pet 0.04
[pet.git] / scop.c
blob0dbf123754a6ff050faffca8fa94751f1515ffc1
1 /*
2 * Copyright 2011 Leiden University. All rights reserved.
3 * Copyright 2012 Ecole Normale Superieure. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above
13 * copyright notice, this list of conditions and the following
14 * disclaimer in the documentation and/or other materials provided
15 * with the distribution.
17 * THIS SOFTWARE IS PROVIDED BY LEIDEN UNIVERSITY ''AS IS'' AND ANY
18 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
20 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL LEIDEN UNIVERSITY OR
21 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
22 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
23 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
24 * OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 * The views and conclusions contained in the software and documentation
30 * are those of the authors and should not be interpreted as
31 * representing official policies, either expressed or implied, of
32 * Leiden University.
33 */
35 #include <string.h>
36 #include <isl/constraint.h>
37 #include <isl/union_set.h>
39 #include "scop.h"
41 #define ARRAY_SIZE(array) (sizeof(array)/sizeof(*array))
43 static char *type_str[] = {
44 [pet_expr_access] = "access",
45 [pet_expr_call] = "call",
46 [pet_expr_cast] = "cast",
47 [pet_expr_double] = "double",
48 [pet_expr_unary] = "unary",
49 [pet_expr_binary] = "binary",
50 [pet_expr_ternary] = "ternary"
53 static char *op_str[] = {
54 [pet_op_add_assign] = "+=",
55 [pet_op_sub_assign] = "-=",
56 [pet_op_mul_assign] = "*=",
57 [pet_op_div_assign] = "/=",
58 [pet_op_assign] = "=",
59 [pet_op_add] = "+",
60 [pet_op_sub] = "-",
61 [pet_op_mul] = "*",
62 [pet_op_div] = "/",
63 [pet_op_mod] = "%",
64 [pet_op_eq] = "==",
65 [pet_op_le] = "<=",
66 [pet_op_lt] = "<",
67 [pet_op_gt] = ">",
68 [pet_op_minus] = "-",
69 [pet_op_post_inc] = "++",
70 [pet_op_post_dec] = "--",
71 [pet_op_pre_inc] = "++",
72 [pet_op_pre_dec] = "--",
73 [pet_op_address_of] = "&",
74 [pet_op_kill] = "kill"
77 /* pet_scop with extra information that is only used during parsing.
79 * In particular, we keep track of conditions under which we want
80 * to skip the rest of the current loop iteration (skip[pet_skip_now])
81 * and of conditions under which we want to skip subsequent
82 * loop iterations (skip[pet_skip_later]).
84 * The conditions are represented either by a variable, which
85 * is assumed to attain values zero and one, or by a boolean affine
86 * expression. The condition holds if the variable has value one
87 * or if the affine expression has value one (typically for only
88 * part of the parameter space).
90 * A missing condition (skip[type] == NULL) means that we don't want
91 * to skip anything.
93 struct pet_scop_ext {
94 struct pet_scop scop;
96 isl_set *skip[2];
99 const char *pet_op_str(enum pet_op_type op)
101 return op_str[op];
104 int pet_op_is_inc_dec(enum pet_op_type op)
106 return op == pet_op_post_inc || op == pet_op_post_dec ||
107 op == pet_op_pre_inc || op == pet_op_pre_dec;
110 const char *pet_type_str(enum pet_expr_type type)
112 return type_str[type];
115 enum pet_op_type pet_str_op(const char *str)
117 int i;
119 for (i = 0; i < ARRAY_SIZE(op_str); ++i)
120 if (!strcmp(op_str[i], str))
121 return i;
123 return -1;
126 enum pet_expr_type pet_str_type(const char *str)
128 int i;
130 for (i = 0; i < ARRAY_SIZE(type_str); ++i)
131 if (!strcmp(type_str[i], str))
132 return i;
134 return -1;
137 /* Construct a pet_expr from an access relation.
138 * By default, it is considered to be a read access.
140 struct pet_expr *pet_expr_from_access(__isl_take isl_map *access)
142 isl_ctx *ctx = isl_map_get_ctx(access);
143 struct pet_expr *expr;
145 if (!access)
146 return NULL;
147 expr = isl_calloc_type(ctx, struct pet_expr);
148 if (!expr)
149 goto error;
151 expr->type = pet_expr_access;
152 expr->acc.access = access;
153 expr->acc.read = 1;
154 expr->acc.write = 0;
156 return expr;
157 error:
158 isl_map_free(access);
159 return NULL;
162 /* Construct a pet_expr that kills the elements specified by "access".
164 struct pet_expr *pet_expr_kill_from_access(__isl_take isl_map *access)
166 isl_ctx *ctx;
167 struct pet_expr *expr;
169 ctx = isl_map_get_ctx(access);
170 expr = pet_expr_from_access(access);
171 if (!expr)
172 return NULL;
173 expr->acc.read = 0;
174 return pet_expr_new_unary(ctx, pet_op_kill, expr);
177 /* Construct a unary pet_expr that performs "op" on "arg".
179 struct pet_expr *pet_expr_new_unary(isl_ctx *ctx, enum pet_op_type op,
180 struct pet_expr *arg)
182 struct pet_expr *expr;
184 if (!arg)
185 goto error;
186 expr = isl_alloc_type(ctx, struct pet_expr);
187 if (!expr)
188 goto error;
190 expr->type = pet_expr_unary;
191 expr->op = op;
192 expr->n_arg = 1;
193 expr->args = isl_calloc_array(ctx, struct pet_expr *, 1);
194 if (!expr->args)
195 goto error;
196 expr->args[pet_un_arg] = arg;
198 return expr;
199 error:
200 pet_expr_free(arg);
201 return NULL;
204 /* Construct a binary pet_expr that performs "op" on "lhs" and "rhs".
206 struct pet_expr *pet_expr_new_binary(isl_ctx *ctx, enum pet_op_type op,
207 struct pet_expr *lhs, struct pet_expr *rhs)
209 struct pet_expr *expr;
211 if (!lhs || !rhs)
212 goto error;
213 expr = isl_alloc_type(ctx, struct pet_expr);
214 if (!expr)
215 goto error;
217 expr->type = pet_expr_binary;
218 expr->op = op;
219 expr->n_arg = 2;
220 expr->args = isl_calloc_array(ctx, struct pet_expr *, 2);
221 if (!expr->args)
222 goto error;
223 expr->args[pet_bin_lhs] = lhs;
224 expr->args[pet_bin_rhs] = rhs;
226 return expr;
227 error:
228 pet_expr_free(lhs);
229 pet_expr_free(rhs);
230 return NULL;
233 /* Construct a ternary pet_expr that performs "cond" ? "lhs" : "rhs".
235 struct pet_expr *pet_expr_new_ternary(isl_ctx *ctx, struct pet_expr *cond,
236 struct pet_expr *lhs, struct pet_expr *rhs)
238 struct pet_expr *expr;
240 if (!cond || !lhs || !rhs)
241 goto error;
242 expr = isl_alloc_type(ctx, struct pet_expr);
243 if (!expr)
244 goto error;
246 expr->type = pet_expr_ternary;
247 expr->n_arg = 3;
248 expr->args = isl_calloc_array(ctx, struct pet_expr *, 3);
249 if (!expr->args)
250 goto error;
251 expr->args[pet_ter_cond] = cond;
252 expr->args[pet_ter_true] = lhs;
253 expr->args[pet_ter_false] = rhs;
255 return expr;
256 error:
257 pet_expr_free(cond);
258 pet_expr_free(lhs);
259 pet_expr_free(rhs);
260 return NULL;
263 /* Construct a call pet_expr that calls function "name" with "n_arg"
264 * arguments. The caller is responsible for filling in the arguments.
266 struct pet_expr *pet_expr_new_call(isl_ctx *ctx, const char *name,
267 unsigned n_arg)
269 struct pet_expr *expr;
271 expr = isl_alloc_type(ctx, struct pet_expr);
272 if (!expr)
273 return NULL;
275 expr->type = pet_expr_call;
276 expr->n_arg = n_arg;
277 expr->name = strdup(name);
278 expr->args = isl_calloc_array(ctx, struct pet_expr *, n_arg);
279 if (!expr->name || !expr->args)
280 return pet_expr_free(expr);
282 return expr;
285 /* Construct a pet_expr that represents the cast of "arg" to "type_name".
287 struct pet_expr *pet_expr_new_cast(isl_ctx *ctx, const char *type_name,
288 struct pet_expr *arg)
290 struct pet_expr *expr;
292 if (!arg)
293 return NULL;
295 expr = isl_alloc_type(ctx, struct pet_expr);
296 if (!expr)
297 goto error;
299 expr->type = pet_expr_cast;
300 expr->n_arg = 1;
301 expr->type_name = strdup(type_name);
302 expr->args = isl_calloc_array(ctx, struct pet_expr *, 1);
303 if (!expr->type_name || !expr->args)
304 goto error;
306 expr->args[0] = arg;
308 return expr;
309 error:
310 pet_expr_free(arg);
311 pet_expr_free(expr);
312 return NULL;
315 /* Construct a pet_expr that represents the double "d".
317 struct pet_expr *pet_expr_new_double(isl_ctx *ctx, double val, const char *s)
319 struct pet_expr *expr;
321 expr = isl_calloc_type(ctx, struct pet_expr);
322 if (!expr)
323 return NULL;
325 expr->type = pet_expr_double;
326 expr->d.val = val;
327 expr->d.s = strdup(s);
328 if (!expr->d.s)
329 return pet_expr_free(expr);
331 return expr;
334 void *pet_expr_free(struct pet_expr *expr)
336 int i;
338 if (!expr)
339 return NULL;
341 for (i = 0; i < expr->n_arg; ++i)
342 pet_expr_free(expr->args[i]);
343 free(expr->args);
345 switch (expr->type) {
346 case pet_expr_access:
347 isl_map_free(expr->acc.access);
348 break;
349 case pet_expr_call:
350 free(expr->name);
351 break;
352 case pet_expr_cast:
353 free(expr->type_name);
354 break;
355 case pet_expr_double:
356 free(expr->d.s);
357 break;
358 case pet_expr_unary:
359 case pet_expr_binary:
360 case pet_expr_ternary:
361 break;
364 free(expr);
365 return NULL;
368 static void expr_dump(struct pet_expr *expr, int indent)
370 int i;
372 if (!expr)
373 return;
375 fprintf(stderr, "%*s", indent, "");
377 switch (expr->type) {
378 case pet_expr_double:
379 fprintf(stderr, "%s\n", expr->d.s);
380 break;
381 case pet_expr_access:
382 isl_map_dump(expr->acc.access);
383 fprintf(stderr, "%*sread: %d\n", indent + 2,
384 "", expr->acc.read);
385 fprintf(stderr, "%*swrite: %d\n", indent + 2,
386 "", expr->acc.write);
387 for (i = 0; i < expr->n_arg; ++i)
388 expr_dump(expr->args[i], indent + 2);
389 break;
390 case pet_expr_unary:
391 fprintf(stderr, "%s\n", op_str[expr->op]);
392 expr_dump(expr->args[pet_un_arg], indent + 2);
393 break;
394 case pet_expr_binary:
395 fprintf(stderr, "%s\n", op_str[expr->op]);
396 expr_dump(expr->args[pet_bin_lhs], indent + 2);
397 expr_dump(expr->args[pet_bin_rhs], indent + 2);
398 break;
399 case pet_expr_ternary:
400 fprintf(stderr, "?:\n");
401 expr_dump(expr->args[pet_ter_cond], indent + 2);
402 expr_dump(expr->args[pet_ter_true], indent + 2);
403 expr_dump(expr->args[pet_ter_false], indent + 2);
404 break;
405 case pet_expr_call:
406 fprintf(stderr, "%s/%d\n", expr->name, expr->n_arg);
407 for (i = 0; i < expr->n_arg; ++i)
408 expr_dump(expr->args[i], indent + 2);
409 break;
410 case pet_expr_cast:
411 fprintf(stderr, "(%s)\n", expr->type_name);
412 for (i = 0; i < expr->n_arg; ++i)
413 expr_dump(expr->args[i], indent + 2);
414 break;
418 void pet_expr_dump(struct pet_expr *expr)
420 expr_dump(expr, 0);
423 /* Does "expr" represent an access to an unnamed space, i.e.,
424 * does it represent an affine expression?
426 int pet_expr_is_affine(struct pet_expr *expr)
428 int has_id;
430 if (!expr)
431 return -1;
432 if (expr->type != pet_expr_access)
433 return 0;
435 has_id = isl_map_has_tuple_id(expr->acc.access, isl_dim_out);
436 if (has_id < 0)
437 return -1;
439 return !has_id;
442 /* Return 1 if the two pet_exprs are equivalent.
444 int pet_expr_is_equal(struct pet_expr *expr1, struct pet_expr *expr2)
446 int i;
448 if (!expr1 || !expr2)
449 return 0;
451 if (expr1->type != expr2->type)
452 return 0;
453 if (expr1->n_arg != expr2->n_arg)
454 return 0;
455 for (i = 0; i < expr1->n_arg; ++i)
456 if (!pet_expr_is_equal(expr1->args[i], expr2->args[i]))
457 return 0;
458 switch (expr1->type) {
459 case pet_expr_double:
460 if (strcmp(expr1->d.s, expr2->d.s))
461 return 0;
462 if (expr1->d.val != expr2->d.val)
463 return 0;
464 break;
465 case pet_expr_access:
466 if (expr1->acc.read != expr2->acc.read)
467 return 0;
468 if (expr1->acc.write != expr2->acc.write)
469 return 0;
470 if (!expr1->acc.access || !expr2->acc.access)
471 return 0;
472 if (!isl_map_is_equal(expr1->acc.access, expr2->acc.access))
473 return 0;
474 break;
475 case pet_expr_unary:
476 case pet_expr_binary:
477 case pet_expr_ternary:
478 if (expr1->op != expr2->op)
479 return 0;
480 break;
481 case pet_expr_call:
482 if (strcmp(expr1->name, expr2->name))
483 return 0;
484 break;
485 case pet_expr_cast:
486 if (strcmp(expr1->type_name, expr2->type_name))
487 return 0;
488 break;
491 return 1;
494 /* Add extra conditions on the parameters to all access relations in "expr".
496 struct pet_expr *pet_expr_restrict(struct pet_expr *expr,
497 __isl_take isl_set *cond)
499 int i;
501 if (!expr)
502 goto error;
504 for (i = 0; i < expr->n_arg; ++i) {
505 expr->args[i] = pet_expr_restrict(expr->args[i],
506 isl_set_copy(cond));
507 if (!expr->args[i])
508 goto error;
511 if (expr->type == pet_expr_access) {
512 expr->acc.access = isl_map_intersect_params(expr->acc.access,
513 isl_set_copy(cond));
514 if (!expr->acc.access)
515 goto error;
518 isl_set_free(cond);
519 return expr;
520 error:
521 isl_set_free(cond);
522 return pet_expr_free(expr);
525 /* Modify all access relations in "expr" by calling "fn" on them.
527 struct pet_expr *pet_expr_foreach_access(struct pet_expr *expr,
528 __isl_give isl_map *(*fn)(__isl_take isl_map *access, void *user),
529 void *user)
531 int i;
533 if (!expr)
534 return NULL;
536 for (i = 0; i < expr->n_arg; ++i) {
537 expr->args[i] = pet_expr_foreach_access(expr->args[i], fn, user);
538 if (!expr->args[i])
539 return pet_expr_free(expr);
542 if (expr->type == pet_expr_access) {
543 expr->acc.access = fn(expr->acc.access, user);
544 if (!expr->acc.access)
545 return pet_expr_free(expr);
548 return expr;
551 /* Modify all expressions of type pet_expr_access in "expr"
552 * by calling "fn" on them.
554 struct pet_expr *pet_expr_foreach_access_expr(struct pet_expr *expr,
555 struct pet_expr *(*fn)(struct pet_expr *expr, void *user),
556 void *user)
558 int i;
560 if (!expr)
561 return NULL;
563 for (i = 0; i < expr->n_arg; ++i) {
564 expr->args[i] = pet_expr_foreach_access_expr(expr->args[i],
565 fn, user);
566 if (!expr->args[i])
567 return pet_expr_free(expr);
570 if (expr->type == pet_expr_access)
571 expr = fn(expr, user);
573 return expr;
576 /* Modify the given access relation based on the given iteration space
577 * transformation.
578 * If the access has any arguments then the domain of the access relation
579 * is a wrapped mapping from the iteration space to the space of
580 * argument values. We only need to change the domain of this wrapped
581 * mapping, so we extend the input transformation with an identity mapping
582 * on the space of argument values.
584 static __isl_give isl_map *update_domain(__isl_take isl_map *access,
585 void *user)
587 isl_map *update = user;
588 isl_space *dim;
590 update = isl_map_copy(update);
592 dim = isl_map_get_space(access);
593 dim = isl_space_domain(dim);
594 if (!isl_space_is_wrapping(dim))
595 isl_space_free(dim);
596 else {
597 isl_map *id;
598 dim = isl_space_unwrap(dim);
599 dim = isl_space_range(dim);
600 dim = isl_space_map_from_set(dim);
601 id = isl_map_identity(dim);
602 update = isl_map_product(update, id);
605 return isl_map_apply_domain(access, update);
608 /* Modify all access relations in "expr" based on the given iteration space
609 * transformation.
611 static struct pet_expr *expr_update_domain(struct pet_expr *expr,
612 __isl_take isl_map *update)
614 expr = pet_expr_foreach_access(expr, &update_domain, update);
615 isl_map_free(update);
616 return expr;
619 /* Construct a pet_stmt with given line number and statement
620 * number from a pet_expr.
621 * The initial iteration domain is the zero-dimensional universe.
622 * The name of the domain is given by "label" if it is non-NULL.
623 * Otherwise, the name is constructed as S_<id>.
624 * The domains of all access relations are modified to refer
625 * to the statement iteration domain.
627 struct pet_stmt *pet_stmt_from_pet_expr(isl_ctx *ctx, int line,
628 __isl_take isl_id *label, int id, struct pet_expr *expr)
630 struct pet_stmt *stmt;
631 isl_space *dim;
632 isl_set *dom;
633 isl_map *sched;
634 isl_map *add_name;
635 char name[50];
637 if (!expr)
638 goto error;
640 stmt = isl_calloc_type(ctx, struct pet_stmt);
641 if (!stmt)
642 goto error;
644 dim = isl_space_set_alloc(ctx, 0, 0);
645 if (label)
646 dim = isl_space_set_tuple_id(dim, isl_dim_set, label);
647 else {
648 snprintf(name, sizeof(name), "S_%d", id);
649 dim = isl_space_set_tuple_name(dim, isl_dim_set, name);
651 dom = isl_set_universe(isl_space_copy(dim));
652 sched = isl_map_from_domain(isl_set_copy(dom));
654 dim = isl_space_from_range(dim);
655 add_name = isl_map_universe(dim);
656 expr = expr_update_domain(expr, add_name);
658 stmt->line = line;
659 stmt->domain = dom;
660 stmt->schedule = sched;
661 stmt->body = expr;
663 if (!stmt->domain || !stmt->schedule || !stmt->body)
664 return pet_stmt_free(stmt);
666 return stmt;
667 error:
668 isl_id_free(label);
669 return pet_expr_free(expr);
672 void *pet_stmt_free(struct pet_stmt *stmt)
674 int i;
676 if (!stmt)
677 return NULL;
679 isl_set_free(stmt->domain);
680 isl_map_free(stmt->schedule);
681 pet_expr_free(stmt->body);
683 for (i = 0; i < stmt->n_arg; ++i)
684 pet_expr_free(stmt->args[i]);
685 free(stmt->args);
687 free(stmt);
688 return NULL;
691 static void stmt_dump(struct pet_stmt *stmt, int indent)
693 int i;
695 if (!stmt)
696 return;
698 fprintf(stderr, "%*s%d\n", indent, "", stmt->line);
699 fprintf(stderr, "%*s", indent, "");
700 isl_set_dump(stmt->domain);
701 fprintf(stderr, "%*s", indent, "");
702 isl_map_dump(stmt->schedule);
703 expr_dump(stmt->body, indent);
704 for (i = 0; i < stmt->n_arg; ++i)
705 expr_dump(stmt->args[i], indent + 2);
708 void pet_stmt_dump(struct pet_stmt *stmt)
710 stmt_dump(stmt, 0);
713 struct pet_array *pet_array_free(struct pet_array *array)
715 if (!array)
716 return NULL;
718 isl_set_free(array->context);
719 isl_set_free(array->extent);
720 isl_set_free(array->value_bounds);
721 free(array->element_type);
723 free(array);
724 return NULL;
727 void pet_array_dump(struct pet_array *array)
729 if (!array)
730 return;
732 isl_set_dump(array->context);
733 isl_set_dump(array->extent);
734 isl_set_dump(array->value_bounds);
735 fprintf(stderr, "%s %s\n", array->element_type,
736 array->live_out ? "live-out" : "");
739 /* Alloc a pet_scop structure, with extra room for information that
740 * is only used during parsing.
742 struct pet_scop *pet_scop_alloc(isl_ctx *ctx)
744 return &isl_calloc_type(ctx, struct pet_scop_ext)->scop;
747 /* Construct a pet_scop with room for n statements.
749 static struct pet_scop *scop_alloc(isl_ctx *ctx, int n)
751 isl_space *space;
752 struct pet_scop *scop;
754 scop = pet_scop_alloc(ctx);
755 if (!scop)
756 return NULL;
758 space = isl_space_params_alloc(ctx, 0);
759 scop->context = isl_set_universe(isl_space_copy(space));
760 scop->context_value = isl_set_universe(space);
761 scop->stmts = isl_calloc_array(ctx, struct pet_stmt *, n);
762 if (!scop->context || !scop->stmts)
763 return pet_scop_free(scop);
765 scop->n_stmt = n;
767 return scop;
770 struct pet_scop *pet_scop_empty(isl_ctx *ctx)
772 return scop_alloc(ctx, 0);
775 /* Update "context" with respect to the valid parameter values for "access".
777 static __isl_give isl_set *access_extract_context(__isl_keep isl_map *access,
778 __isl_take isl_set *context)
780 context = isl_set_intersect(context,
781 isl_map_params(isl_map_copy(access)));
782 return context;
785 /* Update "context" with respect to the valid parameter values for "expr".
787 * If "expr" represents a ternary operator, then a parameter value
788 * needs to be valid for the condition and for at least one of the
789 * remaining two arguments.
790 * If the condition is an affine expression, then we can be a bit more specific.
791 * The parameter then has to be valid for the second argument for
792 * non-zero accesses and valid for the third argument for zero accesses.
794 static __isl_give isl_set *expr_extract_context(struct pet_expr *expr,
795 __isl_take isl_set *context)
797 int i;
799 if (expr->type == pet_expr_ternary) {
800 int is_aff;
801 isl_set *context1, *context2;
803 is_aff = pet_expr_is_affine(expr->args[0]);
804 if (is_aff < 0)
805 goto error;
807 context = expr_extract_context(expr->args[0], context);
808 context1 = expr_extract_context(expr->args[1],
809 isl_set_copy(context));
810 context2 = expr_extract_context(expr->args[2], context);
812 if (is_aff) {
813 isl_map *access;
814 isl_set *zero_set;
816 access = isl_map_copy(expr->args[0]->acc.access);
817 access = isl_map_fix_si(access, isl_dim_out, 0, 0);
818 zero_set = isl_map_params(access);
819 context1 = isl_set_subtract(context1,
820 isl_set_copy(zero_set));
821 context2 = isl_set_intersect(context2, zero_set);
824 context = isl_set_union(context1, context2);
825 context = isl_set_coalesce(context);
827 return context;
830 for (i = 0; i < expr->n_arg; ++i)
831 context = expr_extract_context(expr->args[i], context);
833 if (expr->type == pet_expr_access)
834 context = access_extract_context(expr->acc.access, context);
836 return context;
837 error:
838 isl_set_free(context);
839 return NULL;
842 /* Update "context" with respect to the valid parameter values for "stmt".
844 static __isl_give isl_set *stmt_extract_context(struct pet_stmt *stmt,
845 __isl_take isl_set *context)
847 int i;
849 for (i = 0; i < stmt->n_arg; ++i)
850 context = expr_extract_context(stmt->args[i], context);
852 context = expr_extract_context(stmt->body, context);
854 return context;
857 /* Construct a pet_scop that contains the given pet_stmt.
859 struct pet_scop *pet_scop_from_pet_stmt(isl_ctx *ctx, struct pet_stmt *stmt)
861 struct pet_scop *scop;
863 if (!stmt)
864 return NULL;
866 scop = scop_alloc(ctx, 1);
867 if (!scop)
868 goto error;
870 scop->context = stmt_extract_context(stmt, scop->context);
871 if (!scop->context)
872 goto error;
874 scop->stmts[0] = stmt;
876 return scop;
877 error:
878 pet_stmt_free(stmt);
879 pet_scop_free(scop);
880 return NULL;
883 /* Does "set" represent an element of an unnamed space, i.e.,
884 * does it represent an affine expression?
886 static int set_is_affine(__isl_keep isl_set *set)
888 int has_id;
890 has_id = isl_set_has_tuple_id(set);
891 if (has_id < 0)
892 return -1;
894 return !has_id;
897 /* Combine ext1->skip[type] and ext2->skip[type] into ext->skip[type].
898 * ext may be equal to either ext1 or ext2.
900 * The two skips that need to be combined are assumed to be affine expressions.
902 * We need to skip in ext if we need to skip in either ext1 or ext2.
903 * We don't need to skip in ext if we don't need to skip in both ext1 and ext2.
905 static struct pet_scop_ext *combine_skips(struct pet_scop_ext *ext,
906 struct pet_scop_ext *ext1, struct pet_scop_ext *ext2,
907 enum pet_skip type)
909 isl_set *set, *skip1, *skip2;
911 if (!ext)
912 return NULL;
913 if (!ext1->skip[type] && !ext2->skip[type])
914 return ext;
915 if (!ext1->skip[type]) {
916 if (ext == ext2)
917 return ext;
918 ext->skip[type] = ext2->skip[type];
919 ext2->skip[type] = NULL;
920 return ext;
922 if (!ext2->skip[type]) {
923 if (ext == ext1)
924 return ext;
925 ext->skip[type] = ext1->skip[type];
926 ext1->skip[type] = NULL;
927 return ext;
930 if (!set_is_affine(ext1->skip[type]) ||
931 !set_is_affine(ext2->skip[type]))
932 isl_die(isl_set_get_ctx(ext1->skip[type]), isl_error_internal,
933 "can only combine affine skips",
934 return pet_scop_free(&ext->scop));
936 skip1 = isl_set_copy(ext1->skip[type]);
937 skip2 = isl_set_copy(ext2->skip[type]);
938 set = isl_set_intersect(
939 isl_set_fix_si(isl_set_copy(skip1), isl_dim_set, 0, 0),
940 isl_set_fix_si(isl_set_copy(skip2), isl_dim_set, 0, 0));
941 set = isl_set_union(set, isl_set_fix_si(skip1, isl_dim_set, 0, 1));
942 set = isl_set_union(set, isl_set_fix_si(skip2, isl_dim_set, 0, 1));
943 set = isl_set_coalesce(set);
944 isl_set_free(ext1->skip[type]);
945 ext1->skip[type] = NULL;
946 isl_set_free(ext2->skip[type]);
947 ext2->skip[type] = NULL;
948 ext->skip[type] = set;
949 if (!ext->skip[type])
950 return pet_scop_free(&ext->scop);
952 return ext;
955 /* Combine scop1->skip[type] and scop2->skip[type] into scop->skip[type],
956 * where type takes on the values pet_skip_now and pet_skip_later.
957 * scop may be equal to either scop1 or scop2.
959 static struct pet_scop *scop_combine_skips(struct pet_scop *scop,
960 struct pet_scop *scop1, struct pet_scop *scop2)
962 struct pet_scop_ext *ext = (struct pet_scop_ext *) scop;
963 struct pet_scop_ext *ext1 = (struct pet_scop_ext *) scop1;
964 struct pet_scop_ext *ext2 = (struct pet_scop_ext *) scop2;
966 ext = combine_skips(ext, ext1, ext2, pet_skip_now);
967 ext = combine_skips(ext, ext1, ext2, pet_skip_later);
968 return &ext->scop;
971 /* Update scop->start and scop->end to include the region from "start"
972 * to "end". In particular, if scop->end == 0, then "scop" does not
973 * have any offset information yet and we simply take the information
974 * from "start" and "end". Otherwise, we update the fields if the
975 * region from "start" to "end" is not already included.
977 struct pet_scop *pet_scop_update_start_end(struct pet_scop *scop,
978 unsigned start, unsigned end)
980 if (!scop)
981 return NULL;
982 if (scop->end == 0) {
983 scop->start = start;
984 scop->end = end;
985 } else {
986 if (start < scop->start)
987 scop->start = start;
988 if (end > scop->end)
989 scop->end = end;
992 return scop;
995 /* Combine the offset information of "scop1" and "scop2" into "scop".
997 static struct pet_scop *scop_combine_start_end(struct pet_scop *scop,
998 struct pet_scop *scop1, struct pet_scop *scop2)
1000 if (scop1->end)
1001 scop = pet_scop_update_start_end(scop,
1002 scop1->start, scop1->end);
1003 if (scop2->end)
1004 scop = pet_scop_update_start_end(scop,
1005 scop2->start, scop2->end);
1006 return scop;
1009 /* Construct a pet_scop that contains the offset information,
1010 * arrays, statements and skip information in "scop1" and "scop2".
1012 static struct pet_scop *pet_scop_add(isl_ctx *ctx, struct pet_scop *scop1,
1013 struct pet_scop *scop2)
1015 int i;
1016 struct pet_scop *scop;
1018 if (!scop1 || !scop2)
1019 goto error;
1021 if (scop1->n_stmt == 0) {
1022 scop2 = scop_combine_skips(scop2, scop1, scop2);
1023 pet_scop_free(scop1);
1024 return scop2;
1027 if (scop2->n_stmt == 0) {
1028 scop1 = scop_combine_skips(scop1, scop1, scop2);
1029 pet_scop_free(scop2);
1030 return scop1;
1033 scop = scop_alloc(ctx, scop1->n_stmt + scop2->n_stmt);
1034 if (!scop)
1035 goto error;
1037 scop->arrays = isl_calloc_array(ctx, struct pet_array *,
1038 scop1->n_array + scop2->n_array);
1039 if (!scop->arrays)
1040 goto error;
1041 scop->n_array = scop1->n_array + scop2->n_array;
1043 for (i = 0; i < scop1->n_stmt; ++i) {
1044 scop->stmts[i] = scop1->stmts[i];
1045 scop1->stmts[i] = NULL;
1048 for (i = 0; i < scop2->n_stmt; ++i) {
1049 scop->stmts[scop1->n_stmt + i] = scop2->stmts[i];
1050 scop2->stmts[i] = NULL;
1053 for (i = 0; i < scop1->n_array; ++i) {
1054 scop->arrays[i] = scop1->arrays[i];
1055 scop1->arrays[i] = NULL;
1058 for (i = 0; i < scop2->n_array; ++i) {
1059 scop->arrays[scop1->n_array + i] = scop2->arrays[i];
1060 scop2->arrays[i] = NULL;
1063 scop = pet_scop_restrict_context(scop, isl_set_copy(scop1->context));
1064 scop = pet_scop_restrict_context(scop, isl_set_copy(scop2->context));
1065 scop = scop_combine_skips(scop, scop1, scop2);
1066 scop = scop_combine_start_end(scop, scop1, scop2);
1068 pet_scop_free(scop1);
1069 pet_scop_free(scop2);
1070 return scop;
1071 error:
1072 pet_scop_free(scop1);
1073 pet_scop_free(scop2);
1074 return NULL;
1077 /* Apply the skip condition "skip" to "scop".
1078 * That is, make sure "scop" is not executed when the condition holds.
1080 * If "skip" is an affine expression, we add the conditions under
1081 * which the expression is zero to the iteration domains.
1082 * Otherwise, we add a filter on the variable attaining the value zero.
1084 static struct pet_scop *restrict_skip(struct pet_scop *scop,
1085 __isl_take isl_set *skip)
1087 isl_map *skip_map;
1088 int is_aff;
1090 if (!scop || !skip)
1091 goto error;
1093 is_aff = set_is_affine(skip);
1094 if (is_aff < 0)
1095 goto error;
1097 if (!is_aff)
1098 return pet_scop_filter(scop, isl_map_from_range(skip), 0);
1100 skip = isl_set_fix_si(skip, isl_dim_set, 0, 0);
1101 scop = pet_scop_restrict(scop, isl_set_params(skip));
1103 return scop;
1104 error:
1105 isl_set_free(skip);
1106 return pet_scop_free(scop);
1109 /* Construct a pet_scop that contains the arrays, statements and
1110 * skip information in "scop1" and "scop2", where the two scops
1111 * are executed "in sequence". That is, breaks and continues
1112 * in scop1 have an effect on scop2.
1114 struct pet_scop *pet_scop_add_seq(isl_ctx *ctx, struct pet_scop *scop1,
1115 struct pet_scop *scop2)
1117 if (scop1 && pet_scop_has_skip(scop1, pet_skip_now))
1118 scop2 = restrict_skip(scop2,
1119 pet_scop_get_skip(scop1, pet_skip_now));
1120 return pet_scop_add(ctx, scop1, scop2);
1123 /* Construct a pet_scop that contains the arrays, statements and
1124 * skip information in "scop1" and "scop2", where the two scops
1125 * are executed "in parallel". That is, any break or continue
1126 * in scop1 has no effect on scop2.
1128 struct pet_scop *pet_scop_add_par(isl_ctx *ctx, struct pet_scop *scop1,
1129 struct pet_scop *scop2)
1131 return pet_scop_add(ctx, scop1, scop2);
1134 void *pet_scop_free(struct pet_scop *scop)
1136 int i;
1137 struct pet_scop_ext *ext = (struct pet_scop_ext *) scop;
1139 if (!scop)
1140 return NULL;
1141 isl_set_free(scop->context);
1142 isl_set_free(scop->context_value);
1143 if (scop->arrays)
1144 for (i = 0; i < scop->n_array; ++i)
1145 pet_array_free(scop->arrays[i]);
1146 free(scop->arrays);
1147 if (scop->stmts)
1148 for (i = 0; i < scop->n_stmt; ++i)
1149 pet_stmt_free(scop->stmts[i]);
1150 free(scop->stmts);
1151 isl_set_free(ext->skip[pet_skip_now]);
1152 isl_set_free(ext->skip[pet_skip_later]);
1153 free(scop);
1154 return NULL;
1157 void pet_scop_dump(struct pet_scop *scop)
1159 int i;
1160 struct pet_scop_ext *ext = (struct pet_scop_ext *) scop;
1162 if (!scop)
1163 return;
1165 isl_set_dump(scop->context);
1166 isl_set_dump(scop->context_value);
1167 for (i = 0; i < scop->n_array; ++i)
1168 pet_array_dump(scop->arrays[i]);
1169 for (i = 0; i < scop->n_stmt; ++i)
1170 pet_stmt_dump(scop->stmts[i]);
1172 if (ext->skip[0]) {
1173 fprintf(stderr, "skip\n");
1174 isl_set_dump(ext->skip[0]);
1175 isl_set_dump(ext->skip[1]);
1179 /* Return 1 if the two pet_arrays are equivalent.
1181 * We don't compare element_size as this may be target dependent.
1183 int pet_array_is_equal(struct pet_array *array1, struct pet_array *array2)
1185 if (!array1 || !array2)
1186 return 0;
1188 if (!isl_set_is_equal(array1->context, array2->context))
1189 return 0;
1190 if (!isl_set_is_equal(array1->extent, array2->extent))
1191 return 0;
1192 if (!!array1->value_bounds != !!array2->value_bounds)
1193 return 0;
1194 if (array1->value_bounds &&
1195 !isl_set_is_equal(array1->value_bounds, array2->value_bounds))
1196 return 0;
1197 if (strcmp(array1->element_type, array2->element_type))
1198 return 0;
1199 if (array1->live_out != array2->live_out)
1200 return 0;
1201 if (array1->uniquely_defined != array2->uniquely_defined)
1202 return 0;
1203 if (array1->declared != array2->declared)
1204 return 0;
1205 if (array1->exposed != array2->exposed)
1206 return 0;
1208 return 1;
1211 /* Return 1 if the two pet_stmts are equivalent.
1213 int pet_stmt_is_equal(struct pet_stmt *stmt1, struct pet_stmt *stmt2)
1215 int i;
1217 if (!stmt1 || !stmt2)
1218 return 0;
1220 if (stmt1->line != stmt2->line)
1221 return 0;
1222 if (!isl_set_is_equal(stmt1->domain, stmt2->domain))
1223 return 0;
1224 if (!isl_map_is_equal(stmt1->schedule, stmt2->schedule))
1225 return 0;
1226 if (!pet_expr_is_equal(stmt1->body, stmt2->body))
1227 return 0;
1228 if (stmt1->n_arg != stmt2->n_arg)
1229 return 0;
1230 for (i = 0; i < stmt1->n_arg; ++i) {
1231 if (!pet_expr_is_equal(stmt1->args[i], stmt2->args[i]))
1232 return 0;
1235 return 1;
1238 /* Return 1 if the two pet_scops are equivalent.
1240 int pet_scop_is_equal(struct pet_scop *scop1, struct pet_scop *scop2)
1242 int i;
1244 if (!scop1 || !scop2)
1245 return 0;
1247 if (!isl_set_is_equal(scop1->context, scop2->context))
1248 return 0;
1249 if (!isl_set_is_equal(scop1->context_value, scop2->context_value))
1250 return 0;
1252 if (scop1->n_array != scop2->n_array)
1253 return 0;
1254 for (i = 0; i < scop1->n_array; ++i)
1255 if (!pet_array_is_equal(scop1->arrays[i], scop2->arrays[i]))
1256 return 0;
1258 if (scop1->n_stmt != scop2->n_stmt)
1259 return 0;
1260 for (i = 0; i < scop1->n_stmt; ++i)
1261 if (!pet_stmt_is_equal(scop1->stmts[i], scop2->stmts[i]))
1262 return 0;
1264 return 1;
1267 /* Prefix the schedule of "stmt" with an extra dimension with constant
1268 * value "pos".
1270 struct pet_stmt *pet_stmt_prefix(struct pet_stmt *stmt, int pos)
1272 if (!stmt)
1273 return NULL;
1275 stmt->schedule = isl_map_insert_dims(stmt->schedule, isl_dim_out, 0, 1);
1276 stmt->schedule = isl_map_fix_si(stmt->schedule, isl_dim_out, 0, pos);
1277 if (!stmt->schedule)
1278 return pet_stmt_free(stmt);
1280 return stmt;
1283 /* Prefix the schedules of all statements in "scop" with an extra
1284 * dimension with constant value "pos".
1286 struct pet_scop *pet_scop_prefix(struct pet_scop *scop, int pos)
1288 int i;
1290 if (!scop)
1291 return NULL;
1293 for (i = 0; i < scop->n_stmt; ++i) {
1294 scop->stmts[i] = pet_stmt_prefix(scop->stmts[i], pos);
1295 if (!scop->stmts[i])
1296 return pet_scop_free(scop);
1299 return scop;
1302 /* Given a set with a parameter at "param_pos" that refers to the
1303 * iterator, "move" the iterator to the first set dimension.
1304 * That is, essentially equate the parameter to the first set dimension
1305 * and then project it out.
1307 * The first set dimension may however refer to a virtual iterator,
1308 * while the parameter refers to the "real" iterator.
1309 * We therefore need to take into account the mapping "iv_map", which
1310 * maps the virtual iterator to the real iterator.
1311 * In particular, we equate the set dimension to the input of the map
1312 * and the parameter to the output of the map and then project out
1313 * everything we don't need anymore.
1315 static __isl_give isl_set *internalize_iv(__isl_take isl_set *set,
1316 int param_pos, __isl_take isl_map *iv_map)
1318 isl_map *map;
1319 map = isl_map_from_domain(set);
1320 map = isl_map_add_dims(map, isl_dim_out, 1);
1321 map = isl_map_equate(map, isl_dim_in, 0, isl_dim_out, 0);
1322 iv_map = isl_map_align_params(iv_map, isl_map_get_space(map));
1323 map = isl_map_apply_range(map, iv_map);
1324 map = isl_map_equate(map, isl_dim_param, param_pos, isl_dim_out, 0);
1325 map = isl_map_project_out(map, isl_dim_param, param_pos, 1);
1326 return isl_map_domain(map);
1329 /* Data used in embed_access.
1330 * extend adds an iterator to the iteration domain
1331 * iv_map maps the virtual iterator to the real iterator
1332 * var_id represents the induction variable of the corresponding loop
1334 struct pet_embed_access {
1335 isl_map *extend;
1336 isl_map *iv_map;
1337 isl_id *var_id;
1340 /* Embed the access relation in an extra outer loop.
1342 * We first update the iteration domain to insert the extra dimension.
1344 * If the access refers to the induction variable, then it is
1345 * turned into an access to the set of integers with index (and value)
1346 * equal to the induction variable.
1348 * If the induction variable appears in the constraints (as a parameter),
1349 * then the parameter is equated to the newly introduced iteration
1350 * domain dimension and subsequently projected out.
1352 * Similarly, if the accessed array is a virtual array (with user
1353 * pointer equal to NULL), as created by create_test_access,
1354 * then it is extended along with the domain of the access.
1356 static __isl_give isl_map *embed_access(__isl_take isl_map *access,
1357 void *user)
1359 struct pet_embed_access *data = user;
1360 isl_id *array_id = NULL;
1361 int pos;
1363 access = update_domain(access, data->extend);
1365 if (isl_map_has_tuple_id(access, isl_dim_out))
1366 array_id = isl_map_get_tuple_id(access, isl_dim_out);
1367 if (array_id == data->var_id ||
1368 (array_id && !isl_id_get_user(array_id))) {
1369 access = isl_map_insert_dims(access, isl_dim_out, 0, 1);
1370 access = isl_map_equate(access,
1371 isl_dim_in, 0, isl_dim_out, 0);
1372 if (array_id == data->var_id)
1373 access = isl_map_apply_range(access,
1374 isl_map_copy(data->iv_map));
1375 else
1376 access = isl_map_set_tuple_id(access, isl_dim_out,
1377 isl_id_copy(array_id));
1379 isl_id_free(array_id);
1381 pos = isl_map_find_dim_by_id(access, isl_dim_param, data->var_id);
1382 if (pos >= 0) {
1383 isl_set *set = isl_map_wrap(access);
1384 set = internalize_iv(set, pos, isl_map_copy(data->iv_map));
1385 access = isl_set_unwrap(set);
1387 access = isl_map_set_dim_id(access, isl_dim_in, 0,
1388 isl_id_copy(data->var_id));
1390 return access;
1393 /* Embed all access relations in "expr" in an extra loop.
1394 * "extend" inserts an outer loop iterator in the iteration domains.
1395 * "iv_map" maps the virtual iterator to the real iterator
1396 * "var_id" represents the induction variable.
1398 static struct pet_expr *expr_embed(struct pet_expr *expr,
1399 __isl_take isl_map *extend, __isl_take isl_map *iv_map,
1400 __isl_keep isl_id *var_id)
1402 struct pet_embed_access data =
1403 { .extend = extend, .iv_map = iv_map, .var_id = var_id };
1405 expr = pet_expr_foreach_access(expr, &embed_access, &data);
1406 isl_map_free(iv_map);
1407 isl_map_free(extend);
1408 return expr;
1411 /* Embed the given pet_stmt in an extra outer loop with iteration domain
1412 * "dom" and schedule "sched". "var_id" represents the induction variable
1413 * of the loop. "iv_map" maps a possibly virtual iterator to the real iterator.
1414 * That is, it maps the iterator used in "dom" and the domain of "sched"
1415 * to the iterator that some of the parameters in "stmt" may refer to.
1417 * The iteration domain and schedule of the statement are updated
1418 * according to the iteration domain and schedule of the new loop.
1419 * If stmt->domain is a wrapped map, then the iteration domain
1420 * is the domain of this map, so we need to be careful to adjust
1421 * this domain.
1423 * If the induction variable appears in the constraints (as a parameter)
1424 * of the current iteration domain or the schedule of the statement,
1425 * then the parameter is equated to the newly introduced iteration
1426 * domain dimension and subsequently projected out.
1428 * Finally, all access relations are updated based on the extra loop.
1430 static struct pet_stmt *pet_stmt_embed(struct pet_stmt *stmt,
1431 __isl_take isl_set *dom, __isl_take isl_map *sched,
1432 __isl_take isl_map *iv_map, __isl_take isl_id *var_id)
1434 int i;
1435 int pos;
1436 isl_id *stmt_id;
1437 isl_space *dim;
1438 isl_map *extend;
1440 if (!stmt)
1441 goto error;
1443 if (isl_set_is_wrapping(stmt->domain)) {
1444 isl_map *map;
1445 isl_map *ext;
1446 isl_space *ran_dim;
1448 map = isl_set_unwrap(stmt->domain);
1449 stmt_id = isl_map_get_tuple_id(map, isl_dim_in);
1450 ran_dim = isl_space_range(isl_map_get_space(map));
1451 ext = isl_map_from_domain_and_range(isl_set_copy(dom),
1452 isl_set_universe(ran_dim));
1453 map = isl_map_flat_domain_product(ext, map);
1454 map = isl_map_set_tuple_id(map, isl_dim_in,
1455 isl_id_copy(stmt_id));
1456 dim = isl_space_domain(isl_map_get_space(map));
1457 stmt->domain = isl_map_wrap(map);
1458 } else {
1459 stmt_id = isl_set_get_tuple_id(stmt->domain);
1460 stmt->domain = isl_set_flat_product(isl_set_copy(dom),
1461 stmt->domain);
1462 stmt->domain = isl_set_set_tuple_id(stmt->domain,
1463 isl_id_copy(stmt_id));
1464 dim = isl_set_get_space(stmt->domain);
1467 pos = isl_set_find_dim_by_id(stmt->domain, isl_dim_param, var_id);
1468 if (pos >= 0)
1469 stmt->domain = internalize_iv(stmt->domain, pos,
1470 isl_map_copy(iv_map));
1472 stmt->schedule = isl_map_flat_product(sched, stmt->schedule);
1473 stmt->schedule = isl_map_set_tuple_id(stmt->schedule,
1474 isl_dim_in, stmt_id);
1476 pos = isl_map_find_dim_by_id(stmt->schedule, isl_dim_param, var_id);
1477 if (pos >= 0) {
1478 isl_set *set = isl_map_wrap(stmt->schedule);
1479 set = internalize_iv(set, pos, isl_map_copy(iv_map));
1480 stmt->schedule = isl_set_unwrap(set);
1483 dim = isl_space_map_from_set(dim);
1484 extend = isl_map_identity(dim);
1485 extend = isl_map_remove_dims(extend, isl_dim_in, 0, 1);
1486 extend = isl_map_set_tuple_id(extend, isl_dim_in,
1487 isl_map_get_tuple_id(extend, isl_dim_out));
1488 for (i = 0; i < stmt->n_arg; ++i)
1489 stmt->args[i] = expr_embed(stmt->args[i], isl_map_copy(extend),
1490 isl_map_copy(iv_map), var_id);
1491 stmt->body = expr_embed(stmt->body, extend, iv_map, var_id);
1493 isl_set_free(dom);
1494 isl_id_free(var_id);
1496 for (i = 0; i < stmt->n_arg; ++i)
1497 if (!stmt->args[i])
1498 return pet_stmt_free(stmt);
1499 if (!stmt->domain || !stmt->schedule || !stmt->body)
1500 return pet_stmt_free(stmt);
1501 return stmt;
1502 error:
1503 isl_set_free(dom);
1504 isl_map_free(sched);
1505 isl_map_free(iv_map);
1506 isl_id_free(var_id);
1507 return NULL;
1510 /* Embed the given pet_array in an extra outer loop with iteration domain
1511 * "dom".
1512 * This embedding only has an effect on virtual arrays (those with
1513 * user pointer equal to NULL), which need to be extended along with
1514 * the iteration domain.
1516 static struct pet_array *pet_array_embed(struct pet_array *array,
1517 __isl_take isl_set *dom)
1519 isl_id *array_id = NULL;
1521 if (!array)
1522 goto error;
1524 if (isl_set_has_tuple_id(array->extent))
1525 array_id = isl_set_get_tuple_id(array->extent);
1527 if (array_id && !isl_id_get_user(array_id)) {
1528 array->extent = isl_set_flat_product(dom, array->extent);
1529 array->extent = isl_set_set_tuple_id(array->extent, array_id);
1530 } else {
1531 isl_set_free(dom);
1532 isl_id_free(array_id);
1535 return array;
1536 error:
1537 isl_set_free(dom);
1538 return NULL;
1541 /* Project out all unnamed parameters from "set" and return the result.
1543 static __isl_give isl_set *set_project_out_unnamed_params(
1544 __isl_take isl_set *set)
1546 int i, n;
1548 n = isl_set_dim(set, isl_dim_param);
1549 for (i = n - 1; i >= 0; --i) {
1550 if (isl_set_has_dim_name(set, isl_dim_param, i))
1551 continue;
1552 set = isl_set_project_out(set, isl_dim_param, i, 1);
1555 return set;
1558 /* Update the context with respect to an embedding into a loop
1559 * with iteration domain "dom" and induction variable "id".
1560 * "iv_map" maps a possibly virtual iterator (used in "dom")
1561 * to the real iterator (parameter "id").
1563 * If the current context is independent of "id", we don't need
1564 * to do anything.
1565 * Otherwise, a parameter value is invalid for the embedding if
1566 * any of the corresponding iterator values is invalid.
1567 * That is, a parameter value is valid only if all the corresponding
1568 * iterator values are valid.
1569 * We therefore compute the set of parameters
1571 * forall i in dom : valid (i)
1573 * or
1575 * not exists i in dom : not valid(i)
1577 * i.e.,
1579 * not exists i in dom \ valid(i)
1581 * Before we subtract valid(i) from dom, we first need to map
1582 * the real iterator to the virtual iterator.
1584 * If there are any unnamed parameters in "dom", then we consider
1585 * a parameter value to be valid if it is valid for any value of those
1586 * unnamed parameters. They are therefore projected out at the end.
1588 static __isl_give isl_set *context_embed(__isl_take isl_set *context,
1589 __isl_keep isl_set *dom, __isl_keep isl_map *iv_map,
1590 __isl_keep isl_id *id)
1592 int pos;
1594 pos = isl_set_find_dim_by_id(context, isl_dim_param, id);
1595 if (pos < 0)
1596 return context;
1598 context = isl_set_from_params(context);
1599 context = isl_set_add_dims(context, isl_dim_set, 1);
1600 context = isl_set_equate(context, isl_dim_param, pos, isl_dim_set, 0);
1601 context = isl_set_project_out(context, isl_dim_param, pos, 1);
1602 context = isl_set_apply(context, isl_map_reverse(isl_map_copy(iv_map)));
1603 context = isl_set_subtract(isl_set_copy(dom), context);
1604 context = isl_set_params(context);
1605 context = isl_set_complement(context);
1606 context = set_project_out_unnamed_params(context);
1607 return context;
1610 /* Embed all statements and arrays in "scop" in an extra outer loop
1611 * with iteration domain "dom" and schedule "sched".
1612 * "id" represents the induction variable of the loop.
1613 * "iv_map" maps a possibly virtual iterator to the real iterator.
1614 * That is, it maps the iterator used in "dom" and the domain of "sched"
1615 * to the iterator that some of the parameters in "scop" may refer to.
1617 * Any skip conditions within the loop have no effect outside of the loop.
1618 * The caller is responsible for making sure skip[pet_skip_later] has been
1619 * taken into account.
1621 struct pet_scop *pet_scop_embed(struct pet_scop *scop, __isl_take isl_set *dom,
1622 __isl_take isl_map *sched, __isl_take isl_map *iv_map,
1623 __isl_take isl_id *id)
1625 int i;
1627 if (!scop)
1628 goto error;
1630 pet_scop_reset_skip(scop, pet_skip_now);
1631 pet_scop_reset_skip(scop, pet_skip_later);
1633 scop->context = context_embed(scop->context, dom, iv_map, id);
1634 if (!scop->context)
1635 goto error;
1637 for (i = 0; i < scop->n_stmt; ++i) {
1638 scop->stmts[i] = pet_stmt_embed(scop->stmts[i],
1639 isl_set_copy(dom), isl_map_copy(sched),
1640 isl_map_copy(iv_map), isl_id_copy(id));
1641 if (!scop->stmts[i])
1642 goto error;
1645 for (i = 0; i < scop->n_array; ++i) {
1646 scop->arrays[i] = pet_array_embed(scop->arrays[i],
1647 isl_set_copy(dom));
1648 if (!scop->arrays[i])
1649 goto error;
1652 isl_set_free(dom);
1653 isl_map_free(sched);
1654 isl_map_free(iv_map);
1655 isl_id_free(id);
1656 return scop;
1657 error:
1658 isl_set_free(dom);
1659 isl_map_free(sched);
1660 isl_map_free(iv_map);
1661 isl_id_free(id);
1662 return pet_scop_free(scop);
1665 /* Add extra conditions on the parameters to iteration domain of "stmt".
1667 static struct pet_stmt *stmt_restrict(struct pet_stmt *stmt,
1668 __isl_take isl_set *cond)
1670 if (!stmt)
1671 goto error;
1673 stmt->domain = isl_set_intersect_params(stmt->domain, cond);
1675 return stmt;
1676 error:
1677 isl_set_free(cond);
1678 return pet_stmt_free(stmt);
1681 /* Add extra conditions to scop->skip[type].
1683 * The new skip condition only holds if it held before
1684 * and the condition is true. It does not hold if it did not hold
1685 * before or the condition is false.
1687 * The skip condition is assumed to be an affine expression.
1689 static struct pet_scop *pet_scop_restrict_skip(struct pet_scop *scop,
1690 enum pet_skip type, __isl_keep isl_set *cond)
1692 struct pet_scop_ext *ext = (struct pet_scop_ext *) scop;
1693 isl_set *skip;
1694 isl_set *set;
1696 if (!scop)
1697 return NULL;
1698 if (!ext->skip[type])
1699 return scop;
1701 if (!set_is_affine(ext->skip[type]))
1702 isl_die(isl_set_get_ctx(ext->skip[type]), isl_error_internal,
1703 "can only resrict affine skips",
1704 return pet_scop_free(scop));
1706 skip = ext->skip[type];
1707 skip = isl_set_intersect_params(skip, isl_set_copy(cond));
1708 set = isl_set_from_params(isl_set_copy(cond));
1709 set = isl_set_complement(set);
1710 set = isl_set_add_dims(set, isl_dim_set, 1);
1711 set = isl_set_fix_si(set, isl_dim_set, 0, 0);
1712 skip = isl_set_union(skip, set);
1713 ext->skip[type] = skip;
1714 if (!ext->skip[type])
1715 return pet_scop_free(scop);
1717 return scop;
1720 /* Add extra conditions on the parameters to all iteration domains
1721 * and skip conditions.
1723 * A parameter value is valid for the result if it was valid
1724 * for the original scop and satisfies "cond" or if it does
1725 * not satisfy "cond" as in this case the scop is not executed
1726 * and the original constraints on the parameters are irrelevant.
1728 struct pet_scop *pet_scop_restrict(struct pet_scop *scop,
1729 __isl_take isl_set *cond)
1731 int i;
1733 scop = pet_scop_restrict_skip(scop, pet_skip_now, cond);
1734 scop = pet_scop_restrict_skip(scop, pet_skip_later, cond);
1736 if (!scop)
1737 goto error;
1739 scop->context = isl_set_intersect(scop->context, isl_set_copy(cond));
1740 scop->context = isl_set_union(scop->context,
1741 isl_set_complement(isl_set_copy(cond)));
1742 scop->context = isl_set_coalesce(scop->context);
1743 scop->context = set_project_out_unnamed_params(scop->context);
1744 if (!scop->context)
1745 goto error;
1747 for (i = 0; i < scop->n_stmt; ++i) {
1748 scop->stmts[i] = stmt_restrict(scop->stmts[i],
1749 isl_set_copy(cond));
1750 if (!scop->stmts[i])
1751 goto error;
1754 isl_set_free(cond);
1755 return scop;
1756 error:
1757 isl_set_free(cond);
1758 return pet_scop_free(scop);
1761 /* Construct a map that inserts a filter value with name "id" and value
1762 * "satisfied" in the list of filter values embedded in the set space "space".
1764 * If "space" does not contain any filter values yet, we first create
1765 * a map that inserts 0 filter values, i.e.,
1767 * space -> [space -> []]
1769 * We can now assume that space is of the form [dom -> [filters]]
1770 * We construct an identity mapping on dom and a mapping on filters
1771 * that inserts the new filter
1773 * dom -> dom
1774 * [filters] -> [satisfied, filters]
1776 * and then compute the cross product
1778 * [dom -> [filters]] -> [dom -> [satisfied, filters]]
1780 static __isl_give isl_map *insert_filter_map(__isl_take isl_space *space,
1781 __isl_take isl_id *id, int satisfied)
1783 isl_space *space2;
1784 isl_map *map, *map_dom, *map_ran;
1785 isl_set *dom;
1787 if (isl_space_is_wrapping(space)) {
1788 space2 = isl_space_map_from_set(isl_space_copy(space));
1789 map = isl_map_identity(space2);
1790 space = isl_space_unwrap(space);
1791 } else {
1792 space = isl_space_from_domain(space);
1793 map = isl_map_universe(isl_space_copy(space));
1794 map = isl_map_reverse(isl_map_domain_map(map));
1797 space2 = isl_space_domain(isl_space_copy(space));
1798 map_dom = isl_map_identity(isl_space_map_from_set(space2));
1799 space = isl_space_range(space);
1800 map_ran = isl_map_identity(isl_space_map_from_set(space));
1801 map_ran = isl_map_insert_dims(map_ran, isl_dim_out, 0, 1);
1802 map_ran = isl_map_set_dim_id(map_ran, isl_dim_out, 0, id);
1803 map_ran = isl_map_fix_si(map_ran, isl_dim_out, 0, satisfied);
1805 map = isl_map_apply_range(map, isl_map_product(map_dom, map_ran));
1807 return map;
1810 /* Insert an argument expression corresponding to "test" in front
1811 * of the list of arguments described by *n_arg and *args.
1813 static int args_insert_access(unsigned *n_arg, struct pet_expr ***args,
1814 __isl_keep isl_map *test)
1816 int i;
1817 isl_ctx *ctx = isl_map_get_ctx(test);
1819 if (!test)
1820 return -1;
1822 if (!*args) {
1823 *args = isl_calloc_array(ctx, struct pet_expr *, 1);
1824 if (!*args)
1825 return -1;
1826 } else {
1827 struct pet_expr **ext;
1828 ext = isl_calloc_array(ctx, struct pet_expr *, 1 + *n_arg);
1829 if (!ext)
1830 return -1;
1831 for (i = 0; i < *n_arg; ++i)
1832 ext[1 + i] = (*args)[i];
1833 free(*args);
1834 *args = ext;
1836 (*n_arg)++;
1837 (*args)[0] = pet_expr_from_access(isl_map_copy(test));
1838 if (!(*args)[0])
1839 return -1;
1841 return 0;
1844 /* Make the expression "expr" depend on the value of "test"
1845 * being equal to "satisfied".
1847 * If "test" is an affine expression, we simply add the conditions
1848 * on the expression have the value "satisfied" to all access relations.
1850 * Otherwise, we add a filter to "expr" (which is then assumed to be
1851 * an access expression) corresponding to "test" being equal to "satisfied".
1853 struct pet_expr *pet_expr_filter(struct pet_expr *expr,
1854 __isl_take isl_map *test, int satisfied)
1856 isl_id *id;
1857 isl_ctx *ctx;
1858 isl_space *space;
1859 isl_map *map;
1861 if (!expr || !test)
1862 goto error;
1864 if (!isl_map_has_tuple_id(test, isl_dim_out)) {
1865 test = isl_map_fix_si(test, isl_dim_out, 0, satisfied);
1866 return pet_expr_restrict(expr, isl_map_params(test));
1869 ctx = isl_map_get_ctx(test);
1870 if (expr->type != pet_expr_access)
1871 isl_die(ctx, isl_error_invalid,
1872 "can only filter access expressions", goto error);
1874 space = isl_space_domain(isl_map_get_space(expr->acc.access));
1875 id = isl_map_get_tuple_id(test, isl_dim_out);
1876 map = insert_filter_map(space, id, satisfied);
1878 expr->acc.access = isl_map_apply_domain(expr->acc.access, map);
1879 if (!expr->acc.access)
1880 goto error;
1882 if (args_insert_access(&expr->n_arg, &expr->args, test) < 0)
1883 goto error;
1885 isl_map_free(test);
1886 return expr;
1887 error:
1888 isl_map_free(test);
1889 return pet_expr_free(expr);
1892 /* Make the statement "stmt" depend on the value of "test"
1893 * being equal to "satisfied" by adjusting stmt->domain.
1895 * The domain of "test" corresponds to the (zero or more) outer dimensions
1896 * of the iteration domain.
1898 * We insert an argument corresponding to a read to "test"
1899 * from the iteration domain of "stmt" in front of the list of arguments.
1900 * We also insert a corresponding output dimension in the wrapped
1901 * map contained in stmt->domain, with value set to "satisfied".
1903 static struct pet_stmt *stmt_filter(struct pet_stmt *stmt,
1904 __isl_take isl_map *test, int satisfied)
1906 int i;
1907 isl_id *id;
1908 isl_ctx *ctx;
1909 isl_map *map, *add_dom;
1910 isl_space *space;
1911 isl_set *dom;
1912 int n_test_dom;
1914 if (!stmt || !test)
1915 goto error;
1917 id = isl_map_get_tuple_id(test, isl_dim_out);
1918 map = insert_filter_map(isl_set_get_space(stmt->domain), id, satisfied);
1919 stmt->domain = isl_set_apply(stmt->domain, map);
1921 space = isl_space_unwrap(isl_set_get_space(stmt->domain));
1922 dom = isl_set_universe(isl_space_domain(space));
1923 n_test_dom = isl_map_dim(test, isl_dim_in);
1924 add_dom = isl_map_from_range(dom);
1925 add_dom = isl_map_add_dims(add_dom, isl_dim_in, n_test_dom);
1926 for (i = 0; i < n_test_dom; ++i)
1927 add_dom = isl_map_equate(add_dom, isl_dim_in, i,
1928 isl_dim_out, i);
1929 test = isl_map_apply_domain(test, add_dom);
1931 if (args_insert_access(&stmt->n_arg, &stmt->args, test) < 0)
1932 goto error;
1934 isl_map_free(test);
1935 return stmt;
1936 error:
1937 isl_map_free(test);
1938 return pet_stmt_free(stmt);
1941 /* Does "scop" have a skip condition of the given "type"?
1943 int pet_scop_has_skip(struct pet_scop *scop, enum pet_skip type)
1945 struct pet_scop_ext *ext = (struct pet_scop_ext *) scop;
1947 if (!scop)
1948 return -1;
1949 return ext->skip[type] != NULL;
1952 /* Does "scop" have a skip condition of the given "type" that
1953 * is an affine expression?
1955 int pet_scop_has_affine_skip(struct pet_scop *scop, enum pet_skip type)
1957 struct pet_scop_ext *ext = (struct pet_scop_ext *) scop;
1959 if (!scop)
1960 return -1;
1961 if (!ext->skip[type])
1962 return 0;
1963 return set_is_affine(ext->skip[type]);
1966 /* Does "scop" have a skip condition of the given "type" that
1967 * is not an affine expression?
1969 int pet_scop_has_var_skip(struct pet_scop *scop, enum pet_skip type)
1971 struct pet_scop_ext *ext = (struct pet_scop_ext *) scop;
1972 int aff;
1974 if (!scop)
1975 return -1;
1976 if (!ext->skip[type])
1977 return 0;
1978 aff = set_is_affine(ext->skip[type]);
1979 if (aff < 0)
1980 return -1;
1981 return !aff;
1984 /* Does "scop" have a skip condition of the given "type" that
1985 * is affine and holds on the entire domain?
1987 int pet_scop_has_universal_skip(struct pet_scop *scop, enum pet_skip type)
1989 struct pet_scop_ext *ext = (struct pet_scop_ext *) scop;
1990 isl_set *set;
1991 int is_aff;
1992 int is_univ;
1994 is_aff = pet_scop_has_affine_skip(scop, type);
1995 if (is_aff < 0 || !is_aff)
1996 return is_aff;
1998 set = isl_set_copy(ext->skip[type]);
1999 set = isl_set_fix_si(set, isl_dim_set, 0, 1);
2000 set = isl_set_params(set);
2001 is_univ = isl_set_plain_is_universe(set);
2002 isl_set_free(set);
2004 return is_univ;
2007 /* Replace scop->skip[type] by "skip".
2009 struct pet_scop *pet_scop_set_skip(struct pet_scop *scop,
2010 enum pet_skip type, __isl_take isl_set *skip)
2012 struct pet_scop_ext *ext = (struct pet_scop_ext *) scop;
2014 if (!scop || !skip)
2015 goto error;
2017 isl_set_free(ext->skip[type]);
2018 ext->skip[type] = skip;
2020 return scop;
2021 error:
2022 isl_set_free(skip);
2023 return pet_scop_free(scop);
2026 /* Return a copy of scop->skip[type].
2028 __isl_give isl_set *pet_scop_get_skip(struct pet_scop *scop,
2029 enum pet_skip type)
2031 struct pet_scop_ext *ext = (struct pet_scop_ext *) scop;
2033 if (!scop)
2034 return NULL;
2036 return isl_set_copy(ext->skip[type]);
2039 /* Return a map to the skip condition of the given type.
2041 __isl_give isl_map *pet_scop_get_skip_map(struct pet_scop *scop,
2042 enum pet_skip type)
2044 return isl_map_from_range(pet_scop_get_skip(scop, type));
2047 /* Return an access pet_expr corresponding to the skip condition
2048 * of the given type.
2050 struct pet_expr *pet_scop_get_skip_expr(struct pet_scop *scop,
2051 enum pet_skip type)
2053 return pet_expr_from_access(pet_scop_get_skip_map(scop, type));
2056 /* Drop the the skip condition scop->skip[type].
2058 void pet_scop_reset_skip(struct pet_scop *scop, enum pet_skip type)
2060 struct pet_scop_ext *ext = (struct pet_scop_ext *) scop;
2062 if (!scop)
2063 return;
2065 isl_set_free(ext->skip[type]);
2066 ext->skip[type] = NULL;
2069 /* Make the skip condition (if any) depend on the value of "test" being
2070 * equal to "satisfied".
2072 * We only support the case where the original skip condition is universal,
2073 * i.e., where skipping is unconditional, and where satisfied == 1.
2074 * In this case, the skip condition is changed to skip only when
2075 * "test" is equal to one.
2077 static struct pet_scop *pet_scop_filter_skip(struct pet_scop *scop,
2078 enum pet_skip type, __isl_keep isl_map *test, int satisfied)
2080 int is_univ = 0;
2082 if (!scop)
2083 return NULL;
2084 if (!pet_scop_has_skip(scop, type))
2085 return scop;
2087 if (satisfied)
2088 is_univ = pet_scop_has_universal_skip(scop, type);
2089 if (is_univ < 0)
2090 return pet_scop_free(scop);
2091 if (satisfied && is_univ) {
2092 scop = pet_scop_set_skip(scop, type,
2093 isl_map_range(isl_map_copy(test)));
2094 if (!scop)
2095 return NULL;
2096 } else {
2097 isl_die(isl_map_get_ctx(test), isl_error_internal,
2098 "skip expression cannot be filtered",
2099 return pet_scop_free(scop));
2102 return scop;
2105 /* Make all statements in "scop" depend on the value of "test"
2106 * being equal to "satisfied" by adjusting their domains.
2108 struct pet_scop *pet_scop_filter(struct pet_scop *scop,
2109 __isl_take isl_map *test, int satisfied)
2111 int i;
2113 scop = pet_scop_filter_skip(scop, pet_skip_now, test, satisfied);
2114 scop = pet_scop_filter_skip(scop, pet_skip_later, test, satisfied);
2116 if (!scop || !test)
2117 goto error;
2119 for (i = 0; i < scop->n_stmt; ++i) {
2120 scop->stmts[i] = stmt_filter(scop->stmts[i],
2121 isl_map_copy(test), satisfied);
2122 if (!scop->stmts[i])
2123 goto error;
2126 isl_map_free(test);
2127 return scop;
2128 error:
2129 isl_map_free(test);
2130 return pet_scop_free(scop);
2133 /* Do the filters "i" and "j" always have the same value?
2135 static int equal_filter_values(__isl_keep isl_set *domain, int i, int j)
2137 isl_map *map, *test;
2138 int equal;
2140 map = isl_set_unwrap(isl_set_copy(domain));
2141 test = isl_map_universe(isl_map_get_space(map));
2142 test = isl_map_equate(test, isl_dim_out, i, isl_dim_out, j);
2143 equal = isl_map_is_subset(map, test);
2144 isl_map_free(map);
2145 isl_map_free(test);
2147 return equal;
2150 /* Merge filters "i" and "j" into a single filter ("i") with as filter
2151 * access relation, the union of the two access relations.
2153 static struct pet_stmt *merge_filter_pair(struct pet_stmt *stmt, int i, int j)
2155 int k;
2156 isl_map *map;
2158 if (!stmt)
2159 return NULL;
2161 stmt->args[i]->acc.access = isl_map_union(stmt->args[i]->acc.access,
2162 isl_map_copy(stmt->args[j]->acc.access));
2163 stmt->args[i]->acc.access = isl_map_coalesce(stmt->args[i]->acc.access);
2165 pet_expr_free(stmt->args[j]);
2166 for (k = j; k < stmt->n_arg - 1; ++k)
2167 stmt->args[k] = stmt->args[k + 1];
2168 stmt->n_arg--;
2170 map = isl_set_unwrap(stmt->domain);
2171 map = isl_map_project_out(map, isl_dim_out, j, 1);
2172 stmt->domain = isl_map_wrap(map);
2174 if (!stmt->domain || !stmt->args[i]->acc.access)
2175 return pet_stmt_free(stmt);
2177 return stmt;
2180 /* Look for any pair of filters that access the same filter variable
2181 * and that have the same filter value and merge them into a single
2182 * filter with as filter access relation the union of the filter access
2183 * relations.
2185 static struct pet_stmt *stmt_merge_filters(struct pet_stmt *stmt)
2187 int i, j;
2188 isl_space *space_i, *space_j;
2190 if (!stmt)
2191 return NULL;
2192 if (stmt->n_arg <= 1)
2193 return stmt;
2195 for (i = 0; i < stmt->n_arg - 1; ++i) {
2196 if (stmt->args[i]->type != pet_expr_access)
2197 continue;
2198 if (pet_expr_is_affine(stmt->args[i]))
2199 continue;
2201 space_i = isl_map_get_space(stmt->args[i]->acc.access);
2203 for (j = stmt->n_arg - 1; j > i; --j) {
2204 int eq;
2206 if (stmt->args[j]->type != pet_expr_access)
2207 continue;
2208 if (pet_expr_is_affine(stmt->args[j]))
2209 continue;
2211 space_j = isl_map_get_space(stmt->args[j]->acc.access);
2213 eq = isl_space_is_equal(space_i, space_j);
2214 if (eq >= 0 && eq)
2215 eq = equal_filter_values(stmt->domain, i, j);
2216 if (eq >= 0 && eq)
2217 stmt = merge_filter_pair(stmt, i, j);
2219 isl_space_free(space_j);
2221 if (eq < 0 || !stmt)
2222 break;
2225 isl_space_free(space_i);
2227 if (j > i || !stmt)
2228 return pet_stmt_free(stmt);
2231 return stmt;
2234 /* Look for any pair of filters that access the same filter variable
2235 * and that have the same filter value and merge them into a single
2236 * filter with as filter access relation the union of the filter access
2237 * relations.
2239 struct pet_scop *pet_scop_merge_filters(struct pet_scop *scop)
2241 int i;
2243 if (!scop)
2244 return NULL;
2246 for (i = 0; i < scop->n_stmt; ++i) {
2247 scop->stmts[i] = stmt_merge_filters(scop->stmts[i]);
2248 if (!scop->stmts[i])
2249 return pet_scop_free(scop);
2252 return scop;
2255 /* Add all parameters in "expr" to "dim" and return the result.
2257 static __isl_give isl_space *expr_collect_params(struct pet_expr *expr,
2258 __isl_take isl_space *dim)
2260 int i;
2262 if (!expr)
2263 goto error;
2264 for (i = 0; i < expr->n_arg; ++i)
2266 dim = expr_collect_params(expr->args[i], dim);
2268 if (expr->type == pet_expr_access)
2269 dim = isl_space_align_params(dim,
2270 isl_map_get_space(expr->acc.access));
2272 return dim;
2273 error:
2274 isl_space_free(dim);
2275 return pet_expr_free(expr);
2278 /* Add all parameters in "stmt" to "dim" and return the result.
2280 static __isl_give isl_space *stmt_collect_params(struct pet_stmt *stmt,
2281 __isl_take isl_space *dim)
2283 if (!stmt)
2284 goto error;
2286 dim = isl_space_align_params(dim, isl_set_get_space(stmt->domain));
2287 dim = isl_space_align_params(dim, isl_map_get_space(stmt->schedule));
2288 dim = expr_collect_params(stmt->body, dim);
2290 return dim;
2291 error:
2292 isl_space_free(dim);
2293 return pet_stmt_free(stmt);
2296 /* Add all parameters in "array" to "dim" and return the result.
2298 static __isl_give isl_space *array_collect_params(struct pet_array *array,
2299 __isl_take isl_space *dim)
2301 if (!array)
2302 goto error;
2304 dim = isl_space_align_params(dim, isl_set_get_space(array->context));
2305 dim = isl_space_align_params(dim, isl_set_get_space(array->extent));
2307 return dim;
2308 error:
2309 pet_array_free(array);
2310 return isl_space_free(dim);
2313 /* Add all parameters in "scop" to "dim" and return the result.
2315 static __isl_give isl_space *scop_collect_params(struct pet_scop *scop,
2316 __isl_take isl_space *dim)
2318 int i;
2320 if (!scop)
2321 goto error;
2323 for (i = 0; i < scop->n_array; ++i)
2324 dim = array_collect_params(scop->arrays[i], dim);
2326 for (i = 0; i < scop->n_stmt; ++i)
2327 dim = stmt_collect_params(scop->stmts[i], dim);
2329 return dim;
2330 error:
2331 isl_space_free(dim);
2332 return pet_scop_free(scop);
2335 /* Add all parameters in "dim" to all access relations in "expr".
2337 static struct pet_expr *expr_propagate_params(struct pet_expr *expr,
2338 __isl_take isl_space *dim)
2340 int i;
2342 if (!expr)
2343 goto error;
2345 for (i = 0; i < expr->n_arg; ++i) {
2346 expr->args[i] =
2347 expr_propagate_params(expr->args[i],
2348 isl_space_copy(dim));
2349 if (!expr->args[i])
2350 goto error;
2353 if (expr->type == pet_expr_access) {
2354 expr->acc.access = isl_map_align_params(expr->acc.access,
2355 isl_space_copy(dim));
2356 if (!expr->acc.access)
2357 goto error;
2360 isl_space_free(dim);
2361 return expr;
2362 error:
2363 isl_space_free(dim);
2364 return pet_expr_free(expr);
2367 /* Add all parameters in "dim" to the domain, schedule and
2368 * all access relations in "stmt".
2370 static struct pet_stmt *stmt_propagate_params(struct pet_stmt *stmt,
2371 __isl_take isl_space *dim)
2373 if (!stmt)
2374 goto error;
2376 stmt->domain = isl_set_align_params(stmt->domain, isl_space_copy(dim));
2377 stmt->schedule = isl_map_align_params(stmt->schedule,
2378 isl_space_copy(dim));
2379 stmt->body = expr_propagate_params(stmt->body, isl_space_copy(dim));
2381 if (!stmt->domain || !stmt->schedule || !stmt->body)
2382 goto error;
2384 isl_space_free(dim);
2385 return stmt;
2386 error:
2387 isl_space_free(dim);
2388 return pet_stmt_free(stmt);
2391 /* Add all parameters in "dim" to "array".
2393 static struct pet_array *array_propagate_params(struct pet_array *array,
2394 __isl_take isl_space *dim)
2396 if (!array)
2397 goto error;
2399 array->context = isl_set_align_params(array->context,
2400 isl_space_copy(dim));
2401 array->extent = isl_set_align_params(array->extent,
2402 isl_space_copy(dim));
2403 if (array->value_bounds) {
2404 array->value_bounds = isl_set_align_params(array->value_bounds,
2405 isl_space_copy(dim));
2406 if (!array->value_bounds)
2407 goto error;
2410 if (!array->context || !array->extent)
2411 goto error;
2413 isl_space_free(dim);
2414 return array;
2415 error:
2416 isl_space_free(dim);
2417 return pet_array_free(array);
2420 /* Add all parameters in "dim" to "scop".
2422 static struct pet_scop *scop_propagate_params(struct pet_scop *scop,
2423 __isl_take isl_space *dim)
2425 int i;
2427 if (!scop)
2428 goto error;
2430 for (i = 0; i < scop->n_array; ++i) {
2431 scop->arrays[i] = array_propagate_params(scop->arrays[i],
2432 isl_space_copy(dim));
2433 if (!scop->arrays[i])
2434 goto error;
2437 for (i = 0; i < scop->n_stmt; ++i) {
2438 scop->stmts[i] = stmt_propagate_params(scop->stmts[i],
2439 isl_space_copy(dim));
2440 if (!scop->stmts[i])
2441 goto error;
2444 isl_space_free(dim);
2445 return scop;
2446 error:
2447 isl_space_free(dim);
2448 return pet_scop_free(scop);
2451 /* Update all isl_sets and isl_maps in "scop" such that they all
2452 * have the same parameters.
2454 struct pet_scop *pet_scop_align_params(struct pet_scop *scop)
2456 isl_space *dim;
2458 if (!scop)
2459 return NULL;
2461 dim = isl_set_get_space(scop->context);
2462 dim = scop_collect_params(scop, dim);
2464 scop->context = isl_set_align_params(scop->context, isl_space_copy(dim));
2465 scop = scop_propagate_params(scop, dim);
2467 return scop;
2470 /* Check if the given access relation accesses a (0D) array that corresponds
2471 * to one of the parameters in "dim". If so, replace the array access
2472 * by an access to the set of integers with as index (and value)
2473 * that parameter.
2475 static __isl_give isl_map *access_detect_parameter(__isl_take isl_map *access,
2476 __isl_take isl_space *dim)
2478 isl_id *array_id = NULL;
2479 int pos = -1;
2481 if (isl_map_has_tuple_id(access, isl_dim_out)) {
2482 array_id = isl_map_get_tuple_id(access, isl_dim_out);
2483 pos = isl_space_find_dim_by_id(dim, isl_dim_param, array_id);
2485 isl_space_free(dim);
2487 if (pos < 0) {
2488 isl_id_free(array_id);
2489 return access;
2492 pos = isl_map_find_dim_by_id(access, isl_dim_param, array_id);
2493 if (pos < 0) {
2494 access = isl_map_insert_dims(access, isl_dim_param, 0, 1);
2495 access = isl_map_set_dim_id(access, isl_dim_param, 0, array_id);
2496 pos = 0;
2497 } else
2498 isl_id_free(array_id);
2500 access = isl_map_insert_dims(access, isl_dim_out, 0, 1);
2501 access = isl_map_equate(access, isl_dim_param, pos, isl_dim_out, 0);
2503 return access;
2506 /* Replace all accesses to (0D) arrays that correspond to one of the parameters
2507 * in "dim" by a value equal to the corresponding parameter.
2509 static struct pet_expr *expr_detect_parameter_accesses(struct pet_expr *expr,
2510 __isl_take isl_space *dim)
2512 int i;
2514 if (!expr)
2515 goto error;
2517 for (i = 0; i < expr->n_arg; ++i) {
2518 expr->args[i] =
2519 expr_detect_parameter_accesses(expr->args[i],
2520 isl_space_copy(dim));
2521 if (!expr->args[i])
2522 goto error;
2525 if (expr->type == pet_expr_access) {
2526 expr->acc.access = access_detect_parameter(expr->acc.access,
2527 isl_space_copy(dim));
2528 if (!expr->acc.access)
2529 goto error;
2532 isl_space_free(dim);
2533 return expr;
2534 error:
2535 isl_space_free(dim);
2536 return pet_expr_free(expr);
2539 /* Replace all accesses to (0D) arrays that correspond to one of the parameters
2540 * in "dim" by a value equal to the corresponding parameter.
2542 static struct pet_stmt *stmt_detect_parameter_accesses(struct pet_stmt *stmt,
2543 __isl_take isl_space *dim)
2545 if (!stmt)
2546 goto error;
2548 stmt->body = expr_detect_parameter_accesses(stmt->body,
2549 isl_space_copy(dim));
2551 if (!stmt->domain || !stmt->schedule || !stmt->body)
2552 goto error;
2554 isl_space_free(dim);
2555 return stmt;
2556 error:
2557 isl_space_free(dim);
2558 return pet_stmt_free(stmt);
2561 /* Replace all accesses to (0D) arrays that correspond to one of the parameters
2562 * in "dim" by a value equal to the corresponding parameter.
2564 static struct pet_scop *scop_detect_parameter_accesses(struct pet_scop *scop,
2565 __isl_take isl_space *dim)
2567 int i;
2569 if (!scop)
2570 goto error;
2572 for (i = 0; i < scop->n_stmt; ++i) {
2573 scop->stmts[i] = stmt_detect_parameter_accesses(scop->stmts[i],
2574 isl_space_copy(dim));
2575 if (!scop->stmts[i])
2576 goto error;
2579 isl_space_free(dim);
2580 return scop;
2581 error:
2582 isl_space_free(dim);
2583 return pet_scop_free(scop);
2586 /* Replace all accesses to (0D) arrays that correspond to any of
2587 * the parameters used in "scop" by a value equal
2588 * to the corresponding parameter.
2590 struct pet_scop *pet_scop_detect_parameter_accesses(struct pet_scop *scop)
2592 isl_space *dim;
2594 if (!scop)
2595 return NULL;
2597 dim = isl_set_get_space(scop->context);
2598 dim = scop_collect_params(scop, dim);
2600 scop = scop_detect_parameter_accesses(scop, dim);
2602 return scop;
2605 /* Add all read access relations (if "read" is set) and/or all write
2606 * access relations (if "write" is set) to "accesses" and return the result.
2608 static __isl_give isl_union_map *expr_collect_accesses(struct pet_expr *expr,
2609 int read, int write, __isl_take isl_union_map *accesses)
2611 int i;
2612 isl_id *id;
2613 isl_space *dim;
2615 if (!expr)
2616 return NULL;
2618 for (i = 0; i < expr->n_arg; ++i)
2619 accesses = expr_collect_accesses(expr->args[i],
2620 read, write, accesses);
2622 if (expr->type == pet_expr_access &&
2623 isl_map_has_tuple_id(expr->acc.access, isl_dim_out) &&
2624 ((read && expr->acc.read) || (write && expr->acc.write)))
2625 accesses = isl_union_map_add_map(accesses,
2626 isl_map_copy(expr->acc.access));
2628 return accesses;
2631 /* Collect and return all read access relations (if "read" is set)
2632 * and/or all write access relations (if "write" is set) in "stmt".
2634 static __isl_give isl_union_map *stmt_collect_accesses(struct pet_stmt *stmt,
2635 int read, int write, __isl_take isl_space *dim)
2637 isl_union_map *accesses;
2639 if (!stmt)
2640 return NULL;
2642 accesses = isl_union_map_empty(dim);
2643 accesses = expr_collect_accesses(stmt->body, read, write, accesses);
2644 accesses = isl_union_map_intersect_domain(accesses,
2645 isl_union_set_from_set(isl_set_copy(stmt->domain)));
2647 return accesses;
2650 /* Collect and return all read access relations (if "read" is set)
2651 * and/or all write access relations (if "write" is set) in "scop".
2653 static __isl_give isl_union_map *scop_collect_accesses(struct pet_scop *scop,
2654 int read, int write)
2656 int i;
2657 isl_union_map *accesses;
2659 if (!scop)
2660 return NULL;
2662 accesses = isl_union_map_empty(isl_set_get_space(scop->context));
2664 for (i = 0; i < scop->n_stmt; ++i) {
2665 isl_union_map *accesses_i;
2666 isl_space *dim = isl_set_get_space(scop->context);
2667 accesses_i = stmt_collect_accesses(scop->stmts[i],
2668 read, write, dim);
2669 accesses = isl_union_map_union(accesses, accesses_i);
2672 return accesses;
2675 __isl_give isl_union_map *pet_scop_collect_reads(struct pet_scop *scop)
2677 return scop_collect_accesses(scop, 1, 0);
2680 __isl_give isl_union_map *pet_scop_collect_writes(struct pet_scop *scop)
2682 return scop_collect_accesses(scop, 0, 1);
2685 /* Collect and return the union of iteration domains in "scop".
2687 __isl_give isl_union_set *pet_scop_collect_domains(struct pet_scop *scop)
2689 int i;
2690 isl_set *domain_i;
2691 isl_union_set *domain;
2693 if (!scop)
2694 return NULL;
2696 domain = isl_union_set_empty(isl_set_get_space(scop->context));
2698 for (i = 0; i < scop->n_stmt; ++i) {
2699 domain_i = isl_set_copy(scop->stmts[i]->domain);
2700 domain = isl_union_set_add_set(domain, domain_i);
2703 return domain;
2706 /* Collect and return the schedules of the statements in "scop".
2707 * The range is normalized to the maximal number of scheduling
2708 * dimensions.
2710 __isl_give isl_union_map *pet_scop_collect_schedule(struct pet_scop *scop)
2712 int i, j;
2713 isl_map *schedule_i;
2714 isl_union_map *schedule;
2715 int depth, max_depth = 0;
2717 if (!scop)
2718 return NULL;
2720 schedule = isl_union_map_empty(isl_set_get_space(scop->context));
2722 for (i = 0; i < scop->n_stmt; ++i) {
2723 depth = isl_map_dim(scop->stmts[i]->schedule, isl_dim_out);
2724 if (depth > max_depth)
2725 max_depth = depth;
2728 for (i = 0; i < scop->n_stmt; ++i) {
2729 schedule_i = isl_map_copy(scop->stmts[i]->schedule);
2730 depth = isl_map_dim(schedule_i, isl_dim_out);
2731 schedule_i = isl_map_add_dims(schedule_i, isl_dim_out,
2732 max_depth - depth);
2733 for (j = depth; j < max_depth; ++j)
2734 schedule_i = isl_map_fix_si(schedule_i,
2735 isl_dim_out, j, 0);
2736 schedule = isl_union_map_add_map(schedule, schedule_i);
2739 return schedule;
2742 /* Does expression "expr" write to "id"?
2744 static int expr_writes(struct pet_expr *expr, __isl_keep isl_id *id)
2746 int i;
2747 isl_id *write_id;
2749 for (i = 0; i < expr->n_arg; ++i) {
2750 int writes = expr_writes(expr->args[i], id);
2751 if (writes < 0 || writes)
2752 return writes;
2755 if (expr->type != pet_expr_access)
2756 return 0;
2757 if (!expr->acc.write)
2758 return 0;
2759 if (!isl_map_has_tuple_id(expr->acc.access, isl_dim_out))
2760 return 0;
2762 write_id = isl_map_get_tuple_id(expr->acc.access, isl_dim_out);
2763 isl_id_free(write_id);
2765 if (!write_id)
2766 return -1;
2768 return write_id == id;
2771 /* Does statement "stmt" write to "id"?
2773 static int stmt_writes(struct pet_stmt *stmt, __isl_keep isl_id *id)
2775 return expr_writes(stmt->body, id);
2778 /* Is there any write access in "scop" that accesses "id"?
2780 int pet_scop_writes(struct pet_scop *scop, __isl_keep isl_id *id)
2782 int i;
2784 if (!scop)
2785 return -1;
2787 for (i = 0; i < scop->n_stmt; ++i) {
2788 int writes = stmt_writes(scop->stmts[i], id);
2789 if (writes < 0 || writes)
2790 return writes;
2793 return 0;
2796 /* Reset the user pointer on the tuple id and all parameter ids in "set".
2798 static __isl_give isl_set *set_anonymize(__isl_take isl_set *set)
2800 int i, n;
2802 n = isl_set_dim(set, isl_dim_param);
2803 for (i = 0; i < n; ++i) {
2804 isl_id *id = isl_set_get_dim_id(set, isl_dim_param, i);
2805 const char *name = isl_id_get_name(id);
2806 set = isl_set_set_dim_name(set, isl_dim_param, i, name);
2807 isl_id_free(id);
2810 if (!isl_set_is_params(set) && isl_set_has_tuple_id(set)) {
2811 isl_id *id = isl_set_get_tuple_id(set);
2812 const char *name = isl_id_get_name(id);
2813 set = isl_set_set_tuple_name(set, name);
2814 isl_id_free(id);
2817 return set;
2820 /* Reset the user pointer on the tuple ids and all parameter ids in "map".
2822 static __isl_give isl_map *map_anonymize(__isl_take isl_map *map)
2824 int i, n;
2826 n = isl_map_dim(map, isl_dim_param);
2827 for (i = 0; i < n; ++i) {
2828 isl_id *id = isl_map_get_dim_id(map, isl_dim_param, i);
2829 const char *name = isl_id_get_name(id);
2830 map = isl_map_set_dim_name(map, isl_dim_param, i, name);
2831 isl_id_free(id);
2834 if (isl_map_has_tuple_id(map, isl_dim_in)) {
2835 isl_id *id = isl_map_get_tuple_id(map, isl_dim_in);
2836 const char *name = isl_id_get_name(id);
2837 map = isl_map_set_tuple_name(map, isl_dim_in, name);
2838 isl_id_free(id);
2841 if (isl_map_has_tuple_id(map, isl_dim_out)) {
2842 isl_id *id = isl_map_get_tuple_id(map, isl_dim_out);
2843 const char *name = isl_id_get_name(id);
2844 map = isl_map_set_tuple_name(map, isl_dim_out, name);
2845 isl_id_free(id);
2848 return map;
2851 /* Reset the user pointer on all parameter ids in "array".
2853 static struct pet_array *array_anonymize(struct pet_array *array)
2855 if (!array)
2856 return NULL;
2858 array->context = set_anonymize(array->context);
2859 array->extent = set_anonymize(array->extent);
2860 if (!array->context || !array->extent)
2861 return pet_array_free(array);
2863 return array;
2866 /* Reset the user pointer on all parameter and tuple ids in "access".
2868 static __isl_give isl_map *access_anonymize(__isl_take isl_map *access,
2869 void *user)
2871 access = map_anonymize(access);
2873 return access;
2876 /* Reset the user pointer on all parameter and tuple ids in "stmt".
2878 static struct pet_stmt *stmt_anonymize(struct pet_stmt *stmt)
2880 int i;
2881 isl_space *space;
2882 isl_set *domain;
2884 if (!stmt)
2885 return NULL;
2887 stmt->domain = set_anonymize(stmt->domain);
2888 stmt->schedule = map_anonymize(stmt->schedule);
2889 if (!stmt->domain || !stmt->schedule)
2890 return pet_stmt_free(stmt);
2892 for (i = 0; i < stmt->n_arg; ++i) {
2893 stmt->args[i] = pet_expr_foreach_access(stmt->args[i],
2894 &access_anonymize, NULL);
2895 if (!stmt->args[i])
2896 return pet_stmt_free(stmt);
2899 stmt->body = pet_expr_foreach_access(stmt->body,
2900 &access_anonymize, NULL);
2901 if (!stmt->body)
2902 return pet_stmt_free(stmt);
2904 return stmt;
2907 /* Reset the user pointer on all parameter and tuple ids in "scop".
2909 struct pet_scop *pet_scop_anonymize(struct pet_scop *scop)
2911 int i;
2913 if (!scop)
2914 return NULL;
2916 scop->context = set_anonymize(scop->context);
2917 scop->context_value = set_anonymize(scop->context_value);
2918 if (!scop->context || !scop->context_value)
2919 return pet_scop_free(scop);
2921 for (i = 0; i < scop->n_array; ++i) {
2922 scop->arrays[i] = array_anonymize(scop->arrays[i]);
2923 if (!scop->arrays[i])
2924 return pet_scop_free(scop);
2927 for (i = 0; i < scop->n_stmt; ++i) {
2928 scop->stmts[i] = stmt_anonymize(scop->stmts[i]);
2929 if (!scop->stmts[i])
2930 return pet_scop_free(scop);
2933 return scop;
2936 /* Given a set "domain", return a wrapped relation with the given set
2937 * as domain and a range of dimension "n_arg", where each coordinate
2938 * is either unbounded or, if the corresponding element of args is of
2939 * type pet_expr_access, bounded by the bounds specified by "value_bounds".
2941 static __isl_give isl_set *apply_value_bounds(__isl_take isl_set *domain,
2942 unsigned n_arg, struct pet_expr **args,
2943 __isl_keep isl_union_map *value_bounds)
2945 int i;
2946 isl_map *map;
2947 isl_space *space;
2948 isl_ctx *ctx = isl_set_get_ctx(domain);
2950 map = isl_map_from_domain(domain);
2951 space = isl_map_get_space(map);
2952 space = isl_space_add_dims(space, isl_dim_out, 1);
2954 for (i = 0; i < n_arg; ++i) {
2955 isl_map *map_i;
2956 struct pet_expr *arg = args[i];
2957 isl_id *id;
2958 isl_space *space2;
2960 map_i = isl_map_universe(isl_space_copy(space));
2961 if (arg->type == pet_expr_access) {
2962 isl_map *vb;
2963 id = isl_map_get_tuple_id(arg->acc.access, isl_dim_out);
2964 space2 = isl_space_alloc(ctx, 0, 0, 1);
2965 space2 = isl_space_set_tuple_id(space2, isl_dim_in, id);
2966 vb = isl_union_map_extract_map(value_bounds, space2);
2967 if (!isl_map_plain_is_empty(vb))
2968 map_i = isl_map_intersect_range(map_i,
2969 isl_map_range(vb));
2970 else
2971 isl_map_free(vb);
2973 map = isl_map_flat_range_product(map, map_i);
2975 isl_space_free(space);
2977 return isl_map_wrap(map);
2980 /* Data used in access_gist() callback.
2982 struct pet_access_gist_data {
2983 isl_set *domain;
2984 isl_union_map *value_bounds;
2987 /* Given an expression "expr" of type pet_expr_access, compute
2988 * the gist of the associated access relation with respect to
2989 * data->domain and the bounds on the values of the arguments
2990 * of the expression.
2992 static struct pet_expr *access_gist(struct pet_expr *expr, void *user)
2994 struct pet_access_gist_data *data = user;
2995 isl_set *domain;
2997 domain = isl_set_copy(data->domain);
2998 if (expr->n_arg > 0)
2999 domain = apply_value_bounds(domain, expr->n_arg, expr->args,
3000 data->value_bounds);
3002 expr->acc.access = isl_map_gist_domain(expr->acc.access, domain);
3003 if (!expr->acc.access)
3004 return pet_expr_free(expr);
3006 return expr;
3009 /* Compute the gist of the iteration domain and all access relations
3010 * of "stmt" based on the constraints on the parameters specified by "context"
3011 * and the constraints on the values of nested accesses specified
3012 * by "value_bounds".
3014 static struct pet_stmt *stmt_gist(struct pet_stmt *stmt,
3015 __isl_keep isl_set *context, __isl_keep isl_union_map *value_bounds)
3017 int i;
3018 isl_space *space;
3019 isl_set *domain;
3020 struct pet_access_gist_data data;
3022 if (!stmt)
3023 return NULL;
3025 data.domain = isl_set_copy(stmt->domain);
3026 data.value_bounds = value_bounds;
3027 if (stmt->n_arg > 0)
3028 data.domain = isl_map_domain(isl_set_unwrap(data.domain));
3030 data.domain = isl_set_intersect_params(data.domain,
3031 isl_set_copy(context));
3033 for (i = 0; i < stmt->n_arg; ++i) {
3034 stmt->args[i] = pet_expr_foreach_access_expr(stmt->args[i],
3035 &access_gist, &data);
3036 if (!stmt->args[i])
3037 goto error;
3040 stmt->body = pet_expr_foreach_access_expr(stmt->body,
3041 &access_gist, &data);
3042 if (!stmt->body)
3043 goto error;
3045 isl_set_free(data.domain);
3047 space = isl_set_get_space(stmt->domain);
3048 if (isl_space_is_wrapping(space))
3049 space = isl_space_domain(isl_space_unwrap(space));
3050 domain = isl_set_universe(space);
3051 domain = isl_set_intersect_params(domain, isl_set_copy(context));
3052 if (stmt->n_arg > 0)
3053 domain = apply_value_bounds(domain, stmt->n_arg, stmt->args,
3054 value_bounds);
3055 stmt->domain = isl_set_gist(stmt->domain, domain);
3056 if (!stmt->domain)
3057 return pet_stmt_free(stmt);
3059 return stmt;
3060 error:
3061 isl_set_free(data.domain);
3062 return pet_stmt_free(stmt);
3065 /* Compute the gist of the extent of the array
3066 * based on the constraints on the parameters specified by "context".
3068 static struct pet_array *array_gist(struct pet_array *array,
3069 __isl_keep isl_set *context)
3071 if (!array)
3072 return NULL;
3074 array->extent = isl_set_gist_params(array->extent,
3075 isl_set_copy(context));
3076 if (!array->extent)
3077 return pet_array_free(array);
3079 return array;
3082 /* Compute the gist of all sets and relations in "scop"
3083 * based on the constraints on the parameters specified by "scop->context"
3084 * and the constraints on the values of nested accesses specified
3085 * by "value_bounds".
3087 struct pet_scop *pet_scop_gist(struct pet_scop *scop,
3088 __isl_keep isl_union_map *value_bounds)
3090 int i;
3092 if (!scop)
3093 return NULL;
3095 scop->context = isl_set_coalesce(scop->context);
3096 if (!scop->context)
3097 return pet_scop_free(scop);
3099 for (i = 0; i < scop->n_array; ++i) {
3100 scop->arrays[i] = array_gist(scop->arrays[i], scop->context);
3101 if (!scop->arrays[i])
3102 return pet_scop_free(scop);
3105 for (i = 0; i < scop->n_stmt; ++i) {
3106 scop->stmts[i] = stmt_gist(scop->stmts[i], scop->context,
3107 value_bounds);
3108 if (!scop->stmts[i])
3109 return pet_scop_free(scop);
3112 return scop;
3115 /* Intersect the context of "scop" with "context".
3116 * To ensure that we don't introduce any unnamed parameters in
3117 * the context of "scop", we first remove the unnamed parameters
3118 * from "context".
3120 struct pet_scop *pet_scop_restrict_context(struct pet_scop *scop,
3121 __isl_take isl_set *context)
3123 if (!scop)
3124 goto error;
3126 context = set_project_out_unnamed_params(context);
3127 scop->context = isl_set_intersect(scop->context, context);
3128 if (!scop->context)
3129 return pet_scop_free(scop);
3131 return scop;
3132 error:
3133 isl_set_free(context);
3134 return pet_scop_free(scop);
3137 /* Drop the current context of "scop". That is, replace the context
3138 * by a universal set.
3140 struct pet_scop *pet_scop_reset_context(struct pet_scop *scop)
3142 isl_space *space;
3144 if (!scop)
3145 return NULL;
3147 space = isl_set_get_space(scop->context);
3148 isl_set_free(scop->context);
3149 scop->context = isl_set_universe(space);
3150 if (!scop->context)
3151 return pet_scop_free(scop);
3153 return scop;
3156 /* Append "array" to the arrays of "scop".
3158 struct pet_scop *pet_scop_add_array(struct pet_scop *scop,
3159 struct pet_array *array)
3161 isl_ctx *ctx;
3162 struct pet_array **arrays;
3164 if (!array || !scop)
3165 goto error;
3167 ctx = isl_set_get_ctx(scop->context);
3168 arrays = isl_realloc_array(ctx, scop->arrays, struct pet_array *,
3169 scop->n_array + 1);
3170 if (!arrays)
3171 goto error;
3172 scop->arrays = arrays;
3173 scop->arrays[scop->n_array] = array;
3174 scop->n_array++;
3176 return scop;
3177 error:
3178 pet_array_free(array);
3179 return pet_scop_free(scop);