[GPGPU] Add log / logf to the libdevice supported functions
[polly-mirror.git] / lib / CodeGen / PPCGCodeGeneration.cpp
blob6e7ef9cc176651b0d5b94344b2e9d4f016e0ae21
1 //===------ PPCGCodeGeneration.cpp - Polly Accelerator Code Generation. ---===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Take a scop created by ScopInfo and map it to GPU code using the ppcg
11 // GPU mapping strategy.
13 //===----------------------------------------------------------------------===//
15 #include "polly/CodeGen/PPCGCodeGeneration.h"
16 #include "polly/CodeGen/CodeGeneration.h"
17 #include "polly/CodeGen/IslAst.h"
18 #include "polly/CodeGen/IslNodeBuilder.h"
19 #include "polly/CodeGen/Utils.h"
20 #include "polly/DependenceInfo.h"
21 #include "polly/LinkAllPasses.h"
22 #include "polly/Options.h"
23 #include "polly/ScopDetection.h"
24 #include "polly/ScopInfo.h"
25 #include "polly/Support/SCEVValidator.h"
26 #include "llvm/ADT/PostOrderIterator.h"
27 #include "llvm/Analysis/AliasAnalysis.h"
28 #include "llvm/Analysis/BasicAliasAnalysis.h"
29 #include "llvm/Analysis/GlobalsModRef.h"
30 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
31 #include "llvm/Analysis/TargetLibraryInfo.h"
32 #include "llvm/Analysis/TargetTransformInfo.h"
33 #include "llvm/IR/LegacyPassManager.h"
34 #include "llvm/IR/Verifier.h"
35 #include "llvm/IRReader/IRReader.h"
36 #include "llvm/Linker/Linker.h"
37 #include "llvm/Support/TargetRegistry.h"
38 #include "llvm/Support/TargetSelect.h"
39 #include "llvm/Target/TargetMachine.h"
40 #include "llvm/Transforms/IPO/PassManagerBuilder.h"
41 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
43 #include "isl/union_map.h"
45 extern "C" {
46 #include "ppcg/cuda.h"
47 #include "ppcg/gpu.h"
48 #include "ppcg/gpu_print.h"
49 #include "ppcg/ppcg.h"
50 #include "ppcg/schedule.h"
53 #include "llvm/Support/Debug.h"
55 using namespace polly;
56 using namespace llvm;
58 #define DEBUG_TYPE "polly-codegen-ppcg"
60 static cl::opt<bool> DumpSchedule("polly-acc-dump-schedule",
61 cl::desc("Dump the computed GPU Schedule"),
62 cl::Hidden, cl::init(false), cl::ZeroOrMore,
63 cl::cat(PollyCategory));
65 static cl::opt<bool>
66 DumpCode("polly-acc-dump-code",
67 cl::desc("Dump C code describing the GPU mapping"), cl::Hidden,
68 cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory));
70 static cl::opt<bool> DumpKernelIR("polly-acc-dump-kernel-ir",
71 cl::desc("Dump the kernel LLVM-IR"),
72 cl::Hidden, cl::init(false), cl::ZeroOrMore,
73 cl::cat(PollyCategory));
75 static cl::opt<bool> DumpKernelASM("polly-acc-dump-kernel-asm",
76 cl::desc("Dump the kernel assembly code"),
77 cl::Hidden, cl::init(false), cl::ZeroOrMore,
78 cl::cat(PollyCategory));
80 static cl::opt<bool> FastMath("polly-acc-fastmath",
81 cl::desc("Allow unsafe math optimizations"),
82 cl::Hidden, cl::init(false), cl::ZeroOrMore,
83 cl::cat(PollyCategory));
84 static cl::opt<bool> SharedMemory("polly-acc-use-shared",
85 cl::desc("Use shared memory"), cl::Hidden,
86 cl::init(false), cl::ZeroOrMore,
87 cl::cat(PollyCategory));
88 static cl::opt<bool> PrivateMemory("polly-acc-use-private",
89 cl::desc("Use private memory"), cl::Hidden,
90 cl::init(false), cl::ZeroOrMore,
91 cl::cat(PollyCategory));
93 bool polly::PollyManagedMemory;
94 static cl::opt<bool, true>
95 XManagedMemory("polly-acc-codegen-managed-memory",
96 cl::desc("Generate Host kernel code assuming"
97 " that all memory has been"
98 " declared as managed memory"),
99 cl::location(PollyManagedMemory), cl::Hidden,
100 cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory));
102 static cl::opt<bool>
103 FailOnVerifyModuleFailure("polly-acc-fail-on-verify-module-failure",
104 cl::desc("Fail and generate a backtrace if"
105 " verifyModule fails on the GPU "
106 " kernel module."),
107 cl::Hidden, cl::init(false), cl::ZeroOrMore,
108 cl::cat(PollyCategory));
110 static cl::opt<std::string> CUDALibDevice(
111 "polly-acc-libdevice", cl::desc("Path to CUDA libdevice"), cl::Hidden,
112 cl::init("/usr/local/cuda/nvvm/libdevice/libdevice.compute_20.10.ll"),
113 cl::ZeroOrMore, cl::cat(PollyCategory));
115 static cl::opt<std::string>
116 CudaVersion("polly-acc-cuda-version",
117 cl::desc("The CUDA version to compile for"), cl::Hidden,
118 cl::init("sm_30"), cl::ZeroOrMore, cl::cat(PollyCategory));
120 static cl::opt<int>
121 MinCompute("polly-acc-mincompute",
122 cl::desc("Minimal number of compute statements to run on GPU."),
123 cl::Hidden, cl::init(10 * 512 * 512));
125 /// Return a unique name for a Scop, which is the scop region with the
126 /// function name.
127 std::string getUniqueScopName(const Scop *S) {
128 return "Scop Region: " + S->getNameStr() +
129 " | Function: " + std::string(S->getFunction().getName());
132 /// Used to store information PPCG wants for kills. This information is
133 /// used by live range reordering.
135 /// @see computeLiveRangeReordering
136 /// @see GPUNodeBuilder::createPPCGScop
137 /// @see GPUNodeBuilder::createPPCGProg
138 struct MustKillsInfo {
139 /// Collection of all kill statements that will be sequenced at the end of
140 /// PPCGScop->schedule.
142 /// The nodes in `KillsSchedule` will be merged using `isl_schedule_set`
143 /// which merges schedules in *arbitrary* order.
144 /// (we don't care about the order of the kills anyway).
145 isl::schedule KillsSchedule;
146 /// Map from kill statement instances to scalars that need to be
147 /// killed.
149 /// We currently derive kill information for:
150 /// 1. phi nodes. PHI nodes are not alive outside the scop and can
151 /// consequently all be killed.
152 /// 2. Scalar arrays that are not used outside the Scop. This is
153 /// checked by `isScalarUsesContainedInScop`.
154 /// [params] -> { [Stmt_phantom[] -> ref_phantom[]] -> scalar_to_kill[] }
155 isl::union_map TaggedMustKills;
157 /// Tagged must kills stripped of the tags.
158 /// [params] -> { Stmt_phantom[] -> scalar_to_kill[] }
159 isl::union_map MustKills;
161 MustKillsInfo() : KillsSchedule(nullptr) {}
164 /// Check if SAI's uses are entirely contained within Scop S.
165 /// If a scalar is used only with a Scop, we are free to kill it, as no data
166 /// can flow in/out of the value any more.
167 /// @see computeMustKillsInfo
168 static bool isScalarUsesContainedInScop(const Scop &S,
169 const ScopArrayInfo *SAI) {
170 assert(SAI->isValueKind() && "this function only deals with scalars."
171 " Dealing with arrays required alias analysis");
173 const Region &R = S.getRegion();
174 for (User *U : SAI->getBasePtr()->users()) {
175 Instruction *I = dyn_cast<Instruction>(U);
176 assert(I && "invalid user of scop array info");
177 if (!R.contains(I))
178 return false;
180 return true;
183 /// Compute must-kills needed to enable live range reordering with PPCG.
185 /// @params S The Scop to compute live range reordering information
186 /// @returns live range reordering information that can be used to setup
187 /// PPCG.
188 static MustKillsInfo computeMustKillsInfo(const Scop &S) {
189 const isl::space ParamSpace = S.getParamSpace();
190 MustKillsInfo Info;
192 // 1. Collect all ScopArrayInfo that satisfy *any* of the criteria:
193 // 1.1 phi nodes in scop.
194 // 1.2 scalars that are only used within the scop
195 SmallVector<isl::id, 4> KillMemIds;
196 for (ScopArrayInfo *SAI : S.arrays()) {
197 if (SAI->isPHIKind() ||
198 (SAI->isValueKind() && isScalarUsesContainedInScop(S, SAI)))
199 KillMemIds.push_back(isl::manage(SAI->getBasePtrId().release()));
202 Info.TaggedMustKills = isl::union_map::empty(ParamSpace);
203 Info.MustKills = isl::union_map::empty(ParamSpace);
205 // Initialising KillsSchedule to `isl_set_empty` creates an empty node in the
206 // schedule:
207 // - filter: "[control] -> { }"
208 // So, we choose to not create this to keep the output a little nicer,
209 // at the cost of some code complexity.
210 Info.KillsSchedule = nullptr;
212 for (isl::id &ToKillId : KillMemIds) {
213 isl::id KillStmtId = isl::id::alloc(
214 S.getIslCtx(),
215 std::string("SKill_phantom_").append(ToKillId.get_name()), nullptr);
217 // NOTE: construction of tagged_must_kill:
218 // 2. We need to construct a map:
219 // [param] -> { [Stmt_phantom[] -> ref_phantom[]] -> scalar_to_kill[] }
220 // To construct this, we use `isl_map_domain_product` on 2 maps`:
221 // 2a. StmtToScalar:
222 // [param] -> { Stmt_phantom[] -> scalar_to_kill[] }
223 // 2b. PhantomRefToScalar:
224 // [param] -> { ref_phantom[] -> scalar_to_kill[] }
226 // Combining these with `isl_map_domain_product` gives us
227 // TaggedMustKill:
228 // [param] -> { [Stmt[] -> phantom_ref[]] -> scalar_to_kill[] }
230 // 2a. [param] -> { Stmt[] -> scalar_to_kill[] }
231 isl::map StmtToScalar = isl::map::universe(ParamSpace);
232 StmtToScalar = StmtToScalar.set_tuple_id(isl::dim::in, isl::id(KillStmtId));
233 StmtToScalar = StmtToScalar.set_tuple_id(isl::dim::out, isl::id(ToKillId));
235 isl::id PhantomRefId = isl::id::alloc(
236 S.getIslCtx(), std::string("ref_phantom") + ToKillId.get_name(),
237 nullptr);
239 // 2b. [param] -> { phantom_ref[] -> scalar_to_kill[] }
240 isl::map PhantomRefToScalar = isl::map::universe(ParamSpace);
241 PhantomRefToScalar =
242 PhantomRefToScalar.set_tuple_id(isl::dim::in, PhantomRefId);
243 PhantomRefToScalar =
244 PhantomRefToScalar.set_tuple_id(isl::dim::out, ToKillId);
246 // 2. [param] -> { [Stmt[] -> phantom_ref[]] -> scalar_to_kill[] }
247 isl::map TaggedMustKill = StmtToScalar.domain_product(PhantomRefToScalar);
248 Info.TaggedMustKills = Info.TaggedMustKills.unite(TaggedMustKill);
250 // 2. [param] -> { Stmt[] -> scalar_to_kill[] }
251 Info.MustKills = Info.TaggedMustKills.domain_factor_domain();
253 // 3. Create the kill schedule of the form:
254 // "[param] -> { Stmt_phantom[] }"
255 // Then add this to Info.KillsSchedule.
256 isl::space KillStmtSpace = ParamSpace;
257 KillStmtSpace = KillStmtSpace.set_tuple_id(isl::dim::set, KillStmtId);
258 isl::union_set KillStmtDomain = isl::set::universe(KillStmtSpace);
260 isl::schedule KillSchedule = isl::schedule::from_domain(KillStmtDomain);
261 if (Info.KillsSchedule)
262 Info.KillsSchedule = Info.KillsSchedule.set(KillSchedule);
263 else
264 Info.KillsSchedule = KillSchedule;
267 return Info;
270 /// Create the ast expressions for a ScopStmt.
272 /// This function is a callback for to generate the ast expressions for each
273 /// of the scheduled ScopStmts.
274 static __isl_give isl_id_to_ast_expr *pollyBuildAstExprForStmt(
275 void *StmtT, __isl_take isl_ast_build *Build_C,
276 isl_multi_pw_aff *(*FunctionIndex)(__isl_take isl_multi_pw_aff *MPA,
277 isl_id *Id, void *User),
278 void *UserIndex,
279 isl_ast_expr *(*FunctionExpr)(isl_ast_expr *Expr, isl_id *Id, void *User),
280 void *UserExpr) {
282 ScopStmt *Stmt = (ScopStmt *)StmtT;
284 if (!Stmt || !Build_C)
285 return NULL;
287 isl::ast_build Build = isl::manage(isl_ast_build_copy(Build_C));
288 isl::ctx Ctx = Build.get_ctx();
289 isl::id_to_ast_expr RefToExpr = isl::id_to_ast_expr::alloc(Ctx, 0);
291 Stmt->setAstBuild(Build);
293 for (MemoryAccess *Acc : *Stmt) {
294 isl::map AddrFunc = Acc->getAddressFunction();
295 AddrFunc = AddrFunc.intersect_domain(Stmt->getDomain());
297 isl::id RefId = Acc->getId();
298 isl::pw_multi_aff PMA = isl::pw_multi_aff::from_map(AddrFunc);
300 isl::multi_pw_aff MPA = isl::multi_pw_aff(PMA);
301 MPA = MPA.coalesce();
302 MPA = isl::manage(FunctionIndex(MPA.release(), RefId.get(), UserIndex));
304 isl::ast_expr Access = Build.access_from(MPA);
305 Access = isl::manage(FunctionExpr(Access.release(), RefId.get(), UserExpr));
306 RefToExpr = RefToExpr.set(RefId, Access);
309 return RefToExpr.release();
312 /// Given a LLVM Type, compute its size in bytes,
313 static int computeSizeInBytes(const Type *T) {
314 int bytes = T->getPrimitiveSizeInBits() / 8;
315 if (bytes == 0)
316 bytes = T->getScalarSizeInBits() / 8;
317 return bytes;
320 /// Generate code for a GPU specific isl AST.
322 /// The GPUNodeBuilder augments the general existing IslNodeBuilder, which
323 /// generates code for general-purpose AST nodes, with special functionality
324 /// for generating GPU specific user nodes.
326 /// @see GPUNodeBuilder::createUser
327 class GPUNodeBuilder : public IslNodeBuilder {
328 public:
329 GPUNodeBuilder(PollyIRBuilder &Builder, ScopAnnotator &Annotator,
330 const DataLayout &DL, LoopInfo &LI, ScalarEvolution &SE,
331 DominatorTree &DT, Scop &S, BasicBlock *StartBlock,
332 gpu_prog *Prog, GPURuntime Runtime, GPUArch Arch)
333 : IslNodeBuilder(Builder, Annotator, DL, LI, SE, DT, S, StartBlock),
334 Prog(Prog), Runtime(Runtime), Arch(Arch) {
335 getExprBuilder().setIDToSAI(&IDToSAI);
338 /// Create after-run-time-check initialization code.
339 void initializeAfterRTH();
341 /// Finalize the generated scop.
342 virtual void finalize();
344 /// Track if the full build process was successful.
346 /// This value is set to false, if throughout the build process an error
347 /// occurred which prevents us from generating valid GPU code.
348 bool BuildSuccessful = true;
350 /// The maximal number of loops surrounding a sequential kernel.
351 unsigned DeepestSequential = 0;
353 /// The maximal number of loops surrounding a parallel kernel.
354 unsigned DeepestParallel = 0;
356 /// Return the name to set for the ptx_kernel.
357 std::string getKernelFuncName(int Kernel_id);
359 private:
360 /// A vector of array base pointers for which a new ScopArrayInfo was created.
362 /// This vector is used to delete the ScopArrayInfo when it is not needed any
363 /// more.
364 std::vector<Value *> LocalArrays;
366 /// A map from ScopArrays to their corresponding device allocations.
367 std::map<ScopArrayInfo *, Value *> DeviceAllocations;
369 /// The current GPU context.
370 Value *GPUContext;
372 /// The set of isl_ids allocated in the kernel
373 std::vector<isl_id *> KernelIds;
375 /// A module containing GPU code.
377 /// This pointer is only set in case we are currently generating GPU code.
378 std::unique_ptr<Module> GPUModule;
380 /// The GPU program we generate code for.
381 gpu_prog *Prog;
383 /// The GPU Runtime implementation to use (OpenCL or CUDA).
384 GPURuntime Runtime;
386 /// The GPU Architecture to target.
387 GPUArch Arch;
389 /// Class to free isl_ids.
390 class IslIdDeleter {
391 public:
392 void operator()(__isl_take isl_id *Id) { isl_id_free(Id); };
395 /// A set containing all isl_ids allocated in a GPU kernel.
397 /// By releasing this set all isl_ids will be freed.
398 std::set<std::unique_ptr<isl_id, IslIdDeleter>> KernelIDs;
400 IslExprBuilder::IDToScopArrayInfoTy IDToSAI;
402 /// Create code for user-defined AST nodes.
404 /// These AST nodes can be of type:
406 /// - ScopStmt: A computational statement (TODO)
407 /// - Kernel: A GPU kernel call (TODO)
408 /// - Data-Transfer: A GPU <-> CPU data-transfer
409 /// - In-kernel synchronization
410 /// - In-kernel memory copy statement
412 /// @param UserStmt The ast node to generate code for.
413 virtual void createUser(__isl_take isl_ast_node *UserStmt);
415 enum DataDirection { HOST_TO_DEVICE, DEVICE_TO_HOST };
417 /// Create code for a data transfer statement
419 /// @param TransferStmt The data transfer statement.
420 /// @param Direction The direction in which to transfer data.
421 void createDataTransfer(__isl_take isl_ast_node *TransferStmt,
422 enum DataDirection Direction);
424 /// Find llvm::Values referenced in GPU kernel.
426 /// @param Kernel The kernel to scan for llvm::Values
428 /// @returns A tuple, whose:
429 /// - First element contains the set of values referenced by the
430 /// kernel
431 /// - Second element contains the set of functions referenced by the
432 /// kernel. All functions in the set satisfy
433 /// `isValidFunctionInKernel`.
434 /// - Third element contains loops that have induction variables
435 /// which are used in the kernel, *and* these loops are *neither*
436 /// in the scop, nor do they immediately surroung the Scop.
437 /// See [Code generation of induction variables of loops outside
438 /// Scops]
439 std::tuple<SetVector<Value *>, SetVector<Function *>, SetVector<const Loop *>,
440 isl::space>
441 getReferencesInKernel(ppcg_kernel *Kernel);
443 /// Compute the sizes of the execution grid for a given kernel.
445 /// @param Kernel The kernel to compute grid sizes for.
447 /// @returns A tuple with grid sizes for X and Y dimension
448 std::tuple<Value *, Value *> getGridSizes(ppcg_kernel *Kernel);
450 /// Get the managed array pointer for sending host pointers to the device.
451 /// \note
452 /// This is to be used only with managed memory
453 Value *getManagedDeviceArray(gpu_array_info *Array, ScopArrayInfo *ArrayInfo);
455 /// Compute the sizes of the thread blocks for a given kernel.
457 /// @param Kernel The kernel to compute thread block sizes for.
459 /// @returns A tuple with thread block sizes for X, Y, and Z dimensions.
460 std::tuple<Value *, Value *, Value *> getBlockSizes(ppcg_kernel *Kernel);
462 /// Store a specific kernel launch parameter in the array of kernel launch
463 /// parameters.
465 /// @param Parameters The list of parameters in which to store.
466 /// @param Param The kernel launch parameter to store.
467 /// @param Index The index in the parameter list, at which to store the
468 /// parameter.
469 void insertStoreParameter(Instruction *Parameters, Instruction *Param,
470 int Index);
472 /// Create kernel launch parameters.
474 /// @param Kernel The kernel to create parameters for.
475 /// @param F The kernel function that has been created.
476 /// @param SubtreeValues The set of llvm::Values referenced by this kernel.
478 /// @returns A stack allocated array with pointers to the parameter
479 /// values that are passed to the kernel.
480 Value *createLaunchParameters(ppcg_kernel *Kernel, Function *F,
481 SetVector<Value *> SubtreeValues);
483 /// Create declarations for kernel variable.
485 /// This includes shared memory declarations.
487 /// @param Kernel The kernel definition to create variables for.
488 /// @param FN The function into which to generate the variables.
489 void createKernelVariables(ppcg_kernel *Kernel, Function *FN);
491 /// Add CUDA annotations to module.
493 /// Add a set of CUDA annotations that declares the maximal block dimensions
494 /// that will be used to execute the CUDA kernel. This allows the NVIDIA
495 /// PTX compiler to bound the number of allocated registers to ensure the
496 /// resulting kernel is known to run with up to as many block dimensions
497 /// as specified here.
499 /// @param M The module to add the annotations to.
500 /// @param BlockDimX The size of block dimension X.
501 /// @param BlockDimY The size of block dimension Y.
502 /// @param BlockDimZ The size of block dimension Z.
503 void addCUDAAnnotations(Module *M, Value *BlockDimX, Value *BlockDimY,
504 Value *BlockDimZ);
506 /// Create GPU kernel.
508 /// Code generate the kernel described by @p KernelStmt.
510 /// @param KernelStmt The ast node to generate kernel code for.
511 void createKernel(__isl_take isl_ast_node *KernelStmt);
513 /// Generate code that computes the size of an array.
515 /// @param Array The array for which to compute a size.
516 Value *getArraySize(gpu_array_info *Array);
518 /// Generate code to compute the minimal offset at which an array is accessed.
520 /// The offset of an array is the minimal array location accessed in a scop.
522 /// Example:
524 /// for (long i = 0; i < 100; i++)
525 /// A[i + 42] += ...
527 /// getArrayOffset(A) results in 42.
529 /// @param Array The array for which to compute the offset.
530 /// @returns An llvm::Value that contains the offset of the array.
531 Value *getArrayOffset(gpu_array_info *Array);
533 /// Prepare the kernel arguments for kernel code generation
535 /// @param Kernel The kernel to generate code for.
536 /// @param FN The function created for the kernel.
537 void prepareKernelArguments(ppcg_kernel *Kernel, Function *FN);
539 /// Create kernel function.
541 /// Create a kernel function located in a newly created module that can serve
542 /// as target for device code generation. Set the Builder to point to the
543 /// start block of this newly created function.
545 /// @param Kernel The kernel to generate code for.
546 /// @param SubtreeValues The set of llvm::Values referenced by this kernel.
547 /// @param SubtreeFunctions The set of llvm::Functions referenced by this
548 /// kernel.
549 void createKernelFunction(ppcg_kernel *Kernel,
550 SetVector<Value *> &SubtreeValues,
551 SetVector<Function *> &SubtreeFunctions);
553 /// Create the declaration of a kernel function.
555 /// The kernel function takes as arguments:
557 /// - One i8 pointer for each external array reference used in the kernel.
558 /// - Host iterators
559 /// - Parameters
560 /// - Other LLVM Value references (TODO)
562 /// @param Kernel The kernel to generate the function declaration for.
563 /// @param SubtreeValues The set of llvm::Values referenced by this kernel.
565 /// @returns The newly declared function.
566 Function *createKernelFunctionDecl(ppcg_kernel *Kernel,
567 SetVector<Value *> &SubtreeValues);
569 /// Insert intrinsic functions to obtain thread and block ids.
571 /// @param The kernel to generate the intrinsic functions for.
572 void insertKernelIntrinsics(ppcg_kernel *Kernel);
574 /// Insert function calls to retrieve the SPIR group/local ids.
576 /// @param The kernel to generate the function calls for.
577 void insertKernelCallsSPIR(ppcg_kernel *Kernel);
579 /// Setup the creation of functions referenced by the GPU kernel.
581 /// 1. Create new function declarations in GPUModule which are the same as
582 /// SubtreeFunctions.
584 /// 2. Populate IslNodeBuilder::ValueMap with mappings from
585 /// old functions (that come from the original module) to new functions
586 /// (that are created within GPUModule). That way, we generate references
587 /// to the correct function (in GPUModule) in BlockGenerator.
589 /// @see IslNodeBuilder::ValueMap
590 /// @see BlockGenerator::GlobalMap
591 /// @see BlockGenerator::getNewValue
592 /// @see GPUNodeBuilder::getReferencesInKernel.
594 /// @param SubtreeFunctions The set of llvm::Functions referenced by
595 /// this kernel.
596 void setupKernelSubtreeFunctions(SetVector<Function *> SubtreeFunctions);
598 /// Create a global-to-shared or shared-to-global copy statement.
600 /// @param CopyStmt The copy statement to generate code for
601 void createKernelCopy(ppcg_kernel_stmt *CopyStmt);
603 /// Create code for a ScopStmt called in @p Expr.
605 /// @param Expr The expression containing the call.
606 /// @param KernelStmt The kernel statement referenced in the call.
607 void createScopStmt(isl_ast_expr *Expr, ppcg_kernel_stmt *KernelStmt);
609 /// Create an in-kernel synchronization call.
610 void createKernelSync();
612 /// Create a PTX assembly string for the current GPU kernel.
614 /// @returns A string containing the corresponding PTX assembly code.
615 std::string createKernelASM();
617 /// Remove references from the dominator tree to the kernel function @p F.
619 /// @param F The function to remove references to.
620 void clearDominators(Function *F);
622 /// Remove references from scalar evolution to the kernel function @p F.
624 /// @param F The function to remove references to.
625 void clearScalarEvolution(Function *F);
627 /// Remove references from loop info to the kernel function @p F.
629 /// @param F The function to remove references to.
630 void clearLoops(Function *F);
632 /// Check if the scop requires to be linked with CUDA's libdevice.
633 bool requiresCUDALibDevice();
635 /// Link with the NVIDIA libdevice library (if needed and available).
636 void addCUDALibDevice();
638 /// Finalize the generation of the kernel function.
640 /// Free the LLVM-IR module corresponding to the kernel and -- if requested --
641 /// dump its IR to stderr.
643 /// @returns The Assembly string of the kernel.
644 std::string finalizeKernelFunction();
646 /// Finalize the generation of the kernel arguments.
648 /// This function ensures that not-read-only scalars used in a kernel are
649 /// stored back to the global memory location they are backed with before
650 /// the kernel terminates.
652 /// @params Kernel The kernel to finalize kernel arguments for.
653 void finalizeKernelArguments(ppcg_kernel *Kernel);
655 /// Create code that allocates memory to store arrays on device.
656 void allocateDeviceArrays();
658 /// Create code to prepare the managed device pointers.
659 void prepareManagedDeviceArrays();
661 /// Free all allocated device arrays.
662 void freeDeviceArrays();
664 /// Create a call to initialize the GPU context.
666 /// @returns A pointer to the newly initialized context.
667 Value *createCallInitContext();
669 /// Create a call to get the device pointer for a kernel allocation.
671 /// @param Allocation The Polly GPU allocation
673 /// @returns The device parameter corresponding to this allocation.
674 Value *createCallGetDevicePtr(Value *Allocation);
676 /// Create a call to free the GPU context.
678 /// @param Context A pointer to an initialized GPU context.
679 void createCallFreeContext(Value *Context);
681 /// Create a call to allocate memory on the device.
683 /// @param Size The size of memory to allocate
685 /// @returns A pointer that identifies this allocation.
686 Value *createCallAllocateMemoryForDevice(Value *Size);
688 /// Create a call to free a device array.
690 /// @param Array The device array to free.
691 void createCallFreeDeviceMemory(Value *Array);
693 /// Create a call to copy data from host to device.
695 /// @param HostPtr A pointer to the host data that should be copied.
696 /// @param DevicePtr A device pointer specifying the location to copy to.
697 void createCallCopyFromHostToDevice(Value *HostPtr, Value *DevicePtr,
698 Value *Size);
700 /// Create a call to copy data from device to host.
702 /// @param DevicePtr A pointer to the device data that should be copied.
703 /// @param HostPtr A host pointer specifying the location to copy to.
704 void createCallCopyFromDeviceToHost(Value *DevicePtr, Value *HostPtr,
705 Value *Size);
707 /// Create a call to synchronize Host & Device.
708 /// \note
709 /// This is to be used only with managed memory.
710 void createCallSynchronizeDevice();
712 /// Create a call to get a kernel from an assembly string.
714 /// @param Buffer The string describing the kernel.
715 /// @param Entry The name of the kernel function to call.
717 /// @returns A pointer to a kernel object
718 Value *createCallGetKernel(Value *Buffer, Value *Entry);
720 /// Create a call to free a GPU kernel.
722 /// @param GPUKernel THe kernel to free.
723 void createCallFreeKernel(Value *GPUKernel);
725 /// Create a call to launch a GPU kernel.
727 /// @param GPUKernel The kernel to launch.
728 /// @param GridDimX The size of the first grid dimension.
729 /// @param GridDimY The size of the second grid dimension.
730 /// @param GridBlockX The size of the first block dimension.
731 /// @param GridBlockY The size of the second block dimension.
732 /// @param GridBlockZ The size of the third block dimension.
733 /// @param Parameters A pointer to an array that contains itself pointers to
734 /// the parameter values passed for each kernel argument.
735 void createCallLaunchKernel(Value *GPUKernel, Value *GridDimX,
736 Value *GridDimY, Value *BlockDimX,
737 Value *BlockDimY, Value *BlockDimZ,
738 Value *Parameters);
741 std::string GPUNodeBuilder::getKernelFuncName(int Kernel_id) {
742 return "FUNC_" + S.getFunction().getName().str() + "_SCOP_" +
743 std::to_string(S.getID()) + "_KERNEL_" + std::to_string(Kernel_id);
746 void GPUNodeBuilder::initializeAfterRTH() {
747 BasicBlock *NewBB = SplitBlock(Builder.GetInsertBlock(),
748 &*Builder.GetInsertPoint(), &DT, &LI);
749 NewBB->setName("polly.acc.initialize");
750 Builder.SetInsertPoint(&NewBB->front());
752 GPUContext = createCallInitContext();
754 if (!PollyManagedMemory)
755 allocateDeviceArrays();
756 else
757 prepareManagedDeviceArrays();
760 void GPUNodeBuilder::finalize() {
761 if (!PollyManagedMemory)
762 freeDeviceArrays();
764 createCallFreeContext(GPUContext);
765 IslNodeBuilder::finalize();
768 void GPUNodeBuilder::allocateDeviceArrays() {
769 assert(!PollyManagedMemory &&
770 "Managed memory will directly send host pointers "
771 "to the kernel. There is no need for device arrays");
772 isl_ast_build *Build = isl_ast_build_from_context(S.getContext().release());
774 for (int i = 0; i < Prog->n_array; ++i) {
775 gpu_array_info *Array = &Prog->array[i];
776 auto *ScopArray = (ScopArrayInfo *)Array->user;
777 std::string DevArrayName("p_dev_array_");
778 DevArrayName.append(Array->name);
780 Value *ArraySize = getArraySize(Array);
781 Value *Offset = getArrayOffset(Array);
782 if (Offset)
783 ArraySize = Builder.CreateSub(
784 ArraySize,
785 Builder.CreateMul(Offset,
786 Builder.getInt64(ScopArray->getElemSizeInBytes())));
787 const SCEV *SizeSCEV = SE.getSCEV(ArraySize);
788 // It makes no sense to have an array of size 0. The CUDA API will
789 // throw an error anyway if we invoke `cuMallocManaged` with size `0`. We
790 // choose to be defensive and catch this at the compile phase. It is
791 // most likely that we are doing something wrong with size computation.
792 if (SizeSCEV->isZero()) {
793 errs() << getUniqueScopName(&S)
794 << " has computed array size 0: " << *ArraySize
795 << " | for array: " << *(ScopArray->getBasePtr())
796 << ". This is illegal, exiting.\n";
797 report_fatal_error("array size was computed to be 0");
800 Value *DevArray = createCallAllocateMemoryForDevice(ArraySize);
801 DevArray->setName(DevArrayName);
802 DeviceAllocations[ScopArray] = DevArray;
805 isl_ast_build_free(Build);
808 void GPUNodeBuilder::prepareManagedDeviceArrays() {
809 assert(PollyManagedMemory &&
810 "Device array most only be prepared in managed-memory mode");
811 for (int i = 0; i < Prog->n_array; ++i) {
812 gpu_array_info *Array = &Prog->array[i];
813 ScopArrayInfo *ScopArray = (ScopArrayInfo *)Array->user;
814 Value *HostPtr;
816 if (gpu_array_is_scalar(Array))
817 HostPtr = BlockGen.getOrCreateAlloca(ScopArray);
818 else
819 HostPtr = ScopArray->getBasePtr();
820 HostPtr = getLatestValue(HostPtr);
822 Value *Offset = getArrayOffset(Array);
823 if (Offset) {
824 HostPtr = Builder.CreatePointerCast(
825 HostPtr, ScopArray->getElementType()->getPointerTo());
826 HostPtr = Builder.CreateGEP(HostPtr, Offset);
829 HostPtr = Builder.CreatePointerCast(HostPtr, Builder.getInt8PtrTy());
830 DeviceAllocations[ScopArray] = HostPtr;
834 void GPUNodeBuilder::addCUDAAnnotations(Module *M, Value *BlockDimX,
835 Value *BlockDimY, Value *BlockDimZ) {
836 auto AnnotationNode = M->getOrInsertNamedMetadata("nvvm.annotations");
838 for (auto &F : *M) {
839 if (F.getCallingConv() != CallingConv::PTX_Kernel)
840 continue;
842 Value *V[] = {BlockDimX, BlockDimY, BlockDimZ};
844 Metadata *Elements[] = {
845 ValueAsMetadata::get(&F), MDString::get(M->getContext(), "maxntidx"),
846 ValueAsMetadata::get(V[0]), MDString::get(M->getContext(), "maxntidy"),
847 ValueAsMetadata::get(V[1]), MDString::get(M->getContext(), "maxntidz"),
848 ValueAsMetadata::get(V[2]),
850 MDNode *Node = MDNode::get(M->getContext(), Elements);
851 AnnotationNode->addOperand(Node);
855 void GPUNodeBuilder::freeDeviceArrays() {
856 assert(!PollyManagedMemory && "Managed memory does not use device arrays");
857 for (auto &Array : DeviceAllocations)
858 createCallFreeDeviceMemory(Array.second);
861 Value *GPUNodeBuilder::createCallGetKernel(Value *Buffer, Value *Entry) {
862 const char *Name = "polly_getKernel";
863 Module *M = Builder.GetInsertBlock()->getParent()->getParent();
864 Function *F = M->getFunction(Name);
866 // If F is not available, declare it.
867 if (!F) {
868 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
869 std::vector<Type *> Args;
870 Args.push_back(Builder.getInt8PtrTy());
871 Args.push_back(Builder.getInt8PtrTy());
872 FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false);
873 F = Function::Create(Ty, Linkage, Name, M);
876 return Builder.CreateCall(F, {Buffer, Entry});
879 Value *GPUNodeBuilder::createCallGetDevicePtr(Value *Allocation) {
880 const char *Name = "polly_getDevicePtr";
881 Module *M = Builder.GetInsertBlock()->getParent()->getParent();
882 Function *F = M->getFunction(Name);
884 // If F is not available, declare it.
885 if (!F) {
886 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
887 std::vector<Type *> Args;
888 Args.push_back(Builder.getInt8PtrTy());
889 FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false);
890 F = Function::Create(Ty, Linkage, Name, M);
893 return Builder.CreateCall(F, {Allocation});
896 void GPUNodeBuilder::createCallLaunchKernel(Value *GPUKernel, Value *GridDimX,
897 Value *GridDimY, Value *BlockDimX,
898 Value *BlockDimY, Value *BlockDimZ,
899 Value *Parameters) {
900 const char *Name = "polly_launchKernel";
901 Module *M = Builder.GetInsertBlock()->getParent()->getParent();
902 Function *F = M->getFunction(Name);
904 // If F is not available, declare it.
905 if (!F) {
906 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
907 std::vector<Type *> Args;
908 Args.push_back(Builder.getInt8PtrTy());
909 Args.push_back(Builder.getInt32Ty());
910 Args.push_back(Builder.getInt32Ty());
911 Args.push_back(Builder.getInt32Ty());
912 Args.push_back(Builder.getInt32Ty());
913 Args.push_back(Builder.getInt32Ty());
914 Args.push_back(Builder.getInt8PtrTy());
915 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false);
916 F = Function::Create(Ty, Linkage, Name, M);
919 Builder.CreateCall(F, {GPUKernel, GridDimX, GridDimY, BlockDimX, BlockDimY,
920 BlockDimZ, Parameters});
923 void GPUNodeBuilder::createCallFreeKernel(Value *GPUKernel) {
924 const char *Name = "polly_freeKernel";
925 Module *M = Builder.GetInsertBlock()->getParent()->getParent();
926 Function *F = M->getFunction(Name);
928 // If F is not available, declare it.
929 if (!F) {
930 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
931 std::vector<Type *> Args;
932 Args.push_back(Builder.getInt8PtrTy());
933 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false);
934 F = Function::Create(Ty, Linkage, Name, M);
937 Builder.CreateCall(F, {GPUKernel});
940 void GPUNodeBuilder::createCallFreeDeviceMemory(Value *Array) {
941 assert(!PollyManagedMemory &&
942 "Managed memory does not allocate or free memory "
943 "for device");
944 const char *Name = "polly_freeDeviceMemory";
945 Module *M = Builder.GetInsertBlock()->getParent()->getParent();
946 Function *F = M->getFunction(Name);
948 // If F is not available, declare it.
949 if (!F) {
950 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
951 std::vector<Type *> Args;
952 Args.push_back(Builder.getInt8PtrTy());
953 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false);
954 F = Function::Create(Ty, Linkage, Name, M);
957 Builder.CreateCall(F, {Array});
960 Value *GPUNodeBuilder::createCallAllocateMemoryForDevice(Value *Size) {
961 assert(!PollyManagedMemory &&
962 "Managed memory does not allocate or free memory "
963 "for device");
964 const char *Name = "polly_allocateMemoryForDevice";
965 Module *M = Builder.GetInsertBlock()->getParent()->getParent();
966 Function *F = M->getFunction(Name);
968 // If F is not available, declare it.
969 if (!F) {
970 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
971 std::vector<Type *> Args;
972 Args.push_back(Builder.getInt64Ty());
973 FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false);
974 F = Function::Create(Ty, Linkage, Name, M);
977 return Builder.CreateCall(F, {Size});
980 void GPUNodeBuilder::createCallCopyFromHostToDevice(Value *HostData,
981 Value *DeviceData,
982 Value *Size) {
983 assert(!PollyManagedMemory &&
984 "Managed memory does not transfer memory between "
985 "device and host");
986 const char *Name = "polly_copyFromHostToDevice";
987 Module *M = Builder.GetInsertBlock()->getParent()->getParent();
988 Function *F = M->getFunction(Name);
990 // If F is not available, declare it.
991 if (!F) {
992 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
993 std::vector<Type *> Args;
994 Args.push_back(Builder.getInt8PtrTy());
995 Args.push_back(Builder.getInt8PtrTy());
996 Args.push_back(Builder.getInt64Ty());
997 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false);
998 F = Function::Create(Ty, Linkage, Name, M);
1001 Builder.CreateCall(F, {HostData, DeviceData, Size});
1004 void GPUNodeBuilder::createCallCopyFromDeviceToHost(Value *DeviceData,
1005 Value *HostData,
1006 Value *Size) {
1007 assert(!PollyManagedMemory &&
1008 "Managed memory does not transfer memory between "
1009 "device and host");
1010 const char *Name = "polly_copyFromDeviceToHost";
1011 Module *M = Builder.GetInsertBlock()->getParent()->getParent();
1012 Function *F = M->getFunction(Name);
1014 // If F is not available, declare it.
1015 if (!F) {
1016 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
1017 std::vector<Type *> Args;
1018 Args.push_back(Builder.getInt8PtrTy());
1019 Args.push_back(Builder.getInt8PtrTy());
1020 Args.push_back(Builder.getInt64Ty());
1021 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false);
1022 F = Function::Create(Ty, Linkage, Name, M);
1025 Builder.CreateCall(F, {DeviceData, HostData, Size});
1028 void GPUNodeBuilder::createCallSynchronizeDevice() {
1029 assert(PollyManagedMemory && "explicit synchronization is only necessary for "
1030 "managed memory");
1031 const char *Name = "polly_synchronizeDevice";
1032 Module *M = Builder.GetInsertBlock()->getParent()->getParent();
1033 Function *F = M->getFunction(Name);
1035 // If F is not available, declare it.
1036 if (!F) {
1037 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
1038 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), false);
1039 F = Function::Create(Ty, Linkage, Name, M);
1042 Builder.CreateCall(F);
1045 Value *GPUNodeBuilder::createCallInitContext() {
1046 const char *Name;
1048 switch (Runtime) {
1049 case GPURuntime::CUDA:
1050 Name = "polly_initContextCUDA";
1051 break;
1052 case GPURuntime::OpenCL:
1053 Name = "polly_initContextCL";
1054 break;
1057 Module *M = Builder.GetInsertBlock()->getParent()->getParent();
1058 Function *F = M->getFunction(Name);
1060 // If F is not available, declare it.
1061 if (!F) {
1062 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
1063 std::vector<Type *> Args;
1064 FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false);
1065 F = Function::Create(Ty, Linkage, Name, M);
1068 return Builder.CreateCall(F, {});
1071 void GPUNodeBuilder::createCallFreeContext(Value *Context) {
1072 const char *Name = "polly_freeContext";
1073 Module *M = Builder.GetInsertBlock()->getParent()->getParent();
1074 Function *F = M->getFunction(Name);
1076 // If F is not available, declare it.
1077 if (!F) {
1078 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
1079 std::vector<Type *> Args;
1080 Args.push_back(Builder.getInt8PtrTy());
1081 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false);
1082 F = Function::Create(Ty, Linkage, Name, M);
1085 Builder.CreateCall(F, {Context});
1088 /// Check if one string is a prefix of another.
1090 /// @param String The string in which to look for the prefix.
1091 /// @param Prefix The prefix to look for.
1092 static bool isPrefix(std::string String, std::string Prefix) {
1093 return String.find(Prefix) == 0;
1096 Value *GPUNodeBuilder::getArraySize(gpu_array_info *Array) {
1097 isl::ast_build Build = isl::ast_build::from_context(S.getContext());
1098 Value *ArraySize = ConstantInt::get(Builder.getInt64Ty(), Array->size);
1100 if (!gpu_array_is_scalar(Array)) {
1101 isl::multi_pw_aff ArrayBound =
1102 isl::manage(isl_multi_pw_aff_copy(Array->bound));
1104 isl::pw_aff OffsetDimZero = ArrayBound.get_pw_aff(0);
1105 isl::ast_expr Res = Build.expr_from(OffsetDimZero);
1107 for (unsigned int i = 1; i < Array->n_index; i++) {
1108 isl::pw_aff Bound_I = ArrayBound.get_pw_aff(i);
1109 isl::ast_expr Expr = Build.expr_from(Bound_I);
1110 Res = Res.mul(Expr);
1113 Value *NumElements = ExprBuilder.create(Res.release());
1114 if (NumElements->getType() != ArraySize->getType())
1115 NumElements = Builder.CreateSExt(NumElements, ArraySize->getType());
1116 ArraySize = Builder.CreateMul(ArraySize, NumElements);
1118 return ArraySize;
1121 Value *GPUNodeBuilder::getArrayOffset(gpu_array_info *Array) {
1122 if (gpu_array_is_scalar(Array))
1123 return nullptr;
1125 isl::ast_build Build = isl::ast_build::from_context(S.getContext());
1127 isl::set Min = isl::manage(isl_set_copy(Array->extent)).lexmin();
1129 isl::set ZeroSet = isl::set::universe(Min.get_space());
1131 for (long i = 0; i < Min.dim(isl::dim::set); i++)
1132 ZeroSet = ZeroSet.fix_si(isl::dim::set, i, 0);
1134 if (Min.is_subset(ZeroSet)) {
1135 return nullptr;
1138 isl::ast_expr Result = isl::ast_expr::from_val(isl::val(Min.get_ctx(), 0));
1140 for (long i = 0; i < Min.dim(isl::dim::set); i++) {
1141 if (i > 0) {
1142 isl::pw_aff Bound_I =
1143 isl::manage(isl_multi_pw_aff_get_pw_aff(Array->bound, i - 1));
1144 isl::ast_expr BExpr = Build.expr_from(Bound_I);
1145 Result = Result.mul(BExpr);
1147 isl::pw_aff DimMin = Min.dim_min(i);
1148 isl::ast_expr MExpr = Build.expr_from(DimMin);
1149 Result = Result.add(MExpr);
1152 return ExprBuilder.create(Result.release());
1155 Value *GPUNodeBuilder::getManagedDeviceArray(gpu_array_info *Array,
1156 ScopArrayInfo *ArrayInfo) {
1157 assert(PollyManagedMemory && "Only used when you wish to get a host "
1158 "pointer for sending data to the kernel, "
1159 "with managed memory");
1160 std::map<ScopArrayInfo *, Value *>::iterator it;
1161 it = DeviceAllocations.find(ArrayInfo);
1162 assert(it != DeviceAllocations.end() &&
1163 "Device array expected to be available");
1164 return it->second;
1167 void GPUNodeBuilder::createDataTransfer(__isl_take isl_ast_node *TransferStmt,
1168 enum DataDirection Direction) {
1169 assert(!PollyManagedMemory && "Managed memory needs no data transfers");
1170 isl_ast_expr *Expr = isl_ast_node_user_get_expr(TransferStmt);
1171 isl_ast_expr *Arg = isl_ast_expr_get_op_arg(Expr, 0);
1172 isl_id *Id = isl_ast_expr_get_id(Arg);
1173 auto Array = (gpu_array_info *)isl_id_get_user(Id);
1174 auto ScopArray = (ScopArrayInfo *)(Array->user);
1176 Value *Size = getArraySize(Array);
1177 Value *Offset = getArrayOffset(Array);
1178 Value *DevPtr = DeviceAllocations[ScopArray];
1180 Value *HostPtr;
1182 if (gpu_array_is_scalar(Array))
1183 HostPtr = BlockGen.getOrCreateAlloca(ScopArray);
1184 else
1185 HostPtr = ScopArray->getBasePtr();
1186 HostPtr = getLatestValue(HostPtr);
1188 if (Offset) {
1189 HostPtr = Builder.CreatePointerCast(
1190 HostPtr, ScopArray->getElementType()->getPointerTo());
1191 HostPtr = Builder.CreateGEP(HostPtr, Offset);
1194 HostPtr = Builder.CreatePointerCast(HostPtr, Builder.getInt8PtrTy());
1196 if (Offset) {
1197 Size = Builder.CreateSub(
1198 Size, Builder.CreateMul(
1199 Offset, Builder.getInt64(ScopArray->getElemSizeInBytes())));
1202 if (Direction == HOST_TO_DEVICE)
1203 createCallCopyFromHostToDevice(HostPtr, DevPtr, Size);
1204 else
1205 createCallCopyFromDeviceToHost(DevPtr, HostPtr, Size);
1207 isl_id_free(Id);
1208 isl_ast_expr_free(Arg);
1209 isl_ast_expr_free(Expr);
1210 isl_ast_node_free(TransferStmt);
1213 void GPUNodeBuilder::createUser(__isl_take isl_ast_node *UserStmt) {
1214 isl_ast_expr *Expr = isl_ast_node_user_get_expr(UserStmt);
1215 isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0);
1216 isl_id *Id = isl_ast_expr_get_id(StmtExpr);
1217 isl_id_free(Id);
1218 isl_ast_expr_free(StmtExpr);
1220 const char *Str = isl_id_get_name(Id);
1221 if (!strcmp(Str, "kernel")) {
1222 createKernel(UserStmt);
1223 if (PollyManagedMemory)
1224 createCallSynchronizeDevice();
1225 isl_ast_expr_free(Expr);
1226 return;
1228 if (!strcmp(Str, "init_device")) {
1229 initializeAfterRTH();
1230 isl_ast_node_free(UserStmt);
1231 isl_ast_expr_free(Expr);
1232 return;
1234 if (!strcmp(Str, "clear_device")) {
1235 finalize();
1236 isl_ast_node_free(UserStmt);
1237 isl_ast_expr_free(Expr);
1238 return;
1240 if (isPrefix(Str, "to_device")) {
1241 if (!PollyManagedMemory)
1242 createDataTransfer(UserStmt, HOST_TO_DEVICE);
1243 else
1244 isl_ast_node_free(UserStmt);
1246 isl_ast_expr_free(Expr);
1247 return;
1250 if (isPrefix(Str, "from_device")) {
1251 if (!PollyManagedMemory) {
1252 createDataTransfer(UserStmt, DEVICE_TO_HOST);
1253 } else {
1254 isl_ast_node_free(UserStmt);
1256 isl_ast_expr_free(Expr);
1257 return;
1260 isl_id *Anno = isl_ast_node_get_annotation(UserStmt);
1261 struct ppcg_kernel_stmt *KernelStmt =
1262 (struct ppcg_kernel_stmt *)isl_id_get_user(Anno);
1263 isl_id_free(Anno);
1265 switch (KernelStmt->type) {
1266 case ppcg_kernel_domain:
1267 createScopStmt(Expr, KernelStmt);
1268 isl_ast_node_free(UserStmt);
1269 return;
1270 case ppcg_kernel_copy:
1271 createKernelCopy(KernelStmt);
1272 isl_ast_expr_free(Expr);
1273 isl_ast_node_free(UserStmt);
1274 return;
1275 case ppcg_kernel_sync:
1276 createKernelSync();
1277 isl_ast_expr_free(Expr);
1278 isl_ast_node_free(UserStmt);
1279 return;
1282 isl_ast_expr_free(Expr);
1283 isl_ast_node_free(UserStmt);
1284 return;
1286 void GPUNodeBuilder::createKernelCopy(ppcg_kernel_stmt *KernelStmt) {
1287 isl_ast_expr *LocalIndex = isl_ast_expr_copy(KernelStmt->u.c.local_index);
1288 LocalIndex = isl_ast_expr_address_of(LocalIndex);
1289 Value *LocalAddr = ExprBuilder.create(LocalIndex);
1290 isl_ast_expr *Index = isl_ast_expr_copy(KernelStmt->u.c.index);
1291 Index = isl_ast_expr_address_of(Index);
1292 Value *GlobalAddr = ExprBuilder.create(Index);
1294 if (KernelStmt->u.c.read) {
1295 LoadInst *Load = Builder.CreateLoad(GlobalAddr, "shared.read");
1296 Builder.CreateStore(Load, LocalAddr);
1297 } else {
1298 LoadInst *Load = Builder.CreateLoad(LocalAddr, "shared.write");
1299 Builder.CreateStore(Load, GlobalAddr);
1303 void GPUNodeBuilder::createScopStmt(isl_ast_expr *Expr,
1304 ppcg_kernel_stmt *KernelStmt) {
1305 auto Stmt = (ScopStmt *)KernelStmt->u.d.stmt->stmt;
1306 isl_id_to_ast_expr *Indexes = KernelStmt->u.d.ref2expr;
1308 LoopToScevMapT LTS;
1309 LTS.insert(OutsideLoopIterations.begin(), OutsideLoopIterations.end());
1311 createSubstitutions(Expr, Stmt, LTS);
1313 if (Stmt->isBlockStmt())
1314 BlockGen.copyStmt(*Stmt, LTS, Indexes);
1315 else
1316 RegionGen.copyStmt(*Stmt, LTS, Indexes);
1319 void GPUNodeBuilder::createKernelSync() {
1320 Module *M = Builder.GetInsertBlock()->getParent()->getParent();
1321 const char *SpirName = "__gen_ocl_barrier_global";
1323 Function *Sync;
1325 switch (Arch) {
1326 case GPUArch::SPIR64:
1327 case GPUArch::SPIR32:
1328 Sync = M->getFunction(SpirName);
1330 // If Sync is not available, declare it.
1331 if (!Sync) {
1332 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
1333 std::vector<Type *> Args;
1334 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false);
1335 Sync = Function::Create(Ty, Linkage, SpirName, M);
1336 Sync->setCallingConv(CallingConv::SPIR_FUNC);
1338 break;
1339 case GPUArch::NVPTX64:
1340 Sync = Intrinsic::getDeclaration(M, Intrinsic::nvvm_barrier0);
1341 break;
1344 Builder.CreateCall(Sync, {});
1347 /// Collect llvm::Values referenced from @p Node
1349 /// This function only applies to isl_ast_nodes that are user_nodes referring
1350 /// to a ScopStmt. All other node types are ignore.
1352 /// @param Node The node to collect references for.
1353 /// @param User A user pointer used as storage for the data that is collected.
1355 /// @returns isl_bool_true if data could be collected successfully.
1356 isl_bool collectReferencesInGPUStmt(__isl_keep isl_ast_node *Node, void *User) {
1357 if (isl_ast_node_get_type(Node) != isl_ast_node_user)
1358 return isl_bool_true;
1360 isl_ast_expr *Expr = isl_ast_node_user_get_expr(Node);
1361 isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0);
1362 isl_id *Id = isl_ast_expr_get_id(StmtExpr);
1363 const char *Str = isl_id_get_name(Id);
1364 isl_id_free(Id);
1365 isl_ast_expr_free(StmtExpr);
1366 isl_ast_expr_free(Expr);
1368 if (!isPrefix(Str, "Stmt"))
1369 return isl_bool_true;
1371 Id = isl_ast_node_get_annotation(Node);
1372 auto *KernelStmt = (ppcg_kernel_stmt *)isl_id_get_user(Id);
1373 auto Stmt = (ScopStmt *)KernelStmt->u.d.stmt->stmt;
1374 isl_id_free(Id);
1376 addReferencesFromStmt(Stmt, User, false /* CreateScalarRefs */);
1378 return isl_bool_true;
1381 /// A list of functions that are available in NVIDIA's libdevice.
1382 const std::set<std::string> CUDALibDeviceFunctions = {
1383 "exp", "expf", "expl", "cos", "cosf", "sqrt",
1384 "sqrtf", "copysign", "copysignf", "copysignl", "log", "logf"};
1386 /// Return the corresponding CUDA libdevice function name for @p F.
1388 /// Return "" if we are not compiling for CUDA.
1389 std::string getCUDALibDeviceFuntion(Function *F) {
1390 if (CUDALibDeviceFunctions.count(F->getName()))
1391 return std::string("__nv_") + std::string(F->getName());
1393 return "";
1396 /// Check if F is a function that we can code-generate in a GPU kernel.
1397 static bool isValidFunctionInKernel(llvm::Function *F, bool AllowLibDevice) {
1398 assert(F && "F is an invalid pointer");
1399 // We string compare against the name of the function to allow
1400 // all variants of the intrinsic "llvm.sqrt.*", "llvm.fabs", and
1401 // "llvm.copysign".
1402 const StringRef Name = F->getName();
1404 if (AllowLibDevice && getCUDALibDeviceFuntion(F).length() > 0)
1405 return true;
1407 return F->isIntrinsic() &&
1408 (Name.startswith("llvm.sqrt") || Name.startswith("llvm.fabs") ||
1409 Name.startswith("llvm.copysign"));
1412 /// Do not take `Function` as a subtree value.
1414 /// We try to take the reference of all subtree values and pass them along
1415 /// to the kernel from the host. Taking an address of any function and
1416 /// trying to pass along is nonsensical. Only allow `Value`s that are not
1417 /// `Function`s.
1418 static bool isValidSubtreeValue(llvm::Value *V) { return !isa<Function>(V); }
1420 /// Return `Function`s from `RawSubtreeValues`.
1421 static SetVector<Function *>
1422 getFunctionsFromRawSubtreeValues(SetVector<Value *> RawSubtreeValues,
1423 bool AllowCUDALibDevice) {
1424 SetVector<Function *> SubtreeFunctions;
1425 for (Value *It : RawSubtreeValues) {
1426 Function *F = dyn_cast<Function>(It);
1427 if (F) {
1428 assert(isValidFunctionInKernel(F, AllowCUDALibDevice) &&
1429 "Code should have bailed out by "
1430 "this point if an invalid function "
1431 "were present in a kernel.");
1432 SubtreeFunctions.insert(F);
1435 return SubtreeFunctions;
1438 std::tuple<SetVector<Value *>, SetVector<Function *>, SetVector<const Loop *>,
1439 isl::space>
1440 GPUNodeBuilder::getReferencesInKernel(ppcg_kernel *Kernel) {
1441 SetVector<Value *> SubtreeValues;
1442 SetVector<const SCEV *> SCEVs;
1443 SetVector<const Loop *> Loops;
1444 isl::space ParamSpace = isl::space(S.getIslCtx(), 0, 0).params();
1445 SubtreeReferences References = {
1446 LI, SE, S, ValueMap, SubtreeValues, SCEVs, getBlockGenerator(),
1447 &ParamSpace};
1449 for (const auto &I : IDToValue)
1450 SubtreeValues.insert(I.second);
1452 // NOTE: this is populated in IslNodeBuilder::addParameters
1453 // See [Code generation of induction variables of loops outside Scops].
1454 for (const auto &I : OutsideLoopIterations)
1455 SubtreeValues.insert(cast<SCEVUnknown>(I.second)->getValue());
1457 isl_ast_node_foreach_descendant_top_down(
1458 Kernel->tree, collectReferencesInGPUStmt, &References);
1460 for (const SCEV *Expr : SCEVs) {
1461 findValues(Expr, SE, SubtreeValues);
1462 findLoops(Expr, Loops);
1465 Loops.remove_if([this](const Loop *L) {
1466 return S.contains(L) || L->contains(S.getEntry());
1469 for (auto &SAI : S.arrays())
1470 SubtreeValues.remove(SAI->getBasePtr());
1472 isl_space *Space = S.getParamSpace().release();
1473 for (long i = 0; i < isl_space_dim(Space, isl_dim_param); i++) {
1474 isl_id *Id = isl_space_get_dim_id(Space, isl_dim_param, i);
1475 assert(IDToValue.count(Id));
1476 Value *Val = IDToValue[Id];
1477 SubtreeValues.remove(Val);
1478 isl_id_free(Id);
1480 isl_space_free(Space);
1482 for (long i = 0; i < isl_space_dim(Kernel->space, isl_dim_set); i++) {
1483 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_set, i);
1484 assert(IDToValue.count(Id));
1485 Value *Val = IDToValue[Id];
1486 SubtreeValues.remove(Val);
1487 isl_id_free(Id);
1490 // Note: { ValidSubtreeValues, ValidSubtreeFunctions } partitions
1491 // SubtreeValues. This is important, because we should not lose any
1492 // SubtreeValues in the process of constructing the
1493 // "ValidSubtree{Values, Functions} sets. Nor should the set
1494 // ValidSubtree{Values, Functions} have any common element.
1495 auto ValidSubtreeValuesIt =
1496 make_filter_range(SubtreeValues, isValidSubtreeValue);
1497 SetVector<Value *> ValidSubtreeValues(ValidSubtreeValuesIt.begin(),
1498 ValidSubtreeValuesIt.end());
1500 bool AllowCUDALibDevice = Arch == GPUArch::NVPTX64;
1502 SetVector<Function *> ValidSubtreeFunctions(
1503 getFunctionsFromRawSubtreeValues(SubtreeValues, AllowCUDALibDevice));
1505 // @see IslNodeBuilder::getReferencesInSubtree
1506 SetVector<Value *> ReplacedValues;
1507 for (Value *V : ValidSubtreeValues) {
1508 auto It = ValueMap.find(V);
1509 if (It == ValueMap.end())
1510 ReplacedValues.insert(V);
1511 else
1512 ReplacedValues.insert(It->second);
1514 return std::make_tuple(ReplacedValues, ValidSubtreeFunctions, Loops,
1515 ParamSpace);
1518 void GPUNodeBuilder::clearDominators(Function *F) {
1519 DomTreeNode *N = DT.getNode(&F->getEntryBlock());
1520 std::vector<BasicBlock *> Nodes;
1521 for (po_iterator<DomTreeNode *> I = po_begin(N), E = po_end(N); I != E; ++I)
1522 Nodes.push_back(I->getBlock());
1524 for (BasicBlock *BB : Nodes)
1525 DT.eraseNode(BB);
1528 void GPUNodeBuilder::clearScalarEvolution(Function *F) {
1529 for (BasicBlock &BB : *F) {
1530 Loop *L = LI.getLoopFor(&BB);
1531 if (L)
1532 SE.forgetLoop(L);
1536 void GPUNodeBuilder::clearLoops(Function *F) {
1537 for (BasicBlock &BB : *F) {
1538 Loop *L = LI.getLoopFor(&BB);
1539 if (L)
1540 SE.forgetLoop(L);
1541 LI.removeBlock(&BB);
1545 std::tuple<Value *, Value *> GPUNodeBuilder::getGridSizes(ppcg_kernel *Kernel) {
1546 std::vector<Value *> Sizes;
1547 isl::ast_build Context = isl::ast_build::from_context(S.getContext());
1549 isl::multi_pw_aff GridSizePwAffs =
1550 isl::manage(isl_multi_pw_aff_copy(Kernel->grid_size));
1551 for (long i = 0; i < Kernel->n_grid; i++) {
1552 isl::pw_aff Size = GridSizePwAffs.get_pw_aff(i);
1553 isl::ast_expr GridSize = Context.expr_from(Size);
1554 Value *Res = ExprBuilder.create(GridSize.release());
1555 Res = Builder.CreateTrunc(Res, Builder.getInt32Ty());
1556 Sizes.push_back(Res);
1559 for (long i = Kernel->n_grid; i < 3; i++)
1560 Sizes.push_back(ConstantInt::get(Builder.getInt32Ty(), 1));
1562 return std::make_tuple(Sizes[0], Sizes[1]);
1565 std::tuple<Value *, Value *, Value *>
1566 GPUNodeBuilder::getBlockSizes(ppcg_kernel *Kernel) {
1567 std::vector<Value *> Sizes;
1569 for (long i = 0; i < Kernel->n_block; i++) {
1570 Value *Res = ConstantInt::get(Builder.getInt32Ty(), Kernel->block_dim[i]);
1571 Sizes.push_back(Res);
1574 for (long i = Kernel->n_block; i < 3; i++)
1575 Sizes.push_back(ConstantInt::get(Builder.getInt32Ty(), 1));
1577 return std::make_tuple(Sizes[0], Sizes[1], Sizes[2]);
1580 void GPUNodeBuilder::insertStoreParameter(Instruction *Parameters,
1581 Instruction *Param, int Index) {
1582 Value *Slot = Builder.CreateGEP(
1583 Parameters, {Builder.getInt64(0), Builder.getInt64(Index)});
1584 Value *ParamTyped = Builder.CreatePointerCast(Param, Builder.getInt8PtrTy());
1585 Builder.CreateStore(ParamTyped, Slot);
1588 Value *
1589 GPUNodeBuilder::createLaunchParameters(ppcg_kernel *Kernel, Function *F,
1590 SetVector<Value *> SubtreeValues) {
1591 const int NumArgs = F->arg_size();
1592 std::vector<int> ArgSizes(NumArgs);
1594 // If we are using the OpenCL Runtime, we need to add the kernel argument
1595 // sizes to the end of the launch-parameter list, so OpenCL can determine
1596 // how big the respective kernel arguments are.
1597 // Here we need to reserve adequate space for that.
1598 Type *ArrayTy;
1599 if (Runtime == GPURuntime::OpenCL)
1600 ArrayTy = ArrayType::get(Builder.getInt8PtrTy(), 2 * NumArgs);
1601 else
1602 ArrayTy = ArrayType::get(Builder.getInt8PtrTy(), NumArgs);
1604 BasicBlock *EntryBlock =
1605 &Builder.GetInsertBlock()->getParent()->getEntryBlock();
1606 auto AddressSpace = F->getParent()->getDataLayout().getAllocaAddrSpace();
1607 std::string Launch = "polly_launch_" + std::to_string(Kernel->id);
1608 Instruction *Parameters = new AllocaInst(
1609 ArrayTy, AddressSpace, Launch + "_params", EntryBlock->getTerminator());
1611 int Index = 0;
1612 for (long i = 0; i < Prog->n_array; i++) {
1613 if (!ppcg_kernel_requires_array_argument(Kernel, i))
1614 continue;
1616 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set);
1617 const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(isl::manage(Id));
1619 if (Runtime == GPURuntime::OpenCL)
1620 ArgSizes[Index] = SAI->getElemSizeInBytes();
1622 Value *DevArray = nullptr;
1623 if (PollyManagedMemory) {
1624 DevArray = getManagedDeviceArray(&Prog->array[i],
1625 const_cast<ScopArrayInfo *>(SAI));
1626 } else {
1627 DevArray = DeviceAllocations[const_cast<ScopArrayInfo *>(SAI)];
1628 DevArray = createCallGetDevicePtr(DevArray);
1630 assert(DevArray != nullptr && "Array to be offloaded to device not "
1631 "initialized");
1632 Value *Offset = getArrayOffset(&Prog->array[i]);
1634 if (Offset) {
1635 DevArray = Builder.CreatePointerCast(
1636 DevArray, SAI->getElementType()->getPointerTo());
1637 DevArray = Builder.CreateGEP(DevArray, Builder.CreateNeg(Offset));
1638 DevArray = Builder.CreatePointerCast(DevArray, Builder.getInt8PtrTy());
1640 Value *Slot = Builder.CreateGEP(
1641 Parameters, {Builder.getInt64(0), Builder.getInt64(Index)});
1643 if (gpu_array_is_read_only_scalar(&Prog->array[i])) {
1644 Value *ValPtr = nullptr;
1645 if (PollyManagedMemory)
1646 ValPtr = DevArray;
1647 else
1648 ValPtr = BlockGen.getOrCreateAlloca(SAI);
1650 assert(ValPtr != nullptr && "ValPtr that should point to a valid object"
1651 " to be stored into Parameters");
1652 Value *ValPtrCast =
1653 Builder.CreatePointerCast(ValPtr, Builder.getInt8PtrTy());
1654 Builder.CreateStore(ValPtrCast, Slot);
1655 } else {
1656 Instruction *Param =
1657 new AllocaInst(Builder.getInt8PtrTy(), AddressSpace,
1658 Launch + "_param_" + std::to_string(Index),
1659 EntryBlock->getTerminator());
1660 Builder.CreateStore(DevArray, Param);
1661 Value *ParamTyped =
1662 Builder.CreatePointerCast(Param, Builder.getInt8PtrTy());
1663 Builder.CreateStore(ParamTyped, Slot);
1665 Index++;
1668 int NumHostIters = isl_space_dim(Kernel->space, isl_dim_set);
1670 for (long i = 0; i < NumHostIters; i++) {
1671 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_set, i);
1672 Value *Val = IDToValue[Id];
1673 isl_id_free(Id);
1675 if (Runtime == GPURuntime::OpenCL)
1676 ArgSizes[Index] = computeSizeInBytes(Val->getType());
1678 Instruction *Param =
1679 new AllocaInst(Val->getType(), AddressSpace,
1680 Launch + "_param_" + std::to_string(Index),
1681 EntryBlock->getTerminator());
1682 Builder.CreateStore(Val, Param);
1683 insertStoreParameter(Parameters, Param, Index);
1684 Index++;
1687 int NumVars = isl_space_dim(Kernel->space, isl_dim_param);
1689 for (long i = 0; i < NumVars; i++) {
1690 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_param, i);
1691 Value *Val = IDToValue[Id];
1692 if (ValueMap.count(Val))
1693 Val = ValueMap[Val];
1694 isl_id_free(Id);
1696 if (Runtime == GPURuntime::OpenCL)
1697 ArgSizes[Index] = computeSizeInBytes(Val->getType());
1699 Instruction *Param =
1700 new AllocaInst(Val->getType(), AddressSpace,
1701 Launch + "_param_" + std::to_string(Index),
1702 EntryBlock->getTerminator());
1703 Builder.CreateStore(Val, Param);
1704 insertStoreParameter(Parameters, Param, Index);
1705 Index++;
1708 for (auto Val : SubtreeValues) {
1709 if (Runtime == GPURuntime::OpenCL)
1710 ArgSizes[Index] = computeSizeInBytes(Val->getType());
1712 Instruction *Param =
1713 new AllocaInst(Val->getType(), AddressSpace,
1714 Launch + "_param_" + std::to_string(Index),
1715 EntryBlock->getTerminator());
1716 Builder.CreateStore(Val, Param);
1717 insertStoreParameter(Parameters, Param, Index);
1718 Index++;
1721 if (Runtime == GPURuntime::OpenCL) {
1722 for (int i = 0; i < NumArgs; i++) {
1723 Value *Val = ConstantInt::get(Builder.getInt32Ty(), ArgSizes[i]);
1724 Instruction *Param =
1725 new AllocaInst(Builder.getInt32Ty(), AddressSpace,
1726 Launch + "_param_size_" + std::to_string(i),
1727 EntryBlock->getTerminator());
1728 Builder.CreateStore(Val, Param);
1729 insertStoreParameter(Parameters, Param, Index);
1730 Index++;
1734 auto Location = EntryBlock->getTerminator();
1735 return new BitCastInst(Parameters, Builder.getInt8PtrTy(),
1736 Launch + "_params_i8ptr", Location);
1739 void GPUNodeBuilder::setupKernelSubtreeFunctions(
1740 SetVector<Function *> SubtreeFunctions) {
1741 for (auto Fn : SubtreeFunctions) {
1742 const std::string ClonedFnName = Fn->getName();
1743 Function *Clone = GPUModule->getFunction(ClonedFnName);
1744 if (!Clone)
1745 Clone =
1746 Function::Create(Fn->getFunctionType(), GlobalValue::ExternalLinkage,
1747 ClonedFnName, GPUModule.get());
1748 assert(Clone && "Expected cloned function to be initialized.");
1749 assert(ValueMap.find(Fn) == ValueMap.end() &&
1750 "Fn already present in ValueMap");
1751 ValueMap[Fn] = Clone;
1754 void GPUNodeBuilder::createKernel(__isl_take isl_ast_node *KernelStmt) {
1755 isl_id *Id = isl_ast_node_get_annotation(KernelStmt);
1756 ppcg_kernel *Kernel = (ppcg_kernel *)isl_id_get_user(Id);
1757 isl_id_free(Id);
1758 isl_ast_node_free(KernelStmt);
1760 if (Kernel->n_grid > 1)
1761 DeepestParallel =
1762 std::max(DeepestParallel, isl_space_dim(Kernel->space, isl_dim_set));
1763 else
1764 DeepestSequential =
1765 std::max(DeepestSequential, isl_space_dim(Kernel->space, isl_dim_set));
1767 Value *BlockDimX, *BlockDimY, *BlockDimZ;
1768 std::tie(BlockDimX, BlockDimY, BlockDimZ) = getBlockSizes(Kernel);
1770 SetVector<Value *> SubtreeValues;
1771 SetVector<Function *> SubtreeFunctions;
1772 SetVector<const Loop *> Loops;
1773 isl::space ParamSpace;
1774 std::tie(SubtreeValues, SubtreeFunctions, Loops, ParamSpace) =
1775 getReferencesInKernel(Kernel);
1777 // Add parameters that appear only in the access function to the kernel
1778 // space. This is important to make sure that all isl_ids are passed as
1779 // parameters to the kernel, even though we may not have all parameters
1780 // in the context to improve compile time.
1781 Kernel->space = isl_space_align_params(Kernel->space, ParamSpace.release());
1783 assert(Kernel->tree && "Device AST of kernel node is empty");
1785 Instruction &HostInsertPoint = *Builder.GetInsertPoint();
1786 IslExprBuilder::IDToValueTy HostIDs = IDToValue;
1787 ValueMapT HostValueMap = ValueMap;
1788 BlockGenerator::AllocaMapTy HostScalarMap = ScalarMap;
1789 ScalarMap.clear();
1791 // Create for all loops we depend on values that contain the current loop
1792 // iteration. These values are necessary to generate code for SCEVs that
1793 // depend on such loops. As a result we need to pass them to the subfunction.
1794 for (const Loop *L : Loops) {
1795 const SCEV *OuterLIV = SE.getAddRecExpr(SE.getUnknown(Builder.getInt64(0)),
1796 SE.getUnknown(Builder.getInt64(1)),
1797 L, SCEV::FlagAnyWrap);
1798 Value *V = generateSCEV(OuterLIV);
1799 OutsideLoopIterations[L] = SE.getUnknown(V);
1800 SubtreeValues.insert(V);
1803 createKernelFunction(Kernel, SubtreeValues, SubtreeFunctions);
1804 setupKernelSubtreeFunctions(SubtreeFunctions);
1806 create(isl_ast_node_copy(Kernel->tree));
1808 finalizeKernelArguments(Kernel);
1809 Function *F = Builder.GetInsertBlock()->getParent();
1810 if (Arch == GPUArch::NVPTX64)
1811 addCUDAAnnotations(F->getParent(), BlockDimX, BlockDimY, BlockDimZ);
1812 clearDominators(F);
1813 clearScalarEvolution(F);
1814 clearLoops(F);
1816 IDToValue = HostIDs;
1818 ValueMap = std::move(HostValueMap);
1819 ScalarMap = std::move(HostScalarMap);
1820 EscapeMap.clear();
1821 IDToSAI.clear();
1822 Annotator.resetAlternativeAliasBases();
1823 for (auto &BasePtr : LocalArrays)
1824 S.invalidateScopArrayInfo(BasePtr, MemoryKind::Array);
1825 LocalArrays.clear();
1827 std::string ASMString = finalizeKernelFunction();
1828 Builder.SetInsertPoint(&HostInsertPoint);
1829 Value *Parameters = createLaunchParameters(Kernel, F, SubtreeValues);
1831 std::string Name = getKernelFuncName(Kernel->id);
1832 Value *KernelString = Builder.CreateGlobalStringPtr(ASMString, Name);
1833 Value *NameString = Builder.CreateGlobalStringPtr(Name, Name + "_name");
1834 Value *GPUKernel = createCallGetKernel(KernelString, NameString);
1836 Value *GridDimX, *GridDimY;
1837 std::tie(GridDimX, GridDimY) = getGridSizes(Kernel);
1839 createCallLaunchKernel(GPUKernel, GridDimX, GridDimY, BlockDimX, BlockDimY,
1840 BlockDimZ, Parameters);
1841 createCallFreeKernel(GPUKernel);
1843 for (auto Id : KernelIds)
1844 isl_id_free(Id);
1846 KernelIds.clear();
1849 /// Compute the DataLayout string for the NVPTX backend.
1851 /// @param is64Bit Are we looking for a 64 bit architecture?
1852 static std::string computeNVPTXDataLayout(bool is64Bit) {
1853 std::string Ret = "";
1855 if (!is64Bit) {
1856 Ret += "e-p:32:32:32-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:"
1857 "64-i128:128:128-f32:32:32-f64:64:64-v16:16:16-v32:32:32-v64:64:"
1858 "64-v128:128:128-n16:32:64";
1859 } else {
1860 Ret += "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:"
1861 "64-i128:128:128-f32:32:32-f64:64:64-v16:16:16-v32:32:32-v64:64:"
1862 "64-v128:128:128-n16:32:64";
1865 return Ret;
1868 /// Compute the DataLayout string for a SPIR kernel.
1870 /// @param is64Bit Are we looking for a 64 bit architecture?
1871 static std::string computeSPIRDataLayout(bool is64Bit) {
1872 std::string Ret = "";
1874 if (!is64Bit) {
1875 Ret += "e-p:32:32:32-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:"
1876 "64-i128:128:128-f32:32:32-f64:64:64-v16:16:16-v24:32:32-v32:32:"
1877 "32-v48:64:64-v64:64:64-v96:128:128-v128:128:128-v192:"
1878 "256:256-v256:256:256-v512:512:512-v1024:1024:1024";
1879 } else {
1880 Ret += "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:"
1881 "64-i128:128:128-f32:32:32-f64:64:64-v16:16:16-v24:32:32-v32:32:"
1882 "32-v48:64:64-v64:64:64-v96:128:128-v128:128:128-v192:"
1883 "256:256-v256:256:256-v512:512:512-v1024:1024:1024";
1886 return Ret;
1889 Function *
1890 GPUNodeBuilder::createKernelFunctionDecl(ppcg_kernel *Kernel,
1891 SetVector<Value *> &SubtreeValues) {
1892 std::vector<Type *> Args;
1893 std::string Identifier = getKernelFuncName(Kernel->id);
1895 std::vector<Metadata *> MemoryType;
1897 for (long i = 0; i < Prog->n_array; i++) {
1898 if (!ppcg_kernel_requires_array_argument(Kernel, i))
1899 continue;
1901 if (gpu_array_is_read_only_scalar(&Prog->array[i])) {
1902 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set);
1903 const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(isl::manage(Id));
1904 Args.push_back(SAI->getElementType());
1905 MemoryType.push_back(
1906 ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), 0)));
1907 } else {
1908 static const int UseGlobalMemory = 1;
1909 Args.push_back(Builder.getInt8PtrTy(UseGlobalMemory));
1910 MemoryType.push_back(
1911 ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), 1)));
1915 int NumHostIters = isl_space_dim(Kernel->space, isl_dim_set);
1917 for (long i = 0; i < NumHostIters; i++) {
1918 Args.push_back(Builder.getInt64Ty());
1919 MemoryType.push_back(
1920 ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), 0)));
1923 int NumVars = isl_space_dim(Kernel->space, isl_dim_param);
1925 for (long i = 0; i < NumVars; i++) {
1926 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_param, i);
1927 Value *Val = IDToValue[Id];
1928 isl_id_free(Id);
1929 Args.push_back(Val->getType());
1930 MemoryType.push_back(
1931 ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), 0)));
1934 for (auto *V : SubtreeValues) {
1935 Args.push_back(V->getType());
1936 MemoryType.push_back(
1937 ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), 0)));
1940 auto *FT = FunctionType::get(Builder.getVoidTy(), Args, false);
1941 auto *FN = Function::Create(FT, Function::ExternalLinkage, Identifier,
1942 GPUModule.get());
1944 std::vector<Metadata *> EmptyStrings;
1946 for (unsigned int i = 0; i < MemoryType.size(); i++) {
1947 EmptyStrings.push_back(MDString::get(FN->getContext(), ""));
1950 if (Arch == GPUArch::SPIR32 || Arch == GPUArch::SPIR64) {
1951 FN->setMetadata("kernel_arg_addr_space",
1952 MDNode::get(FN->getContext(), MemoryType));
1953 FN->setMetadata("kernel_arg_name",
1954 MDNode::get(FN->getContext(), EmptyStrings));
1955 FN->setMetadata("kernel_arg_access_qual",
1956 MDNode::get(FN->getContext(), EmptyStrings));
1957 FN->setMetadata("kernel_arg_type",
1958 MDNode::get(FN->getContext(), EmptyStrings));
1959 FN->setMetadata("kernel_arg_type_qual",
1960 MDNode::get(FN->getContext(), EmptyStrings));
1961 FN->setMetadata("kernel_arg_base_type",
1962 MDNode::get(FN->getContext(), EmptyStrings));
1965 switch (Arch) {
1966 case GPUArch::NVPTX64:
1967 FN->setCallingConv(CallingConv::PTX_Kernel);
1968 break;
1969 case GPUArch::SPIR32:
1970 case GPUArch::SPIR64:
1971 FN->setCallingConv(CallingConv::SPIR_KERNEL);
1972 break;
1975 auto Arg = FN->arg_begin();
1976 for (long i = 0; i < Kernel->n_array; i++) {
1977 if (!ppcg_kernel_requires_array_argument(Kernel, i))
1978 continue;
1980 Arg->setName(Kernel->array[i].array->name);
1982 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set);
1983 const ScopArrayInfo *SAI =
1984 ScopArrayInfo::getFromId(isl::manage(isl_id_copy(Id)));
1985 Type *EleTy = SAI->getElementType();
1986 Value *Val = &*Arg;
1987 SmallVector<const SCEV *, 4> Sizes;
1988 isl_ast_build *Build =
1989 isl_ast_build_from_context(isl_set_copy(Prog->context));
1990 Sizes.push_back(nullptr);
1991 for (long j = 1; j < Kernel->array[i].array->n_index; j++) {
1992 isl_ast_expr *DimSize = isl_ast_build_expr_from_pw_aff(
1993 Build, isl_multi_pw_aff_get_pw_aff(Kernel->array[i].array->bound, j));
1994 auto V = ExprBuilder.create(DimSize);
1995 Sizes.push_back(SE.getSCEV(V));
1997 const ScopArrayInfo *SAIRep =
1998 S.getOrCreateScopArrayInfo(Val, EleTy, Sizes, MemoryKind::Array);
1999 LocalArrays.push_back(Val);
2001 isl_ast_build_free(Build);
2002 KernelIds.push_back(Id);
2003 IDToSAI[Id] = SAIRep;
2004 Arg++;
2007 for (long i = 0; i < NumHostIters; i++) {
2008 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_set, i);
2009 Arg->setName(isl_id_get_name(Id));
2010 IDToValue[Id] = &*Arg;
2011 KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id));
2012 Arg++;
2015 for (long i = 0; i < NumVars; i++) {
2016 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_param, i);
2017 Arg->setName(isl_id_get_name(Id));
2018 Value *Val = IDToValue[Id];
2019 ValueMap[Val] = &*Arg;
2020 IDToValue[Id] = &*Arg;
2021 KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id));
2022 Arg++;
2025 for (auto *V : SubtreeValues) {
2026 Arg->setName(V->getName());
2027 ValueMap[V] = &*Arg;
2028 Arg++;
2031 return FN;
2034 void GPUNodeBuilder::insertKernelIntrinsics(ppcg_kernel *Kernel) {
2035 Intrinsic::ID IntrinsicsBID[2];
2036 Intrinsic::ID IntrinsicsTID[3];
2038 switch (Arch) {
2039 case GPUArch::SPIR64:
2040 case GPUArch::SPIR32:
2041 llvm_unreachable("Cannot generate NVVM intrinsics for SPIR");
2042 case GPUArch::NVPTX64:
2043 IntrinsicsBID[0] = Intrinsic::nvvm_read_ptx_sreg_ctaid_x;
2044 IntrinsicsBID[1] = Intrinsic::nvvm_read_ptx_sreg_ctaid_y;
2046 IntrinsicsTID[0] = Intrinsic::nvvm_read_ptx_sreg_tid_x;
2047 IntrinsicsTID[1] = Intrinsic::nvvm_read_ptx_sreg_tid_y;
2048 IntrinsicsTID[2] = Intrinsic::nvvm_read_ptx_sreg_tid_z;
2049 break;
2052 auto addId = [this](__isl_take isl_id *Id, Intrinsic::ID Intr) mutable {
2053 std::string Name = isl_id_get_name(Id);
2054 Module *M = Builder.GetInsertBlock()->getParent()->getParent();
2055 Function *IntrinsicFn = Intrinsic::getDeclaration(M, Intr);
2056 Value *Val = Builder.CreateCall(IntrinsicFn, {});
2057 Val = Builder.CreateIntCast(Val, Builder.getInt64Ty(), false, Name);
2058 IDToValue[Id] = Val;
2059 KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id));
2062 for (int i = 0; i < Kernel->n_grid; ++i) {
2063 isl_id *Id = isl_id_list_get_id(Kernel->block_ids, i);
2064 addId(Id, IntrinsicsBID[i]);
2067 for (int i = 0; i < Kernel->n_block; ++i) {
2068 isl_id *Id = isl_id_list_get_id(Kernel->thread_ids, i);
2069 addId(Id, IntrinsicsTID[i]);
2073 void GPUNodeBuilder::insertKernelCallsSPIR(ppcg_kernel *Kernel) {
2074 const char *GroupName[3] = {"__gen_ocl_get_group_id0",
2075 "__gen_ocl_get_group_id1",
2076 "__gen_ocl_get_group_id2"};
2078 const char *LocalName[3] = {"__gen_ocl_get_local_id0",
2079 "__gen_ocl_get_local_id1",
2080 "__gen_ocl_get_local_id2"};
2082 auto createFunc = [this](const char *Name, __isl_take isl_id *Id) mutable {
2083 Module *M = Builder.GetInsertBlock()->getParent()->getParent();
2084 Function *FN = M->getFunction(Name);
2086 // If FN is not available, declare it.
2087 if (!FN) {
2088 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
2089 std::vector<Type *> Args;
2090 FunctionType *Ty = FunctionType::get(Builder.getInt32Ty(), Args, false);
2091 FN = Function::Create(Ty, Linkage, Name, M);
2092 FN->setCallingConv(CallingConv::SPIR_FUNC);
2095 Value *Val = Builder.CreateCall(FN, {});
2096 Val = Builder.CreateIntCast(Val, Builder.getInt64Ty(), false, Name);
2097 IDToValue[Id] = Val;
2098 KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id));
2101 for (int i = 0; i < Kernel->n_grid; ++i)
2102 createFunc(GroupName[i], isl_id_list_get_id(Kernel->block_ids, i));
2104 for (int i = 0; i < Kernel->n_block; ++i)
2105 createFunc(LocalName[i], isl_id_list_get_id(Kernel->thread_ids, i));
2108 void GPUNodeBuilder::prepareKernelArguments(ppcg_kernel *Kernel, Function *FN) {
2109 auto Arg = FN->arg_begin();
2110 for (long i = 0; i < Kernel->n_array; i++) {
2111 if (!ppcg_kernel_requires_array_argument(Kernel, i))
2112 continue;
2114 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set);
2115 const ScopArrayInfo *SAI =
2116 ScopArrayInfo::getFromId(isl::manage(isl_id_copy(Id)));
2117 isl_id_free(Id);
2119 if (SAI->getNumberOfDimensions() > 0) {
2120 Arg++;
2121 continue;
2124 Value *Val = &*Arg;
2126 if (!gpu_array_is_read_only_scalar(&Prog->array[i])) {
2127 Type *TypePtr = SAI->getElementType()->getPointerTo();
2128 Value *TypedArgPtr = Builder.CreatePointerCast(Val, TypePtr);
2129 Val = Builder.CreateLoad(TypedArgPtr);
2132 Value *Alloca = BlockGen.getOrCreateAlloca(SAI);
2133 Builder.CreateStore(Val, Alloca);
2135 Arg++;
2139 void GPUNodeBuilder::finalizeKernelArguments(ppcg_kernel *Kernel) {
2140 auto *FN = Builder.GetInsertBlock()->getParent();
2141 auto Arg = FN->arg_begin();
2143 bool StoredScalar = false;
2144 for (long i = 0; i < Kernel->n_array; i++) {
2145 if (!ppcg_kernel_requires_array_argument(Kernel, i))
2146 continue;
2148 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set);
2149 const ScopArrayInfo *SAI =
2150 ScopArrayInfo::getFromId(isl::manage(isl_id_copy(Id)));
2151 isl_id_free(Id);
2153 if (SAI->getNumberOfDimensions() > 0) {
2154 Arg++;
2155 continue;
2158 if (gpu_array_is_read_only_scalar(&Prog->array[i])) {
2159 Arg++;
2160 continue;
2163 Value *Alloca = BlockGen.getOrCreateAlloca(SAI);
2164 Value *ArgPtr = &*Arg;
2165 Type *TypePtr = SAI->getElementType()->getPointerTo();
2166 Value *TypedArgPtr = Builder.CreatePointerCast(ArgPtr, TypePtr);
2167 Value *Val = Builder.CreateLoad(Alloca);
2168 Builder.CreateStore(Val, TypedArgPtr);
2169 StoredScalar = true;
2171 Arg++;
2174 if (StoredScalar) {
2175 /// In case more than one thread contains scalar stores, the generated
2176 /// code might be incorrect, if we only store at the end of the kernel.
2177 /// To support this case we need to store these scalars back at each
2178 /// memory store or at least before each kernel barrier.
2179 if (Kernel->n_block != 0 || Kernel->n_grid != 0) {
2180 BuildSuccessful = 0;
2181 DEBUG(
2182 dbgs() << getUniqueScopName(&S)
2183 << " has a store to a scalar value that"
2184 " would be undefined to run in parallel. Bailing out.\n";);
2189 void GPUNodeBuilder::createKernelVariables(ppcg_kernel *Kernel, Function *FN) {
2190 Module *M = Builder.GetInsertBlock()->getParent()->getParent();
2192 for (int i = 0; i < Kernel->n_var; ++i) {
2193 struct ppcg_kernel_var &Var = Kernel->var[i];
2194 isl_id *Id = isl_space_get_tuple_id(Var.array->space, isl_dim_set);
2195 Type *EleTy = ScopArrayInfo::getFromId(isl::manage(Id))->getElementType();
2197 Type *ArrayTy = EleTy;
2198 SmallVector<const SCEV *, 4> Sizes;
2200 Sizes.push_back(nullptr);
2201 for (unsigned int j = 1; j < Var.array->n_index; ++j) {
2202 isl_val *Val = isl_vec_get_element_val(Var.size, j);
2203 long Bound = isl_val_get_num_si(Val);
2204 isl_val_free(Val);
2205 Sizes.push_back(S.getSE()->getConstant(Builder.getInt64Ty(), Bound));
2208 for (int j = Var.array->n_index - 1; j >= 0; --j) {
2209 isl_val *Val = isl_vec_get_element_val(Var.size, j);
2210 long Bound = isl_val_get_num_si(Val);
2211 isl_val_free(Val);
2212 ArrayTy = ArrayType::get(ArrayTy, Bound);
2215 const ScopArrayInfo *SAI;
2216 Value *Allocation;
2217 if (Var.type == ppcg_access_shared) {
2218 auto GlobalVar = new GlobalVariable(
2219 *M, ArrayTy, false, GlobalValue::InternalLinkage, 0, Var.name,
2220 nullptr, GlobalValue::ThreadLocalMode::NotThreadLocal, 3);
2221 GlobalVar->setAlignment(EleTy->getPrimitiveSizeInBits() / 8);
2222 GlobalVar->setInitializer(Constant::getNullValue(ArrayTy));
2224 Allocation = GlobalVar;
2225 } else if (Var.type == ppcg_access_private) {
2226 Allocation = Builder.CreateAlloca(ArrayTy, 0, "private_array");
2227 } else {
2228 llvm_unreachable("unknown variable type");
2230 SAI =
2231 S.getOrCreateScopArrayInfo(Allocation, EleTy, Sizes, MemoryKind::Array);
2232 Id = isl_id_alloc(S.getIslCtx(), Var.name, nullptr);
2233 IDToValue[Id] = Allocation;
2234 LocalArrays.push_back(Allocation);
2235 KernelIds.push_back(Id);
2236 IDToSAI[Id] = SAI;
2240 void GPUNodeBuilder::createKernelFunction(
2241 ppcg_kernel *Kernel, SetVector<Value *> &SubtreeValues,
2242 SetVector<Function *> &SubtreeFunctions) {
2243 std::string Identifier = getKernelFuncName(Kernel->id);
2244 GPUModule.reset(new Module(Identifier, Builder.getContext()));
2246 switch (Arch) {
2247 case GPUArch::NVPTX64:
2248 if (Runtime == GPURuntime::CUDA)
2249 GPUModule->setTargetTriple(Triple::normalize("nvptx64-nvidia-cuda"));
2250 else if (Runtime == GPURuntime::OpenCL)
2251 GPUModule->setTargetTriple(Triple::normalize("nvptx64-nvidia-nvcl"));
2252 GPUModule->setDataLayout(computeNVPTXDataLayout(true /* is64Bit */));
2253 break;
2254 case GPUArch::SPIR32:
2255 GPUModule->setTargetTriple(Triple::normalize("spir-unknown-unknown"));
2256 GPUModule->setDataLayout(computeSPIRDataLayout(false /* is64Bit */));
2257 break;
2258 case GPUArch::SPIR64:
2259 GPUModule->setTargetTriple(Triple::normalize("spir64-unknown-unknown"));
2260 GPUModule->setDataLayout(computeSPIRDataLayout(true /* is64Bit */));
2261 break;
2264 Function *FN = createKernelFunctionDecl(Kernel, SubtreeValues);
2266 BasicBlock *PrevBlock = Builder.GetInsertBlock();
2267 auto EntryBlock = BasicBlock::Create(Builder.getContext(), "entry", FN);
2269 DT.addNewBlock(EntryBlock, PrevBlock);
2271 Builder.SetInsertPoint(EntryBlock);
2272 Builder.CreateRetVoid();
2273 Builder.SetInsertPoint(EntryBlock, EntryBlock->begin());
2275 ScopDetection::markFunctionAsInvalid(FN);
2277 prepareKernelArguments(Kernel, FN);
2278 createKernelVariables(Kernel, FN);
2280 switch (Arch) {
2281 case GPUArch::NVPTX64:
2282 insertKernelIntrinsics(Kernel);
2283 break;
2284 case GPUArch::SPIR32:
2285 case GPUArch::SPIR64:
2286 insertKernelCallsSPIR(Kernel);
2287 break;
2291 std::string GPUNodeBuilder::createKernelASM() {
2292 llvm::Triple GPUTriple;
2294 switch (Arch) {
2295 case GPUArch::NVPTX64:
2296 switch (Runtime) {
2297 case GPURuntime::CUDA:
2298 GPUTriple = llvm::Triple(Triple::normalize("nvptx64-nvidia-cuda"));
2299 break;
2300 case GPURuntime::OpenCL:
2301 GPUTriple = llvm::Triple(Triple::normalize("nvptx64-nvidia-nvcl"));
2302 break;
2304 break;
2305 case GPUArch::SPIR64:
2306 case GPUArch::SPIR32:
2307 std::string SPIRAssembly;
2308 raw_string_ostream IROstream(SPIRAssembly);
2309 IROstream << *GPUModule;
2310 IROstream.flush();
2311 return SPIRAssembly;
2314 std::string ErrMsg;
2315 auto GPUTarget = TargetRegistry::lookupTarget(GPUTriple.getTriple(), ErrMsg);
2317 if (!GPUTarget) {
2318 errs() << ErrMsg << "\n";
2319 return "";
2322 TargetOptions Options;
2323 Options.UnsafeFPMath = FastMath;
2325 std::string subtarget;
2327 switch (Arch) {
2328 case GPUArch::NVPTX64:
2329 subtarget = CudaVersion;
2330 break;
2331 case GPUArch::SPIR32:
2332 case GPUArch::SPIR64:
2333 llvm_unreachable("No subtarget for SPIR architecture");
2336 std::unique_ptr<TargetMachine> TargetM(GPUTarget->createTargetMachine(
2337 GPUTriple.getTriple(), subtarget, "", Options, Optional<Reloc::Model>()));
2339 SmallString<0> ASMString;
2340 raw_svector_ostream ASMStream(ASMString);
2341 llvm::legacy::PassManager PM;
2343 PM.add(createTargetTransformInfoWrapperPass(TargetM->getTargetIRAnalysis()));
2345 if (TargetM->addPassesToEmitFile(
2346 PM, ASMStream, TargetMachine::CGFT_AssemblyFile, true /* verify */)) {
2347 errs() << "The target does not support generation of this file type!\n";
2348 return "";
2351 PM.run(*GPUModule);
2353 return ASMStream.str();
2356 bool GPUNodeBuilder::requiresCUDALibDevice() {
2357 bool RequiresLibDevice = false;
2358 for (Function &F : GPUModule->functions()) {
2359 if (!F.isDeclaration())
2360 continue;
2362 std::string CUDALibDeviceFunc = getCUDALibDeviceFuntion(&F);
2363 if (CUDALibDeviceFunc.length() != 0) {
2364 F.setName(CUDALibDeviceFunc);
2365 RequiresLibDevice = true;
2369 return RequiresLibDevice;
2372 void GPUNodeBuilder::addCUDALibDevice() {
2373 if (Arch != GPUArch::NVPTX64)
2374 return;
2376 if (requiresCUDALibDevice()) {
2377 SMDiagnostic Error;
2379 errs() << CUDALibDevice << "\n";
2380 auto LibDeviceModule =
2381 parseIRFile(CUDALibDevice, Error, GPUModule->getContext());
2383 if (!LibDeviceModule) {
2384 BuildSuccessful = false;
2385 report_fatal_error("Could not find or load libdevice. Skipping GPU "
2386 "kernel generation. Please set -polly-acc-libdevice "
2387 "accordingly.\n");
2388 return;
2391 Linker L(*GPUModule);
2393 // Set an nvptx64 target triple to avoid linker warnings. The original
2394 // triple of the libdevice files are nvptx-unknown-unknown.
2395 LibDeviceModule->setTargetTriple(Triple::normalize("nvptx64-nvidia-cuda"));
2396 L.linkInModule(std::move(LibDeviceModule), Linker::LinkOnlyNeeded);
2400 std::string GPUNodeBuilder::finalizeKernelFunction() {
2402 if (verifyModule(*GPUModule)) {
2403 DEBUG(dbgs() << "verifyModule failed on module:\n";
2404 GPUModule->print(dbgs(), nullptr); dbgs() << "\n";);
2405 DEBUG(dbgs() << "verifyModule Error:\n";
2406 verifyModule(*GPUModule, &dbgs()););
2408 if (FailOnVerifyModuleFailure)
2409 llvm_unreachable("VerifyModule failed.");
2411 BuildSuccessful = false;
2412 return "";
2415 addCUDALibDevice();
2417 if (DumpKernelIR)
2418 outs() << *GPUModule << "\n";
2420 if (Arch != GPUArch::SPIR32 && Arch != GPUArch::SPIR64) {
2421 // Optimize module.
2422 llvm::legacy::PassManager OptPasses;
2423 PassManagerBuilder PassBuilder;
2424 PassBuilder.OptLevel = 3;
2425 PassBuilder.SizeLevel = 0;
2426 PassBuilder.populateModulePassManager(OptPasses);
2427 OptPasses.run(*GPUModule);
2430 std::string Assembly = createKernelASM();
2432 if (DumpKernelASM)
2433 outs() << Assembly << "\n";
2435 GPUModule.release();
2436 KernelIDs.clear();
2438 return Assembly;
2440 /// Construct an `isl_pw_aff_list` from a vector of `isl_pw_aff`
2441 /// @param PwAffs The list of piecewise affine functions to create an
2442 /// `isl_pw_aff_list` from. We expect an rvalue ref because
2443 /// all the isl_pw_aff are used up by this function.
2445 /// @returns The `isl_pw_aff_list`.
2446 __isl_give isl_pw_aff_list *
2447 createPwAffList(isl_ctx *Context,
2448 const std::vector<__isl_take isl_pw_aff *> &&PwAffs) {
2449 isl_pw_aff_list *List = isl_pw_aff_list_alloc(Context, PwAffs.size());
2451 for (unsigned i = 0; i < PwAffs.size(); i++) {
2452 List = isl_pw_aff_list_insert(List, i, PwAffs[i]);
2454 return List;
2457 /// Align all the `PwAffs` such that they have the same parameter dimensions.
2459 /// We loop over all `pw_aff` and align all of their spaces together to
2460 /// create a common space for all the `pw_aff`. This common space is the
2461 /// `AlignSpace`. We then align all the `pw_aff` to this space. We start
2462 /// with the given `SeedSpace`.
2463 /// @param PwAffs The list of piecewise affine functions we want to align.
2464 /// This is an rvalue reference because the entire vector is
2465 /// used up by the end of the operation.
2466 /// @param SeedSpace The space to start the alignment process with.
2467 /// @returns A std::pair, whose first element is the aligned space,
2468 /// whose second element is the vector of aligned piecewise
2469 /// affines.
2470 static std::pair<__isl_give isl_space *, std::vector<__isl_give isl_pw_aff *>>
2471 alignPwAffs(const std::vector<__isl_take isl_pw_aff *> &&PwAffs,
2472 __isl_take isl_space *SeedSpace) {
2473 assert(SeedSpace && "Invalid seed space given.");
2475 isl_space *AlignSpace = SeedSpace;
2476 for (isl_pw_aff *PwAff : PwAffs) {
2477 isl_space *PwAffSpace = isl_pw_aff_get_domain_space(PwAff);
2478 AlignSpace = isl_space_align_params(AlignSpace, PwAffSpace);
2480 std::vector<isl_pw_aff *> AdjustedPwAffs;
2482 for (unsigned i = 0; i < PwAffs.size(); i++) {
2483 isl_pw_aff *Adjusted = PwAffs[i];
2484 assert(Adjusted && "Invalid pw_aff given.");
2485 Adjusted = isl_pw_aff_align_params(Adjusted, isl_space_copy(AlignSpace));
2486 AdjustedPwAffs.push_back(Adjusted);
2488 return std::make_pair(AlignSpace, AdjustedPwAffs);
2491 namespace {
2492 class PPCGCodeGeneration : public ScopPass {
2493 public:
2494 static char ID;
2496 GPURuntime Runtime = GPURuntime::CUDA;
2498 GPUArch Architecture = GPUArch::NVPTX64;
2500 /// The scop that is currently processed.
2501 Scop *S;
2503 LoopInfo *LI;
2504 DominatorTree *DT;
2505 ScalarEvolution *SE;
2506 const DataLayout *DL;
2507 RegionInfo *RI;
2509 PPCGCodeGeneration() : ScopPass(ID) {}
2511 /// Construct compilation options for PPCG.
2513 /// @returns The compilation options.
2514 ppcg_options *createPPCGOptions() {
2515 auto DebugOptions =
2516 (ppcg_debug_options *)malloc(sizeof(ppcg_debug_options));
2517 auto Options = (ppcg_options *)malloc(sizeof(ppcg_options));
2519 DebugOptions->dump_schedule_constraints = false;
2520 DebugOptions->dump_schedule = false;
2521 DebugOptions->dump_final_schedule = false;
2522 DebugOptions->dump_sizes = false;
2523 DebugOptions->verbose = false;
2525 Options->debug = DebugOptions;
2527 Options->group_chains = false;
2528 Options->reschedule = true;
2529 Options->scale_tile_loops = false;
2530 Options->wrap = false;
2532 Options->non_negative_parameters = false;
2533 Options->ctx = nullptr;
2534 Options->sizes = nullptr;
2536 Options->tile = true;
2537 Options->tile_size = 32;
2539 Options->isolate_full_tiles = false;
2541 Options->use_private_memory = PrivateMemory;
2542 Options->use_shared_memory = SharedMemory;
2543 Options->max_shared_memory = 48 * 1024;
2545 Options->target = PPCG_TARGET_CUDA;
2546 Options->openmp = false;
2547 Options->linearize_device_arrays = true;
2548 Options->allow_gnu_extensions = false;
2550 Options->unroll_copy_shared = false;
2551 Options->unroll_gpu_tile = false;
2552 Options->live_range_reordering = true;
2554 Options->live_range_reordering = true;
2555 Options->hybrid = false;
2556 Options->opencl_compiler_options = nullptr;
2557 Options->opencl_use_gpu = false;
2558 Options->opencl_n_include_file = 0;
2559 Options->opencl_include_files = nullptr;
2560 Options->opencl_print_kernel_types = false;
2561 Options->opencl_embed_kernel_code = false;
2563 Options->save_schedule_file = nullptr;
2564 Options->load_schedule_file = nullptr;
2566 return Options;
2569 /// Get a tagged access relation containing all accesses of type @p AccessTy.
2571 /// Instead of a normal access of the form:
2573 /// Stmt[i,j,k] -> Array[f_0(i,j,k), f_1(i,j,k)]
2575 /// a tagged access has the form
2577 /// [Stmt[i,j,k] -> id[]] -> Array[f_0(i,j,k), f_1(i,j,k)]
2579 /// where 'id' is an additional space that references the memory access that
2580 /// triggered the access.
2582 /// @param AccessTy The type of the memory accesses to collect.
2584 /// @return The relation describing all tagged memory accesses.
2585 isl_union_map *getTaggedAccesses(enum MemoryAccess::AccessType AccessTy) {
2586 isl_union_map *Accesses = isl_union_map_empty(S->getParamSpace().release());
2588 for (auto &Stmt : *S)
2589 for (auto &Acc : Stmt)
2590 if (Acc->getType() == AccessTy) {
2591 isl_map *Relation = Acc->getAccessRelation().release();
2592 Relation =
2593 isl_map_intersect_domain(Relation, Stmt.getDomain().release());
2595 isl_space *Space = isl_map_get_space(Relation);
2596 Space = isl_space_range(Space);
2597 Space = isl_space_from_range(Space);
2598 Space =
2599 isl_space_set_tuple_id(Space, isl_dim_in, Acc->getId().release());
2600 isl_map *Universe = isl_map_universe(Space);
2601 Relation = isl_map_domain_product(Relation, Universe);
2602 Accesses = isl_union_map_add_map(Accesses, Relation);
2605 return Accesses;
2608 /// Get the set of all read accesses, tagged with the access id.
2610 /// @see getTaggedAccesses
2611 isl_union_map *getTaggedReads() {
2612 return getTaggedAccesses(MemoryAccess::READ);
2615 /// Get the set of all may (and must) accesses, tagged with the access id.
2617 /// @see getTaggedAccesses
2618 isl_union_map *getTaggedMayWrites() {
2619 return isl_union_map_union(getTaggedAccesses(MemoryAccess::MAY_WRITE),
2620 getTaggedAccesses(MemoryAccess::MUST_WRITE));
2623 /// Get the set of all must accesses, tagged with the access id.
2625 /// @see getTaggedAccesses
2626 isl_union_map *getTaggedMustWrites() {
2627 return getTaggedAccesses(MemoryAccess::MUST_WRITE);
2630 /// Collect parameter and array names as isl_ids.
2632 /// To reason about the different parameters and arrays used, ppcg requires
2633 /// a list of all isl_ids in use. As PPCG traditionally performs
2634 /// source-to-source compilation each of these isl_ids is mapped to the
2635 /// expression that represents it. As we do not have a corresponding
2636 /// expression in Polly, we just map each id to a 'zero' expression to match
2637 /// the data format that ppcg expects.
2639 /// @returns Retun a map from collected ids to 'zero' ast expressions.
2640 __isl_give isl_id_to_ast_expr *getNames() {
2641 auto *Names = isl_id_to_ast_expr_alloc(
2642 S->getIslCtx(),
2643 S->getNumParams() + std::distance(S->array_begin(), S->array_end()));
2644 auto *Zero = isl_ast_expr_from_val(isl_val_zero(S->getIslCtx()));
2646 for (const SCEV *P : S->parameters()) {
2647 isl_id *Id = S->getIdForParam(P).release();
2648 Names = isl_id_to_ast_expr_set(Names, Id, isl_ast_expr_copy(Zero));
2651 for (auto &Array : S->arrays()) {
2652 auto Id = Array->getBasePtrId().release();
2653 Names = isl_id_to_ast_expr_set(Names, Id, isl_ast_expr_copy(Zero));
2656 isl_ast_expr_free(Zero);
2658 return Names;
2661 /// Create a new PPCG scop from the current scop.
2663 /// The PPCG scop is initialized with data from the current polly::Scop. From
2664 /// this initial data, the data-dependences in the PPCG scop are initialized.
2665 /// We do not use Polly's dependence analysis for now, to ensure we match
2666 /// the PPCG default behaviour more closely.
2668 /// @returns A new ppcg scop.
2669 ppcg_scop *createPPCGScop() {
2670 MustKillsInfo KillsInfo = computeMustKillsInfo(*S);
2672 auto PPCGScop = (ppcg_scop *)malloc(sizeof(ppcg_scop));
2674 PPCGScop->options = createPPCGOptions();
2675 // enable live range reordering
2676 PPCGScop->options->live_range_reordering = 1;
2678 PPCGScop->start = 0;
2679 PPCGScop->end = 0;
2681 PPCGScop->context = S->getContext().release();
2682 PPCGScop->domain = S->getDomains().release();
2683 // TODO: investigate this further. PPCG calls collect_call_domains.
2684 PPCGScop->call = isl_union_set_from_set(S->getContext().release());
2685 PPCGScop->tagged_reads = getTaggedReads();
2686 PPCGScop->reads = S->getReads().release();
2687 PPCGScop->live_in = nullptr;
2688 PPCGScop->tagged_may_writes = getTaggedMayWrites();
2689 PPCGScop->may_writes = S->getWrites().release();
2690 PPCGScop->tagged_must_writes = getTaggedMustWrites();
2691 PPCGScop->must_writes = S->getMustWrites().release();
2692 PPCGScop->live_out = nullptr;
2693 PPCGScop->tagged_must_kills = KillsInfo.TaggedMustKills.take();
2694 PPCGScop->must_kills = KillsInfo.MustKills.take();
2696 PPCGScop->tagger = nullptr;
2697 PPCGScop->independence =
2698 isl_union_map_empty(isl_set_get_space(PPCGScop->context));
2699 PPCGScop->dep_flow = nullptr;
2700 PPCGScop->tagged_dep_flow = nullptr;
2701 PPCGScop->dep_false = nullptr;
2702 PPCGScop->dep_forced = nullptr;
2703 PPCGScop->dep_order = nullptr;
2704 PPCGScop->tagged_dep_order = nullptr;
2706 PPCGScop->schedule = S->getScheduleTree().release();
2707 // If we have something non-trivial to kill, add it to the schedule
2708 if (KillsInfo.KillsSchedule.get())
2709 PPCGScop->schedule = isl_schedule_sequence(
2710 PPCGScop->schedule, KillsInfo.KillsSchedule.take());
2712 PPCGScop->names = getNames();
2713 PPCGScop->pet = nullptr;
2715 compute_tagger(PPCGScop);
2716 compute_dependences(PPCGScop);
2717 eliminate_dead_code(PPCGScop);
2719 return PPCGScop;
2722 /// Collect the array accesses in a statement.
2724 /// @param Stmt The statement for which to collect the accesses.
2726 /// @returns A list of array accesses.
2727 gpu_stmt_access *getStmtAccesses(ScopStmt &Stmt) {
2728 gpu_stmt_access *Accesses = nullptr;
2730 for (MemoryAccess *Acc : Stmt) {
2731 auto Access = isl_alloc_type(S->getIslCtx(), struct gpu_stmt_access);
2732 Access->read = Acc->isRead();
2733 Access->write = Acc->isWrite();
2734 Access->access = Acc->getAccessRelation().release();
2735 isl_space *Space = isl_map_get_space(Access->access);
2736 Space = isl_space_range(Space);
2737 Space = isl_space_from_range(Space);
2738 Space = isl_space_set_tuple_id(Space, isl_dim_in, Acc->getId().release());
2739 isl_map *Universe = isl_map_universe(Space);
2740 Access->tagged_access =
2741 isl_map_domain_product(Acc->getAccessRelation().release(), Universe);
2742 Access->exact_write = !Acc->isMayWrite();
2743 Access->ref_id = Acc->getId().release();
2744 Access->next = Accesses;
2745 Access->n_index = Acc->getScopArrayInfo()->getNumberOfDimensions();
2746 // TODO: Also mark one-element accesses to arrays as fixed-element.
2747 Access->fixed_element =
2748 Acc->isLatestScalarKind() ? isl_bool_true : isl_bool_false;
2749 Accesses = Access;
2752 return Accesses;
2755 /// Collect the list of GPU statements.
2757 /// Each statement has an id, a pointer to the underlying data structure,
2758 /// as well as a list with all memory accesses.
2760 /// TODO: Initialize the list of memory accesses.
2762 /// @returns A linked-list of statements.
2763 gpu_stmt *getStatements() {
2764 gpu_stmt *Stmts = isl_calloc_array(S->getIslCtx(), struct gpu_stmt,
2765 std::distance(S->begin(), S->end()));
2767 int i = 0;
2768 for (auto &Stmt : *S) {
2769 gpu_stmt *GPUStmt = &Stmts[i];
2771 GPUStmt->id = Stmt.getDomainId().release();
2773 // We use the pet stmt pointer to keep track of the Polly statements.
2774 GPUStmt->stmt = (pet_stmt *)&Stmt;
2775 GPUStmt->accesses = getStmtAccesses(Stmt);
2776 i++;
2779 return Stmts;
2782 /// Derive the extent of an array.
2784 /// The extent of an array is the set of elements that are within the
2785 /// accessed array. For the inner dimensions, the extent constraints are
2786 /// 0 and the size of the corresponding array dimension. For the first
2787 /// (outermost) dimension, the extent constraints are the minimal and maximal
2788 /// subscript value for the first dimension.
2790 /// @param Array The array to derive the extent for.
2792 /// @returns An isl_set describing the extent of the array.
2793 isl::set getExtent(ScopArrayInfo *Array) {
2794 unsigned NumDims = Array->getNumberOfDimensions();
2796 if (Array->getNumberOfDimensions() == 0)
2797 return isl::set::universe(Array->getSpace());
2799 isl::union_map Accesses = S->getAccesses(Array);
2800 isl::union_set AccessUSet = Accesses.range();
2801 AccessUSet = AccessUSet.coalesce();
2802 AccessUSet = AccessUSet.detect_equalities();
2803 AccessUSet = AccessUSet.coalesce();
2805 if (AccessUSet.is_empty())
2806 return isl::set::empty(Array->getSpace());
2808 isl::set AccessSet = AccessUSet.extract_set(Array->getSpace());
2810 isl::local_space LS = isl::local_space(Array->getSpace());
2812 isl::pw_aff Val = isl::aff::var_on_domain(LS, isl::dim::set, 0);
2813 isl::pw_aff OuterMin = AccessSet.dim_min(0);
2814 isl::pw_aff OuterMax = AccessSet.dim_max(0);
2815 OuterMin = OuterMin.add_dims(isl::dim::in, Val.dim(isl::dim::in));
2816 OuterMax = OuterMax.add_dims(isl::dim::in, Val.dim(isl::dim::in));
2817 OuterMin = OuterMin.set_tuple_id(isl::dim::in, Array->getBasePtrId());
2818 OuterMax = OuterMax.set_tuple_id(isl::dim::in, Array->getBasePtrId());
2820 isl::set Extent = isl::set::universe(Array->getSpace());
2822 Extent = Extent.intersect(OuterMin.le_set(Val));
2823 Extent = Extent.intersect(OuterMax.ge_set(Val));
2825 for (unsigned i = 1; i < NumDims; ++i)
2826 Extent = Extent.lower_bound_si(isl::dim::set, i, 0);
2828 for (unsigned i = 0; i < NumDims; ++i) {
2829 isl::pw_aff PwAff = Array->getDimensionSizePw(i);
2831 // isl_pw_aff can be NULL for zero dimension. Only in the case of a
2832 // Fortran array will we have a legitimate dimension.
2833 if (PwAff.is_null()) {
2834 assert(i == 0 && "invalid dimension isl_pw_aff for nonzero dimension");
2835 continue;
2838 isl::pw_aff Val = isl::aff::var_on_domain(
2839 isl::local_space(Array->getSpace()), isl::dim::set, i);
2840 PwAff = PwAff.add_dims(isl::dim::in, Val.dim(isl::dim::in));
2841 PwAff = PwAff.set_tuple_id(isl::dim::in, Val.get_tuple_id(isl::dim::in));
2842 isl::set Set = PwAff.gt_set(Val);
2843 Extent = Set.intersect(Extent);
2846 return Extent;
2849 /// Derive the bounds of an array.
2851 /// For the first dimension we derive the bound of the array from the extent
2852 /// of this dimension. For inner dimensions we obtain their size directly from
2853 /// ScopArrayInfo.
2855 /// @param PPCGArray The array to compute bounds for.
2856 /// @param Array The polly array from which to take the information.
2857 void setArrayBounds(gpu_array_info &PPCGArray, ScopArrayInfo *Array) {
2858 std::vector<isl_pw_aff *> Bounds;
2860 if (PPCGArray.n_index > 0) {
2861 if (isl_set_is_empty(PPCGArray.extent)) {
2862 isl_set *Dom = isl_set_copy(PPCGArray.extent);
2863 isl_local_space *LS = isl_local_space_from_space(
2864 isl_space_params(isl_set_get_space(Dom)));
2865 isl_set_free(Dom);
2866 isl_pw_aff *Zero = isl_pw_aff_from_aff(isl_aff_zero_on_domain(LS));
2867 Bounds.push_back(Zero);
2868 } else {
2869 isl_set *Dom = isl_set_copy(PPCGArray.extent);
2870 Dom = isl_set_project_out(Dom, isl_dim_set, 1, PPCGArray.n_index - 1);
2871 isl_pw_aff *Bound = isl_set_dim_max(isl_set_copy(Dom), 0);
2872 isl_set_free(Dom);
2873 Dom = isl_pw_aff_domain(isl_pw_aff_copy(Bound));
2874 isl_local_space *LS =
2875 isl_local_space_from_space(isl_set_get_space(Dom));
2876 isl_aff *One = isl_aff_zero_on_domain(LS);
2877 One = isl_aff_add_constant_si(One, 1);
2878 Bound = isl_pw_aff_add(Bound, isl_pw_aff_alloc(Dom, One));
2879 Bound = isl_pw_aff_gist(Bound, S->getContext().release());
2880 Bounds.push_back(Bound);
2884 for (unsigned i = 1; i < PPCGArray.n_index; ++i) {
2885 isl_pw_aff *Bound = Array->getDimensionSizePw(i).release();
2886 auto LS = isl_pw_aff_get_domain_space(Bound);
2887 auto Aff = isl_multi_aff_zero(LS);
2888 Bound = isl_pw_aff_pullback_multi_aff(Bound, Aff);
2889 Bounds.push_back(Bound);
2892 /// To construct a `isl_multi_pw_aff`, we need all the indivisual `pw_aff`
2893 /// to have the same parameter dimensions. So, we need to align them to an
2894 /// appropriate space.
2895 /// Scop::Context is _not_ an appropriate space, because when we have
2896 /// `-polly-ignore-parameter-bounds` enabled, the Scop::Context does not
2897 /// contain all parameter dimensions.
2898 /// So, use the helper `alignPwAffs` to align all the `isl_pw_aff` together.
2899 isl_space *SeedAlignSpace = S->getParamSpace().release();
2900 SeedAlignSpace = isl_space_add_dims(SeedAlignSpace, isl_dim_set, 1);
2902 isl_space *AlignSpace = nullptr;
2903 std::vector<isl_pw_aff *> AlignedBounds;
2904 std::tie(AlignSpace, AlignedBounds) =
2905 alignPwAffs(std::move(Bounds), SeedAlignSpace);
2907 assert(AlignSpace && "alignPwAffs did not initialise AlignSpace");
2909 isl_pw_aff_list *BoundsList =
2910 createPwAffList(S->getIslCtx(), std::move(AlignedBounds));
2912 isl_space *BoundsSpace = isl_set_get_space(PPCGArray.extent);
2913 BoundsSpace = isl_space_align_params(BoundsSpace, AlignSpace);
2915 assert(BoundsSpace && "Unable to access space of array.");
2916 assert(BoundsList && "Unable to access list of bounds.");
2918 PPCGArray.bound =
2919 isl_multi_pw_aff_from_pw_aff_list(BoundsSpace, BoundsList);
2920 assert(PPCGArray.bound && "PPCGArray.bound was not constructed correctly.");
2923 /// Create the arrays for @p PPCGProg.
2925 /// @param PPCGProg The program to compute the arrays for.
2926 void createArrays(gpu_prog *PPCGProg,
2927 const SmallVector<ScopArrayInfo *, 4> &ValidSAIs) {
2928 int i = 0;
2929 for (auto &Array : ValidSAIs) {
2930 std::string TypeName;
2931 raw_string_ostream OS(TypeName);
2933 OS << *Array->getElementType();
2934 TypeName = OS.str();
2936 gpu_array_info &PPCGArray = PPCGProg->array[i];
2938 PPCGArray.space = Array->getSpace().release();
2939 PPCGArray.type = strdup(TypeName.c_str());
2940 PPCGArray.size = DL->getTypeAllocSize(Array->getElementType());
2941 PPCGArray.name = strdup(Array->getName().c_str());
2942 PPCGArray.extent = nullptr;
2943 PPCGArray.n_index = Array->getNumberOfDimensions();
2944 PPCGArray.extent = getExtent(Array).release();
2945 PPCGArray.n_ref = 0;
2946 PPCGArray.refs = nullptr;
2947 PPCGArray.accessed = true;
2948 PPCGArray.read_only_scalar =
2949 Array->isReadOnly() && Array->getNumberOfDimensions() == 0;
2950 PPCGArray.has_compound_element = false;
2951 PPCGArray.local = false;
2952 PPCGArray.declare_local = false;
2953 PPCGArray.global = false;
2954 PPCGArray.linearize = false;
2955 PPCGArray.dep_order = nullptr;
2956 PPCGArray.user = Array;
2958 PPCGArray.bound = nullptr;
2959 setArrayBounds(PPCGArray, Array);
2960 i++;
2962 collect_references(PPCGProg, &PPCGArray);
2963 PPCGArray.only_fixed_element = only_fixed_element_accessed(&PPCGArray);
2967 /// Create an identity map between the arrays in the scop.
2969 /// @returns An identity map between the arrays in the scop.
2970 isl_union_map *getArrayIdentity() {
2971 isl_union_map *Maps = isl_union_map_empty(S->getParamSpace().release());
2973 for (auto &Array : S->arrays()) {
2974 isl_space *Space = Array->getSpace().release();
2975 Space = isl_space_map_from_set(Space);
2976 isl_map *Identity = isl_map_identity(Space);
2977 Maps = isl_union_map_add_map(Maps, Identity);
2980 return Maps;
2983 /// Create a default-initialized PPCG GPU program.
2985 /// @returns A new gpu program description.
2986 gpu_prog *createPPCGProg(ppcg_scop *PPCGScop) {
2988 if (!PPCGScop)
2989 return nullptr;
2991 auto PPCGProg = isl_calloc_type(S->getIslCtx(), struct gpu_prog);
2993 PPCGProg->ctx = S->getIslCtx();
2994 PPCGProg->scop = PPCGScop;
2995 PPCGProg->context = isl_set_copy(PPCGScop->context);
2996 PPCGProg->read = isl_union_map_copy(PPCGScop->reads);
2997 PPCGProg->may_write = isl_union_map_copy(PPCGScop->may_writes);
2998 PPCGProg->must_write = isl_union_map_copy(PPCGScop->must_writes);
2999 PPCGProg->tagged_must_kill =
3000 isl_union_map_copy(PPCGScop->tagged_must_kills);
3001 PPCGProg->to_inner = getArrayIdentity();
3002 PPCGProg->to_outer = getArrayIdentity();
3003 // TODO: verify that this assignment is correct.
3004 PPCGProg->any_to_outer = nullptr;
3005 PPCGProg->n_stmts = std::distance(S->begin(), S->end());
3006 PPCGProg->stmts = getStatements();
3008 // Only consider arrays that have a non-empty extent.
3009 // Otherwise, this will cause us to consider the following kinds of
3010 // empty arrays:
3011 // 1. Invariant loads that are represented by SAI objects.
3012 // 2. Arrays with statically known zero size.
3013 auto ValidSAIsRange =
3014 make_filter_range(S->arrays(), [this](ScopArrayInfo *SAI) -> bool {
3015 return !getExtent(SAI).is_empty();
3017 SmallVector<ScopArrayInfo *, 4> ValidSAIs(ValidSAIsRange.begin(),
3018 ValidSAIsRange.end());
3020 PPCGProg->n_array =
3021 ValidSAIs.size(); // std::distance(S->array_begin(), S->array_end());
3022 PPCGProg->array = isl_calloc_array(S->getIslCtx(), struct gpu_array_info,
3023 PPCGProg->n_array);
3025 createArrays(PPCGProg, ValidSAIs);
3027 PPCGProg->array_order = nullptr;
3028 collect_order_dependences(PPCGProg);
3030 PPCGProg->may_persist = compute_may_persist(PPCGProg);
3031 return PPCGProg;
3034 struct PrintGPUUserData {
3035 struct cuda_info *CudaInfo;
3036 struct gpu_prog *PPCGProg;
3037 std::vector<ppcg_kernel *> Kernels;
3040 /// Print a user statement node in the host code.
3042 /// We use ppcg's printing facilities to print the actual statement and
3043 /// additionally build up a list of all kernels that are encountered in the
3044 /// host ast.
3046 /// @param P The printer to print to
3047 /// @param Options The printing options to use
3048 /// @param Node The node to print
3049 /// @param User A user pointer to carry additional data. This pointer is
3050 /// expected to be of type PrintGPUUserData.
3052 /// @returns A printer to which the output has been printed.
3053 static __isl_give isl_printer *
3054 printHostUser(__isl_take isl_printer *P,
3055 __isl_take isl_ast_print_options *Options,
3056 __isl_take isl_ast_node *Node, void *User) {
3057 auto Data = (struct PrintGPUUserData *)User;
3058 auto Id = isl_ast_node_get_annotation(Node);
3060 if (Id) {
3061 bool IsUser = !strcmp(isl_id_get_name(Id), "user");
3063 // If this is a user statement, format it ourselves as ppcg would
3064 // otherwise try to call pet functionality that is not available in
3065 // Polly.
3066 if (IsUser) {
3067 P = isl_printer_start_line(P);
3068 P = isl_printer_print_ast_node(P, Node);
3069 P = isl_printer_end_line(P);
3070 isl_id_free(Id);
3071 isl_ast_print_options_free(Options);
3072 return P;
3075 auto Kernel = (struct ppcg_kernel *)isl_id_get_user(Id);
3076 isl_id_free(Id);
3077 Data->Kernels.push_back(Kernel);
3080 return print_host_user(P, Options, Node, User);
3083 /// Print C code corresponding to the control flow in @p Kernel.
3085 /// @param Kernel The kernel to print
3086 void printKernel(ppcg_kernel *Kernel) {
3087 auto *P = isl_printer_to_str(S->getIslCtx());
3088 P = isl_printer_set_output_format(P, ISL_FORMAT_C);
3089 auto *Options = isl_ast_print_options_alloc(S->getIslCtx());
3090 P = isl_ast_node_print(Kernel->tree, P, Options);
3091 char *String = isl_printer_get_str(P);
3092 printf("%s\n", String);
3093 free(String);
3094 isl_printer_free(P);
3097 /// Print C code corresponding to the GPU code described by @p Tree.
3099 /// @param Tree An AST describing GPU code
3100 /// @param PPCGProg The PPCG program from which @Tree has been constructed.
3101 void printGPUTree(isl_ast_node *Tree, gpu_prog *PPCGProg) {
3102 auto *P = isl_printer_to_str(S->getIslCtx());
3103 P = isl_printer_set_output_format(P, ISL_FORMAT_C);
3105 PrintGPUUserData Data;
3106 Data.PPCGProg = PPCGProg;
3108 auto *Options = isl_ast_print_options_alloc(S->getIslCtx());
3109 Options =
3110 isl_ast_print_options_set_print_user(Options, printHostUser, &Data);
3111 P = isl_ast_node_print(Tree, P, Options);
3112 char *String = isl_printer_get_str(P);
3113 printf("# host\n");
3114 printf("%s\n", String);
3115 free(String);
3116 isl_printer_free(P);
3118 for (auto Kernel : Data.Kernels) {
3119 printf("# kernel%d\n", Kernel->id);
3120 printKernel(Kernel);
3124 // Generate a GPU program using PPCG.
3126 // GPU mapping consists of multiple steps:
3128 // 1) Compute new schedule for the program.
3129 // 2) Map schedule to GPU (TODO)
3130 // 3) Generate code for new schedule (TODO)
3132 // We do not use here the Polly ScheduleOptimizer, as the schedule optimizer
3133 // is mostly CPU specific. Instead, we use PPCG's GPU code generation
3134 // strategy directly from this pass.
3135 gpu_gen *generateGPU(ppcg_scop *PPCGScop, gpu_prog *PPCGProg) {
3137 auto PPCGGen = isl_calloc_type(S->getIslCtx(), struct gpu_gen);
3139 PPCGGen->ctx = S->getIslCtx();
3140 PPCGGen->options = PPCGScop->options;
3141 PPCGGen->print = nullptr;
3142 PPCGGen->print_user = nullptr;
3143 PPCGGen->build_ast_expr = &pollyBuildAstExprForStmt;
3144 PPCGGen->prog = PPCGProg;
3145 PPCGGen->tree = nullptr;
3146 PPCGGen->types.n = 0;
3147 PPCGGen->types.name = nullptr;
3148 PPCGGen->sizes = nullptr;
3149 PPCGGen->used_sizes = nullptr;
3150 PPCGGen->kernel_id = 0;
3152 // Set scheduling strategy to same strategy PPCG is using.
3153 isl_options_set_schedule_outer_coincidence(PPCGGen->ctx, true);
3154 isl_options_set_schedule_maximize_band_depth(PPCGGen->ctx, true);
3155 isl_options_set_schedule_whole_component(PPCGGen->ctx, false);
3157 isl_schedule *Schedule = get_schedule(PPCGGen);
3159 int has_permutable = has_any_permutable_node(Schedule);
3161 Schedule =
3162 isl_schedule_align_params(Schedule, S->getFullParamSpace().release());
3164 if (!has_permutable || has_permutable < 0) {
3165 Schedule = isl_schedule_free(Schedule);
3166 DEBUG(dbgs() << getUniqueScopName(S)
3167 << " does not have permutable bands. Bailing out\n";);
3168 } else {
3169 const bool CreateTransferToFromDevice = !PollyManagedMemory;
3170 Schedule = map_to_device(PPCGGen, Schedule, CreateTransferToFromDevice);
3171 PPCGGen->tree = generate_code(PPCGGen, isl_schedule_copy(Schedule));
3174 if (DumpSchedule) {
3175 isl_printer *P = isl_printer_to_str(S->getIslCtx());
3176 P = isl_printer_set_yaml_style(P, ISL_YAML_STYLE_BLOCK);
3177 P = isl_printer_print_str(P, "Schedule\n");
3178 P = isl_printer_print_str(P, "========\n");
3179 if (Schedule)
3180 P = isl_printer_print_schedule(P, Schedule);
3181 else
3182 P = isl_printer_print_str(P, "No schedule found\n");
3184 printf("%s\n", isl_printer_get_str(P));
3185 isl_printer_free(P);
3188 if (DumpCode) {
3189 printf("Code\n");
3190 printf("====\n");
3191 if (PPCGGen->tree)
3192 printGPUTree(PPCGGen->tree, PPCGProg);
3193 else
3194 printf("No code generated\n");
3197 isl_schedule_free(Schedule);
3199 return PPCGGen;
3202 /// Free gpu_gen structure.
3204 /// @param PPCGGen The ppcg_gen object to free.
3205 void freePPCGGen(gpu_gen *PPCGGen) {
3206 isl_ast_node_free(PPCGGen->tree);
3207 isl_union_map_free(PPCGGen->sizes);
3208 isl_union_map_free(PPCGGen->used_sizes);
3209 free(PPCGGen);
3212 /// Free the options in the ppcg scop structure.
3214 /// ppcg is not freeing these options for us. To avoid leaks we do this
3215 /// ourselves.
3217 /// @param PPCGScop The scop referencing the options to free.
3218 void freeOptions(ppcg_scop *PPCGScop) {
3219 free(PPCGScop->options->debug);
3220 PPCGScop->options->debug = nullptr;
3221 free(PPCGScop->options);
3222 PPCGScop->options = nullptr;
3225 /// Approximate the number of points in the set.
3227 /// This function returns an ast expression that overapproximates the number
3228 /// of points in an isl set through the rectangular hull surrounding this set.
3230 /// @param Set The set to count.
3231 /// @param Build The isl ast build object to use for creating the ast
3232 /// expression.
3234 /// @returns An approximation of the number of points in the set.
3235 __isl_give isl_ast_expr *approxPointsInSet(__isl_take isl_set *Set,
3236 __isl_keep isl_ast_build *Build) {
3238 isl_val *One = isl_val_int_from_si(isl_set_get_ctx(Set), 1);
3239 auto *Expr = isl_ast_expr_from_val(isl_val_copy(One));
3241 isl_space *Space = isl_set_get_space(Set);
3242 Space = isl_space_params(Space);
3243 auto *Univ = isl_set_universe(Space);
3244 isl_pw_aff *OneAff = isl_pw_aff_val_on_domain(Univ, One);
3246 for (long i = 0; i < isl_set_dim(Set, isl_dim_set); i++) {
3247 isl_pw_aff *Max = isl_set_dim_max(isl_set_copy(Set), i);
3248 isl_pw_aff *Min = isl_set_dim_min(isl_set_copy(Set), i);
3249 isl_pw_aff *DimSize = isl_pw_aff_sub(Max, Min);
3250 DimSize = isl_pw_aff_add(DimSize, isl_pw_aff_copy(OneAff));
3251 auto DimSizeExpr = isl_ast_build_expr_from_pw_aff(Build, DimSize);
3252 Expr = isl_ast_expr_mul(Expr, DimSizeExpr);
3255 isl_set_free(Set);
3256 isl_pw_aff_free(OneAff);
3258 return Expr;
3261 /// Approximate a number of dynamic instructions executed by a given
3262 /// statement.
3264 /// @param Stmt The statement for which to compute the number of dynamic
3265 /// instructions.
3266 /// @param Build The isl ast build object to use for creating the ast
3267 /// expression.
3268 /// @returns An approximation of the number of dynamic instructions executed
3269 /// by @p Stmt.
3270 __isl_give isl_ast_expr *approxDynamicInst(ScopStmt &Stmt,
3271 __isl_keep isl_ast_build *Build) {
3272 auto Iterations = approxPointsInSet(Stmt.getDomain().release(), Build);
3274 long InstCount = 0;
3276 if (Stmt.isBlockStmt()) {
3277 auto *BB = Stmt.getBasicBlock();
3278 InstCount = std::distance(BB->begin(), BB->end());
3279 } else {
3280 auto *R = Stmt.getRegion();
3282 for (auto *BB : R->blocks()) {
3283 InstCount += std::distance(BB->begin(), BB->end());
3287 isl_val *InstVal = isl_val_int_from_si(S->getIslCtx(), InstCount);
3288 auto *InstExpr = isl_ast_expr_from_val(InstVal);
3289 return isl_ast_expr_mul(InstExpr, Iterations);
3292 /// Approximate dynamic instructions executed in scop.
3294 /// @param S The scop for which to approximate dynamic instructions.
3295 /// @param Build The isl ast build object to use for creating the ast
3296 /// expression.
3297 /// @returns An approximation of the number of dynamic instructions executed
3298 /// in @p S.
3299 __isl_give isl_ast_expr *
3300 getNumberOfIterations(Scop &S, __isl_keep isl_ast_build *Build) {
3301 isl_ast_expr *Instructions;
3303 isl_val *Zero = isl_val_int_from_si(S.getIslCtx(), 0);
3304 Instructions = isl_ast_expr_from_val(Zero);
3306 for (ScopStmt &Stmt : S) {
3307 isl_ast_expr *StmtInstructions = approxDynamicInst(Stmt, Build);
3308 Instructions = isl_ast_expr_add(Instructions, StmtInstructions);
3310 return Instructions;
3313 /// Create a check that ensures sufficient compute in scop.
3315 /// @param S The scop for which to ensure sufficient compute.
3316 /// @param Build The isl ast build object to use for creating the ast
3317 /// expression.
3318 /// @returns An expression that evaluates to TRUE in case of sufficient
3319 /// compute and to FALSE, otherwise.
3320 __isl_give isl_ast_expr *
3321 createSufficientComputeCheck(Scop &S, __isl_keep isl_ast_build *Build) {
3322 auto Iterations = getNumberOfIterations(S, Build);
3323 auto *MinComputeVal = isl_val_int_from_si(S.getIslCtx(), MinCompute);
3324 auto *MinComputeExpr = isl_ast_expr_from_val(MinComputeVal);
3325 return isl_ast_expr_ge(Iterations, MinComputeExpr);
3328 /// Check if the basic block contains a function we cannot codegen for GPU
3329 /// kernels.
3331 /// If this basic block does something with a `Function` other than calling
3332 /// a function that we support in a kernel, return true.
3333 bool containsInvalidKernelFunctionInBlock(const BasicBlock *BB,
3334 bool AllowCUDALibDevice) {
3335 for (const Instruction &Inst : *BB) {
3336 const CallInst *Call = dyn_cast<CallInst>(&Inst);
3337 if (Call && isValidFunctionInKernel(Call->getCalledFunction(),
3338 AllowCUDALibDevice)) {
3339 continue;
3342 for (Value *SrcVal : Inst.operands()) {
3343 PointerType *p = dyn_cast<PointerType>(SrcVal->getType());
3344 if (!p)
3345 continue;
3346 if (isa<FunctionType>(p->getElementType()))
3347 return true;
3350 return false;
3353 /// Return whether the Scop S uses functions in a way that we do not support.
3354 bool containsInvalidKernelFunction(const Scop &S, bool AllowCUDALibDevice) {
3355 for (auto &Stmt : S) {
3356 if (Stmt.isBlockStmt()) {
3357 if (containsInvalidKernelFunctionInBlock(Stmt.getBasicBlock(),
3358 AllowCUDALibDevice))
3359 return true;
3360 } else {
3361 assert(Stmt.isRegionStmt() &&
3362 "Stmt was neither block nor region statement");
3363 for (const BasicBlock *BB : Stmt.getRegion()->blocks())
3364 if (containsInvalidKernelFunctionInBlock(BB, AllowCUDALibDevice))
3365 return true;
3368 return false;
3371 /// Generate code for a given GPU AST described by @p Root.
3373 /// @param Root An isl_ast_node pointing to the root of the GPU AST.
3374 /// @param Prog The GPU Program to generate code for.
3375 void generateCode(__isl_take isl_ast_node *Root, gpu_prog *Prog) {
3376 ScopAnnotator Annotator;
3377 Annotator.buildAliasScopes(*S);
3379 Region *R = &S->getRegion();
3381 simplifyRegion(R, DT, LI, RI);
3383 BasicBlock *EnteringBB = R->getEnteringBlock();
3385 PollyIRBuilder Builder = createPollyIRBuilder(EnteringBB, Annotator);
3387 // Only build the run-time condition and parameters _after_ having
3388 // introduced the conditional branch. This is important as the conditional
3389 // branch will guard the original scop from new induction variables that
3390 // the SCEVExpander may introduce while code generating the parameters and
3391 // which may introduce scalar dependences that prevent us from correctly
3392 // code generating this scop.
3393 BBPair StartExitBlocks;
3394 BranchInst *CondBr = nullptr;
3395 std::tie(StartExitBlocks, CondBr) =
3396 executeScopConditionally(*S, Builder.getTrue(), *DT, *RI, *LI);
3397 BasicBlock *StartBlock = std::get<0>(StartExitBlocks);
3399 assert(CondBr && "CondBr not initialized by executeScopConditionally");
3401 GPUNodeBuilder NodeBuilder(Builder, Annotator, *DL, *LI, *SE, *DT, *S,
3402 StartBlock, Prog, Runtime, Architecture);
3404 // TODO: Handle LICM
3405 auto SplitBlock = StartBlock->getSinglePredecessor();
3406 Builder.SetInsertPoint(SplitBlock->getTerminator());
3408 isl_ast_build *Build = isl_ast_build_alloc(S->getIslCtx());
3409 isl_ast_expr *Condition = IslAst::buildRunCondition(*S, Build);
3410 isl_ast_expr *SufficientCompute = createSufficientComputeCheck(*S, Build);
3411 Condition = isl_ast_expr_and(Condition, SufficientCompute);
3412 isl_ast_build_free(Build);
3414 // preload invariant loads. Note: This should happen before the RTC
3415 // because the RTC may depend on values that are invariant load hoisted.
3416 if (!NodeBuilder.preloadInvariantLoads()) {
3417 DEBUG(dbgs() << "preloading invariant loads failed in function: " +
3418 S->getFunction().getName() +
3419 " | Scop Region: " + S->getNameStr());
3420 // adjust the dominator tree accordingly.
3421 auto *ExitingBlock = StartBlock->getUniqueSuccessor();
3422 assert(ExitingBlock);
3423 auto *MergeBlock = ExitingBlock->getUniqueSuccessor();
3424 assert(MergeBlock);
3425 polly::markBlockUnreachable(*StartBlock, Builder);
3426 polly::markBlockUnreachable(*ExitingBlock, Builder);
3427 auto *ExitingBB = S->getExitingBlock();
3428 assert(ExitingBB);
3430 DT->changeImmediateDominator(MergeBlock, ExitingBB);
3431 DT->eraseNode(ExitingBlock);
3432 isl_ast_expr_free(Condition);
3433 isl_ast_node_free(Root);
3434 } else {
3436 NodeBuilder.addParameters(S->getContext().release());
3437 Value *RTC = NodeBuilder.createRTC(Condition);
3438 Builder.GetInsertBlock()->getTerminator()->setOperand(0, RTC);
3440 Builder.SetInsertPoint(&*StartBlock->begin());
3442 NodeBuilder.create(Root);
3445 /// In case a sequential kernel has more surrounding loops as any parallel
3446 /// kernel, the SCoP is probably mostly sequential. Hence, there is no
3447 /// point in running it on a GPU.
3448 if (NodeBuilder.DeepestSequential > NodeBuilder.DeepestParallel)
3449 CondBr->setOperand(0, Builder.getFalse());
3451 if (!NodeBuilder.BuildSuccessful)
3452 CondBr->setOperand(0, Builder.getFalse());
3455 bool runOnScop(Scop &CurrentScop) override {
3456 S = &CurrentScop;
3457 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
3458 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
3459 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
3460 DL = &S->getRegion().getEntry()->getModule()->getDataLayout();
3461 RI = &getAnalysis<RegionInfoPass>().getRegionInfo();
3463 DEBUG(dbgs() << "PPCGCodeGen running on : " << getUniqueScopName(S)
3464 << " | loop depth: " << S->getMaxLoopDepth() << "\n");
3466 // We currently do not support functions other than intrinsics inside
3467 // kernels, as code generation will need to offload function calls to the
3468 // kernel. This may lead to a kernel trying to call a function on the host.
3469 // This also allows us to prevent codegen from trying to take the
3470 // address of an intrinsic function to send to the kernel.
3471 if (containsInvalidKernelFunction(CurrentScop,
3472 Architecture == GPUArch::NVPTX64)) {
3473 DEBUG(
3474 dbgs() << getUniqueScopName(S)
3475 << " contains function which cannot be materialised in a GPU "
3476 "kernel. Bailing out.\n";);
3477 return false;
3480 auto PPCGScop = createPPCGScop();
3481 auto PPCGProg = createPPCGProg(PPCGScop);
3482 auto PPCGGen = generateGPU(PPCGScop, PPCGProg);
3484 if (PPCGGen->tree) {
3485 generateCode(isl_ast_node_copy(PPCGGen->tree), PPCGProg);
3486 CurrentScop.markAsToBeSkipped();
3487 } else {
3488 DEBUG(dbgs() << getUniqueScopName(S)
3489 << " has empty PPCGGen->tree. Bailing out.\n");
3492 freeOptions(PPCGScop);
3493 freePPCGGen(PPCGGen);
3494 gpu_prog_free(PPCGProg);
3495 ppcg_scop_free(PPCGScop);
3497 return true;
3500 void printScop(raw_ostream &, Scop &) const override {}
3502 void getAnalysisUsage(AnalysisUsage &AU) const override {
3503 AU.addRequired<DominatorTreeWrapperPass>();
3504 AU.addRequired<RegionInfoPass>();
3505 AU.addRequired<ScalarEvolutionWrapperPass>();
3506 AU.addRequired<ScopDetectionWrapperPass>();
3507 AU.addRequired<ScopInfoRegionPass>();
3508 AU.addRequired<LoopInfoWrapperPass>();
3510 AU.addPreserved<AAResultsWrapperPass>();
3511 AU.addPreserved<BasicAAWrapperPass>();
3512 AU.addPreserved<LoopInfoWrapperPass>();
3513 AU.addPreserved<DominatorTreeWrapperPass>();
3514 AU.addPreserved<GlobalsAAWrapperPass>();
3515 AU.addPreserved<ScopDetectionWrapperPass>();
3516 AU.addPreserved<ScalarEvolutionWrapperPass>();
3517 AU.addPreserved<SCEVAAWrapperPass>();
3519 // FIXME: We do not yet add regions for the newly generated code to the
3520 // region tree.
3521 AU.addPreserved<RegionInfoPass>();
3522 AU.addPreserved<ScopInfoRegionPass>();
3525 } // namespace
3527 char PPCGCodeGeneration::ID = 1;
3529 Pass *polly::createPPCGCodeGenerationPass(GPUArch Arch, GPURuntime Runtime) {
3530 PPCGCodeGeneration *generator = new PPCGCodeGeneration();
3531 generator->Runtime = Runtime;
3532 generator->Architecture = Arch;
3533 return generator;
3536 INITIALIZE_PASS_BEGIN(PPCGCodeGeneration, "polly-codegen-ppcg",
3537 "Polly - Apply PPCG translation to SCOP", false, false)
3538 INITIALIZE_PASS_DEPENDENCY(DependenceInfo);
3539 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass);
3540 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass);
3541 INITIALIZE_PASS_DEPENDENCY(RegionInfoPass);
3542 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass);
3543 INITIALIZE_PASS_DEPENDENCY(ScopDetectionWrapperPass);
3544 INITIALIZE_PASS_END(PPCGCodeGeneration, "polly-codegen-ppcg",
3545 "Polly - Apply PPCG translation to SCOP", false, false)