README: update latest release of clang
[pet.git] / scan.cc
blob54192253a28d1651b196529f1f6872dd69627ed9
1 /*
2 * Copyright 2011 Leiden University. All rights reserved.
3 * Copyright 2012-2015 Ecole Normale Superieure. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above
13 * copyright notice, this list of conditions and the following
14 * disclaimer in the documentation and/or other materials provided
15 * with the distribution.
17 * THIS SOFTWARE IS PROVIDED BY LEIDEN UNIVERSITY ''AS IS'' AND ANY
18 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
20 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL LEIDEN UNIVERSITY OR
21 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
22 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
23 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
24 * OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 * The views and conclusions contained in the software and documentation
30 * are those of the authors and should not be interpreted as
31 * representing official policies, either expressed or implied, of
32 * Leiden University.
33 */
35 #include "config.h"
37 #include <string.h>
38 #include <set>
39 #include <map>
40 #include <iostream>
41 #include <llvm/Support/raw_ostream.h>
42 #include <clang/AST/ASTContext.h>
43 #include <clang/AST/ASTDiagnostic.h>
44 #include <clang/AST/Attr.h>
45 #include <clang/AST/Expr.h>
46 #include <clang/AST/RecursiveASTVisitor.h>
48 #include <isl/id.h>
49 #include <isl/space.h>
50 #include <isl/aff.h>
51 #include <isl/set.h>
52 #include <isl/union_set.h>
54 #include "aff.h"
55 #include "array.h"
56 #include "clang.h"
57 #include "context.h"
58 #include "expr.h"
59 #include "nest.h"
60 #include "options.h"
61 #include "scan.h"
62 #include "scop.h"
63 #include "scop_plus.h"
64 #include "tree.h"
65 #include "tree2scop.h"
67 using namespace std;
68 using namespace clang;
70 static enum pet_op_type UnaryOperatorKind2pet_op_type(UnaryOperatorKind kind)
72 switch (kind) {
73 case UO_Minus:
74 return pet_op_minus;
75 case UO_Not:
76 return pet_op_not;
77 case UO_LNot:
78 return pet_op_lnot;
79 case UO_PostInc:
80 return pet_op_post_inc;
81 case UO_PostDec:
82 return pet_op_post_dec;
83 case UO_PreInc:
84 return pet_op_pre_inc;
85 case UO_PreDec:
86 return pet_op_pre_dec;
87 default:
88 return pet_op_last;
92 static enum pet_op_type BinaryOperatorKind2pet_op_type(BinaryOperatorKind kind)
94 switch (kind) {
95 case BO_AddAssign:
96 return pet_op_add_assign;
97 case BO_SubAssign:
98 return pet_op_sub_assign;
99 case BO_MulAssign:
100 return pet_op_mul_assign;
101 case BO_DivAssign:
102 return pet_op_div_assign;
103 case BO_Assign:
104 return pet_op_assign;
105 case BO_Add:
106 return pet_op_add;
107 case BO_Sub:
108 return pet_op_sub;
109 case BO_Mul:
110 return pet_op_mul;
111 case BO_Div:
112 return pet_op_div;
113 case BO_Rem:
114 return pet_op_mod;
115 case BO_Shl:
116 return pet_op_shl;
117 case BO_Shr:
118 return pet_op_shr;
119 case BO_EQ:
120 return pet_op_eq;
121 case BO_NE:
122 return pet_op_ne;
123 case BO_LE:
124 return pet_op_le;
125 case BO_GE:
126 return pet_op_ge;
127 case BO_LT:
128 return pet_op_lt;
129 case BO_GT:
130 return pet_op_gt;
131 case BO_And:
132 return pet_op_and;
133 case BO_Xor:
134 return pet_op_xor;
135 case BO_Or:
136 return pet_op_or;
137 case BO_LAnd:
138 return pet_op_land;
139 case BO_LOr:
140 return pet_op_lor;
141 default:
142 return pet_op_last;
146 #if defined(DECLREFEXPR_CREATE_REQUIRES_BOOL)
147 static DeclRefExpr *create_DeclRefExpr(VarDecl *var)
149 return DeclRefExpr::Create(var->getASTContext(), var->getQualifierLoc(),
150 SourceLocation(), var, false, var->getInnerLocStart(),
151 var->getType(), VK_LValue);
153 #elif defined(DECLREFEXPR_CREATE_REQUIRES_SOURCELOCATION)
154 static DeclRefExpr *create_DeclRefExpr(VarDecl *var)
156 return DeclRefExpr::Create(var->getASTContext(), var->getQualifierLoc(),
157 SourceLocation(), var, var->getInnerLocStart(), var->getType(),
158 VK_LValue);
160 #else
161 static DeclRefExpr *create_DeclRefExpr(VarDecl *var)
163 return DeclRefExpr::Create(var->getASTContext(), var->getQualifierLoc(),
164 var, var->getInnerLocStart(), var->getType(), VK_LValue);
166 #endif
168 #ifdef GETTYPEINFORETURNSTYPEINFO
170 static int size_in_bytes(ASTContext &context, QualType type)
172 return context.getTypeInfo(type).Width / 8;
175 #else
177 static int size_in_bytes(ASTContext &context, QualType type)
179 return context.getTypeInfo(type).first / 8;
182 #endif
184 /* Check if the element type corresponding to the given array type
185 * has a const qualifier.
187 static bool const_base(QualType qt)
189 const Type *type = qt.getTypePtr();
191 if (type->isPointerType())
192 return const_base(type->getPointeeType());
193 if (type->isArrayType()) {
194 const ArrayType *atype;
195 type = type->getCanonicalTypeInternal().getTypePtr();
196 atype = cast<ArrayType>(type);
197 return const_base(atype->getElementType());
200 return qt.isConstQualified();
203 /* Create an isl_id that refers to the named declarator "decl".
205 static __isl_give isl_id *create_decl_id(isl_ctx *ctx, NamedDecl *decl)
207 return isl_id_alloc(ctx, decl->getName().str().c_str(), decl);
210 PetScan::~PetScan()
212 std::map<const Type *, pet_expr *>::iterator it;
213 std::map<FunctionDecl *, pet_function_summary *>::iterator it_s;
215 for (it = type_size.begin(); it != type_size.end(); ++it)
216 pet_expr_free(it->second);
217 for (it_s = summary_cache.begin(); it_s != summary_cache.end(); ++it_s)
218 pet_function_summary_free(it_s->second);
220 isl_union_map_free(value_bounds);
223 /* Report a diagnostic, unless autodetect is set.
225 void PetScan::report(Stmt *stmt, unsigned id)
227 if (options->autodetect)
228 return;
230 SourceLocation loc = stmt->getLocStart();
231 DiagnosticsEngine &diag = PP.getDiagnostics();
232 DiagnosticBuilder B = diag.Report(loc, id) << stmt->getSourceRange();
235 /* Called if we found something we (currently) cannot handle.
236 * We'll provide more informative warnings later.
238 * We only actually complain if autodetect is false.
240 void PetScan::unsupported(Stmt *stmt)
242 DiagnosticsEngine &diag = PP.getDiagnostics();
243 unsigned id = diag.getCustomDiagID(DiagnosticsEngine::Warning,
244 "unsupported");
245 report(stmt, id);
248 /* Report an unsupported statement type, unless autodetect is set.
250 void PetScan::report_unsupported_statement_type(Stmt *stmt)
252 DiagnosticsEngine &diag = PP.getDiagnostics();
253 unsigned id = diag.getCustomDiagID(DiagnosticsEngine::Warning,
254 "this type of statement is not supported");
255 report(stmt, id);
258 /* Report a missing prototype, unless autodetect is set.
260 void PetScan::report_prototype_required(Stmt *stmt)
262 DiagnosticsEngine &diag = PP.getDiagnostics();
263 unsigned id = diag.getCustomDiagID(DiagnosticsEngine::Warning,
264 "prototype required");
265 report(stmt, id);
268 /* Report a missing increment, unless autodetect is set.
270 void PetScan::report_missing_increment(Stmt *stmt)
272 DiagnosticsEngine &diag = PP.getDiagnostics();
273 unsigned id = diag.getCustomDiagID(DiagnosticsEngine::Warning,
274 "missing increment");
275 report(stmt, id);
278 /* Report a missing summary function, unless autodetect is set.
280 void PetScan::report_missing_summary_function(Stmt *stmt)
282 DiagnosticsEngine &diag = PP.getDiagnostics();
283 unsigned id = diag.getCustomDiagID(DiagnosticsEngine::Warning,
284 "missing summary function");
285 report(stmt, id);
288 /* Report a missing summary function body, unless autodetect is set.
290 void PetScan::report_missing_summary_function_body(Stmt *stmt)
292 DiagnosticsEngine &diag = PP.getDiagnostics();
293 unsigned id = diag.getCustomDiagID(DiagnosticsEngine::Warning,
294 "missing summary function body");
295 report(stmt, id);
298 /* Extract an integer from "val", which is assumed to be non-negative.
300 static __isl_give isl_val *extract_unsigned(isl_ctx *ctx,
301 const llvm::APInt &val)
303 unsigned n;
304 const uint64_t *data;
306 data = val.getRawData();
307 n = val.getNumWords();
308 return isl_val_int_from_chunks(ctx, n, sizeof(uint64_t), data);
311 /* Extract an integer from "val". If "is_signed" is set, then "val"
312 * is signed. Otherwise it it unsigned.
314 static __isl_give isl_val *extract_int(isl_ctx *ctx, bool is_signed,
315 llvm::APInt val)
317 int is_negative = is_signed && val.isNegative();
318 isl_val *v;
320 if (is_negative)
321 val = -val;
323 v = extract_unsigned(ctx, val);
325 if (is_negative)
326 v = isl_val_neg(v);
327 return v;
330 /* Extract an integer from "expr".
332 __isl_give isl_val *PetScan::extract_int(isl_ctx *ctx, IntegerLiteral *expr)
334 const Type *type = expr->getType().getTypePtr();
335 bool is_signed = type->hasSignedIntegerRepresentation();
337 return ::extract_int(ctx, is_signed, expr->getValue());
340 /* Extract an integer from "expr".
341 * Return NULL if "expr" does not (obviously) represent an integer.
343 __isl_give isl_val *PetScan::extract_int(clang::ParenExpr *expr)
345 return extract_int(expr->getSubExpr());
348 /* Extract an integer from "expr".
349 * Return NULL if "expr" does not (obviously) represent an integer.
351 __isl_give isl_val *PetScan::extract_int(clang::Expr *expr)
353 if (expr->getStmtClass() == Stmt::IntegerLiteralClass)
354 return extract_int(ctx, cast<IntegerLiteral>(expr));
355 if (expr->getStmtClass() == Stmt::ParenExprClass)
356 return extract_int(cast<ParenExpr>(expr));
358 unsupported(expr);
359 return NULL;
362 /* Extract a pet_expr from the APInt "val", which is assumed
363 * to be non-negative.
365 __isl_give pet_expr *PetScan::extract_expr(const llvm::APInt &val)
367 return pet_expr_new_int(extract_unsigned(ctx, val));
370 /* Return the number of bits needed to represent the type "qt",
371 * if it is an integer type. Otherwise return 0.
372 * If qt is signed then return the opposite of the number of bits.
374 static int get_type_size(QualType qt, ASTContext &ast_context)
376 int size;
378 if (!qt->isIntegerType())
379 return 0;
381 size = ast_context.getIntWidth(qt);
382 if (!qt->isUnsignedIntegerType())
383 size = -size;
385 return size;
388 /* Return the number of bits needed to represent the type of "decl",
389 * if it is an integer type. Otherwise return 0.
390 * If qt is signed then return the opposite of the number of bits.
392 static int get_type_size(ValueDecl *decl)
394 return get_type_size(decl->getType(), decl->getASTContext());
397 /* Bound parameter "pos" of "set" to the possible values of "decl".
399 static __isl_give isl_set *set_parameter_bounds(__isl_take isl_set *set,
400 unsigned pos, ValueDecl *decl)
402 int type_size;
403 isl_ctx *ctx;
404 isl_val *bound;
406 ctx = isl_set_get_ctx(set);
407 type_size = get_type_size(decl);
408 if (type_size == 0)
409 isl_die(ctx, isl_error_invalid, "not an integer type",
410 return isl_set_free(set));
411 if (type_size > 0) {
412 set = isl_set_lower_bound_si(set, isl_dim_param, pos, 0);
413 bound = isl_val_int_from_ui(ctx, type_size);
414 bound = isl_val_2exp(bound);
415 bound = isl_val_sub_ui(bound, 1);
416 set = isl_set_upper_bound_val(set, isl_dim_param, pos, bound);
417 } else {
418 bound = isl_val_int_from_ui(ctx, -type_size - 1);
419 bound = isl_val_2exp(bound);
420 bound = isl_val_sub_ui(bound, 1);
421 set = isl_set_upper_bound_val(set, isl_dim_param, pos,
422 isl_val_copy(bound));
423 bound = isl_val_neg(bound);
424 bound = isl_val_sub_ui(bound, 1);
425 set = isl_set_lower_bound_val(set, isl_dim_param, pos, bound);
428 return set;
431 __isl_give pet_expr *PetScan::extract_index_expr(ImplicitCastExpr *expr)
433 return extract_index_expr(expr->getSubExpr());
436 /* Return the depth of an array of the given type.
438 static int array_depth(const Type *type)
440 if (type->isPointerType())
441 return 1 + array_depth(type->getPointeeType().getTypePtr());
442 if (type->isArrayType()) {
443 const ArrayType *atype;
444 type = type->getCanonicalTypeInternal().getTypePtr();
445 atype = cast<ArrayType>(type);
446 return 1 + array_depth(atype->getElementType().getTypePtr());
448 return 0;
451 /* Return the depth of the array accessed by the index expression "index".
452 * If "index" is an affine expression, i.e., if it does not access
453 * any array, then return 1.
454 * If "index" represent a member access, i.e., if its range is a wrapped
455 * relation, then return the sum of the depth of the array of structures
456 * and that of the member inside the structure.
458 static int extract_depth(__isl_keep isl_multi_pw_aff *index)
460 isl_id *id;
461 ValueDecl *decl;
463 if (!index)
464 return -1;
466 if (isl_multi_pw_aff_range_is_wrapping(index)) {
467 int domain_depth, range_depth;
468 isl_multi_pw_aff *domain, *range;
470 domain = isl_multi_pw_aff_copy(index);
471 domain = isl_multi_pw_aff_range_factor_domain(domain);
472 domain_depth = extract_depth(domain);
473 isl_multi_pw_aff_free(domain);
474 range = isl_multi_pw_aff_copy(index);
475 range = isl_multi_pw_aff_range_factor_range(range);
476 range_depth = extract_depth(range);
477 isl_multi_pw_aff_free(range);
479 return domain_depth + range_depth;
482 if (!isl_multi_pw_aff_has_tuple_id(index, isl_dim_out))
483 return 1;
485 id = isl_multi_pw_aff_get_tuple_id(index, isl_dim_out);
486 if (!id)
487 return -1;
488 decl = (ValueDecl *) isl_id_get_user(id);
489 isl_id_free(id);
491 return array_depth(decl->getType().getTypePtr());
494 /* Return the depth of the array accessed by the access expression "expr".
496 static int extract_depth(__isl_keep pet_expr *expr)
498 isl_multi_pw_aff *index;
499 int depth;
501 index = pet_expr_access_get_index(expr);
502 depth = extract_depth(index);
503 isl_multi_pw_aff_free(index);
505 return depth;
508 /* Construct a pet_expr representing an index expression for an access
509 * to the variable referenced by "expr".
511 * If "expr" references an enum constant, then return an integer expression
512 * instead, representing the value of the enum constant.
514 __isl_give pet_expr *PetScan::extract_index_expr(DeclRefExpr *expr)
516 return extract_index_expr(expr->getDecl());
519 /* Construct a pet_expr representing an index expression for an access
520 * to the variable "decl".
522 * If "decl" is an enum constant, then we return an integer expression
523 * instead, representing the value of the enum constant.
525 __isl_give pet_expr *PetScan::extract_index_expr(ValueDecl *decl)
527 isl_id *id;
528 isl_space *space;
530 if (isa<EnumConstantDecl>(decl))
531 return extract_expr(cast<EnumConstantDecl>(decl));
533 id = create_decl_id(ctx, decl);
534 space = isl_space_alloc(ctx, 0, 0, 0);
535 space = isl_space_set_tuple_id(space, isl_dim_out, id);
537 return pet_expr_from_index(isl_multi_pw_aff_zero(space));
540 /* Construct a pet_expr representing the index expression "expr"
541 * Return NULL on error.
543 * If "expr" is a reference to an enum constant, then return
544 * an integer expression instead, representing the value of the enum constant.
546 __isl_give pet_expr *PetScan::extract_index_expr(Expr *expr)
548 switch (expr->getStmtClass()) {
549 case Stmt::ImplicitCastExprClass:
550 return extract_index_expr(cast<ImplicitCastExpr>(expr));
551 case Stmt::DeclRefExprClass:
552 return extract_index_expr(cast<DeclRefExpr>(expr));
553 case Stmt::ArraySubscriptExprClass:
554 return extract_index_expr(cast<ArraySubscriptExpr>(expr));
555 case Stmt::IntegerLiteralClass:
556 return extract_expr(cast<IntegerLiteral>(expr));
557 case Stmt::MemberExprClass:
558 return extract_index_expr(cast<MemberExpr>(expr));
559 default:
560 unsupported(expr);
562 return NULL;
565 /* Extract an index expression from the given array subscript expression.
567 * We first extract an index expression from the base.
568 * This will result in an index expression with a range that corresponds
569 * to the earlier indices.
570 * We then extract the current index and let
571 * pet_expr_access_subscript combine the two.
573 __isl_give pet_expr *PetScan::extract_index_expr(ArraySubscriptExpr *expr)
575 Expr *base = expr->getBase();
576 Expr *idx = expr->getIdx();
577 pet_expr *index;
578 pet_expr *base_expr;
580 base_expr = extract_index_expr(base);
581 index = extract_expr(idx);
583 base_expr = pet_expr_access_subscript(base_expr, index);
585 return base_expr;
588 /* Extract an index expression from a member expression.
590 * If the base access (to the structure containing the member)
591 * is of the form
593 * A[..]
595 * and the member is called "f", then the member access is of
596 * the form
598 * A_f[A[..] -> f[]]
600 * If the member access is to an anonymous struct, then simply return
602 * A[..]
604 * If the member access in the source code is of the form
606 * A->f
608 * then it is treated as
610 * A[0].f
612 __isl_give pet_expr *PetScan::extract_index_expr(MemberExpr *expr)
614 Expr *base = expr->getBase();
615 FieldDecl *field = cast<FieldDecl>(expr->getMemberDecl());
616 pet_expr *base_index;
617 isl_id *id;
619 base_index = extract_index_expr(base);
621 if (expr->isArrow()) {
622 pet_expr *index = pet_expr_new_int(isl_val_zero(ctx));
623 base_index = pet_expr_access_subscript(base_index, index);
626 if (field->isAnonymousStructOrUnion())
627 return base_index;
629 id = create_decl_id(ctx, field);
631 return pet_expr_access_member(base_index, id);
634 /* Mark the given access pet_expr as a write.
636 static __isl_give pet_expr *mark_write(__isl_take pet_expr *access)
638 access = pet_expr_access_set_write(access, 1);
639 access = pet_expr_access_set_read(access, 0);
641 return access;
644 /* Mark the given (read) access pet_expr as also possibly being written.
645 * That is, initialize the may write access relation from the may read relation
646 * and initialize the must write access relation to the empty relation.
648 static __isl_give pet_expr *mark_may_write(__isl_take pet_expr *expr)
650 isl_union_map *access;
651 isl_union_map *empty;
653 access = pet_expr_access_get_dependent_access(expr,
654 pet_expr_access_may_read);
655 empty = isl_union_map_empty(isl_union_map_get_space(access));
656 expr = pet_expr_access_set_access(expr, pet_expr_access_may_write,
657 access);
658 expr = pet_expr_access_set_access(expr, pet_expr_access_must_write,
659 empty);
661 return expr;
664 /* Construct a pet_expr representing a unary operator expression.
666 __isl_give pet_expr *PetScan::extract_expr(UnaryOperator *expr)
668 int type_size;
669 pet_expr *arg;
670 enum pet_op_type op;
672 op = UnaryOperatorKind2pet_op_type(expr->getOpcode());
673 if (op == pet_op_last) {
674 unsupported(expr);
675 return NULL;
678 arg = extract_expr(expr->getSubExpr());
680 if (expr->isIncrementDecrementOp() &&
681 pet_expr_get_type(arg) == pet_expr_access) {
682 arg = mark_write(arg);
683 arg = pet_expr_access_set_read(arg, 1);
686 type_size = get_type_size(expr->getType(), ast_context);
687 return pet_expr_new_unary(type_size, op, arg);
690 /* Construct a pet_expr representing a binary operator expression.
692 * If the top level operator is an assignment and the LHS is an access,
693 * then we mark that access as a write. If the operator is a compound
694 * assignment, the access is marked as both a read and a write.
696 __isl_give pet_expr *PetScan::extract_expr(BinaryOperator *expr)
698 int type_size;
699 pet_expr *lhs, *rhs;
700 enum pet_op_type op;
702 op = BinaryOperatorKind2pet_op_type(expr->getOpcode());
703 if (op == pet_op_last) {
704 unsupported(expr);
705 return NULL;
708 lhs = extract_expr(expr->getLHS());
709 rhs = extract_expr(expr->getRHS());
711 if (expr->isAssignmentOp() &&
712 pet_expr_get_type(lhs) == pet_expr_access) {
713 lhs = mark_write(lhs);
714 if (expr->isCompoundAssignmentOp())
715 lhs = pet_expr_access_set_read(lhs, 1);
718 type_size = get_type_size(expr->getType(), ast_context);
719 return pet_expr_new_binary(type_size, op, lhs, rhs);
722 /* Construct a pet_tree for a variable declaration.
724 __isl_give pet_tree *PetScan::extract(Decl *decl)
726 VarDecl *vd;
727 pet_expr *lhs, *rhs;
728 pet_tree *tree;
730 vd = cast<VarDecl>(decl);
732 lhs = extract_access_expr(vd);
733 lhs = mark_write(lhs);
734 if (!vd->getInit())
735 tree = pet_tree_new_decl(lhs);
736 else {
737 rhs = extract_expr(vd->getInit());
738 tree = pet_tree_new_decl_init(lhs, rhs);
741 return tree;
744 /* Construct a pet_tree for a variable declaration statement.
745 * If the declaration statement declares multiple variables,
746 * then return a group of pet_trees, one for each declared variable.
748 __isl_give pet_tree *PetScan::extract(DeclStmt *stmt)
750 pet_tree *tree;
751 unsigned n;
753 if (!stmt->isSingleDecl()) {
754 const DeclGroup &group = stmt->getDeclGroup().getDeclGroup();
755 n = group.size();
756 tree = pet_tree_new_block(ctx, 0, n);
758 for (int i = 0; i < n; ++i) {
759 pet_tree *tree_i;
760 pet_loc *loc;
762 tree_i = extract(group[i]);
763 loc = construct_pet_loc(group[i]->getSourceRange(),
764 false);
765 tree_i = pet_tree_set_loc(tree_i, loc);
766 tree = pet_tree_block_add_child(tree, tree_i);
769 return tree;
772 return extract(stmt->getSingleDecl());
775 /* Construct a pet_expr representing a conditional operation.
777 __isl_give pet_expr *PetScan::extract_expr(ConditionalOperator *expr)
779 pet_expr *cond, *lhs, *rhs;
780 isl_pw_aff *pa;
782 cond = extract_expr(expr->getCond());
783 lhs = extract_expr(expr->getTrueExpr());
784 rhs = extract_expr(expr->getFalseExpr());
786 return pet_expr_new_ternary(cond, lhs, rhs);
789 __isl_give pet_expr *PetScan::extract_expr(ImplicitCastExpr *expr)
791 return extract_expr(expr->getSubExpr());
794 /* Construct a pet_expr representing a floating point value.
796 * If the floating point literal does not appear in a macro,
797 * then we use the original representation in the source code
798 * as the string representation. Otherwise, we use the pretty
799 * printer to produce a string representation.
801 __isl_give pet_expr *PetScan::extract_expr(FloatingLiteral *expr)
803 double d;
804 string s;
805 const LangOptions &LO = PP.getLangOpts();
806 SourceLocation loc = expr->getLocation();
808 if (!loc.isMacroID()) {
809 SourceManager &SM = PP.getSourceManager();
810 unsigned len = Lexer::MeasureTokenLength(loc, SM, LO);
811 s = string(SM.getCharacterData(loc), len);
812 } else {
813 llvm::raw_string_ostream S(s);
814 expr->printPretty(S, 0, PrintingPolicy(LO));
815 S.str();
817 d = expr->getValueAsApproximateDouble();
818 return pet_expr_new_double(ctx, d, s.c_str());
821 /* Convert the index expression "index" into an access pet_expr of type "qt".
823 __isl_give pet_expr *PetScan::extract_access_expr(QualType qt,
824 __isl_take pet_expr *index)
826 int depth;
827 int type_size;
829 depth = extract_depth(index);
830 type_size = get_type_size(qt, ast_context);
832 index = pet_expr_set_type_size(index, type_size);
833 index = pet_expr_access_set_depth(index, depth);
835 return index;
838 /* Extract an index expression from "expr" and then convert it into
839 * an access pet_expr.
841 * If "expr" is a reference to an enum constant, then return
842 * an integer expression instead, representing the value of the enum constant.
844 __isl_give pet_expr *PetScan::extract_access_expr(Expr *expr)
846 pet_expr *index;
848 index = extract_index_expr(expr);
850 if (pet_expr_get_type(index) == pet_expr_int)
851 return index;
853 return extract_access_expr(expr->getType(), index);
856 /* Extract an index expression from "decl" and then convert it into
857 * an access pet_expr.
859 __isl_give pet_expr *PetScan::extract_access_expr(ValueDecl *decl)
861 return extract_access_expr(decl->getType(), extract_index_expr(decl));
864 __isl_give pet_expr *PetScan::extract_expr(ParenExpr *expr)
866 return extract_expr(expr->getSubExpr());
869 /* Extract an assume statement from the argument "expr"
870 * of a __pencil_assume statement.
872 __isl_give pet_expr *PetScan::extract_assume(Expr *expr)
874 return pet_expr_new_unary(0, pet_op_assume, extract_expr(expr));
877 /* Construct a pet_expr corresponding to the function call argument "expr".
878 * The argument appears in position "pos" of a call to function "fd".
880 * If we are passing along a pointer to an array element
881 * or an entire row or even higher dimensional slice of an array,
882 * then the function being called may write into the array.
884 * We assume here that if the function is declared to take a pointer
885 * to a const type, then the function may only perform a read
886 * and that otherwise, it may either perform a read or a write (or both).
887 * We only perform this check if "detect_writes" is set.
889 __isl_give pet_expr *PetScan::extract_argument(FunctionDecl *fd, int pos,
890 Expr *expr, bool detect_writes)
892 pet_expr *res;
893 int is_addr = 0, is_partial = 0;
895 while (expr->getStmtClass() == Stmt::ImplicitCastExprClass) {
896 ImplicitCastExpr *ice = cast<ImplicitCastExpr>(expr);
897 expr = ice->getSubExpr();
899 if (expr->getStmtClass() == Stmt::UnaryOperatorClass) {
900 UnaryOperator *op = cast<UnaryOperator>(expr);
901 if (op->getOpcode() == UO_AddrOf) {
902 is_addr = 1;
903 expr = op->getSubExpr();
906 res = extract_expr(expr);
907 if (!res)
908 return NULL;
909 if (array_depth(expr->getType().getTypePtr()) > 0)
910 is_partial = 1;
911 if (detect_writes && (is_addr || is_partial) &&
912 pet_expr_get_type(res) == pet_expr_access) {
913 ParmVarDecl *parm;
914 if (!fd->hasPrototype()) {
915 report_prototype_required(expr);
916 return pet_expr_free(res);
918 parm = fd->getParamDecl(pos);
919 if (!const_base(parm->getType()))
920 res = mark_may_write(res);
923 if (is_addr)
924 res = pet_expr_new_unary(0, pet_op_address_of, res);
925 return res;
928 /* Find the first FunctionDecl with the given name.
929 * "call" is the corresponding call expression and is only used
930 * for reporting errors.
932 * Return NULL on error.
934 FunctionDecl *PetScan::find_decl_from_name(CallExpr *call, string name)
936 TranslationUnitDecl *tu = ast_context.getTranslationUnitDecl();
937 DeclContext::decl_iterator begin = tu->decls_begin();
938 DeclContext::decl_iterator end = tu->decls_end();
939 for (DeclContext::decl_iterator i = begin; i != end; ++i) {
940 FunctionDecl *fd = dyn_cast<FunctionDecl>(*i);
941 if (!fd)
942 continue;
943 if (fd->getName().str().compare(name) != 0)
944 continue;
945 if (fd->hasBody())
946 return fd;
947 report_missing_summary_function_body(call);
948 return NULL;
950 report_missing_summary_function(call);
951 return NULL;
954 /* Return the FunctionDecl for the summary function associated to the
955 * function called by "call".
957 * In particular, if the pencil option is set, then
958 * search for an annotate attribute formatted as
959 * "pencil_access(name)", where "name" is the name of the summary function.
961 * If no summary function was specified, then return the FunctionDecl
962 * that is actually being called.
964 * Return NULL on error.
966 FunctionDecl *PetScan::get_summary_function(CallExpr *call)
968 FunctionDecl *decl = call->getDirectCallee();
969 if (!decl)
970 return NULL;
972 if (!options->pencil)
973 return decl;
975 specific_attr_iterator<AnnotateAttr> begin, end, i;
976 begin = decl->specific_attr_begin<AnnotateAttr>();
977 end = decl->specific_attr_end<AnnotateAttr>();
978 for (i = begin; i != end; ++i) {
979 string attr = (*i)->getAnnotation().str();
981 const char prefix[] = "pencil_access(";
982 size_t start = attr.find(prefix);
983 if (start == string::npos)
984 continue;
985 start += strlen(prefix);
986 string name = attr.substr(start, attr.find(')') - start);
988 return find_decl_from_name(call, name);
991 return decl;
994 /* Construct a pet_expr representing a function call.
996 * In the special case of a "call" to __pencil_assume,
997 * construct an assume expression instead.
999 * In the case of a "call" to __pencil_kill, the arguments
1000 * are neither read nor written (only killed), so there
1001 * is no need to check for writes to these arguments.
1003 * __pencil_assume and __pencil_kill are only recognized
1004 * when the pencil option is set.
1006 __isl_give pet_expr *PetScan::extract_expr(CallExpr *expr)
1008 pet_expr *res = NULL;
1009 FunctionDecl *fd;
1010 string name;
1011 unsigned n_arg;
1012 bool is_kill;
1014 fd = expr->getDirectCallee();
1015 if (!fd) {
1016 unsupported(expr);
1017 return NULL;
1020 name = fd->getDeclName().getAsString();
1021 n_arg = expr->getNumArgs();
1023 if (options->pencil && n_arg == 1 && name == "__pencil_assume")
1024 return extract_assume(expr->getArg(0));
1025 is_kill = options->pencil && name == "__pencil_kill";
1027 res = pet_expr_new_call(ctx, name.c_str(), n_arg);
1028 if (!res)
1029 return NULL;
1031 for (int i = 0; i < n_arg; ++i) {
1032 Expr *arg = expr->getArg(i);
1033 res = pet_expr_set_arg(res, i,
1034 PetScan::extract_argument(fd, i, arg, !is_kill));
1037 fd = get_summary_function(expr);
1038 if (!fd)
1039 return pet_expr_free(res);
1041 res = set_summary(res, fd);
1043 return res;
1046 /* Construct a pet_expr representing a (C style) cast.
1048 __isl_give pet_expr *PetScan::extract_expr(CStyleCastExpr *expr)
1050 pet_expr *arg;
1051 QualType type;
1053 arg = extract_expr(expr->getSubExpr());
1054 if (!arg)
1055 return NULL;
1057 type = expr->getTypeAsWritten();
1058 return pet_expr_new_cast(type.getAsString().c_str(), arg);
1061 /* Construct a pet_expr representing an integer.
1063 __isl_give pet_expr *PetScan::extract_expr(IntegerLiteral *expr)
1065 return pet_expr_new_int(extract_int(expr));
1068 /* Construct a pet_expr representing the integer enum constant "ecd".
1070 __isl_give pet_expr *PetScan::extract_expr(EnumConstantDecl *ecd)
1072 isl_val *v;
1073 const llvm::APSInt &init = ecd->getInitVal();
1074 v = ::extract_int(ctx, init.isSigned(), init);
1075 return pet_expr_new_int(v);
1078 /* Try and construct a pet_expr representing "expr".
1080 __isl_give pet_expr *PetScan::extract_expr(Expr *expr)
1082 switch (expr->getStmtClass()) {
1083 case Stmt::UnaryOperatorClass:
1084 return extract_expr(cast<UnaryOperator>(expr));
1085 case Stmt::CompoundAssignOperatorClass:
1086 case Stmt::BinaryOperatorClass:
1087 return extract_expr(cast<BinaryOperator>(expr));
1088 case Stmt::ImplicitCastExprClass:
1089 return extract_expr(cast<ImplicitCastExpr>(expr));
1090 case Stmt::ArraySubscriptExprClass:
1091 case Stmt::DeclRefExprClass:
1092 case Stmt::MemberExprClass:
1093 return extract_access_expr(expr);
1094 case Stmt::IntegerLiteralClass:
1095 return extract_expr(cast<IntegerLiteral>(expr));
1096 case Stmt::FloatingLiteralClass:
1097 return extract_expr(cast<FloatingLiteral>(expr));
1098 case Stmt::ParenExprClass:
1099 return extract_expr(cast<ParenExpr>(expr));
1100 case Stmt::ConditionalOperatorClass:
1101 return extract_expr(cast<ConditionalOperator>(expr));
1102 case Stmt::CallExprClass:
1103 return extract_expr(cast<CallExpr>(expr));
1104 case Stmt::CStyleCastExprClass:
1105 return extract_expr(cast<CStyleCastExpr>(expr));
1106 default:
1107 unsupported(expr);
1109 return NULL;
1112 /* Check if the given initialization statement is an assignment.
1113 * If so, return that assignment. Otherwise return NULL.
1115 BinaryOperator *PetScan::initialization_assignment(Stmt *init)
1117 BinaryOperator *ass;
1119 if (init->getStmtClass() != Stmt::BinaryOperatorClass)
1120 return NULL;
1122 ass = cast<BinaryOperator>(init);
1123 if (ass->getOpcode() != BO_Assign)
1124 return NULL;
1126 return ass;
1129 /* Check if the given initialization statement is a declaration
1130 * of a single variable.
1131 * If so, return that declaration. Otherwise return NULL.
1133 Decl *PetScan::initialization_declaration(Stmt *init)
1135 DeclStmt *decl;
1137 if (init->getStmtClass() != Stmt::DeclStmtClass)
1138 return NULL;
1140 decl = cast<DeclStmt>(init);
1142 if (!decl->isSingleDecl())
1143 return NULL;
1145 return decl->getSingleDecl();
1148 /* Given the assignment operator in the initialization of a for loop,
1149 * extract the induction variable, i.e., the (integer)variable being
1150 * assigned.
1152 ValueDecl *PetScan::extract_induction_variable(BinaryOperator *init)
1154 Expr *lhs;
1155 DeclRefExpr *ref;
1156 ValueDecl *decl;
1157 const Type *type;
1159 lhs = init->getLHS();
1160 if (lhs->getStmtClass() != Stmt::DeclRefExprClass) {
1161 unsupported(init);
1162 return NULL;
1165 ref = cast<DeclRefExpr>(lhs);
1166 decl = ref->getDecl();
1167 type = decl->getType().getTypePtr();
1169 if (!type->isIntegerType()) {
1170 unsupported(lhs);
1171 return NULL;
1174 return decl;
1177 /* Given the initialization statement of a for loop and the single
1178 * declaration in this initialization statement,
1179 * extract the induction variable, i.e., the (integer) variable being
1180 * declared.
1182 VarDecl *PetScan::extract_induction_variable(Stmt *init, Decl *decl)
1184 VarDecl *vd;
1186 vd = cast<VarDecl>(decl);
1188 const QualType type = vd->getType();
1189 if (!type->isIntegerType()) {
1190 unsupported(init);
1191 return NULL;
1194 if (!vd->getInit()) {
1195 unsupported(init);
1196 return NULL;
1199 return vd;
1202 /* Check that op is of the form iv++ or iv--.
1203 * Return a pet_expr representing "1" or "-1" accordingly.
1205 __isl_give pet_expr *PetScan::extract_unary_increment(
1206 clang::UnaryOperator *op, clang::ValueDecl *iv)
1208 Expr *sub;
1209 DeclRefExpr *ref;
1210 isl_val *v;
1212 if (!op->isIncrementDecrementOp()) {
1213 unsupported(op);
1214 return NULL;
1217 sub = op->getSubExpr();
1218 if (sub->getStmtClass() != Stmt::DeclRefExprClass) {
1219 unsupported(op);
1220 return NULL;
1223 ref = cast<DeclRefExpr>(sub);
1224 if (ref->getDecl() != iv) {
1225 unsupported(op);
1226 return NULL;
1229 if (op->isIncrementOp())
1230 v = isl_val_one(ctx);
1231 else
1232 v = isl_val_negone(ctx);
1234 return pet_expr_new_int(v);
1237 /* Check if op is of the form
1239 * iv = expr
1241 * and return the increment "expr - iv" as a pet_expr.
1243 __isl_give pet_expr *PetScan::extract_binary_increment(BinaryOperator *op,
1244 clang::ValueDecl *iv)
1246 int type_size;
1247 Expr *lhs;
1248 DeclRefExpr *ref;
1249 pet_expr *expr, *expr_iv;
1251 if (op->getOpcode() != BO_Assign) {
1252 unsupported(op);
1253 return NULL;
1256 lhs = op->getLHS();
1257 if (lhs->getStmtClass() != Stmt::DeclRefExprClass) {
1258 unsupported(op);
1259 return NULL;
1262 ref = cast<DeclRefExpr>(lhs);
1263 if (ref->getDecl() != iv) {
1264 unsupported(op);
1265 return NULL;
1268 expr = extract_expr(op->getRHS());
1269 expr_iv = extract_expr(lhs);
1271 type_size = get_type_size(iv->getType(), ast_context);
1272 return pet_expr_new_binary(type_size, pet_op_sub, expr, expr_iv);
1275 /* Check that op is of the form iv += cst or iv -= cst
1276 * and return a pet_expr corresponding to cst or -cst accordingly.
1278 __isl_give pet_expr *PetScan::extract_compound_increment(
1279 CompoundAssignOperator *op, clang::ValueDecl *iv)
1281 Expr *lhs;
1282 DeclRefExpr *ref;
1283 bool neg = false;
1284 pet_expr *expr;
1285 BinaryOperatorKind opcode;
1287 opcode = op->getOpcode();
1288 if (opcode != BO_AddAssign && opcode != BO_SubAssign) {
1289 unsupported(op);
1290 return NULL;
1292 if (opcode == BO_SubAssign)
1293 neg = true;
1295 lhs = op->getLHS();
1296 if (lhs->getStmtClass() != Stmt::DeclRefExprClass) {
1297 unsupported(op);
1298 return NULL;
1301 ref = cast<DeclRefExpr>(lhs);
1302 if (ref->getDecl() != iv) {
1303 unsupported(op);
1304 return NULL;
1307 expr = extract_expr(op->getRHS());
1308 if (neg) {
1309 int type_size;
1310 type_size = get_type_size(op->getType(), ast_context);
1311 expr = pet_expr_new_unary(type_size, pet_op_minus, expr);
1314 return expr;
1317 /* Check that the increment of the given for loop increments
1318 * (or decrements) the induction variable "iv" and return
1319 * the increment as a pet_expr if successful.
1321 __isl_give pet_expr *PetScan::extract_increment(clang::ForStmt *stmt,
1322 ValueDecl *iv)
1324 Stmt *inc = stmt->getInc();
1326 if (!inc) {
1327 report_missing_increment(stmt);
1328 return NULL;
1331 if (inc->getStmtClass() == Stmt::UnaryOperatorClass)
1332 return extract_unary_increment(cast<UnaryOperator>(inc), iv);
1333 if (inc->getStmtClass() == Stmt::CompoundAssignOperatorClass)
1334 return extract_compound_increment(
1335 cast<CompoundAssignOperator>(inc), iv);
1336 if (inc->getStmtClass() == Stmt::BinaryOperatorClass)
1337 return extract_binary_increment(cast<BinaryOperator>(inc), iv);
1339 unsupported(inc);
1340 return NULL;
1343 /* Construct a pet_tree for a while loop.
1345 * If we were only able to extract part of the body, then simply
1346 * return that part.
1348 __isl_give pet_tree *PetScan::extract(WhileStmt *stmt)
1350 pet_expr *pe_cond;
1351 pet_tree *tree;
1353 tree = extract(stmt->getBody());
1354 if (partial)
1355 return tree;
1356 pe_cond = extract_expr(stmt->getCond());
1357 tree = pet_tree_new_while(pe_cond, tree);
1359 return tree;
1362 /* Construct a pet_tree for a for statement.
1363 * The for loop is required to be of one of the following forms
1365 * for (i = init; condition; ++i)
1366 * for (i = init; condition; --i)
1367 * for (i = init; condition; i += constant)
1368 * for (i = init; condition; i -= constant)
1370 * We extract a pet_tree for the body and then include it in a pet_tree
1371 * of type pet_tree_for.
1373 * As a special case, we also allow a for loop of the form
1375 * for (;;)
1377 * in which case we return a pet_tree of type pet_tree_infinite_loop.
1379 * If we were only able to extract part of the body, then simply
1380 * return that part.
1382 __isl_give pet_tree *PetScan::extract_for(ForStmt *stmt)
1384 BinaryOperator *ass;
1385 Decl *decl;
1386 Stmt *init;
1387 Expr *lhs, *rhs;
1388 ValueDecl *iv;
1389 pet_tree *tree;
1390 struct pet_scop *scop;
1391 int independent;
1392 int declared;
1393 pet_expr *pe_init, *pe_inc, *pe_iv, *pe_cond;
1395 independent = is_current_stmt_marked_independent();
1397 if (!stmt->getInit() && !stmt->getCond() && !stmt->getInc()) {
1398 tree = extract(stmt->getBody());
1399 if (partial)
1400 return tree;
1401 tree = pet_tree_new_infinite_loop(tree);
1402 return tree;
1405 init = stmt->getInit();
1406 if (!init) {
1407 unsupported(stmt);
1408 return NULL;
1410 if ((ass = initialization_assignment(init)) != NULL) {
1411 iv = extract_induction_variable(ass);
1412 if (!iv)
1413 return NULL;
1414 lhs = ass->getLHS();
1415 rhs = ass->getRHS();
1416 } else if ((decl = initialization_declaration(init)) != NULL) {
1417 VarDecl *var = extract_induction_variable(init, decl);
1418 if (!var)
1419 return NULL;
1420 iv = var;
1421 rhs = var->getInit();
1422 lhs = create_DeclRefExpr(var);
1423 } else {
1424 unsupported(stmt->getInit());
1425 return NULL;
1428 declared = !initialization_assignment(stmt->getInit());
1429 tree = extract(stmt->getBody());
1430 if (partial)
1431 return tree;
1432 pe_iv = extract_access_expr(iv);
1433 pe_iv = mark_write(pe_iv);
1434 pe_init = extract_expr(rhs);
1435 if (!stmt->getCond())
1436 pe_cond = pet_expr_new_int(isl_val_one(ctx));
1437 else
1438 pe_cond = extract_expr(stmt->getCond());
1439 pe_inc = extract_increment(stmt, iv);
1440 tree = pet_tree_new_for(independent, declared, pe_iv, pe_init, pe_cond,
1441 pe_inc, tree);
1442 return tree;
1445 /* Try and construct a pet_tree corresponding to a compound statement.
1447 * "skip_declarations" is set if we should skip initial declarations
1448 * in the children of the compound statements.
1450 __isl_give pet_tree *PetScan::extract(CompoundStmt *stmt,
1451 bool skip_declarations)
1453 return extract(stmt->children(), true, skip_declarations);
1456 /* Return the file offset of the expansion location of "Loc".
1458 static unsigned getExpansionOffset(SourceManager &SM, SourceLocation Loc)
1460 return SM.getFileOffset(SM.getExpansionLoc(Loc));
1463 #ifdef HAVE_FINDLOCATIONAFTERTOKEN
1465 /* Return a SourceLocation for the location after the first semicolon
1466 * after "loc". If Lexer::findLocationAfterToken is available, we simply
1467 * call it and also skip trailing spaces and newline.
1469 static SourceLocation location_after_semi(SourceLocation loc, SourceManager &SM,
1470 const LangOptions &LO)
1472 return Lexer::findLocationAfterToken(loc, tok::semi, SM, LO, true);
1475 #else
1477 /* Return a SourceLocation for the location after the first semicolon
1478 * after "loc". If Lexer::findLocationAfterToken is not available,
1479 * we look in the underlying character data for the first semicolon.
1481 static SourceLocation location_after_semi(SourceLocation loc, SourceManager &SM,
1482 const LangOptions &LO)
1484 const char *semi;
1485 const char *s = SM.getCharacterData(loc);
1487 semi = strchr(s, ';');
1488 if (!semi)
1489 return SourceLocation();
1490 return loc.getFileLocWithOffset(semi + 1 - s);
1493 #endif
1495 /* If the token at "loc" is the first token on the line, then return
1496 * a location referring to the start of the line and set *indent
1497 * to the indentation of "loc"
1498 * Otherwise, return "loc" and set *indent to "".
1500 * This function is used to extend a scop to the start of the line
1501 * if the first token of the scop is also the first token on the line.
1503 * We look for the first token on the line. If its location is equal to "loc",
1504 * then the latter is the location of the first token on the line.
1506 static SourceLocation move_to_start_of_line_if_first_token(SourceLocation loc,
1507 SourceManager &SM, const LangOptions &LO, char **indent)
1509 std::pair<FileID, unsigned> file_offset_pair;
1510 llvm::StringRef file;
1511 const char *pos;
1512 Token tok;
1513 SourceLocation token_loc, line_loc;
1514 int col;
1515 const char *s;
1517 loc = SM.getExpansionLoc(loc);
1518 col = SM.getExpansionColumnNumber(loc);
1519 line_loc = loc.getLocWithOffset(1 - col);
1520 file_offset_pair = SM.getDecomposedLoc(line_loc);
1521 file = SM.getBufferData(file_offset_pair.first, NULL);
1522 pos = file.data() + file_offset_pair.second;
1524 Lexer lexer(SM.getLocForStartOfFile(file_offset_pair.first), LO,
1525 file.begin(), pos, file.end());
1526 lexer.LexFromRawLexer(tok);
1527 token_loc = tok.getLocation();
1529 s = SM.getCharacterData(line_loc);
1530 *indent = strndup(s, token_loc == loc ? col - 1 : 0);
1532 if (token_loc == loc)
1533 return line_loc;
1534 else
1535 return loc;
1538 /* Construct a pet_loc corresponding to the region covered by "range".
1539 * If "skip_semi" is set, then we assume "range" is followed by
1540 * a semicolon and also include this semicolon.
1542 __isl_give pet_loc *PetScan::construct_pet_loc(SourceRange range,
1543 bool skip_semi)
1545 SourceLocation loc = range.getBegin();
1546 SourceManager &SM = PP.getSourceManager();
1547 const LangOptions &LO = PP.getLangOpts();
1548 int line = PP.getSourceManager().getExpansionLineNumber(loc);
1549 unsigned start, end;
1550 char *indent;
1552 loc = move_to_start_of_line_if_first_token(loc, SM, LO, &indent);
1553 start = getExpansionOffset(SM, loc);
1554 loc = range.getEnd();
1555 if (skip_semi)
1556 loc = location_after_semi(loc, SM, LO);
1557 else
1558 loc = PP.getLocForEndOfToken(loc);
1559 end = getExpansionOffset(SM, loc);
1561 return pet_loc_alloc(ctx, start, end, line, indent);
1564 /* Convert a top-level pet_expr to an expression pet_tree.
1566 __isl_give pet_tree *PetScan::extract(__isl_take pet_expr *expr,
1567 SourceRange range, bool skip_semi)
1569 pet_loc *loc;
1570 pet_tree *tree;
1572 tree = pet_tree_new_expr(expr);
1573 loc = construct_pet_loc(range, skip_semi);
1574 tree = pet_tree_set_loc(tree, loc);
1576 return tree;
1579 /* Construct a pet_tree for an if statement.
1581 __isl_give pet_tree *PetScan::extract(IfStmt *stmt)
1583 pet_expr *pe_cond;
1584 pet_tree *tree, *tree_else;
1585 struct pet_scop *scop;
1586 int int_size;
1588 pe_cond = extract_expr(stmt->getCond());
1589 tree = extract(stmt->getThen());
1590 if (stmt->getElse()) {
1591 tree_else = extract(stmt->getElse());
1592 if (options->autodetect) {
1593 if (tree && !tree_else) {
1594 partial = true;
1595 pet_expr_free(pe_cond);
1596 return tree;
1598 if (!tree && tree_else) {
1599 partial = true;
1600 pet_expr_free(pe_cond);
1601 return tree_else;
1604 tree = pet_tree_new_if_else(pe_cond, tree, tree_else);
1605 } else
1606 tree = pet_tree_new_if(pe_cond, tree);
1607 return tree;
1610 /* Try and construct a pet_tree for a label statement.
1612 __isl_give pet_tree *PetScan::extract(LabelStmt *stmt)
1614 isl_id *label;
1615 pet_tree *tree;
1617 label = isl_id_alloc(ctx, stmt->getName(), NULL);
1619 tree = extract(stmt->getSubStmt());
1620 tree = pet_tree_set_label(tree, label);
1621 return tree;
1624 /* Update the location of "tree" to include the source range of "stmt".
1626 * Actually, we create a new location based on the source range of "stmt" and
1627 * then extend this new location to include the region of the original location.
1628 * This ensures that the line number of the final location refers to "stmt".
1630 __isl_give pet_tree *PetScan::update_loc(__isl_take pet_tree *tree, Stmt *stmt)
1632 pet_loc *loc, *tree_loc;
1634 tree_loc = pet_tree_get_loc(tree);
1635 loc = construct_pet_loc(stmt->getSourceRange(), false);
1636 loc = pet_loc_update_start_end_from_loc(loc, tree_loc);
1637 pet_loc_free(tree_loc);
1639 tree = pet_tree_set_loc(tree, loc);
1640 return tree;
1643 /* Try and construct a pet_tree corresponding to "stmt".
1645 * If "stmt" is a compound statement, then "skip_declarations"
1646 * indicates whether we should skip initial declarations in the
1647 * compound statement.
1649 * If the constructed pet_tree is not a (possibly) partial representation
1650 * of "stmt", we update start and end of the pet_scop to those of "stmt".
1651 * In particular, if skip_declarations is set, then we may have skipped
1652 * declarations inside "stmt" and so the pet_scop may not represent
1653 * the entire "stmt".
1654 * Note that this function may be called with "stmt" referring to the entire
1655 * body of the function, including the outer braces. In such cases,
1656 * skip_declarations will be set and the braces will not be taken into
1657 * account in tree->loc.
1659 __isl_give pet_tree *PetScan::extract(Stmt *stmt, bool skip_declarations)
1661 pet_tree *tree;
1663 set_current_stmt(stmt);
1665 if (isa<Expr>(stmt))
1666 return extract(extract_expr(cast<Expr>(stmt)),
1667 stmt->getSourceRange(), true);
1669 switch (stmt->getStmtClass()) {
1670 case Stmt::WhileStmtClass:
1671 tree = extract(cast<WhileStmt>(stmt));
1672 break;
1673 case Stmt::ForStmtClass:
1674 tree = extract_for(cast<ForStmt>(stmt));
1675 break;
1676 case Stmt::IfStmtClass:
1677 tree = extract(cast<IfStmt>(stmt));
1678 break;
1679 case Stmt::CompoundStmtClass:
1680 tree = extract(cast<CompoundStmt>(stmt), skip_declarations);
1681 break;
1682 case Stmt::LabelStmtClass:
1683 tree = extract(cast<LabelStmt>(stmt));
1684 break;
1685 case Stmt::ContinueStmtClass:
1686 tree = pet_tree_new_continue(ctx);
1687 break;
1688 case Stmt::BreakStmtClass:
1689 tree = pet_tree_new_break(ctx);
1690 break;
1691 case Stmt::DeclStmtClass:
1692 tree = extract(cast<DeclStmt>(stmt));
1693 break;
1694 default:
1695 report_unsupported_statement_type(stmt);
1696 return NULL;
1699 if (partial || skip_declarations)
1700 return tree;
1702 return update_loc(tree, stmt);
1705 /* Given a sequence of statements "stmt_range" of which the first "n_decl"
1706 * are declarations and of which the remaining statements are represented
1707 * by "tree", try and extend "tree" to include the last sequence of
1708 * the initial declarations that can be completely extracted.
1710 * We start collecting the initial declarations and start over
1711 * whenever we come across a declaration that we cannot extract.
1712 * If we have been able to extract any declarations, then we
1713 * copy over the contents of "tree" at the end of the declarations.
1714 * Otherwise, we simply return the original "tree".
1716 __isl_give pet_tree *PetScan::insert_initial_declarations(
1717 __isl_take pet_tree *tree, int n_decl, StmtRange stmt_range)
1719 StmtIterator i;
1720 pet_tree *res;
1721 int n_stmt;
1722 int is_block;
1723 int j;
1725 n_stmt = pet_tree_block_n_child(tree);
1726 is_block = pet_tree_block_get_block(tree);
1727 res = pet_tree_new_block(ctx, is_block, n_decl + n_stmt);
1729 for (i = stmt_range.first; n_decl; ++i, --n_decl) {
1730 Stmt *child = *i;
1731 pet_tree *tree_i;
1733 tree_i = extract(child);
1734 if (tree_i && !partial) {
1735 res = pet_tree_block_add_child(res, tree_i);
1736 continue;
1738 pet_tree_free(tree_i);
1739 partial = false;
1740 if (pet_tree_block_n_child(res) == 0)
1741 continue;
1742 pet_tree_free(res);
1743 res = pet_tree_new_block(ctx, is_block, n_decl + n_stmt);
1746 if (pet_tree_block_n_child(res) == 0) {
1747 pet_tree_free(res);
1748 return tree;
1751 for (j = 0; j < n_stmt; ++j) {
1752 pet_tree *tree_i;
1754 tree_i = pet_tree_block_get_child(tree, j);
1755 res = pet_tree_block_add_child(res, tree_i);
1757 pet_tree_free(tree);
1759 return res;
1762 /* Try and construct a pet_tree corresponding to (part of)
1763 * a sequence of statements.
1765 * "block" is set if the sequence represents the children of
1766 * a compound statement.
1767 * "skip_declarations" is set if we should skip initial declarations
1768 * in the sequence of statements.
1770 * If autodetect is set, then we allow the extraction of only a subrange
1771 * of the sequence of statements. However, if there is at least one
1772 * kill and there is some subsequent statement for which we could not
1773 * construct a tree, then turn off the "block" property of the tree
1774 * such that no extra kill will be introduced at the end of the (partial)
1775 * block. If, on the other hand, the final range contains
1776 * no statements, then we discard the entire range.
1778 * If the entire range was extracted, apart from some initial declarations,
1779 * then we try and extend the range with the latest of those initial
1780 * declarations.
1782 __isl_give pet_tree *PetScan::extract(StmtRange stmt_range, bool block,
1783 bool skip_declarations)
1785 StmtIterator i;
1786 int j, skip;
1787 bool has_kills = false;
1788 bool partial_range = false;
1789 pet_tree *tree;
1791 for (i = stmt_range.first, j = 0; i != stmt_range.second; ++i, ++j)
1794 tree = pet_tree_new_block(ctx, block, j);
1796 skip = 0;
1797 i = stmt_range.first;
1798 if (skip_declarations)
1799 for (; i != stmt_range.second; ++i) {
1800 if ((*i)->getStmtClass() != Stmt::DeclStmtClass)
1801 break;
1802 ++skip;
1805 for (; i != stmt_range.second; ++i) {
1806 Stmt *child = *i;
1807 pet_tree *tree_i;
1809 tree_i = extract(child);
1810 if (pet_tree_block_n_child(tree) != 0 && partial) {
1811 pet_tree_free(tree_i);
1812 break;
1814 if (tree_i && child->getStmtClass() == Stmt::DeclStmtClass &&
1815 block)
1816 has_kills = true;
1817 if (options->autodetect) {
1818 if (tree_i)
1819 tree = pet_tree_block_add_child(tree, tree_i);
1820 else
1821 partial_range = true;
1822 if (pet_tree_block_n_child(tree) != 0 && !tree_i)
1823 partial = true;
1824 } else {
1825 tree = pet_tree_block_add_child(tree, tree_i);
1828 if (partial || !tree)
1829 break;
1832 if (!tree)
1833 return NULL;
1835 if (partial) {
1836 if (has_kills)
1837 tree = pet_tree_block_set_block(tree, 0);
1838 } else if (partial_range) {
1839 if (pet_tree_block_n_child(tree) == 0) {
1840 pet_tree_free(tree);
1841 return NULL;
1843 partial = true;
1844 } else if (skip > 0)
1845 tree = insert_initial_declarations(tree, skip, stmt_range);
1847 return tree;
1850 /* Is "T" the type of a variable length array with static size?
1852 static bool is_vla_with_static_size(QualType T)
1854 const VariableArrayType *vlatype;
1856 if (!T->isVariableArrayType())
1857 return false;
1858 vlatype = cast<VariableArrayType>(T);
1859 return vlatype->getSizeModifier() == VariableArrayType::Static;
1862 /* Return the type of "decl" as an array.
1864 * In particular, if "decl" is a parameter declaration that
1865 * is a variable length array with a static size, then
1866 * return the original type (i.e., the variable length array).
1867 * Otherwise, return the type of decl.
1869 static QualType get_array_type(ValueDecl *decl)
1871 ParmVarDecl *parm;
1872 QualType T;
1874 parm = dyn_cast<ParmVarDecl>(decl);
1875 if (!parm)
1876 return decl->getType();
1878 T = parm->getOriginalType();
1879 if (!is_vla_with_static_size(T))
1880 return decl->getType();
1881 return T;
1884 extern "C" {
1885 static __isl_give pet_expr *get_array_size(__isl_keep pet_expr *access,
1886 void *user);
1887 static struct pet_array *extract_array(__isl_keep pet_expr *access,
1888 __isl_keep pet_context *pc, void *user);
1891 /* Construct a pet_expr that holds the sizes of the array accessed
1892 * by "access".
1893 * This function is used as a callback to pet_context_add_parameters,
1894 * which is also passed a pointer to the PetScan object.
1896 static __isl_give pet_expr *get_array_size(__isl_keep pet_expr *access,
1897 void *user)
1899 PetScan *ps = (PetScan *) user;
1900 isl_id *id;
1901 ValueDecl *decl;
1902 const Type *type;
1904 id = pet_expr_access_get_id(access);
1905 decl = (ValueDecl *) isl_id_get_user(id);
1906 isl_id_free(id);
1907 type = get_array_type(decl).getTypePtr();
1908 return ps->get_array_size(type);
1911 /* Construct and return a pet_array corresponding to the variable
1912 * accessed by "access".
1913 * This function is used as a callback to pet_scop_from_pet_tree,
1914 * which is also passed a pointer to the PetScan object.
1916 static struct pet_array *extract_array(__isl_keep pet_expr *access,
1917 __isl_keep pet_context *pc, void *user)
1919 PetScan *ps = (PetScan *) user;
1920 isl_ctx *ctx;
1921 isl_id *id;
1922 ValueDecl *iv;
1924 ctx = pet_expr_get_ctx(access);
1925 id = pet_expr_access_get_id(access);
1926 iv = (ValueDecl *) isl_id_get_user(id);
1927 isl_id_free(id);
1928 return ps->extract_array(ctx, iv, NULL, pc);
1931 /* Extract a function summary from the body of "fd".
1933 * We extract a scop from the function body in a context with as
1934 * parameters the integer arguments of the function.
1935 * We turn off autodetection (in case it was set) to ensure that
1936 * the entire function body is considered.
1937 * We then collect the accessed array elements and attach them
1938 * to the corresponding array arguments, taking into account
1939 * that the function body may access members of array elements.
1941 * The reason for representing the integer arguments as parameters in
1942 * the context is that if we were to instead start with a context
1943 * with the function arguments as initial dimensions, then we would not
1944 * be able to refer to them from the array extents, without turning
1945 * array extents into maps.
1947 * The result is stored in the summary_cache cache so that we can reuse
1948 * it if this method gets called on the same function again later on.
1950 __isl_give pet_function_summary *PetScan::get_summary(FunctionDecl *fd)
1952 isl_space *space;
1953 isl_set *domain;
1954 pet_context *pc;
1955 pet_tree *tree;
1956 pet_function_summary *summary;
1957 unsigned n;
1958 ScopLoc loc;
1959 int save_autodetect;
1960 struct pet_scop *scop;
1961 int int_size;
1962 isl_union_set *may_read, *may_write, *must_write;
1963 isl_union_map *to_inner;
1965 if (summary_cache.find(fd) != summary_cache.end())
1966 return pet_function_summary_copy(summary_cache[fd]);
1968 space = isl_space_set_alloc(ctx, 0, 0);
1970 n = fd->getNumParams();
1971 summary = pet_function_summary_alloc(ctx, n);
1972 for (int i = 0; i < n; ++i) {
1973 ParmVarDecl *parm = fd->getParamDecl(i);
1974 QualType type = parm->getType();
1975 isl_id *id;
1977 if (!type->isIntegerType())
1978 continue;
1979 id = create_decl_id(ctx, parm);
1980 space = isl_space_insert_dims(space, isl_dim_param, 0, 1);
1981 space = isl_space_set_dim_id(space, isl_dim_param, 0,
1982 isl_id_copy(id));
1983 summary = pet_function_summary_set_int(summary, i, id);
1986 save_autodetect = options->autodetect;
1987 options->autodetect = 0;
1988 PetScan body_scan(PP, ast_context, loc, options,
1989 isl_union_map_copy(value_bounds), independent);
1991 tree = body_scan.extract(fd->getBody(), false);
1993 domain = isl_set_universe(space);
1994 pc = pet_context_alloc(domain);
1995 pc = pet_context_add_parameters(pc, tree,
1996 &::get_array_size, &body_scan);
1997 int_size = size_in_bytes(ast_context, ast_context.IntTy);
1998 scop = pet_scop_from_pet_tree(tree, int_size,
1999 &::extract_array, &body_scan, pc);
2000 scop = scan_arrays(scop, pc);
2001 may_read = isl_union_map_range(pet_scop_collect_may_reads(scop));
2002 may_write = isl_union_map_range(pet_scop_collect_may_writes(scop));
2003 must_write = isl_union_map_range(pet_scop_collect_must_writes(scop));
2004 to_inner = pet_scop_compute_outer_to_inner(scop);
2005 pet_scop_free(scop);
2007 for (int i = 0; i < n; ++i) {
2008 ParmVarDecl *parm = fd->getParamDecl(i);
2009 QualType type = parm->getType();
2010 struct pet_array *array;
2011 isl_space *space;
2012 isl_union_set *data_set;
2013 isl_union_set *may_read_i, *may_write_i, *must_write_i;
2015 if (array_depth(type.getTypePtr()) == 0)
2016 continue;
2018 array = body_scan.extract_array(ctx, parm, NULL, pc);
2019 space = array ? isl_set_get_space(array->extent) : NULL;
2020 pet_array_free(array);
2021 data_set = isl_union_set_from_set(isl_set_universe(space));
2022 data_set = isl_union_set_apply(data_set,
2023 isl_union_map_copy(to_inner));
2024 may_read_i = isl_union_set_intersect(
2025 isl_union_set_copy(may_read),
2026 isl_union_set_copy(data_set));
2027 may_write_i = isl_union_set_intersect(
2028 isl_union_set_copy(may_write),
2029 isl_union_set_copy(data_set));
2030 must_write_i = isl_union_set_intersect(
2031 isl_union_set_copy(must_write), data_set);
2032 summary = pet_function_summary_set_array(summary, i,
2033 may_read_i, may_write_i, must_write_i);
2036 isl_union_set_free(may_read);
2037 isl_union_set_free(may_write);
2038 isl_union_set_free(must_write);
2039 isl_union_map_free(to_inner);
2041 options->autodetect = save_autodetect;
2042 pet_context_free(pc);
2044 summary_cache[fd] = pet_function_summary_copy(summary);
2046 return summary;
2049 /* If "fd" has a function body, then extract a function summary from
2050 * this body and attach it to the call expression "expr".
2052 * Even if a function body is available, "fd" itself may point
2053 * to a declaration without function body. We therefore first
2054 * replace it by the declaration that comes with a body (if any).
2056 * It is not clear why hasBody takes a reference to a const FunctionDecl *.
2057 * It seems that it is possible to directly use the iterators to obtain
2058 * a non-const pointer.
2059 * Since we are not going to use the pointer to modify anything anyway,
2060 * it seems safe to drop the constness. The alternative would be to
2061 * modify a lot of other functions to include const qualifiers.
2063 __isl_give pet_expr *PetScan::set_summary(__isl_take pet_expr *expr,
2064 FunctionDecl *fd)
2066 pet_function_summary *summary;
2067 const FunctionDecl *def;
2069 if (!expr)
2070 return NULL;
2071 if (!fd->hasBody(def))
2072 return expr;
2074 fd = const_cast<FunctionDecl *>(def);
2076 summary = get_summary(fd);
2078 expr = pet_expr_call_set_summary(expr, summary);
2080 return expr;
2083 /* Extract a pet_scop from "tree".
2085 * We simply call pet_scop_from_pet_tree with the appropriate arguments and
2086 * then add pet_arrays for all accessed arrays.
2087 * We populate the pet_context with assignments for all parameters used
2088 * inside "tree" or any of the size expressions for the arrays accessed
2089 * by "tree" so that they can be used in affine expressions.
2091 struct pet_scop *PetScan::extract_scop(__isl_take pet_tree *tree)
2093 int int_size;
2094 isl_set *domain;
2095 pet_context *pc;
2096 pet_scop *scop;
2098 int_size = size_in_bytes(ast_context, ast_context.IntTy);
2100 domain = isl_set_universe(isl_space_set_alloc(ctx, 0, 0));
2101 pc = pet_context_alloc(domain);
2102 pc = pet_context_add_parameters(pc, tree, &::get_array_size, this);
2103 scop = pet_scop_from_pet_tree(tree, int_size,
2104 &::extract_array, this, pc);
2105 scop = scan_arrays(scop, pc);
2106 pet_context_free(pc);
2108 return scop;
2111 /* Check if the scop marked by the user is exactly this Stmt
2112 * or part of this Stmt.
2113 * If so, return a pet_scop corresponding to the marked region.
2114 * Otherwise, return NULL.
2116 struct pet_scop *PetScan::scan(Stmt *stmt)
2118 SourceManager &SM = PP.getSourceManager();
2119 unsigned start_off, end_off;
2121 start_off = getExpansionOffset(SM, stmt->getLocStart());
2122 end_off = getExpansionOffset(SM, stmt->getLocEnd());
2124 if (start_off > loc.end)
2125 return NULL;
2126 if (end_off < loc.start)
2127 return NULL;
2129 if (start_off >= loc.start && end_off <= loc.end)
2130 return extract_scop(extract(stmt));
2132 StmtIterator start;
2133 for (start = stmt->child_begin(); start != stmt->child_end(); ++start) {
2134 Stmt *child = *start;
2135 if (!child)
2136 continue;
2137 start_off = getExpansionOffset(SM, child->getLocStart());
2138 end_off = getExpansionOffset(SM, child->getLocEnd());
2139 if (start_off < loc.start && end_off >= loc.end)
2140 return scan(child);
2141 if (start_off >= loc.start)
2142 break;
2145 StmtIterator end;
2146 for (end = start; end != stmt->child_end(); ++end) {
2147 Stmt *child = *end;
2148 start_off = SM.getFileOffset(child->getLocStart());
2149 if (start_off >= loc.end)
2150 break;
2153 return extract_scop(extract(StmtRange(start, end), false, false));
2156 /* Set the size of index "pos" of "array" to "size".
2157 * In particular, add a constraint of the form
2159 * i_pos < size
2161 * to array->extent and a constraint of the form
2163 * size >= 0
2165 * to array->context.
2167 * The domain of "size" is assumed to be zero-dimensional.
2169 static struct pet_array *update_size(struct pet_array *array, int pos,
2170 __isl_take isl_pw_aff *size)
2172 isl_set *valid;
2173 isl_set *univ;
2174 isl_set *bound;
2175 isl_space *dim;
2176 isl_aff *aff;
2177 isl_pw_aff *index;
2178 isl_id *id;
2180 if (!array)
2181 goto error;
2183 valid = isl_set_params(isl_pw_aff_nonneg_set(isl_pw_aff_copy(size)));
2184 array->context = isl_set_intersect(array->context, valid);
2186 dim = isl_set_get_space(array->extent);
2187 aff = isl_aff_zero_on_domain(isl_local_space_from_space(dim));
2188 aff = isl_aff_add_coefficient_si(aff, isl_dim_in, pos, 1);
2189 univ = isl_set_universe(isl_aff_get_domain_space(aff));
2190 index = isl_pw_aff_alloc(univ, aff);
2192 size = isl_pw_aff_add_dims(size, isl_dim_in,
2193 isl_set_dim(array->extent, isl_dim_set));
2194 id = isl_set_get_tuple_id(array->extent);
2195 size = isl_pw_aff_set_tuple_id(size, isl_dim_in, id);
2196 bound = isl_pw_aff_lt_set(index, size);
2198 array->extent = isl_set_intersect(array->extent, bound);
2200 if (!array->context || !array->extent)
2201 return pet_array_free(array);
2203 return array;
2204 error:
2205 isl_pw_aff_free(size);
2206 return NULL;
2209 #ifdef HAVE_DECAYEDTYPE
2211 /* If "type" is a decayed type, then set *decayed to true and
2212 * return the original type.
2214 static const Type *undecay(const Type *type, bool *decayed)
2216 *decayed = isa<DecayedType>(type);
2217 if (*decayed)
2218 type = cast<DecayedType>(type)->getOriginalType().getTypePtr();
2219 return type;
2222 #else
2224 /* If "type" is a decayed type, then set *decayed to true and
2225 * return the original type.
2226 * Since this version of clang does not define a DecayedType,
2227 * we cannot obtain the original type even if it had been decayed and
2228 * we set *decayed to false.
2230 static const Type *undecay(const Type *type, bool *decayed)
2232 *decayed = false;
2233 return type;
2236 #endif
2238 /* Figure out the size of the array at position "pos" and all
2239 * subsequent positions from "type" and update the corresponding
2240 * argument of "expr" accordingly.
2242 * The initial type (when pos is zero) may be a pointer type decayed
2243 * from an array type, if this initial type is the type of a function
2244 * argument. This only happens if the original array type has
2245 * a constant size in the outer dimension as otherwise we get
2246 * a VariableArrayType. Try and obtain this original type (if available) and
2247 * take the outer array size into account if it was marked static.
2249 __isl_give pet_expr *PetScan::set_upper_bounds(__isl_take pet_expr *expr,
2250 const Type *type, int pos)
2252 const ArrayType *atype;
2253 pet_expr *size;
2254 bool decayed = false;
2256 if (!expr)
2257 return NULL;
2259 if (pos == 0)
2260 type = undecay(type, &decayed);
2262 if (type->isPointerType()) {
2263 type = type->getPointeeType().getTypePtr();
2264 return set_upper_bounds(expr, type, pos + 1);
2266 if (!type->isArrayType())
2267 return expr;
2269 type = type->getCanonicalTypeInternal().getTypePtr();
2270 atype = cast<ArrayType>(type);
2272 if (decayed && atype->getSizeModifier() != ArrayType::Static) {
2273 type = atype->getElementType().getTypePtr();
2274 return set_upper_bounds(expr, type, pos + 1);
2277 if (type->isConstantArrayType()) {
2278 const ConstantArrayType *ca = cast<ConstantArrayType>(atype);
2279 size = extract_expr(ca->getSize());
2280 expr = pet_expr_set_arg(expr, pos, size);
2281 } else if (type->isVariableArrayType()) {
2282 const VariableArrayType *vla = cast<VariableArrayType>(atype);
2283 size = extract_expr(vla->getSizeExpr());
2284 expr = pet_expr_set_arg(expr, pos, size);
2287 type = atype->getElementType().getTypePtr();
2289 return set_upper_bounds(expr, type, pos + 1);
2292 /* Construct a pet_expr that holds the sizes of an array of the given type.
2293 * The returned expression is a call expression with as arguments
2294 * the sizes in each dimension. If we are unable to derive the size
2295 * in a given dimension, then the corresponding argument is set to infinity.
2296 * In fact, we initialize all arguments to infinity and then update
2297 * them if we are able to figure out the size.
2299 * The result is stored in the type_size cache so that we can reuse
2300 * it if this method gets called on the same type again later on.
2302 __isl_give pet_expr *PetScan::get_array_size(const Type *type)
2304 int depth;
2305 pet_expr *expr, *inf;
2307 if (type_size.find(type) != type_size.end())
2308 return pet_expr_copy(type_size[type]);
2310 depth = array_depth(type);
2311 inf = pet_expr_new_int(isl_val_infty(ctx));
2312 expr = pet_expr_new_call(ctx, "bounds", depth);
2313 for (int i = 0; i < depth; ++i)
2314 expr = pet_expr_set_arg(expr, i, pet_expr_copy(inf));
2315 pet_expr_free(inf);
2317 expr = set_upper_bounds(expr, type, 0);
2318 type_size[type] = pet_expr_copy(expr);
2320 return expr;
2323 /* Does "expr" represent the "integer" infinity?
2325 static int is_infty(__isl_keep pet_expr *expr)
2327 isl_val *v;
2328 int res;
2330 if (pet_expr_get_type(expr) != pet_expr_int)
2331 return 0;
2332 v = pet_expr_int_get_val(expr);
2333 res = isl_val_is_infty(v);
2334 isl_val_free(v);
2336 return res;
2339 /* Figure out the dimensions of an array "array" based on its type
2340 * "type" and update "array" accordingly.
2342 * We first construct a pet_expr that holds the sizes of the array
2343 * in each dimension. The resulting expression may containing
2344 * infinity values for dimension where we are unable to derive
2345 * a size expression.
2347 * The arguments of the size expression that have a value different from
2348 * infinity are then converted to an affine expression
2349 * within the context "pc" and incorporated into the size of "array".
2350 * If we are unable to convert a size expression to an affine expression or
2351 * if the size is not a (symbolic) constant,
2352 * then we leave the corresponding size of "array" untouched.
2354 struct pet_array *PetScan::set_upper_bounds(struct pet_array *array,
2355 const Type *type, __isl_keep pet_context *pc)
2357 int n;
2358 pet_expr *expr;
2360 if (!array)
2361 return NULL;
2363 expr = get_array_size(type);
2365 n = pet_expr_get_n_arg(expr);
2366 for (int i = 0; i < n; ++i) {
2367 pet_expr *arg;
2368 isl_pw_aff *size;
2370 arg = pet_expr_get_arg(expr, i);
2371 if (!is_infty(arg)) {
2372 int dim;
2374 size = pet_expr_extract_affine(arg, pc);
2375 dim = isl_pw_aff_dim(size, isl_dim_in);
2376 if (!size)
2377 array = pet_array_free(array);
2378 else if (isl_pw_aff_involves_nan(size) ||
2379 isl_pw_aff_involves_dims(size, isl_dim_in, 0, dim))
2380 isl_pw_aff_free(size);
2381 else {
2382 size = isl_pw_aff_drop_dims(size,
2383 isl_dim_in, 0, dim);
2384 array = update_size(array, i, size);
2387 pet_expr_free(arg);
2389 pet_expr_free(expr);
2391 return array;
2394 /* Does "decl" have a definition that we can keep track of in a pet_type?
2396 static bool has_printable_definition(RecordDecl *decl)
2398 if (!decl->getDeclName())
2399 return false;
2400 return decl->getLexicalDeclContext() == decl->getDeclContext();
2403 /* Construct and return a pet_array corresponding to the variable "decl".
2404 * In particular, initialize array->extent to
2406 * { name[i_1,...,i_d] : i_1,...,i_d >= 0 }
2408 * and then call set_upper_bounds to set the upper bounds on the indices
2409 * based on the type of the variable. The upper bounds are converted
2410 * to affine expressions within the context "pc".
2412 * If the base type is that of a record with a top-level definition or
2413 * of a typedef and if "types" is not null, then the RecordDecl or
2414 * TypedefType corresponding to the type
2415 * is added to "types".
2417 * If the base type is that of a record with no top-level definition,
2418 * then we replace it by "<subfield>".
2420 struct pet_array *PetScan::extract_array(isl_ctx *ctx, ValueDecl *decl,
2421 PetTypes *types, __isl_keep pet_context *pc)
2423 struct pet_array *array;
2424 QualType qt = get_array_type(decl);
2425 const Type *type = qt.getTypePtr();
2426 int depth = array_depth(type);
2427 QualType base = pet_clang_base_type(qt);
2428 string name;
2429 isl_id *id;
2430 isl_space *dim;
2432 array = isl_calloc_type(ctx, struct pet_array);
2433 if (!array)
2434 return NULL;
2436 id = create_decl_id(ctx, decl);
2437 dim = isl_space_set_alloc(ctx, 0, depth);
2438 dim = isl_space_set_tuple_id(dim, isl_dim_set, id);
2440 array->extent = isl_set_nat_universe(dim);
2442 dim = isl_space_params_alloc(ctx, 0);
2443 array->context = isl_set_universe(dim);
2445 array = set_upper_bounds(array, type, pc);
2446 if (!array)
2447 return NULL;
2449 name = base.getAsString();
2451 if (types) {
2452 if (isa<TypedefType>(base)) {
2453 types->insert(cast<TypedefType>(base)->getDecl());
2454 } else if (base->isRecordType()) {
2455 RecordDecl *decl = pet_clang_record_decl(base);
2456 TypedefNameDecl *typedecl;
2457 typedecl = decl->getTypedefNameForAnonDecl();
2458 if (typedecl)
2459 types->insert(typedecl);
2460 else if (has_printable_definition(decl))
2461 types->insert(decl);
2462 else
2463 name = "<subfield>";
2467 array->element_type = strdup(name.c_str());
2468 array->element_is_record = base->isRecordType();
2469 array->element_size = size_in_bytes(decl->getASTContext(), base);
2471 return array;
2474 /* Construct and return a pet_array corresponding to the sequence
2475 * of declarations "decls".
2476 * The upper bounds of the array are converted to affine expressions
2477 * within the context "pc".
2478 * If the sequence contains a single declaration, then it corresponds
2479 * to a simple array access. Otherwise, it corresponds to a member access,
2480 * with the declaration for the substructure following that of the containing
2481 * structure in the sequence of declarations.
2482 * We start with the outermost substructure and then combine it with
2483 * information from the inner structures.
2485 * Additionally, keep track of all required types in "types".
2487 struct pet_array *PetScan::extract_array(isl_ctx *ctx,
2488 vector<ValueDecl *> decls, PetTypes *types, __isl_keep pet_context *pc)
2490 struct pet_array *array;
2491 vector<ValueDecl *>::iterator it;
2493 it = decls.begin();
2495 array = extract_array(ctx, *it, types, pc);
2497 for (++it; it != decls.end(); ++it) {
2498 struct pet_array *parent;
2499 const char *base_name, *field_name;
2500 char *product_name;
2502 parent = array;
2503 array = extract_array(ctx, *it, types, pc);
2504 if (!array)
2505 return pet_array_free(parent);
2507 base_name = isl_set_get_tuple_name(parent->extent);
2508 field_name = isl_set_get_tuple_name(array->extent);
2509 product_name = pet_array_member_access_name(ctx,
2510 base_name, field_name);
2512 array->extent = isl_set_product(isl_set_copy(parent->extent),
2513 array->extent);
2514 if (product_name)
2515 array->extent = isl_set_set_tuple_name(array->extent,
2516 product_name);
2517 array->context = isl_set_intersect(array->context,
2518 isl_set_copy(parent->context));
2520 pet_array_free(parent);
2521 free(product_name);
2523 if (!array->extent || !array->context || !product_name)
2524 return pet_array_free(array);
2527 return array;
2530 static struct pet_scop *add_type(isl_ctx *ctx, struct pet_scop *scop,
2531 RecordDecl *decl, Preprocessor &PP, PetTypes &types,
2532 std::set<TypeDecl *> &types_done);
2533 static struct pet_scop *add_type(isl_ctx *ctx, struct pet_scop *scop,
2534 TypedefNameDecl *decl, Preprocessor &PP, PetTypes &types,
2535 std::set<TypeDecl *> &types_done);
2537 /* For each of the fields of "decl" that is itself a record type
2538 * or a typedef, add a corresponding pet_type to "scop".
2540 static struct pet_scop *add_field_types(isl_ctx *ctx, struct pet_scop *scop,
2541 RecordDecl *decl, Preprocessor &PP, PetTypes &types,
2542 std::set<TypeDecl *> &types_done)
2544 RecordDecl::field_iterator it;
2546 for (it = decl->field_begin(); it != decl->field_end(); ++it) {
2547 QualType type = it->getType();
2549 if (isa<TypedefType>(type)) {
2550 TypedefNameDecl *typedefdecl;
2552 typedefdecl = cast<TypedefType>(type)->getDecl();
2553 scop = add_type(ctx, scop, typedefdecl,
2554 PP, types, types_done);
2555 } else if (type->isRecordType()) {
2556 RecordDecl *record;
2558 record = pet_clang_record_decl(type);
2559 scop = add_type(ctx, scop, record,
2560 PP, types, types_done);
2564 return scop;
2567 /* Add a pet_type corresponding to "decl" to "scop", provided
2568 * it is a member of types.records and it has not been added before
2569 * (i.e., it is not a member of "types_done").
2571 * Since we want the user to be able to print the types
2572 * in the order in which they appear in the scop, we need to
2573 * make sure that types of fields in a structure appear before
2574 * that structure. We therefore call ourselves recursively
2575 * through add_field_types on the types of all record subfields.
2577 static struct pet_scop *add_type(isl_ctx *ctx, struct pet_scop *scop,
2578 RecordDecl *decl, Preprocessor &PP, PetTypes &types,
2579 std::set<TypeDecl *> &types_done)
2581 string s;
2582 llvm::raw_string_ostream S(s);
2584 if (types.records.find(decl) == types.records.end())
2585 return scop;
2586 if (types_done.find(decl) != types_done.end())
2587 return scop;
2589 add_field_types(ctx, scop, decl, PP, types, types_done);
2591 if (strlen(decl->getName().str().c_str()) == 0)
2592 return scop;
2594 decl->print(S, PrintingPolicy(PP.getLangOpts()));
2595 S.str();
2597 scop->types[scop->n_type] = pet_type_alloc(ctx,
2598 decl->getName().str().c_str(), s.c_str());
2599 if (!scop->types[scop->n_type])
2600 return pet_scop_free(scop);
2602 types_done.insert(decl);
2604 scop->n_type++;
2606 return scop;
2609 /* Add a pet_type corresponding to "decl" to "scop", provided
2610 * it is a member of types.typedefs and it has not been added before
2611 * (i.e., it is not a member of "types_done").
2613 * If the underlying type is a structure, then we print the typedef
2614 * ourselves since clang does not print the definition of the structure
2615 * in the typedef. We also make sure in this case that the types of
2616 * the fields in the structure are added first.
2618 static struct pet_scop *add_type(isl_ctx *ctx, struct pet_scop *scop,
2619 TypedefNameDecl *decl, Preprocessor &PP, PetTypes &types,
2620 std::set<TypeDecl *> &types_done)
2622 string s;
2623 llvm::raw_string_ostream S(s);
2624 QualType qt = decl->getUnderlyingType();
2626 if (types.typedefs.find(decl) == types.typedefs.end())
2627 return scop;
2628 if (types_done.find(decl) != types_done.end())
2629 return scop;
2631 if (qt->isRecordType()) {
2632 RecordDecl *rec = pet_clang_record_decl(qt);
2634 add_field_types(ctx, scop, rec, PP, types, types_done);
2635 S << "typedef ";
2636 rec->print(S, PrintingPolicy(PP.getLangOpts()));
2637 S << " ";
2638 S << decl->getName();
2639 } else {
2640 decl->print(S, PrintingPolicy(PP.getLangOpts()));
2642 S.str();
2644 scop->types[scop->n_type] = pet_type_alloc(ctx,
2645 decl->getName().str().c_str(), s.c_str());
2646 if (!scop->types[scop->n_type])
2647 return pet_scop_free(scop);
2649 types_done.insert(decl);
2651 scop->n_type++;
2653 return scop;
2656 /* Construct a list of pet_arrays, one for each array (or scalar)
2657 * accessed inside "scop", add this list to "scop" and return the result.
2658 * The upper bounds of the arrays are converted to affine expressions
2659 * within the context "pc".
2661 * The context of "scop" is updated with the intersection of
2662 * the contexts of all arrays, i.e., constraints on the parameters
2663 * that ensure that the arrays have a valid (non-negative) size.
2665 * If any of the extracted arrays refers to a member access or
2666 * has a typedef'd type as base type,
2667 * then also add the required types to "scop".
2669 struct pet_scop *PetScan::scan_arrays(struct pet_scop *scop,
2670 __isl_keep pet_context *pc)
2672 int i, n;
2673 array_desc_set arrays;
2674 array_desc_set::iterator it;
2675 PetTypes types;
2676 std::set<TypeDecl *> types_done;
2677 std::set<clang::RecordDecl *, less_name>::iterator records_it;
2678 std::set<clang::TypedefNameDecl *, less_name>::iterator typedefs_it;
2679 int n_array;
2680 struct pet_array **scop_arrays;
2682 if (!scop)
2683 return NULL;
2685 pet_scop_collect_arrays(scop, arrays);
2686 if (arrays.size() == 0)
2687 return scop;
2689 n_array = scop->n_array;
2691 scop_arrays = isl_realloc_array(ctx, scop->arrays, struct pet_array *,
2692 n_array + arrays.size());
2693 if (!scop_arrays)
2694 goto error;
2695 scop->arrays = scop_arrays;
2697 for (it = arrays.begin(), i = 0; it != arrays.end(); ++it, ++i) {
2698 struct pet_array *array;
2699 array = extract_array(ctx, *it, &types, pc);
2700 scop->arrays[n_array + i] = array;
2701 if (!scop->arrays[n_array + i])
2702 goto error;
2703 scop->n_array++;
2704 scop->context = isl_set_intersect(scop->context,
2705 isl_set_copy(array->context));
2706 if (!scop->context)
2707 goto error;
2710 n = types.records.size() + types.typedefs.size();
2711 if (n == 0)
2712 return scop;
2714 scop->types = isl_alloc_array(ctx, struct pet_type *, n);
2715 if (!scop->types)
2716 goto error;
2718 for (records_it = types.records.begin();
2719 records_it != types.records.end(); ++records_it)
2720 scop = add_type(ctx, scop, *records_it, PP, types, types_done);
2722 for (typedefs_it = types.typedefs.begin();
2723 typedefs_it != types.typedefs.end(); ++typedefs_it)
2724 scop = add_type(ctx, scop, *typedefs_it, PP, types, types_done);
2726 return scop;
2727 error:
2728 pet_scop_free(scop);
2729 return NULL;
2732 /* Bound all parameters in scop->context to the possible values
2733 * of the corresponding C variable.
2735 static struct pet_scop *add_parameter_bounds(struct pet_scop *scop)
2737 int n;
2739 if (!scop)
2740 return NULL;
2742 n = isl_set_dim(scop->context, isl_dim_param);
2743 for (int i = 0; i < n; ++i) {
2744 isl_id *id;
2745 ValueDecl *decl;
2747 id = isl_set_get_dim_id(scop->context, isl_dim_param, i);
2748 if (pet_nested_in_id(id)) {
2749 isl_id_free(id);
2750 isl_die(isl_set_get_ctx(scop->context),
2751 isl_error_internal,
2752 "unresolved nested parameter", goto error);
2754 decl = (ValueDecl *) isl_id_get_user(id);
2755 isl_id_free(id);
2757 scop->context = set_parameter_bounds(scop->context, i, decl);
2759 if (!scop->context)
2760 goto error;
2763 return scop;
2764 error:
2765 pet_scop_free(scop);
2766 return NULL;
2769 /* Construct a pet_scop from the given function.
2771 * If the scop was delimited by scop and endscop pragmas, then we override
2772 * the file offsets by those derived from the pragmas.
2774 struct pet_scop *PetScan::scan(FunctionDecl *fd)
2776 pet_scop *scop;
2777 Stmt *stmt;
2779 stmt = fd->getBody();
2781 if (options->autodetect) {
2782 set_current_stmt(stmt);
2783 scop = extract_scop(extract(stmt, true));
2784 } else {
2785 current_line = loc.start_line;
2786 scop = scan(stmt);
2787 scop = pet_scop_update_start_end(scop, loc.start, loc.end);
2789 scop = add_parameter_bounds(scop);
2790 scop = pet_scop_gist(scop, value_bounds);
2792 return scop;
2795 /* Update this->last_line and this->current_line based on the fact
2796 * that we are about to consider "stmt".
2798 void PetScan::set_current_stmt(Stmt *stmt)
2800 SourceLocation loc = stmt->getLocStart();
2801 SourceManager &SM = PP.getSourceManager();
2803 last_line = current_line;
2804 current_line = SM.getExpansionLineNumber(loc);
2807 /* Is the current statement marked by an independent pragma?
2808 * That is, is there an independent pragma on a line between
2809 * the line of the current statement and the line of the previous statement.
2810 * The search is not implemented very efficiently. We currently
2811 * assume that there are only a few independent pragmas, if any.
2813 bool PetScan::is_current_stmt_marked_independent()
2815 for (int i = 0; i < independent.size(); ++i) {
2816 unsigned line = independent[i].line;
2818 if (last_line < line && line < current_line)
2819 return true;
2822 return false;