[Fortran Support] Add pattern match for Fortran Arrays that are parameters.
[polly-mirror.git] / include / polly / ScopInfo.h
blob66e2658653697129f016c3fb1f6ec019d3de4437
1 //===------ polly/ScopInfo.h -----------------------------------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Store the polyhedral model representation of a static control flow region,
11 // also called SCoP (Static Control Part).
13 // This representation is shared among several tools in the polyhedral
14 // community, which are e.g. CLooG, Pluto, Loopo, Graphite.
16 //===----------------------------------------------------------------------===//
18 #ifndef POLLY_SCOP_INFO_H
19 #define POLLY_SCOP_INFO_H
21 #include "polly/ScopDetection.h"
22 #include "polly/Support/SCEVAffinator.h"
24 #include "llvm/ADT/MapVector.h"
25 #include "llvm/Analysis/RegionPass.h"
26 #include "llvm/IR/PassManager.h"
27 #include "isl/aff.h"
28 #include "isl/ctx.h"
29 #include "isl/set.h"
31 #include <deque>
32 #include <forward_list>
34 using namespace llvm;
36 namespace llvm {
37 class AssumptionCache;
38 class Loop;
39 class LoopInfo;
40 class PHINode;
41 class ScalarEvolution;
42 class SCEV;
43 class SCEVAddRecExpr;
44 class Type;
45 } // namespace llvm
47 struct isl_ctx;
48 struct isl_map;
49 struct isl_basic_map;
50 struct isl_id;
51 struct isl_set;
52 struct isl_union_set;
53 struct isl_union_map;
54 struct isl_space;
55 struct isl_ast_build;
56 struct isl_constraint;
57 struct isl_pw_aff;
58 struct isl_pw_multi_aff;
59 struct isl_schedule;
61 namespace polly {
63 class MemoryAccess;
64 class Scop;
65 class ScopStmt;
66 class ScopBuilder;
68 //===---------------------------------------------------------------------===//
70 extern bool UseInstructionNames;
72 /// Enumeration of assumptions Polly can take.
73 enum AssumptionKind {
74 ALIASING,
75 INBOUNDS,
76 WRAPPING,
77 UNSIGNED,
78 PROFITABLE,
79 ERRORBLOCK,
80 COMPLEXITY,
81 INFINITELOOP,
82 INVARIANTLOAD,
83 DELINEARIZATION,
86 /// Enum to distinguish between assumptions and restrictions.
87 enum AssumptionSign { AS_ASSUMPTION, AS_RESTRICTION };
89 /// The different memory kinds used in Polly.
90 ///
91 /// We distinguish between arrays and various scalar memory objects. We use
92 /// the term ``array'' to describe memory objects that consist of a set of
93 /// individual data elements arranged in a multi-dimensional grid. A scalar
94 /// memory object describes an individual data element and is used to model
95 /// the definition and uses of llvm::Values.
96 ///
97 /// The polyhedral model does traditionally not reason about SSA values. To
98 /// reason about llvm::Values we model them "as if" they were zero-dimensional
99 /// memory objects, even though they were not actually allocated in (main)
100 /// memory. Memory for such objects is only alloca[ed] at CodeGeneration
101 /// time. To relate the memory slots used during code generation with the
102 /// llvm::Values they belong to the new names for these corresponding stack
103 /// slots are derived by appending suffixes (currently ".s2a" and ".phiops")
104 /// to the name of the original llvm::Value. To describe how def/uses are
105 /// modeled exactly we use these suffixes here as well.
107 /// There are currently four different kinds of memory objects:
108 enum class MemoryKind {
109 /// MemoryKind::Array: Models a one or multi-dimensional array
111 /// A memory object that can be described by a multi-dimensional array.
112 /// Memory objects of this type are used to model actual multi-dimensional
113 /// arrays as they exist in LLVM-IR, but they are also used to describe
114 /// other objects:
115 /// - A single data element allocated on the stack using 'alloca' is
116 /// modeled as a one-dimensional, single-element array.
117 /// - A single data element allocated as a global variable is modeled as
118 /// one-dimensional, single-element array.
119 /// - Certain multi-dimensional arrays with variable size, which in
120 /// LLVM-IR are commonly expressed as a single-dimensional access with a
121 /// complicated access function, are modeled as multi-dimensional
122 /// memory objects (grep for "delinearization").
123 Array,
125 /// MemoryKind::Value: Models an llvm::Value
127 /// Memory objects of type MemoryKind::Value are used to model the data flow
128 /// induced by llvm::Values. For each llvm::Value that is used across
129 /// BasicBocks one ScopArrayInfo object is created. A single memory WRITE
130 /// stores the llvm::Value at its definition into the memory object and at
131 /// each use of the llvm::Value (ignoring trivial intra-block uses) a
132 /// corresponding READ is added. For instance, the use/def chain of a
133 /// llvm::Value %V depicted below
134 /// ______________________
135 /// |DefBB: |
136 /// | %V = float op ... |
137 /// ----------------------
138 /// | |
139 /// _________________ _________________
140 /// |UseBB1: | |UseBB2: |
141 /// | use float %V | | use float %V |
142 /// ----------------- -----------------
144 /// is modeled as if the following memory accesses occured:
146 /// __________________________
147 /// |entry: |
148 /// | %V.s2a = alloca float |
149 /// --------------------------
150 /// |
151 /// ___________________________________
152 /// |DefBB: |
153 /// | store %float %V, float* %V.s2a |
154 /// -----------------------------------
155 /// | |
156 /// ____________________________________ ___________________________________
157 /// |UseBB1: | |UseBB2: |
158 /// | %V.reload1 = load float* %V.s2a | | %V.reload2 = load float* %V.s2a|
159 /// | use float %V.reload1 | | use float %V.reload2 |
160 /// ------------------------------------ -----------------------------------
162 Value,
164 /// MemoryKind::PHI: Models PHI nodes within the SCoP
166 /// Besides the MemoryKind::Value memory object used to model the normal
167 /// llvm::Value dependences described above, PHI nodes require an additional
168 /// memory object of type MemoryKind::PHI to describe the forwarding of values
169 /// to
170 /// the PHI node.
172 /// As an example, a PHIInst instructions
174 /// %PHI = phi float [ %Val1, %IncomingBlock1 ], [ %Val2, %IncomingBlock2 ]
176 /// is modeled as if the accesses occured this way:
178 /// _______________________________
179 /// |entry: |
180 /// | %PHI.phiops = alloca float |
181 /// -------------------------------
182 /// | |
183 /// __________________________________ __________________________________
184 /// |IncomingBlock1: | |IncomingBlock2: |
185 /// | ... | | ... |
186 /// | store float %Val1 %PHI.phiops | | store float %Val2 %PHI.phiops |
187 /// | br label % JoinBlock | | br label %JoinBlock |
188 /// ---------------------------------- ----------------------------------
189 /// \ /
190 /// \ /
191 /// _________________________________________
192 /// |JoinBlock: |
193 /// | %PHI = load float, float* PHI.phiops |
194 /// -----------------------------------------
196 /// Note that there can also be a scalar write access for %PHI if used in a
197 /// different BasicBlock, i.e. there can be a memory object %PHI.phiops as
198 /// well as a memory object %PHI.s2a.
199 PHI,
201 /// MemoryKind::ExitPHI: Models PHI nodes in the SCoP's exit block
203 /// For PHI nodes in the Scop's exit block a special memory object kind is
204 /// used. The modeling used is identical to MemoryKind::PHI, with the
205 /// exception
206 /// that there are no READs from these memory objects. The PHINode's
207 /// llvm::Value is treated as a value escaping the SCoP. WRITE accesses
208 /// write directly to the escaping value's ".s2a" alloca.
209 ExitPHI
212 /// Maps from a loop to the affine function expressing its backedge taken count.
213 /// The backedge taken count already enough to express iteration domain as we
214 /// only allow loops with canonical induction variable.
215 /// A canonical induction variable is:
216 /// an integer recurrence that starts at 0 and increments by one each time
217 /// through the loop.
218 typedef std::map<const Loop *, const SCEV *> LoopBoundMapType;
220 typedef std::vector<std::unique_ptr<MemoryAccess>> AccFuncVector;
222 /// A class to store information about arrays in the SCoP.
224 /// Objects are accessible via the ScoP, MemoryAccess or the id associated with
225 /// the MemoryAccess access function.
227 class ScopArrayInfo {
228 public:
229 /// Construct a ScopArrayInfo object.
231 /// @param BasePtr The array base pointer.
232 /// @param ElementType The type of the elements stored in the array.
233 /// @param IslCtx The isl context used to create the base pointer id.
234 /// @param DimensionSizes A vector containing the size of each dimension.
235 /// @param Kind The kind of the array object.
236 /// @param DL The data layout of the module.
237 /// @param S The scop this array object belongs to.
238 /// @param BaseName The optional name of this memory reference.
239 ScopArrayInfo(Value *BasePtr, Type *ElementType, isl_ctx *IslCtx,
240 ArrayRef<const SCEV *> DimensionSizes, MemoryKind Kind,
241 const DataLayout &DL, Scop *S, const char *BaseName = nullptr);
243 /// Update the element type of the ScopArrayInfo object.
245 /// Memory accesses referencing this ScopArrayInfo object may use
246 /// different element sizes. This function ensures the canonical element type
247 /// stored is small enough to model accesses to the current element type as
248 /// well as to @p NewElementType.
250 /// @param NewElementType An element type that is used to access this array.
251 void updateElementType(Type *NewElementType);
253 /// Update the sizes of the ScopArrayInfo object.
255 /// A ScopArrayInfo object may be created without all outer dimensions being
256 /// available. This function is called when new memory accesses are added for
257 /// this ScopArrayInfo object. It verifies that sizes are compatible and adds
258 /// additional outer array dimensions, if needed.
260 /// @param Sizes A vector of array sizes where the rightmost array
261 /// sizes need to match the innermost array sizes already
262 /// defined in SAI.
263 /// @param CheckConsistency Update sizes, even if new sizes are inconsistent
264 /// with old sizes
265 bool updateSizes(ArrayRef<const SCEV *> Sizes, bool CheckConsistency = true);
267 /// Destructor to free the isl id of the base pointer.
268 ~ScopArrayInfo();
270 /// Set the base pointer to @p BP.
271 void setBasePtr(Value *BP) { BasePtr = BP; }
273 /// Return the base pointer.
274 Value *getBasePtr() const { return BasePtr; }
276 /// For indirect accesses return the origin SAI of the BP, else null.
277 const ScopArrayInfo *getBasePtrOriginSAI() const { return BasePtrOriginSAI; }
279 /// The set of derived indirect SAIs for this origin SAI.
280 const SmallSetVector<ScopArrayInfo *, 2> &getDerivedSAIs() const {
281 return DerivedSAIs;
284 /// Return the number of dimensions.
285 unsigned getNumberOfDimensions() const {
286 if (Kind == MemoryKind::PHI || Kind == MemoryKind::ExitPHI ||
287 Kind == MemoryKind::Value)
288 return 0;
289 return DimensionSizes.size();
292 /// Return the size of dimension @p dim as SCEV*.
294 // Scalars do not have array dimensions and the first dimension of
295 // a (possibly multi-dimensional) array also does not carry any size
296 // information, in case the array is not newly created.
297 const SCEV *getDimensionSize(unsigned Dim) const {
298 assert(Dim < getNumberOfDimensions() && "Invalid dimension");
299 return DimensionSizes[Dim];
302 /// Return the size of dimension @p dim as isl_pw_aff.
304 // Scalars do not have array dimensions and the first dimension of
305 // a (possibly multi-dimensional) array also does not carry any size
306 // information, in case the array is not newly created.
307 __isl_give isl_pw_aff *getDimensionSizePw(unsigned Dim) const {
308 assert(Dim < getNumberOfDimensions() && "Invalid dimension");
309 return isl_pw_aff_copy(DimensionSizesPw[Dim]);
312 /// Get the canonical element type of this array.
314 /// @returns The canonical element type of this array.
315 Type *getElementType() const { return ElementType; }
317 /// Get element size in bytes.
318 int getElemSizeInBytes() const;
320 /// Get the name of this memory reference.
321 std::string getName() const;
323 /// Return the isl id for the base pointer.
324 __isl_give isl_id *getBasePtrId() const;
326 /// Return what kind of memory this represents.
327 MemoryKind getKind() const { return Kind; }
329 /// Is this array info modeling an llvm::Value?
330 bool isValueKind() const { return Kind == MemoryKind::Value; }
332 /// Is this array info modeling special PHI node memory?
334 /// During code generation of PHI nodes, there is a need for two kinds of
335 /// virtual storage. The normal one as it is used for all scalar dependences,
336 /// where the result of the PHI node is stored and later loaded from as well
337 /// as a second one where the incoming values of the PHI nodes are stored
338 /// into and reloaded when the PHI is executed. As both memories use the
339 /// original PHI node as virtual base pointer, we have this additional
340 /// attribute to distinguish the PHI node specific array modeling from the
341 /// normal scalar array modeling.
342 bool isPHIKind() const { return Kind == MemoryKind::PHI; }
344 /// Is this array info modeling an MemoryKind::ExitPHI?
345 bool isExitPHIKind() const { return Kind == MemoryKind::ExitPHI; }
347 /// Is this array info modeling an array?
348 bool isArrayKind() const { return Kind == MemoryKind::Array; }
350 /// Dump a readable representation to stderr.
351 void dump() const;
353 /// Print a readable representation to @p OS.
355 /// @param SizeAsPwAff Print the size as isl_pw_aff
356 void print(raw_ostream &OS, bool SizeAsPwAff = false) const;
358 /// Access the ScopArrayInfo associated with an access function.
359 static const ScopArrayInfo *
360 getFromAccessFunction(__isl_keep isl_pw_multi_aff *PMA);
362 /// Access the ScopArrayInfo associated with an isl Id.
363 static const ScopArrayInfo *getFromId(__isl_take isl_id *Id);
365 /// Get the space of this array access.
366 __isl_give isl_space *getSpace() const;
368 /// If the array is read only
369 bool isReadOnly();
371 /// Verify that @p Array is compatible to this ScopArrayInfo.
373 /// Two arrays are compatible if their dimensionality, the sizes of their
374 /// dimensions, and their element sizes match.
376 /// @param Array The array to compare against.
378 /// @returns True, if the arrays are compatible, False otherwise.
379 bool isCompatibleWith(const ScopArrayInfo *Array) const;
381 private:
382 void addDerivedSAI(ScopArrayInfo *DerivedSAI) {
383 DerivedSAIs.insert(DerivedSAI);
386 /// For indirect accesses this is the SAI of the BP origin.
387 const ScopArrayInfo *BasePtrOriginSAI;
389 /// For origin SAIs the set of derived indirect SAIs.
390 SmallSetVector<ScopArrayInfo *, 2> DerivedSAIs;
392 /// The base pointer.
393 AssertingVH<Value> BasePtr;
395 /// The canonical element type of this array.
397 /// The canonical element type describes the minimal accessible element in
398 /// this array. Not all elements accessed, need to be of the very same type,
399 /// but the allocation size of the type of the elements loaded/stored from/to
400 /// this array needs to be a multiple of the allocation size of the canonical
401 /// type.
402 Type *ElementType;
404 /// The isl id for the base pointer.
405 isl_id *Id;
407 /// The sizes of each dimension as SCEV*.
408 SmallVector<const SCEV *, 4> DimensionSizes;
410 /// The sizes of each dimension as isl_pw_aff.
411 SmallVector<isl_pw_aff *, 4> DimensionSizesPw;
413 /// The type of this scop array info object.
415 /// We distinguish between SCALAR, PHI and ARRAY objects.
416 MemoryKind Kind;
418 /// The data layout of the module.
419 const DataLayout &DL;
421 /// The scop this SAI object belongs to.
422 Scop &S;
425 /// Represent memory accesses in statements.
426 class MemoryAccess {
427 friend class Scop;
428 friend class ScopStmt;
430 public:
431 /// The access type of a memory access
433 /// There are three kind of access types:
435 /// * A read access
437 /// A certain set of memory locations are read and may be used for internal
438 /// calculations.
440 /// * A must-write access
442 /// A certain set of memory locations is definitely written. The old value is
443 /// replaced by a newly calculated value. The old value is not read or used at
444 /// all.
446 /// * A may-write access
448 /// A certain set of memory locations may be written. The memory location may
449 /// contain a new value if there is actually a write or the old value may
450 /// remain, if no write happens.
451 enum AccessType {
452 READ = 0x1,
453 MUST_WRITE = 0x2,
454 MAY_WRITE = 0x3,
457 /// Reduction access type
459 /// Commutative and associative binary operations suitable for reductions
460 enum ReductionType {
461 RT_NONE, ///< Indicate no reduction at all
462 RT_ADD, ///< Addition
463 RT_MUL, ///< Multiplication
464 RT_BOR, ///< Bitwise Or
465 RT_BXOR, ///< Bitwise XOr
466 RT_BAND, ///< Bitwise And
469 private:
470 MemoryAccess(const MemoryAccess &) = delete;
471 const MemoryAccess &operator=(const MemoryAccess &) = delete;
473 /// A unique identifier for this memory access.
475 /// The identifier is unique between all memory accesses belonging to the same
476 /// scop statement.
477 isl_id *Id;
479 /// What is modeled by this MemoryAccess.
480 /// @see MemoryKind
481 MemoryKind Kind;
483 /// Whether it a reading or writing access, and if writing, whether it
484 /// is conditional (MAY_WRITE).
485 enum AccessType AccType;
487 /// Reduction type for reduction like accesses, RT_NONE otherwise
489 /// An access is reduction like if it is part of a load-store chain in which
490 /// both access the same memory location (use the same LLVM-IR value
491 /// as pointer reference). Furthermore, between the load and the store there
492 /// is exactly one binary operator which is known to be associative and
493 /// commutative.
495 /// TODO:
497 /// We can later lift the constraint that the same LLVM-IR value defines the
498 /// memory location to handle scops such as the following:
500 /// for i
501 /// for j
502 /// sum[i+j] = sum[i] + 3;
504 /// Here not all iterations access the same memory location, but iterations
505 /// for which j = 0 holds do. After lifting the equality check in ScopBuilder,
506 /// subsequent transformations do not only need check if a statement is
507 /// reduction like, but they also need to verify that that the reduction
508 /// property is only exploited for statement instances that load from and
509 /// store to the same data location. Doing so at dependence analysis time
510 /// could allow us to handle the above example.
511 ReductionType RedType = RT_NONE;
513 /// Parent ScopStmt of this access.
514 ScopStmt *Statement;
516 /// The domain under which this access is not modeled precisely.
518 /// The invalid domain for an access describes all parameter combinations
519 /// under which the statement looks to be executed but is in fact not because
520 /// some assumption/restriction makes the access invalid.
521 isl_set *InvalidDomain;
523 // Properties describing the accessed array.
524 // TODO: It might be possible to move them to ScopArrayInfo.
525 // @{
527 /// The base address (e.g., A for A[i+j]).
529 /// The #BaseAddr of a memory access of kind MemoryKind::Array is the base
530 /// pointer of the memory access.
531 /// The #BaseAddr of a memory access of kind MemoryKind::PHI or
532 /// MemoryKind::ExitPHI is the PHI node itself.
533 /// The #BaseAddr of a memory access of kind MemoryKind::Value is the
534 /// instruction defining the value.
535 AssertingVH<Value> BaseAddr;
537 /// An unique name of the accessed array.
538 std::string BaseName;
540 /// Type a single array element wrt. this access.
541 Type *ElementType;
543 /// Size of each dimension of the accessed array.
544 SmallVector<const SCEV *, 4> Sizes;
545 // @}
547 // Properties describing the accessed element.
548 // @{
550 /// The access instruction of this memory access.
552 /// For memory accesses of kind MemoryKind::Array the access instruction is
553 /// the Load or Store instruction performing the access.
555 /// For memory accesses of kind MemoryKind::PHI or MemoryKind::ExitPHI the
556 /// access instruction of a load access is the PHI instruction. The access
557 /// instruction of a PHI-store is the incoming's block's terminator
558 /// instruction.
560 /// For memory accesses of kind MemoryKind::Value the access instruction of a
561 /// load access is nullptr because generally there can be multiple
562 /// instructions in the statement using the same llvm::Value. The access
563 /// instruction of a write access is the instruction that defines the
564 /// llvm::Value.
565 Instruction *AccessInstruction;
567 /// Incoming block and value of a PHINode.
568 SmallVector<std::pair<BasicBlock *, Value *>, 4> Incoming;
570 /// The value associated with this memory access.
572 /// - For array memory accesses (MemoryKind::Array) it is the loaded result
573 /// or the stored value. If the access instruction is a memory intrinsic it
574 /// the access value is also the memory intrinsic.
575 /// - For accesses of kind MemoryKind::Value it is the access instruction
576 /// itself.
577 /// - For accesses of kind MemoryKind::PHI or MemoryKind::ExitPHI it is the
578 /// PHI node itself (for both, READ and WRITE accesses).
580 AssertingVH<Value> AccessValue;
582 /// Are all the subscripts affine expression?
583 bool IsAffine;
585 /// Subscript expression for each dimension.
586 SmallVector<const SCEV *, 4> Subscripts;
588 /// Relation from statement instances to the accessed array elements.
590 /// In the common case this relation is a function that maps a set of loop
591 /// indices to the memory address from which a value is loaded/stored:
593 /// for i
594 /// for j
595 /// S: A[i + 3 j] = ...
597 /// => { S[i,j] -> A[i + 3j] }
599 /// In case the exact access function is not known, the access relation may
600 /// also be a one to all mapping { S[i,j] -> A[o] } describing that any
601 /// element accessible through A might be accessed.
603 /// In case of an access to a larger element belonging to an array that also
604 /// contains smaller elements, the access relation models the larger access
605 /// with multiple smaller accesses of the size of the minimal array element
606 /// type:
608 /// short *A;
610 /// for i
611 /// S: A[i] = *((double*)&A[4 * i]);
613 /// => { S[i] -> A[i]; S[i] -> A[o] : 4i <= o <= 4i + 3 }
614 isl_map *AccessRelation;
616 /// Updated access relation read from JSCOP file.
617 isl_map *NewAccessRelation;
619 /// Fortran arrays whose sizes are not statically known are stored in terms
620 /// of a descriptor struct. This maintains a raw pointer to the memory,
621 /// along with auxiliary fields with information such as dimensions.
622 /// We hold a reference to the descriptor corresponding to a MemoryAccess
623 /// into a Fortran array. FAD for "Fortran Array Descriptor"
624 AssertingVH<Value> FAD;
625 // @}
627 __isl_give isl_basic_map *createBasicAccessMap(ScopStmt *Statement);
629 void assumeNoOutOfBound();
631 /// Compute bounds on an over approximated access relation.
633 /// @param ElementSize The size of one element accessed.
634 void computeBoundsOnAccessRelation(unsigned ElementSize);
636 /// Get the original access function as read from IR.
637 __isl_give isl_map *getOriginalAccessRelation() const;
639 /// Return the space in which the access relation lives in.
640 __isl_give isl_space *getOriginalAccessRelationSpace() const;
642 /// Get the new access function imported or set by a pass
643 __isl_give isl_map *getNewAccessRelation() const;
645 /// Fold the memory access to consider parameteric offsets
647 /// To recover memory accesses with array size parameters in the subscript
648 /// expression we post-process the delinearization results.
650 /// We would normally recover from an access A[exp0(i) * N + exp1(i)] into an
651 /// array A[][N] the 2D access A[exp0(i)][exp1(i)]. However, another valid
652 /// delinearization is A[exp0(i) - 1][exp1(i) + N] which - depending on the
653 /// range of exp1(i) - may be preferrable. Specifically, for cases where we
654 /// know exp1(i) is negative, we want to choose the latter expression.
656 /// As we commonly do not have any information about the range of exp1(i),
657 /// we do not choose one of the two options, but instead create a piecewise
658 /// access function that adds the (-1, N) offsets as soon as exp1(i) becomes
659 /// negative. For a 2D array such an access function is created by applying
660 /// the piecewise map:
662 /// [i,j] -> [i, j] : j >= 0
663 /// [i,j] -> [i-1, j+N] : j < 0
665 /// We can generalize this mapping to arbitrary dimensions by applying this
666 /// piecewise mapping pairwise from the rightmost to the leftmost access
667 /// dimension. It would also be possible to cover a wider range by introducing
668 /// more cases and adding multiple of Ns to these cases. However, this has
669 /// not yet been necessary.
670 /// The introduction of different cases necessarily complicates the memory
671 /// access function, but cases that can be statically proven to not happen
672 /// will be eliminated later on.
673 void foldAccessRelation();
675 /// Create the access relation for the underlying memory intrinsic.
676 void buildMemIntrinsicAccessRelation();
678 /// Assemble the access relation from all available information.
680 /// In particular, used the information passes in the constructor and the
681 /// parent ScopStmt set by setStatment().
683 /// @param SAI Info object for the accessed array.
684 void buildAccessRelation(const ScopArrayInfo *SAI);
686 /// Carry index overflows of dimensions with constant size to the next higher
687 /// dimension.
689 /// For dimensions that have constant size, modulo the index by the size and
690 /// add up the carry (floored division) to the next higher dimension. This is
691 /// how overflow is defined in row-major order.
692 /// It happens e.g. when ScalarEvolution computes the offset to the base
693 /// pointer and would algebraically sum up all lower dimensions' indices of
694 /// constant size.
696 /// Example:
697 /// float (*A)[4];
698 /// A[1][6] -> A[2][2]
699 void wrapConstantDimensions();
701 public:
702 /// Create a new MemoryAccess.
704 /// @param Stmt The parent statement.
705 /// @param AccessInst The instruction doing the access.
706 /// @param BaseAddr The accessed array's address.
707 /// @param ElemType The type of the accessed array elements.
708 /// @param AccType Whether read or write access.
709 /// @param IsAffine Whether the subscripts are affine expressions.
710 /// @param Kind The kind of memory accessed.
711 /// @param Subscripts Subscipt expressions
712 /// @param Sizes Dimension lengths of the accessed array.
713 MemoryAccess(ScopStmt *Stmt, Instruction *AccessInst, AccessType AccType,
714 Value *BaseAddress, Type *ElemType, bool Affine,
715 ArrayRef<const SCEV *> Subscripts, ArrayRef<const SCEV *> Sizes,
716 Value *AccessValue, MemoryKind Kind);
718 /// Create a new MemoryAccess that corresponds to @p AccRel.
720 /// Along with @p Stmt and @p AccType it uses information about dimension
721 /// lengths of the accessed array, the type of the accessed array elements,
722 /// the name of the accessed array that is derived from the object accessible
723 /// via @p AccRel.
725 /// @param Stmt The parent statement.
726 /// @param AccType Whether read or write access.
727 /// @param AccRel The access relation that describes the memory access.
728 MemoryAccess(ScopStmt *Stmt, AccessType AccType, __isl_take isl_map *AccRel);
730 ~MemoryAccess();
732 /// Add a new incoming block/value pairs for this PHI/ExitPHI access.
734 /// @param IncomingBlock The PHI's incoming block.
735 /// @param IncomingValue The value when reacing the PHI from the @p
736 /// IncomingBlock.
737 void addIncoming(BasicBlock *IncomingBlock, Value *IncomingValue) {
738 assert(!isRead());
739 assert(isAnyPHIKind());
740 Incoming.emplace_back(std::make_pair(IncomingBlock, IncomingValue));
743 /// Return the list of possible PHI/ExitPHI values.
745 /// After code generation moves some PHIs around during region simplification,
746 /// we cannot reliably locate the original PHI node and its incoming values
747 /// anymore. For this reason we remember these explicitly for all PHI-kind
748 /// accesses.
749 ArrayRef<std::pair<BasicBlock *, Value *>> getIncoming() const {
750 assert(isAnyPHIKind());
751 return Incoming;
754 /// Get the type of a memory access.
755 enum AccessType getType() { return AccType; }
757 /// Is this a reduction like access?
758 bool isReductionLike() const { return RedType != RT_NONE; }
760 /// Is this a read memory access?
761 bool isRead() const { return AccType == MemoryAccess::READ; }
763 /// Is this a must-write memory access?
764 bool isMustWrite() const { return AccType == MemoryAccess::MUST_WRITE; }
766 /// Is this a may-write memory access?
767 bool isMayWrite() const { return AccType == MemoryAccess::MAY_WRITE; }
769 /// Is this a write memory access?
770 bool isWrite() const { return isMustWrite() || isMayWrite(); }
772 /// Is this a memory intrinsic access (memcpy, memset, memmove)?
773 bool isMemoryIntrinsic() const {
774 return isa<MemIntrinsic>(getAccessInstruction());
777 /// Check if a new access relation was imported or set by a pass.
778 bool hasNewAccessRelation() const { return NewAccessRelation; }
780 /// Return the newest access relation of this access.
782 /// There are two possibilities:
783 /// 1) The original access relation read from the LLVM-IR.
784 /// 2) A new access relation imported from a json file or set by another
785 /// pass (e.g., for privatization).
787 /// As 2) is by construction "newer" than 1) we return the new access
788 /// relation if present.
790 __isl_give isl_map *getLatestAccessRelation() const {
791 return hasNewAccessRelation() ? getNewAccessRelation()
792 : getOriginalAccessRelation();
795 /// Old name of getLatestAccessRelation().
796 __isl_give isl_map *getAccessRelation() const {
797 return getLatestAccessRelation();
800 /// Get an isl map describing the memory address accessed.
802 /// In most cases the memory address accessed is well described by the access
803 /// relation obtained with getAccessRelation. However, in case of arrays
804 /// accessed with types of different size the access relation maps one access
805 /// to multiple smaller address locations. This method returns an isl map that
806 /// relates each dynamic statement instance to the unique memory location
807 /// that is loaded from / stored to.
809 /// For an access relation { S[i] -> A[o] : 4i <= o <= 4i + 3 } this method
810 /// will return the address function { S[i] -> A[4i] }.
812 /// @returns The address function for this memory access.
813 __isl_give isl_map *getAddressFunction() const;
815 /// Return the access relation after the schedule was applied.
816 __isl_give isl_pw_multi_aff *
817 applyScheduleToAccessRelation(__isl_take isl_union_map *Schedule) const;
819 /// Get an isl string representing the access function read from IR.
820 std::string getOriginalAccessRelationStr() const;
822 /// Get an isl string representing a new access function, if available.
823 std::string getNewAccessRelationStr() const;
825 /// Get the original base address of this access (e.g. A for A[i+j]) when
826 /// detected.
828 /// This adress may differ from the base address referenced by the Original
829 /// ScopArrayInfo to which this array belongs, as this memory access may
830 /// have been unified to a ScopArray which has a different but identically
831 /// valued base pointer in case invariant load hoisting is enabled.
832 Value *getOriginalBaseAddr() const { return BaseAddr; }
834 /// Get the detection-time base array isl_id for this access.
835 __isl_give isl_id *getOriginalArrayId() const;
837 /// Get the base array isl_id for this access, modifiable through
838 /// setNewAccessRelation().
839 __isl_give isl_id *getLatestArrayId() const;
841 /// Old name of getOriginalArrayId().
842 __isl_give isl_id *getArrayId() const { return getOriginalArrayId(); }
844 /// Get the detection-time ScopArrayInfo object for the base address.
845 const ScopArrayInfo *getOriginalScopArrayInfo() const;
847 /// Get the ScopArrayInfo object for the base address, or the one set
848 /// by setNewAccessRelation().
849 const ScopArrayInfo *getLatestScopArrayInfo() const;
851 /// Legacy name of getOriginalScopArrayInfo().
852 const ScopArrayInfo *getScopArrayInfo() const {
853 return getOriginalScopArrayInfo();
856 /// Return a string representation of the access's reduction type.
857 const std::string getReductionOperatorStr() const;
859 /// Return a string representation of the reduction type @p RT.
860 static const std::string getReductionOperatorStr(ReductionType RT);
862 const std::string &getBaseName() const { return BaseName; }
864 /// Return the element type of the accessed array wrt. this access.
865 Type *getElementType() const { return ElementType; }
867 /// Return the access value of this memory access.
868 Value *getAccessValue() const { return AccessValue; }
870 /// Return the access instruction of this memory access.
871 Instruction *getAccessInstruction() const { return AccessInstruction; }
873 /// Return the number of access function subscript.
874 unsigned getNumSubscripts() const { return Subscripts.size(); }
876 /// Return the access function subscript in the dimension @p Dim.
877 const SCEV *getSubscript(unsigned Dim) const { return Subscripts[Dim]; }
879 /// Compute the isl representation for the SCEV @p E wrt. this access.
881 /// Note that this function will also adjust the invalid context accordingly.
882 __isl_give isl_pw_aff *getPwAff(const SCEV *E);
884 /// Get the invalid domain for this access.
885 __isl_give isl_set *getInvalidDomain() const {
886 return isl_set_copy(InvalidDomain);
889 /// Get the invalid context for this access.
890 __isl_give isl_set *getInvalidContext() const {
891 return isl_set_params(getInvalidDomain());
894 /// Get the stride of this memory access in the specified Schedule. Schedule
895 /// is a map from the statement to a schedule where the innermost dimension is
896 /// the dimension of the innermost loop containing the statement.
897 __isl_give isl_set *getStride(__isl_take const isl_map *Schedule) const;
899 /// Is the stride of the access equal to a certain width? Schedule is a map
900 /// from the statement to a schedule where the innermost dimension is the
901 /// dimension of the innermost loop containing the statement.
902 bool isStrideX(__isl_take const isl_map *Schedule, int StrideWidth) const;
904 /// Is consecutive memory accessed for a given statement instance set?
905 /// Schedule is a map from the statement to a schedule where the innermost
906 /// dimension is the dimension of the innermost loop containing the
907 /// statement.
908 bool isStrideOne(__isl_take const isl_map *Schedule) const;
910 /// Is always the same memory accessed for a given statement instance set?
911 /// Schedule is a map from the statement to a schedule where the innermost
912 /// dimension is the dimension of the innermost loop containing the
913 /// statement.
914 bool isStrideZero(__isl_take const isl_map *Schedule) const;
916 /// Return the kind when this access was first detected.
917 MemoryKind getOriginalKind() const {
918 assert(!getOriginalScopArrayInfo() /* not yet initialized */ ||
919 getOriginalScopArrayInfo()->getKind() == Kind);
920 return Kind;
923 /// Return the kind considering a potential setNewAccessRelation.
924 MemoryKind getLatestKind() const {
925 return getLatestScopArrayInfo()->getKind();
928 /// Whether this is an access of an explicit load or store in the IR.
929 bool isOriginalArrayKind() const {
930 return getOriginalKind() == MemoryKind::Array;
933 /// Whether storage memory is either an custom .s2a/.phiops alloca
934 /// (false) or an existing pointer into an array (true).
935 bool isLatestArrayKind() const {
936 return getLatestKind() == MemoryKind::Array;
939 /// Old name of isOriginalArrayKind.
940 bool isArrayKind() const { return isOriginalArrayKind(); }
942 /// Whether this access is an array to a scalar memory object, without
943 /// considering changes by setNewAccessRelation.
945 /// Scalar accesses are accesses to MemoryKind::Value, MemoryKind::PHI or
946 /// MemoryKind::ExitPHI.
947 bool isOriginalScalarKind() const {
948 return getOriginalKind() != MemoryKind::Array;
951 /// Whether this access is an array to a scalar memory object, also
952 /// considering changes by setNewAccessRelation.
953 bool isLatestScalarKind() const {
954 return getLatestKind() != MemoryKind::Array;
957 /// Old name of isOriginalScalarKind.
958 bool isScalarKind() const { return isOriginalScalarKind(); }
960 /// Was this MemoryAccess detected as a scalar dependences?
961 bool isOriginalValueKind() const {
962 return getOriginalKind() == MemoryKind::Value;
965 /// Is this MemoryAccess currently modeling scalar dependences?
966 bool isLatestValueKind() const {
967 return getLatestKind() == MemoryKind::Value;
970 /// Old name of isOriginalValueKind().
971 bool isValueKind() const { return isOriginalValueKind(); }
973 /// Was this MemoryAccess detected as a special PHI node access?
974 bool isOriginalPHIKind() const {
975 return getOriginalKind() == MemoryKind::PHI;
978 /// Is this MemoryAccess modeling special PHI node accesses, also
979 /// considering a potential change by setNewAccessRelation?
980 bool isLatestPHIKind() const { return getLatestKind() == MemoryKind::PHI; }
982 /// Old name of isOriginalPHIKind.
983 bool isPHIKind() const { return isOriginalPHIKind(); }
985 /// Was this MemoryAccess detected as the accesses of a PHI node in the
986 /// SCoP's exit block?
987 bool isOriginalExitPHIKind() const {
988 return getOriginalKind() == MemoryKind::ExitPHI;
991 /// Is this MemoryAccess modeling the accesses of a PHI node in the
992 /// SCoP's exit block? Can be changed to an array access using
993 /// setNewAccessRelation().
994 bool isLatestExitPHIKind() const {
995 return getLatestKind() == MemoryKind::ExitPHI;
998 /// Old name of isOriginalExitPHIKind().
999 bool isExitPHIKind() const { return isOriginalExitPHIKind(); }
1001 /// Was this access detected as one of the two PHI types?
1002 bool isOriginalAnyPHIKind() const {
1003 return isOriginalPHIKind() || isOriginalExitPHIKind();
1006 /// Does this access orginate from one of the two PHI types? Can be
1007 /// changed to an array access using setNewAccessRelation().
1008 bool isLatestAnyPHIKind() const {
1009 return isLatestPHIKind() || isLatestExitPHIKind();
1012 /// Old name of isOriginalAnyPHIKind().
1013 bool isAnyPHIKind() const { return isOriginalAnyPHIKind(); }
1015 /// Get the statement that contains this memory access.
1016 ScopStmt *getStatement() const { return Statement; }
1018 /// Get the reduction type of this access
1019 ReductionType getReductionType() const { return RedType; }
1021 /// Set the array descriptor corresponding to the Array on which the
1022 /// memory access is performed.
1023 void setFortranArrayDescriptor(Value *FAD);
1025 /// Update the original access relation.
1027 /// We need to update the original access relation during scop construction,
1028 /// when unifying the memory accesses that access the same scop array info
1029 /// object. After the scop has been constructed, the original access relation
1030 /// should not be changed any more. Instead setNewAccessRelation should
1031 /// be called.
1032 void setAccessRelation(__isl_take isl_map *AccessRelation);
1034 /// Set the updated access relation read from JSCOP file.
1035 void setNewAccessRelation(__isl_take isl_map *NewAccessRelation);
1037 /// Mark this a reduction like access
1038 void markAsReductionLike(ReductionType RT) { RedType = RT; }
1040 /// Align the parameters in the access relation to the scop context
1041 void realignParams();
1043 /// Update the dimensionality of the memory access.
1045 /// During scop construction some memory accesses may not be constructed with
1046 /// their full dimensionality, but outer dimensions may have been omitted if
1047 /// they took the value 'zero'. By updating the dimensionality of the
1048 /// statement we add additional zero-valued dimensions to match the
1049 /// dimensionality of the ScopArrayInfo object that belongs to this memory
1050 /// access.
1051 void updateDimensionality();
1053 /// Get identifier for the memory access.
1055 /// This identifier is unique for all accesses that belong to the same scop
1056 /// statement.
1057 __isl_give isl_id *getId() const;
1059 /// Print the MemoryAccess.
1061 /// @param OS The output stream the MemoryAccess is printed to.
1062 void print(raw_ostream &OS) const;
1064 /// Print the MemoryAccess to stderr.
1065 void dump() const;
1067 /// Is the memory access affine?
1068 bool isAffine() const { return IsAffine; }
1071 llvm::raw_ostream &operator<<(llvm::raw_ostream &OS,
1072 MemoryAccess::ReductionType RT);
1074 /// Ordered list type to hold accesses.
1075 using MemoryAccessList = std::forward_list<MemoryAccess *>;
1077 /// Helper structure for invariant memory accesses.
1078 struct InvariantAccess {
1079 /// The memory access that is (partially) invariant.
1080 MemoryAccess *MA;
1082 /// The context under which the access is not invariant.
1083 isl_set *NonHoistableCtx;
1086 /// Ordered container type to hold invariant accesses.
1087 using InvariantAccessesTy = SmallVector<InvariantAccess, 8>;
1089 /// Type for equivalent invariant accesses and their domain context.
1090 struct InvariantEquivClassTy {
1092 /// The pointer that identifies this equivalence class
1093 const SCEV *IdentifyingPointer;
1095 /// Memory accesses now treated invariant
1097 /// These memory accesses access the pointer location that identifies
1098 /// this equivalence class. They are treated as invariant and hoisted during
1099 /// code generation.
1100 MemoryAccessList InvariantAccesses;
1102 /// The execution context under which the memory location is accessed
1104 /// It is the union of the execution domains of the memory accesses in the
1105 /// InvariantAccesses list.
1106 isl_set *ExecutionContext;
1108 /// The type of the invariant access
1110 /// It is used to differentiate between differently typed invariant loads from
1111 /// the same location.
1112 Type *AccessType;
1115 /// Type for invariant accesses equivalence classes.
1116 using InvariantEquivClassesTy = SmallVector<InvariantEquivClassTy, 8>;
1118 /// Statement of the Scop
1120 /// A Scop statement represents an instruction in the Scop.
1122 /// It is further described by its iteration domain, its schedule and its data
1123 /// accesses.
1124 /// At the moment every statement represents a single basic block of LLVM-IR.
1125 class ScopStmt {
1126 public:
1127 ScopStmt(const ScopStmt &) = delete;
1128 const ScopStmt &operator=(const ScopStmt &) = delete;
1130 /// Create the ScopStmt from a BasicBlock.
1131 ScopStmt(Scop &parent, BasicBlock &bb, Loop *SurroundingLoop);
1133 /// Create an overapproximating ScopStmt for the region @p R.
1134 ScopStmt(Scop &parent, Region &R, Loop *SurroundingLoop);
1136 /// Create a copy statement.
1138 /// @param Stmt The parent statement.
1139 /// @param SourceRel The source location.
1140 /// @param TargetRel The target location.
1141 /// @param Domain The original domain under which copy statement whould
1142 /// be executed.
1143 ScopStmt(Scop &parent, __isl_take isl_map *SourceRel,
1144 __isl_take isl_map *TargetRel, __isl_take isl_set *Domain);
1146 /// Initialize members after all MemoryAccesses have been added.
1147 void init(LoopInfo &LI);
1149 private:
1150 /// Polyhedral description
1151 //@{
1153 /// The Scop containing this ScopStmt
1154 Scop &Parent;
1156 /// The domain under which this statement is not modeled precisely.
1158 /// The invalid domain for a statement describes all parameter combinations
1159 /// under which the statement looks to be executed but is in fact not because
1160 /// some assumption/restriction makes the statement/scop invalid.
1161 isl_set *InvalidDomain;
1163 /// The iteration domain describes the set of iterations for which this
1164 /// statement is executed.
1166 /// Example:
1167 /// for (i = 0; i < 100 + b; ++i)
1168 /// for (j = 0; j < i; ++j)
1169 /// S(i,j);
1171 /// 'S' is executed for different values of i and j. A vector of all
1172 /// induction variables around S (i, j) is called iteration vector.
1173 /// The domain describes the set of possible iteration vectors.
1175 /// In this case it is:
1177 /// Domain: 0 <= i <= 100 + b
1178 /// 0 <= j <= i
1180 /// A pair of statement and iteration vector (S, (5,3)) is called statement
1181 /// instance.
1182 isl_set *Domain;
1184 /// The memory accesses of this statement.
1186 /// The only side effects of a statement are its memory accesses.
1187 typedef SmallVector<MemoryAccess *, 8> MemoryAccessVec;
1188 MemoryAccessVec MemAccs;
1190 /// Mapping from instructions to (scalar) memory accesses.
1191 DenseMap<const Instruction *, MemoryAccessList> InstructionToAccess;
1193 /// The set of values defined elsewhere required in this ScopStmt and
1194 /// their MemoryKind::Value READ MemoryAccesses.
1195 DenseMap<Value *, MemoryAccess *> ValueReads;
1197 /// The set of values defined in this ScopStmt that are required
1198 /// elsewhere, mapped to their MemoryKind::Value WRITE MemoryAccesses.
1199 DenseMap<Instruction *, MemoryAccess *> ValueWrites;
1201 /// Map from PHI nodes to its incoming value when coming from this
1202 /// statement.
1204 /// Non-affine subregions can have multiple exiting blocks that are incoming
1205 /// blocks of the PHI nodes. This map ensures that there is only one write
1206 /// operation for the complete subregion. A PHI selecting the relevant value
1207 /// will be inserted.
1208 DenseMap<PHINode *, MemoryAccess *> PHIWrites;
1210 //@}
1212 /// A SCoP statement represents either a basic block (affine/precise case) or
1213 /// a whole region (non-affine case).
1215 /// Only one of the following two members will therefore be set and indicate
1216 /// which kind of statement this is.
1218 ///{
1220 /// The BasicBlock represented by this statement (in the affine case).
1221 BasicBlock *BB;
1223 /// The region represented by this statement (in the non-affine case).
1224 Region *R;
1226 ///}
1228 /// The isl AST build for the new generated AST.
1229 isl_ast_build *Build;
1231 SmallVector<Loop *, 4> NestLoops;
1233 std::string BaseName;
1235 /// The closest loop that contains this statement.
1236 Loop *SurroundingLoop;
1238 /// Build the statement.
1239 //@{
1240 void buildDomain();
1242 /// Fill NestLoops with loops surrounding this statement.
1243 void collectSurroundingLoops();
1245 /// Build the access relation of all memory accesses.
1246 void buildAccessRelations();
1248 /// Detect and mark reductions in the ScopStmt
1249 void checkForReductions();
1251 /// Collect loads which might form a reduction chain with @p StoreMA
1252 void
1253 collectCandiateReductionLoads(MemoryAccess *StoreMA,
1254 llvm::SmallVectorImpl<MemoryAccess *> &Loads);
1255 //@}
1257 /// Remove @p MA from dictionaries pointing to them.
1258 void removeAccessData(MemoryAccess *MA);
1260 public:
1261 ~ScopStmt();
1263 /// Get an isl_ctx pointer.
1264 isl_ctx *getIslCtx() const;
1266 /// Get the iteration domain of this ScopStmt.
1268 /// @return The iteration domain of this ScopStmt.
1269 __isl_give isl_set *getDomain() const;
1271 /// Get the space of the iteration domain
1273 /// @return The space of the iteration domain
1274 __isl_give isl_space *getDomainSpace() const;
1276 /// Get the id of the iteration domain space
1278 /// @return The id of the iteration domain space
1279 __isl_give isl_id *getDomainId() const;
1281 /// Get an isl string representing this domain.
1282 std::string getDomainStr() const;
1284 /// Get the schedule function of this ScopStmt.
1286 /// @return The schedule function of this ScopStmt, if it does not contain
1287 /// extension nodes, and nullptr, otherwise.
1288 __isl_give isl_map *getSchedule() const;
1290 /// Get an isl string representing this schedule.
1292 /// @return An isl string representing this schedule, if it does not contain
1293 /// extension nodes, and an empty string, otherwise.
1294 std::string getScheduleStr() const;
1296 /// Get the invalid domain for this statement.
1297 __isl_give isl_set *getInvalidDomain() const {
1298 return isl_set_copy(InvalidDomain);
1301 /// Get the invalid context for this statement.
1302 __isl_give isl_set *getInvalidContext() const {
1303 return isl_set_params(getInvalidDomain());
1306 /// Set the invalid context for this statement to @p ID.
1307 void setInvalidDomain(__isl_take isl_set *ID);
1309 /// Get the BasicBlock represented by this ScopStmt (if any).
1311 /// @return The BasicBlock represented by this ScopStmt, or null if the
1312 /// statement represents a region.
1313 BasicBlock *getBasicBlock() const { return BB; }
1315 /// Return true if this statement represents a single basic block.
1316 bool isBlockStmt() const { return BB != nullptr; }
1318 /// Return true if this is a copy statement.
1319 bool isCopyStmt() const { return BB == nullptr && R == nullptr; }
1321 /// Get the region represented by this ScopStmt (if any).
1323 /// @return The region represented by this ScopStmt, or null if the statement
1324 /// represents a basic block.
1325 Region *getRegion() const { return R; }
1327 /// Return true if this statement represents a whole region.
1328 bool isRegionStmt() const { return R != nullptr; }
1330 /// Return a BasicBlock from this statement.
1332 /// For block statements, it returns the BasicBlock itself. For subregion
1333 /// statements, return its entry block.
1334 BasicBlock *getEntryBlock() const;
1336 /// Return whether @p L is boxed within this statement.
1337 bool contains(const Loop *L) const {
1338 // Block statements never contain loops.
1339 if (isBlockStmt())
1340 return false;
1342 return getRegion()->contains(L);
1345 /// Return whether this statement contains @p BB.
1346 bool contains(BasicBlock *BB) const {
1347 if (isCopyStmt())
1348 return false;
1349 if (isBlockStmt())
1350 return BB == getBasicBlock();
1351 return getRegion()->contains(BB);
1354 /// Return the closest innermost loop that contains this statement, but is not
1355 /// contained in it.
1357 /// For block statement, this is just the loop that contains the block. Region
1358 /// statements can contain boxed loops, so getting the loop of one of the
1359 /// region's BBs might return such an inner loop. For instance, the region's
1360 /// entry could be a header of a loop, but the region might extend to BBs
1361 /// after the loop exit. Similarly, the region might only contain parts of the
1362 /// loop body and still include the loop header.
1364 /// Most of the time the surrounding loop is the top element of #NestLoops,
1365 /// except when it is empty. In that case it return the loop that the whole
1366 /// SCoP is contained in. That can be nullptr if there is no such loop.
1367 Loop *getSurroundingLoop() const {
1368 assert(!isCopyStmt() &&
1369 "No surrounding loop for artificially created statements");
1370 return SurroundingLoop;
1373 /// Return true if this statement does not contain any accesses.
1374 bool isEmpty() const { return MemAccs.empty(); }
1376 /// Return the only array access for @p Inst, if existing.
1378 /// @param Inst The instruction for which to look up the access.
1379 /// @returns The unique array memory access related to Inst or nullptr if
1380 /// no array access exists
1381 MemoryAccess *getArrayAccessOrNULLFor(const Instruction *Inst) const {
1382 auto It = InstructionToAccess.find(Inst);
1383 if (It == InstructionToAccess.end())
1384 return nullptr;
1386 MemoryAccess *ArrayAccess = nullptr;
1388 for (auto Access : It->getSecond()) {
1389 if (!Access->isArrayKind())
1390 continue;
1392 assert(!ArrayAccess && "More then one array access for instruction");
1394 ArrayAccess = Access;
1397 return ArrayAccess;
1400 /// Return the only array access for @p Inst.
1402 /// @param Inst The instruction for which to look up the access.
1403 /// @returns The unique array memory access related to Inst.
1404 MemoryAccess &getArrayAccessFor(const Instruction *Inst) const {
1405 MemoryAccess *ArrayAccess = getArrayAccessOrNULLFor(Inst);
1407 assert(ArrayAccess && "No array access found for instruction!");
1408 return *ArrayAccess;
1411 /// Return the MemoryAccess that writes the value of an instruction
1412 /// defined in this statement, or nullptr if not existing, respectively
1413 /// not yet added.
1414 MemoryAccess *lookupValueWriteOf(Instruction *Inst) const {
1415 assert((isRegionStmt() && R->contains(Inst)) ||
1416 (!isRegionStmt() && Inst->getParent() == BB));
1417 return ValueWrites.lookup(Inst);
1420 /// Return the MemoryAccess that reloads a value, or nullptr if not
1421 /// existing, respectively not yet added.
1422 MemoryAccess *lookupValueReadOf(Value *Inst) const {
1423 return ValueReads.lookup(Inst);
1426 /// Return the MemoryAccess that loads a PHINode value, or nullptr if not
1427 /// existing, respectively not yet added.
1428 MemoryAccess *lookupPHIReadOf(PHINode *PHI) const;
1430 /// Return the PHI write MemoryAccess for the incoming values from any
1431 /// basic block in this ScopStmt, or nullptr if not existing,
1432 /// respectively not yet added.
1433 MemoryAccess *lookupPHIWriteOf(PHINode *PHI) const {
1434 assert(isBlockStmt() || R->getExit() == PHI->getParent());
1435 return PHIWrites.lookup(PHI);
1438 /// Return the input access of the value, or null if no such MemoryAccess
1439 /// exists.
1441 /// The input access is the MemoryAccess that makes an inter-statement value
1442 /// available in this statement by reading it at the start of this statement.
1443 /// This can be a MemoryKind::Value if defined in another statement or a
1444 /// MemoryKind::PHI if the value is a PHINode in this statement.
1445 MemoryAccess *lookupInputAccessOf(Value *Val) const {
1446 if (isa<PHINode>(Val))
1447 if (auto InputMA = lookupPHIReadOf(cast<PHINode>(Val))) {
1448 assert(!lookupValueReadOf(Val) && "input accesses must be unique; a "
1449 "statement cannot read a .s2a and "
1450 ".phiops simultaneously");
1451 return InputMA;
1454 if (auto *InputMA = lookupValueReadOf(Val))
1455 return InputMA;
1457 return nullptr;
1460 /// Add @p Access to this statement's list of accesses.
1461 void addAccess(MemoryAccess *Access);
1463 /// Remove a MemoryAccess from this statement.
1465 /// Note that scalar accesses that are caused by MA will
1466 /// be eliminated too.
1467 void removeMemoryAccess(MemoryAccess *MA);
1469 /// Remove @p MA from this statement.
1471 /// In contrast to removeMemoryAccess(), no other access will be eliminated.
1472 void removeSingleMemoryAccess(MemoryAccess *MA);
1474 typedef MemoryAccessVec::iterator iterator;
1475 typedef MemoryAccessVec::const_iterator const_iterator;
1477 iterator begin() { return MemAccs.begin(); }
1478 iterator end() { return MemAccs.end(); }
1479 const_iterator begin() const { return MemAccs.begin(); }
1480 const_iterator end() const { return MemAccs.end(); }
1481 size_t size() const { return MemAccs.size(); }
1483 unsigned getNumIterators() const;
1485 Scop *getParent() { return &Parent; }
1486 const Scop *getParent() const { return &Parent; }
1488 const char *getBaseName() const;
1490 /// Set the isl AST build.
1491 void setAstBuild(__isl_keep isl_ast_build *B) { Build = B; }
1493 /// Get the isl AST build.
1494 __isl_keep isl_ast_build *getAstBuild() const { return Build; }
1496 /// Restrict the domain of the statement.
1498 /// @param NewDomain The new statement domain.
1499 void restrictDomain(__isl_take isl_set *NewDomain);
1501 /// Compute the isl representation for the SCEV @p E in this stmt.
1503 /// @param E The SCEV that should be translated.
1504 /// @param NonNegative Flag to indicate the @p E has to be non-negative.
1506 /// Note that this function will also adjust the invalid context accordingly.
1507 __isl_give isl_pw_aff *getPwAff(const SCEV *E, bool NonNegative = false);
1509 /// Get the loop for a dimension.
1511 /// @param Dimension The dimension of the induction variable
1512 /// @return The loop at a certain dimension.
1513 Loop *getLoopForDimension(unsigned Dimension) const;
1515 /// Align the parameters in the statement to the scop context
1516 void realignParams();
1518 /// Print the ScopStmt.
1520 /// @param OS The output stream the ScopStmt is printed to.
1521 void print(raw_ostream &OS) const;
1523 /// Print the ScopStmt to stderr.
1524 void dump() const;
1527 /// Print ScopStmt S to raw_ostream O.
1528 static inline raw_ostream &operator<<(raw_ostream &O, const ScopStmt &S) {
1529 S.print(O);
1530 return O;
1533 /// Static Control Part
1535 /// A Scop is the polyhedral representation of a control flow region detected
1536 /// by the Scop detection. It is generated by translating the LLVM-IR and
1537 /// abstracting its effects.
1539 /// A Scop consists of a set of:
1541 /// * A set of statements executed in the Scop.
1543 /// * A set of global parameters
1544 /// Those parameters are scalar integer values, which are constant during
1545 /// execution.
1547 /// * A context
1548 /// This context contains information about the values the parameters
1549 /// can take and relations between different parameters.
1550 class Scop {
1551 public:
1552 /// Type to represent a pair of minimal/maximal access to an array.
1553 using MinMaxAccessTy = std::pair<isl_pw_multi_aff *, isl_pw_multi_aff *>;
1555 /// Vector of minimal/maximal accesses to different arrays.
1556 using MinMaxVectorTy = SmallVector<MinMaxAccessTy, 4>;
1558 /// Pair of minimal/maximal access vectors representing
1559 /// read write and read only accesses
1560 using MinMaxVectorPairTy = std::pair<MinMaxVectorTy, MinMaxVectorTy>;
1562 /// Vector of pair of minimal/maximal access vectors representing
1563 /// non read only and read only accesses for each alias group.
1564 using MinMaxVectorPairVectorTy = SmallVector<MinMaxVectorPairTy, 4>;
1566 private:
1567 Scop(const Scop &) = delete;
1568 const Scop &operator=(const Scop &) = delete;
1570 ScalarEvolution *SE;
1572 /// The underlying Region.
1573 Region &R;
1575 // Access functions of the SCoP.
1577 // This owns all the MemoryAccess objects of the Scop created in this pass.
1578 AccFuncVector AccessFunctions;
1580 /// Flag to indicate that the scheduler actually optimized the SCoP.
1581 bool IsOptimized;
1583 /// True if the underlying region has a single exiting block.
1584 bool HasSingleExitEdge;
1586 /// Flag to remember if the SCoP contained an error block or not.
1587 bool HasErrorBlock;
1589 /// Max loop depth.
1590 unsigned MaxLoopDepth;
1592 /// Number of copy statements.
1593 unsigned CopyStmtsNum;
1595 typedef std::list<ScopStmt> StmtSet;
1596 /// The statements in this Scop.
1597 StmtSet Stmts;
1599 /// Parameters of this Scop
1600 ParameterSetTy Parameters;
1602 /// Mapping from parameters to their ids.
1603 DenseMap<const SCEV *, isl_id *> ParameterIds;
1605 /// The context of the SCoP created during SCoP detection.
1606 ScopDetection::DetectionContext &DC;
1608 /// Isl context.
1610 /// We need a shared_ptr with reference counter to delete the context when all
1611 /// isl objects are deleted. We will distribute the shared_ptr to all objects
1612 /// that use the context to create isl objects, and increase the reference
1613 /// counter. By doing this, we guarantee that the context is deleted when we
1614 /// delete the last object that creates isl objects with the context.
1615 std::shared_ptr<isl_ctx> IslCtx;
1617 /// A map from basic blocks to SCoP statements.
1618 DenseMap<BasicBlock *, ScopStmt *> StmtMap;
1620 /// A map from basic blocks to their domains.
1621 DenseMap<BasicBlock *, isl_set *> DomainMap;
1623 /// Constraints on parameters.
1624 isl_set *Context;
1626 /// The affinator used to translate SCEVs to isl expressions.
1627 SCEVAffinator Affinator;
1629 typedef std::map<std::pair<AssertingVH<const Value>, MemoryKind>,
1630 std::unique_ptr<ScopArrayInfo>>
1631 ArrayInfoMapTy;
1633 typedef StringMap<std::unique_ptr<ScopArrayInfo>> ArrayNameMapTy;
1635 typedef SetVector<ScopArrayInfo *> ArrayInfoSetTy;
1637 /// A map to remember ScopArrayInfo objects for all base pointers.
1639 /// As PHI nodes may have two array info objects associated, we add a flag
1640 /// that distinguishes between the PHI node specific ArrayInfo object
1641 /// and the normal one.
1642 ArrayInfoMapTy ScopArrayInfoMap;
1644 /// A map to remember ScopArrayInfo objects for all names of memory
1645 /// references.
1646 ArrayNameMapTy ScopArrayNameMap;
1648 /// A set to remember ScopArrayInfo objects.
1649 /// @see Scop::ScopArrayInfoMap
1650 ArrayInfoSetTy ScopArrayInfoSet;
1652 /// The assumptions under which this scop was built.
1654 /// When constructing a scop sometimes the exact representation of a statement
1655 /// or condition would be very complex, but there is a common case which is a
1656 /// lot simpler, but which is only valid under certain assumptions. The
1657 /// assumed context records the assumptions taken during the construction of
1658 /// this scop and that need to be code generated as a run-time test.
1659 isl_set *AssumedContext;
1661 /// The restrictions under which this SCoP was built.
1663 /// The invalid context is similar to the assumed context as it contains
1664 /// constraints over the parameters. However, while we need the constraints
1665 /// in the assumed context to be "true" the constraints in the invalid context
1666 /// need to be "false". Otherwise they behave the same.
1667 isl_set *InvalidContext;
1669 /// Helper struct to remember assumptions.
1670 struct Assumption {
1672 /// The kind of the assumption (e.g., WRAPPING).
1673 AssumptionKind Kind;
1675 /// Flag to distinguish assumptions and restrictions.
1676 AssumptionSign Sign;
1678 /// The valid/invalid context if this is an assumption/restriction.
1679 isl_set *Set;
1681 /// The location that caused this assumption.
1682 DebugLoc Loc;
1684 /// An optional block whose domain can simplify the assumption.
1685 BasicBlock *BB;
1688 /// Collection to hold taken assumptions.
1690 /// There are two reasons why we want to record assumptions first before we
1691 /// add them to the assumed/invalid context:
1692 /// 1) If the SCoP is not profitable or otherwise invalid without the
1693 /// assumed/invalid context we do not have to compute it.
1694 /// 2) Information about the context are gathered rather late in the SCoP
1695 /// construction (basically after we know all parameters), thus the user
1696 /// might see overly complicated assumptions to be taken while they will
1697 /// only be simplified later on.
1698 SmallVector<Assumption, 8> RecordedAssumptions;
1700 /// The schedule of the SCoP
1702 /// The schedule of the SCoP describes the execution order of the statements
1703 /// in the scop by assigning each statement instance a possibly
1704 /// multi-dimensional execution time. The schedule is stored as a tree of
1705 /// schedule nodes.
1707 /// The most common nodes in a schedule tree are so-called band nodes. Band
1708 /// nodes map statement instances into a multi dimensional schedule space.
1709 /// This space can be seen as a multi-dimensional clock.
1711 /// Example:
1713 /// <S,(5,4)> may be mapped to (5,4) by this schedule:
1715 /// s0 = i (Year of execution)
1716 /// s1 = j (Day of execution)
1718 /// or to (9, 20) by this schedule:
1720 /// s0 = i + j (Year of execution)
1721 /// s1 = 20 (Day of execution)
1723 /// The order statement instances are executed is defined by the
1724 /// schedule vectors they are mapped to. A statement instance
1725 /// <A, (i, j, ..)> is executed before a statement instance <B, (i', ..)>, if
1726 /// the schedule vector of A is lexicographic smaller than the schedule
1727 /// vector of B.
1729 /// Besides band nodes, schedule trees contain additional nodes that specify
1730 /// a textual ordering between two subtrees or filter nodes that filter the
1731 /// set of statement instances that will be scheduled in a subtree. There
1732 /// are also several other nodes. A full description of the different nodes
1733 /// in a schedule tree is given in the isl manual.
1734 isl_schedule *Schedule;
1736 /// The set of minimal/maximal accesses for each alias group.
1738 /// When building runtime alias checks we look at all memory instructions and
1739 /// build so called alias groups. Each group contains a set of accesses to
1740 /// different base arrays which might alias with each other. However, between
1741 /// alias groups there is no aliasing possible.
1743 /// In a program with int and float pointers annotated with tbaa information
1744 /// we would probably generate two alias groups, one for the int pointers and
1745 /// one for the float pointers.
1747 /// During code generation we will create a runtime alias check for each alias
1748 /// group to ensure the SCoP is executed in an alias free environment.
1749 MinMaxVectorPairVectorTy MinMaxAliasGroups;
1751 /// Mapping from invariant loads to the representing invariant load of
1752 /// their equivalence class.
1753 ValueToValueMap InvEquivClassVMap;
1755 /// List of invariant accesses.
1756 InvariantEquivClassesTy InvariantEquivClasses;
1758 /// The smallest array index not yet assigned.
1759 long ArrayIdx = 0;
1761 /// The smallest statement index not yet assigned.
1762 long StmtIdx = 0;
1764 /// Scop constructor; invoked from ScopBuilder::buildScop.
1765 Scop(Region &R, ScalarEvolution &SE, LoopInfo &LI,
1766 ScopDetection::DetectionContext &DC);
1768 //@}
1770 /// Initialize this ScopBuilder.
1771 void init(AliasAnalysis &AA, AssumptionCache &AC, DominatorTree &DT,
1772 LoopInfo &LI);
1774 /// Propagate domains that are known due to graph properties.
1776 /// As a CFG is mostly structured we use the graph properties to propagate
1777 /// domains without the need to compute all path conditions. In particular, if
1778 /// a block A dominates a block B and B post-dominates A we know that the
1779 /// domain of B is a superset of the domain of A. As we do not have
1780 /// post-dominator information available here we use the less precise region
1781 /// information. Given a region R, we know that the exit is always executed if
1782 /// the entry was executed, thus the domain of the exit is a superset of the
1783 /// domain of the entry. In case the exit can only be reached from within the
1784 /// region the domains are in fact equal. This function will use this property
1785 /// to avoid the generation of condition constraints that determine when a
1786 /// branch is taken. If @p BB is a region entry block we will propagate its
1787 /// domain to the region exit block. Additionally, we put the region exit
1788 /// block in the @p FinishedExitBlocks set so we can later skip edges from
1789 /// within the region to that block.
1791 /// @param BB The block for which the domain is currently propagated.
1792 /// @param BBLoop The innermost affine loop surrounding @p BB.
1793 /// @param FinishedExitBlocks Set of region exits the domain was set for.
1794 /// @param LI The LoopInfo for the current function.
1796 void propagateDomainConstraintsToRegionExit(
1797 BasicBlock *BB, Loop *BBLoop,
1798 SmallPtrSetImpl<BasicBlock *> &FinishedExitBlocks, LoopInfo &LI);
1800 /// Compute the union of predecessor domains for @p BB.
1802 /// To compute the union of all domains of predecessors of @p BB this
1803 /// function applies similar reasoning on the CFG structure as described for
1804 /// @see propagateDomainConstraintsToRegionExit
1806 /// @param BB The block for which the predecessor domains are collected.
1807 /// @param Domain The domain under which BB is executed.
1808 /// @param DT The DominatorTree for the current function.
1809 /// @param LI The LoopInfo for the current function.
1811 /// @returns The domain under which @p BB is executed.
1812 __isl_give isl_set *
1813 getPredecessorDomainConstraints(BasicBlock *BB, __isl_keep isl_set *Domain,
1814 DominatorTree &DT, LoopInfo &LI);
1816 /// Add loop carried constraints to the header block of the loop @p L.
1818 /// @param L The loop to process.
1819 /// @param LI The LoopInfo for the current function.
1821 /// @returns True if there was no problem and false otherwise.
1822 bool addLoopBoundsToHeaderDomain(Loop *L, LoopInfo &LI);
1824 /// Compute the branching constraints for each basic block in @p R.
1826 /// @param R The region we currently build branching conditions for.
1827 /// @param DT The DominatorTree for the current function.
1828 /// @param LI The LoopInfo for the current function.
1830 /// @returns True if there was no problem and false otherwise.
1831 bool buildDomainsWithBranchConstraints(Region *R, DominatorTree &DT,
1832 LoopInfo &LI);
1834 /// Propagate the domain constraints through the region @p R.
1836 /// @param R The region we currently build branching conditions for.
1837 /// @param DT The DominatorTree for the current function.
1838 /// @param LI The LoopInfo for the current function.
1840 /// @returns True if there was no problem and false otherwise.
1841 bool propagateDomainConstraints(Region *R, DominatorTree &DT, LoopInfo &LI);
1843 /// Propagate invalid domains of statements through @p R.
1845 /// This method will propagate invalid statement domains through @p R and at
1846 /// the same time add error block domains to them. Additionally, the domains
1847 /// of error statements and those only reachable via error statements will be
1848 /// replaced by an empty set. Later those will be removed completely.
1850 /// @param R The currently traversed region.
1851 /// @param DT The DominatorTree for the current function.
1852 /// @param LI The LoopInfo for the current function.
1854 /// @returns True if there was no problem and false otherwise.
1855 bool propagateInvalidStmtDomains(Region *R, DominatorTree &DT, LoopInfo &LI);
1857 /// Compute the domain for each basic block in @p R.
1859 /// @param R The region we currently traverse.
1860 /// @param DT The DominatorTree for the current function.
1861 /// @param LI The LoopInfo for the current function.
1863 /// @returns True if there was no problem and false otherwise.
1864 bool buildDomains(Region *R, DominatorTree &DT, LoopInfo &LI);
1866 /// Add parameter constraints to @p C that imply a non-empty domain.
1867 __isl_give isl_set *addNonEmptyDomainConstraints(__isl_take isl_set *C) const;
1869 /// Return the access for the base ptr of @p MA if any.
1870 MemoryAccess *lookupBasePtrAccess(MemoryAccess *MA);
1872 /// Check if the base ptr of @p MA is in the SCoP but not hoistable.
1873 bool hasNonHoistableBasePtrInScop(MemoryAccess *MA,
1874 __isl_keep isl_union_map *Writes);
1876 /// Create equivalence classes for required invariant accesses.
1878 /// These classes will consolidate multiple required invariant loads from the
1879 /// same address in order to keep the number of dimensions in the SCoP
1880 /// description small. For each such class equivalence class only one
1881 /// representing element, hence one required invariant load, will be chosen
1882 /// and modeled as parameter. The method
1883 /// Scop::getRepresentingInvariantLoadSCEV() will replace each element from an
1884 /// equivalence class with the representing element that is modeled. As a
1885 /// consequence Scop::getIdForParam() will only return an id for the
1886 /// representing element of each equivalence class, thus for each required
1887 /// invariant location.
1888 void buildInvariantEquivalenceClasses();
1890 /// Return the context under which the access cannot be hoisted.
1892 /// @param Access The access to check.
1893 /// @param Writes The set of all memory writes in the scop.
1895 /// @return Return the context under which the access cannot be hoisted or a
1896 /// nullptr if it cannot be hoisted at all.
1897 __isl_give isl_set *getNonHoistableCtx(MemoryAccess *Access,
1898 __isl_keep isl_union_map *Writes);
1900 /// Verify that all required invariant loads have been hoisted.
1902 /// Invariant load hoisting is not guaranteed to hoist all loads that were
1903 /// assumed to be scop invariant during scop detection. This function checks
1904 /// for cases where the hoisting failed, but where it would have been
1905 /// necessary for our scop modeling to be correct. In case of insufficent
1906 /// hoisting the scop is marked as invalid.
1908 /// In the example below Bound[1] is required to be invariant:
1910 /// for (int i = 1; i < Bound[0]; i++)
1911 /// for (int j = 1; j < Bound[1]; j++)
1912 /// ...
1914 void verifyInvariantLoads();
1916 /// Hoist invariant memory loads and check for required ones.
1918 /// We first identify "common" invariant loads, thus loads that are invariant
1919 /// and can be hoisted. Then we check if all required invariant loads have
1920 /// been identified as (common) invariant. A load is a required invariant load
1921 /// if it was assumed to be invariant during SCoP detection, e.g., to assume
1922 /// loop bounds to be affine or runtime alias checks to be placeable. In case
1923 /// a required invariant load was not identified as (common) invariant we will
1924 /// drop this SCoP. An example for both "common" as well as required invariant
1925 /// loads is given below:
1927 /// for (int i = 1; i < *LB[0]; i++)
1928 /// for (int j = 1; j < *LB[1]; j++)
1929 /// A[i][j] += A[0][0] + (*V);
1931 /// Common inv. loads: V, A[0][0], LB[0], LB[1]
1932 /// Required inv. loads: LB[0], LB[1], (V, if it may alias with A or LB)
1934 void hoistInvariantLoads();
1936 /// Canonicalize arrays with base pointers from the same equivalence class.
1938 /// Some context: in our normal model we assume that each base pointer is
1939 /// related to a single specific memory region, where memory regions
1940 /// associated with different base pointers are disjoint. Consequently we do
1941 /// not need to compute additional data dependences that model possible
1942 /// overlaps of these memory regions. To verify our assumption we compute
1943 /// alias checks that verify that modeled arrays indeed do not overlap. In
1944 /// case an overlap is detected the runtime check fails and we fall back to
1945 /// the original code.
1947 /// In case of arrays where the base pointers are know to be identical,
1948 /// because they are dynamically loaded by accesses that are in the same
1949 /// invariant load equivalence class, such run-time alias check would always
1950 /// be false.
1952 /// This function makes sure that we do not generate consistently failing
1953 /// run-time checks for code that contains distinct arrays with known
1954 /// equivalent base pointers. It identifies for each invariant load
1955 /// equivalence class a single canonical array and canonicalizes all memory
1956 /// accesses that reference arrays that have base pointers that are known to
1957 /// be equal to the base pointer of such a canonical array to this canonical
1958 /// array.
1960 /// We currently do not canonicalize arrays for which certain memory accesses
1961 /// have been hoisted as loop invariant.
1962 void canonicalizeDynamicBasePtrs();
1964 /// Add invariant loads listed in @p InvMAs with the domain of @p Stmt.
1965 void addInvariantLoads(ScopStmt &Stmt, InvariantAccessesTy &InvMAs);
1967 /// Create an id for @p Param and store it in the ParameterIds map.
1968 void createParameterId(const SCEV *Param);
1970 /// Build the Context of the Scop.
1971 void buildContext();
1973 /// Add user provided parameter constraints to context (source code).
1974 void addUserAssumptions(AssumptionCache &AC, DominatorTree &DT, LoopInfo &LI);
1976 /// Add user provided parameter constraints to context (command line).
1977 void addUserContext();
1979 /// Add the bounds of the parameters to the context.
1980 void addParameterBounds();
1982 /// Simplify the assumed and invalid context.
1983 void simplifyContexts();
1985 /// Get the representing SCEV for @p S if applicable, otherwise @p S.
1987 /// Invariant loads of the same location are put in an equivalence class and
1988 /// only one of them is chosen as a representing element that will be
1989 /// modeled as a parameter. The others have to be normalized, i.e.,
1990 /// replaced by the representing element of their equivalence class, in order
1991 /// to get the correct parameter value, e.g., in the SCEVAffinator.
1993 /// @param S The SCEV to normalize.
1995 /// @return The representing SCEV for invariant loads or @p S if none.
1996 const SCEV *getRepresentingInvariantLoadSCEV(const SCEV *S);
1998 /// Create a new SCoP statement for @p BB.
2000 /// A new statement for @p BB will be created and added to the statement
2001 /// vector
2002 /// and map.
2004 /// @param BB The basic block we build the statement for.
2005 /// @param SurroundingLoop The loop the created statement is contained in.
2006 void addScopStmt(BasicBlock *BB, Loop *SurroundingLoop);
2008 /// Create a new SCoP statement for @p R.
2010 /// A new statement for @p R will be created and added to the statement vector
2011 /// and map.
2013 /// @param R The region we build the statement for.
2014 /// @param SurroundingLoop The loop the created statement is contained in.
2015 void addScopStmt(Region *R, Loop *SurroundingLoop);
2017 /// Update access dimensionalities.
2019 /// When detecting memory accesses different accesses to the same array may
2020 /// have built with different dimensionality, as outer zero-values dimensions
2021 /// may not have been recognized as separate dimensions. This function goes
2022 /// again over all memory accesses and updates their dimensionality to match
2023 /// the dimensionality of the underlying ScopArrayInfo object.
2024 void updateAccessDimensionality();
2026 /// Fold size constants to the right.
2028 /// In case all memory accesses in a given dimension are multiplied with a
2029 /// common constant, we can remove this constant from the individual access
2030 /// functions and move it to the size of the memory access. We do this as this
2031 /// increases the size of the innermost dimension, consequently widens the
2032 /// valid range the array subscript in this dimension can evaluate to, and
2033 /// as a result increases the likelyhood that our delinearization is
2034 /// correct.
2036 /// Example:
2038 /// A[][n]
2039 /// S[i,j] -> A[2i][2j+1]
2040 /// S[i,j] -> A[2i][2j]
2042 /// =>
2044 /// A[][2n]
2045 /// S[i,j] -> A[i][2j+1]
2046 /// S[i,j] -> A[i][2j]
2048 /// Constants in outer dimensions can arise when the elements of a parametric
2049 /// multi-dimensional array are not elementar data types, but e.g.,
2050 /// structures.
2051 void foldSizeConstantsToRight();
2053 /// Fold memory accesses to handle parametric offset.
2055 /// As a post-processing step, we 'fold' memory accesses to parameteric
2056 /// offsets in the access functions. @see MemoryAccess::foldAccess for
2057 /// details.
2058 void foldAccessRelations();
2060 /// Assume that all memory accesses are within bounds.
2062 /// After we have built a model of all memory accesses, we need to assume
2063 /// that the model we built matches reality -- aka. all modeled memory
2064 /// accesses always remain within bounds. We do this as last step, after
2065 /// all memory accesses have been modeled and canonicalized.
2066 void assumeNoOutOfBounds();
2068 /// Finalize all access relations.
2070 /// When building up access relations, temporary access relations that
2071 /// correctly represent each individual access are constructed. However, these
2072 /// access relations can be inconsistent or non-optimal when looking at the
2073 /// set of accesses as a whole. This function finalizes the memory accesses
2074 /// and constructs a globally consistent state.
2075 void finalizeAccesses();
2077 /// Construct the schedule of this SCoP.
2079 /// @param LI The LoopInfo for the current function.
2080 void buildSchedule(LoopInfo &LI);
2082 /// A loop stack element to keep track of per-loop information during
2083 /// schedule construction.
2084 typedef struct LoopStackElement {
2085 // The loop for which we keep information.
2086 Loop *L;
2088 // The (possibly incomplete) schedule for this loop.
2089 isl_schedule *Schedule;
2091 // The number of basic blocks in the current loop, for which a schedule has
2092 // already been constructed.
2093 unsigned NumBlocksProcessed;
2095 LoopStackElement(Loop *L, __isl_give isl_schedule *S,
2096 unsigned NumBlocksProcessed)
2097 : L(L), Schedule(S), NumBlocksProcessed(NumBlocksProcessed) {}
2098 } LoopStackElementTy;
2100 /// The loop stack used for schedule construction.
2102 /// The loop stack keeps track of schedule information for a set of nested
2103 /// loops as well as an (optional) 'nullptr' loop that models the outermost
2104 /// schedule dimension. The loops in a loop stack always have a parent-child
2105 /// relation where the loop at position n is the parent of the loop at
2106 /// position n + 1.
2107 typedef SmallVector<LoopStackElementTy, 4> LoopStackTy;
2109 /// Construct schedule information for a given Region and add the
2110 /// derived information to @p LoopStack.
2112 /// Given a Region we derive schedule information for all RegionNodes
2113 /// contained in this region ensuring that the assigned execution times
2114 /// correctly model the existing control flow relations.
2116 /// @param R The region which to process.
2117 /// @param LoopStack A stack of loops that are currently under
2118 /// construction.
2119 /// @param LI The LoopInfo for the current function.
2120 void buildSchedule(Region *R, LoopStackTy &LoopStack, LoopInfo &LI);
2122 /// Build Schedule for the region node @p RN and add the derived
2123 /// information to @p LoopStack.
2125 /// In case @p RN is a BasicBlock or a non-affine Region, we construct the
2126 /// schedule for this @p RN and also finalize loop schedules in case the
2127 /// current @p RN completes the loop.
2129 /// In case @p RN is a not-non-affine Region, we delegate the construction to
2130 /// buildSchedule(Region *R, ...).
2132 /// @param RN The RegionNode region traversed.
2133 /// @param LoopStack A stack of loops that are currently under
2134 /// construction.
2135 /// @param LI The LoopInfo for the current function.
2136 void buildSchedule(RegionNode *RN, LoopStackTy &LoopStack, LoopInfo &LI);
2138 /// Collect all memory access relations of a given type.
2140 /// @param Predicate A predicate function that returns true if an access is
2141 /// of a given type.
2143 /// @returns The set of memory accesses in the scop that match the predicate.
2144 __isl_give isl_union_map *
2145 getAccessesOfType(std::function<bool(MemoryAccess &)> Predicate);
2147 /// @name Helper functions for printing the Scop.
2149 //@{
2150 void printContext(raw_ostream &OS) const;
2151 void printArrayInfo(raw_ostream &OS) const;
2152 void printStatements(raw_ostream &OS) const;
2153 void printAliasAssumptions(raw_ostream &OS) const;
2154 //@}
2156 friend class ScopBuilder;
2158 public:
2159 ~Scop();
2161 /// Get the count of copy statements added to this Scop.
2163 /// @return The count of copy statements added to this Scop.
2164 unsigned getCopyStmtsNum() { return CopyStmtsNum; }
2166 /// Create a new copy statement.
2168 /// A new statement will be created and added to the statement vector.
2170 /// @param Stmt The parent statement.
2171 /// @param SourceRel The source location.
2172 /// @param TargetRel The target location.
2173 /// @param Domain The original domain under which copy statement whould
2174 /// be executed.
2175 ScopStmt *addScopStmt(__isl_take isl_map *SourceRel,
2176 __isl_take isl_map *TargetRel,
2177 __isl_take isl_set *Domain);
2179 /// Add the access function to all MemoryAccess objects of the Scop
2180 /// created in this pass.
2181 void addAccessFunction(MemoryAccess *Access) {
2182 AccessFunctions.emplace_back(Access);
2185 ScalarEvolution *getSE() const;
2187 /// Get the count of parameters used in this Scop.
2189 /// @return The count of parameters used in this Scop.
2190 size_t getNumParams() const { return Parameters.size(); }
2192 /// Take a list of parameters and add the new ones to the scop.
2193 void addParams(const ParameterSetTy &NewParameters);
2195 /// Return an iterator range containing the scop parameters.
2196 iterator_range<ParameterSetTy::iterator> parameters() const {
2197 return make_range(Parameters.begin(), Parameters.end());
2200 /// Return whether this scop is empty, i.e. contains no statements that
2201 /// could be executed.
2202 bool isEmpty() const { return Stmts.empty(); }
2204 typedef ArrayInfoSetTy::iterator array_iterator;
2205 typedef ArrayInfoSetTy::const_iterator const_array_iterator;
2206 typedef iterator_range<ArrayInfoSetTy::iterator> array_range;
2207 typedef iterator_range<ArrayInfoSetTy::const_iterator> const_array_range;
2209 inline array_iterator array_begin() { return ScopArrayInfoSet.begin(); }
2211 inline array_iterator array_end() { return ScopArrayInfoSet.end(); }
2213 inline const_array_iterator array_begin() const {
2214 return ScopArrayInfoSet.begin();
2217 inline const_array_iterator array_end() const {
2218 return ScopArrayInfoSet.end();
2221 inline array_range arrays() {
2222 return array_range(array_begin(), array_end());
2225 inline const_array_range arrays() const {
2226 return const_array_range(array_begin(), array_end());
2229 /// Return the isl_id that represents a certain parameter.
2231 /// @param Parameter A SCEV that was recognized as a Parameter.
2233 /// @return The corresponding isl_id or NULL otherwise.
2234 __isl_give isl_id *getIdForParam(const SCEV *Parameter);
2236 /// Get the maximum region of this static control part.
2238 /// @return The maximum region of this static control part.
2239 inline const Region &getRegion() const { return R; }
2240 inline Region &getRegion() { return R; }
2242 /// Return the function this SCoP is in.
2243 Function &getFunction() const { return *R.getEntry()->getParent(); }
2245 /// Check if @p L is contained in the SCoP.
2246 bool contains(const Loop *L) const { return R.contains(L); }
2248 /// Check if @p BB is contained in the SCoP.
2249 bool contains(const BasicBlock *BB) const { return R.contains(BB); }
2251 /// Check if @p I is contained in the SCoP.
2252 bool contains(const Instruction *I) const { return R.contains(I); }
2254 /// Return the unique exit block of the SCoP.
2255 BasicBlock *getExit() const { return R.getExit(); }
2257 /// Return the unique exiting block of the SCoP if any.
2258 BasicBlock *getExitingBlock() const { return R.getExitingBlock(); }
2260 /// Return the unique entry block of the SCoP.
2261 BasicBlock *getEntry() const { return R.getEntry(); }
2263 /// Return the unique entering block of the SCoP if any.
2264 BasicBlock *getEnteringBlock() const { return R.getEnteringBlock(); }
2266 /// Return true if @p BB is the exit block of the SCoP.
2267 bool isExit(BasicBlock *BB) const { return getExit() == BB; }
2269 /// Return a range of all basic blocks in the SCoP.
2270 Region::block_range blocks() const { return R.blocks(); }
2272 /// Return true if and only if @p BB dominates the SCoP.
2273 bool isDominatedBy(const DominatorTree &DT, BasicBlock *BB) const;
2275 /// Get the maximum depth of the loop.
2277 /// @return The maximum depth of the loop.
2278 inline unsigned getMaxLoopDepth() const { return MaxLoopDepth; }
2280 /// Return the invariant equivalence class for @p Val if any.
2281 InvariantEquivClassTy *lookupInvariantEquivClass(Value *Val);
2283 /// Return the set of invariant accesses.
2284 InvariantEquivClassesTy &getInvariantAccesses() {
2285 return InvariantEquivClasses;
2288 /// Check if the scop has any invariant access.
2289 bool hasInvariantAccesses() { return !InvariantEquivClasses.empty(); }
2291 /// Mark the SCoP as optimized by the scheduler.
2292 void markAsOptimized() { IsOptimized = true; }
2294 /// Check if the SCoP has been optimized by the scheduler.
2295 bool isOptimized() const { return IsOptimized; }
2297 /// Get the name of this Scop.
2298 std::string getNameStr() const;
2300 /// Get the constraint on parameter of this Scop.
2302 /// @return The constraint on parameter of this Scop.
2303 __isl_give isl_set *getContext() const;
2304 __isl_give isl_space *getParamSpace() const;
2306 /// Get the assumed context for this Scop.
2308 /// @return The assumed context of this Scop.
2309 __isl_give isl_set *getAssumedContext() const;
2311 /// Return true if the optimized SCoP can be executed.
2313 /// In addition to the runtime check context this will also utilize the domain
2314 /// constraints to decide it the optimized version can actually be executed.
2316 /// @returns True if the optimized SCoP can be executed.
2317 bool hasFeasibleRuntimeContext() const;
2319 /// Check if the assumption in @p Set is trivial or not.
2321 /// @param Set The relations between parameters that are assumed to hold.
2322 /// @param Sign Enum to indicate if the assumptions in @p Set are positive
2323 /// (needed/assumptions) or negative (invalid/restrictions).
2325 /// @returns True if the assumption @p Set is not trivial.
2326 bool isEffectiveAssumption(__isl_keep isl_set *Set, AssumptionSign Sign);
2328 /// Track and report an assumption.
2330 /// Use 'clang -Rpass-analysis=polly-scops' or 'opt
2331 /// -pass-remarks-analysis=polly-scops' to output the assumptions.
2333 /// @param Kind The assumption kind describing the underlying cause.
2334 /// @param Set The relations between parameters that are assumed to hold.
2335 /// @param Loc The location in the source that caused this assumption.
2336 /// @param Sign Enum to indicate if the assumptions in @p Set are positive
2337 /// (needed/assumptions) or negative (invalid/restrictions).
2339 /// @returns True if the assumption is not trivial.
2340 bool trackAssumption(AssumptionKind Kind, __isl_keep isl_set *Set,
2341 DebugLoc Loc, AssumptionSign Sign);
2343 /// Add assumptions to assumed context.
2345 /// The assumptions added will be assumed to hold during the execution of the
2346 /// scop. However, as they are generally not statically provable, at code
2347 /// generation time run-time checks will be generated that ensure the
2348 /// assumptions hold.
2350 /// WARNING: We currently exploit in simplifyAssumedContext the knowledge
2351 /// that assumptions do not change the set of statement instances
2352 /// executed.
2354 /// @param Kind The assumption kind describing the underlying cause.
2355 /// @param Set The relations between parameters that are assumed to hold.
2356 /// @param Loc The location in the source that caused this assumption.
2357 /// @param Sign Enum to indicate if the assumptions in @p Set are positive
2358 /// (needed/assumptions) or negative (invalid/restrictions).
2359 void addAssumption(AssumptionKind Kind, __isl_take isl_set *Set, DebugLoc Loc,
2360 AssumptionSign Sign);
2362 /// Record an assumption for later addition to the assumed context.
2364 /// This function will add the assumption to the RecordedAssumptions. This
2365 /// collection will be added (@see addAssumption) to the assumed context once
2366 /// all paramaters are known and the context is fully build.
2368 /// @param Kind The assumption kind describing the underlying cause.
2369 /// @param Set The relations between parameters that are assumed to hold.
2370 /// @param Loc The location in the source that caused this assumption.
2371 /// @param Sign Enum to indicate if the assumptions in @p Set are positive
2372 /// (needed/assumptions) or negative (invalid/restrictions).
2373 /// @param BB The block in which this assumption was taken. If it is
2374 /// set, the domain of that block will be used to simplify the
2375 /// actual assumption in @p Set once it is added. This is useful
2376 /// if the assumption was created prior to the domain.
2377 void recordAssumption(AssumptionKind Kind, __isl_take isl_set *Set,
2378 DebugLoc Loc, AssumptionSign Sign,
2379 BasicBlock *BB = nullptr);
2381 /// Add all recorded assumptions to the assumed context.
2382 void addRecordedAssumptions();
2384 /// Mark the scop as invalid.
2386 /// This method adds an assumption to the scop that is always invalid. As a
2387 /// result, the scop will not be optimized later on. This function is commonly
2388 /// called when a condition makes it impossible (or too compile time
2389 /// expensive) to process this scop any further.
2391 /// @param Kind The assumption kind describing the underlying cause.
2392 /// @param Loc The location in the source that triggered .
2393 void invalidate(AssumptionKind Kind, DebugLoc Loc);
2395 /// Get the invalid context for this Scop.
2397 /// @return The invalid context of this Scop.
2398 __isl_give isl_set *getInvalidContext() const;
2400 /// Return true if and only if the InvalidContext is trivial (=empty).
2401 bool hasTrivialInvalidContext() const {
2402 return isl_set_is_empty(InvalidContext);
2405 /// A vector of memory accesses that belong to an alias group.
2406 typedef SmallVector<MemoryAccess *, 4> AliasGroupTy;
2408 /// A vector of alias groups.
2409 typedef SmallVector<Scop::AliasGroupTy, 4> AliasGroupVectorTy;
2411 /// Build the alias checks for this SCoP.
2412 bool buildAliasChecks(AliasAnalysis &AA);
2414 /// Build all alias groups for this SCoP.
2416 /// @returns True if __no__ error occurred, false otherwise.
2417 bool buildAliasGroups(AliasAnalysis &AA);
2419 /// Build alias groups for all memory accesses in the Scop.
2421 /// Using the alias analysis and an alias set tracker we build alias sets
2422 /// for all memory accesses inside the Scop. For each alias set we then map
2423 /// the aliasing pointers back to the memory accesses we know, thus obtain
2424 /// groups of memory accesses which might alias. We also collect the set of
2425 /// arrays through which memory is written.
2427 /// @param AA A reference to the alias analysis.
2429 /// @returns A pair consistent of a vector of alias groups and a set of arrays
2430 /// through which memory is written.
2431 std::tuple<AliasGroupVectorTy, DenseSet<const ScopArrayInfo *>>
2432 buildAliasGroupsForAccesses(AliasAnalysis &AA);
2434 /// Split alias groups by iteration domains.
2436 /// We split each group based on the domains of the minimal/maximal accesses.
2437 /// That means two minimal/maximal accesses are only in a group if their
2438 /// access domains intersect. Otherwise, they are in different groups.
2440 /// @param AliasGroups The alias groups to split
2441 void splitAliasGroupsByDomain(AliasGroupVectorTy &AliasGroups);
2443 /// Build a given alias group and its access data.
2445 /// @param AliasGroup The alias group to build.
2446 /// @param HasWriteAccess A set of arrays through which memory is not only
2447 /// read, but also written.
2449 /// @returns True if __no__ error occurred, false otherwise.
2450 bool buildAliasGroup(Scop::AliasGroupTy &AliasGroup,
2451 DenseSet<const ScopArrayInfo *> HasWriteAccess);
2453 /// Return all alias groups for this SCoP.
2454 const MinMaxVectorPairVectorTy &getAliasGroups() const {
2455 return MinMaxAliasGroups;
2458 /// Get an isl string representing the context.
2459 std::string getContextStr() const;
2461 /// Get an isl string representing the assumed context.
2462 std::string getAssumedContextStr() const;
2464 /// Get an isl string representing the invalid context.
2465 std::string getInvalidContextStr() const;
2467 /// Return the ScopStmt for the given @p BB or nullptr if there is
2468 /// none.
2469 ScopStmt *getStmtFor(BasicBlock *BB) const;
2471 /// Return the ScopStmt that represents the Region @p R, or nullptr if
2472 /// it is not represented by any statement in this Scop.
2473 ScopStmt *getStmtFor(Region *R) const;
2475 /// Return the ScopStmt that represents @p RN; can return nullptr if
2476 /// the RegionNode is not within the SCoP or has been removed due to
2477 /// simplifications.
2478 ScopStmt *getStmtFor(RegionNode *RN) const;
2480 /// Return the ScopStmt an instruction belongs to, or nullptr if it
2481 /// does not belong to any statement in this Scop.
2482 ScopStmt *getStmtFor(Instruction *Inst) const {
2483 return getStmtFor(Inst->getParent());
2486 /// Return the number of statements in the SCoP.
2487 size_t getSize() const { return Stmts.size(); }
2489 /// @name Statements Iterators
2491 /// These iterators iterate over all statements of this Scop.
2492 //@{
2493 typedef StmtSet::iterator iterator;
2494 typedef StmtSet::const_iterator const_iterator;
2496 iterator begin() { return Stmts.begin(); }
2497 iterator end() { return Stmts.end(); }
2498 const_iterator begin() const { return Stmts.begin(); }
2499 const_iterator end() const { return Stmts.end(); }
2501 typedef StmtSet::reverse_iterator reverse_iterator;
2502 typedef StmtSet::const_reverse_iterator const_reverse_iterator;
2504 reverse_iterator rbegin() { return Stmts.rbegin(); }
2505 reverse_iterator rend() { return Stmts.rend(); }
2506 const_reverse_iterator rbegin() const { return Stmts.rbegin(); }
2507 const_reverse_iterator rend() const { return Stmts.rend(); }
2508 //@}
2510 /// Return the set of required invariant loads.
2511 const InvariantLoadsSetTy &getRequiredInvariantLoads() const {
2512 return DC.RequiredILS;
2515 /// Add @p LI to the set of required invariant loads.
2516 void addRequiredInvariantLoad(LoadInst *LI) { DC.RequiredILS.insert(LI); }
2518 /// Return true if and only if @p LI is a required invariant load.
2519 bool isRequiredInvariantLoad(LoadInst *LI) const {
2520 return getRequiredInvariantLoads().count(LI);
2523 /// Return the set of boxed (thus overapproximated) loops.
2524 const BoxedLoopsSetTy &getBoxedLoops() const { return DC.BoxedLoopsSet; }
2526 /// Return true if and only if @p R is a non-affine subregion.
2527 bool isNonAffineSubRegion(const Region *R) {
2528 return DC.NonAffineSubRegionSet.count(R);
2531 const MapInsnToMemAcc &getInsnToMemAccMap() const { return DC.InsnToMemAcc; }
2533 /// Return the (possibly new) ScopArrayInfo object for @p Access.
2535 /// @param ElementType The type of the elements stored in this array.
2536 /// @param Kind The kind of the array info object.
2537 /// @param BaseName The optional name of this memory reference.
2538 const ScopArrayInfo *getOrCreateScopArrayInfo(Value *BasePtr,
2539 Type *ElementType,
2540 ArrayRef<const SCEV *> Sizes,
2541 MemoryKind Kind,
2542 const char *BaseName = nullptr);
2544 /// Create an array and return the corresponding ScopArrayInfo object.
2546 /// @param ElementType The type of the elements stored in this array.
2547 /// @param BaseName The name of this memory reference.
2548 /// @param Sizes The sizes of dimensions.
2549 const ScopArrayInfo *createScopArrayInfo(Type *ElementType,
2550 const std::string &BaseName,
2551 const std::vector<unsigned> &Sizes);
2553 /// Return the cached ScopArrayInfo object for @p BasePtr.
2555 /// @param BasePtr The base pointer the object has been stored for.
2556 /// @param Kind The kind of array info object.
2558 /// @returns The ScopArrayInfo pointer or NULL if no such pointer is
2559 /// available.
2560 const ScopArrayInfo *getScopArrayInfoOrNull(Value *BasePtr, MemoryKind Kind);
2562 /// Return the cached ScopArrayInfo object for @p BasePtr.
2564 /// @param BasePtr The base pointer the object has been stored for.
2565 /// @param Kind The kind of array info object.
2567 /// @returns The ScopArrayInfo pointer (may assert if no such pointer is
2568 /// available).
2569 const ScopArrayInfo *getScopArrayInfo(Value *BasePtr, MemoryKind Kind);
2571 /// Invalidate ScopArrayInfo object for base address.
2573 /// @param BasePtr The base pointer of the ScopArrayInfo object to invalidate.
2574 /// @param Kind The Kind of the ScopArrayInfo object.
2575 void invalidateScopArrayInfo(Value *BasePtr, MemoryKind Kind) {
2576 auto It = ScopArrayInfoMap.find(std::make_pair(BasePtr, Kind));
2577 if (It == ScopArrayInfoMap.end())
2578 return;
2579 ScopArrayInfoSet.remove(It->second.get());
2580 ScopArrayInfoMap.erase(It);
2583 void setContext(__isl_take isl_set *NewContext);
2585 /// Align the parameters in the statement to the scop context
2586 void realignParams();
2588 /// Return true if this SCoP can be profitably optimized.
2590 /// @param ScalarsAreUnprofitable Never consider statements with scalar writes
2591 /// as profitably optimizable.
2593 /// @return Whether this SCoP can be profitably optimized.
2594 bool isProfitable(bool ScalarsAreUnprofitable) const;
2596 /// Return true if the SCoP contained at least one error block.
2597 bool hasErrorBlock() const { return HasErrorBlock; }
2599 /// Return true if the underlying region has a single exiting block.
2600 bool hasSingleExitEdge() const { return HasSingleExitEdge; }
2602 /// Print the static control part.
2604 /// @param OS The output stream the static control part is printed to.
2605 void print(raw_ostream &OS) const;
2607 /// Print the ScopStmt to stderr.
2608 void dump() const;
2610 /// Get the isl context of this static control part.
2612 /// @return The isl context of this static control part.
2613 isl_ctx *getIslCtx() const;
2615 /// Directly return the shared_ptr of the context.
2616 const std::shared_ptr<isl_ctx> &getSharedIslCtx() const { return IslCtx; }
2618 /// Compute the isl representation for the SCEV @p E
2620 /// @param E The SCEV that should be translated.
2621 /// @param BB An (optional) basic block in which the isl_pw_aff is computed.
2622 /// SCEVs known to not reference any loops in the SCoP can be
2623 /// passed without a @p BB.
2624 /// @param NonNegative Flag to indicate the @p E has to be non-negative.
2626 /// Note that this function will always return a valid isl_pw_aff. However, if
2627 /// the translation of @p E was deemed to complex the SCoP is invalidated and
2628 /// a dummy value of appropriate dimension is returned. This allows to bail
2629 /// for complex cases without "error handling code" needed on the users side.
2630 __isl_give PWACtx getPwAff(const SCEV *E, BasicBlock *BB = nullptr,
2631 bool NonNegative = false);
2633 /// Compute the isl representation for the SCEV @p E
2635 /// This function is like @see Scop::getPwAff() but strips away the invalid
2636 /// domain part associated with the piecewise affine function.
2637 __isl_give isl_pw_aff *getPwAffOnly(const SCEV *E, BasicBlock *BB = nullptr);
2639 /// Return the domain of @p Stmt.
2641 /// @param Stmt The statement for which the conditions should be returned.
2642 __isl_give isl_set *getDomainConditions(const ScopStmt *Stmt) const;
2644 /// Return the domain of @p BB.
2646 /// @param BB The block for which the conditions should be returned.
2647 __isl_give isl_set *getDomainConditions(BasicBlock *BB) const;
2649 /// Get a union set containing the iteration domains of all statements.
2650 __isl_give isl_union_set *getDomains() const;
2652 /// Get a union map of all may-writes performed in the SCoP.
2653 __isl_give isl_union_map *getMayWrites();
2655 /// Get a union map of all must-writes performed in the SCoP.
2656 __isl_give isl_union_map *getMustWrites();
2658 /// Get a union map of all writes performed in the SCoP.
2659 __isl_give isl_union_map *getWrites();
2661 /// Get a union map of all reads performed in the SCoP.
2662 __isl_give isl_union_map *getReads();
2664 /// Get a union map of all memory accesses performed in the SCoP.
2665 __isl_give isl_union_map *getAccesses();
2667 /// Get the schedule of all the statements in the SCoP.
2669 /// @return The schedule of all the statements in the SCoP, if the schedule of
2670 /// the Scop does not contain extension nodes, and nullptr, otherwise.
2671 __isl_give isl_union_map *getSchedule() const;
2673 /// Get a schedule tree describing the schedule of all statements.
2674 __isl_give isl_schedule *getScheduleTree() const;
2676 /// Update the current schedule
2678 /// NewSchedule The new schedule (given as a flat union-map).
2679 void setSchedule(__isl_take isl_union_map *NewSchedule);
2681 /// Update the current schedule
2683 /// NewSchedule The new schedule (given as schedule tree).
2684 void setScheduleTree(__isl_take isl_schedule *NewSchedule);
2686 /// Intersects the domains of all statements in the SCoP.
2688 /// @return true if a change was made
2689 bool restrictDomains(__isl_take isl_union_set *Domain);
2691 /// Get the depth of a loop relative to the outermost loop in the Scop.
2693 /// This will return
2694 /// 0 if @p L is an outermost loop in the SCoP
2695 /// >0 for other loops in the SCoP
2696 /// -1 if @p L is nullptr or there is no outermost loop in the SCoP
2697 int getRelativeLoopDepth(const Loop *L) const;
2699 /// Find the ScopArrayInfo associated with an isl Id
2700 /// that has name @p Name.
2701 ScopArrayInfo *getArrayInfoByName(const std::string BaseName);
2703 /// Check whether @p Schedule contains extension nodes.
2705 /// @return true if @p Schedule contains extension nodes.
2706 static bool containsExtensionNode(__isl_keep isl_schedule *Schedule);
2708 /// Simplify the SCoP representation.
2710 /// @param AfterHoisting Whether it is called after invariant load hoisting.
2711 /// When true, also removes statements without
2712 /// side-effects.
2713 void simplifySCoP(bool AfterHoisting);
2715 /// Get the next free array index.
2717 /// This function returns a unique index which can be used to identify an
2718 /// array.
2719 long getNextArrayIdx() { return ArrayIdx++; }
2721 /// Get the next free statement index.
2723 /// This function returns a unique index which can be used to identify a
2724 /// statement.
2725 long getNextStmtIdx() { return StmtIdx++; }
2728 /// Print Scop scop to raw_ostream O.
2729 static inline raw_ostream &operator<<(raw_ostream &O, const Scop &scop) {
2730 scop.print(O);
2731 return O;
2734 /// The legacy pass manager's analysis pass to compute scop information
2735 /// for a region.
2736 class ScopInfoRegionPass : public RegionPass {
2737 /// The Scop pointer which is used to construct a Scop.
2738 std::unique_ptr<Scop> S;
2740 public:
2741 static char ID; // Pass identification, replacement for typeid
2743 ScopInfoRegionPass() : RegionPass(ID) {}
2744 ~ScopInfoRegionPass() {}
2746 /// Build Scop object, the Polly IR of static control
2747 /// part for the current SESE-Region.
2749 /// @return If the current region is a valid for a static control part,
2750 /// return the Polly IR representing this static control part,
2751 /// return null otherwise.
2752 Scop *getScop() { return S.get(); }
2753 const Scop *getScop() const { return S.get(); }
2755 /// Calculate the polyhedral scop information for a given Region.
2756 bool runOnRegion(Region *R, RGPassManager &RGM) override;
2758 void releaseMemory() override { S.reset(); }
2760 void print(raw_ostream &O, const Module *M = nullptr) const override;
2762 void getAnalysisUsage(AnalysisUsage &AU) const override;
2765 //===----------------------------------------------------------------------===//
2766 /// The legacy pass manager's analysis pass to compute scop information
2767 /// for the whole function.
2769 /// This pass will maintain a map of the maximal region within a scop to its
2770 /// scop object for all the feasible scops present in a function.
2771 /// This pass is an alternative to the ScopInfoRegionPass in order to avoid a
2772 /// region pass manager.
2773 class ScopInfoWrapperPass : public FunctionPass {
2775 public:
2776 using RegionToScopMapTy = DenseMap<Region *, std::unique_ptr<Scop>>;
2777 using iterator = RegionToScopMapTy::iterator;
2778 using const_iterator = RegionToScopMapTy::const_iterator;
2780 private:
2781 /// A map of Region to its Scop object containing
2782 /// Polly IR of static control part
2783 RegionToScopMapTy RegionToScopMap;
2785 public:
2786 static char ID; // Pass identification, replacement for typeid
2788 ScopInfoWrapperPass() : FunctionPass(ID) {}
2789 ~ScopInfoWrapperPass() {}
2791 /// Get the Scop object for the given Region
2793 /// @return If the given region is the maximal region within a scop, return
2794 /// the scop object. If the given region is a subregion, return a
2795 /// nullptr. Top level region containing the entry block of a function
2796 /// is not considered in the scop creation.
2797 Scop *getScop(Region *R) const {
2798 auto MapIt = RegionToScopMap.find(R);
2799 if (MapIt != RegionToScopMap.end())
2800 return MapIt->second.get();
2801 return nullptr;
2804 iterator begin() { return RegionToScopMap.begin(); }
2805 iterator end() { return RegionToScopMap.end(); }
2806 const_iterator begin() const { return RegionToScopMap.begin(); }
2807 const_iterator end() const { return RegionToScopMap.end(); }
2809 /// Calculate all the polyhedral scops for a given function.
2810 bool runOnFunction(Function &F) override;
2812 void releaseMemory() override { RegionToScopMap.clear(); }
2814 void print(raw_ostream &O, const Module *M = nullptr) const override;
2816 void getAnalysisUsage(AnalysisUsage &AU) const override;
2819 } // end namespace polly
2821 namespace llvm {
2822 class PassRegistry;
2823 void initializeScopInfoRegionPassPass(llvm::PassRegistry &);
2824 void initializeScopInfoWrapperPassPass(llvm::PassRegistry &);
2825 } // namespace llvm
2827 #endif