group1->access),
713 isl_map_copy(group2->access));
714 group->write = group1->write || group2->write;
715 group->exact_write = group1->exact_write && group2->exact_write;
716 group->slice = group1->slice || group2->slice;
717 group->n_ref = group1->n_ref + group2->n_ref;
718 group->refs = isl_alloc_array(ctx, struct gpu_stmt_access *,
719 group->n_ref);
720 if (!group->refs)
721 return gpu_array_ref_group_free(group);
722 for (i = 0; i < group1->n_ref; ++i)
723 group->refs[i] = group1->refs[i];
724 for (i = 0; i < group2->n_ref; ++i)
725 group->refs[group1->n_ref + i] = group2->refs[i];
727 return group;
730 /* Combine the given two groups into a single group and free
731 * the original two groups.
733 static struct gpu_array_ref_group *join_groups_and_free(
734 struct gpu_array_ref_group *group1,
735 struct gpu_array_ref_group *group2)
737 struct gpu_array_ref_group *group;
739 group = join_groups(group1, group2);
740 gpu_array_ref_group_free(group1);
741 gpu_array_ref_group_free(group2);
742 return group;
745 /* Report that the array reference group with the given access relation
746 * is not mapped to shared memory in the given kernel because
747 * it does not exhibit any reuse and is considered to be coalesced.
749 static void report_no_reuse_and_coalesced(struct ppcg_kernel *kernel,
750 __isl_keep isl_union_map *access)
752 isl_ctx *ctx;
753 isl_printer *p;
755 ctx = isl_union_map_get_ctx(access);
756 p = isl_printer_to_file(ctx, stdout);
757 p = isl_printer_print_str(p, "Array reference group ");
758 p = isl_printer_print_union_map(p, access);
759 p = isl_printer_print_str(p,
760 " not considered for mapping to shared memory in kernel");
761 p = isl_printer_print_int(p, kernel->id);
762 p = isl_printer_print_str(p,
763 " because it exhibits no reuse and is considered to be coalesced");
764 p = isl_printer_end_line(p);
765 isl_printer_free(p);
768 /* Given an access relation in terms of the data->thread_depth initial
769 * dimensions of the computed schedule and the thread identifiers
770 * (as parameters), check if the use of the corresponding private tile
771 * requires unrolling.
773 * If we are creating a private tile because we are forced to,
774 * then no unrolling is required.
775 * Otherwise we check if "access" is bijective and unrolling
776 * is required if it is not. Note that the access relation
777 * has already been determined to be bijective before the introduction
778 * of the thread identifiers and the removal of the schedule dimensions
779 * that are mapped to these threads. If the access relation is no longer
780 * bijective, then this means that more than one value of one of those
781 * schedule dimensions is mapped to the same thread and therefore
782 * unrolling is required.
784 static int check_requires_unroll(struct gpu_group_data *data,
785 __isl_keep isl_map *access, int force_private)
787 int bijective;
789 if (force_private)
790 return 0;
791 bijective = access_is_bijective(data, access);
792 if (bijective < 0)
793 return -1;
794 return !bijective;
797 /* Compute the private and/or shared memory tiles for the array
798 * reference group "group" of array "array".
799 * Return 0 on success and -1 on error.
801 * If the array is a read-only scalar or if the user requested
802 * not to use shared or private memory, then we do not need to do anything.
804 * If any reference in the reference group accesses more than one element,
805 * then we would have to make sure that the layout in shared memory
806 * is the same as that in global memory. Since we do not handle this yet
807 * (and it may not even be possible), we refuse to map to private or
808 * shared memory in such cases.
810 * If the array group involves any may writes (that are not must writes),
811 * then we would have to make sure that we load the data into shared/private
812 * memory first in case the data is not written by the kernel
813 * (but still written back out to global memory).
814 * Since we don't have any such mechanism at the moment, we don't
815 * compute shared/private tiles for groups involving may writes.
817 * We only try to compute a shared memory tile if there is any reuse
818 * or if the access is not coalesced.
820 * For computing a private memory tile, we also require that there is
821 * some reuse. Moreover, we require that the access is private
822 * to the thread. That is, we check that any given array element
823 * is only accessed by a single thread.
824 * We compute an access relation that maps the outer
825 * data->thread_depth + data->n_thread schedule dimensions.
826 * The latter data->n_thread will be mapped to thread identifiers.
827 * We actually check that those iterators that will be wrapped
828 * partition the array space. This check is stricter than necessary
829 * since several iterations may be mapped onto the same thread
830 * and then they could be allowed to access the same memory elements,
831 * but our check does not allow this situation.
833 * We also check that the index expression only depends on parallel
834 * loops. That way, we can move those loops innermost and unroll them.
835 * Again, we use a test that is stricter than necessary.
836 * We actually check whether the index expression only depends
837 * on the iterators that are wrapped over the threads.
838 * These are necessarily parallel, but there may be more parallel loops.
840 * Combining the injectivity of the first test with the single-valuedness
841 * of the second test, we simply test for bijectivity.
843 * If the use of the private tile requires unrolling, but some
844 * of the other arrays are forcibly mapped to private memory,
845 * then we do not allow the use of this private tile since
846 * we cannot move the schedule dimensions that need to be unrolled down
847 * without performing some kind of expansion on those arrays
848 * that are forcibly mapped to private memory.
850 * If the array is marked force_private, then we bypass all checks
851 * and assume we can (and should) use registers.
853 * If it turns out we can (or have to) use registers, we compute
854 * the private memory tile size using can_tile, after introducing a dependence
855 * on the thread indices.
857 static int compute_group_bounds_core(struct ppcg_kernel *kernel,
858 struct gpu_array_ref_group *group, struct gpu_group_data *data)
860 isl_ctx *ctx = isl_space_get_ctx(group->array->space);
861 isl_union_map *access;
862 int n_index = group->array->n_index;
863 int no_reuse, coalesced;
864 isl_map *acc;
865 int force_private = group->local_array->force_private;
866 int use_shared = kernel->options->use_shared_memory &&
867 data->n_thread > 0;
868 int use_private = force_private || kernel->options->use_private_memory;
869 int r = 0;
870 int requires_unroll;
872 if (!use_shared && !use_private)
873 return 0;
874 if (gpu_array_is_read_only_scalar(group->array))
875 return 0;
876 if (!force_private && !group->exact_write)
877 return 0;
878 if (group->slice)
879 return 0;
881 access = gpu_array_ref_group_access_relation(group, 1, 1);
882 no_reuse = isl_union_map_is_injective(access);
883 if (no_reuse < 0)
884 r = -1;
885 if (use_shared && no_reuse)
886 coalesced = access_is_coalesced(data, access);
888 if (r >= 0 && kernel->options->debug->verbose &&
889 use_shared && no_reuse && coalesced)
890 report_no_reuse_and_coalesced(kernel, access);
892 if (use_shared && (!no_reuse || !coalesced)) {
893 group->shared_tile = gpu_array_tile_create(ctx,
894 group->array->n_index);
895 if (!group->shared_tile)
896 r = -1;
897 else if (!can_tile(group->access, group->shared_tile))
898 group->shared_tile =
899 gpu_array_tile_free(group->shared_tile);
902 if (r < 0 || (!force_private && (!use_private || no_reuse))) {
903 isl_union_map_free(access);
904 return r;
907 access = isl_union_map_apply_domain(access,
908 isl_union_map_copy(data->thread_sched));
910 acc = isl_map_from_union_map(access);
912 if (!force_private && !access_is_bijective(data, acc)) {
913 isl_map_free(acc);
914 return 0;
917 acc = isl_map_intersect_domain(acc, isl_set_copy(data->privatization));
918 acc = isl_map_project_out(acc, isl_dim_in, data->thread_depth,
919 data->n_thread);
920 requires_unroll = check_requires_unroll(data, acc, force_private);
921 if (requires_unroll < 0 ||
922 (requires_unroll && kernel->any_force_private)) {
923 isl_map_free(acc);
924 return requires_unroll < 0 ? -1 : 0;
927 group->private_tile = gpu_array_tile_create(ctx, n_index);
928 if (!group->private_tile) {
929 isl_map_free(acc);
930 return -1;
932 group->private_tile->requires_unroll = requires_unroll;
933 if (!can_tile(acc, group->private_tile))
934 group->private_tile = gpu_array_tile_free(group->private_tile);
936 isl_map_free(acc);
938 if (force_private && !group->private_tile)
939 isl_die(ctx, isl_error_internal,
940 "unable to map array reference group to registers",
941 return -1);
943 return 0;
946 /* Compute the private and/or shared memory tiles for the array
947 * reference group "group" of array "array" and set the tile depth.
948 * Return 0 on success and -1 on error.
950 static int compute_group_bounds(struct ppcg_kernel *kernel,
951 struct gpu_array_ref_group *group, struct gpu_group_data *data)
953 if (!group)
954 return -1;
955 if (compute_group_bounds_core(kernel, group, data) < 0)
956 return -1;
957 set_depth(data, group);
959 return 0;
962 /* If two groups have overlapping access relations (as determined by
963 * the "overlap" function) and if one of them involves a write,
964 * then merge the two groups into one.
965 * If "compute_bounds" is set, then call compute_group_bounds
966 * on the merged groups.
968 * Return the updated number of groups.
969 * Return -1 on error.
971 static int group_writes(struct ppcg_kernel *kernel,
972 int n, struct gpu_array_ref_group **groups,
973 int (*overlap)(struct gpu_array_ref_group *group1,
974 struct gpu_array_ref_group *group2), int compute_bounds,
975 struct gpu_group_data *data)
977 int i, j;
979 for (i = 0; i < n; ++i) {
980 for (j = n - 1; j > i; --j) {
981 if (!groups[i]->write && !groups[j]->write)
982 continue;
984 if (!overlap(groups[i], groups[j]))
985 continue;
987 groups[i] = join_groups_and_free(groups[i], groups[j]);
988 if (j != n - 1)
989 groups[j] = groups[n - 1];
990 groups[n - 1] = NULL;
991 n--;
993 if (!groups[i])
994 return -1;
995 if (compute_bounds &&
996 compute_group_bounds(kernel, groups[i], data) < 0)
997 return -1;
1001 return n;
1004 /* If two groups have overlapping access relations (within the innermost
1005 * loop) and if one of them involves a write, then merge the two groups
1006 * into one.
1008 * Return the updated number of groups.
1010 static int group_overlapping_writes(struct ppcg_kernel *kernel,
1011 int n, struct gpu_array_ref_group **groups,
1012 struct gpu_group_data *data)
1014 return group_writes(kernel, n, groups, &accesses_overlap, 0, data);
1017 /* Check if the access relations of group1 and group2 overlap within
1018 * the outermost min(group1->depth, group2->depth) loops.
1020 static int depth_accesses_overlap(struct gpu_array_ref_group *group1,
1021 struct gpu_array_ref_group *group2)
1023 int depth;
1024 int dim;
1025 int empty;
1026 isl_map *map_i, *map_j, *map;
1028 depth = group1->depth;
1029 if (group2->depth < depth)
1030 depth = group2->depth;
1031 map_i = isl_map_copy(group1->access);
1032 dim = isl_map_dim(map_i, isl_dim_in);
1033 map_i = isl_map_eliminate(map_i, isl_dim_in, depth, dim - depth);
1034 map_j = isl_map_copy(group2->access);
1035 map_j = isl_map_eliminate(map_j, isl_dim_in, depth, dim - depth);
1036 map = isl_map_intersect(map_i, map_j);
1037 empty = isl_map_is_empty(map);
1038 isl_map_free(map);
1040 return !empty;
1043 /* If two groups have overlapping access relations (within the outer
1044 * depth loops) and if one of them involves a write,
1045 * then merge the two groups into one.
1047 * Return the updated number of groups.
1049 static int group_depth_overlapping_writes(struct ppcg_kernel *kernel,
1050 int n, struct gpu_array_ref_group **groups, struct gpu_group_data *data)
1052 return group_writes(kernel, n, groups, &depth_accesses_overlap, 1,
1053 data);
1056 /* Is the size of the tile specified by "tile" smaller than the sum of
1057 * the sizes of the tiles specified by "tile1" and "tile2"?
1059 static int smaller_tile(struct gpu_array_tile *tile,
1060 struct gpu_array_tile *tile1, struct gpu_array_tile *tile2)
1062 int smaller;
1063 isl_val *size, *size1, *size2;
1065 size = gpu_array_tile_size(tile);
1066 size1 = gpu_array_tile_size(tile1);
1067 size2 = gpu_array_tile_size(tile2);
1069 size = isl_val_sub(size, size1);
1070 size = isl_val_sub(size, size2);
1071 smaller = isl_val_is_neg(size);
1073 isl_val_free(size);
1075 return smaller;
1078 /* Given an initial grouping of array references and shared memory tiles
1079 * for each group that allows for a shared memory tile, merge two groups
1080 * if both have a shared memory tile, the merged group also has
1081 * a shared memory tile and the size of the tile for the merge group
1082 * is smaller than the sum of the tile sizes of the individual groups.
1084 * If merging two groups decreases the depth of the tile of
1085 * one or both of the two groups, then we need to check for overlapping
1086 * writes again.
1088 * Return the number of groups after merging.
1089 * Return -1 on error.
1091 static int group_common_shared_memory_tile(struct ppcg_kernel *kernel,
1092 struct gpu_array_info *array, int n,
1093 struct gpu_array_ref_group **groups, struct gpu_group_data *data)
1095 int i, j;
1096 int recompute_overlap = 0;
1097 isl_ctx *ctx = isl_space_get_ctx(array->space);
1099 for (i = 0; i < n; ++i) {
1100 if (!groups[i]->shared_tile)
1101 continue;
1102 for (j = n - 1; j > i; --j) {
1103 isl_map *map;
1104 int empty;
1105 struct gpu_array_ref_group *group;
1107 if (!groups[j]->shared_tile)
1108 continue;
1110 map = isl_map_intersect(isl_map_copy(groups[i]->access),
1111 isl_map_copy(groups[j]->access));
1112 empty = isl_map_is_empty(map);
1113 isl_map_free(map);
1115 if (empty)
1116 continue;
1118 group = join_groups(groups[i], groups[j]);
1119 if (compute_group_bounds(kernel, group, data) < 0) {
1120 gpu_array_ref_group_free(group);
1121 return -1;
1123 if (!group->shared_tile ||
1124 !smaller_tile(group->shared_tile,
1125 groups[i]->shared_tile,
1126 groups[j]->shared_tile)) {
1127 gpu_array_ref_group_free(group);
1128 continue;
1131 if (group->depth < groups[i]->depth ||
1132 group->depth < groups[j]->depth)
1133 recompute_overlap = 1;
1134 gpu_array_ref_group_free(groups[i]);
1135 gpu_array_ref_group_free(groups[j]);
1136 groups[i] = group;
1137 if (j != n - 1)
1138 groups[j] = groups[n - 1];
1139 n--;
1143 if (recompute_overlap)
1144 n = group_depth_overlapping_writes(kernel, n, groups, data);
1145 return n;
1148 /* Set array->n_group and array->groups to n and groups.
1150 * Additionally, set the "nr" field of each group.
1152 static void set_array_groups(struct gpu_local_array_info *array,
1153 int n, struct gpu_array_ref_group **groups)
1155 int i, j;
1157 array->n_group = n;
1158 array->groups = groups;
1160 for (i = 0; i < n; ++i)
1161 groups[i]->nr = i;
1164 /* Group array references that should be considered together when
1165 * deciding whether to access them from private, shared or global memory.
1166 * Return -1 on error.
1168 * In particular, if two array references overlap and if one of them
1169 * is a write, then the two references are grouped together.
1170 * We first perform an initial grouping based only on the access relation.
1171 * After computing shared and private memory tiles, we check for
1172 * overlapping writes again, but this time taking into account
1173 * the depth of the effective tile.
1175 * Furthermore, if two groups admit a shared memory tile and if the
1176 * combination of the two also admits a shared memory tile, we merge
1177 * the two groups.
1179 * If the array contains structures, then there is no need to compute
1180 * reference groups since we do not map such arrays to private or shared
1181 * memory.
1183 static int group_array_references(struct ppcg_kernel *kernel,
1184 struct gpu_local_array_info *local, struct gpu_group_data *data)
1186 int i;
1187 int n;
1188 isl_ctx *ctx = isl_union_map_get_ctx(data->shared_sched);
1189 struct gpu_array_ref_group **groups;
1191 if (local->array->has_compound_element)
1192 return 0;
1194 groups = isl_calloc_array(ctx, struct gpu_array_ref_group *,
1195 local->array->n_ref);
1196 if (!groups)
1197 return -1;
1199 n = populate_array_references(local, groups, data);
1201 n = group_overlapping_writes(kernel, n, groups, data);
1203 for (i = 0; i < n; ++i)
1204 if (compute_group_bounds(kernel, groups[i], data) < 0)
1205 n = -1;
1207 n = group_depth_overlapping_writes(kernel, n, groups, data);
1209 n = group_common_shared_memory_tile(kernel, local->array,
1210 n, groups, data);
1212 set_array_groups(local, n, groups);
1214 if (n >= 0)
1215 return 0;
1217 for (i = 0; i < local->array->n_ref; ++i)
1218 gpu_array_ref_group_free(groups[i]);
1219 return -1;
1222 /* For each scalar in the input program, check if there are any
1223 * order dependences active inside the current kernel, within
1224 * the same iteration of "host_schedule".
1225 * If so, mark the scalar as force_private so that it will be
1226 * mapped to a register.
1228 static void check_scalar_live_ranges_in_host(struct ppcg_kernel *kernel,
1229 __isl_take isl_union_map *host_schedule)
1231 int i;
1232 isl_union_map *sched;
1233 isl_union_set *domain;
1234 isl_union_map *same_host_iteration;
1236 kernel->any_force_private = 0;
1238 sched = isl_union_map_universe(isl_union_map_copy(host_schedule));
1239 domain = isl_union_map_domain(sched);
1241 same_host_iteration = isl_union_map_apply_range(host_schedule,
1242 isl_union_map_reverse(isl_union_map_copy(host_schedule)));
1244 for (i = 0; i < kernel->n_array; ++i) {
1245 struct gpu_local_array_info *local = &kernel->array[i];
1246 isl_union_map *order;
1248 local->force_private = 0;
1249 if (local->array->n_index != 0)
1250 continue;
1251 order = isl_union_map_copy(local->array->dep_order);
1252 order = isl_union_map_intersect_domain(order,
1253 isl_union_set_copy(domain));
1254 order = isl_union_map_intersect_range(order,
1255 isl_union_set_copy(domain));
1256 order = isl_union_map_intersect(order,
1257 isl_union_map_copy(same_host_iteration));
1258 if (!isl_union_map_is_empty(order)) {
1259 local->force_private = 1;
1260 kernel->any_force_private = 1;
1262 isl_union_map_free(order);
1265 isl_union_map_free(same_host_iteration);
1266 isl_union_set_free(domain);
1269 /* For each scalar in the input program, check if there are any
1270 * order dependences active inside the current kernel, within
1271 * the same iteration of the host schedule.
1272 * If so, mark the scalar as force_private so that it will be
1273 * mapped to a register.
1275 static void check_scalar_live_ranges(struct gpu_gen *gen)
1277 isl_map *proj;
1278 isl_union_map *sched;
1280 if (!gen->options->live_range_reordering)
1281 return;
1283 sched = isl_union_map_copy(gen->sched);
1284 proj = projection(isl_union_map_get_space(sched),
1285 gen->untiled_len, gen->tile_first);
1286 sched = isl_union_map_apply_range(sched, isl_union_map_from_map(proj));
1288 check_scalar_live_ranges_in_host(gen->kernel, sched);
1291 /* Group references of all arrays in the current kernel.
1293 * We first extract all required schedule information into
1294 * a gpu_group_data structure and then consider each array
1295 * in turn.
1297 int gpu_group_references(struct gpu_gen *gen)
1299 int i;
1300 int r = 0;
1301 isl_union_map *sched;
1302 struct gpu_group_data data;
1304 check_scalar_live_ranges(gen);
1306 data.scop = gen->prog->scop;
1308 data.kernel_depth = gen->tile_first;
1310 sched = isl_union_map_apply_range(isl_union_map_copy(gen->shared_sched),
1311 isl_union_map_copy(gen->shared_proj));
1312 data.shared_sched = sched;
1314 data.thread_depth = gen->shared_len;
1315 data.n_thread = gen->kernel->n_block;
1316 data.thread_sched = isl_union_map_copy(gen->shared_sched);
1317 data.full_sched = isl_union_map_copy(gen->tiled_sched);
1319 data.privatization = isl_map_domain(isl_map_copy(gen->privatization));
1321 for (i = 0; i < gen->kernel->n_array; ++i) {
1322 r = group_array_references(gen->kernel, &gen->kernel->array[i],
1323 &data);
1324 if (r < 0)
1325 break;
1328 isl_union_map_free(data.shared_sched);
1329 isl_union_map_free(data.thread_sched);
1330 isl_union_map_free(data.full_sched);
1331 isl_set_free(data.privatization);
1333 return r;
1336 /* Given a description of an array tile "tile" and the "space"
1338 * { D -> A }
1340 * where D represents the first shared_len schedule dimensions
1341 * and A represents the array, construct an isl_multi_aff
1343 * { [D[i] -> A[a]] -> A'[a'] }
1345 * with A' a scaled down copy of A according to the shifts and strides
1346 * in "tile". In particular,
1348 * a' = (a + shift(i))/stride
1350 * "insert_array" represents
1352 * { [D -> A] -> D }
1354 * and is used to insert A into the domain of functions that only
1355 * reference D.
1357 static __isl_give isl_multi_aff *strided_tile(
1358 struct gpu_array_tile *tile, __isl_keep isl_space *space,
1359 __isl_keep isl_multi_aff *insert_array)
1361 int i;
1362 isl_ctx *ctx;
1363 isl_multi_aff *shift;
1364 isl_multi_val *stride;
1365 isl_space *space2;
1366 isl_local_space *ls;
1367 isl_multi_aff *tiling;
1369 ctx = isl_space_get_ctx(space);
1370 space2 = isl_space_domain(isl_space_copy(space));
1371 ls = isl_local_space_from_space(space2);
1372 space2 = isl_space_range(isl_space_copy(space));
1373 stride = isl_multi_val_zero(space2);
1374 shift = isl_multi_aff_zero(isl_space_copy(space));
1376 for (i = 0; i < tile->n; ++i) {
1377 struct gpu_array_bound *bound = &tile->bound[i];
1378 isl_val *stride_i;
1379 isl_aff *shift_i;
1381 if (tile->bound[i].shift) {
1382 stride_i = isl_val_copy(bound->stride);
1383 shift_i = isl_aff_copy(bound->shift);
1384 } else {
1385 stride_i = isl_val_one(ctx);
1386 shift_i = isl_aff_zero_on_domain(
1387 isl_local_space_copy(ls));
1390 stride = isl_multi_val_set_val(stride, i, stride_i);
1391 shift = isl_multi_aff_set_aff(shift, i, shift_i);
1393 isl_local_space_free(ls);
1395 shift = isl_multi_aff_pullback_multi_aff(shift,
1396 isl_multi_aff_copy(insert_array));
1398 tiling = isl_multi_aff_range_map(isl_space_copy(space));
1399 tiling = isl_multi_aff_add(tiling, shift);
1400 tiling = isl_multi_aff_scale_down_multi_val(tiling, stride);
1402 return tiling;
1405 /* Compute a tiling for the array reference group "group".
1407 * The tiling is of the form
1409 * { [D[i] -> A[a]] -> T[t] }
1411 * where D represents the first shared_len schedule dimensions,
1412 * A represents the global array and T represents the shared or
1413 * private memory tile. The name of T is the name of the local
1414 * array.
1416 * If there is any stride in the accesses, then the mapping is
1418 * t = (a + shift(i))/stride - lb(i)
1420 * otherwise, it is simply
1422 * t = a - lb(i)
1424 void gpu_array_ref_group_compute_tiling(struct gpu_array_ref_group *group)
1426 int i;
1427 struct gpu_array_tile *tile;
1428 struct gpu_array_info *array = group->array;
1429 isl_space *space;
1430 isl_multi_aff *tiling, *lb, *insert_array;
1431 isl_printer *p;
1432 char *local_name;
1434 tile = group->private_tile;
1435 if (!tile)
1436 tile = group->shared_tile;
1437 if (!tile)
1438 return;
1440 space = isl_map_get_space(group->access);
1441 insert_array = isl_multi_aff_domain_map(isl_space_copy(space));
1443 for (i = 0; i < tile->n; ++i)
1444 if (tile->bound[i].shift)
1445 break;
1447 if (i < tile->n)
1448 tiling = strided_tile(tile, space, insert_array);
1449 else
1450 tiling = isl_multi_aff_range_map(isl_space_copy(space));
1452 lb = isl_multi_aff_zero(space);
1453 for (i = 0; i < tile->n; ++i) {
1454 isl_aff *lb_i = isl_aff_copy(tile->bound[i].lb);
1455 lb = isl_multi_aff_set_aff(lb, i, lb_i);
1457 lb = isl_multi_aff_pullback_multi_aff(lb, insert_array);
1459 tiling = isl_multi_aff_sub(tiling, lb);
1461 p = isl_printer_to_str(isl_multi_aff_get_ctx(tiling));
1462 p = gpu_array_ref_group_print_name(group, p);
1463 local_name = isl_printer_get_str(p);
1464 isl_printer_free(p);
1465 tiling = isl_multi_aff_set_tuple_name(tiling, isl_dim_out, local_name);
1466 free(local_name);
1468 tile->tiling = tiling;