PetScan::extract_argument: mark non-const pointer arguments as potential writes
[pet.git] / scan.cc
blob02b114ea9971df4e30ae21bcb9d8232c7300fc08
1 /*
2 * Copyright 2011 Leiden University. All rights reserved.
3 * Copyright 2012-2015 Ecole Normale Superieure. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above
13 * copyright notice, this list of conditions and the following
14 * disclaimer in the documentation and/or other materials provided
15 * with the distribution.
17 * THIS SOFTWARE IS PROVIDED BY LEIDEN UNIVERSITY ''AS IS'' AND ANY
18 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
20 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL LEIDEN UNIVERSITY OR
21 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
22 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
23 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
24 * OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 * The views and conclusions contained in the software and documentation
30 * are those of the authors and should not be interpreted as
31 * representing official policies, either expressed or implied, of
32 * Leiden University.
33 */
35 #include "config.h"
37 #include <string.h>
38 #include <set>
39 #include <map>
40 #include <iostream>
41 #include <llvm/Support/raw_ostream.h>
42 #include <clang/AST/ASTContext.h>
43 #include <clang/AST/ASTDiagnostic.h>
44 #include <clang/AST/Attr.h>
45 #include <clang/AST/Expr.h>
46 #include <clang/AST/RecursiveASTVisitor.h>
48 #include <isl/id.h>
49 #include <isl/space.h>
50 #include <isl/aff.h>
51 #include <isl/set.h>
53 #include "aff.h"
54 #include "array.h"
55 #include "clang.h"
56 #include "context.h"
57 #include "expr.h"
58 #include "nest.h"
59 #include "options.h"
60 #include "scan.h"
61 #include "scop.h"
62 #include "scop_plus.h"
63 #include "tree.h"
64 #include "tree2scop.h"
66 using namespace std;
67 using namespace clang;
69 static enum pet_op_type UnaryOperatorKind2pet_op_type(UnaryOperatorKind kind)
71 switch (kind) {
72 case UO_Minus:
73 return pet_op_minus;
74 case UO_Not:
75 return pet_op_not;
76 case UO_LNot:
77 return pet_op_lnot;
78 case UO_PostInc:
79 return pet_op_post_inc;
80 case UO_PostDec:
81 return pet_op_post_dec;
82 case UO_PreInc:
83 return pet_op_pre_inc;
84 case UO_PreDec:
85 return pet_op_pre_dec;
86 default:
87 return pet_op_last;
91 static enum pet_op_type BinaryOperatorKind2pet_op_type(BinaryOperatorKind kind)
93 switch (kind) {
94 case BO_AddAssign:
95 return pet_op_add_assign;
96 case BO_SubAssign:
97 return pet_op_sub_assign;
98 case BO_MulAssign:
99 return pet_op_mul_assign;
100 case BO_DivAssign:
101 return pet_op_div_assign;
102 case BO_Assign:
103 return pet_op_assign;
104 case BO_Add:
105 return pet_op_add;
106 case BO_Sub:
107 return pet_op_sub;
108 case BO_Mul:
109 return pet_op_mul;
110 case BO_Div:
111 return pet_op_div;
112 case BO_Rem:
113 return pet_op_mod;
114 case BO_Shl:
115 return pet_op_shl;
116 case BO_Shr:
117 return pet_op_shr;
118 case BO_EQ:
119 return pet_op_eq;
120 case BO_NE:
121 return pet_op_ne;
122 case BO_LE:
123 return pet_op_le;
124 case BO_GE:
125 return pet_op_ge;
126 case BO_LT:
127 return pet_op_lt;
128 case BO_GT:
129 return pet_op_gt;
130 case BO_And:
131 return pet_op_and;
132 case BO_Xor:
133 return pet_op_xor;
134 case BO_Or:
135 return pet_op_or;
136 case BO_LAnd:
137 return pet_op_land;
138 case BO_LOr:
139 return pet_op_lor;
140 default:
141 return pet_op_last;
145 #if defined(DECLREFEXPR_CREATE_REQUIRES_BOOL)
146 static DeclRefExpr *create_DeclRefExpr(VarDecl *var)
148 return DeclRefExpr::Create(var->getASTContext(), var->getQualifierLoc(),
149 SourceLocation(), var, false, var->getInnerLocStart(),
150 var->getType(), VK_LValue);
152 #elif defined(DECLREFEXPR_CREATE_REQUIRES_SOURCELOCATION)
153 static DeclRefExpr *create_DeclRefExpr(VarDecl *var)
155 return DeclRefExpr::Create(var->getASTContext(), var->getQualifierLoc(),
156 SourceLocation(), var, var->getInnerLocStart(), var->getType(),
157 VK_LValue);
159 #else
160 static DeclRefExpr *create_DeclRefExpr(VarDecl *var)
162 return DeclRefExpr::Create(var->getASTContext(), var->getQualifierLoc(),
163 var, var->getInnerLocStart(), var->getType(), VK_LValue);
165 #endif
167 #ifdef GETTYPEINFORETURNSTYPEINFO
169 static int size_in_bytes(ASTContext &context, QualType type)
171 return context.getTypeInfo(type).Width / 8;
174 #else
176 static int size_in_bytes(ASTContext &context, QualType type)
178 return context.getTypeInfo(type).first / 8;
181 #endif
183 /* Check if the element type corresponding to the given array type
184 * has a const qualifier.
186 static bool const_base(QualType qt)
188 const Type *type = qt.getTypePtr();
190 if (type->isPointerType())
191 return const_base(type->getPointeeType());
192 if (type->isArrayType()) {
193 const ArrayType *atype;
194 type = type->getCanonicalTypeInternal().getTypePtr();
195 atype = cast<ArrayType>(type);
196 return const_base(atype->getElementType());
199 return qt.isConstQualified();
202 /* Create an isl_id that refers to the named declarator "decl".
204 static __isl_give isl_id *create_decl_id(isl_ctx *ctx, NamedDecl *decl)
206 return isl_id_alloc(ctx, decl->getName().str().c_str(), decl);
209 PetScan::~PetScan()
211 std::map<const Type *, pet_expr *>::iterator it;
212 std::map<FunctionDecl *, pet_function_summary *>::iterator it_s;
214 for (it = type_size.begin(); it != type_size.end(); ++it)
215 pet_expr_free(it->second);
216 for (it_s = summary_cache.begin(); it_s != summary_cache.end(); ++it_s)
217 pet_function_summary_free(it_s->second);
219 isl_union_map_free(value_bounds);
222 /* Report a diagnostic, unless autodetect is set.
224 void PetScan::report(Stmt *stmt, unsigned id)
226 if (options->autodetect)
227 return;
229 SourceLocation loc = stmt->getLocStart();
230 DiagnosticsEngine &diag = PP.getDiagnostics();
231 DiagnosticBuilder B = diag.Report(loc, id) << stmt->getSourceRange();
234 /* Called if we found something we (currently) cannot handle.
235 * We'll provide more informative warnings later.
237 * We only actually complain if autodetect is false.
239 void PetScan::unsupported(Stmt *stmt)
241 DiagnosticsEngine &diag = PP.getDiagnostics();
242 unsigned id = diag.getCustomDiagID(DiagnosticsEngine::Warning,
243 "unsupported");
244 report(stmt, id);
247 /* Report an unsupported statement type, unless autodetect is set.
249 void PetScan::report_unsupported_statement_type(Stmt *stmt)
251 DiagnosticsEngine &diag = PP.getDiagnostics();
252 unsigned id = diag.getCustomDiagID(DiagnosticsEngine::Warning,
253 "this type of statement is not supported");
254 report(stmt, id);
257 /* Report a missing prototype, unless autodetect is set.
259 void PetScan::report_prototype_required(Stmt *stmt)
261 DiagnosticsEngine &diag = PP.getDiagnostics();
262 unsigned id = diag.getCustomDiagID(DiagnosticsEngine::Warning,
263 "prototype required");
264 report(stmt, id);
267 /* Report a missing increment, unless autodetect is set.
269 void PetScan::report_missing_increment(Stmt *stmt)
271 DiagnosticsEngine &diag = PP.getDiagnostics();
272 unsigned id = diag.getCustomDiagID(DiagnosticsEngine::Warning,
273 "missing increment");
274 report(stmt, id);
277 /* Report a missing summary function, unless autodetect is set.
279 void PetScan::report_missing_summary_function(Stmt *stmt)
281 DiagnosticsEngine &diag = PP.getDiagnostics();
282 unsigned id = diag.getCustomDiagID(DiagnosticsEngine::Warning,
283 "missing summary function");
284 report(stmt, id);
287 /* Report a missing summary function body, unless autodetect is set.
289 void PetScan::report_missing_summary_function_body(Stmt *stmt)
291 DiagnosticsEngine &diag = PP.getDiagnostics();
292 unsigned id = diag.getCustomDiagID(DiagnosticsEngine::Warning,
293 "missing summary function body");
294 report(stmt, id);
297 /* Extract an integer from "val", which is assumed to be non-negative.
299 static __isl_give isl_val *extract_unsigned(isl_ctx *ctx,
300 const llvm::APInt &val)
302 unsigned n;
303 const uint64_t *data;
305 data = val.getRawData();
306 n = val.getNumWords();
307 return isl_val_int_from_chunks(ctx, n, sizeof(uint64_t), data);
310 /* Extract an integer from "val". If "is_signed" is set, then "val"
311 * is signed. Otherwise it it unsigned.
313 static __isl_give isl_val *extract_int(isl_ctx *ctx, bool is_signed,
314 llvm::APInt val)
316 int is_negative = is_signed && val.isNegative();
317 isl_val *v;
319 if (is_negative)
320 val = -val;
322 v = extract_unsigned(ctx, val);
324 if (is_negative)
325 v = isl_val_neg(v);
326 return v;
329 /* Extract an integer from "expr".
331 __isl_give isl_val *PetScan::extract_int(isl_ctx *ctx, IntegerLiteral *expr)
333 const Type *type = expr->getType().getTypePtr();
334 bool is_signed = type->hasSignedIntegerRepresentation();
336 return ::extract_int(ctx, is_signed, expr->getValue());
339 /* Extract an integer from "expr".
340 * Return NULL if "expr" does not (obviously) represent an integer.
342 __isl_give isl_val *PetScan::extract_int(clang::ParenExpr *expr)
344 return extract_int(expr->getSubExpr());
347 /* Extract an integer from "expr".
348 * Return NULL if "expr" does not (obviously) represent an integer.
350 __isl_give isl_val *PetScan::extract_int(clang::Expr *expr)
352 if (expr->getStmtClass() == Stmt::IntegerLiteralClass)
353 return extract_int(ctx, cast<IntegerLiteral>(expr));
354 if (expr->getStmtClass() == Stmt::ParenExprClass)
355 return extract_int(cast<ParenExpr>(expr));
357 unsupported(expr);
358 return NULL;
361 /* Extract a pet_expr from the APInt "val", which is assumed
362 * to be non-negative.
364 __isl_give pet_expr *PetScan::extract_expr(const llvm::APInt &val)
366 return pet_expr_new_int(extract_unsigned(ctx, val));
369 /* Return the number of bits needed to represent the type "qt",
370 * if it is an integer type. Otherwise return 0.
371 * If qt is signed then return the opposite of the number of bits.
373 static int get_type_size(QualType qt, ASTContext &ast_context)
375 int size;
377 if (!qt->isIntegerType())
378 return 0;
380 size = ast_context.getIntWidth(qt);
381 if (!qt->isUnsignedIntegerType())
382 size = -size;
384 return size;
387 /* Return the number of bits needed to represent the type of "decl",
388 * if it is an integer type. Otherwise return 0.
389 * If qt is signed then return the opposite of the number of bits.
391 static int get_type_size(ValueDecl *decl)
393 return get_type_size(decl->getType(), decl->getASTContext());
396 /* Bound parameter "pos" of "set" to the possible values of "decl".
398 static __isl_give isl_set *set_parameter_bounds(__isl_take isl_set *set,
399 unsigned pos, ValueDecl *decl)
401 int type_size;
402 isl_ctx *ctx;
403 isl_val *bound;
405 ctx = isl_set_get_ctx(set);
406 type_size = get_type_size(decl);
407 if (type_size == 0)
408 isl_die(ctx, isl_error_invalid, "not an integer type",
409 return isl_set_free(set));
410 if (type_size > 0) {
411 set = isl_set_lower_bound_si(set, isl_dim_param, pos, 0);
412 bound = isl_val_int_from_ui(ctx, type_size);
413 bound = isl_val_2exp(bound);
414 bound = isl_val_sub_ui(bound, 1);
415 set = isl_set_upper_bound_val(set, isl_dim_param, pos, bound);
416 } else {
417 bound = isl_val_int_from_ui(ctx, -type_size - 1);
418 bound = isl_val_2exp(bound);
419 bound = isl_val_sub_ui(bound, 1);
420 set = isl_set_upper_bound_val(set, isl_dim_param, pos,
421 isl_val_copy(bound));
422 bound = isl_val_neg(bound);
423 bound = isl_val_sub_ui(bound, 1);
424 set = isl_set_lower_bound_val(set, isl_dim_param, pos, bound);
427 return set;
430 __isl_give pet_expr *PetScan::extract_index_expr(ImplicitCastExpr *expr)
432 return extract_index_expr(expr->getSubExpr());
435 /* Return the depth of an array of the given type.
437 static int array_depth(const Type *type)
439 if (type->isPointerType())
440 return 1 + array_depth(type->getPointeeType().getTypePtr());
441 if (type->isArrayType()) {
442 const ArrayType *atype;
443 type = type->getCanonicalTypeInternal().getTypePtr();
444 atype = cast<ArrayType>(type);
445 return 1 + array_depth(atype->getElementType().getTypePtr());
447 return 0;
450 /* Return the depth of the array accessed by the index expression "index".
451 * If "index" is an affine expression, i.e., if it does not access
452 * any array, then return 1.
453 * If "index" represent a member access, i.e., if its range is a wrapped
454 * relation, then return the sum of the depth of the array of structures
455 * and that of the member inside the structure.
457 static int extract_depth(__isl_keep isl_multi_pw_aff *index)
459 isl_id *id;
460 ValueDecl *decl;
462 if (!index)
463 return -1;
465 if (isl_multi_pw_aff_range_is_wrapping(index)) {
466 int domain_depth, range_depth;
467 isl_multi_pw_aff *domain, *range;
469 domain = isl_multi_pw_aff_copy(index);
470 domain = isl_multi_pw_aff_range_factor_domain(domain);
471 domain_depth = extract_depth(domain);
472 isl_multi_pw_aff_free(domain);
473 range = isl_multi_pw_aff_copy(index);
474 range = isl_multi_pw_aff_range_factor_range(range);
475 range_depth = extract_depth(range);
476 isl_multi_pw_aff_free(range);
478 return domain_depth + range_depth;
481 if (!isl_multi_pw_aff_has_tuple_id(index, isl_dim_out))
482 return 1;
484 id = isl_multi_pw_aff_get_tuple_id(index, isl_dim_out);
485 if (!id)
486 return -1;
487 decl = (ValueDecl *) isl_id_get_user(id);
488 isl_id_free(id);
490 return array_depth(decl->getType().getTypePtr());
493 /* Return the depth of the array accessed by the access expression "expr".
495 static int extract_depth(__isl_keep pet_expr *expr)
497 isl_multi_pw_aff *index;
498 int depth;
500 index = pet_expr_access_get_index(expr);
501 depth = extract_depth(index);
502 isl_multi_pw_aff_free(index);
504 return depth;
507 /* Construct a pet_expr representing an index expression for an access
508 * to the variable referenced by "expr".
510 * If "expr" references an enum constant, then return an integer expression
511 * instead, representing the value of the enum constant.
513 __isl_give pet_expr *PetScan::extract_index_expr(DeclRefExpr *expr)
515 return extract_index_expr(expr->getDecl());
518 /* Construct a pet_expr representing an index expression for an access
519 * to the variable "decl".
521 * If "decl" is an enum constant, then we return an integer expression
522 * instead, representing the value of the enum constant.
524 __isl_give pet_expr *PetScan::extract_index_expr(ValueDecl *decl)
526 isl_id *id;
527 isl_space *space;
529 if (isa<EnumConstantDecl>(decl))
530 return extract_expr(cast<EnumConstantDecl>(decl));
532 id = create_decl_id(ctx, decl);
533 space = isl_space_alloc(ctx, 0, 0, 0);
534 space = isl_space_set_tuple_id(space, isl_dim_out, id);
536 return pet_expr_from_index(isl_multi_pw_aff_zero(space));
539 /* Construct a pet_expr representing the index expression "expr"
540 * Return NULL on error.
542 * If "expr" is a reference to an enum constant, then return
543 * an integer expression instead, representing the value of the enum constant.
545 __isl_give pet_expr *PetScan::extract_index_expr(Expr *expr)
547 switch (expr->getStmtClass()) {
548 case Stmt::ImplicitCastExprClass:
549 return extract_index_expr(cast<ImplicitCastExpr>(expr));
550 case Stmt::DeclRefExprClass:
551 return extract_index_expr(cast<DeclRefExpr>(expr));
552 case Stmt::ArraySubscriptExprClass:
553 return extract_index_expr(cast<ArraySubscriptExpr>(expr));
554 case Stmt::IntegerLiteralClass:
555 return extract_expr(cast<IntegerLiteral>(expr));
556 case Stmt::MemberExprClass:
557 return extract_index_expr(cast<MemberExpr>(expr));
558 default:
559 unsupported(expr);
561 return NULL;
564 /* Extract an index expression from the given array subscript expression.
566 * We first extract an index expression from the base.
567 * This will result in an index expression with a range that corresponds
568 * to the earlier indices.
569 * We then extract the current index and let
570 * pet_expr_access_subscript combine the two.
572 __isl_give pet_expr *PetScan::extract_index_expr(ArraySubscriptExpr *expr)
574 Expr *base = expr->getBase();
575 Expr *idx = expr->getIdx();
576 pet_expr *index;
577 pet_expr *base_expr;
579 base_expr = extract_index_expr(base);
580 index = extract_expr(idx);
582 base_expr = pet_expr_access_subscript(base_expr, index);
584 return base_expr;
587 /* Extract an index expression from a member expression.
589 * If the base access (to the structure containing the member)
590 * is of the form
592 * A[..]
594 * and the member is called "f", then the member access is of
595 * the form
597 * A_f[A[..] -> f[]]
599 * If the member access is to an anonymous struct, then simply return
601 * A[..]
603 * If the member access in the source code is of the form
605 * A->f
607 * then it is treated as
609 * A[0].f
611 __isl_give pet_expr *PetScan::extract_index_expr(MemberExpr *expr)
613 Expr *base = expr->getBase();
614 FieldDecl *field = cast<FieldDecl>(expr->getMemberDecl());
615 pet_expr *base_index;
616 isl_id *id;
618 base_index = extract_index_expr(base);
620 if (expr->isArrow()) {
621 pet_expr *index = pet_expr_new_int(isl_val_zero(ctx));
622 base_index = pet_expr_access_subscript(base_index, index);
625 if (field->isAnonymousStructOrUnion())
626 return base_index;
628 id = create_decl_id(ctx, field);
630 return pet_expr_access_member(base_index, id);
633 /* Mark the given access pet_expr as a write.
635 static __isl_give pet_expr *mark_write(__isl_take pet_expr *access)
637 access = pet_expr_access_set_write(access, 1);
638 access = pet_expr_access_set_read(access, 0);
640 return access;
643 /* Mark the given (read) access pet_expr as also possibly being written.
644 * That is, initialize the may write access relation from the may read relation
645 * and initialize the must write access relation to the empty relation.
647 static __isl_give pet_expr *mark_may_write(__isl_take pet_expr *expr)
649 isl_union_map *access;
650 isl_union_map *empty;
652 access = pet_expr_access_get_dependent_access(expr,
653 pet_expr_access_may_read);
654 empty = isl_union_map_empty(isl_union_map_get_space(access));
655 expr = pet_expr_access_set_access(expr, pet_expr_access_may_write,
656 access);
657 expr = pet_expr_access_set_access(expr, pet_expr_access_must_write,
658 empty);
660 return expr;
663 /* Construct a pet_expr representing a unary operator expression.
665 __isl_give pet_expr *PetScan::extract_expr(UnaryOperator *expr)
667 int type_size;
668 pet_expr *arg;
669 enum pet_op_type op;
671 op = UnaryOperatorKind2pet_op_type(expr->getOpcode());
672 if (op == pet_op_last) {
673 unsupported(expr);
674 return NULL;
677 arg = extract_expr(expr->getSubExpr());
679 if (expr->isIncrementDecrementOp() &&
680 pet_expr_get_type(arg) == pet_expr_access) {
681 arg = mark_write(arg);
682 arg = pet_expr_access_set_read(arg, 1);
685 type_size = get_type_size(expr->getType(), ast_context);
686 return pet_expr_new_unary(type_size, op, arg);
689 /* Construct a pet_expr representing a binary operator expression.
691 * If the top level operator is an assignment and the LHS is an access,
692 * then we mark that access as a write. If the operator is a compound
693 * assignment, the access is marked as both a read and a write.
695 __isl_give pet_expr *PetScan::extract_expr(BinaryOperator *expr)
697 int type_size;
698 pet_expr *lhs, *rhs;
699 enum pet_op_type op;
701 op = BinaryOperatorKind2pet_op_type(expr->getOpcode());
702 if (op == pet_op_last) {
703 unsupported(expr);
704 return NULL;
707 lhs = extract_expr(expr->getLHS());
708 rhs = extract_expr(expr->getRHS());
710 if (expr->isAssignmentOp() &&
711 pet_expr_get_type(lhs) == pet_expr_access) {
712 lhs = mark_write(lhs);
713 if (expr->isCompoundAssignmentOp())
714 lhs = pet_expr_access_set_read(lhs, 1);
717 type_size = get_type_size(expr->getType(), ast_context);
718 return pet_expr_new_binary(type_size, op, lhs, rhs);
721 /* Construct a pet_tree for a (single) variable declaration.
723 __isl_give pet_tree *PetScan::extract(DeclStmt *stmt)
725 Decl *decl;
726 VarDecl *vd;
727 pet_expr *lhs, *rhs;
728 pet_tree *tree;
730 if (!stmt->isSingleDecl()) {
731 unsupported(stmt);
732 return NULL;
735 decl = stmt->getSingleDecl();
736 vd = cast<VarDecl>(decl);
738 lhs = extract_access_expr(vd);
739 lhs = mark_write(lhs);
740 if (!vd->getInit())
741 tree = pet_tree_new_decl(lhs);
742 else {
743 rhs = extract_expr(vd->getInit());
744 tree = pet_tree_new_decl_init(lhs, rhs);
747 return tree;
750 /* Construct a pet_expr representing a conditional operation.
752 __isl_give pet_expr *PetScan::extract_expr(ConditionalOperator *expr)
754 pet_expr *cond, *lhs, *rhs;
755 isl_pw_aff *pa;
757 cond = extract_expr(expr->getCond());
758 lhs = extract_expr(expr->getTrueExpr());
759 rhs = extract_expr(expr->getFalseExpr());
761 return pet_expr_new_ternary(cond, lhs, rhs);
764 __isl_give pet_expr *PetScan::extract_expr(ImplicitCastExpr *expr)
766 return extract_expr(expr->getSubExpr());
769 /* Construct a pet_expr representing a floating point value.
771 * If the floating point literal does not appear in a macro,
772 * then we use the original representation in the source code
773 * as the string representation. Otherwise, we use the pretty
774 * printer to produce a string representation.
776 __isl_give pet_expr *PetScan::extract_expr(FloatingLiteral *expr)
778 double d;
779 string s;
780 const LangOptions &LO = PP.getLangOpts();
781 SourceLocation loc = expr->getLocation();
783 if (!loc.isMacroID()) {
784 SourceManager &SM = PP.getSourceManager();
785 unsigned len = Lexer::MeasureTokenLength(loc, SM, LO);
786 s = string(SM.getCharacterData(loc), len);
787 } else {
788 llvm::raw_string_ostream S(s);
789 expr->printPretty(S, 0, PrintingPolicy(LO));
790 S.str();
792 d = expr->getValueAsApproximateDouble();
793 return pet_expr_new_double(ctx, d, s.c_str());
796 /* Convert the index expression "index" into an access pet_expr of type "qt".
798 __isl_give pet_expr *PetScan::extract_access_expr(QualType qt,
799 __isl_take pet_expr *index)
801 int depth;
802 int type_size;
804 depth = extract_depth(index);
805 type_size = get_type_size(qt, ast_context);
807 index = pet_expr_set_type_size(index, type_size);
808 index = pet_expr_access_set_depth(index, depth);
810 return index;
813 /* Extract an index expression from "expr" and then convert it into
814 * an access pet_expr.
816 * If "expr" is a reference to an enum constant, then return
817 * an integer expression instead, representing the value of the enum constant.
819 __isl_give pet_expr *PetScan::extract_access_expr(Expr *expr)
821 pet_expr *index;
823 index = extract_index_expr(expr);
825 if (pet_expr_get_type(index) == pet_expr_int)
826 return index;
828 return extract_access_expr(expr->getType(), index);
831 /* Extract an index expression from "decl" and then convert it into
832 * an access pet_expr.
834 __isl_give pet_expr *PetScan::extract_access_expr(ValueDecl *decl)
836 return extract_access_expr(decl->getType(), extract_index_expr(decl));
839 __isl_give pet_expr *PetScan::extract_expr(ParenExpr *expr)
841 return extract_expr(expr->getSubExpr());
844 /* Extract an assume statement from the argument "expr"
845 * of a __pencil_assume statement.
847 __isl_give pet_expr *PetScan::extract_assume(Expr *expr)
849 return pet_expr_new_unary(0, pet_op_assume, extract_expr(expr));
852 /* Construct a pet_expr corresponding to the function call argument "expr".
853 * The argument appears in position "pos" of a call to function "fd".
855 * If we are passing along a pointer to an array element
856 * or an entire row or even higher dimensional slice of an array,
857 * then the function being called may write into the array.
859 * We assume here that if the function is declared to take a pointer
860 * to a const type, then the function may only perform a read
861 * and that otherwise, it may either perform a read or a write (or both).
862 * We only perform this check if "detect_writes" is set.
864 __isl_give pet_expr *PetScan::extract_argument(FunctionDecl *fd, int pos,
865 Expr *expr, bool detect_writes)
867 pet_expr *res;
868 int is_addr = 0, is_partial = 0;
870 while (expr->getStmtClass() == Stmt::ImplicitCastExprClass) {
871 ImplicitCastExpr *ice = cast<ImplicitCastExpr>(expr);
872 expr = ice->getSubExpr();
874 if (expr->getStmtClass() == Stmt::UnaryOperatorClass) {
875 UnaryOperator *op = cast<UnaryOperator>(expr);
876 if (op->getOpcode() == UO_AddrOf) {
877 is_addr = 1;
878 expr = op->getSubExpr();
881 res = extract_expr(expr);
882 if (!res)
883 return NULL;
884 if (array_depth(expr->getType().getTypePtr()) > 0)
885 is_partial = 1;
886 if (detect_writes && (is_addr || is_partial) &&
887 pet_expr_get_type(res) == pet_expr_access) {
888 ParmVarDecl *parm;
889 if (!fd->hasPrototype()) {
890 report_prototype_required(expr);
891 return pet_expr_free(res);
893 parm = fd->getParamDecl(pos);
894 if (!const_base(parm->getType()))
895 res = mark_may_write(res);
898 if (is_addr)
899 res = pet_expr_new_unary(0, pet_op_address_of, res);
900 return res;
903 /* Find the first FunctionDecl with the given name.
904 * "call" is the corresponding call expression and is only used
905 * for reporting errors.
907 * Return NULL on error.
909 FunctionDecl *PetScan::find_decl_from_name(CallExpr *call, string name)
911 TranslationUnitDecl *tu = ast_context.getTranslationUnitDecl();
912 DeclContext::decl_iterator begin = tu->decls_begin();
913 DeclContext::decl_iterator end = tu->decls_end();
914 for (DeclContext::decl_iterator i = begin; i != end; ++i) {
915 FunctionDecl *fd = dyn_cast<FunctionDecl>(*i);
916 if (!fd)
917 continue;
918 if (fd->getName().str().compare(name) != 0)
919 continue;
920 if (fd->hasBody())
921 return fd;
922 report_missing_summary_function_body(call);
923 return NULL;
925 report_missing_summary_function(call);
926 return NULL;
929 /* Return the FunctionDecl for the summary function associated to the
930 * function called by "call".
932 * In particular, search for an annotate attribute formatted as
933 * "pencil_access(name)", where "name" is the name of the summary function.
935 * If no summary function was specified, then return the FunctionDecl
936 * that is actually being called.
938 * Return NULL on error.
940 FunctionDecl *PetScan::get_summary_function(CallExpr *call)
942 FunctionDecl *decl = call->getDirectCallee();
943 if (!decl)
944 return NULL;
946 specific_attr_iterator<AnnotateAttr> begin, end, i;
947 begin = decl->specific_attr_begin<AnnotateAttr>();
948 end = decl->specific_attr_end<AnnotateAttr>();
949 for (i = begin; i != end; ++i) {
950 string attr = (*i)->getAnnotation().str();
952 const char prefix[] = "pencil_access(";
953 size_t start = attr.find(prefix);
954 if (start == string::npos)
955 continue;
956 start += strlen(prefix);
957 string name = attr.substr(start, attr.find(')') - start);
959 return find_decl_from_name(call, name);
962 return decl;
965 /* Construct a pet_expr representing a function call.
967 * In the special case of a "call" to __pencil_assume,
968 * construct an assume expression instead.
970 * In the case of a "call" to __pencil_kill, the arguments
971 * are neither read nor written (only killed), so there
972 * is no need to check for writes to these arguments.
974 __isl_give pet_expr *PetScan::extract_expr(CallExpr *expr)
976 pet_expr *res = NULL;
977 FunctionDecl *fd;
978 string name;
979 unsigned n_arg;
980 bool is_kill;
982 fd = expr->getDirectCallee();
983 if (!fd) {
984 unsupported(expr);
985 return NULL;
988 name = fd->getDeclName().getAsString();
989 n_arg = expr->getNumArgs();
991 if (n_arg == 1 && name == "__pencil_assume")
992 return extract_assume(expr->getArg(0));
993 is_kill = name == "__pencil_kill";
995 res = pet_expr_new_call(ctx, name.c_str(), n_arg);
996 if (!res)
997 return NULL;
999 for (int i = 0; i < n_arg; ++i) {
1000 Expr *arg = expr->getArg(i);
1001 res = pet_expr_set_arg(res, i,
1002 PetScan::extract_argument(fd, i, arg, !is_kill));
1005 fd = get_summary_function(expr);
1006 if (!fd)
1007 return pet_expr_free(res);
1009 res = set_summary(res, fd);
1011 return res;
1014 /* Construct a pet_expr representing a (C style) cast.
1016 __isl_give pet_expr *PetScan::extract_expr(CStyleCastExpr *expr)
1018 pet_expr *arg;
1019 QualType type;
1021 arg = extract_expr(expr->getSubExpr());
1022 if (!arg)
1023 return NULL;
1025 type = expr->getTypeAsWritten();
1026 return pet_expr_new_cast(type.getAsString().c_str(), arg);
1029 /* Construct a pet_expr representing an integer.
1031 __isl_give pet_expr *PetScan::extract_expr(IntegerLiteral *expr)
1033 return pet_expr_new_int(extract_int(expr));
1036 /* Construct a pet_expr representing the integer enum constant "ecd".
1038 __isl_give pet_expr *PetScan::extract_expr(EnumConstantDecl *ecd)
1040 isl_val *v;
1041 const llvm::APSInt &init = ecd->getInitVal();
1042 v = ::extract_int(ctx, init.isSigned(), init);
1043 return pet_expr_new_int(v);
1046 /* Try and construct a pet_expr representing "expr".
1048 __isl_give pet_expr *PetScan::extract_expr(Expr *expr)
1050 switch (expr->getStmtClass()) {
1051 case Stmt::UnaryOperatorClass:
1052 return extract_expr(cast<UnaryOperator>(expr));
1053 case Stmt::CompoundAssignOperatorClass:
1054 case Stmt::BinaryOperatorClass:
1055 return extract_expr(cast<BinaryOperator>(expr));
1056 case Stmt::ImplicitCastExprClass:
1057 return extract_expr(cast<ImplicitCastExpr>(expr));
1058 case Stmt::ArraySubscriptExprClass:
1059 case Stmt::DeclRefExprClass:
1060 case Stmt::MemberExprClass:
1061 return extract_access_expr(expr);
1062 case Stmt::IntegerLiteralClass:
1063 return extract_expr(cast<IntegerLiteral>(expr));
1064 case Stmt::FloatingLiteralClass:
1065 return extract_expr(cast<FloatingLiteral>(expr));
1066 case Stmt::ParenExprClass:
1067 return extract_expr(cast<ParenExpr>(expr));
1068 case Stmt::ConditionalOperatorClass:
1069 return extract_expr(cast<ConditionalOperator>(expr));
1070 case Stmt::CallExprClass:
1071 return extract_expr(cast<CallExpr>(expr));
1072 case Stmt::CStyleCastExprClass:
1073 return extract_expr(cast<CStyleCastExpr>(expr));
1074 default:
1075 unsupported(expr);
1077 return NULL;
1080 /* Check if the given initialization statement is an assignment.
1081 * If so, return that assignment. Otherwise return NULL.
1083 BinaryOperator *PetScan::initialization_assignment(Stmt *init)
1085 BinaryOperator *ass;
1087 if (init->getStmtClass() != Stmt::BinaryOperatorClass)
1088 return NULL;
1090 ass = cast<BinaryOperator>(init);
1091 if (ass->getOpcode() != BO_Assign)
1092 return NULL;
1094 return ass;
1097 /* Check if the given initialization statement is a declaration
1098 * of a single variable.
1099 * If so, return that declaration. Otherwise return NULL.
1101 Decl *PetScan::initialization_declaration(Stmt *init)
1103 DeclStmt *decl;
1105 if (init->getStmtClass() != Stmt::DeclStmtClass)
1106 return NULL;
1108 decl = cast<DeclStmt>(init);
1110 if (!decl->isSingleDecl())
1111 return NULL;
1113 return decl->getSingleDecl();
1116 /* Given the assignment operator in the initialization of a for loop,
1117 * extract the induction variable, i.e., the (integer)variable being
1118 * assigned.
1120 ValueDecl *PetScan::extract_induction_variable(BinaryOperator *init)
1122 Expr *lhs;
1123 DeclRefExpr *ref;
1124 ValueDecl *decl;
1125 const Type *type;
1127 lhs = init->getLHS();
1128 if (lhs->getStmtClass() != Stmt::DeclRefExprClass) {
1129 unsupported(init);
1130 return NULL;
1133 ref = cast<DeclRefExpr>(lhs);
1134 decl = ref->getDecl();
1135 type = decl->getType().getTypePtr();
1137 if (!type->isIntegerType()) {
1138 unsupported(lhs);
1139 return NULL;
1142 return decl;
1145 /* Given the initialization statement of a for loop and the single
1146 * declaration in this initialization statement,
1147 * extract the induction variable, i.e., the (integer) variable being
1148 * declared.
1150 VarDecl *PetScan::extract_induction_variable(Stmt *init, Decl *decl)
1152 VarDecl *vd;
1154 vd = cast<VarDecl>(decl);
1156 const QualType type = vd->getType();
1157 if (!type->isIntegerType()) {
1158 unsupported(init);
1159 return NULL;
1162 if (!vd->getInit()) {
1163 unsupported(init);
1164 return NULL;
1167 return vd;
1170 /* Check that op is of the form iv++ or iv--.
1171 * Return a pet_expr representing "1" or "-1" accordingly.
1173 __isl_give pet_expr *PetScan::extract_unary_increment(
1174 clang::UnaryOperator *op, clang::ValueDecl *iv)
1176 Expr *sub;
1177 DeclRefExpr *ref;
1178 isl_val *v;
1180 if (!op->isIncrementDecrementOp()) {
1181 unsupported(op);
1182 return NULL;
1185 sub = op->getSubExpr();
1186 if (sub->getStmtClass() != Stmt::DeclRefExprClass) {
1187 unsupported(op);
1188 return NULL;
1191 ref = cast<DeclRefExpr>(sub);
1192 if (ref->getDecl() != iv) {
1193 unsupported(op);
1194 return NULL;
1197 if (op->isIncrementOp())
1198 v = isl_val_one(ctx);
1199 else
1200 v = isl_val_negone(ctx);
1202 return pet_expr_new_int(v);
1205 /* Check if op is of the form
1207 * iv = expr
1209 * and return the increment "expr - iv" as a pet_expr.
1211 __isl_give pet_expr *PetScan::extract_binary_increment(BinaryOperator *op,
1212 clang::ValueDecl *iv)
1214 int type_size;
1215 Expr *lhs;
1216 DeclRefExpr *ref;
1217 pet_expr *expr, *expr_iv;
1219 if (op->getOpcode() != BO_Assign) {
1220 unsupported(op);
1221 return NULL;
1224 lhs = op->getLHS();
1225 if (lhs->getStmtClass() != Stmt::DeclRefExprClass) {
1226 unsupported(op);
1227 return NULL;
1230 ref = cast<DeclRefExpr>(lhs);
1231 if (ref->getDecl() != iv) {
1232 unsupported(op);
1233 return NULL;
1236 expr = extract_expr(op->getRHS());
1237 expr_iv = extract_expr(lhs);
1239 type_size = get_type_size(iv->getType(), ast_context);
1240 return pet_expr_new_binary(type_size, pet_op_sub, expr, expr_iv);
1243 /* Check that op is of the form iv += cst or iv -= cst
1244 * and return a pet_expr corresponding to cst or -cst accordingly.
1246 __isl_give pet_expr *PetScan::extract_compound_increment(
1247 CompoundAssignOperator *op, clang::ValueDecl *iv)
1249 Expr *lhs;
1250 DeclRefExpr *ref;
1251 bool neg = false;
1252 pet_expr *expr;
1253 BinaryOperatorKind opcode;
1255 opcode = op->getOpcode();
1256 if (opcode != BO_AddAssign && opcode != BO_SubAssign) {
1257 unsupported(op);
1258 return NULL;
1260 if (opcode == BO_SubAssign)
1261 neg = true;
1263 lhs = op->getLHS();
1264 if (lhs->getStmtClass() != Stmt::DeclRefExprClass) {
1265 unsupported(op);
1266 return NULL;
1269 ref = cast<DeclRefExpr>(lhs);
1270 if (ref->getDecl() != iv) {
1271 unsupported(op);
1272 return NULL;
1275 expr = extract_expr(op->getRHS());
1276 if (neg) {
1277 int type_size;
1278 type_size = get_type_size(op->getType(), ast_context);
1279 expr = pet_expr_new_unary(type_size, pet_op_minus, expr);
1282 return expr;
1285 /* Check that the increment of the given for loop increments
1286 * (or decrements) the induction variable "iv" and return
1287 * the increment as a pet_expr if successful.
1289 __isl_give pet_expr *PetScan::extract_increment(clang::ForStmt *stmt,
1290 ValueDecl *iv)
1292 Stmt *inc = stmt->getInc();
1294 if (!inc) {
1295 report_missing_increment(stmt);
1296 return NULL;
1299 if (inc->getStmtClass() == Stmt::UnaryOperatorClass)
1300 return extract_unary_increment(cast<UnaryOperator>(inc), iv);
1301 if (inc->getStmtClass() == Stmt::CompoundAssignOperatorClass)
1302 return extract_compound_increment(
1303 cast<CompoundAssignOperator>(inc), iv);
1304 if (inc->getStmtClass() == Stmt::BinaryOperatorClass)
1305 return extract_binary_increment(cast<BinaryOperator>(inc), iv);
1307 unsupported(inc);
1308 return NULL;
1311 /* Construct a pet_tree for a while loop.
1313 * If we were only able to extract part of the body, then simply
1314 * return that part.
1316 __isl_give pet_tree *PetScan::extract(WhileStmt *stmt)
1318 pet_expr *pe_cond;
1319 pet_tree *tree;
1321 tree = extract(stmt->getBody());
1322 if (partial)
1323 return tree;
1324 pe_cond = extract_expr(stmt->getCond());
1325 tree = pet_tree_new_while(pe_cond, tree);
1327 return tree;
1330 /* Construct a pet_tree for a for statement.
1331 * The for loop is required to be of one of the following forms
1333 * for (i = init; condition; ++i)
1334 * for (i = init; condition; --i)
1335 * for (i = init; condition; i += constant)
1336 * for (i = init; condition; i -= constant)
1338 * We extract a pet_tree for the body and then include it in a pet_tree
1339 * of type pet_tree_for.
1341 * As a special case, we also allow a for loop of the form
1343 * for (;;)
1345 * in which case we return a pet_tree of type pet_tree_infinite_loop.
1347 * If we were only able to extract part of the body, then simply
1348 * return that part.
1350 __isl_give pet_tree *PetScan::extract_for(ForStmt *stmt)
1352 BinaryOperator *ass;
1353 Decl *decl;
1354 Stmt *init;
1355 Expr *lhs, *rhs;
1356 ValueDecl *iv;
1357 pet_tree *tree;
1358 struct pet_scop *scop;
1359 int independent;
1360 int declared;
1361 pet_expr *pe_init, *pe_inc, *pe_iv, *pe_cond;
1363 independent = is_current_stmt_marked_independent();
1365 if (!stmt->getInit() && !stmt->getCond() && !stmt->getInc()) {
1366 tree = extract(stmt->getBody());
1367 if (partial)
1368 return tree;
1369 tree = pet_tree_new_infinite_loop(tree);
1370 return tree;
1373 init = stmt->getInit();
1374 if (!init) {
1375 unsupported(stmt);
1376 return NULL;
1378 if ((ass = initialization_assignment(init)) != NULL) {
1379 iv = extract_induction_variable(ass);
1380 if (!iv)
1381 return NULL;
1382 lhs = ass->getLHS();
1383 rhs = ass->getRHS();
1384 } else if ((decl = initialization_declaration(init)) != NULL) {
1385 VarDecl *var = extract_induction_variable(init, decl);
1386 if (!var)
1387 return NULL;
1388 iv = var;
1389 rhs = var->getInit();
1390 lhs = create_DeclRefExpr(var);
1391 } else {
1392 unsupported(stmt->getInit());
1393 return NULL;
1396 declared = !initialization_assignment(stmt->getInit());
1397 tree = extract(stmt->getBody());
1398 if (partial)
1399 return tree;
1400 pe_iv = extract_access_expr(iv);
1401 pe_iv = mark_write(pe_iv);
1402 pe_init = extract_expr(rhs);
1403 if (!stmt->getCond())
1404 pe_cond = pet_expr_new_int(isl_val_one(ctx));
1405 else
1406 pe_cond = extract_expr(stmt->getCond());
1407 pe_inc = extract_increment(stmt, iv);
1408 tree = pet_tree_new_for(independent, declared, pe_iv, pe_init, pe_cond,
1409 pe_inc, tree);
1410 return tree;
1413 /* Try and construct a pet_tree corresponding to a compound statement.
1415 * "skip_declarations" is set if we should skip initial declarations
1416 * in the children of the compound statements. This then implies
1417 * that this sequence of children should not be treated as a block
1418 * since the initial statements may be skipped.
1420 __isl_give pet_tree *PetScan::extract(CompoundStmt *stmt,
1421 bool skip_declarations)
1423 return extract(stmt->children(), !skip_declarations, skip_declarations);
1426 /* Return the file offset of the expansion location of "Loc".
1428 static unsigned getExpansionOffset(SourceManager &SM, SourceLocation Loc)
1430 return SM.getFileOffset(SM.getExpansionLoc(Loc));
1433 #ifdef HAVE_FINDLOCATIONAFTERTOKEN
1435 /* Return a SourceLocation for the location after the first semicolon
1436 * after "loc". If Lexer::findLocationAfterToken is available, we simply
1437 * call it and also skip trailing spaces and newline.
1439 static SourceLocation location_after_semi(SourceLocation loc, SourceManager &SM,
1440 const LangOptions &LO)
1442 return Lexer::findLocationAfterToken(loc, tok::semi, SM, LO, true);
1445 #else
1447 /* Return a SourceLocation for the location after the first semicolon
1448 * after "loc". If Lexer::findLocationAfterToken is not available,
1449 * we look in the underlying character data for the first semicolon.
1451 static SourceLocation location_after_semi(SourceLocation loc, SourceManager &SM,
1452 const LangOptions &LO)
1454 const char *semi;
1455 const char *s = SM.getCharacterData(loc);
1457 semi = strchr(s, ';');
1458 if (!semi)
1459 return SourceLocation();
1460 return loc.getFileLocWithOffset(semi + 1 - s);
1463 #endif
1465 /* If the token at "loc" is the first token on the line, then return
1466 * a location referring to the start of the line and set *indent
1467 * to the indentation of "loc"
1468 * Otherwise, return "loc" and set *indent to "".
1470 * This function is used to extend a scop to the start of the line
1471 * if the first token of the scop is also the first token on the line.
1473 * We look for the first token on the line. If its location is equal to "loc",
1474 * then the latter is the location of the first token on the line.
1476 static SourceLocation move_to_start_of_line_if_first_token(SourceLocation loc,
1477 SourceManager &SM, const LangOptions &LO, char **indent)
1479 std::pair<FileID, unsigned> file_offset_pair;
1480 llvm::StringRef file;
1481 const char *pos;
1482 Token tok;
1483 SourceLocation token_loc, line_loc;
1484 int col;
1485 const char *s;
1487 loc = SM.getExpansionLoc(loc);
1488 col = SM.getExpansionColumnNumber(loc);
1489 line_loc = loc.getLocWithOffset(1 - col);
1490 file_offset_pair = SM.getDecomposedLoc(line_loc);
1491 file = SM.getBufferData(file_offset_pair.first, NULL);
1492 pos = file.data() + file_offset_pair.second;
1494 Lexer lexer(SM.getLocForStartOfFile(file_offset_pair.first), LO,
1495 file.begin(), pos, file.end());
1496 lexer.LexFromRawLexer(tok);
1497 token_loc = tok.getLocation();
1499 s = SM.getCharacterData(line_loc);
1500 *indent = strndup(s, token_loc == loc ? col - 1 : 0);
1502 if (token_loc == loc)
1503 return line_loc;
1504 else
1505 return loc;
1508 /* Construct a pet_loc corresponding to the region covered by "range".
1509 * If "skip_semi" is set, then we assume "range" is followed by
1510 * a semicolon and also include this semicolon.
1512 __isl_give pet_loc *PetScan::construct_pet_loc(SourceRange range,
1513 bool skip_semi)
1515 SourceLocation loc = range.getBegin();
1516 SourceManager &SM = PP.getSourceManager();
1517 const LangOptions &LO = PP.getLangOpts();
1518 int line = PP.getSourceManager().getExpansionLineNumber(loc);
1519 unsigned start, end;
1520 char *indent;
1522 loc = move_to_start_of_line_if_first_token(loc, SM, LO, &indent);
1523 start = getExpansionOffset(SM, loc);
1524 loc = range.getEnd();
1525 if (skip_semi)
1526 loc = location_after_semi(loc, SM, LO);
1527 else
1528 loc = PP.getLocForEndOfToken(loc);
1529 end = getExpansionOffset(SM, loc);
1531 return pet_loc_alloc(ctx, start, end, line, indent);
1534 /* Convert a top-level pet_expr to an expression pet_tree.
1536 __isl_give pet_tree *PetScan::extract(__isl_take pet_expr *expr,
1537 SourceRange range, bool skip_semi)
1539 pet_loc *loc;
1540 pet_tree *tree;
1542 tree = pet_tree_new_expr(expr);
1543 loc = construct_pet_loc(range, skip_semi);
1544 tree = pet_tree_set_loc(tree, loc);
1546 return tree;
1549 /* Construct a pet_tree for an if statement.
1551 __isl_give pet_tree *PetScan::extract(IfStmt *stmt)
1553 pet_expr *pe_cond;
1554 pet_tree *tree, *tree_else;
1555 struct pet_scop *scop;
1556 int int_size;
1558 pe_cond = extract_expr(stmt->getCond());
1559 tree = extract(stmt->getThen());
1560 if (stmt->getElse()) {
1561 tree_else = extract(stmt->getElse());
1562 if (options->autodetect) {
1563 if (tree && !tree_else) {
1564 partial = true;
1565 pet_expr_free(pe_cond);
1566 return tree;
1568 if (!tree && tree_else) {
1569 partial = true;
1570 pet_expr_free(pe_cond);
1571 return tree_else;
1574 tree = pet_tree_new_if_else(pe_cond, tree, tree_else);
1575 } else
1576 tree = pet_tree_new_if(pe_cond, tree);
1577 return tree;
1580 /* Try and construct a pet_tree for a label statement.
1582 __isl_give pet_tree *PetScan::extract(LabelStmt *stmt)
1584 isl_id *label;
1585 pet_tree *tree;
1587 label = isl_id_alloc(ctx, stmt->getName(), NULL);
1589 tree = extract(stmt->getSubStmt());
1590 tree = pet_tree_set_label(tree, label);
1591 return tree;
1594 /* Update the location of "tree" to include the source range of "stmt".
1596 * Actually, we create a new location based on the source range of "stmt" and
1597 * then extend this new location to include the region of the original location.
1598 * This ensures that the line number of the final location refers to "stmt".
1600 __isl_give pet_tree *PetScan::update_loc(__isl_take pet_tree *tree, Stmt *stmt)
1602 pet_loc *loc, *tree_loc;
1604 tree_loc = pet_tree_get_loc(tree);
1605 loc = construct_pet_loc(stmt->getSourceRange(), false);
1606 loc = pet_loc_update_start_end_from_loc(loc, tree_loc);
1607 pet_loc_free(tree_loc);
1609 tree = pet_tree_set_loc(tree, loc);
1610 return tree;
1613 /* Try and construct a pet_tree corresponding to "stmt".
1615 * If "stmt" is a compound statement, then "skip_declarations"
1616 * indicates whether we should skip initial declarations in the
1617 * compound statement.
1619 * If the constructed pet_tree is not a (possibly) partial representation
1620 * of "stmt", we update start and end of the pet_scop to those of "stmt".
1621 * In particular, if skip_declarations is set, then we may have skipped
1622 * declarations inside "stmt" and so the pet_scop may not represent
1623 * the entire "stmt".
1624 * Note that this function may be called with "stmt" referring to the entire
1625 * body of the function, including the outer braces. In such cases,
1626 * skip_declarations will be set and the braces will not be taken into
1627 * account in tree->loc.
1629 __isl_give pet_tree *PetScan::extract(Stmt *stmt, bool skip_declarations)
1631 pet_tree *tree;
1633 set_current_stmt(stmt);
1635 if (isa<Expr>(stmt))
1636 return extract(extract_expr(cast<Expr>(stmt)),
1637 stmt->getSourceRange(), true);
1639 switch (stmt->getStmtClass()) {
1640 case Stmt::WhileStmtClass:
1641 tree = extract(cast<WhileStmt>(stmt));
1642 break;
1643 case Stmt::ForStmtClass:
1644 tree = extract_for(cast<ForStmt>(stmt));
1645 break;
1646 case Stmt::IfStmtClass:
1647 tree = extract(cast<IfStmt>(stmt));
1648 break;
1649 case Stmt::CompoundStmtClass:
1650 tree = extract(cast<CompoundStmt>(stmt), skip_declarations);
1651 break;
1652 case Stmt::LabelStmtClass:
1653 tree = extract(cast<LabelStmt>(stmt));
1654 break;
1655 case Stmt::ContinueStmtClass:
1656 tree = pet_tree_new_continue(ctx);
1657 break;
1658 case Stmt::BreakStmtClass:
1659 tree = pet_tree_new_break(ctx);
1660 break;
1661 case Stmt::DeclStmtClass:
1662 tree = extract(cast<DeclStmt>(stmt));
1663 break;
1664 default:
1665 report_unsupported_statement_type(stmt);
1666 return NULL;
1669 if (partial || skip_declarations)
1670 return tree;
1672 return update_loc(tree, stmt);
1675 /* Try and construct a pet_tree corresponding to (part of)
1676 * a sequence of statements.
1678 * "block" is set if the sequence represents the children of
1679 * a compound statement.
1680 * "skip_declarations" is set if we should skip initial declarations
1681 * in the sequence of statements.
1683 * If autodetect is set, then we allow the extraction of only a subrange
1684 * of the sequence of statements. However, if there is at least one statement
1685 * for which we could not construct a scop and the final range contains
1686 * either no statements or at least one kill, then we discard the entire
1687 * range.
1689 __isl_give pet_tree *PetScan::extract(StmtRange stmt_range, bool block,
1690 bool skip_declarations)
1692 StmtIterator i;
1693 int j;
1694 bool has_kills = false;
1695 bool partial_range = false;
1696 pet_tree *tree;
1697 set<struct pet_stmt *> kills;
1698 set<struct pet_stmt *>::iterator it;
1700 for (i = stmt_range.first, j = 0; i != stmt_range.second; ++i, ++j)
1703 tree = pet_tree_new_block(ctx, block, j);
1705 for (i = stmt_range.first; i != stmt_range.second; ++i) {
1706 Stmt *child = *i;
1707 pet_tree *tree_i;
1709 if (pet_tree_block_n_child(tree) == 0 && skip_declarations &&
1710 child->getStmtClass() == Stmt::DeclStmtClass)
1711 continue;
1713 tree_i = extract(child);
1714 if (pet_tree_block_n_child(tree) != 0 && partial) {
1715 pet_tree_free(tree_i);
1716 break;
1718 if (tree_i && child->getStmtClass() == Stmt::DeclStmtClass &&
1719 block)
1720 has_kills = true;
1721 if (options->autodetect) {
1722 if (tree_i)
1723 tree = pet_tree_block_add_child(tree, tree_i);
1724 else
1725 partial_range = true;
1726 if (pet_tree_block_n_child(tree) != 0 && !tree_i)
1727 partial = true;
1728 } else {
1729 tree = pet_tree_block_add_child(tree, tree_i);
1732 if (partial || !tree)
1733 break;
1736 if (tree && partial_range) {
1737 if (pet_tree_block_n_child(tree) == 0 || has_kills) {
1738 pet_tree_free(tree);
1739 return NULL;
1741 partial = true;
1744 return tree;
1747 /* Is "T" the type of a variable length array with static size?
1749 static bool is_vla_with_static_size(QualType T)
1751 const VariableArrayType *vlatype;
1753 if (!T->isVariableArrayType())
1754 return false;
1755 vlatype = cast<VariableArrayType>(T);
1756 return vlatype->getSizeModifier() == VariableArrayType::Static;
1759 /* Return the type of "decl" as an array.
1761 * In particular, if "decl" is a parameter declaration that
1762 * is a variable length array with a static size, then
1763 * return the original type (i.e., the variable length array).
1764 * Otherwise, return the type of decl.
1766 static QualType get_array_type(ValueDecl *decl)
1768 ParmVarDecl *parm;
1769 QualType T;
1771 parm = dyn_cast<ParmVarDecl>(decl);
1772 if (!parm)
1773 return decl->getType();
1775 T = parm->getOriginalType();
1776 if (!is_vla_with_static_size(T))
1777 return decl->getType();
1778 return T;
1781 extern "C" {
1782 static __isl_give pet_expr *get_array_size(__isl_keep pet_expr *access,
1783 void *user);
1784 static struct pet_array *extract_array(__isl_keep pet_expr *access,
1785 __isl_keep pet_context *pc, void *user);
1788 /* Construct a pet_expr that holds the sizes of the array accessed
1789 * by "access".
1790 * This function is used as a callback to pet_context_add_parameters,
1791 * which is also passed a pointer to the PetScan object.
1793 static __isl_give pet_expr *get_array_size(__isl_keep pet_expr *access,
1794 void *user)
1796 PetScan *ps = (PetScan *) user;
1797 isl_id *id;
1798 ValueDecl *decl;
1799 const Type *type;
1801 id = pet_expr_access_get_id(access);
1802 decl = (ValueDecl *) isl_id_get_user(id);
1803 isl_id_free(id);
1804 type = get_array_type(decl).getTypePtr();
1805 return ps->get_array_size(type);
1808 /* Construct and return a pet_array corresponding to the variable
1809 * accessed by "access".
1810 * This function is used as a callback to pet_scop_from_pet_tree,
1811 * which is also passed a pointer to the PetScan object.
1813 static struct pet_array *extract_array(__isl_keep pet_expr *access,
1814 __isl_keep pet_context *pc, void *user)
1816 PetScan *ps = (PetScan *) user;
1817 isl_ctx *ctx;
1818 isl_id *id;
1819 ValueDecl *iv;
1821 ctx = pet_expr_get_ctx(access);
1822 id = pet_expr_access_get_id(access);
1823 iv = (ValueDecl *) isl_id_get_user(id);
1824 isl_id_free(id);
1825 return ps->extract_array(ctx, iv, NULL, pc);
1828 /* Extract a function summary from the body of "fd".
1830 * We extract a scop from the function body in a context with as
1831 * parameters the integer arguments of the function.
1832 * We turn off autodetection (in case it was set) to ensure that
1833 * the entire function body is considered.
1834 * We then collect the accessed array elements and attach them
1835 * to the corresponding array arguments, taking into account
1836 * that the function body may access members of array elements.
1838 * The reason for representing the integer arguments as parameters in
1839 * the context is that if we were to instead start with a context
1840 * with the function arguments as initial dimensions, then we would not
1841 * be able to refer to them from the array extents, without turning
1842 * array extents into maps.
1844 * The result is stored in the summary_cache cache so that we can reuse
1845 * it if this method gets called on the same function again later on.
1847 __isl_give pet_function_summary *PetScan::get_summary(FunctionDecl *fd)
1849 isl_space *space;
1850 isl_set *domain;
1851 pet_context *pc;
1852 pet_tree *tree;
1853 pet_function_summary *summary;
1854 unsigned n;
1855 ScopLoc loc;
1856 int save_autodetect;
1857 struct pet_scop *scop;
1858 int int_size;
1859 isl_union_set *may_read, *may_write, *must_write;
1860 isl_union_map *to_inner;
1862 if (summary_cache.find(fd) != summary_cache.end())
1863 return pet_function_summary_copy(summary_cache[fd]);
1865 space = isl_space_set_alloc(ctx, 0, 0);
1867 n = fd->getNumParams();
1868 summary = pet_function_summary_alloc(ctx, n);
1869 for (int i = 0; i < n; ++i) {
1870 ParmVarDecl *parm = fd->getParamDecl(i);
1871 QualType type = parm->getType();
1872 isl_id *id;
1874 if (!type->isIntegerType())
1875 continue;
1876 id = create_decl_id(ctx, parm);
1877 space = isl_space_insert_dims(space, isl_dim_param, 0, 1);
1878 space = isl_space_set_dim_id(space, isl_dim_param, 0,
1879 isl_id_copy(id));
1880 summary = pet_function_summary_set_int(summary, i, id);
1883 save_autodetect = options->autodetect;
1884 options->autodetect = 0;
1885 PetScan body_scan(PP, ast_context, loc, options,
1886 isl_union_map_copy(value_bounds), independent);
1888 tree = body_scan.extract(fd->getBody(), false);
1890 domain = isl_set_universe(space);
1891 pc = pet_context_alloc(domain);
1892 pc = pet_context_add_parameters(pc, tree,
1893 &::get_array_size, &body_scan);
1894 int_size = size_in_bytes(ast_context, ast_context.IntTy);
1895 scop = pet_scop_from_pet_tree(tree, int_size,
1896 &::extract_array, &body_scan, pc);
1897 scop = scan_arrays(scop, pc);
1898 may_read = isl_union_map_range(pet_scop_collect_may_reads(scop));
1899 may_write = isl_union_map_range(pet_scop_collect_may_writes(scop));
1900 must_write = isl_union_map_range(pet_scop_collect_must_writes(scop));
1901 to_inner = pet_scop_compute_outer_to_inner(scop);
1902 pet_scop_free(scop);
1904 for (int i = 0; i < n; ++i) {
1905 ParmVarDecl *parm = fd->getParamDecl(i);
1906 QualType type = parm->getType();
1907 struct pet_array *array;
1908 isl_space *space;
1909 isl_union_set *data_set;
1910 isl_union_set *may_read_i, *may_write_i, *must_write_i;
1912 if (array_depth(type.getTypePtr()) == 0)
1913 continue;
1915 array = body_scan.extract_array(ctx, parm, NULL, pc);
1916 space = array ? isl_set_get_space(array->extent) : NULL;
1917 pet_array_free(array);
1918 data_set = isl_union_set_from_set(isl_set_universe(space));
1919 data_set = isl_union_set_apply(data_set,
1920 isl_union_map_copy(to_inner));
1921 may_read_i = isl_union_set_intersect(
1922 isl_union_set_copy(may_read),
1923 isl_union_set_copy(data_set));
1924 may_write_i = isl_union_set_intersect(
1925 isl_union_set_copy(may_write),
1926 isl_union_set_copy(data_set));
1927 must_write_i = isl_union_set_intersect(
1928 isl_union_set_copy(must_write), data_set);
1929 summary = pet_function_summary_set_array(summary, i,
1930 may_read_i, may_write_i, must_write_i);
1933 isl_union_set_free(may_read);
1934 isl_union_set_free(may_write);
1935 isl_union_set_free(must_write);
1936 isl_union_map_free(to_inner);
1938 options->autodetect = save_autodetect;
1939 pet_context_free(pc);
1941 summary_cache[fd] = pet_function_summary_copy(summary);
1943 return summary;
1946 /* If "fd" has a function body, then extract a function summary from
1947 * this body and attach it to the call expression "expr".
1949 * Even if a function body is available, "fd" itself may point
1950 * to a declaration without function body. We therefore first
1951 * replace it by the declaration that comes with a body (if any).
1953 * It is not clear why hasBody takes a reference to a const FunctionDecl *.
1954 * It seems that it is possible to directly use the iterators to obtain
1955 * a non-const pointer.
1956 * Since we are not going to use the pointer to modify anything anyway,
1957 * it seems safe to drop the constness. The alternative would be to
1958 * modify a lot of other functions to include const qualifiers.
1960 __isl_give pet_expr *PetScan::set_summary(__isl_take pet_expr *expr,
1961 FunctionDecl *fd)
1963 pet_function_summary *summary;
1964 const FunctionDecl *def;
1966 if (!expr)
1967 return NULL;
1968 if (!fd->hasBody(def))
1969 return expr;
1971 fd = const_cast<FunctionDecl *>(def);
1973 summary = get_summary(fd);
1975 expr = pet_expr_call_set_summary(expr, summary);
1977 return expr;
1980 /* Extract a pet_scop from "tree".
1982 * We simply call pet_scop_from_pet_tree with the appropriate arguments and
1983 * then add pet_arrays for all accessed arrays.
1984 * We populate the pet_context with assignments for all parameters used
1985 * inside "tree" or any of the size expressions for the arrays accessed
1986 * by "tree" so that they can be used in affine expressions.
1988 struct pet_scop *PetScan::extract_scop(__isl_take pet_tree *tree)
1990 int int_size;
1991 isl_set *domain;
1992 pet_context *pc;
1993 pet_scop *scop;
1995 int_size = size_in_bytes(ast_context, ast_context.IntTy);
1997 domain = isl_set_universe(isl_space_set_alloc(ctx, 0, 0));
1998 pc = pet_context_alloc(domain);
1999 pc = pet_context_add_parameters(pc, tree, &::get_array_size, this);
2000 scop = pet_scop_from_pet_tree(tree, int_size,
2001 &::extract_array, this, pc);
2002 scop = scan_arrays(scop, pc);
2003 pet_context_free(pc);
2005 return scop;
2008 /* Check if the scop marked by the user is exactly this Stmt
2009 * or part of this Stmt.
2010 * If so, return a pet_scop corresponding to the marked region.
2011 * Otherwise, return NULL.
2013 struct pet_scop *PetScan::scan(Stmt *stmt)
2015 SourceManager &SM = PP.getSourceManager();
2016 unsigned start_off, end_off;
2018 start_off = getExpansionOffset(SM, stmt->getLocStart());
2019 end_off = getExpansionOffset(SM, stmt->getLocEnd());
2021 if (start_off > loc.end)
2022 return NULL;
2023 if (end_off < loc.start)
2024 return NULL;
2026 if (start_off >= loc.start && end_off <= loc.end)
2027 return extract_scop(extract(stmt));
2029 StmtIterator start;
2030 for (start = stmt->child_begin(); start != stmt->child_end(); ++start) {
2031 Stmt *child = *start;
2032 if (!child)
2033 continue;
2034 start_off = getExpansionOffset(SM, child->getLocStart());
2035 end_off = getExpansionOffset(SM, child->getLocEnd());
2036 if (start_off < loc.start && end_off >= loc.end)
2037 return scan(child);
2038 if (start_off >= loc.start)
2039 break;
2042 StmtIterator end;
2043 for (end = start; end != stmt->child_end(); ++end) {
2044 Stmt *child = *end;
2045 start_off = SM.getFileOffset(child->getLocStart());
2046 if (start_off >= loc.end)
2047 break;
2050 return extract_scop(extract(StmtRange(start, end), false, false));
2053 /* Set the size of index "pos" of "array" to "size".
2054 * In particular, add a constraint of the form
2056 * i_pos < size
2058 * to array->extent and a constraint of the form
2060 * size >= 0
2062 * to array->context.
2064 * The domain of "size" is assumed to be zero-dimensional.
2066 static struct pet_array *update_size(struct pet_array *array, int pos,
2067 __isl_take isl_pw_aff *size)
2069 isl_set *valid;
2070 isl_set *univ;
2071 isl_set *bound;
2072 isl_space *dim;
2073 isl_aff *aff;
2074 isl_pw_aff *index;
2075 isl_id *id;
2077 if (!array)
2078 goto error;
2080 valid = isl_set_params(isl_pw_aff_nonneg_set(isl_pw_aff_copy(size)));
2081 array->context = isl_set_intersect(array->context, valid);
2083 dim = isl_set_get_space(array->extent);
2084 aff = isl_aff_zero_on_domain(isl_local_space_from_space(dim));
2085 aff = isl_aff_add_coefficient_si(aff, isl_dim_in, pos, 1);
2086 univ = isl_set_universe(isl_aff_get_domain_space(aff));
2087 index = isl_pw_aff_alloc(univ, aff);
2089 size = isl_pw_aff_add_dims(size, isl_dim_in,
2090 isl_set_dim(array->extent, isl_dim_set));
2091 id = isl_set_get_tuple_id(array->extent);
2092 size = isl_pw_aff_set_tuple_id(size, isl_dim_in, id);
2093 bound = isl_pw_aff_lt_set(index, size);
2095 array->extent = isl_set_intersect(array->extent, bound);
2097 if (!array->context || !array->extent)
2098 return pet_array_free(array);
2100 return array;
2101 error:
2102 isl_pw_aff_free(size);
2103 return NULL;
2106 #ifdef HAVE_DECAYEDTYPE
2108 /* If "type" is a decayed type, then set *decayed to true and
2109 * return the original type.
2111 static const Type *undecay(const Type *type, bool *decayed)
2113 *decayed = isa<DecayedType>(type);
2114 if (*decayed)
2115 type = cast<DecayedType>(type)->getOriginalType().getTypePtr();
2116 return type;
2119 #else
2121 /* If "type" is a decayed type, then set *decayed to true and
2122 * return the original type.
2123 * Since this version of clang does not define a DecayedType,
2124 * we cannot obtain the original type even if it had been decayed and
2125 * we set *decayed to false.
2127 static const Type *undecay(const Type *type, bool *decayed)
2129 *decayed = false;
2130 return type;
2133 #endif
2135 /* Figure out the size of the array at position "pos" and all
2136 * subsequent positions from "type" and update the corresponding
2137 * argument of "expr" accordingly.
2139 * The initial type (when pos is zero) may be a pointer type decayed
2140 * from an array type, if this initial type is the type of a function
2141 * argument. This only happens if the original array type has
2142 * a constant size in the outer dimension as otherwise we get
2143 * a VariableArrayType. Try and obtain this original type (if available) and
2144 * take the outer array size into account if it was marked static.
2146 __isl_give pet_expr *PetScan::set_upper_bounds(__isl_take pet_expr *expr,
2147 const Type *type, int pos)
2149 const ArrayType *atype;
2150 pet_expr *size;
2151 bool decayed = false;
2153 if (!expr)
2154 return NULL;
2156 if (pos == 0)
2157 type = undecay(type, &decayed);
2159 if (type->isPointerType()) {
2160 type = type->getPointeeType().getTypePtr();
2161 return set_upper_bounds(expr, type, pos + 1);
2163 if (!type->isArrayType())
2164 return expr;
2166 type = type->getCanonicalTypeInternal().getTypePtr();
2167 atype = cast<ArrayType>(type);
2169 if (decayed && atype->getSizeModifier() != ArrayType::Static) {
2170 type = atype->getElementType().getTypePtr();
2171 return set_upper_bounds(expr, type, pos + 1);
2174 if (type->isConstantArrayType()) {
2175 const ConstantArrayType *ca = cast<ConstantArrayType>(atype);
2176 size = extract_expr(ca->getSize());
2177 expr = pet_expr_set_arg(expr, pos, size);
2178 } else if (type->isVariableArrayType()) {
2179 const VariableArrayType *vla = cast<VariableArrayType>(atype);
2180 size = extract_expr(vla->getSizeExpr());
2181 expr = pet_expr_set_arg(expr, pos, size);
2184 type = atype->getElementType().getTypePtr();
2186 return set_upper_bounds(expr, type, pos + 1);
2189 /* Construct a pet_expr that holds the sizes of an array of the given type.
2190 * The returned expression is a call expression with as arguments
2191 * the sizes in each dimension. If we are unable to derive the size
2192 * in a given dimension, then the corresponding argument is set to infinity.
2193 * In fact, we initialize all arguments to infinity and then update
2194 * them if we are able to figure out the size.
2196 * The result is stored in the type_size cache so that we can reuse
2197 * it if this method gets called on the same type again later on.
2199 __isl_give pet_expr *PetScan::get_array_size(const Type *type)
2201 int depth;
2202 pet_expr *expr, *inf;
2204 if (type_size.find(type) != type_size.end())
2205 return pet_expr_copy(type_size[type]);
2207 depth = array_depth(type);
2208 inf = pet_expr_new_int(isl_val_infty(ctx));
2209 expr = pet_expr_new_call(ctx, "bounds", depth);
2210 for (int i = 0; i < depth; ++i)
2211 expr = pet_expr_set_arg(expr, i, pet_expr_copy(inf));
2212 pet_expr_free(inf);
2214 expr = set_upper_bounds(expr, type, 0);
2215 type_size[type] = pet_expr_copy(expr);
2217 return expr;
2220 /* Does "expr" represent the "integer" infinity?
2222 static int is_infty(__isl_keep pet_expr *expr)
2224 isl_val *v;
2225 int res;
2227 if (pet_expr_get_type(expr) != pet_expr_int)
2228 return 0;
2229 v = pet_expr_int_get_val(expr);
2230 res = isl_val_is_infty(v);
2231 isl_val_free(v);
2233 return res;
2236 /* Figure out the dimensions of an array "array" based on its type
2237 * "type" and update "array" accordingly.
2239 * We first construct a pet_expr that holds the sizes of the array
2240 * in each dimension. The resulting expression may containing
2241 * infinity values for dimension where we are unable to derive
2242 * a size expression.
2244 * The arguments of the size expression that have a value different from
2245 * infinity are then converted to an affine expression
2246 * within the context "pc" and incorporated into the size of "array".
2247 * If we are unable to convert a size expression to an affine expression or
2248 * if the size is not a (symbolic) constant,
2249 * then we leave the corresponding size of "array" untouched.
2251 struct pet_array *PetScan::set_upper_bounds(struct pet_array *array,
2252 const Type *type, __isl_keep pet_context *pc)
2254 int n;
2255 pet_expr *expr;
2257 if (!array)
2258 return NULL;
2260 expr = get_array_size(type);
2262 n = pet_expr_get_n_arg(expr);
2263 for (int i = 0; i < n; ++i) {
2264 pet_expr *arg;
2265 isl_pw_aff *size;
2267 arg = pet_expr_get_arg(expr, i);
2268 if (!is_infty(arg)) {
2269 int dim;
2271 size = pet_expr_extract_affine(arg, pc);
2272 dim = isl_pw_aff_dim(size, isl_dim_in);
2273 if (!size)
2274 array = pet_array_free(array);
2275 else if (isl_pw_aff_involves_nan(size) ||
2276 isl_pw_aff_involves_dims(size, isl_dim_in, 0, dim))
2277 isl_pw_aff_free(size);
2278 else {
2279 size = isl_pw_aff_drop_dims(size,
2280 isl_dim_in, 0, dim);
2281 array = update_size(array, i, size);
2284 pet_expr_free(arg);
2286 pet_expr_free(expr);
2288 return array;
2291 /* Does "decl" have definition that we can keep track of in a pet_type?
2293 static bool has_printable_definition(RecordDecl *decl)
2295 if (!decl->getDeclName())
2296 return false;
2297 return decl->getLexicalDeclContext() == decl->getDeclContext();
2300 /* Construct and return a pet_array corresponding to the variable "decl".
2301 * In particular, initialize array->extent to
2303 * { name[i_1,...,i_d] : i_1,...,i_d >= 0 }
2305 * and then call set_upper_bounds to set the upper bounds on the indices
2306 * based on the type of the variable. The upper bounds are converted
2307 * to affine expressions within the context "pc".
2309 * If the base type is that of a record with a top-level definition or
2310 * of a typedef and if "types" is not null, then the RecordDecl or
2311 * TypedefType corresponding to the type
2312 * is added to "types".
2314 * If the base type is that of a record with no top-level definition,
2315 * then we replace it by "<subfield>".
2317 struct pet_array *PetScan::extract_array(isl_ctx *ctx, ValueDecl *decl,
2318 PetTypes *types, __isl_keep pet_context *pc)
2320 struct pet_array *array;
2321 QualType qt = get_array_type(decl);
2322 const Type *type = qt.getTypePtr();
2323 int depth = array_depth(type);
2324 QualType base = pet_clang_base_type(qt);
2325 string name;
2326 isl_id *id;
2327 isl_space *dim;
2329 array = isl_calloc_type(ctx, struct pet_array);
2330 if (!array)
2331 return NULL;
2333 id = create_decl_id(ctx, decl);
2334 dim = isl_space_set_alloc(ctx, 0, depth);
2335 dim = isl_space_set_tuple_id(dim, isl_dim_set, id);
2337 array->extent = isl_set_nat_universe(dim);
2339 dim = isl_space_params_alloc(ctx, 0);
2340 array->context = isl_set_universe(dim);
2342 array = set_upper_bounds(array, type, pc);
2343 if (!array)
2344 return NULL;
2346 name = base.getAsString();
2348 if (types) {
2349 if (isa<TypedefType>(base)) {
2350 types->insert(cast<TypedefType>(base)->getDecl());
2351 } else if (base->isRecordType()) {
2352 RecordDecl *decl = pet_clang_record_decl(base);
2353 if (has_printable_definition(decl))
2354 types->insert(decl);
2355 else
2356 name = "<subfield>";
2360 array->element_type = strdup(name.c_str());
2361 array->element_is_record = base->isRecordType();
2362 array->element_size = size_in_bytes(decl->getASTContext(), base);
2364 return array;
2367 /* Construct and return a pet_array corresponding to the sequence
2368 * of declarations "decls".
2369 * The upper bounds of the array are converted to affine expressions
2370 * within the context "pc".
2371 * If the sequence contains a single declaration, then it corresponds
2372 * to a simple array access. Otherwise, it corresponds to a member access,
2373 * with the declaration for the substructure following that of the containing
2374 * structure in the sequence of declarations.
2375 * We start with the outermost substructure and then combine it with
2376 * information from the inner structures.
2378 * Additionally, keep track of all required types in "types".
2380 struct pet_array *PetScan::extract_array(isl_ctx *ctx,
2381 vector<ValueDecl *> decls, PetTypes *types, __isl_keep pet_context *pc)
2383 struct pet_array *array;
2384 vector<ValueDecl *>::iterator it;
2386 it = decls.begin();
2388 array = extract_array(ctx, *it, types, pc);
2390 for (++it; it != decls.end(); ++it) {
2391 struct pet_array *parent;
2392 const char *base_name, *field_name;
2393 char *product_name;
2395 parent = array;
2396 array = extract_array(ctx, *it, types, pc);
2397 if (!array)
2398 return pet_array_free(parent);
2400 base_name = isl_set_get_tuple_name(parent->extent);
2401 field_name = isl_set_get_tuple_name(array->extent);
2402 product_name = pet_array_member_access_name(ctx,
2403 base_name, field_name);
2405 array->extent = isl_set_product(isl_set_copy(parent->extent),
2406 array->extent);
2407 if (product_name)
2408 array->extent = isl_set_set_tuple_name(array->extent,
2409 product_name);
2410 array->context = isl_set_intersect(array->context,
2411 isl_set_copy(parent->context));
2413 pet_array_free(parent);
2414 free(product_name);
2416 if (!array->extent || !array->context || !product_name)
2417 return pet_array_free(array);
2420 return array;
2423 static struct pet_scop *add_type(isl_ctx *ctx, struct pet_scop *scop,
2424 RecordDecl *decl, Preprocessor &PP, PetTypes &types,
2425 std::set<TypeDecl *> &types_done);
2426 static struct pet_scop *add_type(isl_ctx *ctx, struct pet_scop *scop,
2427 TypedefNameDecl *decl, Preprocessor &PP, PetTypes &types,
2428 std::set<TypeDecl *> &types_done);
2430 /* For each of the fields of "decl" that is itself a record type
2431 * or a typedef, add a corresponding pet_type to "scop".
2433 static struct pet_scop *add_field_types(isl_ctx *ctx, struct pet_scop *scop,
2434 RecordDecl *decl, Preprocessor &PP, PetTypes &types,
2435 std::set<TypeDecl *> &types_done)
2437 RecordDecl::field_iterator it;
2439 for (it = decl->field_begin(); it != decl->field_end(); ++it) {
2440 QualType type = it->getType();
2442 if (isa<TypedefType>(type)) {
2443 TypedefNameDecl *typedefdecl;
2445 typedefdecl = cast<TypedefType>(type)->getDecl();
2446 scop = add_type(ctx, scop, typedefdecl,
2447 PP, types, types_done);
2448 } else if (type->isRecordType()) {
2449 RecordDecl *record;
2451 record = pet_clang_record_decl(type);
2452 scop = add_type(ctx, scop, record,
2453 PP, types, types_done);
2457 return scop;
2460 /* Add a pet_type corresponding to "decl" to "scop", provided
2461 * it is a member of types.records and it has not been added before
2462 * (i.e., it is not a member of "types_done").
2464 * Since we want the user to be able to print the types
2465 * in the order in which they appear in the scop, we need to
2466 * make sure that types of fields in a structure appear before
2467 * that structure. We therefore call ourselves recursively
2468 * through add_field_types on the types of all record subfields.
2470 static struct pet_scop *add_type(isl_ctx *ctx, struct pet_scop *scop,
2471 RecordDecl *decl, Preprocessor &PP, PetTypes &types,
2472 std::set<TypeDecl *> &types_done)
2474 string s;
2475 llvm::raw_string_ostream S(s);
2477 if (types.records.find(decl) == types.records.end())
2478 return scop;
2479 if (types_done.find(decl) != types_done.end())
2480 return scop;
2482 add_field_types(ctx, scop, decl, PP, types, types_done);
2484 if (strlen(decl->getName().str().c_str()) == 0)
2485 return scop;
2487 decl->print(S, PrintingPolicy(PP.getLangOpts()));
2488 S.str();
2490 scop->types[scop->n_type] = pet_type_alloc(ctx,
2491 decl->getName().str().c_str(), s.c_str());
2492 if (!scop->types[scop->n_type])
2493 return pet_scop_free(scop);
2495 types_done.insert(decl);
2497 scop->n_type++;
2499 return scop;
2502 /* Add a pet_type corresponding to "decl" to "scop", provided
2503 * it is a member of types.typedefs and it has not been added before
2504 * (i.e., it is not a member of "types_done").
2506 * If the underlying type is a structure, then we print the typedef
2507 * ourselves since clang does not print the definition of the structure
2508 * in the typedef. We also make sure in this case that the types of
2509 * the fields in the structure are added first.
2511 static struct pet_scop *add_type(isl_ctx *ctx, struct pet_scop *scop,
2512 TypedefNameDecl *decl, Preprocessor &PP, PetTypes &types,
2513 std::set<TypeDecl *> &types_done)
2515 string s;
2516 llvm::raw_string_ostream S(s);
2517 QualType qt = decl->getUnderlyingType();
2519 if (types.typedefs.find(decl) == types.typedefs.end())
2520 return scop;
2521 if (types_done.find(decl) != types_done.end())
2522 return scop;
2524 if (qt->isRecordType()) {
2525 RecordDecl *rec = pet_clang_record_decl(qt);
2527 add_field_types(ctx, scop, rec, PP, types, types_done);
2528 S << "typedef ";
2529 rec->print(S, PrintingPolicy(PP.getLangOpts()));
2530 S << " ";
2531 S << decl->getName();
2532 } else {
2533 decl->print(S, PrintingPolicy(PP.getLangOpts()));
2535 S.str();
2537 scop->types[scop->n_type] = pet_type_alloc(ctx,
2538 decl->getName().str().c_str(), s.c_str());
2539 if (!scop->types[scop->n_type])
2540 return pet_scop_free(scop);
2542 types_done.insert(decl);
2544 scop->n_type++;
2546 return scop;
2549 /* Construct a list of pet_arrays, one for each array (or scalar)
2550 * accessed inside "scop", add this list to "scop" and return the result.
2551 * The upper bounds of the arrays are converted to affine expressions
2552 * within the context "pc".
2554 * The context of "scop" is updated with the intersection of
2555 * the contexts of all arrays, i.e., constraints on the parameters
2556 * that ensure that the arrays have a valid (non-negative) size.
2558 * If any of the extracted arrays refers to a member access or
2559 * has a typedef'd type as base type,
2560 * then also add the required types to "scop".
2562 struct pet_scop *PetScan::scan_arrays(struct pet_scop *scop,
2563 __isl_keep pet_context *pc)
2565 int i, n;
2566 array_desc_set arrays;
2567 array_desc_set::iterator it;
2568 PetTypes types;
2569 std::set<TypeDecl *> types_done;
2570 std::set<clang::RecordDecl *, less_name>::iterator records_it;
2571 std::set<clang::TypedefNameDecl *, less_name>::iterator typedefs_it;
2572 int n_array;
2573 struct pet_array **scop_arrays;
2575 if (!scop)
2576 return NULL;
2578 pet_scop_collect_arrays(scop, arrays);
2579 if (arrays.size() == 0)
2580 return scop;
2582 n_array = scop->n_array;
2584 scop_arrays = isl_realloc_array(ctx, scop->arrays, struct pet_array *,
2585 n_array + arrays.size());
2586 if (!scop_arrays)
2587 goto error;
2588 scop->arrays = scop_arrays;
2590 for (it = arrays.begin(), i = 0; it != arrays.end(); ++it, ++i) {
2591 struct pet_array *array;
2592 array = extract_array(ctx, *it, &types, pc);
2593 scop->arrays[n_array + i] = array;
2594 if (!scop->arrays[n_array + i])
2595 goto error;
2596 scop->n_array++;
2597 scop->context = isl_set_intersect(scop->context,
2598 isl_set_copy(array->context));
2599 if (!scop->context)
2600 goto error;
2603 n = types.records.size() + types.typedefs.size();
2604 if (n == 0)
2605 return scop;
2607 scop->types = isl_alloc_array(ctx, struct pet_type *, n);
2608 if (!scop->types)
2609 goto error;
2611 for (records_it = types.records.begin();
2612 records_it != types.records.end(); ++records_it)
2613 scop = add_type(ctx, scop, *records_it, PP, types, types_done);
2615 for (typedefs_it = types.typedefs.begin();
2616 typedefs_it != types.typedefs.end(); ++typedefs_it)
2617 scop = add_type(ctx, scop, *typedefs_it, PP, types, types_done);
2619 return scop;
2620 error:
2621 pet_scop_free(scop);
2622 return NULL;
2625 /* Bound all parameters in scop->context to the possible values
2626 * of the corresponding C variable.
2628 static struct pet_scop *add_parameter_bounds(struct pet_scop *scop)
2630 int n;
2632 if (!scop)
2633 return NULL;
2635 n = isl_set_dim(scop->context, isl_dim_param);
2636 for (int i = 0; i < n; ++i) {
2637 isl_id *id;
2638 ValueDecl *decl;
2640 id = isl_set_get_dim_id(scop->context, isl_dim_param, i);
2641 if (pet_nested_in_id(id)) {
2642 isl_id_free(id);
2643 isl_die(isl_set_get_ctx(scop->context),
2644 isl_error_internal,
2645 "unresolved nested parameter", goto error);
2647 decl = (ValueDecl *) isl_id_get_user(id);
2648 isl_id_free(id);
2650 scop->context = set_parameter_bounds(scop->context, i, decl);
2652 if (!scop->context)
2653 goto error;
2656 return scop;
2657 error:
2658 pet_scop_free(scop);
2659 return NULL;
2662 /* Construct a pet_scop from the given function.
2664 * If the scop was delimited by scop and endscop pragmas, then we override
2665 * the file offsets by those derived from the pragmas.
2667 struct pet_scop *PetScan::scan(FunctionDecl *fd)
2669 pet_scop *scop;
2670 Stmt *stmt;
2672 stmt = fd->getBody();
2674 if (options->autodetect) {
2675 set_current_stmt(stmt);
2676 scop = extract_scop(extract(stmt, true));
2677 } else {
2678 current_line = loc.start_line;
2679 scop = scan(stmt);
2680 scop = pet_scop_update_start_end(scop, loc.start, loc.end);
2682 scop = add_parameter_bounds(scop);
2683 scop = pet_scop_gist(scop, value_bounds);
2685 return scop;
2688 /* Update this->last_line and this->current_line based on the fact
2689 * that we are about to consider "stmt".
2691 void PetScan::set_current_stmt(Stmt *stmt)
2693 SourceLocation loc = stmt->getLocStart();
2694 SourceManager &SM = PP.getSourceManager();
2696 last_line = current_line;
2697 current_line = SM.getExpansionLineNumber(loc);
2700 /* Is the current statement marked by an independent pragma?
2701 * That is, is there an independent pragma on a line between
2702 * the line of the current statement and the line of the previous statement.
2703 * The search is not implemented very efficiently. We currently
2704 * assume that there are only a few independent pragmas, if any.
2706 bool PetScan::is_current_stmt_marked_independent()
2708 for (int i = 0; i < independent.size(); ++i) {
2709 unsigned line = independent[i].line;
2711 if (last_line < line && line < current_line)
2712 return true;
2715 return false;