ppcg_kernel: keep track of core statement domain spaces
[ppcg.git] / gpu.c
blob051aad9cf22935c561d2ae76c77899ababf0fd63
1 /*
2 * Copyright 2010-2011 INRIA Saclay
3 * Copyright 2012-2013 Ecole Normale Superieure
5 * Use of this software is governed by the MIT license
7 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
8 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
9 * 91893 Orsay, France
10 * and Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France
13 #include <assert.h>
14 #include <stdlib.h>
15 #include <string.h>
17 #include <isl/polynomial.h>
18 #include <isl/union_set.h>
19 #include <isl/aff.h>
20 #include <isl/ilp.h>
21 #include <isl/flow.h>
22 #include <isl/schedule.h>
23 #include <isl/schedule_node.h>
24 #include <isl/options.h>
25 #include <isl/ast_build.h>
27 #include "cpu.h"
28 #include "gpu.h"
29 #include "gpu_array_tile.h"
30 #include "gpu_group.h"
31 #include "schedule.h"
32 #include "ppcg_options.h"
33 #include "print.h"
35 struct gpu_array_info;
37 /* Collect all references to the given array and store pointers to them
38 * in array->refs.
40 * If the array contains structures, then there is no need to collect
41 * the references since we will not be computing any reference groups.
43 static void collect_references(struct gpu_prog *prog,
44 struct gpu_array_info *array)
46 int i;
47 int n;
49 if (array->has_compound_element)
50 return;
52 n = 0;
53 for (i = 0; i < prog->n_stmts; ++i) {
54 struct gpu_stmt *stmt = &prog->stmts[i];
55 struct gpu_stmt_access *access;
57 for (access = stmt->accesses; access; access = access->next) {
58 const char *name;
59 name = isl_map_get_tuple_name(access->access,
60 isl_dim_out);
61 if (name && !strcmp(array->name, name))
62 n++;
66 array->n_ref = n;
67 array->refs = isl_alloc_array(prog->ctx, struct gpu_stmt_access *, n);
68 assert(array->refs);
70 n = 0;
71 for (i = 0; i < prog->n_stmts; ++i) {
72 struct gpu_stmt *stmt = &prog->stmts[i];
73 struct gpu_stmt_access *access;
75 for (access = stmt->accesses; access; access = access->next) {
76 const char *name;
77 name = isl_map_get_tuple_name(access->access,
78 isl_dim_out);
79 if (!name || strcmp(array->name, name))
80 continue;
82 array->refs[n++] = access;
87 /* Compute and return the extent of "array", taking into account the set of
88 * accessed elements.
90 * In particular, the extent in the outer dimension is taken
91 * from "accessed", while the extents in the remaining dimensions
92 * are taken from array->extent.
94 * The extent in the outer dimension cannot be taken from array->extent
95 * because that may be unbounded. Furthermore, even if it is bounded,
96 * it may be larger than the piece of the array that is being accessed.
98 static __isl_give isl_set *compute_extent(struct pet_array *array,
99 __isl_keep isl_set *accessed)
101 int n_index;
102 isl_id *id;
103 isl_set *outer;
104 isl_set *extent;
106 extent = isl_set_copy(array->extent);
108 n_index = isl_set_dim(accessed, isl_dim_set);
109 if (n_index == 0)
110 return extent;
112 extent = isl_set_project_out(extent, isl_dim_set, 0, 1);
113 outer = isl_set_copy(accessed);
114 outer = isl_set_project_out(outer, isl_dim_set, 1, n_index - 1);
115 extent = isl_set_flat_product(outer, extent);
116 id = isl_set_get_tuple_id(accessed);
117 extent = isl_set_set_tuple_id(extent, id);
119 return extent;
122 /* Is the array "array" being extracted a read-only scalar?
124 * That is, is "array" a scalar that is never possibly written to.
125 * An array containing structures is never considered to be a scalar.
127 static int is_read_only_scalar(struct gpu_array_info *array,
128 struct gpu_prog *prog)
130 isl_set *space;
131 isl_union_map *write;
132 int empty;
134 if (array->has_compound_element)
135 return 0;
136 if (array->n_index != 0)
137 return 0;
139 write = isl_union_map_copy(prog->may_write);
140 space = isl_set_universe(isl_space_copy(array->space));
141 write = isl_union_map_intersect_range(write,
142 isl_union_set_from_set(space));
143 empty = isl_union_map_is_empty(write);
144 isl_union_map_free(write);
146 return empty;
149 /* Compute bounds on the host array "pa" based on the corresponding
150 * accessed elements in "arrays"
151 * and collect all references to the array.
152 * Store the results in "info".
154 * If the array is zero-dimensional and does not contain structures,
155 * i.e., if the array is a scalar, we check whether it is read-only.
156 * We also check whether the array is accessed at all.
158 static int extract_array_info(struct gpu_prog *prog,
159 struct gpu_array_info *info, struct pet_array *pa,
160 __isl_keep isl_union_set *arrays)
162 int i, empty;
163 const char *name;
164 int n_index;
165 isl_pw_aff **bounds;
166 isl_set *accessed, *extent;
168 n_index = isl_set_dim(pa->extent, isl_dim_set);
169 name = isl_set_get_tuple_name(pa->extent);
170 bounds = isl_alloc_array(prog->ctx, isl_pw_aff *, n_index);
171 if (!bounds)
172 return -1;
174 info->space = isl_set_get_space(pa->extent);
175 info->name = strdup(name);
176 info->n_index = n_index;
177 info->bound = bounds;
178 info->linearize = prog->scop->options->linearize_device_arrays;
180 info->type = strdup(pa->element_type);
181 info->size = pa->element_size;
182 info->local = pa->declared && !pa->exposed;
183 info->has_compound_element = pa->element_is_record;
184 info->read_only_scalar = is_read_only_scalar(info, prog);
186 accessed = isl_union_set_extract_set(arrays,
187 isl_space_copy(info->space));
188 empty = isl_set_is_empty(accessed);
189 extent = compute_extent(pa, accessed);
190 isl_set_free(accessed);
191 info->extent = extent;
192 if (empty < 0)
193 return -1;
194 info->accessed = !empty;
195 for (i = 0; i < n_index; ++i) {
196 isl_set *dom;
197 isl_local_space *ls;
198 isl_aff *one;
199 isl_pw_aff *bound;
201 dom = isl_set_copy(extent);
202 dom = isl_set_project_out(dom, isl_dim_set, i + 1,
203 n_index - (i + 1));
204 dom = isl_set_project_out(dom, isl_dim_set, 0, i);
205 if (!isl_set_dim_has_upper_bound(dom, isl_dim_set, 0)) {
206 fprintf(stderr, "unable to determine extent of '%s' "
207 "in dimension %d\n", info->name, i);
208 dom = isl_set_free(dom);
210 bound = isl_set_dim_max(dom, 0);
211 dom = isl_pw_aff_domain(isl_pw_aff_copy(bound));
212 ls = isl_local_space_from_space(isl_set_get_space(dom));
213 one = isl_aff_zero_on_domain(ls);
214 one = isl_aff_add_constant_si(one, 1);
215 bound = isl_pw_aff_add(bound, isl_pw_aff_alloc(dom, one));
216 bound = isl_pw_aff_gist(bound, isl_set_copy(prog->context));
218 bounds[i] = bound;
219 if (!isl_pw_aff_is_cst(bound))
220 info->linearize = 1;
223 collect_references(prog, info);
225 return 0;
228 /* Remove independence from the order constraints "order" on array "array".
229 * Since the pairs of iterations in the filter relation of an independence
230 * are guaranteed to be completely independent by the user, there is
231 * no need to ensure that live ranges are ordered along thong pairs.
232 * We make an exception for local variables, though, as the independence
233 * guarantee does not apply to those.
235 * The order constraints are used in two places.
236 * Those on scalars are used in check_scalar_live_ranges to check if
237 * we need to force the scalar to be private. Any non-local scalar
238 * should not be forced scalar if it only appears in independent loops.
239 * Those on non-scalars are added to the coincidence constraints
240 * in compute_schedule because we do not support any array expansion.
241 * Accesses to non-local arrays should not prevent a loop from being
242 * considered coincident so we should indeed remove those constraints
243 * from the order constraints.
245 static __isl_give isl_union_map *remove_independences(struct gpu_prog *prog,
246 struct gpu_array_info *array, __isl_take isl_union_map *order)
248 int i;
250 for (i = 0; i < prog->scop->pet->n_independence; ++i) {
251 struct pet_independence *pi = prog->scop->pet->independences[i];
252 if (isl_union_set_contains(pi->local, array->space))
253 continue;
255 order = isl_union_map_subtract(order,
256 isl_union_map_copy(pi->filter));
259 return order;
262 /* For each array in "prog", store the (untagged) order dependences
263 * derived from the array in array->dep_order.
264 * In particular, consider all references that access the given array
265 * and take the order dependences that have one of these references
266 * as source. (Since an order dependence relates two references to
267 * the same array, the target of these order dependences will also
268 * be one of these references.)
269 * Additionally, store the union of these array->dep_order relations
270 * for all non-scalar arrays in prog->array_order.
272 void collect_order_dependences(struct gpu_prog *prog)
274 int i;
275 isl_space *space;
276 isl_union_map *accesses;
278 space = isl_union_map_get_space(prog->read);
279 prog->array_order = isl_union_map_empty(space);
281 accesses = isl_union_map_copy(prog->scop->tagged_reads);
282 accesses = isl_union_map_union(accesses,
283 isl_union_map_copy(prog->scop->tagged_may_writes));
284 accesses = isl_union_map_universe(accesses);
285 accesses = isl_union_map_apply_range(accesses,
286 isl_union_map_copy(prog->to_outer));
288 for (i = 0; i < prog->n_array; ++i) {
289 struct gpu_array_info *array = &prog->array[i];
290 isl_set *set;
291 isl_union_set *uset;
292 isl_union_map *order;
294 set = isl_set_universe(isl_space_copy(array->space));
295 uset = isl_union_set_from_set(set);
296 uset = isl_union_map_domain(
297 isl_union_map_intersect_range(isl_union_map_copy(accesses),
298 uset));
299 order = isl_union_map_copy(prog->scop->tagged_dep_order);
300 order = isl_union_map_intersect_domain(order, uset);
301 order = isl_union_map_zip(order);
302 order = isl_union_set_unwrap(isl_union_map_domain(order));
303 order = remove_independences(prog, array, order);
304 array->dep_order = order;
306 if (gpu_array_is_scalar(array) && !array->has_compound_element)
307 continue;
309 prog->array_order = isl_union_map_union(prog->array_order,
310 isl_union_map_copy(array->dep_order));
313 isl_union_map_free(accesses);
316 /* Construct a gpu_array_info for each array referenced by prog->scop and
317 * collect them in prog->array.
319 * The sizes are based on the extents and the set of possibly accessed
320 * elements by "prog".
321 * If there are any member accesses involved, then they are first mapped
322 * to the outer arrays of structs.
324 * If we are allowing live range reordering, then also set
325 * the dep_order field. Otherwise leave it NULL.
327 static int collect_array_info(struct gpu_prog *prog)
329 int i;
330 int r = 0;
331 isl_union_set *arrays;
333 arrays = isl_union_map_range(isl_union_map_copy(prog->read));
334 arrays = isl_union_set_union(arrays,
335 isl_union_map_range(isl_union_map_copy(prog->may_write)));
337 arrays = isl_union_set_apply(arrays,
338 isl_union_map_copy(prog->to_outer));
340 arrays = isl_union_set_coalesce(arrays);
342 prog->n_array = prog->scop->pet->n_array;
343 prog->array = isl_calloc_array(prog->ctx,
344 struct gpu_array_info, prog->n_array);
345 assert(prog->array);
346 for (i = 0; i < prog->scop->pet->n_array; ++i)
347 if (extract_array_info(prog, &prog->array[i],
348 prog->scop->pet->arrays[i], arrays) < 0)
349 r = -1;
351 isl_union_set_free(arrays);
353 if (prog->scop->options->live_range_reordering)
354 collect_order_dependences(prog);
356 return r;
359 static void free_array_info(struct gpu_prog *prog)
361 int i, j;
363 for (i = 0; i < prog->n_array; ++i) {
364 int n_index = prog->array[i].n_index;
365 free(prog->array[i].type);
366 free(prog->array[i].name);
367 for (j = 0; j < n_index; ++j)
368 isl_pw_aff_free(prog->array[i].bound[j]);
369 isl_space_free(prog->array[i].space);
370 isl_set_free(prog->array[i].extent);
371 free(prog->array[i].bound);
372 free(prog->array[i].refs);
373 isl_union_map_free(prog->array[i].dep_order);
375 free(prog->array);
378 /* Check if a gpu array is a scalar. A scalar is a value that is not stored
379 * as an array or through a pointer reference, but as a single data element.
380 * At the moment, scalars are represented as zero-dimensional arrays.
381 * Note that the single data element may be an entire structure.
383 int gpu_array_is_scalar(struct gpu_array_info *array)
385 return array->n_index == 0;
388 /* Is "array" a read-only scalar?
390 int gpu_array_is_read_only_scalar(struct gpu_array_info *array)
392 return array->read_only_scalar;
395 /* Return the set of parameter values for which the array has a positive
396 * size in all dimensions.
397 * If the sizes are only valid for some parameter values, then those
398 * constraints are also taken into account.
400 __isl_give isl_set *gpu_array_positive_size_guard(struct gpu_array_info *array)
402 int i;
403 isl_space *space;
404 isl_set *guard;
406 space = isl_space_params(isl_space_copy(array->space));
407 guard = isl_set_universe(space);
409 for (i = 0; i < array->n_index; ++i) {
410 isl_pw_aff *bound;
411 isl_set *guard_i, *zero;
413 bound = isl_pw_aff_copy(array->bound[i]);
414 guard_i = isl_pw_aff_nonneg_set(isl_pw_aff_copy(bound));
415 zero = isl_pw_aff_zero_set(bound);
416 guard_i = isl_set_subtract(guard_i, zero);
417 guard = isl_set_intersect(guard, guard_i);
420 return guard;
423 /* Internal data structure for extract_size_of_type.
424 * "type" specifies the name of the space that we want to extract.
425 * "res" is used to store the subset of that space.
427 struct ppcg_extract_size_data {
428 const char *type;
429 isl_set *res;
432 /* This function is called for each set in a union_set.
433 * If the name of the set matches data->type, we store the
434 * set in data->res.
436 static int extract_size_of_type(__isl_take isl_set *size, void *user)
438 struct ppcg_extract_size_data *data = user;
439 const char *name;
441 name = isl_set_get_tuple_name(size);
442 if (name && !strcmp(name, data->type)) {
443 data->res = size;
444 return -1;
447 isl_set_free(size);
448 return 0;
451 /* Given a union map { kernel[i] -> *[...] },
452 * return the range in the space called "type" for the kernel with
453 * sequence number "id".
455 static __isl_give isl_set *extract_sizes(__isl_keep isl_union_map *sizes,
456 const char *type, int id)
458 isl_space *space;
459 isl_set *dom;
460 isl_union_set *local_sizes;
461 struct ppcg_extract_size_data data = { type, NULL };
463 if (!sizes)
464 return NULL;
466 space = isl_union_map_get_space(sizes);
467 space = isl_space_set_from_params(space);
468 space = isl_space_add_dims(space, isl_dim_set, 1);
469 space = isl_space_set_tuple_name(space, isl_dim_set, "kernel");
470 dom = isl_set_universe(space);
471 dom = isl_set_fix_si(dom, isl_dim_set, 0, id);
473 local_sizes = isl_union_set_apply(isl_union_set_from_set(dom),
474 isl_union_map_copy(sizes));
475 isl_union_set_foreach_set(local_sizes, &extract_size_of_type, &data);
476 isl_union_set_free(local_sizes);
477 return data.res;
480 /* Given a singleton set, extract the first (at most *len) elements
481 * of the single integer tuple into *sizes and update *len if needed.
483 static void read_sizes_from_set(__isl_take isl_set *set, int *sizes, int *len)
485 int i;
486 int dim;
488 if (!set)
489 return;
491 dim = isl_set_dim(set, isl_dim_set);
492 if (dim < *len)
493 *len = dim;
495 for (i = 0; i < *len; ++i) {
496 isl_val *v;
498 v = isl_set_plain_get_val_if_fixed(set, isl_dim_set, i);
499 assert(v);
501 sizes[i] = isl_val_get_num_si(v);
502 isl_val_free(v);
505 isl_set_free(set);
508 /* Add the map { kernel[id] -> type[sizes] } to gen->used_sizes,
509 * if the option debug->dump_sizes is set.
511 static void set_used_sizes(struct gpu_gen *gen, const char *type, int id,
512 int *sizes, int len)
514 int i;
515 isl_space *space;
516 isl_map *map;
518 if (!gen->options->debug->dump_sizes)
519 return;
521 space = isl_union_map_get_space(gen->used_sizes);
522 space = isl_space_set_from_params(space);
523 space = isl_space_add_dims(space, isl_dim_set, 1);
524 space = isl_space_set_tuple_name(space, isl_dim_set, "kernel");
525 space = isl_space_from_domain(space);
526 space = isl_space_add_dims(space, isl_dim_out, len);
527 space = isl_space_set_tuple_name(space, isl_dim_out, type);
529 map = isl_map_universe(space);
530 map = isl_map_fix_si(map, isl_dim_in, 0, id);
531 for (i = 0; i < len; ++i)
532 map = isl_map_fix_si(map, isl_dim_out, i, sizes[i]);
534 gen->used_sizes = isl_union_map_add_map(gen->used_sizes, map);
537 /* Extract user specified "tile" sizes from the "sizes" command line option,
538 * defaulting to option->tile_size in each dimension.
539 * *tile_len contains the maximum number of tile sizes needed.
540 * Update *tile_len to the number of specified tile sizes, if any, and
541 * return a pointer to the tile sizes (or NULL on error).
542 * Add the effectively used sizes to gen->used_sizes.
544 static int *read_tile_sizes(struct gpu_gen *gen, int *tile_len)
546 int n;
547 int *tile_size;
548 isl_set *size;
550 tile_size = isl_alloc_array(gen->ctx, int, *tile_len);
551 if (!tile_size)
552 return NULL;
553 for (n = 0; n < *tile_len; ++n)
554 tile_size[n] = gen->options->tile_size;
556 size = extract_sizes(gen->sizes, "tile", gen->kernel_id);
557 read_sizes_from_set(size, tile_size, tile_len);
558 set_used_sizes(gen, "tile", gen->kernel_id, tile_size, *tile_len);
560 return tile_size;
563 /* Extract user specified "block" sizes from the "sizes" command line option,
564 * after filling in some potentially useful defaults.
566 static void read_block_sizes(struct ppcg_kernel *kernel,
567 __isl_keep isl_union_map *sizes)
569 isl_set *size;
571 if (kernel->n_block > 3)
572 kernel->n_block = 3;
573 switch (kernel->n_block) {
574 case 1:
575 kernel->block_dim[0] = 512;
576 break;
577 case 2:
578 kernel->block_dim[0] = 32;
579 kernel->block_dim[1] = 16;
580 break;
581 default:
582 kernel->block_dim[0] = 32;
583 kernel->block_dim[1] = 4;
584 kernel->block_dim[2] = 4;
585 break;
588 size = extract_sizes(sizes, "block", kernel->id);
589 read_sizes_from_set(size, kernel->block_dim, &kernel->n_block);
592 /* Extract user specified "grid" sizes from the "sizes" command line option,
593 * after filling in some potentially useful defaults.
595 static void read_grid_sizes(struct ppcg_kernel *kernel,
596 __isl_keep isl_union_map *sizes)
598 isl_set *size;
600 if (kernel->n_grid > 2)
601 kernel->n_grid = 2;
602 switch (kernel->n_grid) {
603 case 1:
604 kernel->grid_dim[0] = 32768;
605 break;
606 default:
607 kernel->grid_dim[0] = 256;
608 kernel->grid_dim[1] = 256;
609 break;
612 size = extract_sizes(sizes, "grid", kernel->id);
613 read_sizes_from_set(size, kernel->grid_dim, &kernel->n_grid);
616 /* Extract user specified grid and block sizes from the gen->sizes
617 * command line option after filling in some potentially useful defaults.
618 * Store the extracted sizes in "kernel".
619 * Add the effectively used sizes to gen->used_sizes.
621 static void read_grid_and_block_sizes(struct ppcg_kernel *kernel,
622 struct gpu_gen *gen)
624 read_block_sizes(kernel, gen->sizes);
625 read_grid_sizes(kernel, gen->sizes);
626 set_used_sizes(gen, "block", kernel->id,
627 kernel->block_dim, kernel->n_block);
628 set_used_sizes(gen, "grid", kernel->id,
629 kernel->grid_dim, kernel->n_grid);
632 static void *free_stmts(struct gpu_stmt *stmts, int n)
634 int i;
636 if (!stmts)
637 return NULL;
639 for (i = 0; i < n; ++i) {
640 struct gpu_stmt_access *access, *next;
642 for (access = stmts[i].accesses; access; access = next) {
643 next = access->next;
644 isl_id_free(access->ref_id);
645 isl_map_free(access->access);
646 isl_map_free(access->tagged_access);
647 free(access);
650 isl_id_free(stmts[i].id);
652 free(stmts);
654 return NULL;
657 /* Construct a map from a domain of dimensionality "len"
658 * to a domain of dimensionality "len" + "tile_len" that tiles
659 * the "tile_len" coordinates starting at "first".
660 * In particular, [s_i] -> [s_i / tile_size[i], s_i % tile_size[i]].
661 * "dim" prescribes the parameters.
663 static __isl_give isl_map *tile(__isl_take isl_space *dim, int len,
664 int first, int tile_len, int *tile_size)
666 int i;
667 isl_basic_map *bmap;
668 isl_constraint *c;
669 isl_local_space *ls;
671 dim = isl_space_add_dims(dim, isl_dim_in, len);
672 dim = isl_space_add_dims(dim, isl_dim_out, len + tile_len);
673 bmap = isl_basic_map_universe(isl_space_copy(dim));
674 ls = isl_local_space_from_space(dim);
676 for (i = 0; i < len - tile_len; ++i) {
677 int j = i < first ? i : i + tile_len;
678 int k = i < first ? i : i + 2 * tile_len;
680 c = isl_equality_alloc(isl_local_space_copy(ls));
681 c = isl_constraint_set_coefficient_si(c, isl_dim_in, j, -1);
682 c = isl_constraint_set_coefficient_si(c, isl_dim_out, k, 1);
683 bmap = isl_basic_map_add_constraint(bmap, c);
686 for (i = 0; i < tile_len; ++i) {
687 c = isl_equality_alloc(isl_local_space_copy(ls));
688 c = isl_constraint_set_coefficient_si(c, isl_dim_in,
689 first + i, -1);
690 c = isl_constraint_set_coefficient_si(c, isl_dim_out,
691 first + i, tile_size[i]);
692 c = isl_constraint_set_coefficient_si(c, isl_dim_out,
693 first + i + tile_len, 1);
694 bmap = isl_basic_map_add_constraint(bmap, c);
696 c = isl_inequality_alloc(isl_local_space_copy(ls));
697 c = isl_constraint_set_coefficient_si(c, isl_dim_out,
698 first + i + tile_len, 1);
699 bmap = isl_basic_map_add_constraint(bmap, c);
701 c = isl_inequality_alloc(isl_local_space_copy(ls));
702 c = isl_constraint_set_coefficient_si(c, isl_dim_out,
703 first + i + tile_len, -1);
704 c = isl_constraint_set_constant_si(c, tile_size[i] - 1);
705 bmap = isl_basic_map_add_constraint(bmap, c);
708 isl_local_space_free(ls);
710 return isl_map_from_basic_map(bmap);
713 /* Construct a map from a domain of dimensionality "len"
714 * to a domain of dimensionality "len" + "wrap_len" that "wraps"
715 * the "wrap_len" coordinates starting at "first" according to "wrap_size".
716 * In particular, [s_i] -> [s_i, s_i % wrap_size[i]].
717 * To do so, we need extra variables corresponding to [s_i / wrap_size[i]],
718 * that are projected out at the end.
719 * "dim" prescribes the parameters.
721 static __isl_give isl_map *wrap(__isl_take isl_space *dim, int len,
722 int first, int wrap_len, int *wrap_size)
724 int i;
725 isl_basic_map *bmap;
726 isl_constraint *c;
727 isl_local_space *ls;
729 dim = isl_space_add_dims(dim, isl_dim_in, len);
730 dim = isl_space_add_dims(dim, isl_dim_out, len + 2 * wrap_len);
731 bmap = isl_basic_map_universe(isl_space_copy(dim));
732 ls = isl_local_space_from_space(dim);
734 for (i = 0; i < len; ++i) {
735 int k = i < first + wrap_len ? i : i + 2 * wrap_len;
737 c = isl_equality_alloc(isl_local_space_copy(ls));
738 c = isl_constraint_set_coefficient_si(c, isl_dim_in, i, -1);
739 c = isl_constraint_set_coefficient_si(c, isl_dim_out, k, 1);
740 bmap = isl_basic_map_add_constraint(bmap, c);
743 for (i = 0; i < wrap_len; ++i) {
744 c = isl_equality_alloc(isl_local_space_copy(ls));
745 c = isl_constraint_set_coefficient_si(c, isl_dim_out,
746 first + i, -1);
747 c = isl_constraint_set_coefficient_si(c, isl_dim_out,
748 first + wrap_len + i, 1);
749 c = isl_constraint_set_coefficient_si(c, isl_dim_out,
750 first + 2 * wrap_len + i, wrap_size[i]);
751 bmap = isl_basic_map_add_constraint(bmap, c);
753 c = isl_inequality_alloc(isl_local_space_copy(ls));
754 c = isl_constraint_set_coefficient_si(c, isl_dim_out,
755 first + wrap_len + i, 1);
756 bmap = isl_basic_map_add_constraint(bmap, c);
758 c = isl_inequality_alloc(isl_local_space_copy(ls));
759 c = isl_constraint_set_coefficient_si(c, isl_dim_out,
760 first + wrap_len + i, -1);
761 c = isl_constraint_set_constant_si(c, wrap_size[i] - 1);
762 bmap = isl_basic_map_add_constraint(bmap, c);
765 isl_local_space_free(ls);
767 bmap = isl_basic_map_project_out(bmap, isl_dim_out,
768 first + 2 * wrap_len, wrap_len);
770 return isl_map_from_basic_map(bmap);
773 /* Tile the B loops over the tile sizes and then tile/wrap
774 * the T1 loops over the blocks.
776 static __isl_give isl_union_map *tile_schedule(struct gpu_gen *gen,
777 __isl_take isl_union_map *sched)
779 struct ppcg_kernel *kernel = gen->kernel;
780 isl_space *dim;
781 isl_map *tiling, *block_tiling;
783 dim = isl_union_map_get_space(sched);
784 tiling = tile(isl_space_copy(dim), gen->untiled_len,
785 gen->tile_first, kernel->tile_len, kernel->tile_size);
787 if (gen->options->wrap)
788 block_tiling = wrap(dim, gen->untiled_len + kernel->tile_len,
789 gen->tile_first, kernel->n_grid, kernel->grid_dim);
790 else
791 block_tiling = tile(dim, gen->untiled_len + kernel->tile_len,
792 gen->tile_first, kernel->n_grid, kernel->grid_dim);
794 gen->tiled_len = gen->untiled_len + kernel->tile_len + kernel->n_grid;
796 tiling = isl_map_apply_range(tiling, block_tiling);
798 sched = isl_union_map_apply_range(sched,
799 isl_union_map_from_map(tiling));
801 gen->shared_len = gen->tile_first + kernel->tile_len + kernel->n_grid;
803 return sched;
806 /* Equate the "T1P" iterators in the tiled schedule "sched"
807 * to the block dimensions.
809 static __isl_give isl_union_map *parametrize_tiled_schedule(
810 struct gpu_gen *gen, __isl_take isl_union_map *sched)
812 struct ppcg_kernel *kernel = gen->kernel;
813 isl_space *dim;
814 isl_set *par;
816 dim = isl_union_map_get_space(sched);
817 par = parametrization(dim, gen->tiled_len,
818 gen->tile_first + kernel->n_grid, kernel->block_ids);
819 sched = isl_union_map_intersect_range(sched,
820 isl_union_set_from_set(par));
822 return sched;
825 /* Tile/wrap the P1 loops over the threads.
827 static __isl_give isl_union_map *thread_tile_schedule(struct gpu_gen *gen,
828 __isl_take isl_union_map *sched)
830 struct ppcg_kernel *kernel = gen->kernel;
831 isl_space *dim;
832 isl_map *tiling;
833 isl_set *par;
835 dim = isl_union_map_get_space(sched);
837 if (gen->options->wrap)
838 tiling = wrap(isl_space_copy(dim), gen->tiled_len,
839 gen->shared_len, kernel->n_block, kernel->block_dim);
840 else
841 tiling = tile(isl_space_copy(dim), gen->tiled_len,
842 gen->shared_len, kernel->n_block, kernel->block_dim);
843 gen->thread_tiled_len = gen->tiled_len + kernel->n_block;
845 sched = isl_union_map_apply_range(sched,
846 isl_union_map_from_map(tiling));
848 par = parametrization(dim, gen->thread_tiled_len,
849 gen->tile_first + kernel->tile_len +
850 kernel->n_grid + kernel->n_block, kernel->thread_ids);
851 sched = isl_union_map_intersect_range(sched,
852 isl_union_set_from_set(par));
854 gen->shared_len = gen->tile_first + kernel->tile_len + kernel->n_grid;
856 return sched;
859 /* If the user asked for it, scale the shared memory tile loops
860 * (T1T and T2) of "sched" by kernel->tile_size[i].
861 * If we are not performing "wrapping", then additionally scale the T1P
862 * loops by kernel->grid_dim[i].
864 static __isl_give isl_union_map *scale_tile_loops(struct gpu_gen *gen,
865 __isl_take isl_union_map *sched)
867 struct ppcg_kernel *kernel = gen->kernel;
868 int i;
869 isl_space *dim;
870 isl_basic_map *scale;
871 isl_constraint *c;
872 isl_local_space *ls;
874 if (!gen->options->scale_tile_loops)
875 return sched;
877 dim = isl_union_map_get_space(sched);
878 dim = isl_space_add_dims(dim, isl_dim_in, gen->tiled_len);
879 dim = isl_space_add_dims(dim, isl_dim_out, gen->tiled_len);
880 scale = isl_basic_map_universe(isl_space_copy(dim));
881 ls = isl_local_space_from_space(dim);
883 for (i = 0; i < gen->tiled_len; ++i) {
884 int f = 1;
886 if (i >= gen->tile_first &&
887 i < gen->tile_first + kernel->n_grid) {
888 f = kernel->tile_size[i - gen->tile_first];
889 if (!gen->options->wrap)
890 f *= kernel->grid_dim[i - gen->tile_first];
891 } else if (i >= gen->tile_first + kernel->n_grid &&
892 i < gen->tile_first + kernel->n_grid +
893 kernel->tile_len) {
894 f = kernel->tile_size[i -
895 (gen->tile_first + kernel->n_grid)];
898 c = isl_equality_alloc(isl_local_space_copy(ls));
899 c = isl_constraint_set_coefficient_si(c, isl_dim_in, i, f);
900 c = isl_constraint_set_coefficient_si(c, isl_dim_out, i, -1);
901 scale = isl_basic_map_add_constraint(scale, c);
904 isl_local_space_free(ls);
906 sched = isl_union_map_apply_range(sched,
907 isl_union_map_from_map(isl_map_from_basic_map(scale)));
909 return sched;
912 /* If we are not performing "wrapping" and if the user asked for it,
913 * scale the thread tile loops (P1T) of "sched" by kernel->block_dim[i].
915 static __isl_give isl_union_map *scale_thread_tile_loops(struct gpu_gen *gen,
916 __isl_take isl_union_map *sched)
918 int i;
919 isl_space *dim;
920 isl_basic_map *scale;
921 isl_constraint *c;
922 isl_local_space *ls;
924 if (gen->options->wrap)
925 return sched;
926 if (!gen->options->scale_tile_loops)
927 return sched;
929 dim = isl_union_map_get_space(sched);
930 dim = isl_space_add_dims(dim, isl_dim_in, gen->thread_tiled_len);
931 dim = isl_space_add_dims(dim, isl_dim_out, gen->thread_tiled_len);
932 scale = isl_basic_map_universe(isl_space_copy(dim));
933 ls = isl_local_space_from_space(dim);
935 for (i = 0; i < gen->thread_tiled_len; ++i) {
936 int f = 1;
938 if (i >= gen->shared_len &&
939 i < gen->shared_len + gen->kernel->n_block)
940 f = gen->kernel->block_dim[i - gen->shared_len];
942 c = isl_equality_alloc(isl_local_space_copy(ls));
943 c = isl_constraint_set_coefficient_si(c, isl_dim_in, i, f);
944 c = isl_constraint_set_coefficient_si(c, isl_dim_out, i, -1);
945 scale = isl_basic_map_add_constraint(scale, c);
948 isl_local_space_free(ls);
950 sched = isl_union_map_apply_range(sched,
951 isl_union_map_from_map(isl_map_from_basic_map(scale)));
953 return sched;
956 /* If we are not performing "wrapping" and if the user asked for it,
957 * scale the "n_tile" loops starting at "first" of "sched" by gen->block_dim[i].
959 static __isl_give isl_union_map *scale_access_tile_loops(struct gpu_gen *gen,
960 __isl_take isl_union_map *sched, int len, int first, int n_tile)
962 int i;
963 isl_space *dim;
964 isl_basic_map *scale;
965 isl_constraint *c;
966 isl_local_space *ls;
968 if (gen->options->wrap)
969 return sched;
970 if (!gen->options->scale_tile_loops)
971 return sched;
973 dim = isl_union_map_get_space(sched);
974 dim = isl_space_add_dims(dim, isl_dim_in, len);
975 dim = isl_space_add_dims(dim, isl_dim_out, len);
976 scale = isl_basic_map_universe(isl_space_copy(dim));
977 ls = isl_local_space_from_space(dim);
979 for (i = 0; i < len; ++i) {
980 int f = 1;
982 if (i >= first && i < first + n_tile)
983 f = gen->kernel->block_dim[i - first];
985 c = isl_equality_alloc(isl_local_space_copy(ls));
986 c = isl_constraint_set_coefficient_si(c, isl_dim_in, i, f);
987 c = isl_constraint_set_coefficient_si(c, isl_dim_out, i, -1);
988 scale = isl_basic_map_add_constraint(scale, c);
991 isl_local_space_free(ls);
993 sched = isl_union_map_apply_range(sched,
994 isl_union_map_from_map(isl_map_from_basic_map(scale)));
996 return sched;
999 /* Add parameters p[i] with identifiers "ids" to "set",
1000 * with bounds to 0 <= p[i] < size[i].
1002 __isl_give isl_set *add_bounded_parameters(__isl_take isl_set *set,
1003 int *size, __isl_keep isl_id_list *ids)
1005 int i, len;
1006 unsigned nparam;
1008 len = isl_id_list_n_id(ids);
1009 nparam = isl_set_dim(set, isl_dim_param);
1010 set = isl_set_add_dims(set, isl_dim_param, len);
1012 for (i = 0; i < len; ++i) {
1013 isl_id *id;
1015 id = isl_id_list_get_id(ids, i);
1016 set = isl_set_set_dim_id(set, isl_dim_param, nparam + i, id);
1017 set = isl_set_lower_bound_si(set, isl_dim_param, nparam + i, 0);
1018 set = isl_set_upper_bound_si(set, isl_dim_param,
1019 nparam + i, size[i] - 1);
1022 return set;
1025 /* Add "len" parameters p[i] with identifiers "ids" and intersect "set"
1026 * with
1028 * { : 0 <= p[i] < size[i] }
1030 * or an overapproximation.
1032 static __isl_give isl_set *add_bounded_parameters_dynamic(
1033 __isl_take isl_set *set, __isl_keep isl_multi_pw_aff *size,
1034 __isl_keep isl_id_list *ids)
1036 int i, len;
1037 unsigned nparam;
1038 isl_space *space;
1039 isl_local_space *ls;
1041 len = isl_multi_pw_aff_dim(size, isl_dim_out);
1042 nparam = isl_set_dim(set, isl_dim_param);
1043 set = isl_set_add_dims(set, isl_dim_param, len);
1045 for (i = 0; i < len; ++i) {
1046 isl_id *id;
1048 id = isl_id_list_get_id(ids, i);
1049 set = isl_set_set_dim_id(set, isl_dim_param, nparam + i, id);
1052 space = isl_space_params(isl_set_get_space(set));
1053 ls = isl_local_space_from_space(space);
1054 for (i = 0; i < len; ++i) {
1055 isl_pw_aff *param, *size_i, *zero;
1056 isl_set *bound;
1058 param = isl_pw_aff_var_on_domain(isl_local_space_copy(ls),
1059 isl_dim_param, nparam + i);
1061 size_i = isl_multi_pw_aff_get_pw_aff(size, i);
1062 bound = isl_pw_aff_lt_set(isl_pw_aff_copy(param), size_i);
1063 bound = isl_set_from_basic_set(isl_set_simple_hull(bound));
1064 set = isl_set_intersect_params(set, bound);
1066 zero = isl_pw_aff_zero_on_domain(isl_local_space_copy(ls));
1067 bound = isl_pw_aff_ge_set(param, zero);
1068 set = isl_set_intersect_params(set, bound);
1070 isl_local_space_free(ls);
1072 return set;
1075 /* Construct a map from an access to group->array to the corresponding
1076 * shared/private memory tile.
1077 * The map is of the form
1079 * { [D[i] -> A[a]] -> T[t] }
1081 * where D represents the initial shared_len dimensions
1082 * of the computed schedule.
1084 static __isl_give isl_map *shift_access(struct gpu_array_ref_group *group)
1086 struct gpu_array_tile *tile;
1087 isl_multi_aff *tiling;
1089 tile = group->private_tile;
1090 if (!tile)
1091 tile = group->shared_tile;
1093 tiling = isl_multi_aff_copy(tile->tiling);
1095 return isl_map_from_multi_aff(tiling);
1098 /* Given a schedule that iterates over all elements in a piece of an array,
1099 * perform tiling/wrapping over the threads.
1101 * In particular, we tile the final iterators so that the final thread
1102 * dimension runs over the final array dimension.
1103 * However, if those final iterators have only a single iteration,
1104 * we try to tile earlier iterators instead.
1106 static __isl_give isl_map *tile_access_schedule(struct gpu_gen *gen,
1107 __isl_take isl_map *sched)
1109 isl_space *dim;
1110 isl_union_map *usched;
1111 isl_map *tiling;
1112 isl_set *par;
1113 unsigned nvar = isl_map_dim(sched, isl_dim_out);
1114 int n_tile;
1115 int first;
1117 n_tile = gen->kernel->n_block;
1118 if (n_tile > nvar) {
1119 int i;
1120 sched = isl_map_insert_dims(sched,
1121 isl_dim_out, 0, n_tile - nvar);
1122 for (i = 0; i < n_tile - nvar; ++i)
1123 sched = isl_map_fix_si(sched, isl_dim_out, i, 0);
1124 nvar = n_tile;
1127 first = nvar - n_tile;
1129 for (; first > 0; first --)
1130 if (!map_plain_is_fixed(sched, isl_dim_out, first + n_tile - 1))
1131 break;
1133 dim = isl_map_get_space(sched);
1134 dim = isl_space_params(dim);
1135 if (gen->options->wrap)
1136 tiling = wrap(isl_space_copy(dim), nvar, first,
1137 n_tile, gen->kernel->block_dim);
1138 else
1139 tiling = tile(isl_space_copy(dim), nvar, first,
1140 n_tile, gen->kernel->block_dim);
1141 sched = isl_map_apply_range(sched, tiling);
1143 par = parametrization(dim, nvar + n_tile, first + n_tile,
1144 gen->kernel->thread_ids);
1145 sched = isl_map_intersect_range(sched, par);
1147 usched = isl_union_map_from_map(sched);
1148 usched = scale_access_tile_loops(gen, usched, nvar + n_tile,
1149 first, n_tile);
1150 sched = isl_map_from_union_map(usched);
1152 return sched;
1155 /* Return the union of all tagged access relations in the group.
1157 static __isl_give isl_union_map *group_tagged_access_relation(
1158 struct gpu_array_ref_group *group)
1160 int i;
1161 isl_union_map *access;
1163 access = isl_union_map_empty(isl_map_get_space(group->access));
1164 for (i = 0; i < group->n_ref; ++i) {
1165 isl_map *map_i;
1167 map_i = isl_map_copy(group->refs[i]->tagged_access);
1168 access = isl_union_map_union(access,
1169 isl_union_map_from_map(map_i));
1172 return access;
1175 /* Return the extent of "array", recomputed from the bounds.
1176 * The recomputed extent may be simpler than the original extent.
1178 static __isl_give isl_set *array_extent(struct gpu_array_info *array)
1180 int i;
1181 isl_id *id;
1182 isl_space *space;
1183 isl_local_space *ls;
1184 isl_set *extent;
1186 id = isl_set_get_tuple_id(array->extent);
1187 space = isl_set_get_space(array->extent);
1188 extent = isl_set_universe(isl_space_copy(space));
1189 ls = isl_local_space_from_space(space);
1190 for (i = 0; i < array->n_index; ++i) {
1191 isl_pw_aff *bound;
1192 isl_aff *aff;
1193 isl_pw_aff *index;
1194 isl_set *lt;
1196 extent = isl_set_lower_bound_si(extent, isl_dim_set, i, 0);
1198 aff = isl_aff_var_on_domain(isl_local_space_copy(ls),
1199 isl_dim_set, i);
1200 index = isl_pw_aff_from_aff(aff);
1201 bound = isl_pw_aff_copy(array->bound[i]);
1202 bound = isl_pw_aff_from_range(bound);
1203 bound = isl_pw_aff_add_dims(bound, isl_dim_in, array->n_index);
1204 bound = isl_pw_aff_set_tuple_id(bound, isl_dim_in,
1205 isl_id_copy(id));
1206 lt = isl_pw_aff_lt_set(index, bound);
1207 extent = isl_set_intersect(extent, lt);
1209 isl_local_space_free(ls);
1210 isl_id_free(id);
1212 return extent;
1215 /* Return a map from the first shared_len dimensions of the computed
1216 * schedule to the array tile in
1217 * global memory that corresponds to the shared memory copy.
1219 * In particular, return a map
1221 * { D[i] -> A[a] }
1223 * with constraints
1225 * tile_offset(i) <= a <= tile_offset(i) + tile_size - 1 (1)
1227 * and
1229 * 0 <= a <= array_size - 1 (2)
1231 * Note that if some stride has been detected (i.e., when
1232 * group->shared_tile->bound[i].shift is set), then a in (1) refers
1233 * to the shifted and scaled down version.
1235 * Constraints (1) are obtained by mapping the size constraints on the
1236 * shared/private memory tile back to the access relation.
1237 * Constraints (2) are obtained from the (recomputed) extent.
1239 static __isl_give isl_map *group_tile(struct gpu_array_ref_group *group)
1241 int i;
1242 int n_index = group->array->n_index;
1243 isl_map *tile;
1244 isl_space *space;
1245 isl_set *local;
1246 isl_set *extent;
1248 space = isl_multi_aff_get_space(group->shared_tile->tiling);
1249 space = isl_space_range(space);
1250 local = isl_set_universe(space);
1251 for (i = 0; i < n_index; ++i) {
1252 isl_val *bound;
1254 local = isl_set_lower_bound_si(local, isl_dim_set, i, 0);
1255 bound = isl_val_copy(group->shared_tile->bound[i].size);
1256 bound = isl_val_sub_ui(bound, 1);
1257 local = isl_set_upper_bound_val(local, isl_dim_set, i, bound);
1259 local = isl_set_preimage_multi_aff(local,
1260 isl_multi_aff_copy(group->shared_tile->tiling));
1261 tile = isl_set_unwrap(local);
1262 extent = array_extent(group->array);
1263 tile = isl_map_intersect_range(tile, extent);
1265 return tile;
1268 /* Given a mapping "iterator_map" from the AST schedule to a domain,
1269 * return the corresponding mapping from the AST schedule to
1270 * to the first shared_len dimensions of the schedule computed by PPCG.
1272 static __isl_give isl_pw_multi_aff *compute_sched_to_shared(struct gpu_gen *gen,
1273 __isl_take isl_pw_multi_aff *iterator_map)
1275 isl_union_map *umap;
1276 isl_space *space;
1277 isl_map *map, *sched;;
1279 space = isl_space_range(isl_pw_multi_aff_get_space(iterator_map));
1280 space = isl_space_from_domain(space);
1281 space = isl_space_add_dims(space, isl_dim_out, gen->shared_len);
1283 umap = isl_union_map_copy(gen->shared_sched);
1284 umap = isl_union_map_apply_range(umap,
1285 isl_union_map_copy(gen->shared_proj));
1286 map = isl_union_map_extract_map(umap, space);
1287 isl_union_map_free(umap);
1289 sched = isl_map_preimage_domain_pw_multi_aff(map, iterator_map);
1290 sched = isl_map_detect_equalities(sched);
1292 return isl_pw_multi_aff_from_map(sched);
1295 /* Set unroll[j] if the input dimension j is involved in
1296 * the index expression represented by ma.
1298 static int check_unroll(__isl_take isl_set *set, __isl_take isl_multi_aff *ma,
1299 void *user)
1301 int i, j;
1302 int n_in = isl_multi_aff_dim(ma, isl_dim_in);
1303 int n_out = isl_multi_aff_dim(ma, isl_dim_out);
1304 int *unroll = user;
1306 for (i = 0; i < n_out; ++i) {
1307 isl_aff *aff;
1309 aff = isl_multi_aff_get_aff(ma, i);
1310 for (j = 0; j < n_in; ++j)
1311 if (isl_aff_involves_dims(aff, isl_dim_in, j, 1))
1312 unroll[j] = 1;
1313 isl_aff_free(aff);
1316 isl_set_free(set);
1317 isl_multi_aff_free(ma);
1318 return 0;
1321 /* Given an array pos mapping input dimensions to the corresponding
1322 * output dimension, construct the corresponding map.
1324 static __isl_give isl_map *permutation(__isl_take isl_space *dim,
1325 int *pos, int len)
1327 int i;
1328 isl_constraint *c;
1329 isl_basic_map *bmap;
1330 isl_local_space *ls;
1332 dim = isl_space_add_dims(dim, isl_dim_in, len);
1333 dim = isl_space_add_dims(dim, isl_dim_out, len);
1334 bmap = isl_basic_map_universe(isl_space_copy(dim));
1335 ls = isl_local_space_from_space(dim);
1337 for (i = 0; i < len; ++i) {
1338 c = isl_equality_alloc(isl_local_space_copy(ls));
1339 c = isl_constraint_set_coefficient_si(c, isl_dim_in, i,
1340 -1);
1341 c = isl_constraint_set_coefficient_si(c, isl_dim_out, pos[i],
1343 bmap = isl_basic_map_add_constraint(bmap, c);
1345 isl_local_space_free(ls);
1347 return isl_map_from_basic_map(bmap);
1350 /* Remove the private tiles from all array reference groups,
1351 * except for the groups of arrays that are marked force_private.
1353 static void remove_private_tiles(struct gpu_gen *gen)
1355 int i, j;
1357 for (i = 0; i < gen->kernel->n_array; ++i) {
1358 struct gpu_local_array_info *local = &gen->kernel->array[i];
1360 if (local->force_private)
1361 continue;
1363 for (j = 0; j < local->n_group; ++j) {
1364 struct gpu_array_ref_group *group = local->groups[j];
1366 group->private_tile =
1367 gpu_array_tile_free(group->private_tile);
1372 /* Find all loops involved in any of the index expressions for any of
1373 * the private accesses, move them innermost and then mark them as
1374 * requiring unrolling by setting gen->first_unroll.
1375 * The loops involved should all be parallel because of the checks
1376 * we performed in check_private_group_access. Moving them innermost
1377 * is therefore a valid transformation.
1379 * If any of the arrays are marked force_private, however, then
1380 * those loops may not be parallel with respect to the marked arrays.
1381 * If any of the loops would have to be moved innermost for the
1382 * (non forced) private accesses and if there are any force_private
1383 * arrays, then we revert the decision to map the selected arrays
1384 * to private memory. An alternative solution would be to expand
1385 * the force_private arrays.
1387 * Loops up to gen->shared_len are generated before the mapping to
1388 * threads is applied. They should therefore be ignored.
1390 * We compute the hidden equalities of the schedule first
1391 * since we will need them in our calls to isl_pw_multi_aff_from_map
1392 * and because we want to make sure that the same equalities
1393 * are also available to the code generator.
1395 static __isl_give isl_union_map *interchange_for_unroll(struct gpu_gen *gen,
1396 __isl_take isl_union_map *sched)
1398 struct ppcg_kernel *kernel = gen->kernel;
1399 int i, j;
1400 int unroll[gen->thread_tiled_len];
1401 int perm[gen->thread_tiled_len];
1402 isl_space *dim;
1403 isl_map *permute;
1404 int len = gen->shared_len + kernel->n_parallel + kernel->n_block;
1406 gen->first_unroll = -1;
1408 sched = isl_union_map_detect_equalities(sched);
1409 for (i = 0; i < gen->thread_tiled_len; ++i)
1410 unroll[i] = 0;
1411 for (i = 0; i < kernel->n_array; ++i) {
1412 struct gpu_local_array_info *array = &kernel->array[i];
1414 for (j = 0; j < array->n_group; ++j) {
1415 isl_union_map *access;
1416 isl_map *acc;
1417 isl_pw_multi_aff *pma;
1419 if (!array->groups[j]->private_tile)
1420 continue;
1422 access = gpu_array_ref_group_access_relation(
1423 array->groups[j], 1, 1);
1424 access = isl_union_map_apply_domain(access,
1425 isl_union_map_copy(sched));
1427 acc = isl_map_from_union_map(access);
1428 pma = isl_pw_multi_aff_from_map(acc);
1429 isl_pw_multi_aff_foreach_piece(pma,
1430 &check_unroll, unroll);
1432 isl_pw_multi_aff_free(pma);
1436 for (i = gen->shared_len; i < len; ++i)
1437 if (unroll[i])
1438 break;
1440 if (i >= len)
1441 return sched;
1443 for (i = len; i < gen->thread_tiled_len; ++i)
1444 if (unroll[i])
1445 return sched;
1447 if (kernel->any_force_private) {
1448 remove_private_tiles(gen);
1449 return sched;
1452 j = 0;
1453 for (i = 0; i < gen->shared_len; ++i)
1454 perm[i] = j++;
1455 for (i = gen->shared_len; i < gen->thread_tiled_len; ++i)
1456 if (!unroll[i])
1457 perm[i] = j++;
1458 gen->first_unroll = j - gen->shared_len;
1459 for (i = gen->shared_len; i < len; ++i)
1460 if (unroll[i])
1461 perm[i] = j++;
1463 dim = isl_union_map_get_space(sched);
1464 permute = permutation(dim, perm, gen->thread_tiled_len);
1465 sched = isl_union_map_apply_range(sched,
1466 isl_union_map_from_map(permute));
1468 return sched;
1471 /* Construct a map with input the shared tile loops and the loops that
1472 * will be wrapped around the threads that relates these later loops
1473 * to the thread indices and then projects them out.
1475 static __isl_give isl_map *compute_privatization(struct gpu_gen *gen)
1477 struct ppcg_kernel *kernel = gen->kernel;
1478 isl_map *priv;
1479 isl_map *tiling;
1480 isl_map *proj;
1481 isl_set *par;
1482 isl_space *dim;
1484 dim = isl_union_map_get_space(gen->shared_sched);
1486 if (gen->options->wrap)
1487 tiling = wrap(isl_space_copy(dim),
1488 gen->shared_len + kernel->n_block,
1489 gen->shared_len, kernel->n_block, kernel->block_dim);
1490 else
1491 tiling = tile(isl_space_copy(dim),
1492 gen->shared_len + kernel->n_block,
1493 gen->shared_len, kernel->n_block, kernel->block_dim);
1495 priv = tiling;
1497 par = parametrization(dim, gen->shared_len + 2 * kernel->n_block,
1498 gen->tile_first + kernel->tile_len +
1499 kernel->n_grid + kernel->n_block, kernel->thread_ids);
1501 priv = isl_map_align_params(priv, isl_set_get_space(par));
1502 priv = isl_map_intersect_range(priv, par);
1504 dim = isl_map_get_space(priv);
1505 dim = isl_space_drop_dims(dim, isl_dim_in, 0, isl_space_dim(dim, isl_dim_in));
1506 dim = isl_space_drop_dims(dim, isl_dim_out, 0, isl_space_dim(dim, isl_dim_out));
1507 proj = projection(dim, gen->shared_len + 2 * kernel->n_block,
1508 gen->shared_len);
1510 priv = isl_map_apply_range(priv, proj);
1512 return priv;
1515 /* If max_shared_memory is not set to infinity (-1), then make
1516 * sure that the total amount of shared memory required by the
1517 * array reference groups mapped to shared memory is no larger
1518 * than this maximum.
1520 * We apply a greedy approach and discard (keep in global memory)
1521 * those groups that would result in a total memory size that
1522 * is larger than the maximum.
1524 * This function should be called after any function that may
1525 * affect the decision on whether to place a reference group
1526 * in private, shared or global memory.
1528 static void check_shared_memory_bound(struct gpu_gen *gen)
1530 int i, j;
1531 isl_val *left, *size;
1533 if (gen->options->max_shared_memory < 0)
1534 return;
1536 left = isl_val_int_from_si(gen->ctx, gen->options->max_shared_memory);
1538 for (i = 0; i < gen->kernel->n_array; ++i) {
1539 struct gpu_local_array_info *local = &gen->kernel->array[i];
1541 for (j = 0; j < local->n_group; ++j) {
1542 struct gpu_array_ref_group *group;
1544 group = local->groups[j];
1545 if (group->private_tile)
1546 continue;
1547 if (!group->shared_tile)
1548 continue;
1550 size = gpu_array_tile_size(group->shared_tile);
1551 size = isl_val_mul_ui(size, local->array->size);
1553 if (isl_val_le(size, left)) {
1554 left = isl_val_sub(left, size);
1555 continue;
1557 isl_val_free(size);
1559 group->shared_tile =
1560 gpu_array_tile_free(group->shared_tile);
1564 isl_val_free(left);
1567 /* Compute a tiling for all the array reference groups.
1569 static void compute_group_tilings(struct gpu_gen *gen)
1571 int i, j;
1573 for (i = 0; i < gen->kernel->n_array; ++i) {
1574 struct gpu_local_array_info *array = &gen->kernel->array[i];
1576 for (j = 0; j < array->n_group; ++j)
1577 gpu_array_ref_group_compute_tiling(array->groups[j]);
1581 /* Take tiled_sched, project it onto the shared tile loops and
1582 * the loops that will be wrapped over the threads and
1583 * store the result in gen->shared_sched.
1584 * Also compute a projection that projects out the loops that will be
1585 * wrapped over the threads and store this projection in gen->shared_proj.
1587 static void compute_shared_sched(struct gpu_gen *gen)
1589 isl_space *dim;
1590 isl_map *proj;
1591 isl_set *par;
1592 isl_union_map *sched;
1594 sched = isl_union_map_copy(gen->tiled_sched);
1596 dim = isl_union_map_get_space(sched);
1597 proj = projection(dim, gen->tiled_len,
1598 gen->shared_len + gen->kernel->n_block);
1599 sched = isl_union_map_apply_range(sched, isl_union_map_from_map(proj));
1601 dim = isl_union_map_get_space(sched);
1602 proj = projection(dim, gen->shared_len + gen->kernel->n_block,
1603 gen->shared_len);
1605 gen->shared_sched = sched;
1606 gen->shared_proj = isl_union_map_from_map(proj);
1609 /* Compute the size of a bounding box around the origin and "set",
1610 * where "set" is assumed to contain only non-negative elements.
1611 * In particular, compute the maximal value of "set" in each direction
1612 * and add one.
1614 static __isl_give isl_multi_pw_aff *extract_size(__isl_take isl_set *set,
1615 __isl_take isl_set *context)
1617 int i, n;
1618 isl_multi_pw_aff *mpa;
1620 context = isl_set_params(context);
1621 n = isl_set_dim(set, isl_dim_set);
1622 mpa = isl_multi_pw_aff_zero(isl_set_get_space(set));
1623 for (i = 0; i < n; ++i) {
1624 isl_space *space;
1625 isl_aff *one;
1626 isl_pw_aff *bound;
1628 bound = isl_set_dim_max(isl_set_copy(set), i);
1629 bound = isl_pw_aff_coalesce(bound);
1630 bound = isl_pw_aff_gist(bound, isl_set_copy(context));
1632 space = isl_pw_aff_get_domain_space(bound);
1633 one = isl_aff_zero_on_domain(isl_local_space_from_space(space));
1634 one = isl_aff_add_constant_si(one, 1);
1635 bound = isl_pw_aff_add(bound, isl_pw_aff_from_aff(one));
1636 mpa = isl_multi_pw_aff_set_pw_aff(mpa, i, bound);
1638 isl_set_free(set);
1639 isl_set_free(context);
1641 return mpa;
1644 /* Compute the effective grid size as a list of the sizes in each dimension.
1646 * The grid size specified by the user or set by default
1647 * in read_grid_sizes() and applied in tile_schedule(),
1648 * may be too large for the given code in the sense that
1649 * it may contain blocks that don't need to execute anything.
1650 * We therefore don't return this grid size, but instead the
1651 * smallest grid size that ensures that all blocks that actually
1652 * execute code are included in the grid.
1654 * We first extract a description of the grid, i.e., the possible values
1655 * of the block ids, from gen->tiled_sched.
1656 * The block ids are parameters in gen->tiled_sched.
1657 * We simply need to change them into set dimensions.
1659 * Then, for each block dimension, we compute the maximal value of the block id
1660 * and add one.
1662 static __isl_give isl_multi_pw_aff *extract_grid_size(struct gpu_gen *gen,
1663 struct ppcg_kernel *kernel)
1665 int i;
1666 isl_set *grid;
1668 grid = isl_union_map_params(isl_union_map_copy(gen->tiled_sched));
1669 grid = isl_set_from_params(grid);
1670 grid = isl_set_add_dims(grid, isl_dim_set, kernel->n_grid);
1671 for (i = 0; i < kernel->n_grid; ++i) {
1672 int pos;
1673 isl_id *id;
1675 id = isl_id_list_get_id(kernel->block_ids, i);
1676 pos = isl_set_find_dim_by_id(grid, isl_dim_param, id);
1677 isl_id_free(id);
1678 assert(pos >= 0);
1679 grid = isl_set_equate(grid, isl_dim_param, pos, isl_dim_set, i);
1680 grid = isl_set_project_out(grid, isl_dim_param, pos, 1);
1683 return extract_size(grid, isl_set_copy(kernel->context));
1686 /* Compute the size of a fixed bounding box around the origin and "set",
1687 * where "set" is assumed to contain only non-negative elements,
1688 * and store the results in "size".
1689 * In particular, compute the maximal value of "set" in each direction
1690 * and add one.
1692 static void extract_fixed_size(__isl_take isl_set *set, int *size)
1694 int i, n;
1695 isl_local_space *ls;
1696 isl_aff *obj;
1698 n = isl_set_dim(set, isl_dim_set);
1699 ls = isl_local_space_from_space(isl_set_get_space(set));
1700 obj = isl_aff_zero_on_domain(ls);
1701 for (i = 0; i < n; ++i) {
1702 isl_val *max;
1704 obj = isl_aff_set_coefficient_si(obj, isl_dim_in, i, 1);
1705 max = isl_set_max_val(set, obj);
1706 size[i] = isl_val_get_num_si(max) + 1;
1707 isl_val_free(max);
1708 obj = isl_aff_set_coefficient_si(obj, isl_dim_in, i, 0);
1710 isl_aff_free(obj);
1711 isl_set_free(set);
1714 /* Compute the effective block size as a list of the sizes in each dimension
1715 * and store the sizes in kernel->block_dim.
1717 * The block size specified by the user or set by default
1718 * in read_block_sizes() and applied in thread_tile_schedule(),
1719 * may be too large for the given code in the sense that
1720 * it may contain threads that don't need to execute anything.
1721 * We therefore update this block size in kernel->block_dim
1722 * to the smallest block size that ensures that all threads
1723 * that actually execute code are included in the block.
1725 * The current implementation eliminates all parameters, ensuring
1726 * that the size is a fixed constant in each dimension.
1727 * In principle we could also compute parametric sizes.
1728 * We would have to make sure to project out all b%d and t%d parameters,
1729 * however.
1731 static void extract_block_size(struct gpu_gen *gen, struct ppcg_kernel *kernel)
1733 int i;
1734 int nparam;
1735 isl_set *block;
1736 isl_multi_pw_aff *mpa;
1738 block = isl_union_map_params(isl_union_map_copy(gen->local_sched));
1739 block = isl_set_from_params(block);
1740 block = isl_set_add_dims(block, isl_dim_set, kernel->n_block);
1741 for (i = 0; i < kernel->n_block; ++i) {
1742 int pos;
1743 isl_id *id;
1745 id = isl_id_list_get_id(kernel->thread_ids, i);
1746 pos = isl_set_find_dim_by_id(block, isl_dim_param, id);
1747 isl_id_free(id);
1748 assert(pos >= 0);
1749 block = isl_set_equate(block, isl_dim_param, pos,
1750 isl_dim_set, i);
1752 nparam = isl_set_dim(block, isl_dim_param);
1753 block = isl_set_project_out(block, isl_dim_param, 0, nparam);
1755 extract_fixed_size(block, kernel->block_dim);
1758 struct ppcg_kernel *ppcg_kernel_free(struct ppcg_kernel *kernel)
1760 int i, j;
1762 if (!kernel)
1763 return NULL;
1765 isl_id_list_free(kernel->block_ids);
1766 isl_id_list_free(kernel->thread_ids);
1767 isl_multi_pw_aff_free(kernel->grid_size);
1768 isl_set_free(kernel->context);
1769 isl_union_set_free(kernel->core);
1770 isl_union_set_free(kernel->arrays);
1771 isl_space_free(kernel->space);
1772 isl_ast_node_free(kernel->tree);
1774 for (i = 0; i < kernel->n_array; ++i) {
1775 struct gpu_local_array_info *array = &kernel->array[i];
1777 for (j = 0; j < array->n_group; ++j)
1778 gpu_array_ref_group_free(array->groups[j]);
1779 free(array->groups);
1781 isl_pw_aff_list_free(array->bound);
1783 free(kernel->array);
1785 for (i = 0; i < kernel->n_var; ++i) {
1786 free(kernel->var[i].name);
1787 isl_vec_free(kernel->var[i].size);
1789 free(kernel->var);
1790 free(kernel->tile_size);
1792 free(kernel);
1794 return NULL;
1797 /* Wrapper around ppcg_kernel_free for use as a isl_id_set_free_user callback.
1799 static void ppcg_kernel_free_wrap(void *user)
1801 struct ppcg_kernel *kernel = user;
1803 ppcg_kernel_free(kernel);
1806 static void create_kernel_var(isl_ctx *ctx, struct gpu_array_ref_group *group,
1807 struct ppcg_kernel_var *var)
1809 int j;
1810 struct gpu_array_tile *tile;
1811 isl_printer *p;
1812 char *name;
1814 var->array = group->array;
1816 tile = group->private_tile;
1817 var->type = ppcg_access_private;
1818 if (!tile) {
1819 tile = group->shared_tile;
1820 var->type = ppcg_access_shared;
1823 p = isl_printer_to_str(ctx);
1824 p = gpu_array_ref_group_print_name(group, p);
1825 var->name = isl_printer_get_str(p);
1826 isl_printer_free(p);
1828 var->size = isl_vec_alloc(ctx, group->array->n_index);
1830 for (j = 0; j < group->array->n_index; ++j)
1831 var->size = isl_vec_set_element_val(var->size, j,
1832 isl_val_copy(tile->bound[j].size));
1835 static void create_kernel_vars(struct gpu_gen *gen, struct ppcg_kernel *kernel)
1837 int i, j, n;
1839 n = 0;
1840 for (i = 0; i < kernel->n_array; ++i) {
1841 struct gpu_local_array_info *array = &kernel->array[i];
1843 for (j = 0; j < array->n_group; ++j) {
1844 struct gpu_array_ref_group *group = array->groups[j];
1845 if (group->private_tile || group->shared_tile)
1846 ++n;
1850 kernel->n_var = n;
1851 kernel->var = isl_calloc_array(gen->ctx, struct ppcg_kernel_var, n);
1852 assert(kernel->var);
1854 n = 0;
1855 for (i = 0; i < kernel->n_array; ++i) {
1856 struct gpu_local_array_info *array = &kernel->array[i];
1858 for (j = 0; j < array->n_group; ++j) {
1859 struct gpu_array_ref_group *group = array->groups[j];
1860 if (!group->private_tile && !group->shared_tile)
1861 continue;
1862 create_kernel_var(gen->ctx, group, &kernel->var[n]);
1863 ++n;
1868 /* Replace "pa" by the zero function defined over the universe domain
1869 * in the space of "pa".
1871 static __isl_give isl_pw_aff *set_universally_zero(__isl_take isl_pw_aff *pa)
1873 isl_space *space;
1874 isl_aff *zero;
1876 space = isl_space_domain(isl_pw_aff_get_space(pa));
1877 isl_pw_aff_free(pa);
1878 zero = isl_aff_zero_on_domain(isl_local_space_from_space(space));
1880 return isl_pw_aff_from_aff(zero);
1883 /* The sizes of the arrays on the host that have been computed by
1884 * extract_array_info may depend on the parameters. Use the extra
1885 * constraints on the parameters that are valid at "host_domain"
1886 * to simplify these expressions and store the results in kernel->array.
1888 * We only need these localized bounds for arrays that are accessed
1889 * by the current kernel. If we have found at least one reference group
1890 * then the array is accessed by the kernel. If the array has compound
1891 * elements then we skipped the construction of array reference groups.
1893 * The resulting sizes may be functions that are nowhere defined
1894 * in case the access function cannot possibly access anything inside
1895 * the kernel for some reason. If so, they are replaced by the zero
1896 * function. Since the access function cannot actually access anything,
1897 * there is no harm in printing the array sizes as zero.
1899 static void localize_bounds(struct gpu_gen *gen, struct ppcg_kernel *kernel,
1900 __isl_keep isl_set *host_domain)
1902 int i, j;
1903 isl_set *context;
1905 context = isl_set_copy(host_domain);
1906 context = isl_set_params(context);
1908 for (i = 0; i < kernel->n_array; ++i) {
1909 struct gpu_local_array_info *local = &kernel->array[i];
1910 isl_pw_aff_list *bound;
1911 int n_index;
1913 if (local->n_group == 0 && !local->array->has_compound_element)
1914 continue;
1916 n_index = local->array->n_index;
1917 bound = isl_pw_aff_list_alloc(gen->ctx, n_index);
1919 for (j = 0; j < n_index; ++j) {
1920 isl_pw_aff *pwaff;
1921 int empty;
1923 pwaff = isl_pw_aff_copy(local->array->bound[j]);
1924 pwaff = isl_pw_aff_gist(pwaff, isl_set_copy(context));
1925 empty = isl_pw_aff_is_empty(pwaff);
1926 if (empty < 0)
1927 pwaff = isl_pw_aff_free(pwaff);
1928 else if (empty)
1929 pwaff = set_universally_zero(pwaff);
1930 bound = isl_pw_aff_list_add(bound, pwaff);
1933 local->n_index = n_index;
1934 local->bound = bound;
1936 isl_set_free(context);
1939 /* Create the array of gpu_local_array_info structures "array"
1940 * inside "kernel". The number of elements in this array is
1941 * the same as the number of arrays in "prog".
1942 * Initialize the "array" field of each local array to point
1943 * to the corresponding array in "prog".
1945 static struct ppcg_kernel *ppcg_kernel_create_local_arrays(
1946 struct ppcg_kernel *kernel, struct gpu_prog *prog)
1948 int i;
1949 isl_ctx *ctx;
1951 ctx = isl_set_get_ctx(prog->context);
1952 kernel->array = isl_calloc_array(ctx,
1953 struct gpu_local_array_info, prog->n_array);
1954 if (!kernel->array)
1955 return ppcg_kernel_free(kernel);
1956 kernel->n_array = prog->n_array;
1958 for (i = 0; i < prog->n_array; ++i)
1959 kernel->array[i].array = &prog->array[i];
1961 return kernel;
1964 /* Find the element in gen->stmt that has the given "id".
1965 * Return NULL if no such gpu_stmt can be found.
1967 static struct gpu_stmt *find_stmt(struct gpu_prog *prog, __isl_keep isl_id *id)
1969 int i;
1971 for (i = 0; i < prog->n_stmts; ++i) {
1972 if (id == prog->stmts[i].id)
1973 break;
1976 return i < prog->n_stmts ? &prog->stmts[i] : NULL;
1979 void ppcg_kernel_stmt_free(void *user)
1981 int i;
1982 struct ppcg_kernel_stmt *stmt = user;
1984 if (!stmt)
1985 return;
1987 switch (stmt->type) {
1988 case ppcg_kernel_copy:
1989 isl_ast_expr_free(stmt->u.c.index);
1990 isl_ast_expr_free(stmt->u.c.local_index);
1991 break;
1992 case ppcg_kernel_domain:
1993 isl_id_to_ast_expr_free(stmt->u.d.ref2expr);
1994 break;
1995 case ppcg_kernel_sync:
1996 break;
1999 free(stmt);
2002 /* Set the options of "context" to
2004 * { space -> [x] : x >= first }
2006 static __isl_give isl_ast_build *set_unroll(
2007 __isl_take isl_ast_build *build, __isl_take isl_space *space,
2008 int first)
2010 isl_ctx *ctx;
2011 isl_map *unroll;
2012 isl_union_map *opt;
2014 ctx = isl_ast_build_get_ctx(build);
2016 space = isl_space_from_domain(space);
2017 space = isl_space_add_dims(space, isl_dim_out, 1);
2018 space = isl_space_set_tuple_name(space, isl_dim_out, "unroll");
2019 unroll = isl_map_universe(space);
2020 unroll = isl_map_lower_bound_si(unroll, isl_dim_out, 0, first);
2021 opt = isl_union_map_from_map(unroll);
2023 build = isl_ast_build_set_options(build, opt);
2025 return build;
2028 /* Extend the schedule "schedule" with the part of "extension"
2029 * starting at "first" up to "len".
2031 static __isl_give isl_union_map *extend_schedule(
2032 __isl_take isl_union_map *schedule,
2033 __isl_take isl_union_map *extension, int first, int len)
2035 isl_space *space;
2036 isl_map *proj;
2037 isl_union_map *umap;
2038 isl_set *set;
2040 space = isl_union_map_get_space(schedule);
2041 space = isl_space_set_from_params(space);
2042 space = isl_space_add_dims(space, isl_dim_set, len);
2043 proj = isl_set_identity(isl_set_universe(space));
2044 proj = isl_map_project_out(proj, isl_dim_out, 0, first);
2045 extension = isl_union_map_apply_range(extension,
2046 isl_union_map_from_map(proj));
2048 schedule = isl_union_map_range_product(schedule, extension);
2050 return schedule;
2053 /* Return the gpu_stmt_access in the list "accesses" that corresponds
2054 * to "ref_id".
2056 static struct gpu_stmt_access *find_access(struct gpu_stmt_access *accesses,
2057 __isl_keep isl_id *ref_id)
2059 struct gpu_stmt_access *access;
2061 for (access = accesses; access; access = access->next)
2062 if (access->ref_id == ref_id)
2063 return access;
2065 return NULL;
2068 /* Return the index of the array called "name" in the list of arrays.
2070 static int find_array_index(struct gpu_gen *gen, const char *name)
2072 int i;
2074 for (i = 0; i < gen->prog->n_array; ++i)
2075 if (!strcmp(name, gen->prog->array[i].name))
2076 return i;
2078 return -1;
2081 /* Internal data structure for the index and AST expression transformation
2082 * callbacks for pet_stmt_build_ast_exprs.
2084 * "accesses" is the list of gpu_stmt_access in the statement.
2085 * "iterator_map" expresses the statement iterators in terms of
2086 * the AST loop iterators.
2087 * "sched2shared" expresses the first shared_len dimensions of
2088 * the computed schedule in terms of the AST loop iterators.
2090 * The following fields are set in transform_index and used in transform_expr.
2091 * "array" is the array that is being accessed.
2092 * "global" is set if the global array is accessed (rather than
2093 * shared/private memory).
2094 * "local_array" refers to information on the array specialized
2095 * to the current kernel.
2097 struct ppcg_transform_data {
2098 struct gpu_gen *gen;
2099 struct gpu_stmt_access *accesses;
2100 isl_pw_multi_aff *iterator_map;
2101 isl_pw_multi_aff *sched2shared;
2103 struct gpu_array_info *array;
2104 int global;
2105 struct gpu_local_array_info *local_array;
2108 /* Return the name of the outer array (of structs) accessed by "access".
2110 static const char *get_outer_array_name(__isl_keep isl_map *access)
2112 isl_space *space;
2113 const char *name;
2115 space = isl_space_range(isl_map_get_space(access));
2116 while (space && isl_space_is_wrapping(space))
2117 space = isl_space_domain(isl_space_unwrap(space));
2118 name = isl_space_get_tuple_name(space, isl_dim_set);
2119 isl_space_free(space);
2121 return name;
2124 /* Return a pointer to the gpu_array_ref_group in "local"
2125 * that contains the reference "access".
2126 * Return NULL if no such group can be found.
2128 static struct gpu_array_ref_group *find_ref_group(
2129 struct gpu_local_array_info *local, struct gpu_stmt_access *access)
2131 int i, j;
2133 for (i = 0; i < local->n_group; ++i) {
2134 struct gpu_array_ref_group *group = local->groups[i];
2136 for (j = 0; j < group->n_ref; ++j)
2137 if (group->refs[j] == access)
2138 return group;
2141 return NULL;
2144 /* Index transformation callback for pet_stmt_build_ast_exprs.
2146 * "index" expresses the array indices in terms of statement iterators
2148 * We first reformulate "index" in terms of the AST loop iterators.
2149 * Then we check if we are accessing the global array or
2150 * a shared/private copy. In the former case, we simply return
2151 * the updated index. If "index" is an affine expression rather
2152 * than an array access, then we also return the updated index here.
2154 * If no reference groups have been computed for the array,
2155 * then we can only be accessing the global array.
2157 * Otherwise, we apply the tiling to the index.
2158 * This tiling is of the form
2160 * [D -> A] -> T
2162 * The index is of the form
2164 * L -> A
2166 * We update the tiling to refer to the AST loop iterators
2168 * [L -> A] -> T
2170 * and modify index to keep track of those iterators
2172 * L -> [L -> A]
2174 * Combining these two yields a tiled index expression in terms
2175 * of the AST loop iterators
2177 * L -> T
2179 static __isl_give isl_multi_pw_aff *transform_index(
2180 __isl_take isl_multi_pw_aff *index, __isl_keep isl_id *ref_id,
2181 void *user)
2183 struct ppcg_transform_data *data = user;
2184 struct gpu_stmt_access *access;
2185 struct gpu_array_ref_group *group;
2186 struct gpu_array_tile *tile;
2187 isl_pw_multi_aff *iterator_map;
2188 int i;
2189 const char *name;
2190 isl_space *space;
2191 isl_multi_pw_aff *tiling;
2192 isl_pw_multi_aff *pma;
2193 isl_multi_pw_aff *mpa;
2195 data->array = NULL;
2197 iterator_map = isl_pw_multi_aff_copy(data->iterator_map);
2198 index = isl_multi_pw_aff_pullback_pw_multi_aff(index, iterator_map);
2200 access = find_access(data->accesses, ref_id);
2201 if (!access)
2202 return index;
2203 if (!isl_map_has_tuple_name(access->access, isl_dim_out))
2204 return index;
2206 name = get_outer_array_name(access->access);
2207 i = find_array_index(data->gen, name);
2208 if (i < 0)
2209 isl_die(isl_multi_pw_aff_get_ctx(index), isl_error_internal,
2210 "cannot find array",
2211 return isl_multi_pw_aff_free(index));
2212 data->array = &data->gen->prog->array[i];
2213 data->local_array = &data->gen->kernel->array[i];
2215 group = find_ref_group(data->local_array, access);
2216 if (!group) {
2217 data->global = 1;
2218 return index;
2221 tile = group->private_tile;
2222 if (!tile)
2223 tile = group->shared_tile;
2224 data->global = !tile;
2225 if (!tile)
2226 return index;
2228 space = isl_space_range(isl_multi_pw_aff_get_space(index));
2229 space = isl_space_map_from_set(space);
2230 pma = isl_pw_multi_aff_identity(space);
2231 pma = isl_pw_multi_aff_product(
2232 isl_pw_multi_aff_copy(data->sched2shared), pma);
2233 tiling = isl_multi_pw_aff_from_multi_aff(
2234 isl_multi_aff_copy(tile->tiling));
2235 tiling = isl_multi_pw_aff_pullback_pw_multi_aff(tiling, pma);
2237 space = isl_space_domain(isl_multi_pw_aff_get_space(index));
2238 space = isl_space_map_from_set(space);
2239 mpa = isl_multi_pw_aff_identity(space);
2240 index = isl_multi_pw_aff_range_product(mpa, index);
2241 index = isl_multi_pw_aff_pullback_multi_pw_aff(tiling, index);
2243 return index;
2246 /* Dereference "expr" by adding an index [0].
2247 * The original "expr" is assumed not to have any indices.
2249 * If "expr" is a member access, then the dereferencing needs
2250 * to be applied to the structure argument of this member access.
2252 static __isl_give isl_ast_expr *dereference(__isl_take isl_ast_expr *expr)
2254 isl_ctx *ctx;
2255 isl_ast_expr *arg0, *res;
2256 isl_ast_expr_list *list;
2258 arg0 = isl_ast_expr_get_op_arg(expr, 0);
2259 if (!arg0)
2260 return isl_ast_expr_free(expr);
2261 if (isl_ast_expr_get_type(arg0) == isl_ast_expr_op &&
2262 isl_ast_expr_get_op_type(arg0) == isl_ast_op_member) {
2263 isl_ast_expr *arg;
2265 arg = isl_ast_expr_get_op_arg(arg0, 0);
2266 arg = dereference(arg);
2267 arg0 = isl_ast_expr_set_op_arg(arg0, 0, arg);
2268 expr = isl_ast_expr_set_op_arg(expr, 0, arg0);
2270 return expr;
2272 isl_ast_expr_free(arg0);
2274 ctx = isl_ast_expr_get_ctx(expr);
2275 res = isl_ast_expr_from_val(isl_val_zero(ctx));
2276 list = isl_ast_expr_list_from_ast_expr(res);
2277 res = isl_ast_expr_get_op_arg(expr, 0);
2278 res = isl_ast_expr_access(res, list);
2279 isl_ast_expr_free(expr);
2281 return res;
2284 /* Linearize the index expression "expr" based on the array bounds
2285 * of "array".
2287 * That is, transform expression
2289 * A[i_0][i_1]...[i_n]
2291 * to
2293 * A[(..((i_0 * b_1 + i_1) ... ) * b_n + i_n]
2295 * where b_0, b_1, ..., b_n are the bounds on the array.
2297 * If the base of "expr" is a member access, then the linearization needs
2298 * to be applied to the structure argument of this member access.
2300 * In the base case, if "expr" has no arguments (other than the name of
2301 * the array), then we are passing an entire array to a function.
2302 * In this case, there is nothing to linearize.
2303 * Note that at this point an expression with no arguments can
2304 * only be an entire array because the scalar case and
2305 * the case of single struct are handled by the caller.
2307 * If the number of specified index expressions in "expr"
2308 * is smaller than the dimension of the accessed array,
2309 * then the missing i_j also do not appear in the linearized expression.
2310 * Furthermore, since such an expression does not refer to a single
2311 * element while the default linearized expression would refer to
2312 * a single element, we return the expression
2314 * A + (..((i_0 * b_1 + i_1) ... ) * b_n]
2316 * instead. Note that because of the special case handling above,
2317 * we can assume here that here that there is at least one index expression.
2319 __isl_give isl_ast_expr *gpu_local_array_info_linearize_index(
2320 struct gpu_local_array_info *array, __isl_take isl_ast_expr *expr)
2322 int i, n;
2323 isl_ctx *ctx;
2324 isl_set *context;
2325 isl_ast_expr *arg0;
2326 isl_ast_expr *res;
2327 isl_ast_expr_list *list;
2328 isl_ast_build *build;
2330 arg0 = isl_ast_expr_get_op_arg(expr, 0);
2331 if (isl_ast_expr_get_type(arg0) == isl_ast_expr_op &&
2332 isl_ast_expr_get_op_type(arg0) == isl_ast_op_member) {
2333 isl_ast_expr *arg;
2335 arg = isl_ast_expr_get_op_arg(arg0, 0);
2336 arg = gpu_local_array_info_linearize_index(array, arg);
2337 arg0 = isl_ast_expr_set_op_arg(arg0, 0, arg);
2338 expr = isl_ast_expr_set_op_arg(expr, 0, arg0);
2340 return expr;
2342 isl_ast_expr_free(arg0);
2344 if (isl_ast_expr_get_op_n_arg(expr) == 1)
2345 return expr;
2347 ctx = isl_ast_expr_get_ctx(expr);
2348 context = isl_set_universe(isl_space_params_alloc(ctx, 0));
2349 build = isl_ast_build_from_context(context);
2351 n = isl_ast_expr_get_op_n_arg(expr);
2352 res = isl_ast_expr_get_op_arg(expr, 1);
2353 for (i = 1; i < array->n_index; ++i) {
2354 isl_pw_aff *bound_i;
2355 isl_ast_expr *expr_i;
2357 bound_i = isl_pw_aff_list_get_pw_aff(array->bound, i);
2358 expr_i = isl_ast_build_expr_from_pw_aff(build, bound_i);
2359 res = isl_ast_expr_mul(res, expr_i);
2361 if (i + 1 >= n)
2362 continue;
2363 expr_i = isl_ast_expr_get_op_arg(expr, i + 1);
2364 res = isl_ast_expr_add(res, expr_i);
2367 isl_ast_build_free(build);
2369 if (1 + array->n_index > n) {
2370 res = isl_ast_expr_add(isl_ast_expr_get_op_arg(expr, 0), res);
2371 } else {
2372 list = isl_ast_expr_list_from_ast_expr(res);
2373 res = isl_ast_expr_get_op_arg(expr, 0);
2374 res = isl_ast_expr_access(res, list);
2377 isl_ast_expr_free(expr);
2379 return res;
2382 /* AST expression transformation callback for pet_stmt_build_ast_exprs.
2384 * If the AST expression refers to an array that is not accessed
2385 * at all, then this means the value of the expression is not used,
2386 * so we might as well print zero (NULL pointer) instead.
2388 * If the AST expression refers to a global scalar that is not
2389 * a read-only scalar, then its address was passed to the kernel and
2390 * we need to dereference it.
2392 * If the AST expression refers to an access to a global array,
2393 * then we linearize the access exploiting the bounds in data->local_array.
2395 static __isl_give isl_ast_expr *transform_expr(__isl_take isl_ast_expr *expr,
2396 __isl_keep isl_id *id, void *user)
2398 struct ppcg_transform_data *data = user;
2400 if (!data->array)
2401 return expr;
2402 if (!data->array->accessed) {
2403 isl_ctx *ctx;
2405 ctx = isl_ast_expr_get_ctx(expr);
2406 isl_ast_expr_free(expr);
2407 return isl_ast_expr_from_val(isl_val_zero(ctx));
2409 if (gpu_array_is_read_only_scalar(data->array))
2410 return expr;
2411 if (!data->global)
2412 return expr;
2413 if (data->array->n_index == 0)
2414 return dereference(expr);
2415 if (!data->array->linearize)
2416 return expr;
2418 return gpu_local_array_info_linearize_index(data->local_array, expr);
2421 /* This function is called for each instance of a user statement
2422 * in the kernel.
2424 * We attach a struct ppcg_kernel_stmt to the "node", containing
2425 * a computed AST expression for each access.
2426 * These AST expressions are computed from iterator_map,
2427 * which expresses the domain
2428 * elements in terms of the generated loops, and sched2shared,
2429 * which expresses the first shared_len dimensions of the schedule
2430 * computed by PPCG in terms of the generated loops.
2432 static __isl_give isl_ast_node *at_each_domain(__isl_take isl_ast_node *node,
2433 __isl_keep isl_ast_build *build, void *user)
2435 struct ppcg_transform_data data;
2436 struct gpu_gen *gen = (struct gpu_gen *) user;
2437 struct ppcg_kernel_stmt *stmt;
2438 isl_id *id;
2439 isl_pw_multi_aff *sched2shared;
2440 isl_map *map;
2441 isl_pw_multi_aff *iterator_map;
2442 isl_ast_expr *expr, *arg;
2443 isl_union_map *schedule;
2445 stmt = isl_calloc_type(gen->ctx, struct ppcg_kernel_stmt);
2446 if (!stmt)
2447 return isl_ast_node_free(node);
2449 expr = isl_ast_node_user_get_expr(node);
2450 arg = isl_ast_expr_get_op_arg(expr, 0);
2451 id = isl_ast_expr_get_id(arg);
2453 schedule = isl_ast_build_get_schedule(build);
2454 map = isl_map_reverse(isl_map_from_union_map(schedule));
2455 iterator_map = isl_pw_multi_aff_from_map(map);
2456 sched2shared = compute_sched_to_shared(gen,
2457 isl_pw_multi_aff_copy(iterator_map));
2459 stmt->type = ppcg_kernel_domain;
2460 stmt->u.d.stmt = find_stmt(gen->prog, id);
2461 if (!stmt->u.d.stmt)
2462 isl_die(gen->ctx, isl_error_internal,
2463 "statement not found", goto error);
2465 data.gen = gen;
2466 data.accesses = stmt->u.d.stmt->accesses;
2467 data.iterator_map = iterator_map;
2468 data.sched2shared = sched2shared;
2469 stmt->u.d.ref2expr = pet_stmt_build_ast_exprs(stmt->u.d.stmt->stmt,
2470 build, &transform_index, &data,
2471 &transform_expr, &data);
2473 isl_id_free(id);
2474 isl_pw_multi_aff_free(iterator_map);
2475 isl_pw_multi_aff_free(sched2shared);
2476 isl_ast_expr_free(arg);
2477 isl_ast_expr_free(expr);
2479 id = isl_id_alloc(gen->ctx, NULL, stmt);
2480 id = isl_id_set_free_user(id, &ppcg_kernel_stmt_free);
2481 return isl_ast_node_set_annotation(node, id);
2482 error:
2483 isl_id_free(id);
2484 isl_pw_multi_aff_free(iterator_map);
2485 ppcg_kernel_stmt_free(stmt);
2486 isl_pw_multi_aff_free(sched2shared);
2487 return isl_ast_node_free(node);
2490 /* This function is called when code has been generated for the shared
2491 * tile loops. The "schedule" refers only to the original statements.
2493 * We extend the schedule with that part of gen->local_sched that hasn't
2494 * been taken into account yet. This introduces parameters referring
2495 * to thread ids in the schedule, so we add them (with the appropriate
2496 * bounds to the context as well).
2497 * Finally, we set the appropriate unrolling options
2498 * if gen->first_unroll is set.
2500 static __isl_give isl_ast_node *create_domain_leaf(
2501 __isl_take isl_union_map *schedule, __isl_take isl_ast_build *build,
2502 void *user)
2504 struct gpu_gen *gen = (struct gpu_gen *) user;
2505 isl_space *space;
2506 isl_union_map *sched;
2507 isl_ast_node *tree;
2508 isl_set *set;
2509 isl_id_list *iterators;
2510 int n;
2512 schedule = extend_schedule(schedule,
2513 isl_union_map_copy(gen->local_sched),
2514 gen->shared_len, gen->thread_tiled_len);
2516 space = isl_ast_build_get_schedule_space(build);
2517 set = isl_set_universe(space);
2518 set = add_bounded_parameters(set, gen->kernel->block_dim,
2519 gen->kernel->thread_ids);
2520 build = isl_ast_build_restrict(build, set);
2522 n = gen->thread_tiled_len - gen->shared_len;
2524 if (gen->first_unroll >= 0) {
2525 space = isl_space_set_alloc(gen->ctx, 0, n);
2526 build = set_unroll(build, space, gen->first_unroll);
2528 iterators = ppcg_scop_generate_names(gen->prog->scop, n, "c");
2529 build = isl_ast_build_set_iterators(build, iterators);
2530 build = isl_ast_build_set_at_each_domain(build, &at_each_domain, gen);
2531 tree = isl_ast_build_node_from_schedule_map(build, schedule);
2532 isl_ast_build_free(build);
2534 return tree;
2537 /* This function is called for each statement node in the AST of the code
2538 * for copying to or from shared/private memory.
2539 * Attach a pointer to a ppcg_kernel_stmt representing the copy
2540 * statement to the node.
2541 * The statement name is "read" or "write", depending on whether we are
2542 * reading from global memory or writing to global memory.
2543 * The name of the T space is {shared,private}_<array>.
2545 * The schedule is of the form
2547 * type[A -> T] -> L
2549 * where A refers to a piece of an array and T to the corresponding
2550 * shifted tile. We split this schedule into mappings L -> A and L -> T
2551 * and store the corresponding expressions in stmt->index and stmt->local_index,
2552 * where stmt points to the ppcg_kernel_stmt that is attached to the node.
2554 static __isl_give isl_ast_node *attach_copy_stmt(__isl_take isl_ast_node *node,
2555 __isl_keep isl_ast_build *build, void *user)
2557 struct gpu_gen *gen = (struct gpu_gen *) user;
2558 struct ppcg_kernel_stmt *stmt;
2559 isl_id *id;
2560 isl_ast_expr *expr;
2561 isl_space *space;
2562 isl_map *access, *local_access, *map;
2563 isl_pw_multi_aff *pma;
2564 const char *type;
2565 int array_index;
2567 stmt = isl_calloc_type(gen->ctx, struct ppcg_kernel_stmt);
2568 if (!stmt)
2569 return isl_ast_node_free(node);
2571 access = isl_map_from_union_map(isl_ast_build_get_schedule(build));
2572 type = isl_map_get_tuple_name(access, isl_dim_in);
2573 stmt->u.c.read = !strcmp(type, "read");
2574 access = isl_map_reverse(access);
2575 space = isl_space_unwrap(isl_space_range(isl_map_get_space(access)));
2576 local_access = isl_map_copy(access);
2578 map = isl_map_domain_map(isl_map_universe(isl_space_copy(space)));
2579 id = isl_map_get_tuple_id(access, isl_dim_out);
2580 map = isl_map_set_tuple_id(map, isl_dim_in, id);
2581 access = isl_map_apply_range(access, map);
2582 pma = isl_pw_multi_aff_from_map(access);
2583 expr = isl_ast_build_access_from_pw_multi_aff(build, pma);
2584 stmt->u.c.index = expr;
2586 map = isl_map_range_map(isl_map_universe(space));
2587 id = isl_map_get_tuple_id(local_access, isl_dim_out);
2588 map = isl_map_set_tuple_id(map, isl_dim_in, id);
2589 local_access = isl_map_apply_range(local_access, map);
2590 pma = isl_pw_multi_aff_from_map(local_access);
2591 expr = isl_ast_build_access_from_pw_multi_aff(build, pma);
2592 stmt->u.c.local_index = expr;
2594 stmt->u.c.array = gen->copy_group->array;
2595 array_index = stmt->u.c.array - gen->prog->array;
2596 stmt->u.c.local_array = &gen->kernel->array[array_index];
2597 stmt->type = ppcg_kernel_copy;
2599 id = isl_id_alloc(gen->ctx, NULL, stmt);
2600 id = isl_id_set_free_user(id, &ppcg_kernel_stmt_free);
2601 return isl_ast_node_set_annotation(node, id);
2604 /* Given a schedule of the form
2606 * [S -> A] -> L
2608 * (with S the first shared_len dimensions of the computed schedule,
2609 * A the array and L the schedule correponding to the generated loops),
2610 * indicating where to copy the array elements that need to be copied,
2611 * construct code for performing the copying.
2613 * "group" is the array reference group that is being copied
2614 * "type" is either "read" or "write"
2615 * private is set if copying needs to be performed to/from registers
2617 * We first construct a mapping to a shifted tile of the array,
2619 * [S -> A] -> T(S,A) (1)
2621 * If private is set, then we also use this mapping as a schedule
2622 * (which is already thread-specific and will be completely unrolled).
2623 * Otherwise, we wrap/tile the range over the threads.
2624 * The result is
2626 * [S -> A] -> T'(S,A)
2628 * Combined with the given schedule, we have
2630 * [S -> A] -> [L -> T'(S,A)] (2)
2632 * From the shifted tile mapping, we construct a mapping
2634 * [S -> A] -> [A -> T(S,A)]
2636 * and apply it to the schedule (2), obtaining
2638 * [A -> T(S(L),A)] -> [L -> T'(S(L),A)]
2640 * Note that we can project out S because it is uniquely defined by L.
2642 static __isl_give isl_ast_node *copy_access(struct gpu_gen *gen,
2643 __isl_take isl_map *sched,
2644 const char *type, struct gpu_array_ref_group *group,
2645 __isl_take isl_ast_build *build, int private)
2647 isl_space *space;
2648 isl_ast_node *tree;
2649 isl_map *schedule, *shift, *map;
2650 isl_set *set;
2651 isl_id_list *iterators;
2652 int n;
2654 shift = shift_access(group);
2656 schedule = isl_map_copy(shift);
2657 schedule = isl_map_reset_tuple_id(schedule, isl_dim_out);
2658 if (!private)
2659 schedule = tile_access_schedule(gen, schedule);
2661 n = isl_map_dim(schedule, isl_dim_out);
2662 set = isl_set_universe(isl_ast_build_get_schedule_space(build));
2663 set = add_bounded_parameters(set, gen->kernel->block_dim,
2664 gen->kernel->thread_ids);
2666 schedule = isl_map_range_product(sched, schedule);
2668 space = isl_space_domain(isl_map_get_space(shift));
2669 map = isl_map_range_map(isl_map_universe(isl_space_unwrap(space)));
2670 map = isl_map_range_product(map, shift);
2672 schedule = isl_map_apply_domain(schedule, map);
2674 schedule = isl_map_set_tuple_name(schedule, isl_dim_in, type);
2676 build = isl_ast_build_restrict(build, set);
2678 gen->copy_group = group;
2680 if (private) {
2681 space = isl_space_range(isl_map_get_space(schedule));
2682 space = isl_space_range(isl_space_unwrap(space));
2683 build = set_unroll(build, space, 0);
2685 iterators = ppcg_scop_generate_names(gen->prog->scop, n, "c");
2686 build = isl_ast_build_set_iterators(build, iterators);
2687 build = isl_ast_build_set_at_each_domain(build, &attach_copy_stmt, gen);
2688 tree = isl_ast_build_node_from_schedule_map(build,
2689 isl_union_map_from_map(schedule));
2690 isl_ast_build_free(build);
2692 return tree;
2695 /* Return code for reading into or writing from shared memory
2696 * the given array reference group.
2698 * If we are performing a read from global memory to shared memory and
2699 * if the array involved is not a scalar, then we copy
2700 * the entire tile to shared memory. This may result in some extra
2701 * elements getting copied, but it should lead to simpler code
2702 * (which means that fewer registers may be needed) and less divergence.
2704 * Otherwise, we only copy the elements that will be read or have been written
2705 * in the kernel.
2708 * The input "sched" is of the form.
2710 * type[S -> A] -> L
2712 * with S the first shared_len dimensions of the computed schedule,
2713 * A the array and L the schedule correponding to the generated loops.
2715 * We first drop "type",
2717 * [S -> A] -> L
2719 * If the above conditions are satisfied, we project out A,
2720 * resulting in
2722 * S -> L
2724 * and then introduce the group tile [S -> T], resulting in
2726 * [S -> T] -> L
2728 static __isl_give isl_ast_node *copy_group_shared_accesses(
2729 struct gpu_gen *gen, struct gpu_array_ref_group *group,
2730 __isl_take isl_map *sched, __isl_take isl_ast_build *build)
2732 const char *type;
2733 int read;
2734 isl_union_map *access;
2736 type = isl_map_get_tuple_name(sched, isl_dim_in);
2737 read = !strcmp(type, "read");
2739 sched = isl_map_reset_tuple_id(sched, isl_dim_in);
2741 if (read && !gpu_array_is_scalar(group->array)) {
2742 isl_space *space;
2743 isl_map *map;
2745 space = isl_space_domain(isl_map_get_space(sched));
2746 space = isl_space_unwrap(space);
2747 map = isl_map_domain_map(isl_map_universe(space));
2748 sched = isl_map_apply_domain(sched, map);
2750 map = group_tile(group);
2751 map = isl_map_reverse(isl_map_domain_map(map));
2752 sched = isl_map_apply_domain(sched, map);
2755 return copy_access(gen, sched, type, group, build, 0);
2758 /* Return code for reading into or writing from private memory
2759 * the given array reference group.
2761 * Let S be the first shared_len dimensions of the computed schedule,
2762 * D the iteration domains, A the array and L the schedule correponding
2763 * to the generated loops.
2764 * "sched" is of the form
2766 * type[S -> A] -> L
2768 * where type is either "read" or "write".
2769 * We apply the privatization D -> S(t), with t the thread ids,
2770 * to the access relation D -> A to obtain the privatized access relation
2772 * S(t) -> A
2774 * We drop the type from "sched" and intersect with the privatized access
2775 * relation to obtain
2777 * [S(t) -> A] -> L
2779 static __isl_give isl_ast_node *copy_group_private_accesses(
2780 struct gpu_gen *gen, struct gpu_array_ref_group *group,
2781 __isl_take isl_map *sched, __isl_take isl_ast_build *build)
2783 const char *type;
2784 int read;
2785 isl_union_map *priv;
2786 isl_union_map *access;
2787 isl_map *access_map;
2789 type = isl_map_get_tuple_name(sched, isl_dim_in);
2790 read = !strcmp(type, "read");
2792 priv = isl_union_map_from_map(isl_map_copy(gen->privatization));
2793 priv = isl_union_map_apply_range(isl_union_map_copy(gen->shared_sched),
2794 priv);
2796 access = gpu_array_ref_group_access_relation(group, read, !read);
2797 access = isl_union_map_apply_domain(access, priv);
2798 access_map = isl_map_from_union_map(access);
2800 sched = isl_map_reset_tuple_id(sched, isl_dim_in);
2801 sched = isl_map_intersect_domain(sched, isl_map_wrap(access_map));
2803 return copy_access(gen, sched, type, group, build, 1);
2806 /* Return code for reading into or writing from shared or private memory.
2808 * "schedule" is of the form
2810 * type[S -> A] -> L
2812 * with S be the first shared_len dimensions of the computed schedule,
2813 * A the array and L the schedule correponding to the generated loops.
2814 * The array reference group is attached to "type".
2816 static __isl_give isl_ast_node *create_access_leaf(
2817 struct gpu_gen *gen, __isl_take isl_map *schedule,
2818 __isl_take isl_ast_build *build)
2820 struct gpu_array_ref_group *group;
2821 isl_id *id;
2823 id = isl_map_get_tuple_id(schedule, isl_dim_in);
2824 group = isl_id_get_user(id);
2825 isl_id_free(id);
2827 if (group->private_tile)
2828 return copy_group_private_accesses(gen, group, schedule,
2829 build);
2830 else
2831 return copy_group_shared_accesses(gen, group, schedule,
2832 build);
2835 /* Create a domain node representing a synchronization.
2837 static __isl_give isl_ast_node *create_sync_leaf(
2838 struct gpu_gen *gen, __isl_take isl_map *schedule,
2839 __isl_take isl_ast_build *build)
2841 struct ppcg_kernel_stmt *stmt;
2842 isl_id *id;
2843 isl_space *space;
2844 isl_ast_node *node;
2845 isl_ast_expr *expr;
2847 isl_map_free(schedule);
2849 stmt = isl_calloc_type(gen->ctx, struct ppcg_kernel_stmt);
2850 if (!stmt)
2851 return NULL;
2853 stmt->type = ppcg_kernel_sync;
2855 space = isl_ast_build_get_schedule_space(build);
2856 space = isl_space_from_domain(space);
2857 space = isl_space_set_tuple_name(space, isl_dim_out, "sync");
2858 expr = isl_ast_build_call_from_pw_multi_aff(build,
2859 isl_pw_multi_aff_from_multi_aff(isl_multi_aff_zero(space)));
2860 node = isl_ast_node_alloc_user(expr);
2861 isl_ast_build_free(build);
2863 id = isl_id_alloc(gen->ctx, NULL, stmt);
2864 id = isl_id_set_free_user(id, &ppcg_kernel_stmt_free);
2865 return isl_ast_node_set_annotation(node, id);
2868 /* This function is called during the code generation at the point
2869 * where the schedule domain element is completely determined by
2870 * the generated code. The input schedule contains the original
2871 * statements as well as synchronization and copy "statements".
2872 * The latter are scheduled at different points than any of the original
2873 * statements, so they will only arrive here in isolation.
2875 * If the current schedule only refers to a single statement,
2876 * we check if it is a copy or synchronization statement and
2877 * call the appropriate functions.
2878 * Otherwise, we assume we are dealing with the original statements
2879 * and we call create_domain_leaf.
2881 static __isl_give isl_ast_node *create_kernel_leaf(
2882 __isl_take isl_ast_build *build, void *user)
2884 struct gpu_gen *gen = (struct gpu_gen *) user;
2885 isl_map *map;
2886 isl_union_map *schedule;
2887 const char *name;
2889 schedule = isl_ast_build_get_schedule(build);
2891 if (isl_union_map_n_map(schedule) != 1)
2892 return create_domain_leaf(schedule, build, user);
2894 map = isl_map_from_union_map(schedule);
2895 name = isl_map_get_tuple_name(map, isl_dim_in);
2896 if (!strcmp(name, "read") || !strcmp(name, "write"))
2897 return create_access_leaf(gen, map, build);
2898 if (!strcmp(name, "sync"))
2899 return create_sync_leaf(gen, map, build);
2901 return create_domain_leaf(isl_union_map_from_map(map), build, user);
2904 /* Mark all odd schedule dimensions as "atomic" (when the even dimensions
2905 * have value 0) and all even schedule dimensions as "unroll".
2907 * That is, the options look as follows
2909 * { [0, b, 0, d, ..., 0] -> atomic[i] : exists a : i = 2 a + 1;
2910 * [a, b, c, d, ..., z] -> unroll[i] : exists a : i = 2 a }
2912 * The even positions are used to be able to schedule copying blocks
2913 * and synchronization before or after each level of the shared memory
2914 * tile loops and we want to make sure that code for these is generated
2915 * separately (within each level).
2917 static __isl_give isl_ast_build *set_atomic_and_unroll(
2918 __isl_take isl_ast_build *build,
2919 __isl_take isl_space *space, int sched_len)
2921 isl_ctx *ctx;
2922 isl_map *map;
2923 isl_constraint *c;
2924 isl_union_map *opt;
2925 isl_local_space *ls;
2926 int i, n;
2928 ctx = isl_ast_build_get_ctx(build);
2930 space = isl_space_params(space);
2931 space = isl_space_add_dims(space, isl_dim_set, sched_len);
2932 space = isl_space_from_domain(space);
2933 space = isl_space_add_dims(space, isl_dim_out, 2);
2934 map = isl_map_universe(isl_space_copy(space));
2935 for (i = 0; i < sched_len; i += 2)
2936 map = isl_map_fix_si(map, isl_dim_in, i, 0);
2937 ls = isl_local_space_from_space(isl_map_get_space(map));
2938 c = isl_equality_alloc(ls);
2939 c = isl_constraint_set_coefficient_si(c, isl_dim_out, 0, 1);
2940 c = isl_constraint_set_coefficient_si(c, isl_dim_out, 1, 2);
2941 c = isl_constraint_set_constant_si(c, 1);
2942 map = isl_map_add_constraint(map, c);
2943 map = isl_map_project_out(map, isl_dim_out, 1, 1);
2944 map = isl_map_set_tuple_name(map, isl_dim_out, "atomic");
2945 opt = isl_union_map_from_map(map);
2947 map = isl_map_universe(space);
2948 ls = isl_local_space_from_space(isl_map_get_space(map));
2949 c = isl_equality_alloc(ls);
2950 c = isl_constraint_set_coefficient_si(c, isl_dim_out, 0, 1);
2951 c = isl_constraint_set_coefficient_si(c, isl_dim_out, 1, 2);
2952 map = isl_map_add_constraint(map, c);
2953 map = isl_map_project_out(map, isl_dim_out, 1, 1);
2954 map = isl_map_set_tuple_name(map, isl_dim_out, "unroll");
2955 opt = isl_union_map_add_map(opt, map);
2957 build = isl_ast_build_set_options(build, opt);
2959 return build;
2962 /* Return a map that maps a space of dimension gen->shared_len
2963 * to its last dimensions starting at gen->tile_first.
2964 * The range is of dimension
2966 * 2 * (gen->shared_len - gen->tile_first) + 1
2968 * The input dimensions are mapped to the odd dimensions in the output,
2969 * while the even dimensions (except 2*pos) are fixed to 0.
2970 * Output dimension 2*pos (if pos >= 0) is fixed to "val".
2971 * If pos >= 0, then only the pos first dimensions starting at gen->tile_first
2972 * are mapped to the output. The remaining input dimensions are projected
2973 * out and the corresponding output dimensions are fixed to 0.
2975 static __isl_give isl_map *insert_even(struct gpu_gen *gen,
2976 __isl_take isl_space *space, int pos, int val)
2978 int i, n;
2979 isl_map *proj;
2981 space = isl_space_set_from_params(space);
2982 space = isl_space_add_dims(space, isl_dim_set, gen->shared_len);
2983 space = isl_space_map_from_set(space);
2984 proj = isl_map_identity(space);
2985 proj = isl_map_project_out(proj, isl_dim_out, 0, gen->tile_first);
2986 n = gen->shared_len - gen->tile_first;
2987 for (i = 0; i <= n; ++i) {
2988 proj = isl_map_insert_dims(proj, isl_dim_out, 2 * i, 1);
2989 if (i == pos)
2990 proj = isl_map_fix_si(proj, isl_dim_out, 2 * i, val);
2991 else
2992 proj = isl_map_fix_si(proj, isl_dim_out, 2 * i, 0);
2995 if (pos < 0)
2996 return proj;
2998 proj = isl_map_eliminate(proj, isl_dim_in, gen->tile_first + pos,
2999 gen->shared_len - (gen->tile_first + pos));
3000 for (i = pos; i < n; ++i)
3001 proj = isl_map_fix_si(proj, isl_dim_out, 2 * i + 1, 0);
3003 return proj;
3006 /* Given the AST context schedule "schedule" and the mapping from
3007 * domains to the shared tile loops "shared_sched", add a schedule
3008 * for a synchronization operation at position "val" of loop level "pos".
3010 * schedule is of the form
3012 * D -> L
3014 * (with D the iteration domains and L the already generated loops),
3015 * while shared_sched is of the form
3017 * D -> S
3019 * We combine them into
3021 * L -> S
3023 * apply a mapping
3025 * [s_0,...] -> [0,s_{tile_first},0,..., val, 0, 0, ... 0]
3027 * and use the result as a schedule for "sync".
3029 static __isl_give isl_union_map *add_sync_schedule(struct gpu_gen *gen,
3030 __isl_take isl_union_map *res, __isl_keep isl_union_map *schedule,
3031 __isl_keep isl_union_map *shared_sched, int pos, int val)
3033 isl_space *space;
3034 isl_map *proj, *map;
3036 shared_sched = isl_union_map_copy(shared_sched);
3037 schedule = isl_union_map_copy(schedule);
3039 space = isl_union_map_get_space(shared_sched);
3040 schedule = isl_union_map_apply_domain(shared_sched, schedule);
3041 map = isl_map_from_union_map(schedule);
3043 proj = insert_even(gen, space, pos, val);
3044 map = isl_map_apply_range(map, proj);
3045 map = isl_map_from_range(isl_map_wrap(map));
3046 map = isl_map_set_tuple_name(map, isl_dim_in, "sync");
3048 res = isl_union_map_add_map(res, map);
3050 return res;
3053 /* Given a set of wrapped references "ref", return the corresponding
3054 * access relations based on the tagged access relations "tagged".
3056 * The elements of "ref" are of the form
3058 * [D -> R]
3060 * with D an iteration domains and R a reference.
3061 * The elements of "tagged" are of the form
3063 * [D -> R] -> A
3065 * with A an array.
3067 * Extend "tagged" to include the iteration domain in the range, i.e.,
3069 * [D -> R] -> [D -> A]
3071 * apply the result to "ref" and then unwrap the resulting set
3072 * to obtain relations of the form
3074 * D -> A
3076 static __isl_give isl_union_map *wrapped_reference_to_access(
3077 __isl_take isl_union_set *ref, __isl_take isl_union_map *tagged)
3079 isl_union_map *tag2access;
3081 tag2access = isl_union_map_copy(tagged);
3082 tag2access = isl_union_map_universe(tag2access);
3083 tag2access = isl_union_set_unwrap(isl_union_map_domain(tag2access));
3084 tag2access = isl_union_map_domain_map(tag2access);
3085 tag2access = isl_union_map_range_product(tag2access, tagged);
3087 ref = isl_union_set_coalesce(ref);
3088 ref = isl_union_set_apply(ref, tag2access);
3090 return isl_union_set_unwrap(ref);
3093 /* Given an access relation "access" from "group", remove those reads
3094 * if ("read" is 1) or writes (if "read" is 0) that are only needed to
3095 * communicate data within the same iteration of the last_shared dimension
3096 * of the group.
3098 * If the access is a read then it is either an element of
3100 * live_in union (range flow)
3102 * where live_in and flow may be overapproximations, or
3103 * it reads an uninitialized value (that is not live-in because
3104 * there is an intermediate kill) or it reads a value that was
3105 * written within the same (compound) statement instance.
3106 * If the access is a write then it is either an element of
3108 * live_out union (domain flow)
3110 * or it writes a value that is never read (and is not live-out
3111 * because of an intermediate kill) or only
3112 * within the same (compound) statement instance.
3113 * In both cases, the access relation is also a subset of
3114 * the group access relation.
3116 * The cases where an uninitialized value is read or a value is written
3117 * that is never read or where the dataflow occurs within a statement
3118 * instance are also considered local and may also be removed.
3120 * Essentially, we compute the intersection of "access" with either
3122 * live_in union (range non-local-flow)
3124 * or
3126 * live_out union (domain non-local-flow)
3128 * We first construct a relation "local"
3130 * [[D -> R] -> [D' -> R']]
3132 * of pairs of domain iterations accessing the reference group
3133 * and references in the group that are scheduled to the same iteration
3134 * of the last_shared dimension.
3136 * If this relation does not intersect the dataflow dependences,
3137 * then there is nothing we can possibly remove, unless the dataflow
3138 * dependences themselves only relate a subset of the accesses.
3139 * In particular, the accesses may not be involved in any dataflow
3140 * dependences, either because they are uninitialized reads/dead writes
3141 * or because the dataflow occurs inside a statement instance.
3143 * Since the computation below may break up the access relation
3144 * into smaller pieces, we only perform the intersection with
3145 * the non-local dependent accesses if the local pairs
3146 * intersect the dataflow dependences. Otherwise, we intersect
3147 * with the universe of the non-local dependent accesses.
3148 * This should at least remove accesses from statements that
3149 * do not participate in any dependences.
3151 * In particular, we remove the "local" dataflow dependences from
3152 * the set of all dataflow dependences.
3153 * Note that if the potential dataflow dependences are an overapproximation
3154 * of the actual dataflow dependences, then the result remains an
3155 * overapproximation of the non-local dataflow dependences.
3156 * Copying to/from global memory is only needed for the references
3157 * in the domain/range of the result or for accesses that are live out/in
3158 * for the entire scop.
3160 * We therefore map the domain/range of the "external" relation
3161 * to the corresponding access relation and take the union with
3162 * the live out/in relation.
3164 static __isl_give isl_union_map *remove_local_accesses(struct gpu_gen *gen,
3165 struct gpu_array_ref_group *group, __isl_take isl_union_map *access,
3166 int read)
3168 int empty;
3169 isl_union_pw_multi_aff *tagger;
3170 isl_union_set *domain;
3171 isl_space *space;
3172 isl_union_map *sched, *local, *tagged, *external;
3173 isl_union_set *tag_set;
3174 isl_map *proj;
3176 if (isl_union_map_is_empty(access))
3177 return access;
3179 tagged = group_tagged_access_relation(group);
3181 sched = isl_union_map_copy(gen->sched);
3183 space = isl_union_map_get_space(sched);
3184 proj = projection(space, gen->untiled_len, group->last_shared + 1);
3185 sched = isl_union_map_apply_range(sched, isl_union_map_from_map(proj));
3187 tagger = isl_union_pw_multi_aff_copy(gen->prog->scop->tagger);
3188 domain = isl_union_map_domain(isl_union_map_copy(tagged));
3189 tagger = isl_union_pw_multi_aff_intersect_domain(tagger, domain);
3190 sched = isl_union_map_preimage_domain_union_pw_multi_aff(sched, tagger);
3192 local = isl_union_map_apply_range(sched,
3193 isl_union_map_reverse(isl_union_map_copy(sched)));
3194 local = isl_union_map_intersect(local,
3195 isl_union_map_copy(gen->prog->scop->tagged_dep_flow));
3197 empty = isl_union_map_is_empty(local);
3199 external = isl_union_map_copy(gen->prog->scop->tagged_dep_flow);
3200 external = isl_union_map_intersect_params(external,
3201 isl_set_copy(gen->prog->scop->context));
3202 external = isl_union_map_subtract(external, local);
3204 if (read) {
3205 tag_set = isl_union_map_range(external);
3206 external = wrapped_reference_to_access(tag_set, tagged);
3207 external = isl_union_map_union(external,
3208 isl_union_map_copy(gen->prog->scop->live_in));
3209 } else {
3210 tag_set = isl_union_map_domain(external);
3211 external = wrapped_reference_to_access(tag_set, tagged);
3212 external = isl_union_map_union(external,
3213 isl_union_map_copy(gen->prog->scop->live_out));
3216 if (empty < 0)
3217 external = isl_union_map_free(external);
3218 else if (empty)
3219 external = isl_union_map_universe(external);
3221 access = isl_union_map_intersect(access, external);
3223 return access;
3226 /* Given the AST context schedule "schedule" and the mapping from
3227 * domains to the shared tile loops "shared_sched", add a schedule
3228 * for copying an array reference group to/from shared/private memory.
3229 * "read" is set if data should be copied from global memory
3230 * to shared/private memory.
3231 * "k" represents the current group
3232 * "s" is the total number of groups
3234 * We schedule an operation before or after the innermost loop
3235 * of "shared_sched" that affects the tile of the array reference group.
3237 * schedule is of the form
3239 * D -> L
3241 * (with D the iteration domains and L the already generated loops),
3242 * while shared_sched is of the form
3244 * D -> S
3246 * We first compute the access relation for the reference group
3248 * D -> A
3250 * and remove from this access relation those reads or writes
3251 * that only needed to communicate data within the same iteration
3252 * of the last_shared dimension of the group.
3253 * We then combine what is left with shared_sched into
3255 * D -> [S -> A]
3257 * If this results in an empty relation, no copying needs to be performed
3258 * at this point.
3259 * Otherwise, we invert the relation and combine it with "schedule" into
3261 * [S -> A] -> L
3263 * The actual additional piece of the schedule is obtained from combining
3265 * [S -> A] -> S
3267 * with a mapping
3269 * [s_0,...] -> [0,s_{tile_first},0,..., val, 0, 0, ... 0]
3271 * The position of "val" corresponds to the innermost loop that affects
3272 * the tile and the value indicates where the copying is scheduled
3273 * with respect to the actual kernel code (at value 0).
3274 * Reads are schedule before the code, writes to global memory from
3275 * private memory are scheduled at values 1 to s, writes to global
3276 * memory from shared memory are scheduled at values s + 2 to 2 * s + 1.
3278 * If we are scheduling a read from global memory to shared memory,
3279 * we insert a synchronization before the kernel code (at the innermost
3280 * level).
3281 * If we are scheduling a write to global memory, then we add
3282 * a synchronization after all writes (at value 2 *s + 2).
3283 * However, there is no need for a synchronization after the outermost loop.
3284 * A write to global memory from private memory at the innermost level
3285 * does not require a synchronization, because it is covered by
3286 * the synchronization after the kernel inserted by body_schedule.
3288 static __isl_give isl_union_map *add_group_schedule(struct gpu_gen *gen,
3289 __isl_take isl_union_map *res, __isl_keep isl_union_map *schedule,
3290 __isl_keep isl_union_map *shared_sched,
3291 struct gpu_array_ref_group *group, int read, int k, int s)
3293 int n;
3294 int pos, val;
3295 isl_space *space;
3296 isl_union_map *access;
3297 isl_map *map, *proj, *access_map;
3298 isl_id *id;
3300 access = gpu_array_ref_group_access_relation(group, read, !read);
3301 access = remove_local_accesses(gen, group, access, read);
3302 access = isl_union_map_range_product(isl_union_map_copy(shared_sched),
3303 access);
3305 if (isl_union_map_is_empty(access)) {
3306 isl_union_map_free(access);
3307 return res;
3310 access = isl_union_map_reverse(access);
3311 access = isl_union_map_apply_range(access,
3312 isl_union_map_copy(schedule));
3313 access_map = isl_map_from_union_map(access);
3315 space = isl_space_copy(group->array->space);
3316 space = isl_space_from_range(space);
3317 space = isl_space_add_dims(space, isl_dim_in, gen->shared_len);
3318 map = isl_map_domain_map(isl_map_universe(space));
3320 space = isl_union_map_get_space(schedule);
3321 pos = group->last_shared + 1 - gen->tile_first;
3322 assert(pos >= 0);
3323 if (read)
3324 val = -2 - k;
3325 else if (group->private_tile)
3326 val = 1 + k;
3327 else
3328 val = 1 + s + 1 + k;
3329 proj = insert_even(gen, space, pos, val);
3330 map = isl_map_apply_range(map, proj);
3332 access_map = isl_map_range_product(access_map, map);
3334 id = isl_id_alloc(gen->ctx, read ? "read" : "write", group);
3335 access_map = isl_map_set_tuple_id(access_map, isl_dim_in, id);
3337 res = isl_union_map_add_map(res, access_map);
3339 n = gen->shared_len - gen->tile_first;
3340 if (read) {
3341 if (!group->private_tile)
3342 res = add_sync_schedule(gen, res, schedule,
3343 shared_sched, n, -1);
3344 } else {
3345 if (pos == 0)
3346 return res;
3347 if (pos == n && group->private_tile)
3348 return res;
3349 res = add_sync_schedule(gen, res, schedule, shared_sched,
3350 pos, 2 * s + 2);
3353 return res;
3356 /* Return a schedule for the shared tile loops based on the current
3357 * AST context schedule.
3359 * We create a "shared_sched" that maps the domains to the first
3360 * shared_len dimensions of the computed schedule, project out the
3361 * first tile_first dimensions (as these are already covered by
3362 * the host code) and insert "statement-level" dimensions at even
3363 * positions so that we can schedule copy blocks and synchronization
3364 * before/after each level.
3366 * In particular, copy blocks are inserted inside the innermost
3367 * level that affect the tile. For the copying to global memory,
3368 * those from private memory are scheduled before those from shared
3369 * memory such that synchronization can be inserted between the two
3370 * at the innermost level.
3371 * Synchronization is inserted at the innermost level before the
3372 * actual kernel code if there is any copying from global memory
3373 * to shared memory. It is inserted unconditionally at the innermost
3374 * level after the actual kernel code and the copying to global memory
3375 * from private memory (if any). Finally, it is inserted after
3376 * any copying to global memory, except at the outermost level
3377 * and at the innermost level if there is no copying from shared
3378 * memory. The copying from private memory is covered by the unconditional
3379 * synchronization at the innermost level.
3381 static __isl_give isl_union_map *body_schedule(struct gpu_gen *gen,
3382 __isl_take isl_union_map *schedule)
3384 isl_space *space;
3385 isl_union_map *res;
3386 isl_union_map *shared_sched;
3387 isl_union_map *sched;
3388 isl_map *proj, *map;
3389 int i, j, k, s;
3391 shared_sched = isl_union_map_copy(gen->tiled_sched);
3392 proj = projection(isl_union_map_get_space(shared_sched),
3393 gen->tiled_len, gen->shared_len);
3394 shared_sched = isl_union_map_apply_range(shared_sched,
3395 isl_union_map_from_map(proj));
3396 space = isl_union_map_get_space(shared_sched);
3397 proj = insert_even(gen, space, -1, 0);
3398 sched = isl_union_map_apply_range(isl_union_map_copy(shared_sched),
3399 isl_union_map_from_map(proj));
3401 res = isl_union_map_range_product(isl_union_map_copy(schedule), sched);
3403 s = 0;
3404 for (i = 0; i < gen->kernel->n_array; ++i)
3405 s += gen->kernel->array[i].n_group;
3407 k = 0;
3408 for (i = 0; i < gen->kernel->n_array; ++i) {
3409 struct gpu_local_array_info *array = &gen->kernel->array[i];
3411 for (j = 0; j < array->n_group; ++j) {
3412 struct gpu_array_ref_group *group;
3414 group = array->groups[j];
3415 if (!group->private_tile && !group->shared_tile)
3416 continue;
3417 res = add_group_schedule(gen, res, schedule,
3418 shared_sched, group, 0, k, s);
3419 res = add_group_schedule(gen, res, schedule,
3420 shared_sched, group, 1, k, s);
3421 ++k;
3425 res = add_sync_schedule(gen, res, schedule, shared_sched,
3426 gen->shared_len - gen->tile_first, 1 + s);
3428 isl_union_map_free(shared_sched);
3429 isl_union_map_free(schedule);
3431 return res;
3434 /* Generate code for "kernel" in the given "context".
3436 * We first generate code for the shared tile loops (T1T, T1P and T2)
3437 * in a context that includes the block ids.
3438 * Within each iteration of these loops an additional code generation
3439 * is performed (within create_kernel_leaf) for the rest of the schedule
3440 * in a context that includes the thread ids.
3442 static __isl_give isl_ast_node *generate_kernel(struct gpu_gen *gen,
3443 __isl_keep isl_ast_build *build, __isl_keep isl_set *host_domain,
3444 __isl_keep isl_multi_pw_aff *grid_size)
3446 isl_space *space;
3447 isl_set *set;
3448 isl_id_list *iterators;
3449 isl_union_map *schedule;
3450 isl_ast_node *tree;
3451 int sched_len;
3453 schedule = isl_ast_build_get_schedule(build);
3455 build = isl_ast_build_copy(build);
3456 build = isl_ast_build_restrict(build, isl_set_copy(host_domain));
3457 space = isl_ast_build_get_schedule_space(build);
3458 set = isl_set_universe(isl_space_copy(space));
3459 set = add_bounded_parameters_dynamic(set, grid_size,
3460 gen->kernel->block_ids);
3461 build = isl_ast_build_restrict(build, set);
3463 schedule = body_schedule(gen, schedule);
3465 sched_len = 2 * (gen->shared_len - gen->tile_first) + 1;
3467 build = set_atomic_and_unroll(build, space, sched_len);
3468 iterators = ppcg_scop_generate_names(gen->prog->scop, sched_len, "g");
3469 build = isl_ast_build_set_iterators(build, iterators);
3470 build = isl_ast_build_set_create_leaf(build, &create_kernel_leaf, gen);
3471 tree = isl_ast_build_node_from_schedule_map(build, schedule);
3472 isl_ast_build_free(build);
3474 return tree;
3477 /* Attach "id" to the given node.
3479 static __isl_give isl_ast_node *attach_id(__isl_take isl_ast_node *node,
3480 __isl_keep isl_ast_build *build, void *user)
3482 isl_id *id = user;
3484 node = isl_ast_node_set_annotation(node, id);
3486 return node;
3489 /* Construct an AST node for performing a kernel launch and attach
3490 * the information about the kernel to that node.
3491 * "kernel_id" has name "kernel" and contains a pointer
3492 * to the ppcg_kernel structure.
3494 * The kernel AST has been constructed in the context of the range
3495 * of "schedule". In particular, the grid size has been computed
3496 * in the context. We therefore still need to make sure that these
3497 * constraints are expressed in the code. We do this by creating a schedule
3499 * kernel[] -> [S -> []]
3501 * where S is the schedule domain, i.e., the range of "schedule".
3502 * The AST generation will then create a single call surrounded by
3503 * all the condition in "S" that have not been expressed yet.
3505 * The kernel information is attached to this node in attach_id.
3507 static __isl_give isl_ast_node *construct_launch(
3508 __isl_take isl_ast_build *build, __isl_take isl_union_map *schedule,
3509 __isl_take isl_id *kernel_id)
3511 isl_ctx *ctx;
3512 isl_union_set *domain;
3513 isl_set *set;
3514 isl_map *map;
3515 isl_ast_node *node;
3517 ctx = isl_ast_build_get_ctx(build);
3519 domain = isl_union_map_range(schedule);
3520 set = isl_set_from_union_set(domain);
3521 map = isl_map_from_domain(set);
3522 map = isl_map_from_range(isl_map_wrap(map));
3523 map = isl_map_set_tuple_name(map, isl_dim_in, "kernel");
3524 schedule = isl_union_map_from_map(map);
3526 build = isl_ast_build_set_at_each_domain(build, &attach_id, kernel_id);
3527 node = isl_ast_build_node_from_schedule_map(build, schedule);
3528 isl_ast_build_free(build);
3530 return node;
3533 /* This function is called for each leaf in the AST of the host code.
3534 * We first specialize the schedule to the site of the leaf, compute
3535 * the size of shared memory and then construct the body of the host code
3536 * and the associated kernel.
3538 * The necessary information for printing the kernel launch is
3539 * stored in the struct ppcg_kernel that was created in create_kernel and
3540 * attached to an outer mark node in the schedule tree.
3541 * Note that this assumes that a kernel is only launched once.
3542 * The kernel pointer itself is stored in gen->kernel by before_mark,
3543 * while the isl_id containing this pointer is stored in gen->kernel_mark.
3544 * The latter is attached to the leaf AST node created to represent the launch.
3546 static __isl_give isl_ast_node *create_host_leaf(
3547 __isl_take isl_ast_build *build, void *user)
3549 struct gpu_gen *gen = (struct gpu_gen *) user;
3550 isl_id *id;
3551 isl_ast_node *node;
3552 struct ppcg_kernel *kernel;
3553 isl_set *host_domain;
3554 isl_union_map *schedule;
3555 isl_union_map *local_sched;
3556 isl_union_set *domain;
3557 int i;
3559 schedule = isl_ast_build_get_schedule(build);
3561 kernel = gen->kernel;
3562 if (!kernel)
3563 goto error;
3565 domain = isl_union_map_domain(isl_union_map_copy(schedule));
3567 local_sched = isl_union_map_copy(gen->sched);
3568 local_sched = isl_union_map_intersect_domain(local_sched, domain);
3570 kernel->block_ids = ppcg_scop_generate_names(gen->prog->scop,
3571 kernel->n_grid, "b");
3572 kernel->thread_ids = ppcg_scop_generate_names(gen->prog->scop,
3573 kernel->n_block, "t");
3575 gen->tiled_sched = tile_schedule(gen, local_sched);
3576 gen->tiled_sched = parametrize_tiled_schedule(gen, gen->tiled_sched);
3577 gen->tiled_sched = scale_tile_loops(gen, gen->tiled_sched);
3579 gen->local_sched = isl_union_map_copy(gen->tiled_sched);
3580 gen->local_sched = thread_tile_schedule(gen, gen->local_sched);
3581 gen->local_sched = scale_thread_tile_loops(gen, gen->local_sched);
3583 kernel->grid_size = extract_grid_size(gen, kernel);
3584 extract_block_size(gen, kernel);
3585 kernel->space = isl_ast_build_get_schedule_space(build);
3587 compute_shared_sched(gen);
3588 gen->privatization = compute_privatization(gen);
3589 if (gpu_group_references(gen) < 0)
3590 schedule = isl_union_map_free(schedule);
3591 host_domain = isl_set_from_union_set(isl_union_map_range(
3592 isl_union_map_copy(schedule)));
3593 localize_bounds(gen, kernel, host_domain);
3595 gen->local_sched = interchange_for_unroll(gen, gen->local_sched);
3596 check_shared_memory_bound(gen);
3597 compute_group_tilings(gen);
3599 kernel->tree = generate_kernel(gen, build, host_domain,
3600 kernel->grid_size);
3601 create_kernel_vars(gen, kernel);
3603 isl_map_free(gen->privatization);
3604 isl_union_map_free(gen->local_sched);
3605 isl_union_map_free(gen->tiled_sched);
3606 isl_union_map_free(gen->shared_sched);
3607 isl_union_map_free(gen->shared_proj);
3608 isl_set_free(host_domain);
3610 node = construct_launch(build, schedule, isl_id_copy(gen->kernel_mark));
3612 return node;
3613 error:
3614 isl_union_map_free(schedule);
3615 return NULL;
3618 /* This function is called before the AST generator starts traversing
3619 * the schedule subtree of a node with mark "mark".
3621 * If the mark is called "kernel", store the mark itself in gen->kernel_mark
3622 * and the kernel pointer in gen->kernel for use in create_host_leaf.
3624 static int before_mark(__isl_keep isl_id *mark,
3625 __isl_keep isl_ast_build *build, void *user)
3627 struct gpu_gen *gen = user;
3629 if (!mark)
3630 return -1;
3631 if (!strcmp(isl_id_get_name(mark), "kernel")) {
3632 gen->kernel_mark = isl_id_copy(mark);
3633 gen->kernel = isl_id_get_user(mark);
3635 return 0;
3638 /* This function is called after the AST generator has finished traversing
3639 * the schedule subtree of a mark node. "node" points to the corresponding
3640 * mark AST node.
3642 * If the mark is called "kernel", then clear kernel and gen->kernel_mark.
3644 static __isl_give isl_ast_node *after_mark(__isl_take isl_ast_node *node,
3645 __isl_keep isl_ast_build *build, void *user)
3647 struct gpu_gen *gen = user;
3648 isl_id *id;
3650 id = isl_ast_node_mark_get_id(node);
3651 if (!id)
3652 return isl_ast_node_free(node);
3653 if (!strcmp(isl_id_get_name(id), "kernel") && gen->kernel) {
3654 gen->kernel_mark = isl_id_free(gen->kernel_mark);
3655 gen->kernel = NULL;
3658 isl_id_free(id);
3659 return node;
3662 /* Use isl to generate host code from gen->host_schedule, which corresponds to
3663 * the outer gen->tile_first loops of the global schedule in gen->sched.
3664 * Within each iteration of this partial schedule, i.e., for each kernel
3665 * launch, create_host_leaf takes care of generating the kernel code.
3666 * The ppcg_kernel objects are stored in mark nodes in the schedule
3667 * tree and are extracted in before_mark.
3669 static __isl_give isl_ast_node *generate_host_code(struct gpu_gen *gen)
3671 isl_ast_build *build;
3672 isl_ast_node *tree;
3673 isl_schedule *schedule;
3674 isl_id_list *iterators;
3676 isl_options_set_ast_build_group_coscheduled(gen->ctx, 1);
3677 build = isl_ast_build_from_context(isl_set_copy(gen->prog->context));
3678 iterators = ppcg_scop_generate_names(gen->prog->scop,
3679 gen->tile_first, "h");
3680 build = isl_ast_build_set_iterators(build, iterators);
3681 build = isl_ast_build_set_create_leaf(build, &create_host_leaf, gen);
3682 build = isl_ast_build_set_before_each_mark(build, &before_mark, gen);
3683 build = isl_ast_build_set_after_each_mark(build, &after_mark, gen);
3684 schedule = isl_schedule_copy(gen->host_schedule);
3685 tree = isl_ast_build_node_from_schedule(build, schedule);
3686 isl_ast_build_free(build);
3688 return tree;
3691 __isl_give isl_union_map *extract_sizes_from_str(isl_ctx *ctx, const char *str)
3693 if (!str)
3694 return NULL;
3695 return isl_union_map_read_from_str(ctx, str);
3698 /* Information about the outermost tilable bands in the forest of bands.
3700 * prefix is the (padded) schedule leading up to the outermost tilable bands.
3702 * tile_first is the number of schedule dimensions in prefix.
3704 * suffix is the schedule of the outermost tilable bands and their descendants.
3706 struct band_info {
3707 struct gpu_gen *gen;
3708 int tile_first;
3709 isl_union_map *prefix;
3710 isl_union_map *suffix;
3713 /* Construct an isl_multi_val for use as tile sizes for tiling "node"
3714 * from the elements in "tile_size".
3716 static __isl_give isl_multi_val *construct_band_tiles_sizes(
3717 __isl_keep isl_schedule_node *node, int *tile_size)
3719 int i, n;
3720 isl_ctx *ctx;
3721 isl_space *space;
3722 isl_multi_val *mv;
3724 if (!node)
3725 return NULL;
3727 ctx = isl_schedule_node_get_ctx(node);
3728 space = isl_schedule_node_band_get_space(node);
3729 n = isl_schedule_node_band_n_member(node);
3730 mv = isl_multi_val_zero(space);
3731 for (i = 0; i < n; ++i) {
3732 isl_val *v;
3734 v = isl_val_int_from_si(ctx, tile_size[i]);
3735 mv = isl_multi_val_set_val(mv, i, v);
3738 return mv;
3741 /* Tile "band" with tile size specified by "sizes".
3743 * Since the tile loops will be mapped to block ids, we forcibly
3744 * turn off tile loop scaling. We may want to enable tile loop scaling
3745 * at some later point, but then we would have to support the detection
3746 * of strides during the mapping to block ids.
3747 * Similarly, since the point loops will be mapped to thread ids,
3748 * we forcibly shift the point loops so that they start at zero.
3750 static __isl_give isl_schedule_node *tile_band(
3751 __isl_take isl_schedule_node *node, __isl_take isl_multi_val *sizes)
3753 isl_ctx *ctx = isl_schedule_node_get_ctx(node);
3754 int scale_tile;
3755 int shift_point;
3757 scale_tile = isl_options_get_tile_scale_tile_loops(ctx);
3758 isl_options_set_tile_scale_tile_loops(ctx, 0);
3759 shift_point = isl_options_get_tile_shift_point_loops(ctx);
3760 isl_options_set_tile_shift_point_loops(ctx, 1);
3762 node = isl_schedule_node_band_tile(node, sizes);
3764 isl_options_set_tile_scale_tile_loops(ctx, scale_tile);
3765 isl_options_set_tile_shift_point_loops(ctx, shift_point);
3767 return node;
3770 /* Extract the set of parameter values and outer schedule dimensions
3771 * for which any statement instance
3772 * in the kernel inserted at "node" needs to be executed.
3773 * Intersect the set of parameter values derived from the host schedule
3774 * relation with the context of "prog".
3776 static __isl_give isl_set *extract_context(__isl_keep isl_schedule_node *node,
3777 struct gpu_prog *prog)
3779 isl_union_map *schedule;
3780 isl_union_set *schedule_domain;
3781 isl_set *context;
3782 int empty;
3784 schedule = isl_schedule_node_get_prefix_schedule_relation(node);
3785 schedule_domain = isl_union_map_range(schedule);
3786 empty = isl_union_set_is_empty(schedule_domain);
3787 if (empty < 0) {
3788 isl_union_set_free(schedule_domain);
3789 return NULL;
3791 if (empty) {
3792 int depth;
3793 isl_space *space;
3795 space = isl_union_set_get_space(schedule_domain);
3796 isl_union_set_free(schedule_domain);
3797 space = isl_space_set_from_params(space);
3798 depth = isl_schedule_node_get_schedule_depth(node);
3799 space = isl_space_add_dims(space, isl_dim_set, depth);
3800 context = isl_set_empty(space);
3801 } else {
3802 context = isl_set_from_union_set(schedule_domain);
3804 context = isl_set_intersect_params(context,
3805 isl_set_copy(prog->context));
3807 return context;
3810 /* Return the set of outer array elements accessed by
3811 * by the statement instance in "domain" in "prog".
3813 static __isl_give isl_union_set *accessed_by_domain(
3814 __isl_take isl_union_set *domain, struct gpu_prog *prog)
3816 isl_union_map *access;
3817 isl_union_set *arrays;
3819 access = isl_union_map_union(isl_union_map_copy(prog->read),
3820 isl_union_map_copy(prog->may_write));
3821 access = isl_union_map_intersect_domain(access, domain);
3822 arrays = isl_union_map_range(access);
3823 arrays = isl_union_set_apply(arrays,
3824 isl_union_map_copy(prog->to_outer));
3826 return arrays;
3829 /* Return the number of outer band members of the band node "node"
3830 * that are marked coincident.
3832 static int n_outer_coincidence(__isl_keep isl_schedule_node *node)
3834 int i, n;
3836 n = isl_schedule_node_band_n_member(node);
3838 for (i = 0; i < n; ++i)
3839 if (!isl_schedule_node_band_member_get_coincident(node, i))
3840 break;
3842 return i;
3845 /* Mark all dimensions in the current band node atomic.
3847 static __isl_give isl_schedule_node *atomic(__isl_take isl_schedule_node *node)
3849 int i, n;
3851 n = isl_schedule_node_band_n_member(node);
3852 for (i = 0; i < n; ++i)
3853 node = isl_schedule_node_band_member_set_ast_loop_type(node, i,
3854 isl_ast_loop_atomic);
3856 return node;
3859 /* Mark "node" atomic, if it is a band node.
3860 * Do the same for all ancestors.
3861 * Return a pointer to "node" (in the updated schedule tree).
3863 static __isl_give isl_schedule_node *atomic_ancestors(
3864 __isl_take isl_schedule_node *node)
3866 int pos;
3868 if (!node)
3869 return NULL;
3870 if (!isl_schedule_node_has_parent(node))
3871 return node;
3873 pos = isl_schedule_node_get_child_position(node);
3874 node = isl_schedule_node_parent(node);
3875 if (isl_schedule_node_get_type(node) == isl_schedule_node_band)
3876 node = atomic(node);
3877 node = atomic_ancestors(node);
3878 node = isl_schedule_node_child(node, pos);
3880 return node;
3883 /* Group the domain elements into a single space, named kernelX,
3884 * with X the kernel sequence number "kernel_id".
3886 static __isl_give isl_schedule_node *group_statements(
3887 __isl_take isl_schedule_node *node, int kernel_id)
3889 char buffer[20];
3890 isl_id *id;
3892 if (!node)
3893 return NULL;
3895 snprintf(buffer, sizeof(buffer), "kernel%d", kernel_id);
3896 id = isl_id_alloc(isl_schedule_node_get_ctx(node), buffer, NULL);
3897 return isl_schedule_node_group(node, id);
3900 /* Create a ppcg_kernel representing the domain instances that reach "node"
3901 * and replace the subtree at "node" by a mark node pointing
3902 * to the ppcg_kernel.
3903 * If "scale" is set, then the band that "node" points to is scaled
3904 * by "sizes".
3906 * Mark all outer band nodes as atomic to ensure each kernel is only
3907 * scheduled once.
3908 * If the domain elements that reach "node" live in more than one space,
3909 * then group the domain elements into a single space, named kernelX,
3910 * with X the kernel sequence number.
3912 * Store a pointer to the created ppcg_kernel in gen->kernel.
3914 * We keep a copy of the isl_id that points to the kernel to ensure
3915 * that the kernel does not get destroyed if the schedule node
3916 * is freed due to some error condition.
3918 static __isl_give isl_schedule_node *create_kernel(struct gpu_gen *gen,
3919 __isl_take isl_schedule_node *node, int scale,
3920 __isl_keep isl_multi_val *sizes)
3922 struct ppcg_kernel *kernel;
3923 isl_id *id;
3924 isl_union_set *domain;
3925 int single_statement;
3927 kernel = isl_calloc_type(gen->ctx, struct ppcg_kernel);
3928 kernel = ppcg_kernel_create_local_arrays(kernel, gen->prog);
3929 if (!kernel)
3930 return isl_schedule_node_free(node);
3932 domain = isl_schedule_node_get_domain(node);
3933 single_statement = isl_union_set_n_set(domain) == 1;
3935 kernel->ctx = gen->ctx;
3936 kernel->options = gen->options;
3937 kernel->context = extract_context(node, gen->prog);
3938 kernel->core = isl_union_set_universe(isl_union_set_copy(domain));
3939 kernel->arrays = accessed_by_domain(domain, gen->prog);
3940 kernel->tile_len = isl_schedule_node_band_n_member(node);
3941 kernel->n_parallel = n_outer_coincidence(node);
3942 kernel->n_grid = kernel->n_parallel;
3943 kernel->n_block = kernel->n_parallel;
3944 kernel->id = gen->kernel_id++;
3945 read_grid_and_block_sizes(kernel, gen);
3947 gen->kernel = kernel;
3949 node = atomic_ancestors(node);
3951 id = isl_id_alloc(gen->ctx, "kernel", kernel);
3952 id = isl_id_set_free_user(id, &ppcg_kernel_free_wrap);
3953 node = isl_schedule_node_insert_mark(node, isl_id_copy(id));
3955 if (!single_statement)
3956 node = group_statements(node, kernel->id);
3958 node = isl_schedule_node_child(node, 0);
3959 if (scale)
3960 node = isl_schedule_node_band_scale(node,
3961 isl_multi_val_copy(sizes));
3963 node = isl_schedule_node_cut(node);
3964 node = isl_schedule_node_parent(node);
3966 if (!single_statement)
3967 node = isl_schedule_node_parent(node);
3969 isl_id_free(id);
3970 return node;
3973 /* Insert a zero-dimensional permutable band at "node".
3975 static __isl_give isl_schedule_node *insert_empty_permutable_band(
3976 __isl_take isl_schedule_node *node)
3978 isl_space *space;
3979 isl_schedule *schedule;
3980 isl_union_set *domain;
3981 isl_multi_union_pw_aff *mupa;
3983 schedule = isl_schedule_node_get_schedule(node);
3984 domain = isl_schedule_get_domain(schedule);
3985 space = isl_union_set_get_space(domain);
3986 isl_union_set_free(domain);
3987 isl_schedule_free(schedule);
3989 space = isl_space_set_from_params(space);
3990 mupa = isl_multi_union_pw_aff_zero(space);
3991 node = isl_schedule_node_insert_partial_schedule(node, mupa);
3992 node = isl_schedule_node_band_set_permutable(node, 1);
3994 return node;
3997 /* Mark "node" as outer permutable.
3999 * If "node" originally points to a leaf, then insert a zero-dimensional
4000 * permutable band such that we can assume that "node" always
4001 * points to a band node.
4003 * Tile "node" using user specified tile sizes, after splitting the band
4004 * if the number of specified tile sizes is smaller than the dimension
4005 * of the band. Mark the point band of this tiling as the band that
4006 * needs to be mapped to threads.
4007 * Create a kernel representing the domain instances that reach "node" and
4008 * replace the band node with a mark node pointing to the kernel.
4010 static __isl_give isl_schedule_node *mark_outer_permutable(
4011 struct gpu_gen *gen, __isl_take isl_schedule_node *node)
4013 struct ppcg_kernel *kernel;
4014 int scale;
4015 int tile_len;
4016 int *tile_size;
4017 isl_id *id;
4018 isl_multi_val *sizes;
4020 if (isl_schedule_node_get_type(node) == isl_schedule_node_leaf)
4021 node = insert_empty_permutable_band(node);
4023 tile_len = isl_schedule_node_band_n_member(node);
4024 tile_size = read_tile_sizes(gen, &tile_len);
4025 if (!tile_size)
4026 return isl_schedule_node_free(node);
4027 if (tile_len < isl_schedule_node_band_n_member(node))
4028 node = isl_schedule_node_band_split(node, tile_len);
4029 sizes = construct_band_tiles_sizes(node, tile_size);
4030 node = tile_band(node, isl_multi_val_copy(sizes));
4031 node = isl_schedule_node_child(node, 0);
4032 id = isl_id_alloc(gen->ctx, "thread", NULL);
4033 node = isl_schedule_node_insert_mark(node, id);
4034 node = isl_schedule_node_parent(node);
4036 scale = gen->options->scale_tile_loops;
4037 node = create_kernel(gen, node, scale, sizes);
4038 isl_multi_val_free(sizes);
4039 if (!node)
4040 return NULL;
4041 kernel = gen->kernel;
4042 kernel->tile_len = tile_len;
4043 kernel->tile_size = tile_size;
4045 return node;
4048 static __isl_give isl_schedule_node *select_outer_band(struct gpu_gen *gen,
4049 __isl_take isl_schedule_node *node, int pos, struct band_info *info);
4051 /* Check if this band node is tilable and has any parallel loops. If so,
4052 * take it as the outermost tilable band. If not, continue looking for the
4053 * outermost tilable band in the children of the current band.
4054 * Return a pointer to the same node in a tree where all outermost tilable
4055 * bands in the current subtree have been replaced by mark nodes
4056 * containing a pointer to a ppcg_kernel object.
4058 static __isl_give isl_schedule_node *band_select_outer_band(struct gpu_gen *gen,
4059 __isl_take isl_schedule_node *node, int pos, struct band_info *info)
4061 int n = isl_schedule_node_band_n_member(node);
4062 int n_parallel;
4064 n_parallel = n_outer_coincidence(node);
4066 if (!isl_schedule_node_band_get_permutable(node) || n_parallel == 0) {
4067 node = isl_schedule_node_child(node, 0);
4068 node = select_outer_band(gen, node, pos + n, info);
4069 return isl_schedule_node_parent(node);
4072 gen->any_parallelism = 1;
4073 info->gen = gen;
4074 info->tile_first = pos;
4075 info->prefix = isl_schedule_node_get_prefix_schedule_union_map(node);
4076 info->suffix = isl_schedule_node_get_subtree_schedule_union_map(node);
4078 node = mark_outer_permutable(gen, node);
4080 return node;
4083 /* Extend "umap" with coordinates with fixed value "val"
4084 * to a total length of "dst_len", assuming the original dimension is "src_len".
4086 static __isl_give isl_union_map *extend_range(
4087 __isl_take isl_union_map *umap, int src_len, int dst_len, int val)
4089 isl_space *dim;
4090 isl_map *map;
4091 int i;
4093 dim = isl_union_map_get_space(umap);
4094 map = isl_map_reverse(projection(dim, dst_len, src_len));
4095 for (i = src_len; i < dst_len; ++i)
4096 map = isl_map_fix_si(map, isl_dim_out, i, val);
4098 umap = isl_union_map_apply_range(umap, isl_union_map_from_map(map));
4100 return umap;
4103 /* Select the outermost bands in the elements of the sequence or set
4104 * node "node", align their prefix schedules and combine the resulting
4105 * prefix and suffix schedules into a single pair of prefix and
4106 * suffix schedules for the entire list.
4107 * Return a pointer to the same node in a tree where all outermost tilable
4108 * bands in the current subtree have been replaced by mark nodes
4109 * containing a pointer to a ppcg_kernel object.
4111 static __isl_give isl_schedule_node *list_select_outer_band(
4112 struct gpu_gen *gen, __isl_take isl_schedule_node *node, int pos,
4113 struct band_info *list_info)
4115 int i;
4116 int n = isl_schedule_node_n_children(node);
4117 isl_ctx *ctx = isl_schedule_node_get_ctx(node);
4118 struct band_info *info;
4119 int max_tile_first;
4120 isl_union_map *prefix;
4121 isl_union_map *suffix;
4123 assert(n >= 1);
4124 info = isl_calloc_array(ctx, struct band_info, n);
4125 assert(info);
4127 max_tile_first = 0;
4128 for (i = 0; i < n; ++i) {
4129 node = isl_schedule_node_child(node, i);
4130 node = select_outer_band(gen, node, pos, &info[i]);
4131 if (info[i].tile_first > max_tile_first)
4132 max_tile_first = info[i].tile_first;
4133 node = isl_schedule_node_parent(node);
4136 for (i = 0; i < n; ++i) {
4137 if (info[i].tile_first == max_tile_first)
4138 continue;
4139 info[i].prefix = extend_range(info[i].prefix,
4140 info[i].tile_first, max_tile_first, 0);
4141 info[i].tile_first = max_tile_first;
4144 prefix = info[0].prefix;
4145 suffix = info[0].suffix;
4147 for (i = 1; i < n; ++i) {
4148 prefix = isl_union_map_union(prefix, info[i].prefix);
4149 suffix = isl_union_map_union(suffix, info[i].suffix);
4152 list_info->tile_first = info[0].tile_first;
4153 list_info->prefix = prefix;
4154 list_info->suffix = suffix;
4156 free(info);
4157 return node;
4160 /* If we reach a leaf node, then we have not found any outer tilable
4161 * band with parallel loops, so consider the leaf node as the outermost
4162 * tilable band.
4163 * Return a pointer to a mark node containing a pointer
4164 * to a ppcg_kernel object inserted at the original leaf node.
4166 static __isl_give isl_schedule_node *leaf_select_outer_band(struct gpu_gen *gen,
4167 __isl_take isl_schedule_node *node, int pos, struct band_info *info)
4169 info->gen = gen;
4170 info->tile_first = pos;
4171 info->prefix = isl_schedule_node_get_prefix_schedule_union_map(node);
4172 info->suffix = isl_schedule_node_get_subtree_schedule_union_map(node);
4174 node = mark_outer_permutable(gen, node);
4176 return node;
4179 /* Select the outermost tilable band in the subtree that "node" points to and
4180 * return a pointer to the same node in a tree where all outermost tilable
4181 * bands in the current subtree have been replaced by mark nodes
4182 * containing a pointer to a ppcg_kernel object.
4184 static __isl_give isl_schedule_node *select_outer_band(struct gpu_gen *gen,
4185 __isl_take isl_schedule_node *node, int pos, struct band_info *info)
4187 enum isl_schedule_node_type type;
4189 type = isl_schedule_node_get_type(node);
4190 switch (type) {
4191 case isl_schedule_node_domain:
4192 case isl_schedule_node_filter:
4193 node = isl_schedule_node_child(node, 0);
4194 node = select_outer_band(gen, node, pos, info);
4195 return isl_schedule_node_parent(node);
4196 case isl_schedule_node_leaf:
4197 return leaf_select_outer_band(gen, node, pos, info);
4198 case isl_schedule_node_band:
4199 return band_select_outer_band(gen, node, pos, info);
4200 case isl_schedule_node_set:
4201 case isl_schedule_node_sequence:
4202 return list_select_outer_band(gen, node, pos, info);
4203 default:
4204 isl_die(isl_schedule_node_get_ctx(node),
4205 isl_error_unsupported, "unhandled schedule node type",
4206 node = node);
4207 case isl_schedule_node_error:
4208 info->prefix = NULL;
4209 info->suffix = NULL;
4210 break;
4213 return isl_schedule_node_free(node);
4216 /* Select the outermost tilable band that (by construction)
4217 * has at least one parallel loop.
4218 * The starting position of the aligned band is stored in the pair
4219 * gen->tile_first.
4220 * The sizes and number of parallel loops may be different in different
4221 * parts of the band forest and are therefore stored in the gpu_stmts.
4223 * Return the complete schedule, with the tilable bands aligned
4224 * at gen->tile_first and padded with zero, if needed.
4225 * Store a schedule tree corresponding to the outer gen->tile_first
4226 * dimensions, with mark nodes containing pointers to ppcg_kernel objects,
4227 * in gen->host_schedule.
4229 static __isl_give isl_union_map *select_outer_tilable_band(struct gpu_gen *gen,
4230 __isl_keep isl_schedule *schedule)
4232 isl_schedule_node *node;
4233 struct band_info info;
4235 node = isl_schedule_get_root(schedule);
4236 node = select_outer_band(gen, node, 0, &info);
4237 gen->host_schedule = isl_schedule_node_get_schedule(node);
4238 isl_schedule_node_free(node);
4240 gen->tile_first = info.tile_first;
4241 info.suffix = align_range(info.suffix);
4243 return isl_union_map_flat_range_product(info.prefix, info.suffix);
4246 /* Set gen->untiled_len to the number of scheduling dimensions
4247 * for the schedule of the first domain.
4248 * We assume here that this number is the same for all domains.
4250 static int set_untiled_len(__isl_take isl_map *map, void *user)
4252 unsigned *untiled_len = user;
4254 *untiled_len = isl_map_dim(map, isl_dim_out);
4256 isl_map_free(map);
4257 return -1;
4260 /* Compute an appropriate schedule based on the accesses in
4261 * gen->read and gen->write.
4263 * We use the dependences in gen->prog->scop to compute
4264 * a schedule that has a parallel loop in each tilable band.
4265 * Finally, we select the outermost tilable band.
4267 * If live range reordering is allowed, then we need to make sure
4268 * that live ranges on arrays are not run in parallel since doing
4269 * so would require array expansion. We therefore add the array
4270 * order dependences to the coincidence dependences. Non-zero array
4271 * order dependences will then prevent a schedule dimension from being
4272 * considered parallel.
4273 * Live ranges derived from scalars are allowed to be run in parallel
4274 * since we force the scalars to be mapped to private memory in
4275 * check_scalar_live_ranges.
4276 * If live range reordering is allowed, then the false dependences
4277 * are not added to the validity constraints as that would prevent
4278 * reordering. Instead, the external false dependences that enforce that reads
4279 * from potentially live-in data precede any later write and
4280 * that writes of potentially live-out data follow any other earlier write
4281 * are added to the validity and the coincidence constraints.
4282 * The false dependences are still added to the proximity constraints
4283 * for consistency with the case where live range reordering is not allowed.
4284 * The coincidence constraints then consist of flow dependences,
4285 * external false dependences and array order dependences.
4286 * The independences can be filtered out from the first two sets.
4287 * They have already been filtered out from the array order dependences
4288 * on a per array basis in collect_order_dependences.
4289 * There is no need for a per array handling of the other two sets
4290 * as there should be no flow or external false dependence on local
4291 * variables that can be filtered out.
4293 static void compute_schedule(struct gpu_gen *gen)
4295 isl_union_set *domain;
4296 isl_union_map *dep_raw, *dep;
4297 isl_union_map *validity, *proximity, *coincidence;
4298 isl_union_map *sched;
4299 isl_schedule_constraints *sc;
4300 isl_schedule *schedule;
4302 domain = isl_union_set_copy(gen->prog->scop->domain);
4303 sc = isl_schedule_constraints_on_domain(isl_union_set_copy(domain));
4304 sc = isl_schedule_constraints_set_context(sc,
4305 isl_set_copy(gen->prog->scop->context));
4306 if (gen->options->live_range_reordering) {
4307 sc = isl_schedule_constraints_set_conditional_validity(sc,
4308 isl_union_map_copy(gen->prog->scop->tagged_dep_flow),
4309 isl_union_map_copy(gen->prog->scop->tagged_dep_order));
4310 proximity = isl_union_map_copy(gen->prog->scop->dep_flow);
4311 validity = isl_union_map_copy(proximity);
4312 validity = isl_union_map_union(validity,
4313 isl_union_map_copy(gen->prog->scop->dep_forced));
4314 proximity = isl_union_map_union(proximity,
4315 isl_union_map_copy(gen->prog->scop->dep_false));
4316 coincidence = isl_union_map_copy(validity);
4317 coincidence = isl_union_map_subtract(coincidence,
4318 isl_union_map_copy(gen->prog->scop->independence));
4319 coincidence = isl_union_map_union(coincidence,
4320 isl_union_map_copy(gen->prog->array_order));
4321 } else {
4322 dep_raw = isl_union_map_copy(gen->prog->scop->dep_flow);
4323 dep = isl_union_map_copy(gen->prog->scop->dep_false);
4324 dep = isl_union_map_union(dep, dep_raw);
4325 dep = isl_union_map_coalesce(dep);
4326 proximity = isl_union_map_copy(dep);
4327 coincidence = isl_union_map_copy(dep);
4328 validity = dep;
4330 sc = isl_schedule_constraints_set_validity(sc, validity);
4331 sc = isl_schedule_constraints_set_coincidence(sc, coincidence);
4332 sc = isl_schedule_constraints_set_proximity(sc, proximity);
4334 if (gen->options->debug->dump_schedule_constraints)
4335 isl_schedule_constraints_dump(sc);
4336 schedule = isl_schedule_constraints_compute_schedule(sc);
4337 if (gen->options->debug->dump_schedule)
4338 isl_schedule_dump(schedule);
4340 sched = select_outer_tilable_band(gen, schedule);
4342 isl_union_map_foreach_map(sched, &set_untiled_len, &gen->untiled_len);
4343 sched = isl_union_map_intersect_domain(sched, domain);
4344 gen->sched = sched;
4346 isl_schedule_free(schedule);
4349 /* Compute the sets of outer array elements that need to be copied in and out.
4351 * In particular, for each array that is possibly written anywhere in
4352 * gen->prog and that is visible outside the corresponding scop,
4353 * we copy out its entire extent.
4355 * Any array elements that is read without first being written needs
4356 * to be copied in. Furthermore, if there are any array elements that
4357 * are copied out, but that may not be written inside gen->prog, then
4358 * they also need to be copied in to ensure that the value after execution
4359 * is the same as the value before execution, at least for those array
4360 * elements that may have their values preserved by the scop.
4361 * In case the array elements are structures, we need to take into
4362 * account that all members of the structures need to be written
4363 * by gen->prog before we can avoid copying the data structure in.
4365 * While computing the set of array elements that are copied out but
4366 * not necessarily written, we intersect both sets with the context.
4367 * This helps in those cases where the arrays are declared with a fixed size,
4368 * while the accesses are parametric and the context assigns a fixed value
4369 * to the parameters.
4371 * If an element from a local array is read without first being written,
4372 * then there is no point in copying it in since it cannot have been
4373 * written prior to the scop. Warn about the uninitialized read instead.
4375 static void compute_copy_in_and_out(struct gpu_gen *gen)
4377 int i;
4378 isl_union_set *local;
4379 isl_union_set *may_write, *must_write;
4380 isl_union_set *copy_in, *copy_out;
4381 isl_union_set *not_written;
4382 isl_union_map *uninitialized;
4383 isl_union_map *local_uninitialized;
4385 must_write = isl_union_map_range(
4386 isl_union_map_copy(gen->prog->must_write));
4387 must_write = isl_union_set_intersect_params(must_write,
4388 isl_set_copy(gen->prog->context));
4389 may_write = isl_union_map_range(
4390 isl_union_map_copy(gen->prog->may_write));
4391 may_write = isl_union_set_intersect_params(may_write,
4392 isl_set_copy(gen->prog->context));
4393 may_write = isl_union_set_universe(may_write);
4394 may_write = isl_union_set_apply(may_write,
4395 isl_union_map_copy(gen->prog->to_outer));
4396 copy_out = isl_union_set_empty(isl_union_set_get_space(may_write));
4397 local = isl_union_set_copy(copy_out);
4399 for (i = 0; i < gen->prog->n_array; ++i) {
4400 isl_space *space;
4401 isl_set *write_i;
4402 int empty;
4404 space = isl_space_copy(gen->prog->array[i].space);
4406 if (gen->prog->array[i].local) {
4407 isl_set *set;
4409 set = isl_set_universe(space);
4410 local = isl_union_set_add_set(local, set);
4411 continue;
4414 write_i = isl_union_set_extract_set(may_write, space);
4415 empty = isl_set_plain_is_empty(write_i);
4416 isl_set_free(write_i);
4417 if (empty)
4418 continue;
4420 write_i = isl_set_copy(gen->prog->array[i].extent);
4421 copy_out = isl_union_set_add_set(copy_out, write_i);
4423 isl_union_set_free(may_write);
4425 copy_out = isl_union_set_intersect_params(copy_out,
4426 isl_set_copy(gen->prog->context));
4428 gen->prog->copy_out = isl_union_set_copy(copy_out);
4430 copy_out = isl_union_set_apply(copy_out,
4431 isl_union_map_copy(gen->prog->to_inner));
4432 copy_out = isl_union_set_intersect(copy_out,
4433 isl_union_set_copy(gen->prog->may_persist));
4434 not_written = isl_union_set_subtract(copy_out, must_write);
4436 uninitialized = isl_union_map_copy(gen->prog->scop->live_in);
4437 local_uninitialized = isl_union_map_copy(uninitialized);
4439 local = isl_union_set_apply(local,
4440 isl_union_map_copy(gen->prog->to_inner));
4441 local_uninitialized = isl_union_map_intersect_range(local_uninitialized,
4442 local);
4443 if (!isl_union_map_is_empty(local_uninitialized)) {
4444 fprintf(stderr,
4445 "possibly uninitialized reads (not copied in):\n");
4446 isl_union_map_dump(local_uninitialized);
4448 uninitialized = isl_union_map_subtract(uninitialized,
4449 local_uninitialized);
4450 copy_in = isl_union_map_range(uninitialized);
4451 copy_in = isl_union_set_union(copy_in, not_written);
4452 copy_in = isl_union_set_apply(copy_in,
4453 isl_union_map_copy(gen->prog->to_outer));
4455 gen->prog->copy_in = copy_in;
4458 /* Internal data structure for extract_access.
4459 * "next_access" points to the end of a linked list that is extended
4460 * by extract_access.
4461 * "single_expression" is set if the access expressions belong to
4462 * an expression statement (i.e., a statement without internal control).
4463 * "any_to_outer" maps all intermediate arrays to their outer arrays.
4465 struct ppcg_extract_access_data {
4466 struct gpu_stmt_access **next_access;
4467 int single_expression;
4468 isl_union_map *any_to_outer;
4471 /* Given a tagged access relation to a single array "tagged", extract it
4472 * as a map, taking into account that the input may be empty.
4473 * If the access relation is empty, then it does not contain
4474 * any space information, so we try to recover it from the index
4475 * expression.
4476 * The space of the index expression is of the form I -> A,
4477 * with I the statement instances and A the array, or [I -> F] -> A,
4478 * with F the filters corresponding to arguments.
4479 * We first drop F, if present, obtaining I -> A.
4480 * Then we construct I -> R, with R the reference tag,
4481 * combine the two into I -> [R -> A] and uncurry to obtain
4482 * the final result [I -> R] -> A.
4483 * Note that the index expression may have a lower dimension
4484 * than that of the array, but this dimension is not used
4485 * if the access relation is empty.
4487 static __isl_give isl_map *extract_single_tagged_access(
4488 __isl_take isl_union_map *tagged, __isl_keep pet_expr *expr)
4490 int empty;
4491 isl_id *id;
4492 isl_space *space, *space2;
4493 isl_multi_pw_aff *index;
4495 empty = isl_union_map_is_empty(tagged);
4496 if (empty < 0)
4497 goto error;
4498 if (!empty)
4499 return isl_map_from_union_map(tagged);
4500 isl_union_map_free(tagged);
4502 index = pet_expr_access_get_index(expr);
4503 space = isl_multi_pw_aff_get_space(index);
4504 isl_multi_pw_aff_free(index);
4505 if (isl_space_domain_is_wrapping(space))
4506 space = isl_space_domain_factor_domain(space);
4507 space2 = isl_space_copy(space);
4508 space2 = isl_space_from_domain(isl_space_domain(space));
4509 id = pet_expr_access_get_ref_id(expr);
4510 space2 = isl_space_set_tuple_id(space2, isl_dim_out, id);
4511 space = isl_space_range_product(space2, space);
4512 space = isl_space_uncurry(space);
4514 return isl_map_empty(space);
4515 error:
4516 isl_union_map_free(tagged);
4517 return NULL;
4520 /* Extract a gpu_stmt_access from "expr", append it to the list
4521 * that ends in *data->next_access and update the end of the list.
4522 * If the access expression performs a write, then it is considered
4523 * exact only if it appears in a single expression statement and
4524 * if its may access relation is equal to its must access relation.
4526 * The combined set of may accesses may be union if member accesses
4527 * are involved, but the entire set is derived from a single reference and
4528 * therefore from a single index expression. These accesses therefore
4529 * all map to the same outer array.
4531 static int extract_access(__isl_keep pet_expr *expr, void *user)
4533 struct ppcg_extract_access_data *data = user;
4534 isl_union_map *tagged;
4535 struct gpu_stmt_access *access;
4536 isl_ctx *ctx = pet_expr_get_ctx(expr);
4537 isl_multi_pw_aff *index;
4539 access = isl_alloc_type(ctx, struct gpu_stmt_access);
4540 assert(access);
4541 access->next = NULL;
4542 access->read = pet_expr_access_is_read(expr);
4543 access->write = pet_expr_access_is_write(expr);
4544 tagged = pet_expr_access_get_tagged_may_read(expr);
4545 tagged = isl_union_map_union(tagged,
4546 pet_expr_access_get_tagged_may_write(expr));
4547 tagged = isl_union_map_apply_range(tagged,
4548 isl_union_map_copy(data->any_to_outer));
4549 if (!access->write) {
4550 access->exact_write = 1;
4551 } else if (!data->single_expression) {
4552 access->exact_write = 0;
4553 } else {
4554 isl_union_map *must, *may;
4555 may = isl_union_map_copy(tagged);
4556 may = isl_union_map_domain_factor_domain(may);
4557 must = pet_expr_access_get_must_write(expr);
4558 access->exact_write = isl_union_map_is_equal(must, may);
4559 isl_union_map_free(must);
4560 isl_union_map_free(may);
4562 index = pet_expr_access_get_index(expr);
4563 access->n_index = isl_multi_pw_aff_dim(index, isl_dim_out);
4564 isl_multi_pw_aff_free(index);
4565 access->ref_id = pet_expr_access_get_ref_id(expr);
4566 access->tagged_access = extract_single_tagged_access(tagged, expr);
4567 access->access = isl_map_copy(access->tagged_access);
4568 access->access = isl_map_domain_factor_domain(access->access);
4570 *data->next_access = access;
4571 data->next_access = &(*data->next_access)->next;
4573 if (!access->access)
4574 return -1;
4576 return 0;
4579 /* Construct a linked list of gpu_stmt_access objects,
4580 * one for each access expression in the statement body.
4581 * "any_to_outer" maps all intermediate arrays to their outer arrays.
4583 static int pet_stmt_extract_accesses(struct gpu_stmt *stmt,
4584 __isl_keep isl_union_map *any_to_outer)
4586 struct ppcg_extract_access_data data;
4588 stmt->accesses = NULL;
4589 data.next_access = &stmt->accesses;
4590 data.single_expression =
4591 pet_tree_get_type(stmt->stmt->body) == pet_tree_expr;
4592 data.any_to_outer = any_to_outer;
4593 return pet_tree_foreach_access_expr(stmt->stmt->body,
4594 &extract_access, &data);
4597 /* Return an array of gpu_stmt representing the statements in "scop".
4599 static struct gpu_stmt *extract_stmts(isl_ctx *ctx, struct ppcg_scop *scop,
4600 __isl_keep isl_set *context, __isl_keep isl_union_map *any_to_outer)
4602 int i;
4603 struct gpu_stmt *stmts;
4605 stmts = isl_calloc_array(ctx, struct gpu_stmt, scop->pet->n_stmt);
4606 if (!stmts)
4607 return NULL;
4609 for (i = 0; i < scop->pet->n_stmt; ++i) {
4610 struct gpu_stmt *s = &stmts[i];
4612 s->id = isl_set_get_tuple_id(scop->pet->stmts[i]->domain);
4613 s->stmt = scop->pet->stmts[i];
4614 if (pet_stmt_extract_accesses(s, any_to_outer) < 0)
4615 return free_stmts(stmts, i + 1);
4618 return stmts;
4621 /* Callback for ppcg_print_guarded that calls the callback for generate_gpu.
4623 static __isl_give isl_printer *print_gpu(__isl_take isl_printer *p, void *user)
4625 struct gpu_gen *gen = user;
4627 return gen->print(p, gen->prog, gen->tree, &gen->types,
4628 gen->print_user);
4631 /* Generate CUDA code for "scop" and print it to "p".
4632 * After generating an AST for the transformed scop as explained below,
4633 * we call "gen->print" to print the AST in the desired output format
4634 * to "p".
4636 * If it turns out that it does not make sense to generate GPU code,
4637 * then we generate CPU code instead.
4639 * The GPU code is generated in a context where at least one
4640 * statement instance is executed. The corresponding guard (if any) is printed
4641 * around the entire generated GPU code, except for the declaration
4642 * of the arrays that are visible outside of the scop and that therefore
4643 * cannot be declared inside the body of any possible guard.
4645 * We first compute a schedule that respects the dependences
4646 * of the original program and select the outermost band
4647 * of tilable dimensions that has at least one parallel loop.
4648 * We then have three blocks of dimensions
4650 * H B G
4652 * The tilable band "B" is first tiled according to "tile" sizes, resulting
4653 * in
4655 * H T P G
4657 * For each iteration of the T loop and for each array, we compute
4658 * the array elements accessed by that iteration, construct a rectangular
4659 * box around it and shift it to the origin. The result is used
4660 * as shared memory for the array.
4662 * We then split off at most 2 parallel loops from the T loops and
4663 * at most 3 parallel loops from the P loops
4665 * H T1 T2 P1 P2 G
4667 * The T1/P1 loops are then tiled or "wrapped" over the blocks/threads,
4668 * according to "grid"/"block" sizes.
4670 * H T1T T1P T2 P1T P1P P2 G
4672 * Finally, the T1P and P1P iterators are equated to the block and
4673 * thread dimensions respectively and so are effectively removed.
4674 * The H loops are run on the host. The T1T, T2, P1T, P2 and G loops
4675 * are run on the GPU.
4677 * Code is generated in three stages. We first generate code for the
4678 * host (the H loops), with iterators h%d. Then, for each leaf node
4679 * of the resulting AST, we generate code for the shared loops (up to
4680 * and including T2), with iterators g%d and after equating the H loops
4681 * to h%d parameters and the T1P loops to the block dimensions.
4682 * Finally, we generate code for the remaining loops in a similar fashion.
4684 static __isl_give isl_printer *generate(__isl_take isl_printer *p,
4685 struct gpu_gen *gen, struct ppcg_scop *scop,
4686 struct ppcg_options *options)
4688 struct gpu_prog *prog;
4689 isl_ctx *ctx;
4690 isl_set *context, *guard;
4692 if (!scop)
4693 return isl_printer_free(p);
4695 ctx = isl_printer_get_ctx(p);
4696 prog = gpu_prog_alloc(ctx, scop);
4697 if (!prog)
4698 return isl_printer_free(p);
4700 context = isl_set_copy(prog->context);
4701 guard = isl_union_set_params(isl_union_set_copy(prog->scop->domain));
4702 prog->context = isl_set_intersect(prog->context, isl_set_copy(guard));
4704 gen->prog = prog;
4705 gen->any_parallelism = 0;
4706 compute_schedule(gen);
4708 if (!gen->any_parallelism) {
4709 isl_set_free(context);
4710 isl_set_free(guard);
4711 p = print_cpu(p, scop, options);
4712 } else {
4713 compute_copy_in_and_out(gen);
4714 gen->tree = generate_host_code(gen);
4715 p = ppcg_print_exposed_declarations(p, prog->scop);
4716 p = ppcg_print_guarded(p, guard, context, &print_gpu, gen);
4717 isl_ast_node_free(gen->tree);
4720 isl_union_map_free(gen->sched);
4721 isl_schedule_free(gen->host_schedule);
4723 gpu_prog_free(prog);
4725 return p;
4728 /* Wrapper around generate for use as a ppcg_transform callback.
4730 static __isl_give isl_printer *generate_wrap(__isl_take isl_printer *p,
4731 struct ppcg_scop *scop, void *user)
4733 struct gpu_gen *gen = user;
4735 return generate(p, gen, scop, gen->options);
4738 /* Transform the code in the file called "input" by replacing
4739 * all scops by corresponding GPU code and write the results to "out".
4741 int generate_gpu(isl_ctx *ctx, const char *input, FILE *out,
4742 struct ppcg_options *options,
4743 __isl_give isl_printer *(*print)(__isl_take isl_printer *p,
4744 struct gpu_prog *prog, __isl_keep isl_ast_node *tree,
4745 struct gpu_types *types, void *user), void *user)
4747 struct gpu_gen gen;
4748 int r;
4749 int i;
4751 gen.ctx = ctx;
4752 gen.sizes = extract_sizes_from_str(ctx, options->sizes);
4753 gen.options = options;
4754 gen.kernel_id = 0;
4755 gen.print = print;
4756 gen.print_user = user;
4757 gen.types.n = 0;
4758 gen.types.name = NULL;
4760 if (options->debug->dump_sizes) {
4761 isl_space *space = isl_space_params_alloc(ctx, 0);
4762 gen.used_sizes = isl_union_map_empty(space);
4765 r = ppcg_transform(ctx, input, out, options, &generate_wrap, &gen);
4767 if (options->debug->dump_sizes) {
4768 isl_union_map_dump(gen.used_sizes);
4769 isl_union_map_free(gen.used_sizes);
4772 isl_union_map_free(gen.sizes);
4773 for (i = 0; i < gen.types.n; ++i)
4774 free(gen.types.name[i]);
4775 free(gen.types.name);
4777 return r;
4780 /* Compute the set of inner array elements that may have their values
4781 * preserved by "prog". In particular, collect the array elements of
4782 * arrays that are not local to "prog" and remove those elements that
4783 * are definitely killed or definitely written by "prog".
4785 static __isl_give isl_union_set *compute_may_persist(struct gpu_prog *prog)
4787 int i;
4788 isl_union_set *may_persist, *killed;
4789 isl_union_map *must_kill;
4791 may_persist = isl_union_set_empty(isl_set_get_space(prog->context));
4792 for (i = 0; i < prog->n_array; ++i) {
4793 isl_set *extent;
4795 if (prog->array[i].local)
4796 continue;
4798 extent = isl_set_copy(prog->array[i].extent);
4799 may_persist = isl_union_set_add_set(may_persist, extent);
4802 may_persist = isl_union_set_intersect_params(may_persist,
4803 isl_set_copy(prog->context));
4804 may_persist = isl_union_set_apply(may_persist,
4805 isl_union_map_copy(prog->to_inner));
4806 must_kill = isl_union_map_copy(prog->tagged_must_kill);
4807 killed = isl_union_map_range(must_kill);
4808 must_kill = isl_union_map_copy(prog->must_write);
4809 killed = isl_union_set_union(killed, isl_union_map_range(must_kill));
4811 may_persist = isl_union_set_subtract(may_persist, killed);
4812 return may_persist;
4815 struct gpu_prog *gpu_prog_alloc(isl_ctx *ctx, struct ppcg_scop *scop)
4817 struct gpu_prog *prog;
4818 isl_space *space;
4819 isl_map *id;
4821 if (!scop)
4822 return NULL;
4824 prog = isl_calloc_type(ctx, struct gpu_prog);
4825 assert(prog);
4827 prog->ctx = ctx;
4828 prog->scop = scop;
4829 prog->context = isl_set_copy(scop->context);
4830 prog->n_stmts = scop->pet->n_stmt;
4831 prog->any_to_outer = pet_scop_compute_outer_to_any(scop->pet);
4832 prog->any_to_outer = isl_union_map_reverse(prog->any_to_outer);
4833 space = isl_union_map_get_space(prog->any_to_outer);
4834 space = isl_space_set_from_params(space);
4835 space = isl_space_add_dims(space, isl_dim_set, 1);
4836 space = isl_space_map_from_set(space);
4837 id = isl_map_identity(space);
4838 prog->any_to_outer = isl_union_map_add_map(prog->any_to_outer, id);
4839 prog->stmts = extract_stmts(ctx, scop,
4840 prog->context, prog->any_to_outer);
4841 prog->read = isl_union_map_copy(scop->reads);
4842 prog->may_write = isl_union_map_copy(scop->may_writes);
4843 prog->must_write = isl_union_map_copy(scop->must_writes);
4844 prog->tagged_must_kill = isl_union_map_copy(scop->tagged_must_kills);
4845 prog->to_inner = pet_scop_compute_outer_to_inner(scop->pet);
4846 prog->to_outer = isl_union_map_copy(prog->to_inner);
4847 prog->to_outer = isl_union_map_reverse(prog->to_outer);
4849 if (!prog->stmts)
4850 return gpu_prog_free(prog);
4852 if (collect_array_info(prog) < 0)
4853 return gpu_prog_free(prog);
4854 prog->may_persist = compute_may_persist(prog);
4856 return prog;
4859 void *gpu_prog_free(struct gpu_prog *prog)
4861 if (!prog)
4862 return NULL;
4863 free_array_info(prog);
4864 free_stmts(prog->stmts, prog->n_stmts);
4865 isl_union_map_free(prog->any_to_outer);
4866 isl_union_map_free(prog->to_outer);
4867 isl_union_map_free(prog->to_inner);
4868 isl_union_set_free(prog->copy_in);
4869 isl_union_set_free(prog->copy_out);
4870 isl_union_map_free(prog->read);
4871 isl_union_map_free(prog->may_write);
4872 isl_union_map_free(prog->must_write);
4873 isl_union_map_free(prog->tagged_must_kill);
4874 isl_union_map_free(prog->array_order);
4875 isl_union_set_free(prog->may_persist);
4876 isl_set_free(prog->context);
4877 free(prog);
4878 return NULL;