scop.c: extract out pet_stmt_is_affine_assume and pet_stmt_assume_get_index
[pet.git] / tree2scop.c
blob089ff6a3c5c11f84322cd7d620b3358200c022c6
1 /*
2 * Copyright 2011 Leiden University. All rights reserved.
3 * Copyright 2012-2014 Ecole Normale Superieure. All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above
13 * copyright notice, this list of conditions and the following
14 * disclaimer in the documentation and/or other materials provided
15 * with the distribution.
17 * THIS SOFTWARE IS PROVIDED BY LEIDEN UNIVERSITY ''AS IS'' AND ANY
18 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
20 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL LEIDEN UNIVERSITY OR
21 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
22 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
23 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
24 * OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 * The views and conclusions contained in the software and documentation
30 * are those of the authors and should not be interpreted as
31 * representing official policies, either expressed or implied, of
32 * Leiden University.
35 #include <isl/id_to_pw_aff.h>
37 #include "aff.h"
38 #include "expr.h"
39 #include "expr_arg.h"
40 #include "nest.h"
41 #include "scop.h"
42 #include "skip.h"
43 #include "state.h"
44 #include "tree2scop.h"
46 /* Update "pc" by taking into account the writes in "stmt".
47 * That is, clear any previously assigned values to variables
48 * that are written by "stmt".
50 static __isl_give pet_context *handle_writes(struct pet_stmt *stmt,
51 __isl_take pet_context *pc)
53 return pet_context_clear_writes_in_expr(pc, stmt->body);
56 /* Update "pc" based on the write accesses in "scop".
58 static __isl_give pet_context *scop_handle_writes(struct pet_scop *scop,
59 __isl_take pet_context *pc)
61 int i;
63 if (!scop)
64 return pet_context_free(pc);
65 for (i = 0; i < scop->n_stmt; ++i)
66 pc = handle_writes(scop->stmts[i], pc);
68 return pc;
71 /* Convert a top-level pet_expr to a pet_scop with one statement
72 * within the context "pc".
73 * "expr" has already been evaluated in the context of "pc".
74 * This mainly involves resolving nested expression parameters
75 * and setting the name of the iteration space.
76 * The name is given by "label" if it is non-NULL. Otherwise,
77 * it is of the form S_<stmt_nr>.
78 * The location of the statement is set to "loc".
80 static struct pet_scop *scop_from_evaluated_expr(__isl_take pet_expr *expr,
81 __isl_take isl_id *label, int stmt_nr, __isl_take pet_loc *loc,
82 __isl_keep pet_context *pc)
84 isl_space *space;
85 isl_set *domain;
86 struct pet_stmt *ps;
88 space = pet_context_get_space(pc);
90 expr = pet_expr_resolve_nested(expr, space);
91 expr = pet_expr_resolve_assume(expr, pc);
92 domain = pet_context_get_domain(pc);
93 ps = pet_stmt_from_pet_expr(domain, loc, label, stmt_nr, expr);
94 return pet_scop_from_pet_stmt(space, ps);
97 /* Convert a top-level pet_expr to a pet_scop with one statement
98 * within the context "pc", where "expr" has not yet been evaluated
99 * in the context of "pc".
100 * We evaluate "expr" in the context of "pc" and continue with
101 * scop_from_evaluated_expr.
102 * The statement name is given by "label" if it is non-NULL. Otherwise,
103 * it is of the form S_<stmt_nr>.
104 * The location of the statement is set to "loc".
106 static struct pet_scop *scop_from_expr(__isl_take pet_expr *expr,
107 __isl_take isl_id *label, int stmt_nr, __isl_take pet_loc *loc,
108 __isl_keep pet_context *pc)
110 expr = pet_context_evaluate_expr(pc, expr);
111 return scop_from_evaluated_expr(expr, label, stmt_nr, loc, pc);
114 /* Construct a pet_scop with a single statement killing the entire
115 * array "array".
116 * The location of the statement is set to "loc".
118 static struct pet_scop *kill(__isl_take pet_loc *loc, struct pet_array *array,
119 __isl_keep pet_context *pc, struct pet_state *state)
121 isl_ctx *ctx;
122 isl_id *id;
123 isl_space *space;
124 isl_multi_pw_aff *index;
125 isl_map *access;
126 pet_expr *expr;
127 struct pet_scop *scop;
129 if (!array)
130 goto error;
131 ctx = isl_set_get_ctx(array->extent);
132 access = isl_map_from_range(isl_set_copy(array->extent));
133 id = isl_set_get_tuple_id(array->extent);
134 space = isl_space_alloc(ctx, 0, 0, 0);
135 space = isl_space_set_tuple_id(space, isl_dim_out, id);
136 index = isl_multi_pw_aff_zero(space);
137 expr = pet_expr_kill_from_access_and_index(access, index);
138 return scop_from_expr(expr, NULL, state->n_stmt++, loc, pc);
139 error:
140 pet_loc_free(loc);
141 return NULL;
144 /* Construct and return a pet_array corresponding to the variable
145 * accessed by "access" by calling the extract_array callback.
147 static struct pet_array *extract_array(__isl_keep pet_expr *access,
148 __isl_keep pet_context *pc, struct pet_state *state)
150 return state->extract_array(access, pc, state->user);
153 /* Construct a pet_scop for a (single) variable declaration
154 * within the context "pc".
156 * The scop contains the variable being declared (as an array)
157 * and a statement killing the array.
159 * If the declaration comes with an initialization, then the scop
160 * also contains an assignment to the variable.
162 static struct pet_scop *scop_from_decl(__isl_keep pet_tree *tree,
163 __isl_keep pet_context *pc, struct pet_state *state)
165 int type_size;
166 isl_ctx *ctx;
167 struct pet_array *array;
168 struct pet_scop *scop_decl, *scop;
169 pet_expr *lhs, *rhs, *pe;
171 array = extract_array(tree->u.d.var, pc, state);
172 if (array)
173 array->declared = 1;
174 scop_decl = kill(pet_tree_get_loc(tree), array, pc, state);
175 scop_decl = pet_scop_add_array(scop_decl, array);
177 if (tree->type != pet_tree_decl_init)
178 return scop_decl;
180 lhs = pet_expr_copy(tree->u.d.var);
181 rhs = pet_expr_copy(tree->u.d.init);
182 type_size = pet_expr_get_type_size(lhs);
183 pe = pet_expr_new_binary(type_size, pet_op_assign, lhs, rhs);
184 scop = scop_from_expr(pe, NULL, state->n_stmt++,
185 pet_tree_get_loc(tree), pc);
187 scop_decl = pet_scop_prefix(scop_decl, 0);
188 scop = pet_scop_prefix(scop, 1);
190 ctx = pet_tree_get_ctx(tree);
191 scop = pet_scop_add_seq(ctx, scop_decl, scop);
193 return scop;
196 /* Return those elements in the space of "cond" that come after
197 * (based on "sign") an element in "cond" in the final dimension.
199 static __isl_give isl_set *after(__isl_take isl_set *cond, int sign)
201 isl_space *space;
202 isl_map *previous_to_this;
203 int i, dim;
205 dim = isl_set_dim(cond, isl_dim_set);
206 space = isl_space_map_from_set(isl_set_get_space(cond));
207 previous_to_this = isl_map_universe(space);
208 for (i = 0; i + 1 < dim; ++i)
209 previous_to_this = isl_map_equate(previous_to_this,
210 isl_dim_in, i, isl_dim_out, i);
211 if (sign > 0)
212 previous_to_this = isl_map_order_lt(previous_to_this,
213 isl_dim_in, dim - 1, isl_dim_out, dim - 1);
214 else
215 previous_to_this = isl_map_order_gt(previous_to_this,
216 isl_dim_in, dim - 1, isl_dim_out, dim - 1);
218 cond = isl_set_apply(cond, previous_to_this);
220 return cond;
223 /* Remove those iterations of "domain" that have an earlier iteration
224 * (based on "sign") in the final dimension where "skip" is satisfied.
225 * If "apply_skip_map" is set, then "skip_map" is first applied
226 * to the embedded skip condition before removing it from the domain.
228 static __isl_give isl_set *apply_affine_break(__isl_take isl_set *domain,
229 __isl_take isl_set *skip, int sign,
230 int apply_skip_map, __isl_keep isl_map *skip_map)
232 if (apply_skip_map)
233 skip = isl_set_apply(skip, isl_map_copy(skip_map));
234 skip = isl_set_intersect(skip , isl_set_copy(domain));
235 return isl_set_subtract(domain, after(skip, sign));
238 /* Create an affine expression on the domain space of "pc" that
239 * is equal to the final dimension of this domain.
241 static __isl_give isl_aff *map_to_last(__isl_keep pet_context *pc)
243 int pos;
244 isl_space *space;
245 isl_local_space *ls;
247 space = pet_context_get_space(pc);
248 pos = isl_space_dim(space, isl_dim_set) - 1;
249 ls = isl_local_space_from_space(space);
250 return isl_aff_var_on_domain(ls, isl_dim_set, pos);
253 /* Create an affine expression that maps elements
254 * of an array "id_test" to the previous element in the final dimension
255 * (according to "inc"), provided this element belongs to "domain".
256 * That is, create the affine expression
258 * { id[outer,x] -> id[outer,x - inc] : (outer,x - inc) in domain }
260 static __isl_give isl_multi_pw_aff *map_to_previous(__isl_take isl_id *id_test,
261 __isl_take isl_set *domain, __isl_take isl_val *inc)
263 int pos;
264 isl_space *space;
265 isl_aff *aff;
266 isl_pw_aff *pa;
267 isl_multi_aff *ma;
268 isl_multi_pw_aff *prev;
270 pos = isl_set_dim(domain, isl_dim_set) - 1;
271 space = isl_set_get_space(domain);
272 space = isl_space_map_from_set(space);
273 ma = isl_multi_aff_identity(space);
274 aff = isl_multi_aff_get_aff(ma, pos);
275 aff = isl_aff_add_constant_val(aff, isl_val_neg(inc));
276 ma = isl_multi_aff_set_aff(ma, pos, aff);
277 domain = isl_set_preimage_multi_aff(domain, isl_multi_aff_copy(ma));
278 prev = isl_multi_pw_aff_from_multi_aff(ma);
279 pa = isl_multi_pw_aff_get_pw_aff(prev, pos);
280 pa = isl_pw_aff_intersect_domain(pa, domain);
281 prev = isl_multi_pw_aff_set_pw_aff(prev, pos, pa);
282 prev = isl_multi_pw_aff_set_tuple_id(prev, isl_dim_out, id_test);
284 return prev;
287 /* Add an implication to "scop" expressing that if an element of
288 * virtual array "id_test" has value "satisfied" then all previous elements
289 * of this array (in the final dimension) also have that value.
290 * The set of previous elements is bounded by "domain".
291 * If "sign" is negative then the iterator
292 * is decreasing and we express that all subsequent array elements
293 * (but still defined previously) have the same value.
295 static struct pet_scop *add_implication(struct pet_scop *scop,
296 __isl_take isl_id *id_test, __isl_take isl_set *domain, int sign,
297 int satisfied)
299 int i, dim;
300 isl_space *space;
301 isl_map *map;
303 dim = isl_set_dim(domain, isl_dim_set);
304 domain = isl_set_set_tuple_id(domain, id_test);
305 space = isl_space_map_from_set(isl_set_get_space(domain));
306 map = isl_map_universe(space);
307 for (i = 0; i + 1 < dim; ++i)
308 map = isl_map_equate(map, isl_dim_in, i, isl_dim_out, i);
309 if (sign > 0)
310 map = isl_map_order_ge(map,
311 isl_dim_in, dim - 1, isl_dim_out, dim - 1);
312 else
313 map = isl_map_order_le(map,
314 isl_dim_in, dim - 1, isl_dim_out, dim - 1);
315 map = isl_map_intersect_range(map, domain);
316 scop = pet_scop_add_implication(scop, map, satisfied);
318 return scop;
321 /* Add a filter to "scop" that imposes that it is only executed
322 * when the variable identified by "id_test" has a zero value
323 * for all previous iterations of "domain".
325 * In particular, add a filter that imposes that the array
326 * has a zero value at the previous iteration of domain and
327 * add an implication that implies that it then has that
328 * value for all previous iterations.
330 static struct pet_scop *scop_add_break(struct pet_scop *scop,
331 __isl_take isl_id *id_test, __isl_take isl_set *domain,
332 __isl_take isl_val *inc)
334 isl_multi_pw_aff *prev;
335 int sign = isl_val_sgn(inc);
337 prev = map_to_previous(isl_id_copy(id_test), isl_set_copy(domain), inc);
338 scop = add_implication(scop, id_test, domain, sign, 0);
339 scop = pet_scop_filter(scop, prev, 0);
341 return scop;
344 static struct pet_scop *scop_from_tree(__isl_keep pet_tree *tree,
345 __isl_keep pet_context *pc, struct pet_state *state);
347 /* Construct a pet_scop for an infinite loop around the given body
348 * within the context "pc".
350 * The domain of "pc" has already been extended with an infinite loop
352 * { [t] : t >= 0 }
354 * We extract a pet_scop for the body and then embed it in a loop with
355 * schedule
357 * { [outer,t] -> [t] }
359 * If the body contains any break, then it is taken into
360 * account in apply_affine_break (if the skip condition is affine)
361 * or in scop_add_break (if the skip condition is not affine).
363 * Note that in case of an affine skip condition,
364 * since we are dealing with a loop without loop iterator,
365 * the skip condition cannot refer to the current loop iterator and
366 * so effectively, the effect on the iteration domain is of the form
368 * { [outer,0]; [outer,t] : t >= 1 and not skip }
370 static struct pet_scop *scop_from_infinite_loop(__isl_keep pet_tree *body,
371 __isl_keep pet_context *pc, struct pet_state *state)
373 isl_ctx *ctx;
374 isl_id *id_test;
375 isl_set *domain;
376 isl_set *skip;
377 isl_aff *sched;
378 struct pet_scop *scop;
379 int has_affine_break;
380 int has_var_break;
382 ctx = pet_tree_get_ctx(body);
383 domain = pet_context_get_domain(pc);
384 sched = map_to_last(pc);
386 scop = scop_from_tree(body, pc, state);
388 has_affine_break = pet_scop_has_affine_skip(scop, pet_skip_later);
389 if (has_affine_break)
390 skip = pet_scop_get_affine_skip_domain(scop, pet_skip_later);
391 has_var_break = pet_scop_has_var_skip(scop, pet_skip_later);
392 if (has_var_break)
393 id_test = pet_scop_get_skip_id(scop, pet_skip_later);
395 scop = pet_scop_embed(scop, isl_set_copy(domain), sched);
396 if (has_affine_break) {
397 domain = apply_affine_break(domain, skip, 1, 0, NULL);
398 scop = pet_scop_intersect_domain_prefix(scop,
399 isl_set_copy(domain));
401 if (has_var_break)
402 scop = scop_add_break(scop, id_test, domain, isl_val_one(ctx));
403 else
404 isl_set_free(domain);
406 return scop;
409 /* Construct a pet_scop for an infinite loop, i.e., a loop of the form
411 * for (;;)
412 * body
414 * within the context "pc".
416 * Extend the domain of "pc" with an extra inner loop
418 * { [t] : t >= 0 }
420 * and construct the scop in scop_from_infinite_loop.
422 static struct pet_scop *scop_from_infinite_for(__isl_keep pet_tree *tree,
423 __isl_keep pet_context *pc, struct pet_state *state)
425 struct pet_scop *scop;
427 pc = pet_context_copy(pc);
428 pc = pet_context_clear_writes_in_tree(pc, tree->u.l.body);
430 pc = pet_context_add_infinite_loop(pc);
432 scop = scop_from_infinite_loop(tree->u.l.body, pc, state);
434 pet_context_free(pc);
436 return scop;
439 /* Construct a pet_scop for a while loop of the form
441 * while (pa)
442 * body
444 * within the context "pc".
446 * The domain of "pc" has already been extended with an infinite loop
448 * { [t] : t >= 0 }
450 * Here, we add the constraints on the outer loop iterators
451 * implied by "pa" and construct the scop in scop_from_infinite_loop.
452 * Note that the intersection with these constraints
453 * may result in an empty loop.
455 static struct pet_scop *scop_from_affine_while(__isl_keep pet_tree *tree,
456 __isl_take isl_pw_aff *pa, __isl_take pet_context *pc,
457 struct pet_state *state)
459 struct pet_scop *scop;
460 isl_set *dom, *local;
461 isl_set *valid;
463 valid = isl_pw_aff_domain(isl_pw_aff_copy(pa));
464 dom = isl_pw_aff_non_zero_set(pa);
465 local = isl_set_add_dims(isl_set_copy(dom), isl_dim_set, 1);
466 pc = pet_context_intersect_domain(pc, local);
467 scop = scop_from_infinite_loop(tree->u.l.body, pc, state);
468 scop = pet_scop_restrict(scop, dom);
469 scop = pet_scop_restrict_context(scop, valid);
471 pet_context_free(pc);
472 return scop;
475 /* Construct a scop for a while, given the scops for the condition
476 * and the body, the filter identifier and the iteration domain of
477 * the while loop.
479 * In particular, the scop for the condition is filtered to depend
480 * on "id_test" evaluating to true for all previous iterations
481 * of the loop, while the scop for the body is filtered to depend
482 * on "id_test" evaluating to true for all iterations up to the
483 * current iteration.
484 * The actual filter only imposes that this virtual array has
485 * value one on the previous or the current iteration.
486 * The fact that this condition also applies to the previous
487 * iterations is enforced by an implication.
489 * These filtered scops are then combined into a single scop.
491 * "sign" is positive if the iterator increases and negative
492 * if it decreases.
494 static struct pet_scop *scop_add_while(struct pet_scop *scop_cond,
495 struct pet_scop *scop_body, __isl_take isl_id *id_test,
496 __isl_take isl_set *domain, __isl_take isl_val *inc)
498 isl_ctx *ctx = isl_set_get_ctx(domain);
499 isl_space *space;
500 isl_multi_pw_aff *test_index;
501 isl_multi_pw_aff *prev;
502 int sign = isl_val_sgn(inc);
503 struct pet_scop *scop;
505 prev = map_to_previous(isl_id_copy(id_test), isl_set_copy(domain), inc);
506 scop_cond = pet_scop_filter(scop_cond, prev, 1);
508 space = isl_space_map_from_set(isl_set_get_space(domain));
509 test_index = isl_multi_pw_aff_identity(space);
510 test_index = isl_multi_pw_aff_set_tuple_id(test_index, isl_dim_out,
511 isl_id_copy(id_test));
512 scop_body = pet_scop_filter(scop_body, test_index, 1);
514 scop = pet_scop_add_seq(ctx, scop_cond, scop_body);
515 scop = add_implication(scop, id_test, domain, sign, 1);
517 return scop;
520 /* Create a pet_scop with a single statement with name S_<stmt_nr>,
521 * evaluating "cond" and writing the result to a virtual scalar,
522 * as expressed by "index".
523 * The expression "cond" has not yet been evaluated in the context of "pc".
524 * Do so within the context "pc".
525 * The location of the statement is set to "loc".
527 static struct pet_scop *scop_from_non_affine_condition(
528 __isl_take pet_expr *cond, int stmt_nr,
529 __isl_take isl_multi_pw_aff *index,
530 __isl_take pet_loc *loc, __isl_keep pet_context *pc)
532 pet_expr *expr, *write;
534 cond = pet_context_evaluate_expr(pc, cond);
536 write = pet_expr_from_index(index);
537 write = pet_expr_access_set_write(write, 1);
538 write = pet_expr_access_set_read(write, 0);
539 expr = pet_expr_new_binary(1, pet_op_assign, write, cond);
541 return scop_from_evaluated_expr(expr, NULL, stmt_nr, loc, pc);
544 /* Construct a generic while scop, with iteration domain
545 * { [t] : t >= 0 } around the scop for "tree_body" within the context "pc".
546 * The domain of "pc" has already been extended with this infinite loop
548 * { [t] : t >= 0 }
550 * The scop consists of two parts,
551 * one for evaluating the condition "cond" and one for the body.
552 * If "expr_inc" is not NULL, then a scop for evaluating this expression
553 * is added at the end of the body,
554 * after replacing any skip conditions resulting from continue statements
555 * by the skip conditions resulting from break statements (if any).
557 * The schedule is adjusted to reflect that the condition is evaluated
558 * before the body is executed and the body is filtered to depend
559 * on the result of the condition evaluating to true on all iterations
560 * up to the current iteration, while the evaluation of the condition itself
561 * is filtered to depend on the result of the condition evaluating to true
562 * on all previous iterations.
563 * The context of the scop representing the body is dropped
564 * because we don't know how many times the body will be executed,
565 * if at all.
567 * If the body contains any break, then it is taken into
568 * account in apply_affine_break (if the skip condition is affine)
569 * or in scop_add_break (if the skip condition is not affine).
571 * Note that in case of an affine skip condition,
572 * since we are dealing with a loop without loop iterator,
573 * the skip condition cannot refer to the current loop iterator and
574 * so effectively, the effect on the iteration domain is of the form
576 * { [outer,0]; [outer,t] : t >= 1 and not skip }
578 static struct pet_scop *scop_from_non_affine_while(__isl_take pet_expr *cond,
579 __isl_take pet_loc *loc, __isl_keep pet_tree *tree_body,
580 __isl_take pet_expr *expr_inc, __isl_take pet_context *pc,
581 struct pet_state *state)
583 isl_ctx *ctx;
584 isl_id *id_test, *id_break_test;
585 isl_space *space;
586 isl_multi_pw_aff *test_index;
587 isl_set *domain;
588 isl_set *skip;
589 isl_aff *sched;
590 struct pet_scop *scop, *scop_body;
591 int has_affine_break;
592 int has_var_break;
594 ctx = state->ctx;
595 space = pet_context_get_space(pc);
596 test_index = pet_create_test_index(space, state->n_test++);
597 scop = scop_from_non_affine_condition(cond, state->n_stmt++,
598 isl_multi_pw_aff_copy(test_index),
599 pet_loc_copy(loc), pc);
600 id_test = isl_multi_pw_aff_get_tuple_id(test_index, isl_dim_out);
601 domain = pet_context_get_domain(pc);
602 scop = pet_scop_add_boolean_array(scop, isl_set_copy(domain),
603 test_index, state->int_size);
605 sched = map_to_last(pc);
607 scop_body = scop_from_tree(tree_body, pc, state);
609 has_affine_break = pet_scop_has_affine_skip(scop_body, pet_skip_later);
610 if (has_affine_break)
611 skip = pet_scop_get_affine_skip_domain(scop_body,
612 pet_skip_later);
613 has_var_break = pet_scop_has_var_skip(scop_body, pet_skip_later);
614 if (has_var_break)
615 id_break_test = pet_scop_get_skip_id(scop_body, pet_skip_later);
617 scop = pet_scop_prefix(scop, 0);
618 scop = pet_scop_embed(scop, isl_set_copy(domain), isl_aff_copy(sched));
619 scop_body = pet_scop_reset_context(scop_body);
620 scop_body = pet_scop_prefix(scop_body, 1);
621 if (expr_inc) {
622 struct pet_scop *scop_inc;
623 scop_inc = scop_from_expr(expr_inc, NULL, state->n_stmt++,
624 loc, pc);
625 scop_inc = pet_scop_prefix(scop_inc, 2);
626 if (pet_scop_has_skip(scop_body, pet_skip_later)) {
627 isl_multi_pw_aff *skip;
628 skip = pet_scop_get_skip(scop_body, pet_skip_later);
629 scop_body = pet_scop_set_skip(scop_body,
630 pet_skip_now, skip);
631 } else
632 pet_scop_reset_skip(scop_body, pet_skip_now);
633 scop_body = pet_scop_add_seq(ctx, scop_body, scop_inc);
634 } else
635 pet_loc_free(loc);
636 scop_body = pet_scop_embed(scop_body, isl_set_copy(domain), sched);
638 if (has_affine_break) {
639 domain = apply_affine_break(domain, skip, 1, 0, NULL);
640 scop = pet_scop_intersect_domain_prefix(scop,
641 isl_set_copy(domain));
642 scop_body = pet_scop_intersect_domain_prefix(scop_body,
643 isl_set_copy(domain));
645 if (has_var_break) {
646 scop = scop_add_break(scop, isl_id_copy(id_break_test),
647 isl_set_copy(domain), isl_val_one(ctx));
648 scop_body = scop_add_break(scop_body, id_break_test,
649 isl_set_copy(domain), isl_val_one(ctx));
651 scop = scop_add_while(scop, scop_body, id_test, domain,
652 isl_val_one(ctx));
654 pet_context_free(pc);
655 return scop;
658 /* Check if the while loop is of the form
660 * while (affine expression)
661 * body
663 * If so, call scop_from_affine_while to construct a scop.
665 * Otherwise, pass control to scop_from_non_affine_while.
667 * "pc" is the context in which the affine expressions in the scop are created.
668 * The domain of "pc" is extended with an infinite loop
670 * { [t] : t >= 0 }
672 * before passing control to scop_from_affine_while or
673 * scop_from_non_affine_while.
675 static struct pet_scop *scop_from_while(__isl_keep pet_tree *tree,
676 __isl_keep pet_context *pc, struct pet_state *state)
678 pet_expr *cond_expr;
679 isl_pw_aff *pa;
681 if (!tree)
682 return NULL;
684 pc = pet_context_copy(pc);
685 pc = pet_context_clear_writes_in_tree(pc, tree->u.l.body);
687 cond_expr = pet_expr_copy(tree->u.l.cond);
688 cond_expr = pet_context_evaluate_expr(pc, cond_expr);
689 pa = pet_expr_extract_affine_condition(cond_expr, pc);
690 pet_expr_free(cond_expr);
692 pc = pet_context_add_infinite_loop(pc);
694 if (!pa)
695 goto error;
697 if (!isl_pw_aff_involves_nan(pa))
698 return scop_from_affine_while(tree, pa, pc, state);
699 isl_pw_aff_free(pa);
700 return scop_from_non_affine_while(pet_expr_copy(tree->u.l.cond),
701 pet_tree_get_loc(tree), tree->u.l.body, NULL,
702 pc, state);
703 error:
704 pet_context_free(pc);
705 return NULL;
708 /* Check whether "cond" expresses a simple loop bound
709 * on the final set dimension.
710 * In particular, if "up" is set then "cond" should contain only
711 * upper bounds on the final set dimension.
712 * Otherwise, it should contain only lower bounds.
714 static int is_simple_bound(__isl_keep isl_set *cond, __isl_keep isl_val *inc)
716 int pos;
718 pos = isl_set_dim(cond, isl_dim_set) - 1;
719 if (isl_val_is_pos(inc))
720 return !isl_set_dim_has_any_lower_bound(cond, isl_dim_set, pos);
721 else
722 return !isl_set_dim_has_any_upper_bound(cond, isl_dim_set, pos);
725 /* Extend a condition on a given iteration of a loop to one that
726 * imposes the same condition on all previous iterations.
727 * "domain" expresses the lower [upper] bound on the iterations
728 * when inc is positive [negative] in its final dimension.
730 * In particular, we construct the condition (when inc is positive)
732 * forall i' : (domain(i') and i' <= i) => cond(i')
734 * (where "<=" applies to the final dimension)
735 * which is equivalent to
737 * not exists i' : domain(i') and i' <= i and not cond(i')
739 * We construct this set by subtracting the satisfying cond from domain,
740 * applying a map
742 * { [i'] -> [i] : i' <= i }
744 * and then subtracting the result from domain again.
746 static __isl_give isl_set *valid_for_each_iteration(__isl_take isl_set *cond,
747 __isl_take isl_set *domain, __isl_take isl_val *inc)
749 isl_space *space;
750 isl_map *previous_to_this;
751 int i, dim;
753 dim = isl_set_dim(cond, isl_dim_set);
754 space = isl_space_map_from_set(isl_set_get_space(cond));
755 previous_to_this = isl_map_universe(space);
756 for (i = 0; i + 1 < dim; ++i)
757 previous_to_this = isl_map_equate(previous_to_this,
758 isl_dim_in, i, isl_dim_out, i);
759 if (isl_val_is_pos(inc))
760 previous_to_this = isl_map_order_le(previous_to_this,
761 isl_dim_in, dim - 1, isl_dim_out, dim - 1);
762 else
763 previous_to_this = isl_map_order_ge(previous_to_this,
764 isl_dim_in, dim - 1, isl_dim_out, dim - 1);
766 cond = isl_set_subtract(isl_set_copy(domain), cond);
767 cond = isl_set_apply(cond, previous_to_this);
768 cond = isl_set_subtract(domain, cond);
770 isl_val_free(inc);
772 return cond;
775 /* Given an initial value of the form
777 * { [outer,i] -> init(outer) }
779 * construct a domain of the form
781 * { [outer,i] : exists a: i = init(outer) + a * inc and a >= 0 }
783 static __isl_give isl_set *strided_domain(__isl_take isl_pw_aff *init,
784 __isl_take isl_val *inc)
786 int dim;
787 isl_aff *aff;
788 isl_space *space;
789 isl_local_space *ls;
790 isl_set *set;
792 dim = isl_pw_aff_dim(init, isl_dim_in);
794 init = isl_pw_aff_add_dims(init, isl_dim_in, 1);
795 space = isl_pw_aff_get_domain_space(init);
796 ls = isl_local_space_from_space(space);
797 aff = isl_aff_zero_on_domain(isl_local_space_copy(ls));
798 aff = isl_aff_add_coefficient_val(aff, isl_dim_in, dim, inc);
799 init = isl_pw_aff_add(init, isl_pw_aff_from_aff(aff));
801 aff = isl_aff_var_on_domain(ls, isl_dim_set, dim - 1);
802 set = isl_pw_aff_eq_set(isl_pw_aff_from_aff(aff), init);
804 set = isl_set_lower_bound_si(set, isl_dim_set, dim, 0);
805 set = isl_set_project_out(set, isl_dim_set, dim, 1);
807 return set;
810 /* Assuming "cond" represents a bound on a loop where the loop
811 * iterator "iv" is incremented (or decremented) by one, check if wrapping
812 * is possible.
814 * Under the given assumptions, wrapping is only possible if "cond" allows
815 * for the last value before wrapping, i.e., 2^width - 1 in case of an
816 * increasing iterator and 0 in case of a decreasing iterator.
818 static int can_wrap(__isl_keep isl_set *cond, __isl_keep pet_expr *iv,
819 __isl_keep isl_val *inc)
821 int cw;
822 isl_ctx *ctx;
823 isl_val *limit;
824 isl_set *test;
826 test = isl_set_copy(cond);
828 ctx = isl_set_get_ctx(test);
829 if (isl_val_is_neg(inc))
830 limit = isl_val_zero(ctx);
831 else {
832 limit = isl_val_int_from_ui(ctx, pet_expr_get_type_size(iv));
833 limit = isl_val_2exp(limit);
834 limit = isl_val_sub_ui(limit, 1);
837 test = isl_set_fix_val(cond, isl_dim_set, 0, limit);
838 cw = !isl_set_is_empty(test);
839 isl_set_free(test);
841 return cw;
844 /* Given a space
846 * { [outer, v] },
848 * construct the following affine expression on this space
850 * { [outer, v] -> [outer, v mod 2^width] }
852 * where width is the number of bits used to represent the values
853 * of the unsigned variable "iv".
855 static __isl_give isl_multi_aff *compute_wrapping(__isl_take isl_space *space,
856 __isl_keep pet_expr *iv)
858 int dim;
859 isl_ctx *ctx;
860 isl_val *mod;
861 isl_aff *aff;
862 isl_multi_aff *ma;
864 dim = isl_space_dim(space, isl_dim_set);
866 ctx = isl_space_get_ctx(space);
867 mod = isl_val_int_from_ui(ctx, pet_expr_get_type_size(iv));
868 mod = isl_val_2exp(mod);
870 space = isl_space_map_from_set(space);
871 ma = isl_multi_aff_identity(space);
873 aff = isl_multi_aff_get_aff(ma, dim - 1);
874 aff = isl_aff_mod_val(aff, mod);
875 ma = isl_multi_aff_set_aff(ma, dim - 1, aff);
877 return ma;
880 /* Given two sets in the space
882 * { [l,i] },
884 * where l represents the outer loop iterators, compute the set
885 * of values of l that ensure that "set1" is a subset of "set2".
887 * set1 is a subset of set2 if
889 * forall i: set1(l,i) => set2(l,i)
891 * or
893 * not exists i: set1(l,i) and not set2(l,i)
895 * i.e.,
897 * not exists i: (set1 \ set2)(l,i)
899 static __isl_give isl_set *enforce_subset(__isl_take isl_set *set1,
900 __isl_take isl_set *set2)
902 int pos;
904 pos = isl_set_dim(set1, isl_dim_set) - 1;
905 set1 = isl_set_subtract(set1, set2);
906 set1 = isl_set_eliminate(set1, isl_dim_set, pos, 1);
907 return isl_set_complement(set1);
910 /* Compute the set of outer iterator values for which "cond" holds
911 * on the next iteration of the inner loop for each element of "dom".
913 * We first construct mapping { [l,i] -> [l,i + inc] } (where l refers
914 * to the outer loop iterators), plug that into "cond"
915 * and then compute the set of outer iterators for which "dom" is a subset
916 * of the result.
918 static __isl_give isl_set *valid_on_next(__isl_take isl_set *cond,
919 __isl_take isl_set *dom, __isl_take isl_val *inc)
921 int pos;
922 isl_space *space;
923 isl_aff *aff;
924 isl_multi_aff *ma;
926 pos = isl_set_dim(dom, isl_dim_set) - 1;
927 space = isl_set_get_space(dom);
928 space = isl_space_map_from_set(space);
929 ma = isl_multi_aff_identity(space);
930 aff = isl_multi_aff_get_aff(ma, pos);
931 aff = isl_aff_add_constant_val(aff, inc);
932 ma = isl_multi_aff_set_aff(ma, pos, aff);
933 cond = isl_set_preimage_multi_aff(cond, ma);
935 return enforce_subset(dom, cond);
938 /* Extract the for loop "tree" as a while loop within the context "pc_init".
939 * In particular, "pc_init" represents the context of the loop,
940 * whereas "pc" represents the context of the body of the loop and
941 * has already had its domain extended with an infinite loop
943 * { [t] : t >= 0 }
945 * The for loop has the form
947 * for (iv = init; cond; iv += inc)
948 * body;
950 * and is treated as
952 * iv = init;
953 * while (cond) {
954 * body;
955 * iv += inc;
958 * except that the skips resulting from any continue statements
959 * in body do not apply to the increment, but are replaced by the skips
960 * resulting from break statements.
962 * If the loop iterator is declared in the for loop, then it is killed before
963 * and after the loop.
965 static struct pet_scop *scop_from_non_affine_for(__isl_keep pet_tree *tree,
966 __isl_keep pet_context *init_pc, __isl_take pet_context *pc,
967 struct pet_state *state)
969 int declared;
970 isl_id *iv;
971 pet_expr *expr_iv, *init, *inc;
972 struct pet_scop *scop_init, *scop;
973 int type_size;
974 struct pet_array *array;
975 struct pet_scop *scop_kill;
977 iv = pet_expr_access_get_id(tree->u.l.iv);
978 pc = pet_context_clear_value(pc, iv);
980 declared = tree->u.l.declared;
982 expr_iv = pet_expr_copy(tree->u.l.iv);
983 type_size = pet_expr_get_type_size(expr_iv);
984 init = pet_expr_copy(tree->u.l.init);
985 init = pet_expr_new_binary(type_size, pet_op_assign, expr_iv, init);
986 scop_init = scop_from_expr(init, NULL, state->n_stmt++,
987 pet_tree_get_loc(tree), init_pc);
988 scop_init = pet_scop_prefix(scop_init, declared);
990 expr_iv = pet_expr_copy(tree->u.l.iv);
991 type_size = pet_expr_get_type_size(expr_iv);
992 inc = pet_expr_copy(tree->u.l.inc);
993 inc = pet_expr_new_binary(type_size, pet_op_add_assign, expr_iv, inc);
995 scop = scop_from_non_affine_while(pet_expr_copy(tree->u.l.cond),
996 pet_tree_get_loc(tree), tree->u.l.body, inc,
997 pet_context_copy(pc), state);
999 scop = pet_scop_prefix(scop, declared + 1);
1000 scop = pet_scop_add_seq(state->ctx, scop_init, scop);
1002 pet_context_free(pc);
1004 if (!declared)
1005 return scop;
1007 array = extract_array(tree->u.l.iv, init_pc, state);
1008 if (array)
1009 array->declared = 1;
1010 scop_kill = kill(pet_tree_get_loc(tree), array, init_pc, state);
1011 scop_kill = pet_scop_prefix(scop_kill, 0);
1012 scop = pet_scop_add_seq(state->ctx, scop_kill, scop);
1013 scop_kill = kill(pet_tree_get_loc(tree), array, init_pc, state);
1014 scop_kill = pet_scop_add_array(scop_kill, array);
1015 scop_kill = pet_scop_prefix(scop_kill, 3);
1016 scop = pet_scop_add_seq(state->ctx, scop, scop_kill);
1018 return scop;
1021 /* Given an access expression "expr", is the variable accessed by
1022 * "expr" assigned anywhere inside "tree"?
1024 static int is_assigned(__isl_keep pet_expr *expr, __isl_keep pet_tree *tree)
1026 int assigned = 0;
1027 isl_id *id;
1029 id = pet_expr_access_get_id(expr);
1030 assigned = pet_tree_writes(tree, id);
1031 isl_id_free(id);
1033 return assigned;
1036 /* Are all nested access parameters in "pa" allowed given "tree".
1037 * In particular, is none of them written by anywhere inside "tree".
1039 * If "tree" has any continue nodes in the current loop level,
1040 * then no nested access parameters are allowed.
1041 * In particular, if there is any nested access in a guard
1042 * for a piece of code containing a "continue", then we want to introduce
1043 * a separate statement for evaluating this guard so that we can express
1044 * that the result is false for all previous iterations.
1046 static int is_nested_allowed(__isl_keep isl_pw_aff *pa,
1047 __isl_keep pet_tree *tree)
1049 int i, nparam;
1051 if (!tree)
1052 return -1;
1054 if (!pet_nested_any_in_pw_aff(pa))
1055 return 1;
1057 if (pet_tree_has_continue(tree))
1058 return 0;
1060 nparam = isl_pw_aff_dim(pa, isl_dim_param);
1061 for (i = 0; i < nparam; ++i) {
1062 isl_id *id = isl_pw_aff_get_dim_id(pa, isl_dim_param, i);
1063 pet_expr *expr;
1064 int allowed;
1066 if (!pet_nested_in_id(id)) {
1067 isl_id_free(id);
1068 continue;
1071 expr = pet_nested_extract_expr(id);
1072 allowed = pet_expr_get_type(expr) == pet_expr_access &&
1073 !is_assigned(expr, tree);
1075 pet_expr_free(expr);
1076 isl_id_free(id);
1078 if (!allowed)
1079 return 0;
1082 return 1;
1085 /* Construct a pet_scop for a for tree with static affine initialization
1086 * and constant increment within the context "pc".
1087 * The domain of "pc" has already been extended with an (at this point
1088 * unbounded) inner loop iterator corresponding to the current for loop.
1090 * The condition is allowed to contain nested accesses, provided
1091 * they are not being written to inside the body of the loop.
1092 * Otherwise, or if the condition is otherwise non-affine, the for loop is
1093 * essentially treated as a while loop, with iteration domain
1094 * { [l,i] : i >= init }, where l refers to the outer loop iterators.
1096 * We extract a pet_scop for the body after intersecting the domain of "pc"
1098 * { [l,i] : i >= init and condition' }
1100 * or
1102 * { [l,i] : i <= init and condition' }
1104 * Where condition' is equal to condition if the latter is
1105 * a simple upper [lower] bound and a condition that is extended
1106 * to apply to all previous iterations otherwise.
1107 * Afterwards, the schedule of the pet_scop is extended with
1109 * { [l,i] -> [i] }
1111 * or
1113 * { [l,i] -> [-i] }
1115 * If the condition is non-affine, then we drop the condition from the
1116 * iteration domain and instead create a separate statement
1117 * for evaluating the condition. The body is then filtered to depend
1118 * on the result of the condition evaluating to true on all iterations
1119 * up to the current iteration, while the evaluation the condition itself
1120 * is filtered to depend on the result of the condition evaluating to true
1121 * on all previous iterations.
1122 * The context of the scop representing the body is dropped
1123 * because we don't know how many times the body will be executed,
1124 * if at all.
1126 * If the stride of the loop is not 1, then "i >= init" is replaced by
1128 * (exists a: i = init + stride * a and a >= 0)
1130 * If the loop iterator i is unsigned, then wrapping may occur.
1131 * We therefore use a virtual iterator instead that does not wrap.
1132 * However, the condition in the code applies
1133 * to the wrapped value, so we need to change condition(l,i)
1134 * into condition([l,i % 2^width]). Similarly, we replace all accesses
1135 * to the original iterator by the wrapping of the virtual iterator.
1136 * Note that there may be no need to perform this final wrapping
1137 * if the loop condition (after wrapping) satisfies certain conditions.
1138 * However, the is_simple_bound condition is not enough since it doesn't
1139 * check if there even is an upper bound.
1141 * Wrapping on unsigned iterators can be avoided entirely if
1142 * loop condition is simple, the loop iterator is incremented
1143 * [decremented] by one and the last value before wrapping cannot
1144 * possibly satisfy the loop condition.
1146 * Valid outer iterators for a for loop are those for which the initial
1147 * value itself, the increment on each domain iteration and
1148 * the condition on both the initial value and
1149 * the result of incrementing the iterator for each iteration of the domain
1150 * can be evaluated.
1151 * If the loop condition is non-affine, then we only consider validity
1152 * of the initial value.
1154 * If the body contains any break, then we keep track of it in "skip"
1155 * (if the skip condition is affine) or it is handled in scop_add_break
1156 * (if the skip condition is not affine).
1157 * Note that the affine break condition needs to be considered with
1158 * respect to previous iterations in the virtual domain (if any).
1160 static struct pet_scop *scop_from_affine_for(__isl_keep pet_tree *tree,
1161 __isl_take isl_pw_aff *init_val, __isl_take isl_pw_aff *pa_inc,
1162 __isl_take isl_val *inc, __isl_take pet_context *pc,
1163 struct pet_state *state)
1165 isl_set *domain;
1166 isl_aff *sched;
1167 isl_set *cond = NULL;
1168 isl_set *skip = NULL;
1169 isl_id *id_test = NULL, *id_break_test;
1170 struct pet_scop *scop, *scop_cond = NULL;
1171 int pos;
1172 int is_one;
1173 int is_unsigned;
1174 int is_simple;
1175 int is_virtual;
1176 int is_non_affine;
1177 int has_affine_break;
1178 int has_var_break;
1179 isl_map *rev_wrap = NULL;
1180 isl_map *init_val_map;
1181 isl_pw_aff *pa;
1182 isl_set *valid_init;
1183 isl_set *valid_cond;
1184 isl_set *valid_cond_init;
1185 isl_set *valid_cond_next;
1186 isl_set *valid_inc;
1187 pet_expr *cond_expr;
1188 pet_context *pc_nested;
1190 pos = pet_context_dim(pc) - 1;
1192 domain = pet_context_get_domain(pc);
1193 cond_expr = pet_expr_copy(tree->u.l.cond);
1194 cond_expr = pet_context_evaluate_expr(pc, cond_expr);
1195 pc_nested = pet_context_copy(pc);
1196 pc_nested = pet_context_set_allow_nested(pc_nested, 1);
1197 pa = pet_expr_extract_affine_condition(cond_expr, pc_nested);
1198 pet_context_free(pc_nested);
1199 pet_expr_free(cond_expr);
1201 valid_inc = isl_pw_aff_domain(pa_inc);
1203 is_unsigned = pet_expr_get_type_size(tree->u.l.iv) > 0;
1205 is_non_affine = isl_pw_aff_involves_nan(pa) ||
1206 !is_nested_allowed(pa, tree->u.l.body);
1207 if (is_non_affine)
1208 pa = isl_pw_aff_free(pa);
1210 valid_cond = isl_pw_aff_domain(isl_pw_aff_copy(pa));
1211 cond = isl_pw_aff_non_zero_set(pa);
1212 if (is_non_affine)
1213 cond = isl_set_universe(isl_set_get_space(domain));
1215 valid_cond = isl_set_coalesce(valid_cond);
1216 is_one = isl_val_is_one(inc) || isl_val_is_negone(inc);
1217 is_virtual = is_unsigned &&
1218 (!is_one || can_wrap(cond, tree->u.l.iv, inc));
1220 init_val_map = isl_map_from_pw_aff(isl_pw_aff_copy(init_val));
1221 init_val_map = isl_map_equate(init_val_map, isl_dim_in, pos,
1222 isl_dim_out, 0);
1223 valid_cond_init = enforce_subset(isl_map_domain(init_val_map),
1224 isl_set_copy(valid_cond));
1225 if (is_one && !is_virtual) {
1226 isl_set *cond;
1228 isl_pw_aff_free(init_val);
1229 pa = pet_expr_extract_comparison(
1230 isl_val_is_pos(inc) ? pet_op_ge : pet_op_le,
1231 tree->u.l.iv, tree->u.l.init, pc);
1232 valid_init = isl_pw_aff_domain(isl_pw_aff_copy(pa));
1233 valid_init = isl_set_eliminate(valid_init, isl_dim_set,
1234 isl_set_dim(domain, isl_dim_set) - 1, 1);
1235 cond = isl_pw_aff_non_zero_set(pa);
1236 domain = isl_set_intersect(domain, cond);
1237 } else {
1238 isl_set *strided;
1240 valid_init = isl_pw_aff_domain(isl_pw_aff_copy(init_val));
1241 strided = strided_domain(init_val, isl_val_copy(inc));
1242 domain = isl_set_intersect(domain, strided);
1245 if (is_virtual) {
1246 isl_multi_aff *wrap;
1247 wrap = compute_wrapping(isl_set_get_space(cond), tree->u.l.iv);
1248 pc = pet_context_preimage_domain(pc, wrap);
1249 rev_wrap = isl_map_from_multi_aff(wrap);
1250 rev_wrap = isl_map_reverse(rev_wrap);
1251 cond = isl_set_apply(cond, isl_map_copy(rev_wrap));
1252 valid_cond = isl_set_apply(valid_cond, isl_map_copy(rev_wrap));
1253 valid_inc = isl_set_apply(valid_inc, isl_map_copy(rev_wrap));
1255 is_simple = is_simple_bound(cond, inc);
1256 if (!is_simple) {
1257 cond = isl_set_gist(cond, isl_set_copy(domain));
1258 is_simple = is_simple_bound(cond, inc);
1260 if (!is_simple)
1261 cond = valid_for_each_iteration(cond,
1262 isl_set_copy(domain), isl_val_copy(inc));
1263 cond = isl_set_align_params(cond, isl_set_get_space(domain));
1264 domain = isl_set_intersect(domain, cond);
1265 sched = map_to_last(pc);
1266 if (isl_val_is_neg(inc))
1267 sched = isl_aff_neg(sched);
1269 valid_cond_next = valid_on_next(valid_cond, isl_set_copy(domain),
1270 isl_val_copy(inc));
1271 valid_inc = enforce_subset(isl_set_copy(domain), valid_inc);
1273 pc = pet_context_intersect_domain(pc, isl_set_copy(domain));
1275 if (is_non_affine) {
1276 isl_space *space;
1277 isl_multi_pw_aff *test_index;
1278 space = isl_set_get_space(domain);
1279 test_index = pet_create_test_index(space, state->n_test++);
1280 scop_cond = scop_from_non_affine_condition(
1281 pet_expr_copy(tree->u.l.cond), state->n_stmt++,
1282 isl_multi_pw_aff_copy(test_index),
1283 pet_tree_get_loc(tree), pc);
1284 id_test = isl_multi_pw_aff_get_tuple_id(test_index,
1285 isl_dim_out);
1286 scop_cond = pet_scop_add_boolean_array(scop_cond,
1287 isl_set_copy(domain), test_index,
1288 state->int_size);
1289 scop_cond = pet_scop_prefix(scop_cond, 0);
1290 scop_cond = pet_scop_embed(scop_cond, isl_set_copy(domain),
1291 isl_aff_copy(sched));
1294 scop = scop_from_tree(tree->u.l.body, pc, state);
1295 has_affine_break = scop &&
1296 pet_scop_has_affine_skip(scop, pet_skip_later);
1297 if (has_affine_break)
1298 skip = pet_scop_get_affine_skip_domain(scop, pet_skip_later);
1299 has_var_break = scop && pet_scop_has_var_skip(scop, pet_skip_later);
1300 if (has_var_break)
1301 id_break_test = pet_scop_get_skip_id(scop, pet_skip_later);
1302 if (is_non_affine) {
1303 scop = pet_scop_reset_context(scop);
1304 scop = pet_scop_prefix(scop, 1);
1306 scop = pet_scop_embed(scop, isl_set_copy(domain), sched);
1307 scop = pet_scop_resolve_nested(scop);
1308 if (has_affine_break) {
1309 domain = apply_affine_break(domain, skip, isl_val_sgn(inc),
1310 is_virtual, rev_wrap);
1311 scop = pet_scop_intersect_domain_prefix(scop,
1312 isl_set_copy(domain));
1314 isl_map_free(rev_wrap);
1315 if (has_var_break)
1316 scop = scop_add_break(scop, id_break_test, isl_set_copy(domain),
1317 isl_val_copy(inc));
1318 if (is_non_affine) {
1319 scop = scop_add_while(scop_cond, scop, id_test, domain,
1320 isl_val_copy(inc));
1321 isl_set_free(valid_inc);
1322 } else {
1323 valid_inc = isl_set_intersect(valid_inc, valid_cond_next);
1324 valid_inc = isl_set_intersect(valid_inc, valid_cond_init);
1325 valid_inc = isl_set_project_out(valid_inc, isl_dim_set, pos, 1);
1326 scop = pet_scop_restrict_context(scop, valid_inc);
1327 isl_set_free(domain);
1330 isl_val_free(inc);
1332 valid_init = isl_set_project_out(valid_init, isl_dim_set, pos, 1);
1333 scop = pet_scop_restrict_context(scop, valid_init);
1335 pet_context_free(pc);
1336 return scop;
1339 /* Construct a pet_scop for a for statement within the context of "pc".
1341 * We update the context to reflect the writes to the loop variable and
1342 * the writes inside the body.
1344 * Then we check if the initialization of the for loop
1345 * is a static affine value and the increment is a constant.
1346 * If so, we construct the pet_scop using scop_from_affine_for.
1347 * Otherwise, we treat the for loop as a while loop
1348 * in scop_from_non_affine_for.
1350 * Note that the initialization and the increment are extracted
1351 * in a context where the current loop iterator has been added
1352 * to the context. If these turn out not be affine, then we
1353 * have reconstruct the body context without an assignment
1354 * to this loop iterator, as this variable will then not be
1355 * treated as a dimension of the iteration domain, but as any
1356 * other variable.
1358 static struct pet_scop *scop_from_for(__isl_keep pet_tree *tree,
1359 __isl_keep pet_context *init_pc, struct pet_state *state)
1361 isl_id *iv;
1362 isl_val *inc;
1363 isl_pw_aff *pa_inc, *init_val;
1364 pet_context *pc, *pc_init_val;
1366 if (!tree)
1367 return NULL;
1369 iv = pet_expr_access_get_id(tree->u.l.iv);
1370 pc = pet_context_copy(init_pc);
1371 pc = pet_context_add_inner_iterator(pc, iv);
1372 pc = pet_context_clear_writes_in_tree(pc, tree->u.l.body);
1374 pc_init_val = pet_context_copy(pc);
1375 pc_init_val = pet_context_clear_value(pc_init_val, isl_id_copy(iv));
1376 init_val = pet_expr_extract_affine(tree->u.l.init, pc_init_val);
1377 pet_context_free(pc_init_val);
1378 pa_inc = pet_expr_extract_affine(tree->u.l.inc, pc);
1379 inc = pet_extract_cst(pa_inc);
1380 if (!pa_inc || !init_val || !inc)
1381 goto error;
1382 if (!isl_pw_aff_involves_nan(pa_inc) &&
1383 !isl_pw_aff_involves_nan(init_val) && !isl_val_is_nan(inc))
1384 return scop_from_affine_for(tree, init_val, pa_inc, inc,
1385 pc, state);
1387 isl_pw_aff_free(pa_inc);
1388 isl_pw_aff_free(init_val);
1389 isl_val_free(inc);
1390 pet_context_free(pc);
1392 pc = pet_context_copy(init_pc);
1393 pc = pet_context_add_infinite_loop(pc);
1394 pc = pet_context_clear_writes_in_tree(pc, tree->u.l.body);
1395 return scop_from_non_affine_for(tree, init_pc, pc, state);
1396 error:
1397 isl_pw_aff_free(pa_inc);
1398 isl_pw_aff_free(init_val);
1399 isl_val_free(inc);
1400 pet_context_free(pc);
1401 return NULL;
1404 /* Check whether "expr" is an affine constraint within the context "pc".
1406 static int is_affine_condition(__isl_keep pet_expr *expr,
1407 __isl_keep pet_context *pc)
1409 isl_pw_aff *pa;
1410 int is_affine;
1412 pa = pet_expr_extract_affine_condition(expr, pc);
1413 if (!pa)
1414 return -1;
1415 is_affine = !isl_pw_aff_involves_nan(pa);
1416 isl_pw_aff_free(pa);
1418 return is_affine;
1421 /* Check if the given if statement is a conditional assignement
1422 * with a non-affine condition.
1424 * In particular we check if "stmt" is of the form
1426 * if (condition)
1427 * a = f(...);
1428 * else
1429 * a = g(...);
1431 * where the condition is non-affine and a is some array or scalar access.
1433 static int is_conditional_assignment(__isl_keep pet_tree *tree,
1434 __isl_keep pet_context *pc)
1436 int equal;
1437 isl_ctx *ctx;
1438 pet_expr *expr1, *expr2;
1440 ctx = pet_tree_get_ctx(tree);
1441 if (!pet_options_get_detect_conditional_assignment(ctx))
1442 return 0;
1443 if (tree->type != pet_tree_if_else)
1444 return 0;
1445 if (tree->u.i.then_body->type != pet_tree_expr)
1446 return 0;
1447 if (tree->u.i.else_body->type != pet_tree_expr)
1448 return 0;
1449 expr1 = tree->u.i.then_body->u.e.expr;
1450 expr2 = tree->u.i.else_body->u.e.expr;
1451 if (pet_expr_get_type(expr1) != pet_expr_op)
1452 return 0;
1453 if (pet_expr_get_type(expr2) != pet_expr_op)
1454 return 0;
1455 if (pet_expr_op_get_type(expr1) != pet_op_assign)
1456 return 0;
1457 if (pet_expr_op_get_type(expr2) != pet_op_assign)
1458 return 0;
1459 expr1 = pet_expr_get_arg(expr1, 0);
1460 expr2 = pet_expr_get_arg(expr2, 0);
1461 equal = pet_expr_is_equal(expr1, expr2);
1462 pet_expr_free(expr1);
1463 pet_expr_free(expr2);
1464 if (equal < 0 || !equal)
1465 return 0;
1466 if (is_affine_condition(tree->u.i.cond, pc))
1467 return 0;
1469 return 1;
1472 /* Given that "tree" is of the form
1474 * if (condition)
1475 * a = f(...);
1476 * else
1477 * a = g(...);
1479 * where a is some array or scalar access, construct a pet_scop
1480 * corresponding to this conditional assignment within the context "pc".
1482 * The constructed pet_scop then corresponds to the expression
1484 * a = condition ? f(...) : g(...)
1486 * All access relations in f(...) are intersected with condition
1487 * while all access relation in g(...) are intersected with the complement.
1489 static struct pet_scop *scop_from_conditional_assignment(
1490 __isl_keep pet_tree *tree, __isl_take pet_context *pc,
1491 struct pet_state *state)
1493 int type_size;
1494 isl_pw_aff *pa;
1495 isl_set *cond, *comp;
1496 isl_multi_pw_aff *index;
1497 pet_expr *expr1, *expr2;
1498 pet_expr *pe_cond, *pe_then, *pe_else, *pe, *pe_write;
1499 pet_context *pc_nested;
1500 struct pet_scop *scop;
1502 pe_cond = pet_expr_copy(tree->u.i.cond);
1503 pe_cond = pet_context_evaluate_expr(pc, pe_cond);
1504 pc_nested = pet_context_copy(pc);
1505 pc_nested = pet_context_set_allow_nested(pc_nested, 1);
1506 pa = pet_expr_extract_affine_condition(pe_cond, pc_nested);
1507 pet_context_free(pc_nested);
1508 pet_expr_free(pe_cond);
1509 cond = isl_pw_aff_non_zero_set(isl_pw_aff_copy(pa));
1510 comp = isl_pw_aff_zero_set(isl_pw_aff_copy(pa));
1511 index = isl_multi_pw_aff_from_pw_aff(pa);
1513 expr1 = tree->u.i.then_body->u.e.expr;
1514 expr2 = tree->u.i.else_body->u.e.expr;
1516 pe_cond = pet_expr_from_index(index);
1518 pe_then = pet_expr_get_arg(expr1, 1);
1519 pe_then = pet_context_evaluate_expr(pc, pe_then);
1520 pe_then = pet_expr_restrict(pe_then, cond);
1521 pe_else = pet_expr_get_arg(expr2, 1);
1522 pe_else = pet_context_evaluate_expr(pc, pe_else);
1523 pe_else = pet_expr_restrict(pe_else, comp);
1524 pe_write = pet_expr_get_arg(expr1, 0);
1525 pe_write = pet_context_evaluate_expr(pc, pe_write);
1527 pe = pet_expr_new_ternary(pe_cond, pe_then, pe_else);
1528 type_size = pet_expr_get_type_size(pe_write);
1529 pe = pet_expr_new_binary(type_size, pet_op_assign, pe_write, pe);
1531 scop = scop_from_evaluated_expr(pe, NULL, state->n_stmt++,
1532 pet_tree_get_loc(tree), pc);
1534 pet_context_free(pc);
1536 return scop;
1539 /* Construct a pet_scop for a non-affine if statement within the context "pc".
1541 * We create a separate statement that writes the result
1542 * of the non-affine condition to a virtual scalar.
1543 * A constraint requiring the value of this virtual scalar to be one
1544 * is added to the iteration domains of the then branch.
1545 * Similarly, a constraint requiring the value of this virtual scalar
1546 * to be zero is added to the iteration domains of the else branch, if any.
1547 * We adjust the schedules to ensure that the virtual scalar is written
1548 * before it is read.
1550 * If there are any breaks or continues in the then and/or else
1551 * branches, then we may have to compute a new skip condition.
1552 * This is handled using a pet_skip_info object.
1553 * On initialization, the object checks if skip conditions need
1554 * to be computed. If so, it does so in pet_skip_info_if_extract_index and
1555 * adds them in pet_skip_info_if_add.
1557 static struct pet_scop *scop_from_non_affine_if(__isl_keep pet_tree *tree,
1558 __isl_take pet_context *pc, struct pet_state *state)
1560 int has_else;
1561 isl_space *space;
1562 isl_set *domain;
1563 isl_multi_pw_aff *test_index;
1564 struct pet_skip_info skip;
1565 struct pet_scop *scop, *scop_then, *scop_else = NULL;
1567 has_else = tree->type == pet_tree_if_else;
1569 space = pet_context_get_space(pc);
1570 test_index = pet_create_test_index(space, state->n_test++);
1571 scop = scop_from_non_affine_condition(pet_expr_copy(tree->u.i.cond),
1572 state->n_stmt++, isl_multi_pw_aff_copy(test_index),
1573 pet_tree_get_loc(tree), pc);
1574 domain = pet_context_get_domain(pc);
1575 scop = pet_scop_add_boolean_array(scop, domain,
1576 isl_multi_pw_aff_copy(test_index), state->int_size);
1578 scop_then = scop_from_tree(tree->u.i.then_body, pc, state);
1579 if (has_else)
1580 scop_else = scop_from_tree(tree->u.i.else_body, pc, state);
1582 pet_skip_info_if_init(&skip, state->ctx, scop_then, scop_else,
1583 has_else, 0);
1584 pet_skip_info_if_extract_index(&skip, test_index, pc, state);
1586 scop = pet_scop_prefix(scop, 0);
1587 scop_then = pet_scop_prefix(scop_then, 1);
1588 scop_then = pet_scop_filter(scop_then,
1589 isl_multi_pw_aff_copy(test_index), 1);
1590 if (has_else) {
1591 scop_else = pet_scop_prefix(scop_else, 1);
1592 scop_else = pet_scop_filter(scop_else, test_index, 0);
1593 scop_then = pet_scop_add_par(state->ctx, scop_then, scop_else);
1594 } else
1595 isl_multi_pw_aff_free(test_index);
1597 scop = pet_scop_add_seq(state->ctx, scop, scop_then);
1599 scop = pet_skip_info_if_add(&skip, scop, 2);
1601 pet_context_free(pc);
1602 return scop;
1605 /* Construct a pet_scop for an affine if statement within the context "pc".
1607 * The condition is added to the iteration domains of the then branch,
1608 * while the opposite of the condition in added to the iteration domains
1609 * of the else branch, if any.
1611 * If there are any breaks or continues in the then and/or else
1612 * branches, then we may have to compute a new skip condition.
1613 * This is handled using a pet_skip_info_if object.
1614 * On initialization, the object checks if skip conditions need
1615 * to be computed. If so, it does so in pet_skip_info_if_extract_cond and
1616 * adds them in pet_skip_info_if_add.
1618 static struct pet_scop *scop_from_affine_if(__isl_keep pet_tree *tree,
1619 __isl_take isl_pw_aff *cond, __isl_take pet_context *pc,
1620 struct pet_state *state)
1622 int has_else;
1623 isl_ctx *ctx;
1624 isl_set *set, *complement;
1625 isl_set *valid;
1626 struct pet_skip_info skip;
1627 struct pet_scop *scop, *scop_then, *scop_else = NULL;
1628 pet_context *pc_body;
1630 ctx = pet_tree_get_ctx(tree);
1632 has_else = tree->type == pet_tree_if_else;
1634 valid = isl_pw_aff_domain(isl_pw_aff_copy(cond));
1635 set = isl_pw_aff_non_zero_set(isl_pw_aff_copy(cond));
1637 pc_body = pet_context_copy(pc);
1638 pc_body = pet_context_intersect_domain(pc_body, isl_set_copy(set));
1639 scop_then = scop_from_tree(tree->u.i.then_body, pc_body, state);
1640 pet_context_free(pc_body);
1641 if (has_else) {
1642 pc_body = pet_context_copy(pc);
1643 complement = isl_set_copy(valid);
1644 complement = isl_set_subtract(valid, isl_set_copy(set));
1645 pc_body = pet_context_intersect_domain(pc_body,
1646 isl_set_copy(complement));
1647 scop_else = scop_from_tree(tree->u.i.else_body, pc_body, state);
1648 pet_context_free(pc_body);
1651 pet_skip_info_if_init(&skip, ctx, scop_then, scop_else, has_else, 1);
1652 pet_skip_info_if_extract_cond(&skip, cond, pc, state);
1653 isl_pw_aff_free(cond);
1655 scop = pet_scop_restrict(scop_then, set);
1657 if (has_else) {
1658 scop_else = pet_scop_restrict(scop_else, complement);
1659 scop = pet_scop_add_par(ctx, scop, scop_else);
1661 scop = pet_scop_resolve_nested(scop);
1662 scop = pet_scop_restrict_context(scop, valid);
1664 if (pet_skip_info_has_skip(&skip))
1665 scop = pet_scop_prefix(scop, 0);
1666 scop = pet_skip_info_if_add(&skip, scop, 1);
1668 pet_context_free(pc);
1669 return scop;
1672 /* Construct a pet_scop for an if statement within the context "pc".
1674 * If the condition fits the pattern of a conditional assignment,
1675 * then it is handled by scop_from_conditional_assignment.
1677 * Otherwise, we check if the condition is affine.
1678 * If so, we construct the scop in scop_from_affine_if.
1679 * Otherwise, we construct the scop in scop_from_non_affine_if.
1681 * We allow the condition to be dynamic, i.e., to refer to
1682 * scalars or array elements that may be written to outside
1683 * of the given if statement. These nested accesses are then represented
1684 * as output dimensions in the wrapping iteration domain.
1685 * If it is also written _inside_ the then or else branch, then
1686 * we treat the condition as non-affine.
1687 * As explained in extract_non_affine_if, this will introduce
1688 * an extra statement.
1689 * For aesthetic reasons, we want this statement to have a statement
1690 * number that is lower than those of the then and else branches.
1691 * In order to evaluate if we will need such a statement, however, we
1692 * first construct scops for the then and else branches.
1693 * We therefore reserve a statement number if we might have to
1694 * introduce such an extra statement.
1696 static struct pet_scop *scop_from_if(__isl_keep pet_tree *tree,
1697 __isl_keep pet_context *pc, struct pet_state *state)
1699 int has_else;
1700 isl_pw_aff *cond;
1701 pet_expr *cond_expr;
1702 pet_context *pc_nested;
1704 if (!tree)
1705 return NULL;
1707 has_else = tree->type == pet_tree_if_else;
1709 pc = pet_context_copy(pc);
1710 pc = pet_context_clear_writes_in_tree(pc, tree->u.i.then_body);
1711 if (has_else)
1712 pc = pet_context_clear_writes_in_tree(pc, tree->u.i.else_body);
1714 if (is_conditional_assignment(tree, pc))
1715 return scop_from_conditional_assignment(tree, pc, state);
1717 cond_expr = pet_expr_copy(tree->u.i.cond);
1718 cond_expr = pet_context_evaluate_expr(pc, cond_expr);
1719 pc_nested = pet_context_copy(pc);
1720 pc_nested = pet_context_set_allow_nested(pc_nested, 1);
1721 cond = pet_expr_extract_affine_condition(cond_expr, pc_nested);
1722 pet_context_free(pc_nested);
1723 pet_expr_free(cond_expr);
1725 if (!cond) {
1726 pet_context_free(pc);
1727 return NULL;
1730 if (isl_pw_aff_involves_nan(cond)) {
1731 isl_pw_aff_free(cond);
1732 return scop_from_non_affine_if(tree, pc, state);
1735 if ((!is_nested_allowed(cond, tree->u.i.then_body) ||
1736 (has_else && !is_nested_allowed(cond, tree->u.i.else_body)))) {
1737 isl_pw_aff_free(cond);
1738 return scop_from_non_affine_if(tree, pc, state);
1741 return scop_from_affine_if(tree, cond, pc, state);
1744 /* Return a one-dimensional multi piecewise affine expression that is equal
1745 * to the constant 1 and is defined over the given domain.
1747 static __isl_give isl_multi_pw_aff *one_mpa(__isl_take isl_space *space)
1749 isl_local_space *ls;
1750 isl_aff *aff;
1752 ls = isl_local_space_from_space(space);
1753 aff = isl_aff_zero_on_domain(ls);
1754 aff = isl_aff_set_constant_si(aff, 1);
1756 return isl_multi_pw_aff_from_pw_aff(isl_pw_aff_from_aff(aff));
1759 /* Construct a pet_scop for a continue statement with the given domain space.
1761 * We simply create an empty scop with a universal pet_skip_now
1762 * skip condition. This skip condition will then be taken into
1763 * account by the enclosing loop construct, possibly after
1764 * being incorporated into outer skip conditions.
1766 static struct pet_scop *scop_from_continue(__isl_keep pet_tree *tree,
1767 __isl_take isl_space *space)
1769 struct pet_scop *scop;
1771 scop = pet_scop_empty(isl_space_copy(space));
1773 scop = pet_scop_set_skip(scop, pet_skip_now, one_mpa(space));
1775 return scop;
1778 /* Construct a pet_scop for a break statement with the given domain space.
1780 * We simply create an empty scop with both a universal pet_skip_now
1781 * skip condition and a universal pet_skip_later skip condition.
1782 * These skip conditions will then be taken into
1783 * account by the enclosing loop construct, possibly after
1784 * being incorporated into outer skip conditions.
1786 static struct pet_scop *scop_from_break(__isl_keep pet_tree *tree,
1787 __isl_take isl_space *space)
1789 struct pet_scop *scop;
1790 isl_multi_pw_aff *skip;
1792 scop = pet_scop_empty(isl_space_copy(space));
1794 skip = one_mpa(space);
1795 scop = pet_scop_set_skip(scop, pet_skip_now,
1796 isl_multi_pw_aff_copy(skip));
1797 scop = pet_scop_set_skip(scop, pet_skip_later, skip);
1799 return scop;
1802 /* Extract a clone of the kill statement in "scop".
1803 * The domain of the clone is given by "domain".
1804 * "scop" is expected to have been created from a DeclStmt
1805 * and should have the kill as its first statement.
1807 static struct pet_scop *extract_kill(__isl_keep isl_set *domain,
1808 struct pet_scop *scop, struct pet_state *state)
1810 pet_expr *kill;
1811 struct pet_stmt *stmt;
1812 isl_multi_pw_aff *index;
1813 isl_map *access;
1814 pet_expr *arg;
1816 if (!domain || !scop)
1817 return NULL;
1818 if (scop->n_stmt < 1)
1819 isl_die(isl_set_get_ctx(domain), isl_error_internal,
1820 "expecting at least one statement", return NULL);
1821 stmt = scop->stmts[0];
1822 if (!pet_stmt_is_kill(stmt))
1823 isl_die(isl_set_get_ctx(domain), isl_error_internal,
1824 "expecting kill statement", return NULL);
1826 arg = pet_expr_get_arg(stmt->body, 0);
1827 index = pet_expr_access_get_index(arg);
1828 access = pet_expr_access_get_access(arg);
1829 pet_expr_free(arg);
1830 index = isl_multi_pw_aff_reset_tuple_id(index, isl_dim_in);
1831 access = isl_map_reset_tuple_id(access, isl_dim_in);
1832 kill = pet_expr_kill_from_access_and_index(access, index);
1833 stmt = pet_stmt_from_pet_expr(isl_set_copy(domain),
1834 pet_loc_copy(stmt->loc), NULL, state->n_stmt++, kill);
1835 return pet_scop_from_pet_stmt(isl_set_get_space(domain), stmt);
1838 /* Does "tree" represent an assignment to a variable?
1840 * The assignment may be one of
1841 * - a declaration with initialization
1842 * - an expression with a top-level assignment operator
1844 static int is_assignment(__isl_keep pet_tree *tree)
1846 if (!tree)
1847 return 0;
1848 if (tree->type == pet_tree_decl_init)
1849 return 1;
1850 return pet_tree_is_assign(tree);
1853 /* Update "pc" by taking into account the assignment performed by "tree",
1854 * where "tree" satisfies is_assignment.
1856 * In particular, if the lhs of the assignment is a scalar variable and
1857 * if the rhs is an affine expression, then keep track of this value in "pc"
1858 * so that we can plug it in when we later come across the same variable.
1860 * Any previously assigned value to the variable has already been removed
1861 * by scop_handle_writes.
1863 static __isl_give pet_context *handle_assignment(__isl_take pet_context *pc,
1864 __isl_keep pet_tree *tree)
1866 pet_expr *var, *val;
1867 isl_id *id;
1868 isl_pw_aff *pa;
1870 if (pet_tree_get_type(tree) == pet_tree_decl_init) {
1871 var = pet_tree_decl_get_var(tree);
1872 val = pet_tree_decl_get_init(tree);
1873 } else {
1874 pet_expr *expr;
1875 expr = pet_tree_expr_get_expr(tree);
1876 var = pet_expr_get_arg(expr, 0);
1877 val = pet_expr_get_arg(expr, 1);
1878 pet_expr_free(expr);
1881 if (!pet_expr_is_scalar_access(var)) {
1882 pet_expr_free(var);
1883 pet_expr_free(val);
1884 return pc;
1887 pa = pet_expr_extract_affine(val, pc);
1888 if (!pa)
1889 pc = pet_context_free(pc);
1891 if (!isl_pw_aff_involves_nan(pa)) {
1892 id = pet_expr_access_get_id(var);
1893 pc = pet_context_set_value(pc, id, pa);
1894 } else {
1895 isl_pw_aff_free(pa);
1897 pet_expr_free(var);
1898 pet_expr_free(val);
1900 return pc;
1903 /* Mark all arrays in "scop" as being exposed.
1905 static struct pet_scop *mark_exposed(struct pet_scop *scop)
1907 int i;
1909 if (!scop)
1910 return NULL;
1911 for (i = 0; i < scop->n_array; ++i)
1912 scop->arrays[i]->exposed = 1;
1913 return scop;
1916 /* Given that "scop" has an affine skip condition of type pet_skip_now,
1917 * apply this skip condition to the domain of "pc".
1918 * That is, remove the elements satisfying the skip condition from
1919 * the domain of "pc".
1921 static __isl_give pet_context *apply_affine_continue(__isl_take pet_context *pc,
1922 struct pet_scop *scop)
1924 isl_set *domain, *skip;
1926 skip = pet_scop_get_affine_skip_domain(scop, pet_skip_now);
1927 domain = pet_context_get_domain(pc);
1928 domain = isl_set_subtract(domain, skip);
1929 pc = pet_context_intersect_domain(pc, domain);
1931 return pc;
1934 /* Try and construct a pet_scop corresponding to (part of)
1935 * a sequence of statements within the context "pc".
1937 * After extracting a statement, we update "pc"
1938 * based on the top-level assignments in the statement
1939 * so that we can exploit them in subsequent statements in the same block.
1941 * If there are any breaks or continues in the individual statements,
1942 * then we may have to compute a new skip condition.
1943 * This is handled using a pet_skip_info object.
1944 * On initialization, the object checks if skip conditions need
1945 * to be computed. If so, it does so in pet_skip_info_seq_extract and
1946 * adds them in pet_skip_info_seq_add.
1948 * If "block" is set, then we need to insert kill statements at
1949 * the end of the block for any array that has been declared by
1950 * one of the statements in the sequence. Each of these declarations
1951 * results in the construction of a kill statement at the place
1952 * of the declaration, so we simply collect duplicates of
1953 * those kill statements and append these duplicates to the constructed scop.
1955 * If "block" is not set, then any array declared by one of the statements
1956 * in the sequence is marked as being exposed.
1958 * If autodetect is set, then we allow the extraction of only a subrange
1959 * of the sequence of statements. However, if there is at least one statement
1960 * for which we could not construct a scop and the final range contains
1961 * either no statements or at least one kill, then we discard the entire
1962 * range.
1964 static struct pet_scop *scop_from_block(__isl_keep pet_tree *tree,
1965 __isl_keep pet_context *pc, struct pet_state *state)
1967 int i;
1968 isl_ctx *ctx;
1969 isl_space *space;
1970 isl_set *domain;
1971 struct pet_scop *scop, *kills;
1973 ctx = pet_tree_get_ctx(tree);
1975 space = pet_context_get_space(pc);
1976 domain = pet_context_get_domain(pc);
1977 pc = pet_context_copy(pc);
1978 scop = pet_scop_empty(isl_space_copy(space));
1979 kills = pet_scop_empty(space);
1980 for (i = 0; i < tree->u.b.n; ++i) {
1981 struct pet_scop *scop_i;
1983 if (pet_scop_has_affine_skip(scop, pet_skip_now))
1984 pc = apply_affine_continue(pc, scop);
1985 scop_i = scop_from_tree(tree->u.b.child[i], pc, state);
1986 pc = scop_handle_writes(scop_i, pc);
1987 if (is_assignment(tree->u.b.child[i]))
1988 pc = handle_assignment(pc, tree->u.b.child[i]);
1989 struct pet_skip_info skip;
1990 pet_skip_info_seq_init(&skip, ctx, scop, scop_i);
1991 pet_skip_info_seq_extract(&skip, pc, state);
1992 if (pet_skip_info_has_skip(&skip))
1993 scop_i = pet_scop_prefix(scop_i, 0);
1994 if (scop_i && pet_tree_is_decl(tree->u.b.child[i])) {
1995 if (tree->u.b.block) {
1996 struct pet_scop *kill;
1997 kill = extract_kill(domain, scop_i, state);
1998 kills = pet_scop_add_par(ctx, kills, kill);
1999 } else
2000 scop_i = mark_exposed(scop_i);
2002 scop_i = pet_scop_prefix(scop_i, i);
2003 scop = pet_scop_add_seq(ctx, scop, scop_i);
2005 scop = pet_skip_info_seq_add(&skip, scop, i);
2007 if (!scop)
2008 break;
2010 isl_set_free(domain);
2012 kills = pet_scop_prefix(kills, tree->u.b.n);
2013 scop = pet_scop_add_seq(ctx, scop, kills);
2015 pet_context_free(pc);
2017 return scop;
2020 /* Construct a pet_scop that corresponds to the pet_tree "tree"
2021 * within the context "pc" by calling the appropriate function
2022 * based on the type of "tree".
2024 static struct pet_scop *scop_from_tree(__isl_keep pet_tree *tree,
2025 __isl_keep pet_context *pc, struct pet_state *state)
2027 if (!tree)
2028 return NULL;
2030 switch (tree->type) {
2031 case pet_tree_error:
2032 return NULL;
2033 case pet_tree_block:
2034 return scop_from_block(tree, pc, state);
2035 case pet_tree_break:
2036 return scop_from_break(tree, pet_context_get_space(pc));
2037 case pet_tree_continue:
2038 return scop_from_continue(tree, pet_context_get_space(pc));
2039 case pet_tree_decl:
2040 case pet_tree_decl_init:
2041 return scop_from_decl(tree, pc, state);
2042 case pet_tree_expr:
2043 return scop_from_expr(pet_expr_copy(tree->u.e.expr),
2044 isl_id_copy(tree->label),
2045 state->n_stmt++,
2046 pet_tree_get_loc(tree), pc);
2047 case pet_tree_if:
2048 case pet_tree_if_else:
2049 return scop_from_if(tree, pc, state);
2050 case pet_tree_for:
2051 return scop_from_for(tree, pc, state);
2052 case pet_tree_while:
2053 return scop_from_while(tree, pc, state);
2054 case pet_tree_infinite_loop:
2055 return scop_from_infinite_for(tree, pc, state);
2058 isl_die(tree->ctx, isl_error_internal, "unhandled type",
2059 return NULL);
2062 /* Construct a pet_scop that corresponds to the pet_tree "tree".
2063 * "int_size" is the number of bytes need to represent an integer.
2064 * "extract_array" is a callback that we can use to create a pet_array
2065 * that corresponds to the variable accessed by an expression.
2067 * Initialize the global state, construct a context and then
2068 * construct the pet_scop by recursively visiting the tree.
2070 struct pet_scop *pet_scop_from_pet_tree(__isl_take pet_tree *tree, int int_size,
2071 struct pet_array *(*extract_array)(__isl_keep pet_expr *access,
2072 __isl_keep pet_context *pc, void *user), void *user,
2073 __isl_keep pet_context *pc)
2075 struct pet_scop *scop;
2076 struct pet_state state = { 0 };
2078 if (!tree)
2079 return NULL;
2081 state.ctx = pet_tree_get_ctx(tree);
2082 state.int_size = int_size;
2083 state.extract_array = extract_array;
2084 state.user = user;
2086 scop = scop_from_tree(tree, pc, &state);
2087 scop = pet_scop_set_loc(scop, pet_tree_get_loc(tree));
2089 pet_tree_free(tree);
2091 if (scop)
2092 scop->context = isl_set_params(scop->context);
2094 return scop;