scan.cc: extract out shared pet_scop_get_affine_skip_domain
[pet.git] / scan.cc
blobe67dbc9faa9315c05c0fdc9918c4c613b3a38e28
1 /*
2 * Copyright 2011 Leiden University. All rights reserved.
3 * Copyright 2012 Ecole Normale Superieure. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above
13 * copyright notice, this list of conditions and the following
14 * disclaimer in the documentation and/or other materials provided
15 * with the distribution.
17 * THIS SOFTWARE IS PROVIDED BY LEIDEN UNIVERSITY ''AS IS'' AND ANY
18 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
20 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL LEIDEN UNIVERSITY OR
21 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
22 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
23 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
24 * OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 * The views and conclusions contained in the software and documentation
30 * are those of the authors and should not be interpreted as
31 * representing official policies, either expressed or implied, of
32 * Leiden University.
33 */
35 #include <string.h>
36 #include <set>
37 #include <map>
38 #include <iostream>
39 #include <llvm/Support/raw_ostream.h>
40 #include <clang/AST/ASTContext.h>
41 #include <clang/AST/ASTDiagnostic.h>
42 #include <clang/AST/Expr.h>
43 #include <clang/AST/RecursiveASTVisitor.h>
45 #include <isl/id.h>
46 #include <isl/space.h>
47 #include <isl/aff.h>
48 #include <isl/set.h>
50 #include "options.h"
51 #include "scan.h"
52 #include "scop.h"
53 #include "scop_plus.h"
55 #include "config.h"
57 using namespace std;
58 using namespace clang;
60 #if defined(DECLREFEXPR_CREATE_REQUIRES_BOOL)
61 static DeclRefExpr *create_DeclRefExpr(VarDecl *var)
63 return DeclRefExpr::Create(var->getASTContext(), var->getQualifierLoc(),
64 SourceLocation(), var, false, var->getInnerLocStart(),
65 var->getType(), VK_LValue);
67 #elif defined(DECLREFEXPR_CREATE_REQUIRES_SOURCELOCATION)
68 static DeclRefExpr *create_DeclRefExpr(VarDecl *var)
70 return DeclRefExpr::Create(var->getASTContext(), var->getQualifierLoc(),
71 SourceLocation(), var, var->getInnerLocStart(), var->getType(),
72 VK_LValue);
74 #else
75 static DeclRefExpr *create_DeclRefExpr(VarDecl *var)
77 return DeclRefExpr::Create(var->getASTContext(), var->getQualifierLoc(),
78 var, var->getInnerLocStart(), var->getType(), VK_LValue);
80 #endif
82 /* Check if the element type corresponding to the given array type
83 * has a const qualifier.
85 static bool const_base(QualType qt)
87 const Type *type = qt.getTypePtr();
89 if (type->isPointerType())
90 return const_base(type->getPointeeType());
91 if (type->isArrayType()) {
92 const ArrayType *atype;
93 type = type->getCanonicalTypeInternal().getTypePtr();
94 atype = cast<ArrayType>(type);
95 return const_base(atype->getElementType());
98 return qt.isConstQualified();
101 /* Mark "decl" as having an unknown value in "assigned_value".
103 * If no (known or unknown) value was assigned to "decl" before,
104 * then it may have been treated as a parameter before and may
105 * therefore appear in a value assigned to another variable.
106 * If so, this assignment needs to be turned into an unknown value too.
108 static void clear_assignment(map<ValueDecl *, isl_pw_aff *> &assigned_value,
109 ValueDecl *decl)
111 map<ValueDecl *, isl_pw_aff *>::iterator it;
113 it = assigned_value.find(decl);
115 assigned_value[decl] = NULL;
117 if (it == assigned_value.end())
118 return;
120 for (it = assigned_value.begin(); it != assigned_value.end(); ++it) {
121 isl_pw_aff *pa = it->second;
122 int nparam = isl_pw_aff_dim(pa, isl_dim_param);
124 for (int i = 0; i < nparam; ++i) {
125 isl_id *id;
127 if (!isl_pw_aff_has_dim_id(pa, isl_dim_param, i))
128 continue;
129 id = isl_pw_aff_get_dim_id(pa, isl_dim_param, i);
130 if (isl_id_get_user(id) == decl)
131 it->second = NULL;
132 isl_id_free(id);
137 /* Look for any assignments to scalar variables in part of the parse
138 * tree and set assigned_value to NULL for each of them.
139 * Also reset assigned_value if the address of a scalar variable
140 * is being taken. As an exception, if the address is passed to a function
141 * that is declared to receive a const pointer, then assigned_value is
142 * not reset.
144 * This ensures that we won't use any previously stored value
145 * in the current subtree and its parents.
147 struct clear_assignments : RecursiveASTVisitor<clear_assignments> {
148 map<ValueDecl *, isl_pw_aff *> &assigned_value;
149 set<UnaryOperator *> skip;
151 clear_assignments(map<ValueDecl *, isl_pw_aff *> &assigned_value) :
152 assigned_value(assigned_value) {}
154 /* Check for "address of" operators whose value is passed
155 * to a const pointer argument and add them to "skip", so that
156 * we can skip them in VisitUnaryOperator.
158 bool VisitCallExpr(CallExpr *expr) {
159 FunctionDecl *fd;
160 fd = expr->getDirectCallee();
161 if (!fd)
162 return true;
163 for (int i = 0; i < expr->getNumArgs(); ++i) {
164 Expr *arg = expr->getArg(i);
165 UnaryOperator *op;
166 if (arg->getStmtClass() == Stmt::ImplicitCastExprClass) {
167 ImplicitCastExpr *ice;
168 ice = cast<ImplicitCastExpr>(arg);
169 arg = ice->getSubExpr();
171 if (arg->getStmtClass() != Stmt::UnaryOperatorClass)
172 continue;
173 op = cast<UnaryOperator>(arg);
174 if (op->getOpcode() != UO_AddrOf)
175 continue;
176 if (const_base(fd->getParamDecl(i)->getType()))
177 skip.insert(op);
179 return true;
182 bool VisitUnaryOperator(UnaryOperator *expr) {
183 Expr *arg;
184 DeclRefExpr *ref;
185 ValueDecl *decl;
187 switch (expr->getOpcode()) {
188 case UO_AddrOf:
189 case UO_PostInc:
190 case UO_PostDec:
191 case UO_PreInc:
192 case UO_PreDec:
193 break;
194 default:
195 return true;
197 if (skip.find(expr) != skip.end())
198 return true;
200 arg = expr->getSubExpr();
201 if (arg->getStmtClass() != Stmt::DeclRefExprClass)
202 return true;
203 ref = cast<DeclRefExpr>(arg);
204 decl = ref->getDecl();
205 clear_assignment(assigned_value, decl);
206 return true;
209 bool VisitBinaryOperator(BinaryOperator *expr) {
210 Expr *lhs;
211 DeclRefExpr *ref;
212 ValueDecl *decl;
214 if (!expr->isAssignmentOp())
215 return true;
216 lhs = expr->getLHS();
217 if (lhs->getStmtClass() != Stmt::DeclRefExprClass)
218 return true;
219 ref = cast<DeclRefExpr>(lhs);
220 decl = ref->getDecl();
221 clear_assignment(assigned_value, decl);
222 return true;
226 /* Keep a copy of the currently assigned values.
228 * Any variable that is assigned a value inside the current scope
229 * is removed again when we leave the scope (either because it wasn't
230 * stored in the cache or because it has a different value in the cache).
232 struct assigned_value_cache {
233 map<ValueDecl *, isl_pw_aff *> &assigned_value;
234 map<ValueDecl *, isl_pw_aff *> cache;
236 assigned_value_cache(map<ValueDecl *, isl_pw_aff *> &assigned_value) :
237 assigned_value(assigned_value), cache(assigned_value) {}
238 ~assigned_value_cache() {
239 map<ValueDecl *, isl_pw_aff *>::iterator it = cache.begin();
240 for (it = assigned_value.begin(); it != assigned_value.end();
241 ++it) {
242 if (!it->second ||
243 (cache.find(it->first) != cache.end() &&
244 cache[it->first] != it->second))
245 cache[it->first] = NULL;
247 assigned_value = cache;
251 /* Insert an expression into the collection of expressions,
252 * provided it is not already in there.
253 * The isl_pw_affs are freed in the destructor.
255 void PetScan::insert_expression(__isl_take isl_pw_aff *expr)
257 std::set<isl_pw_aff *>::iterator it;
259 if (expressions.find(expr) == expressions.end())
260 expressions.insert(expr);
261 else
262 isl_pw_aff_free(expr);
265 PetScan::~PetScan()
267 std::set<isl_pw_aff *>::iterator it;
269 for (it = expressions.begin(); it != expressions.end(); ++it)
270 isl_pw_aff_free(*it);
272 isl_union_map_free(value_bounds);
275 /* Called if we found something we (currently) cannot handle.
276 * We'll provide more informative warnings later.
278 * We only actually complain if autodetect is false.
280 void PetScan::unsupported(Stmt *stmt, const char *msg)
282 if (options->autodetect)
283 return;
285 SourceLocation loc = stmt->getLocStart();
286 DiagnosticsEngine &diag = PP.getDiagnostics();
287 unsigned id = diag.getCustomDiagID(DiagnosticsEngine::Warning,
288 msg ? msg : "unsupported");
289 DiagnosticBuilder B = diag.Report(loc, id) << stmt->getSourceRange();
292 /* Extract an integer from "expr".
294 __isl_give isl_val *PetScan::extract_int(isl_ctx *ctx, IntegerLiteral *expr)
296 const Type *type = expr->getType().getTypePtr();
297 int is_signed = type->hasSignedIntegerRepresentation();
298 llvm::APInt val = expr->getValue();
299 int is_negative = is_signed && val.isNegative();
300 isl_val *v;
302 if (is_negative)
303 val = -val;
305 v = extract_unsigned(ctx, val);
307 if (is_negative)
308 v = isl_val_neg(v);
309 return v;
312 /* Extract an integer from "val", which assumed to be non-negative.
314 __isl_give isl_val *PetScan::extract_unsigned(isl_ctx *ctx,
315 const llvm::APInt &val)
317 unsigned n;
318 const uint64_t *data;
320 data = val.getRawData();
321 n = val.getNumWords();
322 return isl_val_int_from_chunks(ctx, n, sizeof(uint64_t), data);
325 /* Extract an integer from "expr".
326 * Return NULL if "expr" does not (obviously) represent an integer.
328 __isl_give isl_val *PetScan::extract_int(clang::ParenExpr *expr)
330 return extract_int(expr->getSubExpr());
333 /* Extract an integer from "expr".
334 * Return NULL if "expr" does not (obviously) represent an integer.
336 __isl_give isl_val *PetScan::extract_int(clang::Expr *expr)
338 if (expr->getStmtClass() == Stmt::IntegerLiteralClass)
339 return extract_int(ctx, cast<IntegerLiteral>(expr));
340 if (expr->getStmtClass() == Stmt::ParenExprClass)
341 return extract_int(cast<ParenExpr>(expr));
343 unsupported(expr);
344 return NULL;
347 /* Extract an affine expression from the IntegerLiteral "expr".
349 __isl_give isl_pw_aff *PetScan::extract_affine(IntegerLiteral *expr)
351 isl_space *dim = isl_space_params_alloc(ctx, 0);
352 isl_local_space *ls = isl_local_space_from_space(isl_space_copy(dim));
353 isl_aff *aff = isl_aff_zero_on_domain(ls);
354 isl_set *dom = isl_set_universe(dim);
355 isl_val *v;
357 v = extract_int(expr);
358 aff = isl_aff_add_constant_val(aff, v);
360 return isl_pw_aff_alloc(dom, aff);
363 /* Extract an affine expression from the APInt "val", which is assumed
364 * to be non-negative.
366 __isl_give isl_pw_aff *PetScan::extract_affine(const llvm::APInt &val)
368 isl_space *dim = isl_space_params_alloc(ctx, 0);
369 isl_local_space *ls = isl_local_space_from_space(isl_space_copy(dim));
370 isl_aff *aff = isl_aff_zero_on_domain(ls);
371 isl_set *dom = isl_set_universe(dim);
372 isl_val *v;
374 v = extract_unsigned(ctx, val);
375 aff = isl_aff_add_constant_val(aff, v);
377 return isl_pw_aff_alloc(dom, aff);
380 __isl_give isl_pw_aff *PetScan::extract_affine(ImplicitCastExpr *expr)
382 return extract_affine(expr->getSubExpr());
385 static unsigned get_type_size(ValueDecl *decl)
387 return decl->getASTContext().getIntWidth(decl->getType());
390 /* Bound parameter "pos" of "set" to the possible values of "decl".
392 static __isl_give isl_set *set_parameter_bounds(__isl_take isl_set *set,
393 unsigned pos, ValueDecl *decl)
395 unsigned width;
396 isl_ctx *ctx;
397 isl_val *bound;
399 ctx = isl_set_get_ctx(set);
400 width = get_type_size(decl);
401 if (decl->getType()->isUnsignedIntegerType()) {
402 set = isl_set_lower_bound_si(set, isl_dim_param, pos, 0);
403 bound = isl_val_int_from_ui(ctx, width);
404 bound = isl_val_2exp(bound);
405 bound = isl_val_sub_ui(bound, 1);
406 set = isl_set_upper_bound_val(set, isl_dim_param, pos, bound);
407 } else {
408 bound = isl_val_int_from_ui(ctx, width - 1);
409 bound = isl_val_2exp(bound);
410 bound = isl_val_sub_ui(bound, 1);
411 set = isl_set_upper_bound_val(set, isl_dim_param, pos,
412 isl_val_copy(bound));
413 bound = isl_val_neg(bound);
414 bound = isl_val_sub_ui(bound, 1);
415 set = isl_set_lower_bound_val(set, isl_dim_param, pos, bound);
418 return set;
421 /* Extract an affine expression from the DeclRefExpr "expr".
423 * If the variable has been assigned a value, then we check whether
424 * we know what (affine) value was assigned.
425 * If so, we return this value. Otherwise we convert "expr"
426 * to an extra parameter (provided nesting_enabled is set).
428 * Otherwise, we simply return an expression that is equal
429 * to a parameter corresponding to the referenced variable.
431 __isl_give isl_pw_aff *PetScan::extract_affine(DeclRefExpr *expr)
433 ValueDecl *decl = expr->getDecl();
434 const Type *type = decl->getType().getTypePtr();
435 isl_id *id;
436 isl_space *dim;
437 isl_aff *aff;
438 isl_set *dom;
440 if (!type->isIntegerType()) {
441 unsupported(expr);
442 return NULL;
445 if (assigned_value.find(decl) != assigned_value.end()) {
446 if (assigned_value[decl])
447 return isl_pw_aff_copy(assigned_value[decl]);
448 else
449 return nested_access(expr);
452 id = isl_id_alloc(ctx, decl->getName().str().c_str(), decl);
453 dim = isl_space_params_alloc(ctx, 1);
455 dim = isl_space_set_dim_id(dim, isl_dim_param, 0, id);
457 dom = isl_set_universe(isl_space_copy(dim));
458 aff = isl_aff_zero_on_domain(isl_local_space_from_space(dim));
459 aff = isl_aff_add_coefficient_si(aff, isl_dim_param, 0, 1);
461 return isl_pw_aff_alloc(dom, aff);
464 /* Extract an affine expression from an integer division operation.
465 * In particular, if "expr" is lhs/rhs, then return
467 * lhs >= 0 ? floor(lhs/rhs) : ceil(lhs/rhs)
469 * The second argument (rhs) is required to be a (positive) integer constant.
471 __isl_give isl_pw_aff *PetScan::extract_affine_div(BinaryOperator *expr)
473 int is_cst;
474 isl_pw_aff *rhs, *lhs;
476 rhs = extract_affine(expr->getRHS());
477 is_cst = isl_pw_aff_is_cst(rhs);
478 if (is_cst < 0 || !is_cst) {
479 isl_pw_aff_free(rhs);
480 if (!is_cst)
481 unsupported(expr);
482 return NULL;
485 lhs = extract_affine(expr->getLHS());
487 return isl_pw_aff_tdiv_q(lhs, rhs);
490 /* Extract an affine expression from a modulo operation.
491 * In particular, if "expr" is lhs/rhs, then return
493 * lhs - rhs * (lhs >= 0 ? floor(lhs/rhs) : ceil(lhs/rhs))
495 * The second argument (rhs) is required to be a (positive) integer constant.
497 __isl_give isl_pw_aff *PetScan::extract_affine_mod(BinaryOperator *expr)
499 int is_cst;
500 isl_pw_aff *rhs, *lhs;
502 rhs = extract_affine(expr->getRHS());
503 is_cst = isl_pw_aff_is_cst(rhs);
504 if (is_cst < 0 || !is_cst) {
505 isl_pw_aff_free(rhs);
506 if (!is_cst)
507 unsupported(expr);
508 return NULL;
511 lhs = extract_affine(expr->getLHS());
513 return isl_pw_aff_tdiv_r(lhs, rhs);
516 /* Extract an affine expression from a multiplication operation.
517 * This is only allowed if at least one of the two arguments
518 * is a (piecewise) constant.
520 __isl_give isl_pw_aff *PetScan::extract_affine_mul(BinaryOperator *expr)
522 isl_pw_aff *lhs;
523 isl_pw_aff *rhs;
525 lhs = extract_affine(expr->getLHS());
526 rhs = extract_affine(expr->getRHS());
528 if (!isl_pw_aff_is_cst(lhs) && !isl_pw_aff_is_cst(rhs)) {
529 isl_pw_aff_free(lhs);
530 isl_pw_aff_free(rhs);
531 unsupported(expr);
532 return NULL;
535 return isl_pw_aff_mul(lhs, rhs);
538 /* Extract an affine expression from an addition or subtraction operation.
540 __isl_give isl_pw_aff *PetScan::extract_affine_add(BinaryOperator *expr)
542 isl_pw_aff *lhs;
543 isl_pw_aff *rhs;
545 lhs = extract_affine(expr->getLHS());
546 rhs = extract_affine(expr->getRHS());
548 switch (expr->getOpcode()) {
549 case BO_Add:
550 return isl_pw_aff_add(lhs, rhs);
551 case BO_Sub:
552 return isl_pw_aff_sub(lhs, rhs);
553 default:
554 isl_pw_aff_free(lhs);
555 isl_pw_aff_free(rhs);
556 return NULL;
561 /* Compute
563 * pwaff mod 2^width
565 static __isl_give isl_pw_aff *wrap(__isl_take isl_pw_aff *pwaff,
566 unsigned width)
568 isl_ctx *ctx;
569 isl_val *mod;
571 ctx = isl_pw_aff_get_ctx(pwaff);
572 mod = isl_val_int_from_ui(ctx, width);
573 mod = isl_val_2exp(mod);
575 pwaff = isl_pw_aff_mod_val(pwaff, mod);
577 return pwaff;
580 /* Limit the domain of "pwaff" to those elements where the function
581 * value satisfies
583 * 2^{width-1} <= pwaff < 2^{width-1}
585 static __isl_give isl_pw_aff *avoid_overflow(__isl_take isl_pw_aff *pwaff,
586 unsigned width)
588 isl_ctx *ctx;
589 isl_val *v;
590 isl_space *space = isl_pw_aff_get_domain_space(pwaff);
591 isl_local_space *ls = isl_local_space_from_space(space);
592 isl_aff *bound;
593 isl_set *dom;
594 isl_pw_aff *b;
596 ctx = isl_pw_aff_get_ctx(pwaff);
597 v = isl_val_int_from_ui(ctx, width - 1);
598 v = isl_val_2exp(v);
600 bound = isl_aff_zero_on_domain(ls);
601 bound = isl_aff_add_constant_val(bound, v);
602 b = isl_pw_aff_from_aff(bound);
604 dom = isl_pw_aff_lt_set(isl_pw_aff_copy(pwaff), isl_pw_aff_copy(b));
605 pwaff = isl_pw_aff_intersect_domain(pwaff, dom);
607 b = isl_pw_aff_neg(b);
608 dom = isl_pw_aff_ge_set(isl_pw_aff_copy(pwaff), b);
609 pwaff = isl_pw_aff_intersect_domain(pwaff, dom);
611 return pwaff;
614 /* Handle potential overflows on signed computations.
616 * If options->signed_overflow is set to PET_OVERFLOW_AVOID,
617 * the we adjust the domain of "pa" to avoid overflows.
619 __isl_give isl_pw_aff *PetScan::signed_overflow(__isl_take isl_pw_aff *pa,
620 unsigned width)
622 if (options->signed_overflow == PET_OVERFLOW_AVOID)
623 pa = avoid_overflow(pa, width);
625 return pa;
628 /* Return the piecewise affine expression "set ? 1 : 0" defined on "dom".
630 static __isl_give isl_pw_aff *indicator_function(__isl_take isl_set *set,
631 __isl_take isl_set *dom)
633 isl_pw_aff *pa;
634 pa = isl_set_indicator_function(set);
635 pa = isl_pw_aff_intersect_domain(pa, dom);
636 return pa;
639 /* Extract an affine expression from some binary operations.
640 * If the result of the expression is unsigned, then we wrap it
641 * based on the size of the type. Otherwise, we ensure that
642 * no overflow occurs.
644 __isl_give isl_pw_aff *PetScan::extract_affine(BinaryOperator *expr)
646 isl_pw_aff *res;
647 unsigned width;
649 switch (expr->getOpcode()) {
650 case BO_Add:
651 case BO_Sub:
652 res = extract_affine_add(expr);
653 break;
654 case BO_Div:
655 res = extract_affine_div(expr);
656 break;
657 case BO_Rem:
658 res = extract_affine_mod(expr);
659 break;
660 case BO_Mul:
661 res = extract_affine_mul(expr);
662 break;
663 case BO_LT:
664 case BO_LE:
665 case BO_GT:
666 case BO_GE:
667 case BO_EQ:
668 case BO_NE:
669 case BO_LAnd:
670 case BO_LOr:
671 return extract_condition(expr);
672 default:
673 unsupported(expr);
674 return NULL;
677 width = ast_context.getIntWidth(expr->getType());
678 if (expr->getType()->isUnsignedIntegerType())
679 res = wrap(res, width);
680 else
681 res = signed_overflow(res, width);
683 return res;
686 /* Extract an affine expression from a negation operation.
688 __isl_give isl_pw_aff *PetScan::extract_affine(UnaryOperator *expr)
690 if (expr->getOpcode() == UO_Minus)
691 return isl_pw_aff_neg(extract_affine(expr->getSubExpr()));
692 if (expr->getOpcode() == UO_LNot)
693 return extract_condition(expr);
695 unsupported(expr);
696 return NULL;
699 __isl_give isl_pw_aff *PetScan::extract_affine(ParenExpr *expr)
701 return extract_affine(expr->getSubExpr());
704 /* Extract an affine expression from some special function calls.
705 * In particular, we handle "min", "max", "ceild" and "floord".
706 * In case of the latter two, the second argument needs to be
707 * a (positive) integer constant.
709 __isl_give isl_pw_aff *PetScan::extract_affine(CallExpr *expr)
711 FunctionDecl *fd;
712 string name;
713 isl_pw_aff *aff1, *aff2;
715 fd = expr->getDirectCallee();
716 if (!fd) {
717 unsupported(expr);
718 return NULL;
721 name = fd->getDeclName().getAsString();
722 if (!(expr->getNumArgs() == 2 && name == "min") &&
723 !(expr->getNumArgs() == 2 && name == "max") &&
724 !(expr->getNumArgs() == 2 && name == "floord") &&
725 !(expr->getNumArgs() == 2 && name == "ceild")) {
726 unsupported(expr);
727 return NULL;
730 if (name == "min" || name == "max") {
731 aff1 = extract_affine(expr->getArg(0));
732 aff2 = extract_affine(expr->getArg(1));
734 if (name == "min")
735 aff1 = isl_pw_aff_min(aff1, aff2);
736 else
737 aff1 = isl_pw_aff_max(aff1, aff2);
738 } else if (name == "floord" || name == "ceild") {
739 isl_val *v;
740 Expr *arg2 = expr->getArg(1);
742 if (arg2->getStmtClass() != Stmt::IntegerLiteralClass) {
743 unsupported(expr);
744 return NULL;
746 aff1 = extract_affine(expr->getArg(0));
747 v = extract_int(cast<IntegerLiteral>(arg2));
748 aff1 = isl_pw_aff_scale_down_val(aff1, v);
749 if (name == "floord")
750 aff1 = isl_pw_aff_floor(aff1);
751 else
752 aff1 = isl_pw_aff_ceil(aff1);
753 } else {
754 unsupported(expr);
755 return NULL;
758 return aff1;
761 /* This method is called when we come across an access that is
762 * nested in what is supposed to be an affine expression.
763 * If nesting is allowed, we return a new parameter that corresponds
764 * to this nested access. Otherwise, we simply complain.
766 * Note that we currently don't allow nested accesses themselves
767 * to contain any nested accesses, so we check if we can extract
768 * the access without any nesting and complain if we can't.
770 * The new parameter is resolved in resolve_nested.
772 isl_pw_aff *PetScan::nested_access(Expr *expr)
774 isl_id *id;
775 isl_space *dim;
776 isl_aff *aff;
777 isl_set *dom;
778 isl_map *access;
780 if (!nesting_enabled) {
781 unsupported(expr);
782 return NULL;
785 allow_nested = false;
786 access = extract_access(expr);
787 allow_nested = true;
788 if (!access) {
789 unsupported(expr);
790 return NULL;
792 isl_map_free(access);
794 id = isl_id_alloc(ctx, NULL, expr);
795 dim = isl_space_params_alloc(ctx, 1);
797 dim = isl_space_set_dim_id(dim, isl_dim_param, 0, id);
799 dom = isl_set_universe(isl_space_copy(dim));
800 aff = isl_aff_zero_on_domain(isl_local_space_from_space(dim));
801 aff = isl_aff_add_coefficient_si(aff, isl_dim_param, 0, 1);
803 return isl_pw_aff_alloc(dom, aff);
806 /* Affine expressions are not supposed to contain array accesses,
807 * but if nesting is allowed, we return a parameter corresponding
808 * to the array access.
810 __isl_give isl_pw_aff *PetScan::extract_affine(ArraySubscriptExpr *expr)
812 return nested_access(expr);
815 /* Extract an affine expression from a conditional operation.
817 __isl_give isl_pw_aff *PetScan::extract_affine(ConditionalOperator *expr)
819 isl_pw_aff *cond, *lhs, *rhs, *res;
821 cond = extract_condition(expr->getCond());
822 lhs = extract_affine(expr->getTrueExpr());
823 rhs = extract_affine(expr->getFalseExpr());
825 return isl_pw_aff_cond(cond, lhs, rhs);
828 /* Extract an affine expression, if possible, from "expr".
829 * Otherwise return NULL.
831 __isl_give isl_pw_aff *PetScan::extract_affine(Expr *expr)
833 switch (expr->getStmtClass()) {
834 case Stmt::ImplicitCastExprClass:
835 return extract_affine(cast<ImplicitCastExpr>(expr));
836 case Stmt::IntegerLiteralClass:
837 return extract_affine(cast<IntegerLiteral>(expr));
838 case Stmt::DeclRefExprClass:
839 return extract_affine(cast<DeclRefExpr>(expr));
840 case Stmt::BinaryOperatorClass:
841 return extract_affine(cast<BinaryOperator>(expr));
842 case Stmt::UnaryOperatorClass:
843 return extract_affine(cast<UnaryOperator>(expr));
844 case Stmt::ParenExprClass:
845 return extract_affine(cast<ParenExpr>(expr));
846 case Stmt::CallExprClass:
847 return extract_affine(cast<CallExpr>(expr));
848 case Stmt::ArraySubscriptExprClass:
849 return extract_affine(cast<ArraySubscriptExpr>(expr));
850 case Stmt::ConditionalOperatorClass:
851 return extract_affine(cast<ConditionalOperator>(expr));
852 default:
853 unsupported(expr);
855 return NULL;
858 __isl_give isl_map *PetScan::extract_access(ImplicitCastExpr *expr)
860 return extract_access(expr->getSubExpr());
863 /* Return the depth of an array of the given type.
865 static int array_depth(const Type *type)
867 if (type->isPointerType())
868 return 1 + array_depth(type->getPointeeType().getTypePtr());
869 if (type->isArrayType()) {
870 const ArrayType *atype;
871 type = type->getCanonicalTypeInternal().getTypePtr();
872 atype = cast<ArrayType>(type);
873 return 1 + array_depth(atype->getElementType().getTypePtr());
875 return 0;
878 /* Return the element type of the given array type.
880 static QualType base_type(QualType qt)
882 const Type *type = qt.getTypePtr();
884 if (type->isPointerType())
885 return base_type(type->getPointeeType());
886 if (type->isArrayType()) {
887 const ArrayType *atype;
888 type = type->getCanonicalTypeInternal().getTypePtr();
889 atype = cast<ArrayType>(type);
890 return base_type(atype->getElementType());
892 return qt;
895 /* Extract an access relation from a reference to a variable.
896 * If the variable has name "A" and its type corresponds to an
897 * array of depth d, then the returned access relation is of the
898 * form
900 * { [] -> A[i_1,...,i_d] }
902 __isl_give isl_map *PetScan::extract_access(DeclRefExpr *expr)
904 return extract_access(expr->getDecl());
907 /* Extract an access relation from a variable.
908 * If the variable has name "A" and its type corresponds to an
909 * array of depth d, then the returned access relation is of the
910 * form
912 * { [] -> A[i_1,...,i_d] }
914 __isl_give isl_map *PetScan::extract_access(ValueDecl *decl)
916 int depth = array_depth(decl->getType().getTypePtr());
917 isl_id *id = isl_id_alloc(ctx, decl->getName().str().c_str(), decl);
918 isl_space *dim = isl_space_alloc(ctx, 0, 0, depth);
919 isl_map *access_rel;
921 dim = isl_space_set_tuple_id(dim, isl_dim_out, id);
923 access_rel = isl_map_universe(dim);
925 return access_rel;
928 /* Extract an access relation from an integer contant.
929 * If the value of the constant is "v", then the returned access relation
930 * is
932 * { [] -> [v] }
934 __isl_give isl_map *PetScan::extract_access(IntegerLiteral *expr)
936 return isl_map_from_range(isl_set_from_pw_aff(extract_affine(expr)));
939 /* Try and extract an access relation from the given Expr.
940 * Return NULL if it doesn't work out.
942 __isl_give isl_map *PetScan::extract_access(Expr *expr)
944 switch (expr->getStmtClass()) {
945 case Stmt::ImplicitCastExprClass:
946 return extract_access(cast<ImplicitCastExpr>(expr));
947 case Stmt::DeclRefExprClass:
948 return extract_access(cast<DeclRefExpr>(expr));
949 case Stmt::ArraySubscriptExprClass:
950 return extract_access(cast<ArraySubscriptExpr>(expr));
951 case Stmt::IntegerLiteralClass:
952 return extract_access(cast<IntegerLiteral>(expr));
953 default:
954 unsupported(expr);
956 return NULL;
959 /* Assign the affine expression "index" to the output dimension "pos" of "map",
960 * restrict the domain to those values that result in a non-negative index
961 * and return the result.
963 __isl_give isl_map *set_index(__isl_take isl_map *map, int pos,
964 __isl_take isl_pw_aff *index)
966 isl_map *index_map;
967 int len = isl_map_dim(map, isl_dim_out);
968 isl_id *id;
969 isl_set *domain;
971 domain = isl_pw_aff_nonneg_set(isl_pw_aff_copy(index));
972 index = isl_pw_aff_intersect_domain(index, domain);
973 index_map = isl_map_from_range(isl_set_from_pw_aff(index));
974 index_map = isl_map_insert_dims(index_map, isl_dim_out, 0, pos);
975 index_map = isl_map_add_dims(index_map, isl_dim_out, len - pos - 1);
976 id = isl_map_get_tuple_id(map, isl_dim_out);
977 index_map = isl_map_set_tuple_id(index_map, isl_dim_out, id);
979 map = isl_map_intersect(map, index_map);
981 return map;
984 /* Extract an access relation from the given array subscript expression.
985 * If nesting is allowed in general, then we turn it on while
986 * examining the index expression.
988 * We first extract an access relation from the base.
989 * This will result in an access relation with a range that corresponds
990 * to the array being accessed and with earlier indices filled in already.
991 * We then extract the current index and fill that in as well.
992 * The position of the current index is based on the type of base.
993 * If base is the actual array variable, then the depth of this type
994 * will be the same as the depth of the array and we will fill in
995 * the first array index.
996 * Otherwise, the depth of the base type will be smaller and we will fill
997 * in a later index.
999 __isl_give isl_map *PetScan::extract_access(ArraySubscriptExpr *expr)
1001 Expr *base = expr->getBase();
1002 Expr *idx = expr->getIdx();
1003 isl_pw_aff *index;
1004 isl_map *base_access;
1005 isl_map *access;
1006 int depth = array_depth(base->getType().getTypePtr());
1007 int pos;
1008 bool save_nesting = nesting_enabled;
1010 nesting_enabled = allow_nested;
1012 base_access = extract_access(base);
1013 index = extract_affine(idx);
1015 nesting_enabled = save_nesting;
1017 pos = isl_map_dim(base_access, isl_dim_out) - depth;
1018 access = set_index(base_access, pos, index);
1020 return access;
1023 /* Check if "expr" calls function "minmax" with two arguments and if so
1024 * make lhs and rhs refer to these two arguments.
1026 static bool is_minmax(Expr *expr, const char *minmax, Expr *&lhs, Expr *&rhs)
1028 CallExpr *call;
1029 FunctionDecl *fd;
1030 string name;
1032 if (expr->getStmtClass() != Stmt::CallExprClass)
1033 return false;
1035 call = cast<CallExpr>(expr);
1036 fd = call->getDirectCallee();
1037 if (!fd)
1038 return false;
1040 if (call->getNumArgs() != 2)
1041 return false;
1043 name = fd->getDeclName().getAsString();
1044 if (name != minmax)
1045 return false;
1047 lhs = call->getArg(0);
1048 rhs = call->getArg(1);
1050 return true;
1053 /* Check if "expr" is of the form min(lhs, rhs) and if so make
1054 * lhs and rhs refer to the two arguments.
1056 static bool is_min(Expr *expr, Expr *&lhs, Expr *&rhs)
1058 return is_minmax(expr, "min", lhs, rhs);
1061 /* Check if "expr" is of the form max(lhs, rhs) and if so make
1062 * lhs and rhs refer to the two arguments.
1064 static bool is_max(Expr *expr, Expr *&lhs, Expr *&rhs)
1066 return is_minmax(expr, "max", lhs, rhs);
1069 /* Return "lhs && rhs", defined on the shared definition domain.
1071 static __isl_give isl_pw_aff *pw_aff_and(__isl_take isl_pw_aff *lhs,
1072 __isl_take isl_pw_aff *rhs)
1074 isl_set *cond;
1075 isl_set *dom;
1077 dom = isl_set_intersect(isl_pw_aff_domain(isl_pw_aff_copy(lhs)),
1078 isl_pw_aff_domain(isl_pw_aff_copy(rhs)));
1079 cond = isl_set_intersect(isl_pw_aff_non_zero_set(lhs),
1080 isl_pw_aff_non_zero_set(rhs));
1081 return indicator_function(cond, dom);
1084 /* Return "lhs && rhs", with shortcut semantics.
1085 * That is, if lhs is false, then the result is defined even if rhs is not.
1086 * In practice, we compute lhs ? rhs : lhs.
1088 static __isl_give isl_pw_aff *pw_aff_and_then(__isl_take isl_pw_aff *lhs,
1089 __isl_take isl_pw_aff *rhs)
1091 return isl_pw_aff_cond(isl_pw_aff_copy(lhs), rhs, lhs);
1094 /* Return "lhs || rhs", with shortcut semantics.
1095 * That is, if lhs is true, then the result is defined even if rhs is not.
1096 * In practice, we compute lhs ? lhs : rhs.
1098 static __isl_give isl_pw_aff *pw_aff_or_else(__isl_take isl_pw_aff *lhs,
1099 __isl_take isl_pw_aff *rhs)
1101 return isl_pw_aff_cond(isl_pw_aff_copy(lhs), lhs, rhs);
1104 /* Extract an affine expressions representing the comparison "LHS op RHS"
1105 * "comp" is the original statement that "LHS op RHS" is derived from
1106 * and is used for diagnostics.
1108 * If the comparison is of the form
1110 * a <= min(b,c)
1112 * then the expression is constructed as the conjunction of
1113 * the comparisons
1115 * a <= b and a <= c
1117 * A similar optimization is performed for max(a,b) <= c.
1118 * We do this because that will lead to simpler representations
1119 * of the expression.
1120 * If isl is ever enhanced to explicitly deal with min and max expressions,
1121 * this optimization can be removed.
1123 __isl_give isl_pw_aff *PetScan::extract_comparison(BinaryOperatorKind op,
1124 Expr *LHS, Expr *RHS, Stmt *comp)
1126 isl_pw_aff *lhs;
1127 isl_pw_aff *rhs;
1128 isl_pw_aff *res;
1129 isl_set *cond;
1130 isl_set *dom;
1132 if (op == BO_GT)
1133 return extract_comparison(BO_LT, RHS, LHS, comp);
1134 if (op == BO_GE)
1135 return extract_comparison(BO_LE, RHS, LHS, comp);
1137 if (op == BO_LT || op == BO_LE) {
1138 Expr *expr1, *expr2;
1139 if (is_min(RHS, expr1, expr2)) {
1140 lhs = extract_comparison(op, LHS, expr1, comp);
1141 rhs = extract_comparison(op, LHS, expr2, comp);
1142 return pw_aff_and(lhs, rhs);
1144 if (is_max(LHS, expr1, expr2)) {
1145 lhs = extract_comparison(op, expr1, RHS, comp);
1146 rhs = extract_comparison(op, expr2, RHS, comp);
1147 return pw_aff_and(lhs, rhs);
1151 lhs = extract_affine(LHS);
1152 rhs = extract_affine(RHS);
1154 dom = isl_pw_aff_domain(isl_pw_aff_copy(lhs));
1155 dom = isl_set_intersect(dom, isl_pw_aff_domain(isl_pw_aff_copy(rhs)));
1157 switch (op) {
1158 case BO_LT:
1159 cond = isl_pw_aff_lt_set(lhs, rhs);
1160 break;
1161 case BO_LE:
1162 cond = isl_pw_aff_le_set(lhs, rhs);
1163 break;
1164 case BO_EQ:
1165 cond = isl_pw_aff_eq_set(lhs, rhs);
1166 break;
1167 case BO_NE:
1168 cond = isl_pw_aff_ne_set(lhs, rhs);
1169 break;
1170 default:
1171 isl_pw_aff_free(lhs);
1172 isl_pw_aff_free(rhs);
1173 isl_set_free(dom);
1174 unsupported(comp);
1175 return NULL;
1178 cond = isl_set_coalesce(cond);
1179 res = indicator_function(cond, dom);
1181 return res;
1184 __isl_give isl_pw_aff *PetScan::extract_comparison(BinaryOperator *comp)
1186 return extract_comparison(comp->getOpcode(), comp->getLHS(),
1187 comp->getRHS(), comp);
1190 /* Extract an affine expression representing the negation (logical not)
1191 * of a subexpression.
1193 __isl_give isl_pw_aff *PetScan::extract_boolean(UnaryOperator *op)
1195 isl_set *set_cond, *dom;
1196 isl_pw_aff *cond, *res;
1198 cond = extract_condition(op->getSubExpr());
1200 dom = isl_pw_aff_domain(isl_pw_aff_copy(cond));
1202 set_cond = isl_pw_aff_zero_set(cond);
1204 res = indicator_function(set_cond, dom);
1206 return res;
1209 /* Extract an affine expression representing the disjunction (logical or)
1210 * or conjunction (logical and) of two subexpressions.
1212 __isl_give isl_pw_aff *PetScan::extract_boolean(BinaryOperator *comp)
1214 isl_pw_aff *lhs, *rhs;
1216 lhs = extract_condition(comp->getLHS());
1217 rhs = extract_condition(comp->getRHS());
1219 switch (comp->getOpcode()) {
1220 case BO_LAnd:
1221 return pw_aff_and_then(lhs, rhs);
1222 case BO_LOr:
1223 return pw_aff_or_else(lhs, rhs);
1224 default:
1225 isl_pw_aff_free(lhs);
1226 isl_pw_aff_free(rhs);
1229 unsupported(comp);
1230 return NULL;
1233 __isl_give isl_pw_aff *PetScan::extract_condition(UnaryOperator *expr)
1235 switch (expr->getOpcode()) {
1236 case UO_LNot:
1237 return extract_boolean(expr);
1238 default:
1239 unsupported(expr);
1240 return NULL;
1244 /* Extract the affine expression "expr != 0 ? 1 : 0".
1246 __isl_give isl_pw_aff *PetScan::extract_implicit_condition(Expr *expr)
1248 isl_pw_aff *res;
1249 isl_set *set, *dom;
1251 res = extract_affine(expr);
1253 dom = isl_pw_aff_domain(isl_pw_aff_copy(res));
1254 set = isl_pw_aff_non_zero_set(res);
1256 res = indicator_function(set, dom);
1258 return res;
1261 /* Extract an affine expression from a boolean expression.
1262 * In particular, return the expression "expr ? 1 : 0".
1264 * If the expression doesn't look like a condition, we assume it
1265 * is an affine expression and return the condition "expr != 0 ? 1 : 0".
1267 __isl_give isl_pw_aff *PetScan::extract_condition(Expr *expr)
1269 BinaryOperator *comp;
1271 if (!expr) {
1272 isl_set *u = isl_set_universe(isl_space_params_alloc(ctx, 0));
1273 return indicator_function(u, isl_set_copy(u));
1276 if (expr->getStmtClass() == Stmt::ParenExprClass)
1277 return extract_condition(cast<ParenExpr>(expr)->getSubExpr());
1279 if (expr->getStmtClass() == Stmt::UnaryOperatorClass)
1280 return extract_condition(cast<UnaryOperator>(expr));
1282 if (expr->getStmtClass() != Stmt::BinaryOperatorClass)
1283 return extract_implicit_condition(expr);
1285 comp = cast<BinaryOperator>(expr);
1286 switch (comp->getOpcode()) {
1287 case BO_LT:
1288 case BO_LE:
1289 case BO_GT:
1290 case BO_GE:
1291 case BO_EQ:
1292 case BO_NE:
1293 return extract_comparison(comp);
1294 case BO_LAnd:
1295 case BO_LOr:
1296 return extract_boolean(comp);
1297 default:
1298 return extract_implicit_condition(expr);
1302 static enum pet_op_type UnaryOperatorKind2pet_op_type(UnaryOperatorKind kind)
1304 switch (kind) {
1305 case UO_Minus:
1306 return pet_op_minus;
1307 case UO_PostInc:
1308 return pet_op_post_inc;
1309 case UO_PostDec:
1310 return pet_op_post_dec;
1311 case UO_PreInc:
1312 return pet_op_pre_inc;
1313 case UO_PreDec:
1314 return pet_op_pre_dec;
1315 default:
1316 return pet_op_last;
1320 static enum pet_op_type BinaryOperatorKind2pet_op_type(BinaryOperatorKind kind)
1322 switch (kind) {
1323 case BO_AddAssign:
1324 return pet_op_add_assign;
1325 case BO_SubAssign:
1326 return pet_op_sub_assign;
1327 case BO_MulAssign:
1328 return pet_op_mul_assign;
1329 case BO_DivAssign:
1330 return pet_op_div_assign;
1331 case BO_Assign:
1332 return pet_op_assign;
1333 case BO_Add:
1334 return pet_op_add;
1335 case BO_Sub:
1336 return pet_op_sub;
1337 case BO_Mul:
1338 return pet_op_mul;
1339 case BO_Div:
1340 return pet_op_div;
1341 case BO_Rem:
1342 return pet_op_mod;
1343 case BO_EQ:
1344 return pet_op_eq;
1345 case BO_LE:
1346 return pet_op_le;
1347 case BO_LT:
1348 return pet_op_lt;
1349 case BO_GT:
1350 return pet_op_gt;
1351 default:
1352 return pet_op_last;
1356 /* Construct a pet_expr representing a unary operator expression.
1358 struct pet_expr *PetScan::extract_expr(UnaryOperator *expr)
1360 struct pet_expr *arg;
1361 enum pet_op_type op;
1363 op = UnaryOperatorKind2pet_op_type(expr->getOpcode());
1364 if (op == pet_op_last) {
1365 unsupported(expr);
1366 return NULL;
1369 arg = extract_expr(expr->getSubExpr());
1371 if (expr->isIncrementDecrementOp() &&
1372 arg && arg->type == pet_expr_access) {
1373 mark_write(arg);
1374 arg->acc.read = 1;
1377 return pet_expr_new_unary(ctx, op, arg);
1380 /* Mark the given access pet_expr as a write.
1381 * If a scalar is being accessed, then mark its value
1382 * as unknown in assigned_value.
1384 void PetScan::mark_write(struct pet_expr *access)
1386 isl_id *id;
1387 ValueDecl *decl;
1389 if (!access)
1390 return;
1392 access->acc.write = 1;
1393 access->acc.read = 0;
1395 if (!pet_expr_is_scalar_access(access))
1396 return;
1398 id = pet_expr_access_get_id(access);
1399 decl = (ValueDecl *) isl_id_get_user(id);
1400 clear_assignment(assigned_value, decl);
1401 isl_id_free(id);
1404 /* Assign "rhs" to "lhs".
1406 * In particular, if "lhs" is a scalar variable, then mark
1407 * the variable as having been assigned. If, furthermore, "rhs"
1408 * is an affine expression, then keep track of this value in assigned_value
1409 * so that we can plug it in when we later come across the same variable.
1411 void PetScan::assign(struct pet_expr *lhs, Expr *rhs)
1413 isl_id *id;
1414 ValueDecl *decl;
1415 isl_pw_aff *pa;
1417 if (!lhs)
1418 return;
1419 if (!pet_expr_is_scalar_access(lhs))
1420 return;
1422 id = pet_expr_access_get_id(lhs);
1423 decl = (ValueDecl *) isl_id_get_user(id);
1424 isl_id_free(id);
1426 pa = try_extract_affine(rhs);
1427 clear_assignment(assigned_value, decl);
1428 if (!pa)
1429 return;
1430 assigned_value[decl] = pa;
1431 insert_expression(pa);
1434 /* Construct a pet_expr representing a binary operator expression.
1436 * If the top level operator is an assignment and the LHS is an access,
1437 * then we mark that access as a write. If the operator is a compound
1438 * assignment, the access is marked as both a read and a write.
1440 * If "expr" assigns something to a scalar variable, then we mark
1441 * the variable as having been assigned. If, furthermore, the expression
1442 * is affine, then keep track of this value in assigned_value
1443 * so that we can plug it in when we later come across the same variable.
1445 struct pet_expr *PetScan::extract_expr(BinaryOperator *expr)
1447 struct pet_expr *lhs, *rhs;
1448 enum pet_op_type op;
1450 op = BinaryOperatorKind2pet_op_type(expr->getOpcode());
1451 if (op == pet_op_last) {
1452 unsupported(expr);
1453 return NULL;
1456 lhs = extract_expr(expr->getLHS());
1457 rhs = extract_expr(expr->getRHS());
1459 if (expr->isAssignmentOp() && lhs && lhs->type == pet_expr_access) {
1460 mark_write(lhs);
1461 if (expr->isCompoundAssignmentOp())
1462 lhs->acc.read = 1;
1465 if (expr->getOpcode() == BO_Assign)
1466 assign(lhs, expr->getRHS());
1468 return pet_expr_new_binary(ctx, op, lhs, rhs);
1471 /* Construct a pet_scop with a single statement killing the entire
1472 * array "array".
1474 struct pet_scop *PetScan::kill(Stmt *stmt, struct pet_array *array)
1476 isl_map *access;
1477 struct pet_expr *expr;
1479 if (!array)
1480 return NULL;
1481 access = isl_map_from_range(isl_set_copy(array->extent));
1482 expr = pet_expr_kill_from_access(access);
1483 return extract(stmt, expr);
1486 /* Construct a pet_scop for a (single) variable declaration.
1488 * The scop contains the variable being declared (as an array)
1489 * and a statement killing the array.
1491 * If the variable is initialized in the AST, then the scop
1492 * also contains an assignment to the variable.
1494 struct pet_scop *PetScan::extract(DeclStmt *stmt)
1496 Decl *decl;
1497 VarDecl *vd;
1498 struct pet_expr *lhs, *rhs, *pe;
1499 struct pet_scop *scop_decl, *scop;
1500 struct pet_array *array;
1502 if (!stmt->isSingleDecl()) {
1503 unsupported(stmt);
1504 return NULL;
1507 decl = stmt->getSingleDecl();
1508 vd = cast<VarDecl>(decl);
1510 array = extract_array(ctx, vd);
1511 if (array)
1512 array->declared = 1;
1513 scop_decl = kill(stmt, array);
1514 scop_decl = pet_scop_add_array(scop_decl, array);
1516 if (!vd->getInit())
1517 return scop_decl;
1519 lhs = pet_expr_from_access(extract_access(vd));
1520 rhs = extract_expr(vd->getInit());
1522 mark_write(lhs);
1523 assign(lhs, vd->getInit());
1525 pe = pet_expr_new_binary(ctx, pet_op_assign, lhs, rhs);
1526 scop = extract(stmt, pe);
1528 scop_decl = pet_scop_prefix(scop_decl, 0);
1529 scop = pet_scop_prefix(scop, 1);
1531 scop = pet_scop_add_seq(ctx, scop_decl, scop);
1533 return scop;
1536 /* Construct a pet_expr representing a conditional operation.
1538 * We first try to extract the condition as an affine expression.
1539 * If that fails, we construct a pet_expr tree representing the condition.
1541 struct pet_expr *PetScan::extract_expr(ConditionalOperator *expr)
1543 struct pet_expr *cond, *lhs, *rhs;
1544 isl_pw_aff *pa;
1546 pa = try_extract_affine(expr->getCond());
1547 if (pa) {
1548 isl_set *test = isl_set_from_pw_aff(pa);
1549 cond = pet_expr_from_access(isl_map_from_range(test));
1550 } else
1551 cond = extract_expr(expr->getCond());
1552 lhs = extract_expr(expr->getTrueExpr());
1553 rhs = extract_expr(expr->getFalseExpr());
1555 return pet_expr_new_ternary(ctx, cond, lhs, rhs);
1558 struct pet_expr *PetScan::extract_expr(ImplicitCastExpr *expr)
1560 return extract_expr(expr->getSubExpr());
1563 /* Construct a pet_expr representing a floating point value.
1565 * If the floating point literal does not appear in a macro,
1566 * then we use the original representation in the source code
1567 * as the string representation. Otherwise, we use the pretty
1568 * printer to produce a string representation.
1570 struct pet_expr *PetScan::extract_expr(FloatingLiteral *expr)
1572 double d;
1573 string s;
1574 const LangOptions &LO = PP.getLangOpts();
1575 SourceLocation loc = expr->getLocation();
1577 if (!loc.isMacroID()) {
1578 SourceManager &SM = PP.getSourceManager();
1579 unsigned len = Lexer::MeasureTokenLength(loc, SM, LO);
1580 s = string(SM.getCharacterData(loc), len);
1581 } else {
1582 llvm::raw_string_ostream S(s);
1583 expr->printPretty(S, 0, PrintingPolicy(LO));
1584 S.str();
1586 d = expr->getValueAsApproximateDouble();
1587 return pet_expr_new_double(ctx, d, s.c_str());
1590 /* Extract an access relation from "expr" and then convert it into
1591 * a pet_expr.
1593 struct pet_expr *PetScan::extract_access_expr(Expr *expr)
1595 isl_map *access;
1596 struct pet_expr *pe;
1598 access = extract_access(expr);
1600 pe = pet_expr_from_access(access);
1602 return pe;
1605 struct pet_expr *PetScan::extract_expr(ParenExpr *expr)
1607 return extract_expr(expr->getSubExpr());
1610 /* Construct a pet_expr representing a function call.
1612 * If we are passing along a pointer to an array element
1613 * or an entire row or even higher dimensional slice of an array,
1614 * then the function being called may write into the array.
1616 * We assume here that if the function is declared to take a pointer
1617 * to a const type, then the function will perform a read
1618 * and that otherwise, it will perform a write.
1620 struct pet_expr *PetScan::extract_expr(CallExpr *expr)
1622 struct pet_expr *res = NULL;
1623 FunctionDecl *fd;
1624 string name;
1626 fd = expr->getDirectCallee();
1627 if (!fd) {
1628 unsupported(expr);
1629 return NULL;
1632 name = fd->getDeclName().getAsString();
1633 res = pet_expr_new_call(ctx, name.c_str(), expr->getNumArgs());
1634 if (!res)
1635 return NULL;
1637 for (int i = 0; i < expr->getNumArgs(); ++i) {
1638 Expr *arg = expr->getArg(i);
1639 int is_addr = 0;
1640 pet_expr *main_arg;
1642 if (arg->getStmtClass() == Stmt::ImplicitCastExprClass) {
1643 ImplicitCastExpr *ice = cast<ImplicitCastExpr>(arg);
1644 arg = ice->getSubExpr();
1646 if (arg->getStmtClass() == Stmt::UnaryOperatorClass) {
1647 UnaryOperator *op = cast<UnaryOperator>(arg);
1648 if (op->getOpcode() == UO_AddrOf) {
1649 is_addr = 1;
1650 arg = op->getSubExpr();
1653 res->args[i] = PetScan::extract_expr(arg);
1654 main_arg = res->args[i];
1655 if (is_addr)
1656 res->args[i] = pet_expr_new_unary(ctx,
1657 pet_op_address_of, res->args[i]);
1658 if (!res->args[i])
1659 goto error;
1660 if (arg->getStmtClass() == Stmt::ArraySubscriptExprClass &&
1661 array_depth(arg->getType().getTypePtr()) > 0)
1662 is_addr = 1;
1663 if (is_addr && main_arg->type == pet_expr_access) {
1664 ParmVarDecl *parm;
1665 if (!fd->hasPrototype()) {
1666 unsupported(expr, "prototype required");
1667 goto error;
1669 parm = fd->getParamDecl(i);
1670 if (!const_base(parm->getType()))
1671 mark_write(main_arg);
1675 return res;
1676 error:
1677 pet_expr_free(res);
1678 return NULL;
1681 /* Construct a pet_expr representing a (C style) cast.
1683 struct pet_expr *PetScan::extract_expr(CStyleCastExpr *expr)
1685 struct pet_expr *arg;
1686 QualType type;
1688 arg = extract_expr(expr->getSubExpr());
1689 if (!arg)
1690 return NULL;
1692 type = expr->getTypeAsWritten();
1693 return pet_expr_new_cast(ctx, type.getAsString().c_str(), arg);
1696 /* Try and onstruct a pet_expr representing "expr".
1698 struct pet_expr *PetScan::extract_expr(Expr *expr)
1700 switch (expr->getStmtClass()) {
1701 case Stmt::UnaryOperatorClass:
1702 return extract_expr(cast<UnaryOperator>(expr));
1703 case Stmt::CompoundAssignOperatorClass:
1704 case Stmt::BinaryOperatorClass:
1705 return extract_expr(cast<BinaryOperator>(expr));
1706 case Stmt::ImplicitCastExprClass:
1707 return extract_expr(cast<ImplicitCastExpr>(expr));
1708 case Stmt::ArraySubscriptExprClass:
1709 case Stmt::DeclRefExprClass:
1710 case Stmt::IntegerLiteralClass:
1711 return extract_access_expr(expr);
1712 case Stmt::FloatingLiteralClass:
1713 return extract_expr(cast<FloatingLiteral>(expr));
1714 case Stmt::ParenExprClass:
1715 return extract_expr(cast<ParenExpr>(expr));
1716 case Stmt::ConditionalOperatorClass:
1717 return extract_expr(cast<ConditionalOperator>(expr));
1718 case Stmt::CallExprClass:
1719 return extract_expr(cast<CallExpr>(expr));
1720 case Stmt::CStyleCastExprClass:
1721 return extract_expr(cast<CStyleCastExpr>(expr));
1722 default:
1723 unsupported(expr);
1725 return NULL;
1728 /* Check if the given initialization statement is an assignment.
1729 * If so, return that assignment. Otherwise return NULL.
1731 BinaryOperator *PetScan::initialization_assignment(Stmt *init)
1733 BinaryOperator *ass;
1735 if (init->getStmtClass() != Stmt::BinaryOperatorClass)
1736 return NULL;
1738 ass = cast<BinaryOperator>(init);
1739 if (ass->getOpcode() != BO_Assign)
1740 return NULL;
1742 return ass;
1745 /* Check if the given initialization statement is a declaration
1746 * of a single variable.
1747 * If so, return that declaration. Otherwise return NULL.
1749 Decl *PetScan::initialization_declaration(Stmt *init)
1751 DeclStmt *decl;
1753 if (init->getStmtClass() != Stmt::DeclStmtClass)
1754 return NULL;
1756 decl = cast<DeclStmt>(init);
1758 if (!decl->isSingleDecl())
1759 return NULL;
1761 return decl->getSingleDecl();
1764 /* Given the assignment operator in the initialization of a for loop,
1765 * extract the induction variable, i.e., the (integer)variable being
1766 * assigned.
1768 ValueDecl *PetScan::extract_induction_variable(BinaryOperator *init)
1770 Expr *lhs;
1771 DeclRefExpr *ref;
1772 ValueDecl *decl;
1773 const Type *type;
1775 lhs = init->getLHS();
1776 if (lhs->getStmtClass() != Stmt::DeclRefExprClass) {
1777 unsupported(init);
1778 return NULL;
1781 ref = cast<DeclRefExpr>(lhs);
1782 decl = ref->getDecl();
1783 type = decl->getType().getTypePtr();
1785 if (!type->isIntegerType()) {
1786 unsupported(lhs);
1787 return NULL;
1790 return decl;
1793 /* Given the initialization statement of a for loop and the single
1794 * declaration in this initialization statement,
1795 * extract the induction variable, i.e., the (integer) variable being
1796 * declared.
1798 VarDecl *PetScan::extract_induction_variable(Stmt *init, Decl *decl)
1800 VarDecl *vd;
1802 vd = cast<VarDecl>(decl);
1804 const QualType type = vd->getType();
1805 if (!type->isIntegerType()) {
1806 unsupported(init);
1807 return NULL;
1810 if (!vd->getInit()) {
1811 unsupported(init);
1812 return NULL;
1815 return vd;
1818 /* Check that op is of the form iv++ or iv--.
1819 * Return an affine expression "1" or "-1" accordingly.
1821 __isl_give isl_pw_aff *PetScan::extract_unary_increment(
1822 clang::UnaryOperator *op, clang::ValueDecl *iv)
1824 Expr *sub;
1825 DeclRefExpr *ref;
1826 isl_space *space;
1827 isl_aff *aff;
1829 if (!op->isIncrementDecrementOp()) {
1830 unsupported(op);
1831 return NULL;
1834 sub = op->getSubExpr();
1835 if (sub->getStmtClass() != Stmt::DeclRefExprClass) {
1836 unsupported(op);
1837 return NULL;
1840 ref = cast<DeclRefExpr>(sub);
1841 if (ref->getDecl() != iv) {
1842 unsupported(op);
1843 return NULL;
1846 space = isl_space_params_alloc(ctx, 0);
1847 aff = isl_aff_zero_on_domain(isl_local_space_from_space(space));
1849 if (op->isIncrementOp())
1850 aff = isl_aff_add_constant_si(aff, 1);
1851 else
1852 aff = isl_aff_add_constant_si(aff, -1);
1854 return isl_pw_aff_from_aff(aff);
1857 /* If the isl_pw_aff on which isl_pw_aff_foreach_piece is called
1858 * has a single constant expression, then put this constant in *user.
1859 * The caller is assumed to have checked that this function will
1860 * be called exactly once.
1862 static int extract_cst(__isl_take isl_set *set, __isl_take isl_aff *aff,
1863 void *user)
1865 isl_val **inc = (isl_val **)user;
1866 int res = 0;
1868 if (isl_aff_is_cst(aff))
1869 *inc = isl_aff_get_constant_val(aff);
1870 else
1871 res = -1;
1873 isl_set_free(set);
1874 isl_aff_free(aff);
1876 return res;
1879 /* Check if op is of the form
1881 * iv = iv + inc
1883 * and return inc as an affine expression.
1885 * We extract an affine expression from the RHS, subtract iv and return
1886 * the result.
1888 __isl_give isl_pw_aff *PetScan::extract_binary_increment(BinaryOperator *op,
1889 clang::ValueDecl *iv)
1891 Expr *lhs;
1892 DeclRefExpr *ref;
1893 isl_id *id;
1894 isl_space *dim;
1895 isl_aff *aff;
1896 isl_pw_aff *val;
1898 if (op->getOpcode() != BO_Assign) {
1899 unsupported(op);
1900 return NULL;
1903 lhs = op->getLHS();
1904 if (lhs->getStmtClass() != Stmt::DeclRefExprClass) {
1905 unsupported(op);
1906 return NULL;
1909 ref = cast<DeclRefExpr>(lhs);
1910 if (ref->getDecl() != iv) {
1911 unsupported(op);
1912 return NULL;
1915 val = extract_affine(op->getRHS());
1917 id = isl_id_alloc(ctx, iv->getName().str().c_str(), iv);
1919 dim = isl_space_params_alloc(ctx, 1);
1920 dim = isl_space_set_dim_id(dim, isl_dim_param, 0, id);
1921 aff = isl_aff_zero_on_domain(isl_local_space_from_space(dim));
1922 aff = isl_aff_add_coefficient_si(aff, isl_dim_param, 0, 1);
1924 val = isl_pw_aff_sub(val, isl_pw_aff_from_aff(aff));
1926 return val;
1929 /* Check that op is of the form iv += cst or iv -= cst
1930 * and return an affine expression corresponding oto cst or -cst accordingly.
1932 __isl_give isl_pw_aff *PetScan::extract_compound_increment(
1933 CompoundAssignOperator *op, clang::ValueDecl *iv)
1935 Expr *lhs;
1936 DeclRefExpr *ref;
1937 bool neg = false;
1938 isl_pw_aff *val;
1939 BinaryOperatorKind opcode;
1941 opcode = op->getOpcode();
1942 if (opcode != BO_AddAssign && opcode != BO_SubAssign) {
1943 unsupported(op);
1944 return NULL;
1946 if (opcode == BO_SubAssign)
1947 neg = true;
1949 lhs = op->getLHS();
1950 if (lhs->getStmtClass() != Stmt::DeclRefExprClass) {
1951 unsupported(op);
1952 return NULL;
1955 ref = cast<DeclRefExpr>(lhs);
1956 if (ref->getDecl() != iv) {
1957 unsupported(op);
1958 return NULL;
1961 val = extract_affine(op->getRHS());
1962 if (neg)
1963 val = isl_pw_aff_neg(val);
1965 return val;
1968 /* Check that the increment of the given for loop increments
1969 * (or decrements) the induction variable "iv" and return
1970 * the increment as an affine expression if successful.
1972 __isl_give isl_pw_aff *PetScan::extract_increment(clang::ForStmt *stmt,
1973 ValueDecl *iv)
1975 Stmt *inc = stmt->getInc();
1977 if (!inc) {
1978 unsupported(stmt);
1979 return NULL;
1982 if (inc->getStmtClass() == Stmt::UnaryOperatorClass)
1983 return extract_unary_increment(cast<UnaryOperator>(inc), iv);
1984 if (inc->getStmtClass() == Stmt::CompoundAssignOperatorClass)
1985 return extract_compound_increment(
1986 cast<CompoundAssignOperator>(inc), iv);
1987 if (inc->getStmtClass() == Stmt::BinaryOperatorClass)
1988 return extract_binary_increment(cast<BinaryOperator>(inc), iv);
1990 unsupported(inc);
1991 return NULL;
1994 /* Embed the given iteration domain in an extra outer loop
1995 * with induction variable "var".
1996 * If this variable appeared as a parameter in the constraints,
1997 * it is replaced by the new outermost dimension.
1999 static __isl_give isl_set *embed(__isl_take isl_set *set,
2000 __isl_take isl_id *var)
2002 int pos;
2004 set = isl_set_insert_dims(set, isl_dim_set, 0, 1);
2005 pos = isl_set_find_dim_by_id(set, isl_dim_param, var);
2006 if (pos >= 0) {
2007 set = isl_set_equate(set, isl_dim_param, pos, isl_dim_set, 0);
2008 set = isl_set_project_out(set, isl_dim_param, pos, 1);
2011 isl_id_free(var);
2012 return set;
2015 /* Return those elements in the space of "cond" that come after
2016 * (based on "sign") an element in "cond".
2018 static __isl_give isl_set *after(__isl_take isl_set *cond, int sign)
2020 isl_map *previous_to_this;
2022 if (sign > 0)
2023 previous_to_this = isl_map_lex_lt(isl_set_get_space(cond));
2024 else
2025 previous_to_this = isl_map_lex_gt(isl_set_get_space(cond));
2027 cond = isl_set_apply(cond, previous_to_this);
2029 return cond;
2032 /* Create the infinite iteration domain
2034 * { [id] : id >= 0 }
2036 * If "scop" has an affine skip of type pet_skip_later,
2037 * then remove those iterations i that have an earlier iteration
2038 * where the skip condition is satisfied, meaning that iteration i
2039 * is not executed.
2040 * Since we are dealing with a loop without loop iterator,
2041 * the skip condition cannot refer to the current loop iterator and
2042 * so effectively, the returned set is of the form
2044 * { [0]; [id] : id >= 1 and not skip }
2046 static __isl_give isl_set *infinite_domain(__isl_take isl_id *id,
2047 struct pet_scop *scop)
2049 isl_ctx *ctx = isl_id_get_ctx(id);
2050 isl_set *domain;
2051 isl_set *skip;
2053 domain = isl_set_nat_universe(isl_space_set_alloc(ctx, 0, 1));
2054 domain = isl_set_set_dim_id(domain, isl_dim_set, 0, id);
2056 if (!pet_scop_has_affine_skip(scop, pet_skip_later))
2057 return domain;
2059 skip = pet_scop_get_affine_skip_domain(scop, pet_skip_later);
2060 skip = embed(skip, isl_id_copy(id));
2061 skip = isl_set_intersect(skip , isl_set_copy(domain));
2062 domain = isl_set_subtract(domain, after(skip, 1));
2064 return domain;
2067 /* Create an identity mapping on the space containing "domain".
2069 static __isl_give isl_map *identity_map(__isl_keep isl_set *domain)
2071 isl_space *space;
2072 isl_map *id;
2074 space = isl_space_map_from_set(isl_set_get_space(domain));
2075 id = isl_map_identity(space);
2077 return id;
2080 /* Add a filter to "scop" that imposes that it is only executed
2081 * when "break_access" has a zero value for all previous iterations
2082 * of "domain".
2084 * The input "break_access" has a zero-dimensional domain and range.
2086 static struct pet_scop *scop_add_break(struct pet_scop *scop,
2087 __isl_take isl_map *break_access, __isl_take isl_set *domain, int sign)
2089 isl_ctx *ctx = isl_set_get_ctx(domain);
2090 isl_id *id_test;
2091 isl_map *prev;
2093 id_test = isl_map_get_tuple_id(break_access, isl_dim_out);
2094 break_access = isl_map_add_dims(break_access, isl_dim_in, 1);
2095 break_access = isl_map_add_dims(break_access, isl_dim_out, 1);
2096 break_access = isl_map_intersect_range(break_access, domain);
2097 break_access = isl_map_set_tuple_id(break_access, isl_dim_out, id_test);
2098 if (sign > 0)
2099 prev = isl_map_lex_gt_first(isl_map_get_space(break_access), 1);
2100 else
2101 prev = isl_map_lex_lt_first(isl_map_get_space(break_access), 1);
2102 break_access = isl_map_intersect(break_access, prev);
2103 scop = pet_scop_filter(scop, break_access, 0);
2104 scop = pet_scop_merge_filters(scop);
2106 return scop;
2109 /* Construct a pet_scop for an infinite loop around the given body.
2111 * We extract a pet_scop for the body and then embed it in a loop with
2112 * iteration domain
2114 * { [t] : t >= 0 }
2116 * and schedule
2118 * { [t] -> [t] }
2120 * If the body contains any break, then it is taken into
2121 * account in infinite_domain (if the skip condition is affine)
2122 * or in scop_add_break (if the skip condition is not affine).
2124 struct pet_scop *PetScan::extract_infinite_loop(Stmt *body)
2126 isl_id *id;
2127 isl_set *domain;
2128 isl_map *ident;
2129 isl_map *access;
2130 struct pet_scop *scop;
2131 bool has_var_break;
2133 scop = extract(body);
2134 if (!scop)
2135 return NULL;
2137 id = isl_id_alloc(ctx, "t", NULL);
2138 domain = infinite_domain(isl_id_copy(id), scop);
2139 ident = identity_map(domain);
2141 has_var_break = pet_scop_has_var_skip(scop, pet_skip_later);
2142 if (has_var_break)
2143 access = pet_scop_get_skip_map(scop, pet_skip_later);
2145 scop = pet_scop_embed(scop, isl_set_copy(domain),
2146 isl_map_copy(ident), ident, id);
2147 if (has_var_break)
2148 scop = scop_add_break(scop, access, domain, 1);
2149 else
2150 isl_set_free(domain);
2152 return scop;
2155 /* Construct a pet_scop for an infinite loop, i.e., a loop of the form
2157 * for (;;)
2158 * body
2161 struct pet_scop *PetScan::extract_infinite_for(ForStmt *stmt)
2163 return extract_infinite_loop(stmt->getBody());
2166 /* Create an access to a virtual array representing the result
2167 * of a condition.
2168 * Unlike other accessed data, the id of the array is NULL as
2169 * there is no ValueDecl in the program corresponding to the virtual
2170 * array.
2171 * The array starts out as a scalar, but grows along with the
2172 * statement writing to the array in pet_scop_embed.
2174 static __isl_give isl_map *create_test_access(isl_ctx *ctx, int test_nr)
2176 isl_space *dim = isl_space_alloc(ctx, 0, 0, 0);
2177 isl_id *id;
2178 char name[50];
2180 snprintf(name, sizeof(name), "__pet_test_%d", test_nr);
2181 id = isl_id_alloc(ctx, name, NULL);
2182 dim = isl_space_set_tuple_id(dim, isl_dim_out, id);
2183 return isl_map_universe(dim);
2186 /* Add an array with the given extent ("access") to the list
2187 * of arrays in "scop" and return the extended pet_scop.
2188 * The array is marked as attaining values 0 and 1 only and
2189 * as each element being assigned at most once.
2191 static struct pet_scop *scop_add_array(struct pet_scop *scop,
2192 __isl_keep isl_map *access, clang::ASTContext &ast_ctx)
2194 isl_ctx *ctx = isl_map_get_ctx(access);
2195 isl_space *dim;
2196 struct pet_array *array;
2198 if (!scop)
2199 return NULL;
2200 if (!ctx)
2201 goto error;
2203 array = isl_calloc_type(ctx, struct pet_array);
2204 if (!array)
2205 goto error;
2207 array->extent = isl_map_range(isl_map_copy(access));
2208 dim = isl_space_params_alloc(ctx, 0);
2209 array->context = isl_set_universe(dim);
2210 dim = isl_space_set_alloc(ctx, 0, 1);
2211 array->value_bounds = isl_set_universe(dim);
2212 array->value_bounds = isl_set_lower_bound_si(array->value_bounds,
2213 isl_dim_set, 0, 0);
2214 array->value_bounds = isl_set_upper_bound_si(array->value_bounds,
2215 isl_dim_set, 0, 1);
2216 array->element_type = strdup("int");
2217 array->element_size = ast_ctx.getTypeInfo(ast_ctx.IntTy).first / 8;
2218 array->uniquely_defined = 1;
2220 if (!array->extent || !array->context)
2221 array = pet_array_free(array);
2223 scop = pet_scop_add_array(scop, array);
2225 return scop;
2226 error:
2227 pet_scop_free(scop);
2228 return NULL;
2231 /* Construct a pet_scop for a while loop of the form
2233 * while (pa)
2234 * body
2236 * In particular, construct a scop for an infinite loop around body and
2237 * intersect the domain with the affine expression.
2238 * Note that this intersection may result in an empty loop.
2240 struct pet_scop *PetScan::extract_affine_while(__isl_take isl_pw_aff *pa,
2241 Stmt *body)
2243 struct pet_scop *scop;
2244 isl_set *dom;
2245 isl_set *valid;
2247 valid = isl_pw_aff_domain(isl_pw_aff_copy(pa));
2248 dom = isl_pw_aff_non_zero_set(pa);
2249 scop = extract_infinite_loop(body);
2250 scop = pet_scop_restrict(scop, dom);
2251 scop = pet_scop_restrict_context(scop, valid);
2253 return scop;
2256 /* Construct a scop for a while, given the scops for the condition
2257 * and the body, the filter access and the iteration domain of
2258 * the while loop.
2260 * In particular, the scop for the condition is filtered to depend
2261 * on "test_access" evaluating to true for all previous iterations
2262 * of the loop, while the scop for the body is filtered to depend
2263 * on "test_access" evaluating to true for all iterations up to the
2264 * current iteration.
2266 * These filtered scops are then combined into a single scop.
2268 * "sign" is positive if the iterator increases and negative
2269 * if it decreases.
2271 static struct pet_scop *scop_add_while(struct pet_scop *scop_cond,
2272 struct pet_scop *scop_body, __isl_take isl_map *test_access,
2273 __isl_take isl_set *domain, int sign)
2275 isl_ctx *ctx = isl_set_get_ctx(domain);
2276 isl_id *id_test;
2277 isl_map *prev;
2279 id_test = isl_map_get_tuple_id(test_access, isl_dim_out);
2280 test_access = isl_map_add_dims(test_access, isl_dim_in, 1);
2281 test_access = isl_map_add_dims(test_access, isl_dim_out, 1);
2282 test_access = isl_map_intersect_range(test_access, domain);
2283 test_access = isl_map_set_tuple_id(test_access, isl_dim_out, id_test);
2284 if (sign > 0)
2285 prev = isl_map_lex_ge_first(isl_map_get_space(test_access), 1);
2286 else
2287 prev = isl_map_lex_le_first(isl_map_get_space(test_access), 1);
2288 test_access = isl_map_intersect(test_access, prev);
2289 scop_body = pet_scop_filter(scop_body, isl_map_copy(test_access), 1);
2290 if (sign > 0)
2291 prev = isl_map_lex_gt_first(isl_map_get_space(test_access), 1);
2292 else
2293 prev = isl_map_lex_lt_first(isl_map_get_space(test_access), 1);
2294 test_access = isl_map_intersect(test_access, prev);
2295 scop_cond = pet_scop_filter(scop_cond, test_access, 1);
2297 return pet_scop_add_seq(ctx, scop_cond, scop_body);
2300 /* Check if the while loop is of the form
2302 * while (affine expression)
2303 * body
2305 * If so, call extract_affine_while to construct a scop.
2307 * Otherwise, construct a generic while scop, with iteration domain
2308 * { [t] : t >= 0 }. The scop consists of two parts, one for
2309 * evaluating the condition and one for the body.
2310 * The schedule is adjusted to reflect that the condition is evaluated
2311 * before the body is executed and the body is filtered to depend
2312 * on the result of the condition evaluating to true on all iterations
2313 * up to the current iteration, while the evaluation the condition itself
2314 * is filtered to depend on the result of the condition evaluating to true
2315 * on all previous iterations.
2316 * The context of the scop representing the body is dropped
2317 * because we don't know how many times the body will be executed,
2318 * if at all.
2320 * If the body contains any break, then it is taken into
2321 * account in infinite_domain (if the skip condition is affine)
2322 * or in scop_add_break (if the skip condition is not affine).
2324 struct pet_scop *PetScan::extract(WhileStmt *stmt)
2326 Expr *cond;
2327 isl_id *id;
2328 isl_map *test_access;
2329 isl_set *domain;
2330 isl_map *ident;
2331 isl_pw_aff *pa;
2332 struct pet_scop *scop, *scop_body;
2333 bool has_var_break;
2334 isl_map *break_access;
2336 cond = stmt->getCond();
2337 if (!cond) {
2338 unsupported(stmt);
2339 return NULL;
2342 clear_assignments clear(assigned_value);
2343 clear.TraverseStmt(stmt->getBody());
2345 pa = try_extract_affine_condition(cond);
2346 if (pa)
2347 return extract_affine_while(pa, stmt->getBody());
2349 if (!allow_nested) {
2350 unsupported(stmt);
2351 return NULL;
2354 test_access = create_test_access(ctx, n_test++);
2355 scop = extract_non_affine_condition(cond, isl_map_copy(test_access));
2356 scop = scop_add_array(scop, test_access, ast_context);
2357 scop_body = extract(stmt->getBody());
2359 id = isl_id_alloc(ctx, "t", NULL);
2360 domain = infinite_domain(isl_id_copy(id), scop_body);
2361 ident = identity_map(domain);
2363 has_var_break = pet_scop_has_var_skip(scop_body, pet_skip_later);
2364 if (has_var_break)
2365 break_access = pet_scop_get_skip_map(scop_body, pet_skip_later);
2367 scop = pet_scop_prefix(scop, 0);
2368 scop = pet_scop_embed(scop, isl_set_copy(domain), isl_map_copy(ident),
2369 isl_map_copy(ident), isl_id_copy(id));
2370 scop_body = pet_scop_reset_context(scop_body);
2371 scop_body = pet_scop_prefix(scop_body, 1);
2372 scop_body = pet_scop_embed(scop_body, isl_set_copy(domain),
2373 isl_map_copy(ident), ident, id);
2375 if (has_var_break) {
2376 scop = scop_add_break(scop, isl_map_copy(break_access),
2377 isl_set_copy(domain), 1);
2378 scop_body = scop_add_break(scop_body, break_access,
2379 isl_set_copy(domain), 1);
2381 scop = scop_add_while(scop, scop_body, test_access, domain, 1);
2383 return scop;
2386 /* Check whether "cond" expresses a simple loop bound
2387 * on the only set dimension.
2388 * In particular, if "up" is set then "cond" should contain only
2389 * upper bounds on the set dimension.
2390 * Otherwise, it should contain only lower bounds.
2392 static bool is_simple_bound(__isl_keep isl_set *cond, __isl_keep isl_val *inc)
2394 if (isl_val_is_pos(inc))
2395 return !isl_set_dim_has_any_lower_bound(cond, isl_dim_set, 0);
2396 else
2397 return !isl_set_dim_has_any_upper_bound(cond, isl_dim_set, 0);
2400 /* Extend a condition on a given iteration of a loop to one that
2401 * imposes the same condition on all previous iterations.
2402 * "domain" expresses the lower [upper] bound on the iterations
2403 * when inc is positive [negative].
2405 * In particular, we construct the condition (when inc is positive)
2407 * forall i' : (domain(i') and i' <= i) => cond(i')
2409 * which is equivalent to
2411 * not exists i' : domain(i') and i' <= i and not cond(i')
2413 * We construct this set by negating cond, applying a map
2415 * { [i'] -> [i] : domain(i') and i' <= i }
2417 * and then negating the result again.
2419 static __isl_give isl_set *valid_for_each_iteration(__isl_take isl_set *cond,
2420 __isl_take isl_set *domain, __isl_take isl_val *inc)
2422 isl_map *previous_to_this;
2424 if (isl_val_is_pos(inc))
2425 previous_to_this = isl_map_lex_le(isl_set_get_space(domain));
2426 else
2427 previous_to_this = isl_map_lex_ge(isl_set_get_space(domain));
2429 previous_to_this = isl_map_intersect_domain(previous_to_this, domain);
2431 cond = isl_set_complement(cond);
2432 cond = isl_set_apply(cond, previous_to_this);
2433 cond = isl_set_complement(cond);
2435 isl_val_free(inc);
2437 return cond;
2440 /* Construct a domain of the form
2442 * [id] -> { : exists a: id = init + a * inc and a >= 0 }
2444 static __isl_give isl_set *strided_domain(__isl_take isl_id *id,
2445 __isl_take isl_pw_aff *init, __isl_take isl_val *inc)
2447 isl_aff *aff;
2448 isl_space *dim;
2449 isl_set *set;
2451 init = isl_pw_aff_insert_dims(init, isl_dim_in, 0, 1);
2452 dim = isl_pw_aff_get_domain_space(init);
2453 aff = isl_aff_zero_on_domain(isl_local_space_from_space(dim));
2454 aff = isl_aff_add_coefficient_val(aff, isl_dim_in, 0, inc);
2455 init = isl_pw_aff_add(init, isl_pw_aff_from_aff(aff));
2457 dim = isl_space_set_alloc(isl_pw_aff_get_ctx(init), 1, 1);
2458 dim = isl_space_set_dim_id(dim, isl_dim_param, 0, id);
2459 aff = isl_aff_zero_on_domain(isl_local_space_from_space(dim));
2460 aff = isl_aff_add_coefficient_si(aff, isl_dim_param, 0, 1);
2462 set = isl_pw_aff_eq_set(isl_pw_aff_from_aff(aff), init);
2464 set = isl_set_lower_bound_si(set, isl_dim_set, 0, 0);
2466 return isl_set_params(set);
2469 /* Assuming "cond" represents a bound on a loop where the loop
2470 * iterator "iv" is incremented (or decremented) by one, check if wrapping
2471 * is possible.
2473 * Under the given assumptions, wrapping is only possible if "cond" allows
2474 * for the last value before wrapping, i.e., 2^width - 1 in case of an
2475 * increasing iterator and 0 in case of a decreasing iterator.
2477 static bool can_wrap(__isl_keep isl_set *cond, ValueDecl *iv,
2478 __isl_keep isl_val *inc)
2480 bool cw;
2481 isl_ctx *ctx;
2482 isl_val *limit;
2483 isl_set *test;
2485 test = isl_set_copy(cond);
2487 ctx = isl_set_get_ctx(test);
2488 if (isl_val_is_neg(inc))
2489 limit = isl_val_zero(ctx);
2490 else {
2491 limit = isl_val_int_from_ui(ctx, get_type_size(iv));
2492 limit = isl_val_2exp(limit);
2493 limit = isl_val_sub_ui(limit, 1);
2496 test = isl_set_fix_val(cond, isl_dim_set, 0, limit);
2497 cw = !isl_set_is_empty(test);
2498 isl_set_free(test);
2500 return cw;
2503 /* Given a one-dimensional space, construct the following mapping on this
2504 * space
2506 * { [v] -> [v mod 2^width] }
2508 * where width is the number of bits used to represent the values
2509 * of the unsigned variable "iv".
2511 static __isl_give isl_map *compute_wrapping(__isl_take isl_space *dim,
2512 ValueDecl *iv)
2514 isl_ctx *ctx;
2515 isl_val *mod;
2516 isl_aff *aff;
2517 isl_map *map;
2519 ctx = isl_space_get_ctx(dim);
2520 mod = isl_val_int_from_ui(ctx, get_type_size(iv));
2521 mod = isl_val_2exp(mod);
2523 aff = isl_aff_zero_on_domain(isl_local_space_from_space(dim));
2524 aff = isl_aff_add_coefficient_si(aff, isl_dim_in, 0, 1);
2525 aff = isl_aff_mod_val(aff, mod);
2527 return isl_map_from_basic_map(isl_basic_map_from_aff(aff));
2528 map = isl_map_reverse(map);
2531 /* Project out the parameter "id" from "set".
2533 static __isl_give isl_set *set_project_out_by_id(__isl_take isl_set *set,
2534 __isl_keep isl_id *id)
2536 int pos;
2538 pos = isl_set_find_dim_by_id(set, isl_dim_param, id);
2539 if (pos >= 0)
2540 set = isl_set_project_out(set, isl_dim_param, pos, 1);
2542 return set;
2545 /* Compute the set of parameters for which "set1" is a subset of "set2".
2547 * set1 is a subset of set2 if
2549 * forall i in set1 : i in set2
2551 * or
2553 * not exists i in set1 and i not in set2
2555 * i.e.,
2557 * not exists i in set1 \ set2
2559 static __isl_give isl_set *enforce_subset(__isl_take isl_set *set1,
2560 __isl_take isl_set *set2)
2562 return isl_set_complement(isl_set_params(isl_set_subtract(set1, set2)));
2565 /* Compute the set of parameter values for which "cond" holds
2566 * on the next iteration for each element of "dom".
2568 * We first construct mapping { [i] -> [i + inc] }, apply that to "dom"
2569 * and then compute the set of parameters for which the result is a subset
2570 * of "cond".
2572 static __isl_give isl_set *valid_on_next(__isl_take isl_set *cond,
2573 __isl_take isl_set *dom, __isl_take isl_val *inc)
2575 isl_space *space;
2576 isl_aff *aff;
2577 isl_map *next;
2579 space = isl_set_get_space(dom);
2580 aff = isl_aff_zero_on_domain(isl_local_space_from_space(space));
2581 aff = isl_aff_add_coefficient_si(aff, isl_dim_in, 0, 1);
2582 aff = isl_aff_add_constant_val(aff, inc);
2583 next = isl_map_from_basic_map(isl_basic_map_from_aff(aff));
2585 dom = isl_set_apply(dom, next);
2587 return enforce_subset(dom, cond);
2590 /* Does "id" refer to a nested access?
2592 static bool is_nested_parameter(__isl_keep isl_id *id)
2594 return id && isl_id_get_user(id) && !isl_id_get_name(id);
2597 /* Does parameter "pos" of "space" refer to a nested access?
2599 static bool is_nested_parameter(__isl_keep isl_space *space, int pos)
2601 bool nested;
2602 isl_id *id;
2604 id = isl_space_get_dim_id(space, isl_dim_param, pos);
2605 nested = is_nested_parameter(id);
2606 isl_id_free(id);
2608 return nested;
2611 /* Does "space" involve any parameters that refer to nested
2612 * accesses, i.e., parameters with no name?
2614 static bool has_nested(__isl_keep isl_space *space)
2616 int nparam;
2618 nparam = isl_space_dim(space, isl_dim_param);
2619 for (int i = 0; i < nparam; ++i)
2620 if (is_nested_parameter(space, i))
2621 return true;
2623 return false;
2626 /* Does "pa" involve any parameters that refer to nested
2627 * accesses, i.e., parameters with no name?
2629 static bool has_nested(__isl_keep isl_pw_aff *pa)
2631 isl_space *space;
2632 bool nested;
2634 space = isl_pw_aff_get_space(pa);
2635 nested = has_nested(space);
2636 isl_space_free(space);
2638 return nested;
2641 /* Construct a pet_scop for a for statement.
2642 * The for loop is required to be of the form
2644 * for (i = init; condition; ++i)
2646 * or
2648 * for (i = init; condition; --i)
2650 * The initialization of the for loop should either be an assignment
2651 * to an integer variable, or a declaration of such a variable with
2652 * initialization.
2654 * The condition is allowed to contain nested accesses, provided
2655 * they are not being written to inside the body of the loop.
2656 * Otherwise, or if the condition is otherwise non-affine, the for loop is
2657 * essentially treated as a while loop, with iteration domain
2658 * { [i] : i >= init }.
2660 * We extract a pet_scop for the body and then embed it in a loop with
2661 * iteration domain and schedule
2663 * { [i] : i >= init and condition' }
2664 * { [i] -> [i] }
2666 * or
2668 * { [i] : i <= init and condition' }
2669 * { [i] -> [-i] }
2671 * Where condition' is equal to condition if the latter is
2672 * a simple upper [lower] bound and a condition that is extended
2673 * to apply to all previous iterations otherwise.
2675 * If the condition is non-affine, then we drop the condition from the
2676 * iteration domain and instead create a separate statement
2677 * for evaluating the condition. The body is then filtered to depend
2678 * on the result of the condition evaluating to true on all iterations
2679 * up to the current iteration, while the evaluation the condition itself
2680 * is filtered to depend on the result of the condition evaluating to true
2681 * on all previous iterations.
2682 * The context of the scop representing the body is dropped
2683 * because we don't know how many times the body will be executed,
2684 * if at all.
2686 * If the stride of the loop is not 1, then "i >= init" is replaced by
2688 * (exists a: i = init + stride * a and a >= 0)
2690 * If the loop iterator i is unsigned, then wrapping may occur.
2691 * During the computation, we work with a virtual iterator that
2692 * does not wrap. However, the condition in the code applies
2693 * to the wrapped value, so we need to change condition(i)
2694 * into condition([i % 2^width]).
2695 * After computing the virtual domain and schedule, we apply
2696 * the function { [v] -> [v % 2^width] } to the domain and the domain
2697 * of the schedule. In order not to lose any information, we also
2698 * need to intersect the domain of the schedule with the virtual domain
2699 * first, since some iterations in the wrapped domain may be scheduled
2700 * several times, typically an infinite number of times.
2701 * Note that there may be no need to perform this final wrapping
2702 * if the loop condition (after wrapping) satisfies certain conditions.
2703 * However, the is_simple_bound condition is not enough since it doesn't
2704 * check if there even is an upper bound.
2706 * If the loop condition is non-affine, then we keep the virtual
2707 * iterator in the iteration domain and instead replace all accesses
2708 * to the original iterator by the wrapping of the virtual iterator.
2710 * Wrapping on unsigned iterators can be avoided entirely if
2711 * loop condition is simple, the loop iterator is incremented
2712 * [decremented] by one and the last value before wrapping cannot
2713 * possibly satisfy the loop condition.
2715 * Before extracting a pet_scop from the body we remove all
2716 * assignments in assigned_value to variables that are assigned
2717 * somewhere in the body of the loop.
2719 * Valid parameters for a for loop are those for which the initial
2720 * value itself, the increment on each domain iteration and
2721 * the condition on both the initial value and
2722 * the result of incrementing the iterator for each iteration of the domain
2723 * can be evaluated.
2724 * If the loop condition is non-affine, then we only consider validity
2725 * of the initial value.
2727 * If the body contains any break, then we keep track of it in "skip"
2728 * (if the skip condition is affine) or it is handled in scop_add_break
2729 * (if the skip condition is not affine).
2730 * Note that the affine break condition needs to be considered with
2731 * respect to previous iterations in the virtual domain (if any)
2732 * and that the domain needs to be kept virtual if there is a non-affine
2733 * break condition.
2735 struct pet_scop *PetScan::extract_for(ForStmt *stmt)
2737 BinaryOperator *ass;
2738 Decl *decl;
2739 Stmt *init;
2740 Expr *lhs, *rhs;
2741 ValueDecl *iv;
2742 isl_space *space;
2743 isl_set *domain;
2744 isl_map *sched;
2745 isl_set *cond = NULL;
2746 isl_set *skip = NULL;
2747 isl_id *id;
2748 struct pet_scop *scop, *scop_cond = NULL;
2749 assigned_value_cache cache(assigned_value);
2750 isl_val *inc;
2751 bool is_one;
2752 bool is_unsigned;
2753 bool is_simple;
2754 bool is_virtual;
2755 bool keep_virtual = false;
2756 bool has_affine_break;
2757 bool has_var_break;
2758 isl_map *wrap = NULL;
2759 isl_pw_aff *pa, *pa_inc, *init_val;
2760 isl_set *valid_init;
2761 isl_set *valid_cond;
2762 isl_set *valid_cond_init;
2763 isl_set *valid_cond_next;
2764 isl_set *valid_inc;
2765 isl_map *test_access = NULL, *break_access = NULL;
2766 int stmt_id;
2768 if (!stmt->getInit() && !stmt->getCond() && !stmt->getInc())
2769 return extract_infinite_for(stmt);
2771 init = stmt->getInit();
2772 if (!init) {
2773 unsupported(stmt);
2774 return NULL;
2776 if ((ass = initialization_assignment(init)) != NULL) {
2777 iv = extract_induction_variable(ass);
2778 if (!iv)
2779 return NULL;
2780 lhs = ass->getLHS();
2781 rhs = ass->getRHS();
2782 } else if ((decl = initialization_declaration(init)) != NULL) {
2783 VarDecl *var = extract_induction_variable(init, decl);
2784 if (!var)
2785 return NULL;
2786 iv = var;
2787 rhs = var->getInit();
2788 lhs = create_DeclRefExpr(var);
2789 } else {
2790 unsupported(stmt->getInit());
2791 return NULL;
2794 pa_inc = extract_increment(stmt, iv);
2795 if (!pa_inc)
2796 return NULL;
2798 inc = NULL;
2799 if (isl_pw_aff_n_piece(pa_inc) != 1 ||
2800 isl_pw_aff_foreach_piece(pa_inc, &extract_cst, &inc) < 0) {
2801 isl_pw_aff_free(pa_inc);
2802 unsupported(stmt->getInc());
2803 isl_val_free(inc);
2804 return NULL;
2806 valid_inc = isl_pw_aff_domain(pa_inc);
2808 is_unsigned = iv->getType()->isUnsignedIntegerType();
2810 assigned_value.erase(iv);
2811 clear_assignments clear(assigned_value);
2812 clear.TraverseStmt(stmt->getBody());
2814 id = isl_id_alloc(ctx, iv->getName().str().c_str(), iv);
2816 pa = try_extract_nested_condition(stmt->getCond());
2817 if (allow_nested && (!pa || has_nested(pa)))
2818 stmt_id = n_stmt++;
2820 scop = extract(stmt->getBody());
2822 has_affine_break = scop &&
2823 pet_scop_has_affine_skip(scop, pet_skip_later);
2824 if (has_affine_break)
2825 skip = pet_scop_get_affine_skip_domain(scop, pet_skip_later);
2826 has_var_break = scop && pet_scop_has_var_skip(scop, pet_skip_later);
2827 if (has_var_break) {
2828 break_access = pet_scop_get_skip_map(scop, pet_skip_later);
2829 keep_virtual = true;
2832 if (pa && !is_nested_allowed(pa, scop)) {
2833 isl_pw_aff_free(pa);
2834 pa = NULL;
2837 if (!allow_nested && !pa)
2838 pa = try_extract_affine_condition(stmt->getCond());
2839 valid_cond = isl_pw_aff_domain(isl_pw_aff_copy(pa));
2840 cond = isl_pw_aff_non_zero_set(pa);
2841 if (allow_nested && !cond) {
2842 int save_n_stmt = n_stmt;
2843 test_access = create_test_access(ctx, n_test++);
2844 n_stmt = stmt_id;
2845 scop_cond = extract_non_affine_condition(stmt->getCond(),
2846 isl_map_copy(test_access));
2847 n_stmt = save_n_stmt;
2848 scop_cond = scop_add_array(scop_cond, test_access, ast_context);
2849 scop_cond = pet_scop_prefix(scop_cond, 0);
2850 scop = pet_scop_reset_context(scop);
2851 scop = pet_scop_prefix(scop, 1);
2852 keep_virtual = true;
2853 cond = isl_set_universe(isl_space_set_alloc(ctx, 0, 0));
2856 cond = embed(cond, isl_id_copy(id));
2857 skip = embed(skip, isl_id_copy(id));
2858 valid_cond = isl_set_coalesce(valid_cond);
2859 valid_cond = embed(valid_cond, isl_id_copy(id));
2860 valid_inc = embed(valid_inc, isl_id_copy(id));
2861 is_one = isl_val_is_one(inc) || isl_val_is_negone(inc);
2862 is_virtual = is_unsigned && (!is_one || can_wrap(cond, iv, inc));
2864 init_val = extract_affine(rhs);
2865 valid_cond_init = enforce_subset(
2866 isl_set_from_pw_aff(isl_pw_aff_copy(init_val)),
2867 isl_set_copy(valid_cond));
2868 if (is_one && !is_virtual) {
2869 isl_pw_aff_free(init_val);
2870 pa = extract_comparison(isl_val_is_pos(inc) ? BO_GE : BO_LE,
2871 lhs, rhs, init);
2872 valid_init = isl_pw_aff_domain(isl_pw_aff_copy(pa));
2873 valid_init = set_project_out_by_id(valid_init, id);
2874 domain = isl_pw_aff_non_zero_set(pa);
2875 } else {
2876 valid_init = isl_pw_aff_domain(isl_pw_aff_copy(init_val));
2877 domain = strided_domain(isl_id_copy(id), init_val,
2878 isl_val_copy(inc));
2881 domain = embed(domain, isl_id_copy(id));
2882 if (is_virtual) {
2883 isl_map *rev_wrap;
2884 wrap = compute_wrapping(isl_set_get_space(cond), iv);
2885 rev_wrap = isl_map_reverse(isl_map_copy(wrap));
2886 cond = isl_set_apply(cond, isl_map_copy(rev_wrap));
2887 skip = isl_set_apply(skip, isl_map_copy(rev_wrap));
2888 valid_cond = isl_set_apply(valid_cond, isl_map_copy(rev_wrap));
2889 valid_inc = isl_set_apply(valid_inc, rev_wrap);
2891 is_simple = is_simple_bound(cond, inc);
2892 if (!is_simple) {
2893 cond = isl_set_gist(cond, isl_set_copy(domain));
2894 is_simple = is_simple_bound(cond, inc);
2896 if (!is_simple)
2897 cond = valid_for_each_iteration(cond,
2898 isl_set_copy(domain), isl_val_copy(inc));
2899 domain = isl_set_intersect(domain, cond);
2900 if (has_affine_break) {
2901 skip = isl_set_intersect(skip , isl_set_copy(domain));
2902 skip = after(skip, isl_val_sgn(inc));
2903 domain = isl_set_subtract(domain, skip);
2905 domain = isl_set_set_dim_id(domain, isl_dim_set, 0, isl_id_copy(id));
2906 space = isl_space_from_domain(isl_set_get_space(domain));
2907 space = isl_space_add_dims(space, isl_dim_out, 1);
2908 sched = isl_map_universe(space);
2909 if (isl_val_is_pos(inc))
2910 sched = isl_map_equate(sched, isl_dim_in, 0, isl_dim_out, 0);
2911 else
2912 sched = isl_map_oppose(sched, isl_dim_in, 0, isl_dim_out, 0);
2914 valid_cond_next = valid_on_next(valid_cond, isl_set_copy(domain),
2915 isl_val_copy(inc));
2916 valid_inc = enforce_subset(isl_set_copy(domain), valid_inc);
2918 if (is_virtual && !keep_virtual) {
2919 wrap = isl_map_set_dim_id(wrap,
2920 isl_dim_out, 0, isl_id_copy(id));
2921 sched = isl_map_intersect_domain(sched, isl_set_copy(domain));
2922 domain = isl_set_apply(domain, isl_map_copy(wrap));
2923 sched = isl_map_apply_domain(sched, wrap);
2925 if (!(is_virtual && keep_virtual)) {
2926 space = isl_set_get_space(domain);
2927 wrap = isl_map_identity(isl_space_map_from_set(space));
2930 scop_cond = pet_scop_embed(scop_cond, isl_set_copy(domain),
2931 isl_map_copy(sched), isl_map_copy(wrap), isl_id_copy(id));
2932 scop = pet_scop_embed(scop, isl_set_copy(domain), sched, wrap, id);
2933 scop = resolve_nested(scop);
2934 if (has_var_break)
2935 scop = scop_add_break(scop, break_access, isl_set_copy(domain),
2936 isl_val_sgn(inc));
2937 if (test_access) {
2938 scop = scop_add_while(scop_cond, scop, test_access, domain,
2939 isl_val_sgn(inc));
2940 isl_set_free(valid_inc);
2941 } else {
2942 scop = pet_scop_restrict_context(scop, valid_inc);
2943 scop = pet_scop_restrict_context(scop, valid_cond_next);
2944 scop = pet_scop_restrict_context(scop, valid_cond_init);
2945 isl_set_free(domain);
2947 clear_assignment(assigned_value, iv);
2949 isl_val_free(inc);
2951 scop = pet_scop_restrict_context(scop, valid_init);
2953 return scop;
2956 struct pet_scop *PetScan::extract(CompoundStmt *stmt, bool skip_declarations)
2958 return extract(stmt->children(), true, skip_declarations);
2961 /* Does parameter "pos" of "map" refer to a nested access?
2963 static bool is_nested_parameter(__isl_keep isl_map *map, int pos)
2965 bool nested;
2966 isl_id *id;
2968 id = isl_map_get_dim_id(map, isl_dim_param, pos);
2969 nested = is_nested_parameter(id);
2970 isl_id_free(id);
2972 return nested;
2975 /* How many parameters of "space" refer to nested accesses, i.e., have no name?
2977 static int n_nested_parameter(__isl_keep isl_space *space)
2979 int n = 0;
2980 int nparam;
2982 nparam = isl_space_dim(space, isl_dim_param);
2983 for (int i = 0; i < nparam; ++i)
2984 if (is_nested_parameter(space, i))
2985 ++n;
2987 return n;
2990 /* How many parameters of "map" refer to nested accesses, i.e., have no name?
2992 static int n_nested_parameter(__isl_keep isl_map *map)
2994 isl_space *space;
2995 int n;
2997 space = isl_map_get_space(map);
2998 n = n_nested_parameter(space);
2999 isl_space_free(space);
3001 return n;
3004 /* For each nested access parameter in "space",
3005 * construct a corresponding pet_expr, place it in args and
3006 * record its position in "param2pos".
3007 * "n_arg" is the number of elements that are already in args.
3008 * The position recorded in "param2pos" takes this number into account.
3009 * If the pet_expr corresponding to a parameter is identical to
3010 * the pet_expr corresponding to an earlier parameter, then these two
3011 * parameters are made to refer to the same element in args.
3013 * Return the final number of elements in args or -1 if an error has occurred.
3015 int PetScan::extract_nested(__isl_keep isl_space *space,
3016 int n_arg, struct pet_expr **args, std::map<int,int> &param2pos)
3018 int nparam;
3020 nparam = isl_space_dim(space, isl_dim_param);
3021 for (int i = 0; i < nparam; ++i) {
3022 int j;
3023 isl_id *id = isl_space_get_dim_id(space, isl_dim_param, i);
3024 Expr *nested;
3026 if (!is_nested_parameter(id)) {
3027 isl_id_free(id);
3028 continue;
3031 nested = (Expr *) isl_id_get_user(id);
3032 args[n_arg] = extract_expr(nested);
3033 if (!args[n_arg])
3034 return -1;
3036 for (j = 0; j < n_arg; ++j)
3037 if (pet_expr_is_equal(args[j], args[n_arg]))
3038 break;
3040 if (j < n_arg) {
3041 pet_expr_free(args[n_arg]);
3042 args[n_arg] = NULL;
3043 param2pos[i] = j;
3044 } else
3045 param2pos[i] = n_arg++;
3047 isl_id_free(id);
3050 return n_arg;
3053 /* For each nested access parameter in the access relations in "expr",
3054 * construct a corresponding pet_expr, place it in expr->args and
3055 * record its position in "param2pos".
3056 * n is the number of nested access parameters.
3058 struct pet_expr *PetScan::extract_nested(struct pet_expr *expr, int n,
3059 std::map<int,int> &param2pos)
3061 isl_space *space;
3063 expr->args = isl_calloc_array(ctx, struct pet_expr *, n);
3064 expr->n_arg = n;
3065 if (!expr->args)
3066 goto error;
3068 space = isl_map_get_space(expr->acc.access);
3069 n = extract_nested(space, 0, expr->args, param2pos);
3070 isl_space_free(space);
3072 if (n < 0)
3073 goto error;
3075 expr->n_arg = n;
3076 return expr;
3077 error:
3078 pet_expr_free(expr);
3079 return NULL;
3082 /* Look for parameters in any access relation in "expr" that
3083 * refer to nested accesses. In particular, these are
3084 * parameters with no name.
3086 * If there are any such parameters, then the domain of the access
3087 * relation, which is still [] at this point, is replaced by
3088 * [[] -> [t_1,...,t_n]], with n the number of these parameters
3089 * (after identifying identical nested accesses).
3090 * The parameters are then equated to the corresponding t dimensions
3091 * and subsequently projected out.
3092 * param2pos maps the position of the parameter to the position
3093 * of the corresponding t dimension.
3095 struct pet_expr *PetScan::resolve_nested(struct pet_expr *expr)
3097 int n;
3098 int nparam;
3099 int n_in;
3100 isl_space *dim;
3101 isl_map *map;
3102 std::map<int,int> param2pos;
3104 if (!expr)
3105 return expr;
3107 for (int i = 0; i < expr->n_arg; ++i) {
3108 expr->args[i] = resolve_nested(expr->args[i]);
3109 if (!expr->args[i]) {
3110 pet_expr_free(expr);
3111 return NULL;
3115 if (expr->type != pet_expr_access)
3116 return expr;
3118 n = n_nested_parameter(expr->acc.access);
3119 if (n == 0)
3120 return expr;
3122 expr = extract_nested(expr, n, param2pos);
3123 if (!expr)
3124 return NULL;
3126 n = expr->n_arg;
3127 nparam = isl_map_dim(expr->acc.access, isl_dim_param);
3128 n_in = isl_map_dim(expr->acc.access, isl_dim_in);
3129 dim = isl_map_get_space(expr->acc.access);
3130 dim = isl_space_domain(dim);
3131 dim = isl_space_from_domain(dim);
3132 dim = isl_space_add_dims(dim, isl_dim_out, n);
3133 map = isl_map_universe(dim);
3134 map = isl_map_domain_map(map);
3135 map = isl_map_reverse(map);
3136 expr->acc.access = isl_map_apply_domain(expr->acc.access, map);
3138 for (int i = nparam - 1; i >= 0; --i) {
3139 isl_id *id = isl_map_get_dim_id(expr->acc.access,
3140 isl_dim_param, i);
3141 if (!is_nested_parameter(id)) {
3142 isl_id_free(id);
3143 continue;
3146 expr->acc.access = isl_map_equate(expr->acc.access,
3147 isl_dim_param, i, isl_dim_in,
3148 n_in + param2pos[i]);
3149 expr->acc.access = isl_map_project_out(expr->acc.access,
3150 isl_dim_param, i, 1);
3152 isl_id_free(id);
3155 return expr;
3156 error:
3157 pet_expr_free(expr);
3158 return NULL;
3161 /* Return the file offset of the expansion location of "Loc".
3163 static unsigned getExpansionOffset(SourceManager &SM, SourceLocation Loc)
3165 return SM.getFileOffset(SM.getExpansionLoc(Loc));
3168 #ifdef HAVE_FINDLOCATIONAFTERTOKEN
3170 /* Return a SourceLocation for the location after the first semicolon
3171 * after "loc". If Lexer::findLocationAfterToken is available, we simply
3172 * call it and also skip trailing spaces and newline.
3174 static SourceLocation location_after_semi(SourceLocation loc, SourceManager &SM,
3175 const LangOptions &LO)
3177 return Lexer::findLocationAfterToken(loc, tok::semi, SM, LO, true);
3180 #else
3182 /* Return a SourceLocation for the location after the first semicolon
3183 * after "loc". If Lexer::findLocationAfterToken is not available,
3184 * we look in the underlying character data for the first semicolon.
3186 static SourceLocation location_after_semi(SourceLocation loc, SourceManager &SM,
3187 const LangOptions &LO)
3189 const char *semi;
3190 const char *s = SM.getCharacterData(loc);
3192 semi = strchr(s, ';');
3193 if (!semi)
3194 return SourceLocation();
3195 return loc.getFileLocWithOffset(semi + 1 - s);
3198 #endif
3200 /* If the token at "loc" is the first token on the line, then return
3201 * a location referring to the start of the line.
3202 * Otherwise, return "loc".
3204 * This function is used to extend a scop to the start of the line
3205 * if the first token of the scop is also the first token on the line.
3207 * We look for the first token on the line. If its location is equal to "loc",
3208 * then the latter is the location of the first token on the line.
3210 static SourceLocation move_to_start_of_line_if_first_token(SourceLocation loc,
3211 SourceManager &SM, const LangOptions &LO)
3213 std::pair<FileID, unsigned> file_offset_pair;
3214 llvm::StringRef file;
3215 const char *pos;
3216 Token tok;
3217 SourceLocation token_loc, line_loc;
3218 int col;
3220 loc = SM.getExpansionLoc(loc);
3221 col = SM.getExpansionColumnNumber(loc);
3222 line_loc = loc.getLocWithOffset(1 - col);
3223 file_offset_pair = SM.getDecomposedLoc(line_loc);
3224 file = SM.getBufferData(file_offset_pair.first, NULL);
3225 pos = file.data() + file_offset_pair.second;
3227 Lexer lexer(SM.getLocForStartOfFile(file_offset_pair.first), LO,
3228 file.begin(), pos, file.end());
3229 lexer.LexFromRawLexer(tok);
3230 token_loc = tok.getLocation();
3232 if (token_loc == loc)
3233 return line_loc;
3234 else
3235 return loc;
3238 /* Convert a top-level pet_expr to a pet_scop with one statement.
3239 * This mainly involves resolving nested expression parameters
3240 * and setting the name of the iteration space.
3241 * The name is given by "label" if it is non-NULL. Otherwise,
3242 * it is of the form S_<n_stmt>.
3243 * start and end of the pet_scop are derived from those of "stmt".
3245 struct pet_scop *PetScan::extract(Stmt *stmt, struct pet_expr *expr,
3246 __isl_take isl_id *label)
3248 struct pet_stmt *ps;
3249 struct pet_scop *scop;
3250 SourceLocation loc = stmt->getLocStart();
3251 SourceManager &SM = PP.getSourceManager();
3252 const LangOptions &LO = PP.getLangOpts();
3253 int line = PP.getSourceManager().getExpansionLineNumber(loc);
3254 unsigned start, end;
3256 expr = resolve_nested(expr);
3257 ps = pet_stmt_from_pet_expr(ctx, line, label, n_stmt++, expr);
3258 scop = pet_scop_from_pet_stmt(ctx, ps);
3260 loc = move_to_start_of_line_if_first_token(loc, SM, LO);
3261 start = getExpansionOffset(SM, loc);
3262 loc = stmt->getLocEnd();
3263 loc = location_after_semi(loc, SM, LO);
3264 end = getExpansionOffset(SM, loc);
3266 scop = pet_scop_update_start_end(scop, start, end);
3267 return scop;
3270 /* Check if we can extract an affine expression from "expr".
3271 * Return the expressions as an isl_pw_aff if we can and NULL otherwise.
3272 * We turn on autodetection so that we won't generate any warnings
3273 * and turn off nesting, so that we won't accept any non-affine constructs.
3275 __isl_give isl_pw_aff *PetScan::try_extract_affine(Expr *expr)
3277 isl_pw_aff *pwaff;
3278 int save_autodetect = options->autodetect;
3279 bool save_nesting = nesting_enabled;
3281 options->autodetect = 1;
3282 nesting_enabled = false;
3284 pwaff = extract_affine(expr);
3286 options->autodetect = save_autodetect;
3287 nesting_enabled = save_nesting;
3289 return pwaff;
3292 /* Check whether "expr" is an affine expression.
3294 bool PetScan::is_affine(Expr *expr)
3296 isl_pw_aff *pwaff;
3298 pwaff = try_extract_affine(expr);
3299 isl_pw_aff_free(pwaff);
3301 return pwaff != NULL;
3304 /* Check if we can extract an affine constraint from "expr".
3305 * Return the constraint as an isl_set if we can and NULL otherwise.
3306 * We turn on autodetection so that we won't generate any warnings
3307 * and turn off nesting, so that we won't accept any non-affine constructs.
3309 __isl_give isl_pw_aff *PetScan::try_extract_affine_condition(Expr *expr)
3311 isl_pw_aff *cond;
3312 int save_autodetect = options->autodetect;
3313 bool save_nesting = nesting_enabled;
3315 options->autodetect = 1;
3316 nesting_enabled = false;
3318 cond = extract_condition(expr);
3320 options->autodetect = save_autodetect;
3321 nesting_enabled = save_nesting;
3323 return cond;
3326 /* Check whether "expr" is an affine constraint.
3328 bool PetScan::is_affine_condition(Expr *expr)
3330 isl_pw_aff *cond;
3332 cond = try_extract_affine_condition(expr);
3333 isl_pw_aff_free(cond);
3335 return cond != NULL;
3338 /* Check if we can extract a condition from "expr".
3339 * Return the condition as an isl_pw_aff if we can and NULL otherwise.
3340 * If allow_nested is set, then the condition may involve parameters
3341 * corresponding to nested accesses.
3342 * We turn on autodetection so that we won't generate any warnings.
3344 __isl_give isl_pw_aff *PetScan::try_extract_nested_condition(Expr *expr)
3346 isl_pw_aff *cond;
3347 int save_autodetect = options->autodetect;
3348 bool save_nesting = nesting_enabled;
3350 options->autodetect = 1;
3351 nesting_enabled = allow_nested;
3352 cond = extract_condition(expr);
3354 options->autodetect = save_autodetect;
3355 nesting_enabled = save_nesting;
3357 return cond;
3360 /* If the top-level expression of "stmt" is an assignment, then
3361 * return that assignment as a BinaryOperator.
3362 * Otherwise return NULL.
3364 static BinaryOperator *top_assignment_or_null(Stmt *stmt)
3366 BinaryOperator *ass;
3368 if (!stmt)
3369 return NULL;
3370 if (stmt->getStmtClass() != Stmt::BinaryOperatorClass)
3371 return NULL;
3373 ass = cast<BinaryOperator>(stmt);
3374 if(ass->getOpcode() != BO_Assign)
3375 return NULL;
3377 return ass;
3380 /* Check if the given if statement is a conditional assignement
3381 * with a non-affine condition. If so, construct a pet_scop
3382 * corresponding to this conditional assignment. Otherwise return NULL.
3384 * In particular we check if "stmt" is of the form
3386 * if (condition)
3387 * a = f(...);
3388 * else
3389 * a = g(...);
3391 * where a is some array or scalar access.
3392 * The constructed pet_scop then corresponds to the expression
3394 * a = condition ? f(...) : g(...)
3396 * All access relations in f(...) are intersected with condition
3397 * while all access relation in g(...) are intersected with the complement.
3399 struct pet_scop *PetScan::extract_conditional_assignment(IfStmt *stmt)
3401 BinaryOperator *ass_then, *ass_else;
3402 isl_map *write_then, *write_else;
3403 isl_set *cond, *comp;
3404 isl_map *map;
3405 isl_pw_aff *pa;
3406 int equal;
3407 struct pet_expr *pe_cond, *pe_then, *pe_else, *pe, *pe_write;
3408 bool save_nesting = nesting_enabled;
3410 if (!options->detect_conditional_assignment)
3411 return NULL;
3413 ass_then = top_assignment_or_null(stmt->getThen());
3414 ass_else = top_assignment_or_null(stmt->getElse());
3416 if (!ass_then || !ass_else)
3417 return NULL;
3419 if (is_affine_condition(stmt->getCond()))
3420 return NULL;
3422 write_then = extract_access(ass_then->getLHS());
3423 write_else = extract_access(ass_else->getLHS());
3425 equal = isl_map_is_equal(write_then, write_else);
3426 isl_map_free(write_else);
3427 if (equal < 0 || !equal) {
3428 isl_map_free(write_then);
3429 return NULL;
3432 nesting_enabled = allow_nested;
3433 pa = extract_condition(stmt->getCond());
3434 nesting_enabled = save_nesting;
3435 cond = isl_pw_aff_non_zero_set(isl_pw_aff_copy(pa));
3436 comp = isl_pw_aff_zero_set(isl_pw_aff_copy(pa));
3437 map = isl_map_from_range(isl_set_from_pw_aff(pa));
3439 pe_cond = pet_expr_from_access(map);
3441 pe_then = extract_expr(ass_then->getRHS());
3442 pe_then = pet_expr_restrict(pe_then, cond);
3443 pe_else = extract_expr(ass_else->getRHS());
3444 pe_else = pet_expr_restrict(pe_else, comp);
3446 pe = pet_expr_new_ternary(ctx, pe_cond, pe_then, pe_else);
3447 pe_write = pet_expr_from_access(write_then);
3448 if (pe_write) {
3449 pe_write->acc.write = 1;
3450 pe_write->acc.read = 0;
3452 pe = pet_expr_new_binary(ctx, pet_op_assign, pe_write, pe);
3453 return extract(stmt, pe);
3456 /* Create a pet_scop with a single statement evaluating "cond"
3457 * and writing the result to a virtual scalar, as expressed by
3458 * "access".
3460 struct pet_scop *PetScan::extract_non_affine_condition(Expr *cond,
3461 __isl_take isl_map *access)
3463 struct pet_expr *expr, *write;
3464 struct pet_stmt *ps;
3465 struct pet_scop *scop;
3466 SourceLocation loc = cond->getLocStart();
3467 int line = PP.getSourceManager().getExpansionLineNumber(loc);
3469 write = pet_expr_from_access(access);
3470 if (write) {
3471 write->acc.write = 1;
3472 write->acc.read = 0;
3474 expr = extract_expr(cond);
3475 expr = resolve_nested(expr);
3476 expr = pet_expr_new_binary(ctx, pet_op_assign, write, expr);
3477 ps = pet_stmt_from_pet_expr(ctx, line, NULL, n_stmt++, expr);
3478 scop = pet_scop_from_pet_stmt(ctx, ps);
3479 scop = resolve_nested(scop);
3481 return scop;
3484 extern "C" {
3485 static struct pet_expr *embed_access(struct pet_expr *expr, void *user);
3488 /* Apply the map pointed to by "user" to the domain of the access
3489 * relation associated to "expr", thereby embedding it in the range of the map.
3490 * The domain of both relations is the zero-dimensional domain.
3492 static struct pet_expr *embed_access(struct pet_expr *expr, void *user)
3494 isl_map *map = (isl_map *) user;
3496 expr->acc.access = isl_map_apply_domain(expr->acc.access,
3497 isl_map_copy(map));
3498 if (!expr->acc.access)
3499 goto error;
3501 return expr;
3502 error:
3503 pet_expr_free(expr);
3504 return NULL;
3507 /* Apply "map" to all access relations in "expr".
3509 static struct pet_expr *embed(struct pet_expr *expr, __isl_keep isl_map *map)
3511 return pet_expr_map_access(expr, &embed_access, map);
3514 /* How many parameters of "set" refer to nested accesses, i.e., have no name?
3516 static int n_nested_parameter(__isl_keep isl_set *set)
3518 isl_space *space;
3519 int n;
3521 space = isl_set_get_space(set);
3522 n = n_nested_parameter(space);
3523 isl_space_free(space);
3525 return n;
3528 /* Remove all parameters from "map" that refer to nested accesses.
3530 static __isl_give isl_map *remove_nested_parameters(__isl_take isl_map *map)
3532 int nparam;
3533 isl_space *space;
3535 space = isl_map_get_space(map);
3536 nparam = isl_space_dim(space, isl_dim_param);
3537 for (int i = nparam - 1; i >= 0; --i)
3538 if (is_nested_parameter(space, i))
3539 map = isl_map_project_out(map, isl_dim_param, i, 1);
3540 isl_space_free(space);
3542 return map;
3545 /* Remove all parameters from the access relation of "expr"
3546 * that refer to nested accesses.
3548 static struct pet_expr *remove_nested_parameters(struct pet_expr *expr)
3550 expr->acc.access = remove_nested_parameters(expr->acc.access);
3551 if (!expr->acc.access)
3552 goto error;
3554 return expr;
3555 error:
3556 pet_expr_free(expr);
3557 return NULL;
3560 extern "C" {
3561 static struct pet_expr *expr_remove_nested_parameters(
3562 struct pet_expr *expr, void *user);
3565 static struct pet_expr *expr_remove_nested_parameters(
3566 struct pet_expr *expr, void *user)
3568 return remove_nested_parameters(expr);
3571 /* Remove all nested access parameters from the schedule and all
3572 * accesses of "stmt".
3573 * There is no need to remove them from the domain as these parameters
3574 * have already been removed from the domain when this function is called.
3576 static struct pet_stmt *remove_nested_parameters(struct pet_stmt *stmt)
3578 if (!stmt)
3579 return NULL;
3580 stmt->schedule = remove_nested_parameters(stmt->schedule);
3581 stmt->body = pet_expr_map_access(stmt->body,
3582 &expr_remove_nested_parameters, NULL);
3583 if (!stmt->schedule || !stmt->body)
3584 goto error;
3585 for (int i = 0; i < stmt->n_arg; ++i) {
3586 stmt->args[i] = pet_expr_map_access(stmt->args[i],
3587 &expr_remove_nested_parameters, NULL);
3588 if (!stmt->args[i])
3589 goto error;
3592 return stmt;
3593 error:
3594 pet_stmt_free(stmt);
3595 return NULL;
3598 /* For each nested access parameter in the domain of "stmt",
3599 * construct a corresponding pet_expr, place it before the original
3600 * elements in stmt->args and record its position in "param2pos".
3601 * n is the number of nested access parameters.
3603 struct pet_stmt *PetScan::extract_nested(struct pet_stmt *stmt, int n,
3604 std::map<int,int> &param2pos)
3606 int i;
3607 isl_space *space;
3608 int n_arg;
3609 struct pet_expr **args;
3611 n_arg = stmt->n_arg;
3612 args = isl_calloc_array(ctx, struct pet_expr *, n + n_arg);
3613 if (!args)
3614 goto error;
3616 space = isl_set_get_space(stmt->domain);
3617 n_arg = extract_nested(space, 0, args, param2pos);
3618 isl_space_free(space);
3620 if (n_arg < 0)
3621 goto error;
3623 for (i = 0; i < stmt->n_arg; ++i)
3624 args[n_arg + i] = stmt->args[i];
3625 free(stmt->args);
3626 stmt->args = args;
3627 stmt->n_arg += n_arg;
3629 return stmt;
3630 error:
3631 if (args) {
3632 for (i = 0; i < n; ++i)
3633 pet_expr_free(args[i]);
3634 free(args);
3636 pet_stmt_free(stmt);
3637 return NULL;
3640 /* Check whether any of the arguments i of "stmt" starting at position "n"
3641 * is equal to one of the first "n" arguments j.
3642 * If so, combine the constraints on arguments i and j and remove
3643 * argument i.
3645 static struct pet_stmt *remove_duplicate_arguments(struct pet_stmt *stmt, int n)
3647 int i, j;
3648 isl_map *map;
3650 if (!stmt)
3651 return NULL;
3652 if (n == 0)
3653 return stmt;
3654 if (n == stmt->n_arg)
3655 return stmt;
3657 map = isl_set_unwrap(stmt->domain);
3659 for (i = stmt->n_arg - 1; i >= n; --i) {
3660 for (j = 0; j < n; ++j)
3661 if (pet_expr_is_equal(stmt->args[i], stmt->args[j]))
3662 break;
3663 if (j >= n)
3664 continue;
3666 map = isl_map_equate(map, isl_dim_out, i, isl_dim_out, j);
3667 map = isl_map_project_out(map, isl_dim_out, i, 1);
3669 pet_expr_free(stmt->args[i]);
3670 for (j = i; j + 1 < stmt->n_arg; ++j)
3671 stmt->args[j] = stmt->args[j + 1];
3672 stmt->n_arg--;
3675 stmt->domain = isl_map_wrap(map);
3676 if (!stmt->domain)
3677 goto error;
3678 return stmt;
3679 error:
3680 pet_stmt_free(stmt);
3681 return NULL;
3684 /* Look for parameters in the iteration domain of "stmt" that
3685 * refer to nested accesses. In particular, these are
3686 * parameters with no name.
3688 * If there are any such parameters, then as many extra variables
3689 * (after identifying identical nested accesses) are inserted in the
3690 * range of the map wrapped inside the domain, before the original variables.
3691 * If the original domain is not a wrapped map, then a new wrapped
3692 * map is created with zero output dimensions.
3693 * The parameters are then equated to the corresponding output dimensions
3694 * and subsequently projected out, from the iteration domain,
3695 * the schedule and the access relations.
3696 * For each of the output dimensions, a corresponding argument
3697 * expression is inserted. Initially they are created with
3698 * a zero-dimensional domain, so they have to be embedded
3699 * in the current iteration domain.
3700 * param2pos maps the position of the parameter to the position
3701 * of the corresponding output dimension in the wrapped map.
3703 struct pet_stmt *PetScan::resolve_nested(struct pet_stmt *stmt)
3705 int n;
3706 int nparam;
3707 unsigned n_arg;
3708 isl_map *map;
3709 std::map<int,int> param2pos;
3711 if (!stmt)
3712 return NULL;
3714 n = n_nested_parameter(stmt->domain);
3715 if (n == 0)
3716 return stmt;
3718 n_arg = stmt->n_arg;
3719 stmt = extract_nested(stmt, n, param2pos);
3720 if (!stmt)
3721 return NULL;
3723 n = stmt->n_arg - n_arg;
3724 nparam = isl_set_dim(stmt->domain, isl_dim_param);
3725 if (isl_set_is_wrapping(stmt->domain))
3726 map = isl_set_unwrap(stmt->domain);
3727 else
3728 map = isl_map_from_domain(stmt->domain);
3729 map = isl_map_insert_dims(map, isl_dim_out, 0, n);
3731 for (int i = nparam - 1; i >= 0; --i) {
3732 isl_id *id;
3734 if (!is_nested_parameter(map, i))
3735 continue;
3737 id = pet_expr_access_get_id(stmt->args[param2pos[i]]);
3738 map = isl_map_set_dim_id(map, isl_dim_out, param2pos[i], id);
3739 map = isl_map_equate(map, isl_dim_param, i, isl_dim_out,
3740 param2pos[i]);
3741 map = isl_map_project_out(map, isl_dim_param, i, 1);
3744 stmt->domain = isl_map_wrap(map);
3746 map = isl_set_unwrap(isl_set_copy(stmt->domain));
3747 map = isl_map_from_range(isl_map_domain(map));
3748 for (int pos = 0; pos < n; ++pos)
3749 stmt->args[pos] = embed(stmt->args[pos], map);
3750 isl_map_free(map);
3752 stmt = remove_nested_parameters(stmt);
3753 stmt = remove_duplicate_arguments(stmt, n);
3755 return stmt;
3756 error:
3757 pet_stmt_free(stmt);
3758 return NULL;
3761 /* For each statement in "scop", move the parameters that correspond
3762 * to nested access into the ranges of the domains and create
3763 * corresponding argument expressions.
3765 struct pet_scop *PetScan::resolve_nested(struct pet_scop *scop)
3767 if (!scop)
3768 return NULL;
3770 for (int i = 0; i < scop->n_stmt; ++i) {
3771 scop->stmts[i] = resolve_nested(scop->stmts[i]);
3772 if (!scop->stmts[i])
3773 goto error;
3776 return scop;
3777 error:
3778 pet_scop_free(scop);
3779 return NULL;
3782 /* Given an access expression "expr", is the variable accessed by
3783 * "expr" assigned anywhere inside "scop"?
3785 static bool is_assigned(pet_expr *expr, pet_scop *scop)
3787 bool assigned = false;
3788 isl_id *id;
3790 id = pet_expr_access_get_id(expr);
3791 assigned = pet_scop_writes(scop, id);
3792 isl_id_free(id);
3794 return assigned;
3797 /* Are all nested access parameters in "pa" allowed given "scop".
3798 * In particular, is none of them written by anywhere inside "scop".
3800 * If "scop" has any skip conditions, then no nested access parameters
3801 * are allowed. In particular, if there is any nested access in a guard
3802 * for a piece of code containing a "continue", then we want to introduce
3803 * a separate statement for evaluating this guard so that we can express
3804 * that the result is false for all previous iterations.
3806 bool PetScan::is_nested_allowed(__isl_keep isl_pw_aff *pa, pet_scop *scop)
3808 int nparam;
3810 if (!scop)
3811 return true;
3813 nparam = isl_pw_aff_dim(pa, isl_dim_param);
3814 for (int i = 0; i < nparam; ++i) {
3815 Expr *nested;
3816 isl_id *id = isl_pw_aff_get_dim_id(pa, isl_dim_param, i);
3817 pet_expr *expr;
3818 bool allowed;
3820 if (!is_nested_parameter(id)) {
3821 isl_id_free(id);
3822 continue;
3825 if (pet_scop_has_skip(scop, pet_skip_now)) {
3826 isl_id_free(id);
3827 return false;
3830 nested = (Expr *) isl_id_get_user(id);
3831 expr = extract_expr(nested);
3832 allowed = expr && expr->type == pet_expr_access &&
3833 !is_assigned(expr, scop);
3835 pet_expr_free(expr);
3836 isl_id_free(id);
3838 if (!allowed)
3839 return false;
3842 return true;
3845 /* Do we need to construct a skip condition of the given type
3846 * on an if statement, given that the if condition is non-affine?
3848 * pet_scop_filter_skip can only handle the case where the if condition
3849 * holds (the then branch) and the skip condition is universal.
3850 * In any other case, we need to construct a new skip condition.
3852 static bool need_skip(struct pet_scop *scop_then, struct pet_scop *scop_else,
3853 bool have_else, enum pet_skip type)
3855 if (have_else && scop_else && pet_scop_has_skip(scop_else, type))
3856 return true;
3857 if (scop_then && pet_scop_has_skip(scop_then, type) &&
3858 !pet_scop_has_universal_skip(scop_then, type))
3859 return true;
3860 return false;
3863 /* Do we need to construct a skip condition of the given type
3864 * on an if statement, given that the if condition is affine?
3866 * There is no need to construct a new skip condition if all
3867 * the skip conditions are affine.
3869 static bool need_skip_aff(struct pet_scop *scop_then,
3870 struct pet_scop *scop_else, bool have_else, enum pet_skip type)
3872 if (scop_then && pet_scop_has_var_skip(scop_then, type))
3873 return true;
3874 if (have_else && scop_else && pet_scop_has_var_skip(scop_else, type))
3875 return true;
3876 return false;
3879 /* Do we need to construct a skip condition of the given type
3880 * on an if statement?
3882 static bool need_skip(struct pet_scop *scop_then, struct pet_scop *scop_else,
3883 bool have_else, enum pet_skip type, bool affine)
3885 if (affine)
3886 return need_skip_aff(scop_then, scop_else, have_else, type);
3887 else
3888 return need_skip(scop_then, scop_else, have_else, type);
3891 /* Construct an affine expression pet_expr that evaluates
3892 * to the constant "val".
3894 static struct pet_expr *universally(isl_ctx *ctx, int val)
3896 isl_space *space;
3897 isl_map *map;
3899 space = isl_space_alloc(ctx, 0, 0, 1);
3900 map = isl_map_universe(space);
3901 map = isl_map_fix_si(map, isl_dim_out, 0, val);
3903 return pet_expr_from_access(map);
3906 /* Construct an affine expression pet_expr that evaluates
3907 * to the constant 1.
3909 static struct pet_expr *universally_true(isl_ctx *ctx)
3911 return universally(ctx, 1);
3914 /* Construct an affine expression pet_expr that evaluates
3915 * to the constant 0.
3917 static struct pet_expr *universally_false(isl_ctx *ctx)
3919 return universally(ctx, 0);
3922 /* Given an access relation "test_access" for the if condition,
3923 * an access relation "skip_access" for the skip condition and
3924 * scops for the then and else branches, construct a scop for
3925 * computing "skip_access".
3927 * The computed scop contains a single statement that essentially does
3929 * skip_cond = test_cond ? skip_cond_then : skip_cond_else
3931 * If the skip conditions of the then and/or else branch are not affine,
3932 * then they need to be filtered by test_access.
3933 * If they are missing, then this means the skip condition is false.
3935 * Since we are constructing a skip condition for the if statement,
3936 * the skip conditions on the then and else branches are removed.
3938 static struct pet_scop *extract_skip(PetScan *scan,
3939 __isl_take isl_map *test_access, __isl_take isl_map *skip_access,
3940 struct pet_scop *scop_then, struct pet_scop *scop_else, bool have_else,
3941 enum pet_skip type)
3943 struct pet_expr *expr_then, *expr_else, *expr, *expr_skip;
3944 struct pet_stmt *stmt;
3945 struct pet_scop *scop;
3946 isl_ctx *ctx = scan->ctx;
3948 if (!scop_then)
3949 goto error;
3950 if (have_else && !scop_else)
3951 goto error;
3953 if (pet_scop_has_skip(scop_then, type)) {
3954 expr_then = pet_scop_get_skip_expr(scop_then, type);
3955 pet_scop_reset_skip(scop_then, type);
3956 if (!pet_expr_is_affine(expr_then))
3957 expr_then = pet_expr_filter(expr_then,
3958 isl_map_copy(test_access), 1);
3959 } else
3960 expr_then = universally_false(ctx);
3962 if (have_else && pet_scop_has_skip(scop_else, type)) {
3963 expr_else = pet_scop_get_skip_expr(scop_else, type);
3964 pet_scop_reset_skip(scop_else, type);
3965 if (!pet_expr_is_affine(expr_else))
3966 expr_else = pet_expr_filter(expr_else,
3967 isl_map_copy(test_access), 0);
3968 } else
3969 expr_else = universally_false(ctx);
3971 expr = pet_expr_from_access(test_access);
3972 expr = pet_expr_new_ternary(ctx, expr, expr_then, expr_else);
3973 expr_skip = pet_expr_from_access(isl_map_copy(skip_access));
3974 if (expr_skip) {
3975 expr_skip->acc.write = 1;
3976 expr_skip->acc.read = 0;
3978 expr = pet_expr_new_binary(ctx, pet_op_assign, expr_skip, expr);
3979 stmt = pet_stmt_from_pet_expr(ctx, -1, NULL, scan->n_stmt++, expr);
3981 scop = pet_scop_from_pet_stmt(ctx, stmt);
3982 scop = scop_add_array(scop, skip_access, scan->ast_context);
3983 isl_map_free(skip_access);
3985 return scop;
3986 error:
3987 isl_map_free(test_access);
3988 isl_map_free(skip_access);
3989 return NULL;
3992 /* Is scop's skip_now condition equal to its skip_later condition?
3993 * In particular, this means that it either has no skip_now condition
3994 * or both a skip_now and a skip_later condition (that are equal to each other).
3996 static bool skip_equals_skip_later(struct pet_scop *scop)
3998 int has_skip_now, has_skip_later;
3999 int equal;
4000 isl_set *skip_now, *skip_later;
4002 if (!scop)
4003 return false;
4004 has_skip_now = pet_scop_has_skip(scop, pet_skip_now);
4005 has_skip_later = pet_scop_has_skip(scop, pet_skip_later);
4006 if (has_skip_now != has_skip_later)
4007 return false;
4008 if (!has_skip_now)
4009 return true;
4011 skip_now = pet_scop_get_skip(scop, pet_skip_now);
4012 skip_later = pet_scop_get_skip(scop, pet_skip_later);
4013 equal = isl_set_is_equal(skip_now, skip_later);
4014 isl_set_free(skip_now);
4015 isl_set_free(skip_later);
4017 return equal;
4020 /* Drop the skip conditions of type pet_skip_later from scop1 and scop2.
4022 static void drop_skip_later(struct pet_scop *scop1, struct pet_scop *scop2)
4024 pet_scop_reset_skip(scop1, pet_skip_later);
4025 pet_scop_reset_skip(scop2, pet_skip_later);
4028 /* Structure that handles the construction of skip conditions.
4030 * scop_then and scop_else represent the then and else branches
4031 * of the if statement
4033 * skip[type] is true if we need to construct a skip condition of that type
4034 * equal is set if the skip conditions of types pet_skip_now and pet_skip_later
4035 * are equal to each other
4036 * access[type] is the virtual array representing the skip condition
4037 * scop[type] is a scop for computing the skip condition
4039 struct pet_skip_info {
4040 isl_ctx *ctx;
4042 bool skip[2];
4043 bool equal;
4044 isl_map *access[2];
4045 struct pet_scop *scop[2];
4047 pet_skip_info(isl_ctx *ctx) : ctx(ctx) {}
4049 operator bool() { return skip[pet_skip_now] || skip[pet_skip_later]; }
4052 /* Structure that handles the construction of skip conditions on if statements.
4054 * scop_then and scop_else represent the then and else branches
4055 * of the if statement
4057 struct pet_skip_info_if : public pet_skip_info {
4058 struct pet_scop *scop_then, *scop_else;
4059 bool have_else;
4061 pet_skip_info_if(isl_ctx *ctx, struct pet_scop *scop_then,
4062 struct pet_scop *scop_else, bool have_else, bool affine);
4063 void extract(PetScan *scan, __isl_keep isl_map *access,
4064 enum pet_skip type);
4065 void extract(PetScan *scan, __isl_keep isl_map *access);
4066 void extract(PetScan *scan, __isl_keep isl_pw_aff *cond);
4067 struct pet_scop *add(struct pet_scop *scop, enum pet_skip type,
4068 int offset);
4069 struct pet_scop *add(struct pet_scop *scop, int offset);
4072 /* Initialize a pet_skip_info_if structure based on the then and else branches
4073 * and based on whether the if condition is affine or not.
4075 pet_skip_info_if::pet_skip_info_if(isl_ctx *ctx, struct pet_scop *scop_then,
4076 struct pet_scop *scop_else, bool have_else, bool affine) :
4077 pet_skip_info(ctx), scop_then(scop_then), scop_else(scop_else),
4078 have_else(have_else)
4080 skip[pet_skip_now] =
4081 need_skip(scop_then, scop_else, have_else, pet_skip_now, affine);
4082 equal = skip[pet_skip_now] && skip_equals_skip_later(scop_then) &&
4083 (!have_else || skip_equals_skip_later(scop_else));
4084 skip[pet_skip_later] = skip[pet_skip_now] && !equal &&
4085 need_skip(scop_then, scop_else, have_else, pet_skip_later, affine);
4088 /* If we need to construct a skip condition of the given type,
4089 * then do so now.
4091 * "map" represents the if condition.
4093 void pet_skip_info_if::extract(PetScan *scan, __isl_keep isl_map *map,
4094 enum pet_skip type)
4096 if (!skip[type])
4097 return;
4099 access[type] = create_test_access(isl_map_get_ctx(map), scan->n_test++);
4100 scop[type] = extract_skip(scan, isl_map_copy(map),
4101 isl_map_copy(access[type]),
4102 scop_then, scop_else, have_else, type);
4105 /* Construct the required skip conditions, given the if condition "map".
4107 void pet_skip_info_if::extract(PetScan *scan, __isl_keep isl_map *map)
4109 extract(scan, map, pet_skip_now);
4110 extract(scan, map, pet_skip_later);
4111 if (equal)
4112 drop_skip_later(scop_then, scop_else);
4115 /* Construct the required skip conditions, given the if condition "cond".
4117 void pet_skip_info_if::extract(PetScan *scan, __isl_keep isl_pw_aff *cond)
4119 isl_set *test_set;
4120 isl_map *test;
4122 if (!skip[pet_skip_now] && !skip[pet_skip_later])
4123 return;
4125 test_set = isl_set_from_pw_aff(isl_pw_aff_copy(cond));
4126 test = isl_map_from_range(test_set);
4127 extract(scan, test);
4128 isl_map_free(test);
4131 /* Add the computed skip condition of the give type to "main" and
4132 * add the scop for computing the condition at the given offset.
4134 * If equal is set, then we only computed a skip condition for pet_skip_now,
4135 * but we also need to set it as main's pet_skip_later.
4137 struct pet_scop *pet_skip_info_if::add(struct pet_scop *main,
4138 enum pet_skip type, int offset)
4140 isl_set *skip_set;
4142 if (!skip[type])
4143 return main;
4145 skip_set = isl_map_range(access[type]);
4146 access[type] = NULL;
4147 scop[type] = pet_scop_prefix(scop[type], offset);
4148 main = pet_scop_add_par(ctx, main, scop[type]);
4149 scop[type] = NULL;
4151 if (equal)
4152 main = pet_scop_set_skip(main, pet_skip_later,
4153 isl_set_copy(skip_set));
4155 main = pet_scop_set_skip(main, type, skip_set);
4157 return main;
4160 /* Add the computed skip conditions to "main" and
4161 * add the scops for computing the conditions at the given offset.
4163 struct pet_scop *pet_skip_info_if::add(struct pet_scop *scop, int offset)
4165 scop = add(scop, pet_skip_now, offset);
4166 scop = add(scop, pet_skip_later, offset);
4168 return scop;
4171 /* Construct a pet_scop for a non-affine if statement.
4173 * We create a separate statement that writes the result
4174 * of the non-affine condition to a virtual scalar.
4175 * A constraint requiring the value of this virtual scalar to be one
4176 * is added to the iteration domains of the then branch.
4177 * Similarly, a constraint requiring the value of this virtual scalar
4178 * to be zero is added to the iteration domains of the else branch, if any.
4179 * We adjust the schedules to ensure that the virtual scalar is written
4180 * before it is read.
4182 * If there are any breaks or continues in the then and/or else
4183 * branches, then we may have to compute a new skip condition.
4184 * This is handled using a pet_skip_info_if object.
4185 * On initialization, the object checks if skip conditions need
4186 * to be computed. If so, it does so in "extract" and adds them in "add".
4188 struct pet_scop *PetScan::extract_non_affine_if(Expr *cond,
4189 struct pet_scop *scop_then, struct pet_scop *scop_else,
4190 bool have_else, int stmt_id)
4192 struct pet_scop *scop;
4193 isl_map *test_access;
4194 int save_n_stmt = n_stmt;
4196 test_access = create_test_access(ctx, n_test++);
4197 n_stmt = stmt_id;
4198 scop = extract_non_affine_condition(cond, isl_map_copy(test_access));
4199 n_stmt = save_n_stmt;
4200 scop = scop_add_array(scop, test_access, ast_context);
4202 pet_skip_info_if skip(ctx, scop_then, scop_else, have_else, false);
4203 skip.extract(this, test_access);
4205 scop = pet_scop_prefix(scop, 0);
4206 scop_then = pet_scop_prefix(scop_then, 1);
4207 scop_then = pet_scop_filter(scop_then, isl_map_copy(test_access), 1);
4208 if (have_else) {
4209 scop_else = pet_scop_prefix(scop_else, 1);
4210 scop_else = pet_scop_filter(scop_else, test_access, 0);
4211 scop_then = pet_scop_add_par(ctx, scop_then, scop_else);
4212 } else
4213 isl_map_free(test_access);
4215 scop = pet_scop_add_seq(ctx, scop, scop_then);
4217 scop = skip.add(scop, 2);
4219 return scop;
4222 /* Construct a pet_scop for an if statement.
4224 * If the condition fits the pattern of a conditional assignment,
4225 * then it is handled by extract_conditional_assignment.
4226 * Otherwise, we do the following.
4228 * If the condition is affine, then the condition is added
4229 * to the iteration domains of the then branch, while the
4230 * opposite of the condition in added to the iteration domains
4231 * of the else branch, if any.
4232 * We allow the condition to be dynamic, i.e., to refer to
4233 * scalars or array elements that may be written to outside
4234 * of the given if statement. These nested accesses are then represented
4235 * as output dimensions in the wrapping iteration domain.
4236 * If it also written _inside_ the then or else branch, then
4237 * we treat the condition as non-affine.
4238 * As explained in extract_non_affine_if, this will introduce
4239 * an extra statement.
4240 * For aesthetic reasons, we want this statement to have a statement
4241 * number that is lower than those of the then and else branches.
4242 * In order to evaluate if will need such a statement, however, we
4243 * first construct scops for the then and else branches.
4244 * We therefore reserve a statement number if we might have to
4245 * introduce such an extra statement.
4247 * If the condition is not affine, then the scop is created in
4248 * extract_non_affine_if.
4250 * If there are any breaks or continues in the then and/or else
4251 * branches, then we may have to compute a new skip condition.
4252 * This is handled using a pet_skip_info_if object.
4253 * On initialization, the object checks if skip conditions need
4254 * to be computed. If so, it does so in "extract" and adds them in "add".
4256 struct pet_scop *PetScan::extract(IfStmt *stmt)
4258 struct pet_scop *scop_then, *scop_else = NULL, *scop;
4259 isl_pw_aff *cond;
4260 int stmt_id;
4261 isl_set *set;
4262 isl_set *valid;
4264 scop = extract_conditional_assignment(stmt);
4265 if (scop)
4266 return scop;
4268 cond = try_extract_nested_condition(stmt->getCond());
4269 if (allow_nested && (!cond || has_nested(cond)))
4270 stmt_id = n_stmt++;
4273 assigned_value_cache cache(assigned_value);
4274 scop_then = extract(stmt->getThen());
4277 if (stmt->getElse()) {
4278 assigned_value_cache cache(assigned_value);
4279 scop_else = extract(stmt->getElse());
4280 if (options->autodetect) {
4281 if (scop_then && !scop_else) {
4282 partial = true;
4283 isl_pw_aff_free(cond);
4284 return scop_then;
4286 if (!scop_then && scop_else) {
4287 partial = true;
4288 isl_pw_aff_free(cond);
4289 return scop_else;
4294 if (cond &&
4295 (!is_nested_allowed(cond, scop_then) ||
4296 (stmt->getElse() && !is_nested_allowed(cond, scop_else)))) {
4297 isl_pw_aff_free(cond);
4298 cond = NULL;
4300 if (allow_nested && !cond)
4301 return extract_non_affine_if(stmt->getCond(), scop_then,
4302 scop_else, stmt->getElse(), stmt_id);
4304 if (!cond)
4305 cond = extract_condition(stmt->getCond());
4307 pet_skip_info_if skip(ctx, scop_then, scop_else, stmt->getElse(), true);
4308 skip.extract(this, cond);
4310 valid = isl_pw_aff_domain(isl_pw_aff_copy(cond));
4311 set = isl_pw_aff_non_zero_set(cond);
4312 scop = pet_scop_restrict(scop_then, isl_set_copy(set));
4314 if (stmt->getElse()) {
4315 set = isl_set_subtract(isl_set_copy(valid), set);
4316 scop_else = pet_scop_restrict(scop_else, set);
4317 scop = pet_scop_add_par(ctx, scop, scop_else);
4318 } else
4319 isl_set_free(set);
4320 scop = resolve_nested(scop);
4321 scop = pet_scop_restrict_context(scop, valid);
4323 if (skip)
4324 scop = pet_scop_prefix(scop, 0);
4325 scop = skip.add(scop, 1);
4327 return scop;
4330 /* Try and construct a pet_scop for a label statement.
4331 * We currently only allow labels on expression statements.
4333 struct pet_scop *PetScan::extract(LabelStmt *stmt)
4335 isl_id *label;
4336 Stmt *sub;
4338 sub = stmt->getSubStmt();
4339 if (!isa<Expr>(sub)) {
4340 unsupported(stmt);
4341 return NULL;
4344 label = isl_id_alloc(ctx, stmt->getName(), NULL);
4346 return extract(sub, extract_expr(cast<Expr>(sub)), label);
4349 /* Construct a pet_scop for a continue statement.
4351 * We simply create an empty scop with a universal pet_skip_now
4352 * skip condition. This skip condition will then be taken into
4353 * account by the enclosing loop construct, possibly after
4354 * being incorporated into outer skip conditions.
4356 struct pet_scop *PetScan::extract(ContinueStmt *stmt)
4358 pet_scop *scop;
4359 isl_space *space;
4360 isl_set *set;
4362 scop = pet_scop_empty(ctx);
4363 if (!scop)
4364 return NULL;
4366 space = isl_space_set_alloc(ctx, 0, 1);
4367 set = isl_set_universe(space);
4368 set = isl_set_fix_si(set, isl_dim_set, 0, 1);
4369 scop = pet_scop_set_skip(scop, pet_skip_now, set);
4371 return scop;
4374 /* Construct a pet_scop for a break statement.
4376 * We simply create an empty scop with both a universal pet_skip_now
4377 * skip condition and a universal pet_skip_later skip condition.
4378 * These skip conditions will then be taken into
4379 * account by the enclosing loop construct, possibly after
4380 * being incorporated into outer skip conditions.
4382 struct pet_scop *PetScan::extract(BreakStmt *stmt)
4384 pet_scop *scop;
4385 isl_space *space;
4386 isl_set *set;
4388 scop = pet_scop_empty(ctx);
4389 if (!scop)
4390 return NULL;
4392 space = isl_space_set_alloc(ctx, 0, 1);
4393 set = isl_set_universe(space);
4394 set = isl_set_fix_si(set, isl_dim_set, 0, 1);
4395 scop = pet_scop_set_skip(scop, pet_skip_now, isl_set_copy(set));
4396 scop = pet_scop_set_skip(scop, pet_skip_later, set);
4398 return scop;
4401 /* Try and construct a pet_scop corresponding to "stmt".
4403 * If "stmt" is a compound statement, then "skip_declarations"
4404 * indicates whether we should skip initial declarations in the
4405 * compound statement.
4407 * If the constructed pet_scop is not a (possibly) partial representation
4408 * of "stmt", we update start and end of the pet_scop to those of "stmt".
4409 * In particular, if skip_declarations, then we may have skipped declarations
4410 * inside "stmt" and so the pet_scop may not represent the entire "stmt".
4411 * Note that this function may be called with "stmt" referring to the entire
4412 * body of the function, including the outer braces. In such cases,
4413 * skip_declarations will be set and the braces will not be taken into
4414 * account in scop->start and scop->end.
4416 struct pet_scop *PetScan::extract(Stmt *stmt, bool skip_declarations)
4418 struct pet_scop *scop;
4419 unsigned start, end;
4420 SourceLocation loc;
4421 SourceManager &SM = PP.getSourceManager();
4422 const LangOptions &LO = PP.getLangOpts();
4424 if (isa<Expr>(stmt))
4425 return extract(stmt, extract_expr(cast<Expr>(stmt)));
4427 switch (stmt->getStmtClass()) {
4428 case Stmt::WhileStmtClass:
4429 scop = extract(cast<WhileStmt>(stmt));
4430 break;
4431 case Stmt::ForStmtClass:
4432 scop = extract_for(cast<ForStmt>(stmt));
4433 break;
4434 case Stmt::IfStmtClass:
4435 scop = extract(cast<IfStmt>(stmt));
4436 break;
4437 case Stmt::CompoundStmtClass:
4438 scop = extract(cast<CompoundStmt>(stmt), skip_declarations);
4439 break;
4440 case Stmt::LabelStmtClass:
4441 scop = extract(cast<LabelStmt>(stmt));
4442 break;
4443 case Stmt::ContinueStmtClass:
4444 scop = extract(cast<ContinueStmt>(stmt));
4445 break;
4446 case Stmt::BreakStmtClass:
4447 scop = extract(cast<BreakStmt>(stmt));
4448 break;
4449 case Stmt::DeclStmtClass:
4450 scop = extract(cast<DeclStmt>(stmt));
4451 break;
4452 default:
4453 unsupported(stmt);
4454 return NULL;
4457 if (partial || skip_declarations)
4458 return scop;
4460 loc = stmt->getLocStart();
4461 loc = move_to_start_of_line_if_first_token(loc, SM, LO);
4462 start = getExpansionOffset(SM, loc);
4463 loc = PP.getLocForEndOfToken(stmt->getLocEnd());
4464 end = getExpansionOffset(SM, loc);
4465 scop = pet_scop_update_start_end(scop, start, end);
4467 return scop;
4470 /* Do we need to construct a skip condition of the given type
4471 * on a sequence of statements?
4473 * There is no need to construct a new skip condition if only
4474 * only of the two statements has a skip condition or if both
4475 * of their skip conditions are affine.
4477 * In principle we also don't need a new continuation variable if
4478 * the continuation of scop2 is affine, but then we would need
4479 * to allow more complicated forms of continuations.
4481 static bool need_skip_seq(struct pet_scop *scop1, struct pet_scop *scop2,
4482 enum pet_skip type)
4484 if (!scop1 || !pet_scop_has_skip(scop1, type))
4485 return false;
4486 if (!scop2 || !pet_scop_has_skip(scop2, type))
4487 return false;
4488 if (pet_scop_has_affine_skip(scop1, type) &&
4489 pet_scop_has_affine_skip(scop2, type))
4490 return false;
4491 return true;
4494 /* Construct a scop for computing the skip condition of the given type and
4495 * with access relation "skip_access" for a sequence of two scops "scop1"
4496 * and "scop2".
4498 * The computed scop contains a single statement that essentially does
4500 * skip_cond = skip_cond_1 ? 1 : skip_cond_2
4502 * or, in other words, skip_cond1 || skip_cond2.
4503 * In this expression, skip_cond_2 is filtered to reflect that it is
4504 * only evaluated when skip_cond_1 is false.
4506 * The skip condition on scop1 is not removed because it still needs
4507 * to be applied to scop2 when these two scops are combined.
4509 static struct pet_scop *extract_skip_seq(PetScan *ps,
4510 __isl_take isl_map *skip_access,
4511 struct pet_scop *scop1, struct pet_scop *scop2, enum pet_skip type)
4513 isl_map *access;
4514 struct pet_expr *expr1, *expr2, *expr, *expr_skip;
4515 struct pet_stmt *stmt;
4516 struct pet_scop *scop;
4517 isl_ctx *ctx = ps->ctx;
4519 if (!scop1 || !scop2)
4520 goto error;
4522 expr1 = pet_scop_get_skip_expr(scop1, type);
4523 expr2 = pet_scop_get_skip_expr(scop2, type);
4524 pet_scop_reset_skip(scop2, type);
4526 expr2 = pet_expr_filter(expr2, isl_map_copy(expr1->acc.access), 0);
4528 expr = universally_true(ctx);
4529 expr = pet_expr_new_ternary(ctx, expr1, expr, expr2);
4530 expr_skip = pet_expr_from_access(isl_map_copy(skip_access));
4531 if (expr_skip) {
4532 expr_skip->acc.write = 1;
4533 expr_skip->acc.read = 0;
4535 expr = pet_expr_new_binary(ctx, pet_op_assign, expr_skip, expr);
4536 stmt = pet_stmt_from_pet_expr(ctx, -1, NULL, ps->n_stmt++, expr);
4538 scop = pet_scop_from_pet_stmt(ctx, stmt);
4539 scop = scop_add_array(scop, skip_access, ps->ast_context);
4540 isl_map_free(skip_access);
4542 return scop;
4543 error:
4544 isl_map_free(skip_access);
4545 return NULL;
4548 /* Structure that handles the construction of skip conditions
4549 * on sequences of statements.
4551 * scop1 and scop2 represent the two statements that are combined
4553 struct pet_skip_info_seq : public pet_skip_info {
4554 struct pet_scop *scop1, *scop2;
4556 pet_skip_info_seq(isl_ctx *ctx, struct pet_scop *scop1,
4557 struct pet_scop *scop2);
4558 void extract(PetScan *scan, enum pet_skip type);
4559 void extract(PetScan *scan);
4560 struct pet_scop *add(struct pet_scop *scop, enum pet_skip type,
4561 int offset);
4562 struct pet_scop *add(struct pet_scop *scop, int offset);
4565 /* Initialize a pet_skip_info_seq structure based on
4566 * on the two statements that are going to be combined.
4568 pet_skip_info_seq::pet_skip_info_seq(isl_ctx *ctx, struct pet_scop *scop1,
4569 struct pet_scop *scop2) : pet_skip_info(ctx), scop1(scop1), scop2(scop2)
4571 skip[pet_skip_now] = need_skip_seq(scop1, scop2, pet_skip_now);
4572 equal = skip[pet_skip_now] && skip_equals_skip_later(scop1) &&
4573 skip_equals_skip_later(scop2);
4574 skip[pet_skip_later] = skip[pet_skip_now] && !equal &&
4575 need_skip_seq(scop1, scop2, pet_skip_later);
4578 /* If we need to construct a skip condition of the given type,
4579 * then do so now.
4581 void pet_skip_info_seq::extract(PetScan *scan, enum pet_skip type)
4583 if (!skip[type])
4584 return;
4586 access[type] = create_test_access(ctx, scan->n_test++);
4587 scop[type] = extract_skip_seq(scan, isl_map_copy(access[type]),
4588 scop1, scop2, type);
4591 /* Construct the required skip conditions.
4593 void pet_skip_info_seq::extract(PetScan *scan)
4595 extract(scan, pet_skip_now);
4596 extract(scan, pet_skip_later);
4597 if (equal)
4598 drop_skip_later(scop1, scop2);
4601 /* Add the computed skip condition of the given type to "main" and
4602 * add the scop for computing the condition at the given offset (the statement
4603 * number). Within this offset, the condition is computed at position 1
4604 * to ensure that it is computed after the corresponding statement.
4606 * If equal is set, then we only computed a skip condition for pet_skip_now,
4607 * but we also need to set it as main's pet_skip_later.
4609 struct pet_scop *pet_skip_info_seq::add(struct pet_scop *main,
4610 enum pet_skip type, int offset)
4612 isl_set *skip_set;
4614 if (!skip[type])
4615 return main;
4617 skip_set = isl_map_range(access[type]);
4618 access[type] = NULL;
4619 scop[type] = pet_scop_prefix(scop[type], 1);
4620 scop[type] = pet_scop_prefix(scop[type], offset);
4621 main = pet_scop_add_par(ctx, main, scop[type]);
4622 scop[type] = NULL;
4624 if (equal)
4625 main = pet_scop_set_skip(main, pet_skip_later,
4626 isl_set_copy(skip_set));
4628 main = pet_scop_set_skip(main, type, skip_set);
4630 return main;
4633 /* Add the computed skip conditions to "main" and
4634 * add the scops for computing the conditions at the given offset.
4636 struct pet_scop *pet_skip_info_seq::add(struct pet_scop *scop, int offset)
4638 scop = add(scop, pet_skip_now, offset);
4639 scop = add(scop, pet_skip_later, offset);
4641 return scop;
4644 /* Extract a clone of the kill statement in "scop".
4645 * "scop" is expected to have been created from a DeclStmt
4646 * and should have the kill as its first statement.
4648 struct pet_stmt *PetScan::extract_kill(struct pet_scop *scop)
4650 struct pet_expr *kill;
4651 struct pet_stmt *stmt;
4652 isl_map *access;
4654 if (!scop)
4655 return NULL;
4656 if (scop->n_stmt < 1)
4657 isl_die(ctx, isl_error_internal,
4658 "expecting at least one statement", return NULL);
4659 stmt = scop->stmts[0];
4660 if (stmt->body->type != pet_expr_unary ||
4661 stmt->body->op != pet_op_kill)
4662 isl_die(ctx, isl_error_internal,
4663 "expecting kill statement", return NULL);
4665 access = isl_map_copy(stmt->body->args[0]->acc.access);
4666 access = isl_map_reset_tuple_id(access, isl_dim_in);
4667 kill = pet_expr_kill_from_access(access);
4668 return pet_stmt_from_pet_expr(ctx, stmt->line, NULL, n_stmt++, kill);
4671 /* Mark all arrays in "scop" as being exposed.
4673 static struct pet_scop *mark_exposed(struct pet_scop *scop)
4675 if (!scop)
4676 return NULL;
4677 for (int i = 0; i < scop->n_array; ++i)
4678 scop->arrays[i]->exposed = 1;
4679 return scop;
4682 /* Try and construct a pet_scop corresponding to (part of)
4683 * a sequence of statements.
4685 * "block" is set if the sequence respresents the children of
4686 * a compound statement.
4687 * "skip_declarations" is set if we should skip initial declarations
4688 * in the sequence of statements.
4690 * If there are any breaks or continues in the individual statements,
4691 * then we may have to compute a new skip condition.
4692 * This is handled using a pet_skip_info_seq object.
4693 * On initialization, the object checks if skip conditions need
4694 * to be computed. If so, it does so in "extract" and adds them in "add".
4696 * If "block" is set, then we need to insert kill statements at
4697 * the end of the block for any array that has been declared by
4698 * one of the statements in the sequence. Each of these declarations
4699 * results in the construction of a kill statement at the place
4700 * of the declaration, so we simply collect duplicates of
4701 * those kill statements and append these duplicates to the constructed scop.
4703 * If "block" is not set, then any array declared by one of the statements
4704 * in the sequence is marked as being exposed.
4706 struct pet_scop *PetScan::extract(StmtRange stmt_range, bool block,
4707 bool skip_declarations)
4709 pet_scop *scop;
4710 StmtIterator i;
4711 int j;
4712 bool partial_range = false;
4713 set<struct pet_stmt *> kills;
4714 set<struct pet_stmt *>::iterator it;
4716 scop = pet_scop_empty(ctx);
4717 for (i = stmt_range.first, j = 0; i != stmt_range.second; ++i, ++j) {
4718 Stmt *child = *i;
4719 struct pet_scop *scop_i;
4721 if (skip_declarations &&
4722 child->getStmtClass() == Stmt::DeclStmtClass)
4723 continue;
4725 scop_i = extract(child);
4726 if (scop && partial) {
4727 pet_scop_free(scop_i);
4728 break;
4730 pet_skip_info_seq skip(ctx, scop, scop_i);
4731 skip.extract(this);
4732 if (skip)
4733 scop_i = pet_scop_prefix(scop_i, 0);
4734 if (scop_i && child->getStmtClass() == Stmt::DeclStmtClass) {
4735 if (block)
4736 kills.insert(extract_kill(scop_i));
4737 else
4738 scop_i = mark_exposed(scop_i);
4740 scop_i = pet_scop_prefix(scop_i, j);
4741 if (options->autodetect) {
4742 if (scop_i)
4743 scop = pet_scop_add_seq(ctx, scop, scop_i);
4744 else
4745 partial_range = true;
4746 if (scop->n_stmt != 0 && !scop_i)
4747 partial = true;
4748 } else {
4749 scop = pet_scop_add_seq(ctx, scop, scop_i);
4752 scop = skip.add(scop, j);
4754 if (partial)
4755 break;
4758 for (it = kills.begin(); it != kills.end(); ++it) {
4759 pet_scop *scop_j;
4760 scop_j = pet_scop_from_pet_stmt(ctx, *it);
4761 scop_j = pet_scop_prefix(scop_j, j);
4762 scop = pet_scop_add_seq(ctx, scop, scop_j);
4765 if (scop && partial_range) {
4766 if (scop->n_stmt == 0) {
4767 pet_scop_free(scop);
4768 return NULL;
4770 partial = true;
4773 return scop;
4776 /* Check if the scop marked by the user is exactly this Stmt
4777 * or part of this Stmt.
4778 * If so, return a pet_scop corresponding to the marked region.
4779 * Otherwise, return NULL.
4781 struct pet_scop *PetScan::scan(Stmt *stmt)
4783 SourceManager &SM = PP.getSourceManager();
4784 unsigned start_off, end_off;
4786 start_off = getExpansionOffset(SM, stmt->getLocStart());
4787 end_off = getExpansionOffset(SM, stmt->getLocEnd());
4789 if (start_off > loc.end)
4790 return NULL;
4791 if (end_off < loc.start)
4792 return NULL;
4793 if (start_off >= loc.start && end_off <= loc.end) {
4794 return extract(stmt);
4797 StmtIterator start;
4798 for (start = stmt->child_begin(); start != stmt->child_end(); ++start) {
4799 Stmt *child = *start;
4800 if (!child)
4801 continue;
4802 start_off = getExpansionOffset(SM, child->getLocStart());
4803 end_off = getExpansionOffset(SM, child->getLocEnd());
4804 if (start_off < loc.start && end_off >= loc.end)
4805 return scan(child);
4806 if (start_off >= loc.start)
4807 break;
4810 StmtIterator end;
4811 for (end = start; end != stmt->child_end(); ++end) {
4812 Stmt *child = *end;
4813 start_off = SM.getFileOffset(child->getLocStart());
4814 if (start_off >= loc.end)
4815 break;
4818 return extract(StmtRange(start, end), false, false);
4821 /* Set the size of index "pos" of "array" to "size".
4822 * In particular, add a constraint of the form
4824 * i_pos < size
4826 * to array->extent and a constraint of the form
4828 * size >= 0
4830 * to array->context.
4832 static struct pet_array *update_size(struct pet_array *array, int pos,
4833 __isl_take isl_pw_aff *size)
4835 isl_set *valid;
4836 isl_set *univ;
4837 isl_set *bound;
4838 isl_space *dim;
4839 isl_aff *aff;
4840 isl_pw_aff *index;
4841 isl_id *id;
4843 valid = isl_pw_aff_nonneg_set(isl_pw_aff_copy(size));
4844 array->context = isl_set_intersect(array->context, valid);
4846 dim = isl_set_get_space(array->extent);
4847 aff = isl_aff_zero_on_domain(isl_local_space_from_space(dim));
4848 aff = isl_aff_add_coefficient_si(aff, isl_dim_in, pos, 1);
4849 univ = isl_set_universe(isl_aff_get_domain_space(aff));
4850 index = isl_pw_aff_alloc(univ, aff);
4852 size = isl_pw_aff_add_dims(size, isl_dim_in,
4853 isl_set_dim(array->extent, isl_dim_set));
4854 id = isl_set_get_tuple_id(array->extent);
4855 size = isl_pw_aff_set_tuple_id(size, isl_dim_in, id);
4856 bound = isl_pw_aff_lt_set(index, size);
4858 array->extent = isl_set_intersect(array->extent, bound);
4860 if (!array->context || !array->extent)
4861 goto error;
4863 return array;
4864 error:
4865 pet_array_free(array);
4866 return NULL;
4869 /* Figure out the size of the array at position "pos" and all
4870 * subsequent positions from "type" and update "array" accordingly.
4872 struct pet_array *PetScan::set_upper_bounds(struct pet_array *array,
4873 const Type *type, int pos)
4875 const ArrayType *atype;
4876 isl_pw_aff *size;
4878 if (!array)
4879 return NULL;
4881 if (type->isPointerType()) {
4882 type = type->getPointeeType().getTypePtr();
4883 return set_upper_bounds(array, type, pos + 1);
4885 if (!type->isArrayType())
4886 return array;
4888 type = type->getCanonicalTypeInternal().getTypePtr();
4889 atype = cast<ArrayType>(type);
4891 if (type->isConstantArrayType()) {
4892 const ConstantArrayType *ca = cast<ConstantArrayType>(atype);
4893 size = extract_affine(ca->getSize());
4894 array = update_size(array, pos, size);
4895 } else if (type->isVariableArrayType()) {
4896 const VariableArrayType *vla = cast<VariableArrayType>(atype);
4897 size = extract_affine(vla->getSizeExpr());
4898 array = update_size(array, pos, size);
4901 type = atype->getElementType().getTypePtr();
4903 return set_upper_bounds(array, type, pos + 1);
4906 /* Is "T" the type of a variable length array with static size?
4908 static bool is_vla_with_static_size(QualType T)
4910 const VariableArrayType *vlatype;
4912 if (!T->isVariableArrayType())
4913 return false;
4914 vlatype = cast<VariableArrayType>(T);
4915 return vlatype->getSizeModifier() == VariableArrayType::Static;
4918 /* Return the type of "decl" as an array.
4920 * In particular, if "decl" is a parameter declaration that
4921 * is a variable length array with a static size, then
4922 * return the original type (i.e., the variable length array).
4923 * Otherwise, return the type of decl.
4925 static QualType get_array_type(ValueDecl *decl)
4927 ParmVarDecl *parm;
4928 QualType T;
4930 parm = dyn_cast<ParmVarDecl>(decl);
4931 if (!parm)
4932 return decl->getType();
4934 T = parm->getOriginalType();
4935 if (!is_vla_with_static_size(T))
4936 return decl->getType();
4937 return T;
4940 /* Construct and return a pet_array corresponding to the variable "decl".
4941 * In particular, initialize array->extent to
4943 * { name[i_1,...,i_d] : i_1,...,i_d >= 0 }
4945 * and then call set_upper_bounds to set the upper bounds on the indices
4946 * based on the type of the variable.
4948 struct pet_array *PetScan::extract_array(isl_ctx *ctx, ValueDecl *decl)
4950 struct pet_array *array;
4951 QualType qt = get_array_type(decl);
4952 const Type *type = qt.getTypePtr();
4953 int depth = array_depth(type);
4954 QualType base = base_type(qt);
4955 string name;
4956 isl_id *id;
4957 isl_space *dim;
4959 array = isl_calloc_type(ctx, struct pet_array);
4960 if (!array)
4961 return NULL;
4963 id = isl_id_alloc(ctx, decl->getName().str().c_str(), decl);
4964 dim = isl_space_set_alloc(ctx, 0, depth);
4965 dim = isl_space_set_tuple_id(dim, isl_dim_set, id);
4967 array->extent = isl_set_nat_universe(dim);
4969 dim = isl_space_params_alloc(ctx, 0);
4970 array->context = isl_set_universe(dim);
4972 array = set_upper_bounds(array, type, 0);
4973 if (!array)
4974 return NULL;
4976 name = base.getAsString();
4977 array->element_type = strdup(name.c_str());
4978 array->element_size = decl->getASTContext().getTypeInfo(base).first / 8;
4980 return array;
4983 /* Construct a list of pet_arrays, one for each array (or scalar)
4984 * accessed inside "scop", add this list to "scop" and return the result.
4986 * The context of "scop" is updated with the intersection of
4987 * the contexts of all arrays, i.e., constraints on the parameters
4988 * that ensure that the arrays have a valid (non-negative) size.
4990 struct pet_scop *PetScan::scan_arrays(struct pet_scop *scop)
4992 int i;
4993 set<ValueDecl *> arrays;
4994 set<ValueDecl *>::iterator it;
4995 int n_array;
4996 struct pet_array **scop_arrays;
4998 if (!scop)
4999 return NULL;
5001 pet_scop_collect_arrays(scop, arrays);
5002 if (arrays.size() == 0)
5003 return scop;
5005 n_array = scop->n_array;
5007 scop_arrays = isl_realloc_array(ctx, scop->arrays, struct pet_array *,
5008 n_array + arrays.size());
5009 if (!scop_arrays)
5010 goto error;
5011 scop->arrays = scop_arrays;
5013 for (it = arrays.begin(), i = 0; it != arrays.end(); ++it, ++i) {
5014 struct pet_array *array;
5015 scop->arrays[n_array + i] = array = extract_array(ctx, *it);
5016 if (!scop->arrays[n_array + i])
5017 goto error;
5018 scop->n_array++;
5019 scop->context = isl_set_intersect(scop->context,
5020 isl_set_copy(array->context));
5021 if (!scop->context)
5022 goto error;
5025 return scop;
5026 error:
5027 pet_scop_free(scop);
5028 return NULL;
5031 /* Bound all parameters in scop->context to the possible values
5032 * of the corresponding C variable.
5034 static struct pet_scop *add_parameter_bounds(struct pet_scop *scop)
5036 int n;
5038 if (!scop)
5039 return NULL;
5041 n = isl_set_dim(scop->context, isl_dim_param);
5042 for (int i = 0; i < n; ++i) {
5043 isl_id *id;
5044 ValueDecl *decl;
5046 id = isl_set_get_dim_id(scop->context, isl_dim_param, i);
5047 if (is_nested_parameter(id)) {
5048 isl_id_free(id);
5049 isl_die(isl_set_get_ctx(scop->context),
5050 isl_error_internal,
5051 "unresolved nested parameter", goto error);
5053 decl = (ValueDecl *) isl_id_get_user(id);
5054 isl_id_free(id);
5056 scop->context = set_parameter_bounds(scop->context, i, decl);
5058 if (!scop->context)
5059 goto error;
5062 return scop;
5063 error:
5064 pet_scop_free(scop);
5065 return NULL;
5068 /* Construct a pet_scop from the given function.
5070 * If the scop was delimited by scop and endscop pragmas, then we override
5071 * the file offsets by those derived from the pragmas.
5073 struct pet_scop *PetScan::scan(FunctionDecl *fd)
5075 pet_scop *scop;
5076 Stmt *stmt;
5078 stmt = fd->getBody();
5080 if (options->autodetect)
5081 scop = extract(stmt, true);
5082 else {
5083 scop = scan(stmt);
5084 scop = pet_scop_update_start_end(scop, loc.start, loc.end);
5086 scop = pet_scop_detect_parameter_accesses(scop);
5087 scop = scan_arrays(scop);
5088 scop = add_parameter_bounds(scop);
5089 scop = pet_scop_gist(scop, value_bounds);
5091 return scop;