[nfc] Iwyu: forward-declare/include raw_ostream in zone algo
[polly-mirror.git] / lib / Transform / ZoneAlgo.cpp
blob552dc83563e53ae91620de126011a79f0dbd1a2d
1 //===------ ZoneAlgo.cpp ----------------------------------------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Derive information about array elements between statements ("Zones").
12 // The algorithms here work on the scatter space - the image space of the
13 // schedule returned by Scop::getSchedule(). We call an element in that space a
14 // "timepoint". Timepoints are lexicographically ordered such that we can
15 // defined ranges in the scatter space. We use two flavors of such ranges:
16 // Timepoint sets and zones. A timepoint set is simply a subset of the scatter
17 // space and is directly stored as isl_set.
19 // Zones are used to describe the space between timepoints as open sets, i.e.
20 // they do not contain the extrema. Using isl rational sets to express these
21 // would be overkill. We also cannot store them as the integer timepoints they
22 // contain; the (nonempty) zone between 1 and 2 would be empty and
23 // indistinguishable from e.g. the zone between 3 and 4. Also, we cannot store
24 // the integer set including the extrema; the set ]1,2[ + ]3,4[ could be
25 // coalesced to ]1,3[, although we defined the range [2,3] to be not in the set.
26 // Instead, we store the "half-open" integer extrema, including the lower bound,
27 // but excluding the upper bound. Examples:
29 // * The set { [i] : 1 <= i <= 3 } represents the zone ]0,3[ (which contains the
30 // integer points 1 and 2, but not 0 or 3)
32 // * { [1] } represents the zone ]0,1[
34 // * { [i] : i = 1 or i = 3 } represents the zone ]0,1[ + ]2,3[
36 // Therefore, an integer i in the set represents the zone ]i-1,i[, i.e. strictly
37 // speaking the integer points never belong to the zone. However, depending an
38 // the interpretation, one might want to include them. Part of the
39 // interpretation may not be known when the zone is constructed.
41 // Reads are assumed to always take place before writes, hence we can think of
42 // reads taking place at the beginning of a timepoint and writes at the end.
44 // Let's assume that the zone represents the lifetime of a variable. That is,
45 // the zone begins with a write that defines the value during its lifetime and
46 // ends with the last read of that value. In the following we consider whether a
47 // read/write at the beginning/ending of the lifetime zone should be within the
48 // zone or outside of it.
50 // * A read at the timepoint that starts the live-range loads the previous
51 // value. Hence, exclude the timepoint starting the zone.
53 // * A write at the timepoint that starts the live-range is not defined whether
54 // it occurs before or after the write that starts the lifetime. We do not
55 // allow this situation to occur. Hence, we include the timepoint starting the
56 // zone to determine whether they are conflicting.
58 // * A read at the timepoint that ends the live-range reads the same variable.
59 // We include the timepoint at the end of the zone to include that read into
60 // the live-range. Doing otherwise would mean that the two reads access
61 // different values, which would mean that the value they read are both alive
62 // at the same time but occupy the same variable.
64 // * A write at the timepoint that ends the live-range starts a new live-range.
65 // It must not be included in the live-range of the previous definition.
67 // All combinations of reads and writes at the endpoints are possible, but most
68 // of the time only the write->read (for instance, a live-range from definition
69 // to last use) and read->write (for instance, an unused range from last use to
70 // overwrite) and combinations are interesting (half-open ranges). write->write
71 // zones might be useful as well in some context to represent
72 // output-dependencies.
74 // @see convertZoneToTimepoints
77 // The code makes use of maps and sets in many different spaces. To not loose
78 // track in which space a set or map is expected to be in, variables holding an
79 // isl reference are usually annotated in the comments. They roughly follow isl
80 // syntax for spaces, but only the tuples, not the dimensions. The tuples have a
81 // meaning as follows:
83 // * Space[] - An unspecified tuple. Used for function parameters such that the
84 // function caller can use it for anything they like.
86 // * Domain[] - A statement instance as returned by ScopStmt::getDomain()
87 // isl_id_get_name: Stmt_<NameOfBasicBlock>
88 // isl_id_get_user: Pointer to ScopStmt
90 // * Element[] - An array element as in the range part of
91 // MemoryAccess::getAccessRelation()
92 // isl_id_get_name: MemRef_<NameOfArrayVariable>
93 // isl_id_get_user: Pointer to ScopArrayInfo
95 // * Scatter[] - Scatter space or space of timepoints
96 // Has no tuple id
98 // * Zone[] - Range between timepoints as described above
99 // Has no tuple id
101 // * ValInst[] - An llvm::Value as defined at a specific timepoint.
103 // A ValInst[] itself can be structured as one of:
105 // * [] - An unknown value.
106 // Always zero dimensions
107 // Has no tuple id
109 // * Value[] - An llvm::Value that is read-only in the SCoP, i.e. its
110 // runtime content does not depend on the timepoint.
111 // Always zero dimensions
112 // isl_id_get_name: Val_<NameOfValue>
113 // isl_id_get_user: A pointer to an llvm::Value
115 // * SCEV[...] - A synthesizable llvm::SCEV Expression.
116 // In contrast to a Value[] is has at least one dimension per
117 // SCEVAddRecExpr in the SCEV.
119 // * [Domain[] -> Value[]] - An llvm::Value that may change during the
120 // Scop's execution.
121 // The tuple itself has no id, but it wraps a map space holding a
122 // statement instance which defines the llvm::Value as the map's domain
123 // and llvm::Value itself as range.
125 // @see makeValInst()
127 // An annotation "{ Domain[] -> Scatter[] }" therefore means: A map from a
128 // statement instance to a timepoint, aka a schedule. There is only one scatter
129 // space, but most of the time multiple statements are processed in one set.
130 // This is why most of the time isl_union_map has to be used.
132 // The basic algorithm works as follows:
133 // At first we verify that the SCoP is compatible with this technique. For
134 // instance, two writes cannot write to the same location at the same statement
135 // instance because we cannot determine within the polyhedral model which one
136 // comes first. Once this was verified, we compute zones at which an array
137 // element is unused. This computation can fail if it takes too long. Then the
138 // main algorithm is executed. Because every store potentially trails an unused
139 // zone, we start at stores. We search for a scalar (MemoryKind::Value or
140 // MemoryKind::PHI) that we can map to the array element overwritten by the
141 // store, preferably one that is used by the store or at least the ScopStmt.
142 // When it does not conflict with the lifetime of the values in the array
143 // element, the map is applied and the unused zone updated as it is now used. We
144 // continue to try to map scalars to the array element until there are no more
145 // candidates to map. The algorithm is greedy in the sense that the first scalar
146 // not conflicting will be mapped. Other scalars processed later that could have
147 // fit the same unused zone will be rejected. As such the result depends on the
148 // processing order.
150 //===----------------------------------------------------------------------===//
152 #include "polly/ZoneAlgo.h"
153 #include "polly/ScopInfo.h"
154 #include "polly/Support/GICHelper.h"
155 #include "polly/Support/ISLTools.h"
156 #include "polly/Support/VirtualInstruction.h"
157 #include "llvm/Support/raw_ostream.h"
158 #include "llvm/ADT/Statistic.h"
160 #define DEBUG_TYPE "polly-zone"
162 STATISTIC(NumIncompatibleArrays, "Number of not zone-analyzable arrays");
163 STATISTIC(NumCompatibleArrays, "Number of zone-analyzable arrays");
164 STATISTIC(NumRecursivePHIs, "Number of recursive PHIs");
165 STATISTIC(NumNormalizablePHIs, "Number of normalizable PHIs");
166 STATISTIC(NumPHINormialization, "Number of PHI executed normalizations");
168 using namespace polly;
169 using namespace llvm;
171 static isl::union_map computeReachingDefinition(isl::union_map Schedule,
172 isl::union_map Writes,
173 bool InclDef, bool InclRedef) {
174 return computeReachingWrite(Schedule, Writes, false, InclDef, InclRedef);
177 /// Compute the reaching definition of a scalar.
179 /// Compared to computeReachingDefinition, there is just one element which is
180 /// accessed and therefore only a set if instances that accesses that element is
181 /// required.
183 /// @param Schedule { DomainWrite[] -> Scatter[] }
184 /// @param Writes { DomainWrite[] }
185 /// @param InclDef Include the timepoint of the definition to the result.
186 /// @param InclRedef Include the timepoint of the overwrite into the result.
188 /// @return { Scatter[] -> DomainWrite[] }
189 static isl::union_map computeScalarReachingDefinition(isl::union_map Schedule,
190 isl::union_set Writes,
191 bool InclDef,
192 bool InclRedef) {
193 // { DomainWrite[] -> Element[] }
194 isl::union_map Defs = isl::union_map::from_domain(Writes);
196 // { [Element[] -> Scatter[]] -> DomainWrite[] }
197 auto ReachDefs =
198 computeReachingDefinition(Schedule, Defs, InclDef, InclRedef);
200 // { Scatter[] -> DomainWrite[] }
201 return ReachDefs.curry().range().unwrap();
204 /// Compute the reaching definition of a scalar.
206 /// This overload accepts only a single writing statement as an isl_map,
207 /// consequently the result also is only a single isl_map.
209 /// @param Schedule { DomainWrite[] -> Scatter[] }
210 /// @param Writes { DomainWrite[] }
211 /// @param InclDef Include the timepoint of the definition to the result.
212 /// @param InclRedef Include the timepoint of the overwrite into the result.
214 /// @return { Scatter[] -> DomainWrite[] }
215 static isl::map computeScalarReachingDefinition(isl::union_map Schedule,
216 isl::set Writes, bool InclDef,
217 bool InclRedef) {
218 isl::space DomainSpace = Writes.get_space();
219 isl::space ScatterSpace = getScatterSpace(Schedule);
221 // { Scatter[] -> DomainWrite[] }
222 isl::union_map UMap = computeScalarReachingDefinition(
223 Schedule, isl::union_set(Writes), InclDef, InclRedef);
225 isl::space ResultSpace = ScatterSpace.map_from_domain_and_range(DomainSpace);
226 return singleton(UMap, ResultSpace);
229 isl::union_map polly::makeUnknownForDomain(isl::union_set Domain) {
230 return give(isl_union_map_from_domain(Domain.take()));
233 /// Create a domain-to-unknown value mapping.
235 /// @see makeUnknownForDomain(isl::union_set)
237 /// @param Domain { Domain[] }
239 /// @return { Domain[] -> ValInst[] }
240 static isl::map makeUnknownForDomain(isl::set Domain) {
241 return give(isl_map_from_domain(Domain.take()));
244 /// Return whether @p Map maps to an unknown value.
246 /// @param { [] -> ValInst[] }
247 static bool isMapToUnknown(const isl::map &Map) {
248 isl::space Space = Map.get_space().range();
249 return Space.has_tuple_id(isl::dim::set).is_false() &&
250 Space.is_wrapping().is_false() && Space.dim(isl::dim::set) == 0;
253 isl::union_map polly::filterKnownValInst(const isl::union_map &UMap) {
254 isl::union_map Result = isl::union_map::empty(UMap.get_space());
255 isl::stat Success = UMap.foreach_map([=, &Result](isl::map Map) -> isl::stat {
256 if (!isMapToUnknown(Map))
257 Result = Result.add_map(Map);
258 return isl::stat::ok;
260 if (Success != isl::stat::ok)
261 return {};
262 return Result;
265 ZoneAlgorithm::ZoneAlgorithm(const char *PassName, Scop *S, LoopInfo *LI)
266 : PassName(PassName), IslCtx(S->getSharedIslCtx()), S(S), LI(LI),
267 Schedule(S->getSchedule()) {
268 auto Domains = S->getDomains();
270 Schedule =
271 give(isl_union_map_intersect_domain(Schedule.take(), Domains.take()));
272 ParamSpace = give(isl_union_map_get_space(Schedule.keep()));
273 ScatterSpace = getScatterSpace(Schedule);
276 /// Check if all stores in @p Stmt store the very same value.
278 /// This covers a special situation occurring in Polybench's
279 /// covariance/correlation (which is typical for algorithms that cover symmetric
280 /// matrices):
282 /// for (int i = 0; i < n; i += 1)
283 /// for (int j = 0; j <= i; j += 1) {
284 /// double x = ...;
285 /// C[i][j] = x;
286 /// C[j][i] = x;
287 /// }
289 /// For i == j, the same value is written twice to the same element.Double
290 /// writes to the same element are not allowed in DeLICM because its algorithm
291 /// does not see which of the writes is effective.But if its the same value
292 /// anyway, it doesn't matter.
294 /// LLVM passes, however, cannot simplify this because the write is necessary
295 /// for i != j (unless it would add a condition for one of the writes to occur
296 /// only if i != j).
298 /// TODO: In the future we may want to extent this to make the checks
299 /// specific to different memory locations.
300 static bool onlySameValueWrites(ScopStmt *Stmt) {
301 Value *V = nullptr;
303 for (auto *MA : *Stmt) {
304 if (!MA->isLatestArrayKind() || !MA->isMustWrite() ||
305 !MA->isOriginalArrayKind())
306 continue;
308 if (!V) {
309 V = MA->getAccessValue();
310 continue;
313 if (V != MA->getAccessValue())
314 return false;
316 return true;
319 void ZoneAlgorithm::collectIncompatibleElts(ScopStmt *Stmt,
320 isl::union_set &IncompatibleElts,
321 isl::union_set &AllElts) {
322 auto Stores = makeEmptyUnionMap();
323 auto Loads = makeEmptyUnionMap();
325 // This assumes that the MemoryKind::Array MemoryAccesses are iterated in
326 // order.
327 for (auto *MA : *Stmt) {
328 if (!MA->isOriginalArrayKind())
329 continue;
331 isl::map AccRelMap = getAccessRelationFor(MA);
332 isl::union_map AccRel = AccRelMap;
334 // To avoid solving any ILP problems, always add entire arrays instead of
335 // just the elements that are accessed.
336 auto ArrayElts = isl::set::universe(AccRelMap.get_space().range());
337 AllElts = AllElts.add_set(ArrayElts);
339 if (MA->isRead()) {
340 // Reject load after store to same location.
341 if (!isl_union_map_is_disjoint(Stores.keep(), AccRel.keep())) {
342 DEBUG(dbgs() << "Load after store of same element in same statement\n");
343 OptimizationRemarkMissed R(PassName, "LoadAfterStore",
344 MA->getAccessInstruction());
345 R << "load after store of same element in same statement";
346 R << " (previous stores: " << Stores;
347 R << ", loading: " << AccRel << ")";
348 S->getFunction().getContext().diagnose(R);
350 IncompatibleElts = IncompatibleElts.add_set(ArrayElts);
353 Loads = give(isl_union_map_union(Loads.take(), AccRel.take()));
355 continue;
358 // In region statements the order is less clear, eg. the load and store
359 // might be in a boxed loop.
360 if (Stmt->isRegionStmt() &&
361 !isl_union_map_is_disjoint(Loads.keep(), AccRel.keep())) {
362 DEBUG(dbgs() << "WRITE in non-affine subregion not supported\n");
363 OptimizationRemarkMissed R(PassName, "StoreInSubregion",
364 MA->getAccessInstruction());
365 R << "store is in a non-affine subregion";
366 S->getFunction().getContext().diagnose(R);
368 IncompatibleElts = IncompatibleElts.add_set(ArrayElts);
371 // Do not allow more than one store to the same location.
372 if (!isl_union_map_is_disjoint(Stores.keep(), AccRel.keep()) &&
373 !onlySameValueWrites(Stmt)) {
374 DEBUG(dbgs() << "WRITE after WRITE to same element\n");
375 OptimizationRemarkMissed R(PassName, "StoreAfterStore",
376 MA->getAccessInstruction());
377 R << "store after store of same element in same statement";
378 R << " (previous stores: " << Stores;
379 R << ", storing: " << AccRel << ")";
380 S->getFunction().getContext().diagnose(R);
382 IncompatibleElts = IncompatibleElts.add_set(ArrayElts);
385 Stores = give(isl_union_map_union(Stores.take(), AccRel.take()));
389 void ZoneAlgorithm::addArrayReadAccess(MemoryAccess *MA) {
390 assert(MA->isLatestArrayKind());
391 assert(MA->isRead());
392 ScopStmt *Stmt = MA->getStatement();
394 // { DomainRead[] -> Element[] }
395 auto AccRel = intersectRange(getAccessRelationFor(MA), CompatibleElts);
396 AllReads = give(isl_union_map_add_map(AllReads.take(), AccRel.copy()));
398 if (LoadInst *Load = dyn_cast_or_null<LoadInst>(MA->getAccessInstruction())) {
399 // { DomainRead[] -> ValInst[] }
400 isl::map LoadValInst = makeValInst(
401 Load, Stmt, LI->getLoopFor(Load->getParent()), Stmt->isBlockStmt());
403 // { DomainRead[] -> [Element[] -> DomainRead[]] }
404 isl::map IncludeElement =
405 give(isl_map_curry(isl_map_domain_map(AccRel.take())));
407 // { [Element[] -> DomainRead[]] -> ValInst[] }
408 isl::map EltLoadValInst =
409 give(isl_map_apply_domain(LoadValInst.take(), IncludeElement.take()));
411 AllReadValInst = give(
412 isl_union_map_add_map(AllReadValInst.take(), EltLoadValInst.take()));
416 isl::union_map ZoneAlgorithm::getWrittenValue(MemoryAccess *MA,
417 isl::map AccRel) {
418 if (!MA->isMustWrite())
419 return {};
421 Value *AccVal = MA->getAccessValue();
422 ScopStmt *Stmt = MA->getStatement();
423 Instruction *AccInst = MA->getAccessInstruction();
425 // Write a value to a single element.
426 auto L = MA->isOriginalArrayKind() ? LI->getLoopFor(AccInst->getParent())
427 : Stmt->getSurroundingLoop();
428 if (AccVal &&
429 AccVal->getType() == MA->getLatestScopArrayInfo()->getElementType() &&
430 AccRel.is_single_valued().is_true())
431 return makeNormalizedValInst(AccVal, Stmt, L);
433 // memset(_, '0', ) is equivalent to writing the null value to all touched
434 // elements. isMustWrite() ensures that all of an element's bytes are
435 // overwritten.
436 if (auto *Memset = dyn_cast<MemSetInst>(AccInst)) {
437 auto *WrittenConstant = dyn_cast<Constant>(Memset->getValue());
438 Type *Ty = MA->getLatestScopArrayInfo()->getElementType();
439 if (WrittenConstant && WrittenConstant->isZeroValue()) {
440 Constant *Zero = Constant::getNullValue(Ty);
441 return makeNormalizedValInst(Zero, Stmt, L);
445 return {};
448 void ZoneAlgorithm::addArrayWriteAccess(MemoryAccess *MA) {
449 assert(MA->isLatestArrayKind());
450 assert(MA->isWrite());
451 auto *Stmt = MA->getStatement();
453 // { Domain[] -> Element[] }
454 isl::map AccRel = intersectRange(getAccessRelationFor(MA), CompatibleElts);
456 if (MA->isMustWrite())
457 AllMustWrites = AllMustWrites.add_map(AccRel);
459 if (MA->isMayWrite())
460 AllMayWrites = AllMayWrites.add_map(AccRel);
462 // { Domain[] -> ValInst[] }
463 isl::union_map WriteValInstance = getWrittenValue(MA, AccRel);
464 if (!WriteValInstance)
465 WriteValInstance = makeUnknownForDomain(Stmt);
467 // { Domain[] -> [Element[] -> Domain[]] }
468 isl::map IncludeElement = AccRel.domain_map().curry();
470 // { [Element[] -> DomainWrite[]] -> ValInst[] }
471 isl::union_map EltWriteValInst =
472 WriteValInstance.apply_domain(IncludeElement);
474 AllWriteValInst = AllWriteValInst.unite(EltWriteValInst);
477 /// Return whether @p PHI refers (also transitively through other PHIs) to
478 /// itself.
480 /// loop:
481 /// %phi1 = phi [0, %preheader], [%phi1, %loop]
482 /// br i1 %c, label %loop, label %exit
484 /// exit:
485 /// %phi2 = phi [%phi1, %bb]
487 /// In this example, %phi1 is recursive, but %phi2 is not.
488 static bool isRecursivePHI(const PHINode *PHI) {
489 SmallVector<const PHINode *, 8> Worklist;
490 SmallPtrSet<const PHINode *, 8> Visited;
491 Worklist.push_back(PHI);
493 while (!Worklist.empty()) {
494 const PHINode *Cur = Worklist.pop_back_val();
496 if (Visited.count(Cur))
497 continue;
498 Visited.insert(Cur);
500 for (const Use &Incoming : Cur->incoming_values()) {
501 Value *IncomingVal = Incoming.get();
502 auto *IncomingPHI = dyn_cast<PHINode>(IncomingVal);
503 if (!IncomingPHI)
504 continue;
506 if (IncomingPHI == PHI)
507 return true;
508 Worklist.push_back(IncomingPHI);
511 return false;
514 isl::union_map ZoneAlgorithm::computePerPHI(const ScopArrayInfo *SAI) {
515 // TODO: If the PHI has an incoming block from before the SCoP, it is not
516 // represented in any ScopStmt.
518 auto *PHI = cast<PHINode>(SAI->getBasePtr());
519 auto It = PerPHIMaps.find(PHI);
520 if (It != PerPHIMaps.end())
521 return It->second;
523 assert(SAI->isPHIKind());
525 // { DomainPHIWrite[] -> Scatter[] }
526 isl::union_map PHIWriteScatter = makeEmptyUnionMap();
528 // Collect all incoming block timepoints.
529 for (MemoryAccess *MA : S->getPHIIncomings(SAI)) {
530 isl::map Scatter = getScatterFor(MA);
531 PHIWriteScatter = PHIWriteScatter.add_map(Scatter);
534 // { DomainPHIRead[] -> Scatter[] }
535 isl::map PHIReadScatter = getScatterFor(S->getPHIRead(SAI));
537 // { DomainPHIRead[] -> Scatter[] }
538 isl::map BeforeRead = beforeScatter(PHIReadScatter, true);
540 // { Scatter[] }
541 isl::set WriteTimes = singleton(PHIWriteScatter.range(), ScatterSpace);
543 // { DomainPHIRead[] -> Scatter[] }
544 isl::map PHIWriteTimes = BeforeRead.intersect_range(WriteTimes);
545 isl::map LastPerPHIWrites = PHIWriteTimes.lexmax();
547 // { DomainPHIRead[] -> DomainPHIWrite[] }
548 isl::union_map Result =
549 isl::union_map(LastPerPHIWrites).apply_range(PHIWriteScatter.reverse());
550 assert(!Result.is_single_valued().is_false());
551 assert(!Result.is_injective().is_false());
553 PerPHIMaps.insert({PHI, Result});
554 return Result;
557 isl::union_set ZoneAlgorithm::makeEmptyUnionSet() const {
558 return give(isl_union_set_empty(ParamSpace.copy()));
561 isl::union_map ZoneAlgorithm::makeEmptyUnionMap() const {
562 return give(isl_union_map_empty(ParamSpace.copy()));
565 void ZoneAlgorithm::collectCompatibleElts() {
566 // First find all the incompatible elements, then take the complement.
567 // We compile the list of compatible (rather than incompatible) elements so
568 // users can intersect with the list, not requiring a subtract operation. It
569 // also allows us to define a 'universe' of all elements and makes it more
570 // explicit in which array elements can be used.
571 isl::union_set AllElts = makeEmptyUnionSet();
572 isl::union_set IncompatibleElts = makeEmptyUnionSet();
574 for (auto &Stmt : *S)
575 collectIncompatibleElts(&Stmt, IncompatibleElts, AllElts);
577 NumIncompatibleArrays += isl_union_set_n_set(IncompatibleElts.keep());
578 CompatibleElts = AllElts.subtract(IncompatibleElts);
579 NumCompatibleArrays += isl_union_set_n_set(CompatibleElts.keep());
582 isl::map ZoneAlgorithm::getScatterFor(ScopStmt *Stmt) const {
583 isl::space ResultSpace = give(isl_space_map_from_domain_and_range(
584 Stmt->getDomainSpace().release(), ScatterSpace.copy()));
585 return give(isl_union_map_extract_map(Schedule.keep(), ResultSpace.take()));
588 isl::map ZoneAlgorithm::getScatterFor(MemoryAccess *MA) const {
589 return getScatterFor(MA->getStatement());
592 isl::union_map ZoneAlgorithm::getScatterFor(isl::union_set Domain) const {
593 return give(isl_union_map_intersect_domain(Schedule.copy(), Domain.take()));
596 isl::map ZoneAlgorithm::getScatterFor(isl::set Domain) const {
597 auto ResultSpace = give(isl_space_map_from_domain_and_range(
598 isl_set_get_space(Domain.keep()), ScatterSpace.copy()));
599 auto UDomain = give(isl_union_set_from_set(Domain.copy()));
600 auto UResult = getScatterFor(std::move(UDomain));
601 auto Result = singleton(std::move(UResult), std::move(ResultSpace));
602 assert(!Result || isl_set_is_equal(give(isl_map_domain(Result.copy())).keep(),
603 Domain.keep()) == isl_bool_true);
604 return Result;
607 isl::set ZoneAlgorithm::getDomainFor(ScopStmt *Stmt) const {
608 return Stmt->getDomain().remove_redundancies();
611 isl::set ZoneAlgorithm::getDomainFor(MemoryAccess *MA) const {
612 return getDomainFor(MA->getStatement());
615 isl::map ZoneAlgorithm::getAccessRelationFor(MemoryAccess *MA) const {
616 auto Domain = getDomainFor(MA);
617 auto AccRel = MA->getLatestAccessRelation();
618 return give(isl_map_intersect_domain(AccRel.take(), Domain.take()));
621 isl::map ZoneAlgorithm::getScalarReachingDefinition(ScopStmt *Stmt) {
622 auto &Result = ScalarReachDefZone[Stmt];
623 if (Result)
624 return Result;
626 auto Domain = getDomainFor(Stmt);
627 Result = computeScalarReachingDefinition(Schedule, Domain, false, true);
628 simplify(Result);
630 return Result;
633 isl::map ZoneAlgorithm::getScalarReachingDefinition(isl::set DomainDef) {
634 auto DomId = give(isl_set_get_tuple_id(DomainDef.keep()));
635 auto *Stmt = static_cast<ScopStmt *>(isl_id_get_user(DomId.keep()));
637 auto StmtResult = getScalarReachingDefinition(Stmt);
639 return give(isl_map_intersect_range(StmtResult.take(), DomainDef.take()));
642 isl::map ZoneAlgorithm::makeUnknownForDomain(ScopStmt *Stmt) const {
643 return ::makeUnknownForDomain(getDomainFor(Stmt));
646 isl::id ZoneAlgorithm::makeValueId(Value *V) {
647 if (!V)
648 return nullptr;
650 auto &Id = ValueIds[V];
651 if (Id.is_null()) {
652 auto Name = getIslCompatibleName("Val_", V, ValueIds.size() - 1,
653 std::string(), UseInstructionNames);
654 Id = give(isl_id_alloc(IslCtx.get(), Name.c_str(), V));
656 return Id;
659 isl::space ZoneAlgorithm::makeValueSpace(Value *V) {
660 auto Result = give(isl_space_set_from_params(ParamSpace.copy()));
661 return give(isl_space_set_tuple_id(Result.take(), isl_dim_set,
662 makeValueId(V).take()));
665 isl::set ZoneAlgorithm::makeValueSet(Value *V) {
666 auto Space = makeValueSpace(V);
667 return give(isl_set_universe(Space.take()));
670 isl::map ZoneAlgorithm::makeValInst(Value *Val, ScopStmt *UserStmt, Loop *Scope,
671 bool IsCertain) {
672 // If the definition/write is conditional, the value at the location could
673 // be either the written value or the old value. Since we cannot know which
674 // one, consider the value to be unknown.
675 if (!IsCertain)
676 return makeUnknownForDomain(UserStmt);
678 auto DomainUse = getDomainFor(UserStmt);
679 auto VUse = VirtualUse::create(S, UserStmt, Scope, Val, true);
680 switch (VUse.getKind()) {
681 case VirtualUse::Constant:
682 case VirtualUse::Block:
683 case VirtualUse::Hoisted:
684 case VirtualUse::ReadOnly: {
685 // The definition does not depend on the statement which uses it.
686 auto ValSet = makeValueSet(Val);
687 return give(isl_map_from_domain_and_range(DomainUse.take(), ValSet.take()));
690 case VirtualUse::Synthesizable: {
691 auto *ScevExpr = VUse.getScevExpr();
692 auto UseDomainSpace = give(isl_set_get_space(DomainUse.keep()));
694 // Construct the SCEV space.
695 // TODO: Add only the induction variables referenced in SCEVAddRecExpr
696 // expressions, not just all of them.
697 auto ScevId = give(isl_id_alloc(UseDomainSpace.get_ctx().get(), nullptr,
698 const_cast<SCEV *>(ScevExpr)));
699 auto ScevSpace =
700 give(isl_space_drop_dims(UseDomainSpace.copy(), isl_dim_set, 0, 0));
701 ScevSpace = give(
702 isl_space_set_tuple_id(ScevSpace.take(), isl_dim_set, ScevId.copy()));
704 // { DomainUse[] -> ScevExpr[] }
705 auto ValInst = give(isl_map_identity(isl_space_map_from_domain_and_range(
706 UseDomainSpace.copy(), ScevSpace.copy())));
707 return ValInst;
710 case VirtualUse::Intra: {
711 // Definition and use is in the same statement. We do not need to compute
712 // a reaching definition.
714 // { llvm::Value }
715 auto ValSet = makeValueSet(Val);
717 // { UserDomain[] -> llvm::Value }
718 auto ValInstSet =
719 give(isl_map_from_domain_and_range(DomainUse.take(), ValSet.take()));
721 // { UserDomain[] -> [UserDomain[] - >llvm::Value] }
722 auto Result = give(isl_map_reverse(isl_map_domain_map(ValInstSet.take())));
723 simplify(Result);
724 return Result;
727 case VirtualUse::Inter: {
728 // The value is defined in a different statement.
730 auto *Inst = cast<Instruction>(Val);
731 auto *ValStmt = S->getStmtFor(Inst);
733 // If the llvm::Value is defined in a removed Stmt, we cannot derive its
734 // domain. We could use an arbitrary statement, but this could result in
735 // different ValInst[] for the same llvm::Value.
736 if (!ValStmt)
737 return ::makeUnknownForDomain(DomainUse);
739 // { DomainDef[] }
740 auto DomainDef = getDomainFor(ValStmt);
742 // { Scatter[] -> DomainDef[] }
743 auto ReachDef = getScalarReachingDefinition(DomainDef);
745 // { DomainUse[] -> Scatter[] }
746 auto UserSched = getScatterFor(DomainUse);
748 // { DomainUse[] -> DomainDef[] }
749 auto UsedInstance =
750 give(isl_map_apply_range(UserSched.take(), ReachDef.take()));
752 // { llvm::Value }
753 auto ValSet = makeValueSet(Val);
755 // { DomainUse[] -> llvm::Value[] }
756 auto ValInstSet =
757 give(isl_map_from_domain_and_range(DomainUse.take(), ValSet.take()));
759 // { DomainUse[] -> [DomainDef[] -> llvm::Value] }
760 auto Result =
761 give(isl_map_range_product(UsedInstance.take(), ValInstSet.take()));
763 simplify(Result);
764 return Result;
767 llvm_unreachable("Unhandled use type");
770 /// Remove all computed PHIs out of @p Input and replace by their incoming
771 /// value.
773 /// @param Input { [] -> ValInst[] }
774 /// @param ComputedPHIs Set of PHIs that are replaced. Its ValInst must appear
775 /// on the LHS of @p NormalizeMap.
776 /// @param NormalizeMap { ValInst[] -> ValInst[] }
777 static isl::union_map normalizeValInst(isl::union_map Input,
778 const DenseSet<PHINode *> &ComputedPHIs,
779 isl::union_map NormalizeMap) {
780 isl::union_map Result = isl::union_map::empty(Input.get_space());
781 Input.foreach_map(
782 [&Result, &ComputedPHIs, &NormalizeMap](isl::map Map) -> isl::stat {
783 isl::space Space = Map.get_space();
784 isl::space RangeSpace = Space.range();
786 // Instructions within the SCoP are always wrapped. Non-wrapped tuples
787 // are therefore invariant in the SCoP and don't need normalization.
788 if (!RangeSpace.is_wrapping()) {
789 Result = Result.add_map(Map);
790 return isl::stat::ok;
793 auto *PHI = dyn_cast<PHINode>(static_cast<Value *>(
794 RangeSpace.unwrap().get_tuple_id(isl::dim::out).get_user()));
796 // If no normalization is necessary, then the ValInst stands for itself.
797 if (!ComputedPHIs.count(PHI)) {
798 Result = Result.add_map(Map);
799 return isl::stat::ok;
802 // Otherwise, apply the normalization.
803 isl::union_map Mapped = isl::union_map(Map).apply_range(NormalizeMap);
804 Result = Result.unite(Mapped);
805 NumPHINormialization++;
806 return isl::stat::ok;
808 return Result;
811 isl::union_map ZoneAlgorithm::makeNormalizedValInst(llvm::Value *Val,
812 ScopStmt *UserStmt,
813 llvm::Loop *Scope,
814 bool IsCertain) {
815 isl::map ValInst = makeValInst(Val, UserStmt, Scope, IsCertain);
816 isl::union_map Normalized =
817 normalizeValInst(ValInst, ComputedPHIs, NormalizeMap);
818 return Normalized;
821 bool ZoneAlgorithm::isCompatibleAccess(MemoryAccess *MA) {
822 if (!MA)
823 return false;
824 if (!MA->isLatestArrayKind())
825 return false;
826 Instruction *AccInst = MA->getAccessInstruction();
827 return isa<StoreInst>(AccInst) || isa<LoadInst>(AccInst);
830 bool ZoneAlgorithm::isNormalizable(MemoryAccess *MA) {
831 assert(MA->isRead());
833 // Exclude ExitPHIs, we are assuming that a normalizable PHI has a READ
834 // MemoryAccess.
835 if (!MA->isOriginalPHIKind())
836 return false;
838 // Exclude recursive PHIs, normalizing them would require a transitive
839 // closure.
840 auto *PHI = cast<PHINode>(MA->getAccessInstruction());
841 if (RecursivePHIs.count(PHI))
842 return false;
844 // Ensure that each incoming value can be represented by a ValInst[].
845 // We do represent values from statements associated to multiple incoming
846 // value by the PHI itself, but we do not handle this case yet (especially
847 // isNormalized()) when normalizing.
848 const ScopArrayInfo *SAI = MA->getOriginalScopArrayInfo();
849 auto Incomings = S->getPHIIncomings(SAI);
850 for (MemoryAccess *Incoming : Incomings) {
851 if (Incoming->getIncoming().size() != 1)
852 return false;
855 return true;
858 bool ZoneAlgorithm::isNormalized(isl::map Map) {
859 isl::space Space = Map.get_space();
860 isl::space RangeSpace = Space.range();
862 if (!RangeSpace.is_wrapping())
863 return true;
865 auto *PHI = dyn_cast<PHINode>(static_cast<Value *>(
866 RangeSpace.unwrap().get_tuple_id(isl::dim::out).get_user()));
867 if (!PHI)
868 return true;
870 auto *IncomingStmt = static_cast<ScopStmt *>(
871 RangeSpace.unwrap().get_tuple_id(isl::dim::in).get_user());
872 MemoryAccess *PHIRead = IncomingStmt->lookupPHIReadOf(PHI);
873 if (!isNormalizable(PHIRead))
874 return true;
876 return false;
879 bool ZoneAlgorithm::isNormalized(isl::union_map UMap) {
880 auto Result = UMap.foreach_map([this](isl::map Map) -> isl::stat {
881 if (isNormalized(Map))
882 return isl::stat::ok;
883 return isl::stat::error;
885 return Result == isl::stat::ok;
888 void ZoneAlgorithm::computeCommon() {
889 AllReads = makeEmptyUnionMap();
890 AllMayWrites = makeEmptyUnionMap();
891 AllMustWrites = makeEmptyUnionMap();
892 AllWriteValInst = makeEmptyUnionMap();
893 AllReadValInst = makeEmptyUnionMap();
895 // Default to empty, i.e. no normalization/replacement is taking place. Call
896 // computeNormalizedPHIs() to initialize.
897 NormalizeMap = makeEmptyUnionMap();
898 ComputedPHIs.clear();
900 for (auto &Stmt : *S) {
901 for (auto *MA : Stmt) {
902 if (!MA->isLatestArrayKind())
903 continue;
905 if (MA->isRead())
906 addArrayReadAccess(MA);
908 if (MA->isWrite())
909 addArrayWriteAccess(MA);
913 // { DomainWrite[] -> Element[] }
914 AllWrites =
915 give(isl_union_map_union(AllMustWrites.copy(), AllMayWrites.copy()));
917 // { [Element[] -> Zone[]] -> DomainWrite[] }
918 WriteReachDefZone =
919 computeReachingDefinition(Schedule, AllWrites, false, true);
920 simplify(WriteReachDefZone);
923 void ZoneAlgorithm::computeNormalizedPHIs() {
924 // Determine which PHIs can reference themselves. They are excluded from
925 // normalization to avoid problems with transitive closures.
926 for (ScopStmt &Stmt : *S) {
927 for (MemoryAccess *MA : Stmt) {
928 if (!MA->isPHIKind())
929 continue;
930 if (!MA->isRead())
931 continue;
933 // TODO: Can be more efficient since isRecursivePHI can theoretically
934 // determine recursiveness for multiple values and/or cache results.
935 auto *PHI = cast<PHINode>(MA->getAccessInstruction());
936 if (isRecursivePHI(PHI)) {
937 NumRecursivePHIs++;
938 RecursivePHIs.insert(PHI);
943 // { PHIValInst[] -> IncomingValInst[] }
944 isl::union_map AllPHIMaps = makeEmptyUnionMap();
946 // Discover new PHIs and try to normalize them.
947 DenseSet<PHINode *> AllPHIs;
948 for (ScopStmt &Stmt : *S) {
949 for (MemoryAccess *MA : Stmt) {
950 if (!MA->isOriginalPHIKind())
951 continue;
952 if (!MA->isRead())
953 continue;
954 if (!isNormalizable(MA))
955 continue;
957 auto *PHI = cast<PHINode>(MA->getAccessInstruction());
958 const ScopArrayInfo *SAI = MA->getOriginalScopArrayInfo();
960 // { PHIDomain[] -> PHIValInst[] }
961 isl::map PHIValInst = makeValInst(PHI, &Stmt, Stmt.getSurroundingLoop());
963 // { IncomingDomain[] -> IncomingValInst[] }
964 isl::union_map IncomingValInsts = makeEmptyUnionMap();
966 // Get all incoming values.
967 for (MemoryAccess *MA : S->getPHIIncomings(SAI)) {
968 ScopStmt *IncomingStmt = MA->getStatement();
970 auto Incoming = MA->getIncoming();
971 assert(Incoming.size() == 1 && "The incoming value must be "
972 "representable by something else than "
973 "the PHI itself");
974 Value *IncomingVal = Incoming[0].second;
976 // { IncomingDomain[] -> IncomingValInst[] }
977 isl::map IncomingValInst = makeValInst(
978 IncomingVal, IncomingStmt, IncomingStmt->getSurroundingLoop());
980 IncomingValInsts = IncomingValInsts.add_map(IncomingValInst);
983 // Determine which instance of the PHI statement corresponds to which
984 // incoming value.
985 // { PHIDomain[] -> IncomingDomain[] }
986 isl::union_map PerPHI = computePerPHI(SAI);
988 // { PHIValInst[] -> IncomingValInst[] }
989 isl::union_map PHIMap =
990 PerPHI.apply_domain(PHIValInst).apply_range(IncomingValInsts);
991 assert(!PHIMap.is_single_valued().is_false());
993 // Resolve transitiveness: The incoming value of the newly discovered PHI
994 // may reference a previously normalized PHI. At the same time, already
995 // normalized PHIs might be normalized to the new PHI. At the end, none of
996 // the PHIs may appear on the right-hand-side of the normalization map.
997 PHIMap = normalizeValInst(PHIMap, AllPHIs, AllPHIMaps);
998 AllPHIs.insert(PHI);
999 AllPHIMaps = normalizeValInst(AllPHIMaps, AllPHIs, PHIMap);
1001 AllPHIMaps = AllPHIMaps.unite(PHIMap);
1002 NumNormalizablePHIs++;
1005 simplify(AllPHIMaps);
1007 // Apply the normalization.
1008 ComputedPHIs = AllPHIs;
1009 NormalizeMap = AllPHIMaps;
1011 assert(!NormalizeMap || isNormalized(NormalizeMap));
1014 void ZoneAlgorithm::printAccesses(llvm::raw_ostream &OS, int Indent) const {
1015 OS.indent(Indent) << "After accesses {\n";
1016 for (auto &Stmt : *S) {
1017 OS.indent(Indent + 4) << Stmt.getBaseName() << "\n";
1018 for (auto *MA : Stmt)
1019 MA->print(OS);
1021 OS.indent(Indent) << "}\n";
1024 isl::union_map ZoneAlgorithm::computeKnownFromMustWrites() const {
1025 // { [Element[] -> Zone[]] -> [Element[] -> DomainWrite[]] }
1026 isl::union_map EltReachdDef = distributeDomain(WriteReachDefZone.curry());
1028 // { [Element[] -> DomainWrite[]] -> ValInst[] }
1029 isl::union_map AllKnownWriteValInst = filterKnownValInst(AllWriteValInst);
1031 // { [Element[] -> Zone[]] -> ValInst[] }
1032 return EltReachdDef.apply_range(AllKnownWriteValInst);
1035 isl::union_map ZoneAlgorithm::computeKnownFromLoad() const {
1036 // { Element[] }
1037 isl::union_set AllAccessedElts = AllReads.range().unite(AllWrites.range());
1039 // { Element[] -> Scatter[] }
1040 isl::union_map EltZoneUniverse = isl::union_map::from_domain_and_range(
1041 AllAccessedElts, isl::set::universe(ScatterSpace));
1043 // This assumes there are no "holes" in
1044 // isl_union_map_domain(WriteReachDefZone); alternatively, compute the zone
1045 // before the first write or that are not written at all.
1046 // { Element[] -> Scatter[] }
1047 isl::union_set NonReachDef =
1048 EltZoneUniverse.wrap().subtract(WriteReachDefZone.domain());
1050 // { [Element[] -> Zone[]] -> ReachDefId[] }
1051 isl::union_map DefZone =
1052 WriteReachDefZone.unite(isl::union_map::from_domain(NonReachDef));
1054 // { [Element[] -> Scatter[]] -> Element[] }
1055 isl::union_map EltZoneElt = EltZoneUniverse.domain_map();
1057 // { [Element[] -> Zone[]] -> [Element[] -> ReachDefId[]] }
1058 isl::union_map DefZoneEltDefId = EltZoneElt.range_product(DefZone);
1060 // { Element[] -> [Zone[] -> ReachDefId[]] }
1061 isl::union_map EltDefZone = DefZone.curry();
1063 // { [Element[] -> Zone[] -> [Element[] -> ReachDefId[]] }
1064 isl::union_map EltZoneEltDefid = distributeDomain(EltDefZone);
1066 // { [Element[] -> Scatter[]] -> DomainRead[] }
1067 isl::union_map Reads = AllReads.range_product(Schedule).reverse();
1069 // { [Element[] -> Scatter[]] -> [Element[] -> DomainRead[]] }
1070 isl::union_map ReadsElt = EltZoneElt.range_product(Reads);
1072 // { [Element[] -> Scatter[]] -> ValInst[] }
1073 isl::union_map ScatterKnown = ReadsElt.apply_range(AllReadValInst);
1075 // { [Element[] -> ReachDefId[]] -> ValInst[] }
1076 isl::union_map DefidKnown =
1077 DefZoneEltDefId.apply_domain(ScatterKnown).reverse();
1079 // { [Element[] -> Zone[]] -> ValInst[] }
1080 return DefZoneEltDefId.apply_range(DefidKnown);
1083 isl::union_map ZoneAlgorithm::computeKnown(bool FromWrite,
1084 bool FromRead) const {
1085 isl::union_map Result = makeEmptyUnionMap();
1087 if (FromWrite)
1088 Result = Result.unite(computeKnownFromMustWrites());
1090 if (FromRead)
1091 Result = Result.unite(computeKnownFromLoad());
1093 simplify(Result);
1094 return Result;