nest.c: move is_sub_access to expr.c
[pet.git] / expr.c
blobcb1eea25ed0dfcabf5488fb81c571eec1323bc4e
1 /*
2 * Copyright 2011 Leiden University. All rights reserved.
3 * Copyright 2012-2014 Ecole Normale Superieure. All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above
13 * copyright notice, this list of conditions and the following
14 * disclaimer in the documentation and/or other materials provided
15 * with the distribution.
17 * THIS SOFTWARE IS PROVIDED BY LEIDEN UNIVERSITY ''AS IS'' AND ANY
18 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
20 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL LEIDEN UNIVERSITY OR
21 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
22 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
23 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
24 * OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 * The views and conclusions contained in the software and documentation
30 * are those of the authors and should not be interpreted as
31 * representing official policies, either expressed or implied, of
32 * Leiden University.
35 #include <string.h>
37 #include "aff.h"
38 #include "array.h"
39 #include "expr.h"
40 #include "expr_arg.h"
41 #include "filter.h"
42 #include "nest.h"
43 #include "options.h"
44 #include "value_bounds.h"
46 #define ARRAY_SIZE(array) (sizeof(array)/sizeof(*array))
48 static char *type_str[] = {
49 [pet_expr_access] = "access",
50 [pet_expr_call] = "call",
51 [pet_expr_cast] = "cast",
52 [pet_expr_double] = "double",
53 [pet_expr_int] = "int",
54 [pet_expr_op] = "op",
57 static char *op_str[] = {
58 [pet_op_add_assign] = "+=",
59 [pet_op_sub_assign] = "-=",
60 [pet_op_mul_assign] = "*=",
61 [pet_op_div_assign] = "/=",
62 [pet_op_assign] = "=",
63 [pet_op_add] = "+",
64 [pet_op_sub] = "-",
65 [pet_op_mul] = "*",
66 [pet_op_div] = "/",
67 [pet_op_mod] = "%",
68 [pet_op_shl] = "<<",
69 [pet_op_shr] = ">>",
70 [pet_op_eq] = "==",
71 [pet_op_ne] = "!=",
72 [pet_op_le] = "<=",
73 [pet_op_ge] = ">=",
74 [pet_op_lt] = "<",
75 [pet_op_gt] = ">",
76 [pet_op_minus] = "-",
77 [pet_op_post_inc] = "++",
78 [pet_op_post_dec] = "--",
79 [pet_op_pre_inc] = "++",
80 [pet_op_pre_dec] = "--",
81 [pet_op_address_of] = "&",
82 [pet_op_and] = "&",
83 [pet_op_xor] = "^",
84 [pet_op_or] = "|",
85 [pet_op_not] = "~",
86 [pet_op_land] = "&&",
87 [pet_op_lor] = "||",
88 [pet_op_lnot] = "!",
89 [pet_op_cond] = "?:",
90 [pet_op_assume] = "assume",
91 [pet_op_kill] = "kill"
94 const char *pet_op_str(enum pet_op_type op)
96 return op_str[op];
99 int pet_op_is_inc_dec(enum pet_op_type op)
101 return op == pet_op_post_inc || op == pet_op_post_dec ||
102 op == pet_op_pre_inc || op == pet_op_pre_dec;
105 const char *pet_type_str(enum pet_expr_type type)
107 return type_str[type];
110 enum pet_op_type pet_str_op(const char *str)
112 int i;
114 for (i = 0; i < ARRAY_SIZE(op_str); ++i)
115 if (!strcmp(op_str[i], str))
116 return i;
118 return -1;
121 enum pet_expr_type pet_str_type(const char *str)
123 int i;
125 for (i = 0; i < ARRAY_SIZE(type_str); ++i)
126 if (!strcmp(type_str[i], str))
127 return i;
129 return -1;
132 /* Construct a pet_expr of the given type.
134 __isl_give pet_expr *pet_expr_alloc(isl_ctx *ctx, enum pet_expr_type type)
136 pet_expr *expr;
138 expr = isl_calloc_type(ctx, struct pet_expr);
139 if (!expr)
140 return NULL;
142 expr->ctx = ctx;
143 isl_ctx_ref(ctx);
144 expr->type = type;
145 expr->ref = 1;
147 return expr;
150 /* Construct an access pet_expr from an access relation and an index expression.
151 * By default, it is considered to be a read access.
153 __isl_give pet_expr *pet_expr_from_access_and_index( __isl_take isl_map *access,
154 __isl_take isl_multi_pw_aff *index)
156 isl_ctx *ctx = isl_map_get_ctx(access);
157 pet_expr *expr;
159 if (!index || !access)
160 goto error;
161 expr = pet_expr_alloc(ctx, pet_expr_access);
162 if (!expr)
163 goto error;
165 expr->acc.access = access;
166 expr->acc.index = index;
167 expr->acc.read = 1;
168 expr->acc.write = 0;
170 return expr;
171 error:
172 isl_map_free(access);
173 isl_multi_pw_aff_free(index);
174 return NULL;
177 /* Construct an access pet_expr from an index expression.
178 * By default, the access is considered to be a read access.
180 __isl_give pet_expr *pet_expr_from_index(__isl_take isl_multi_pw_aff *index)
182 isl_map *access;
184 access = isl_map_from_multi_pw_aff(isl_multi_pw_aff_copy(index));
185 return pet_expr_from_access_and_index(access, index);
188 /* Extend the range of "access" with "n" dimensions, retaining
189 * the tuple identifier on this range.
191 * If "access" represents a member access, then extend the range
192 * of the member.
194 static __isl_give isl_map *extend_range(__isl_take isl_map *access, int n)
196 isl_id *id;
198 id = isl_map_get_tuple_id(access, isl_dim_out);
200 if (!isl_map_range_is_wrapping(access)) {
201 access = isl_map_add_dims(access, isl_dim_out, n);
202 } else {
203 isl_map *domain;
205 domain = isl_map_copy(access);
206 domain = isl_map_range_factor_domain(domain);
207 access = isl_map_range_factor_range(access);
208 access = extend_range(access, n);
209 access = isl_map_range_product(domain, access);
212 access = isl_map_set_tuple_id(access, isl_dim_out, id);
214 return access;
217 /* Finalize the construction of an access expression by setting
218 * the depth of the accessed array.
220 * The index expression may have been updated by
221 * pet_expr_access_subscript and/or pet_expr_access_member
222 * without the access relation having been updated accordingly.
223 * We perform this update here, taking into account the depth
224 * of the accessed array.
226 * If the number of indices is smaller than the depth of the array,
227 * then we assume that all elements of the remaining dimensions
228 * are accessed.
230 __isl_give pet_expr *pet_expr_access_set_depth(__isl_take pet_expr *expr,
231 int depth)
233 isl_map *access;
234 int dim;
236 expr = pet_expr_cow(expr);
237 if (!expr)
238 return NULL;
240 access = isl_map_from_multi_pw_aff(pet_expr_access_get_index(expr));
241 if (!access)
242 return pet_expr_free(expr);
244 dim = isl_map_dim(access, isl_dim_out);
245 if (dim > depth)
246 isl_die(isl_map_get_ctx(access), isl_error_internal,
247 "number of indices greater than depth",
248 access = isl_map_free(access));
250 if (dim != depth)
251 access = extend_range(access, depth - dim);
253 return pet_expr_access_set_access(expr, access);
256 /* Construct a pet_expr that kills the elements specified by
257 * the index expression "index" and the access relation "access".
259 __isl_give pet_expr *pet_expr_kill_from_access_and_index(
260 __isl_take isl_map *access, __isl_take isl_multi_pw_aff *index)
262 pet_expr *expr;
264 if (!access || !index)
265 goto error;
267 expr = pet_expr_from_access_and_index(access, index);
268 expr = pet_expr_access_set_read(expr, 0);
269 return pet_expr_new_unary(pet_op_kill, expr);
270 error:
271 isl_map_free(access);
272 isl_multi_pw_aff_free(index);
273 return NULL;
276 /* Construct a unary pet_expr that performs "op" on "arg".
278 __isl_give pet_expr *pet_expr_new_unary(enum pet_op_type op,
279 __isl_take pet_expr *arg)
281 isl_ctx *ctx;
282 pet_expr *expr;
284 if (!arg)
285 return NULL;
286 ctx = pet_expr_get_ctx(arg);
287 expr = pet_expr_alloc(ctx, pet_expr_op);
288 expr = pet_expr_set_n_arg(expr, 1);
289 if (!expr)
290 goto error;
292 expr->op = op;
293 expr->args[pet_un_arg] = arg;
295 return expr;
296 error:
297 pet_expr_free(arg);
298 return NULL;
301 /* Construct a binary pet_expr that performs "op" on "lhs" and "rhs",
302 * where the result is represented using a type of "type_size" bits
303 * (may be zero if unknown or if the type is not an integer).
305 __isl_give pet_expr *pet_expr_new_binary(int type_size, enum pet_op_type op,
306 __isl_take pet_expr *lhs, __isl_take pet_expr *rhs)
308 isl_ctx *ctx;
309 pet_expr *expr;
311 if (!lhs || !rhs)
312 goto error;
313 ctx = pet_expr_get_ctx(lhs);
314 expr = pet_expr_alloc(ctx, pet_expr_op);
315 expr = pet_expr_set_n_arg(expr, 2);
316 if (!expr)
317 goto error;
319 expr->op = op;
320 expr->type_size = type_size;
321 expr->args[pet_bin_lhs] = lhs;
322 expr->args[pet_bin_rhs] = rhs;
324 return expr;
325 error:
326 pet_expr_free(lhs);
327 pet_expr_free(rhs);
328 return NULL;
331 /* Construct a ternary pet_expr that performs "cond" ? "lhs" : "rhs".
333 __isl_give pet_expr *pet_expr_new_ternary(__isl_take pet_expr *cond,
334 __isl_take pet_expr *lhs, __isl_take pet_expr *rhs)
336 isl_ctx *ctx;
337 pet_expr *expr;
339 if (!cond || !lhs || !rhs)
340 goto error;
341 ctx = pet_expr_get_ctx(cond);
342 expr = pet_expr_alloc(ctx, pet_expr_op);
343 expr = pet_expr_set_n_arg(expr, 3);
344 if (!expr)
345 goto error;
347 expr->op = pet_op_cond;
348 expr->args[pet_ter_cond] = cond;
349 expr->args[pet_ter_true] = lhs;
350 expr->args[pet_ter_false] = rhs;
352 return expr;
353 error:
354 pet_expr_free(cond);
355 pet_expr_free(lhs);
356 pet_expr_free(rhs);
357 return NULL;
360 /* Construct a call pet_expr that calls function "name" with "n_arg"
361 * arguments. The caller is responsible for filling in the arguments.
363 __isl_give pet_expr *pet_expr_new_call(isl_ctx *ctx, const char *name,
364 unsigned n_arg)
366 pet_expr *expr;
368 expr = pet_expr_alloc(ctx, pet_expr_call);
369 expr = pet_expr_set_n_arg(expr, n_arg);
370 if (!expr)
371 return NULL;
373 expr->name = strdup(name);
374 if (!expr->name)
375 return pet_expr_free(expr);
377 return expr;
380 /* Construct a pet_expr that represents the cast of "arg" to "type_name".
382 __isl_give pet_expr *pet_expr_new_cast(const char *type_name,
383 __isl_take pet_expr *arg)
385 isl_ctx *ctx;
386 pet_expr *expr;
388 if (!arg)
389 return NULL;
391 ctx = pet_expr_get_ctx(arg);
392 expr = pet_expr_alloc(ctx, pet_expr_cast);
393 expr = pet_expr_set_n_arg(expr, 1);
394 if (!expr)
395 goto error;
397 expr->type_name = strdup(type_name);
398 if (!expr->type_name)
399 goto error;
401 expr->args[0] = arg;
403 return expr;
404 error:
405 pet_expr_free(arg);
406 pet_expr_free(expr);
407 return NULL;
410 /* Construct a pet_expr that represents the double "d".
412 __isl_give pet_expr *pet_expr_new_double(isl_ctx *ctx,
413 double val, const char *s)
415 pet_expr *expr;
417 expr = pet_expr_alloc(ctx, pet_expr_double);
418 if (!expr)
419 return NULL;
421 expr->d.val = val;
422 expr->d.s = strdup(s);
423 if (!expr->d.s)
424 return pet_expr_free(expr);
426 return expr;
429 /* Construct a pet_expr that represents the integer value "v".
431 __isl_give pet_expr *pet_expr_new_int(__isl_take isl_val *v)
433 isl_ctx *ctx;
434 pet_expr *expr;
436 if (!v)
437 return NULL;
439 ctx = isl_val_get_ctx(v);
440 expr = pet_expr_alloc(ctx, pet_expr_int);
441 if (!expr)
442 goto error;
444 expr->i = v;
446 return expr;
447 error:
448 isl_val_free(v);
449 return NULL;
452 static __isl_give pet_expr *pet_expr_dup(__isl_keep pet_expr *expr)
454 int i;
455 pet_expr *dup;
457 if (!expr)
458 return NULL;
460 dup = pet_expr_alloc(expr->ctx, expr->type);
461 dup = pet_expr_set_type_size(dup, expr->type_size);
462 dup = pet_expr_set_n_arg(dup, expr->n_arg);
463 for (i = 0; i < expr->n_arg; ++i)
464 dup = pet_expr_set_arg(dup, i, pet_expr_copy(expr->args[i]));
466 switch (expr->type) {
467 case pet_expr_access:
468 if (expr->acc.ref_id)
469 dup = pet_expr_access_set_ref_id(dup,
470 isl_id_copy(expr->acc.ref_id));
471 dup = pet_expr_access_set_access(dup,
472 isl_map_copy(expr->acc.access));
473 dup = pet_expr_access_set_index(dup,
474 isl_multi_pw_aff_copy(expr->acc.index));
475 dup = pet_expr_access_set_read(dup, expr->acc.read);
476 dup = pet_expr_access_set_write(dup, expr->acc.write);
477 break;
478 case pet_expr_call:
479 dup = pet_expr_call_set_name(dup, expr->name);
480 break;
481 case pet_expr_cast:
482 dup = pet_expr_cast_set_type_name(dup, expr->type_name);
483 break;
484 case pet_expr_double:
485 dup = pet_expr_double_set(dup, expr->d.val, expr->d.s);
486 break;
487 case pet_expr_int:
488 dup = pet_expr_int_set_val(dup, isl_val_copy(expr->i));
489 break;
490 case pet_expr_op:
491 dup = pet_expr_op_set_type(dup, expr->op);
492 break;
493 case pet_expr_error:
494 dup = pet_expr_free(dup);
495 break;
498 return dup;
501 __isl_give pet_expr *pet_expr_cow(__isl_take pet_expr *expr)
503 if (!expr)
504 return NULL;
506 if (expr->ref == 1)
507 return expr;
508 expr->ref--;
509 return pet_expr_dup(expr);
512 __isl_null pet_expr *pet_expr_free(__isl_take pet_expr *expr)
514 int i;
516 if (!expr)
517 return NULL;
518 if (--expr->ref > 0)
519 return NULL;
521 for (i = 0; i < expr->n_arg; ++i)
522 pet_expr_free(expr->args[i]);
523 free(expr->args);
525 switch (expr->type) {
526 case pet_expr_access:
527 isl_id_free(expr->acc.ref_id);
528 isl_map_free(expr->acc.access);
529 isl_multi_pw_aff_free(expr->acc.index);
530 break;
531 case pet_expr_call:
532 free(expr->name);
533 break;
534 case pet_expr_cast:
535 free(expr->type_name);
536 break;
537 case pet_expr_double:
538 free(expr->d.s);
539 break;
540 case pet_expr_int:
541 isl_val_free(expr->i);
542 break;
543 case pet_expr_op:
544 case pet_expr_error:
545 break;
548 isl_ctx_deref(expr->ctx);
549 free(expr);
550 return NULL;
553 /* Return an additional reference to "expr".
555 __isl_give pet_expr *pet_expr_copy(__isl_keep pet_expr *expr)
557 if (!expr)
558 return NULL;
560 expr->ref++;
561 return expr;
564 /* Return the isl_ctx in which "expr" was created.
566 isl_ctx *pet_expr_get_ctx(__isl_keep pet_expr *expr)
568 return expr ? expr->ctx : NULL;
571 /* Return the type of "expr".
573 enum pet_expr_type pet_expr_get_type(__isl_keep pet_expr *expr)
575 if (!expr)
576 return pet_expr_error;
577 return expr->type;
580 /* Return the number of arguments of "expr".
582 int pet_expr_get_n_arg(__isl_keep pet_expr *expr)
584 if (!expr)
585 return -1;
587 return expr->n_arg;
590 /* Set the number of arguments of "expr" to "n".
592 * If "expr" originally had more arguments, then remove the extra arguments.
593 * If "expr" originally had fewer arguments, then create space for
594 * the extra arguments ans initialize them to NULL.
596 __isl_give pet_expr *pet_expr_set_n_arg(__isl_take pet_expr *expr, int n)
598 int i;
599 pet_expr **args;
601 if (!expr)
602 return NULL;
603 if (expr->n_arg == n)
604 return expr;
605 expr = pet_expr_cow(expr);
606 if (!expr)
607 return NULL;
609 if (n < expr->n_arg) {
610 for (i = n; i < expr->n_arg; ++i)
611 pet_expr_free(expr->args[i]);
612 expr->n_arg = n;
613 return expr;
616 args = isl_realloc_array(expr->ctx, expr->args, pet_expr *, n);
617 if (!args)
618 return pet_expr_free(expr);
619 expr->args = args;
620 for (i = expr->n_arg; i < n; ++i)
621 expr->args[i] = NULL;
622 expr->n_arg = n;
624 return expr;
627 /* Return the argument of "expr" at position "pos".
629 __isl_give pet_expr *pet_expr_get_arg(__isl_keep pet_expr *expr, int pos)
631 if (!expr)
632 return NULL;
633 if (pos < 0 || pos >= expr->n_arg)
634 isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
635 "position out of bounds", return NULL);
637 return pet_expr_copy(expr->args[pos]);
640 /* Replace the argument of "expr" at position "pos" by "arg".
642 __isl_give pet_expr *pet_expr_set_arg(__isl_take pet_expr *expr, int pos,
643 __isl_take pet_expr *arg)
645 if (!expr || !arg)
646 goto error;
647 if (pos < 0 || pos >= expr->n_arg)
648 isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
649 "position out of bounds", goto error);
650 if (expr->args[pos] == arg) {
651 pet_expr_free(arg);
652 return expr;
655 expr = pet_expr_cow(expr);
656 if (!expr)
657 goto error;
659 pet_expr_free(expr->args[pos]);
660 expr->args[pos] = arg;
662 return expr;
663 error:
664 pet_expr_free(expr);
665 pet_expr_free(arg);
666 return NULL;
669 /* Does "expr" perform a comparison operation?
671 int pet_expr_is_comparison(__isl_keep pet_expr *expr)
673 if (!expr)
674 return -1;
675 if (expr->type != pet_expr_op)
676 return 0;
677 switch (expr->op) {
678 case pet_op_eq:
679 case pet_op_ne:
680 case pet_op_le:
681 case pet_op_ge:
682 case pet_op_lt:
683 case pet_op_gt:
684 return 1;
685 default:
686 return 0;
690 /* Does "expr" perform a boolean operation?
692 int pet_expr_is_boolean(__isl_keep pet_expr *expr)
694 if (!expr)
695 return -1;
696 if (expr->type != pet_expr_op)
697 return 0;
698 switch (expr->op) {
699 case pet_op_land:
700 case pet_op_lor:
701 case pet_op_lnot:
702 return 1;
703 default:
704 return 0;
708 /* Is "expr" an assume statement?
710 int pet_expr_is_assume(__isl_keep pet_expr *expr)
712 if (!expr)
713 return -1;
714 if (expr->type != pet_expr_op)
715 return 0;
716 return expr->op == pet_op_assume;
719 /* Does "expr" perform a min operation?
721 int pet_expr_is_min(__isl_keep pet_expr *expr)
723 if (!expr)
724 return -1;
725 if (expr->type != pet_expr_call)
726 return 0;
727 if (expr->n_arg != 2)
728 return 0;
729 if (strcmp(expr->name, "min") != 0)
730 return 0;
731 return 1;
734 /* Does "expr" perform a max operation?
736 int pet_expr_is_max(__isl_keep pet_expr *expr)
738 if (!expr)
739 return -1;
740 if (expr->type != pet_expr_call)
741 return 0;
742 if (expr->n_arg != 2)
743 return 0;
744 if (strcmp(expr->name, "max") != 0)
745 return 0;
746 return 1;
749 /* Does "expr" represent an access to an unnamed space, i.e.,
750 * does it represent an affine expression?
752 int pet_expr_is_affine(__isl_keep pet_expr *expr)
754 int has_id;
756 if (!expr)
757 return -1;
758 if (expr->type != pet_expr_access)
759 return 0;
761 has_id = isl_multi_pw_aff_has_tuple_id(expr->acc.index, isl_dim_out);
762 if (has_id < 0)
763 return -1;
765 return !has_id;
768 /* Does "expr" represent an access to a scalar, i.e., a zero-dimensional array,
769 * not part of any struct?
771 int pet_expr_is_scalar_access(__isl_keep pet_expr *expr)
773 if (!expr)
774 return -1;
775 if (expr->type != pet_expr_access)
776 return 0;
777 if (isl_map_range_is_wrapping(expr->acc.access))
778 return 0;
780 return isl_map_dim(expr->acc.access, isl_dim_out) == 0;
783 /* Are "mpa1" and "mpa2" obviously equal to each other, up to reordering
784 * of parameters.
786 static int multi_pw_aff_is_equal(__isl_keep isl_multi_pw_aff *mpa1,
787 __isl_keep isl_multi_pw_aff *mpa2)
789 int equal;
791 equal = isl_multi_pw_aff_plain_is_equal(mpa1, mpa2);
792 if (equal < 0 || equal)
793 return equal;
794 mpa2 = isl_multi_pw_aff_copy(mpa2);
795 mpa2 = isl_multi_pw_aff_align_params(mpa2,
796 isl_multi_pw_aff_get_space(mpa1));
797 equal = isl_multi_pw_aff_plain_is_equal(mpa1, mpa2);
798 isl_multi_pw_aff_free(mpa2);
800 return equal;
803 /* Return 1 if the two pet_exprs are equivalent.
805 int pet_expr_is_equal(__isl_keep pet_expr *expr1, __isl_keep pet_expr *expr2)
807 int i;
809 if (!expr1 || !expr2)
810 return 0;
812 if (expr1->type != expr2->type)
813 return 0;
814 if (expr1->n_arg != expr2->n_arg)
815 return 0;
816 for (i = 0; i < expr1->n_arg; ++i)
817 if (!pet_expr_is_equal(expr1->args[i], expr2->args[i]))
818 return 0;
819 switch (expr1->type) {
820 case pet_expr_error:
821 return -1;
822 case pet_expr_double:
823 if (strcmp(expr1->d.s, expr2->d.s))
824 return 0;
825 if (expr1->d.val != expr2->d.val)
826 return 0;
827 break;
828 case pet_expr_int:
829 if (!isl_val_eq(expr1->i, expr2->i))
830 return 0;
831 break;
832 case pet_expr_access:
833 if (expr1->acc.read != expr2->acc.read)
834 return 0;
835 if (expr1->acc.write != expr2->acc.write)
836 return 0;
837 if (expr1->acc.ref_id != expr2->acc.ref_id)
838 return 0;
839 if (!expr1->acc.access || !expr2->acc.access)
840 return 0;
841 if (!isl_map_is_equal(expr1->acc.access, expr2->acc.access))
842 return 0;
843 if (!expr1->acc.index || !expr2->acc.index)
844 return 0;
845 if (!multi_pw_aff_is_equal(expr1->acc.index, expr2->acc.index))
846 return 0;
847 break;
848 case pet_expr_op:
849 if (expr1->op != expr2->op)
850 return 0;
851 break;
852 case pet_expr_call:
853 if (strcmp(expr1->name, expr2->name))
854 return 0;
855 break;
856 case pet_expr_cast:
857 if (strcmp(expr1->type_name, expr2->type_name))
858 return 0;
859 break;
862 return 1;
865 /* Does the access expression "expr" read the accessed elements?
867 int pet_expr_access_is_read(__isl_keep pet_expr *expr)
869 if (!expr)
870 return -1;
871 if (expr->type != pet_expr_access)
872 isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
873 "not an access expression", return -1);
875 return expr->acc.read;
878 /* Does the access expression "expr" write to the accessed elements?
880 int pet_expr_access_is_write(__isl_keep pet_expr *expr)
882 if (!expr)
883 return -1;
884 if (expr->type != pet_expr_access)
885 isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
886 "not an access expression", return -1);
888 return expr->acc.write;
891 /* Return the identifier of the array accessed by "expr".
893 * If "expr" represents a member access, then return the identifier
894 * of the outer structure array.
896 __isl_give isl_id *pet_expr_access_get_id(__isl_keep pet_expr *expr)
898 if (!expr)
899 return NULL;
900 if (expr->type != pet_expr_access)
901 isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
902 "not an access expression", return NULL);
904 if (isl_multi_pw_aff_range_is_wrapping(expr->acc.index)) {
905 isl_space *space;
906 isl_id *id;
908 space = isl_multi_pw_aff_get_space(expr->acc.index);
909 space = isl_space_range(space);
910 while (space && isl_space_is_wrapping(space))
911 space = isl_space_domain(isl_space_unwrap(space));
912 id = isl_space_get_tuple_id(space, isl_dim_set);
913 isl_space_free(space);
915 return id;
918 return isl_multi_pw_aff_get_tuple_id(expr->acc.index, isl_dim_out);
921 /* Return the parameter space of "expr".
923 __isl_give isl_space *pet_expr_access_get_parameter_space(
924 __isl_keep pet_expr *expr)
926 isl_space *space;
928 if (!expr)
929 return NULL;
930 if (expr->type != pet_expr_access)
931 isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
932 "not an access expression", return NULL);
934 space = isl_multi_pw_aff_get_space(expr->acc.index);
935 space = isl_space_params(space);
937 return space;
940 /* Return the domain space of "expr", without the arguments (if any).
942 __isl_give isl_space *pet_expr_access_get_domain_space(
943 __isl_keep pet_expr *expr)
945 isl_space *space;
947 if (!expr)
948 return NULL;
949 if (expr->type != pet_expr_access)
950 isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
951 "not an access expression", return NULL);
953 space = isl_multi_pw_aff_get_space(expr->acc.index);
954 space = isl_space_domain(space);
955 if (isl_space_is_wrapping(space))
956 space = isl_space_domain(isl_space_unwrap(space));
958 return space;
961 /* Return the space of the data accessed by "expr".
963 __isl_give isl_space *pet_expr_access_get_data_space(__isl_keep pet_expr *expr)
965 isl_space *space;
967 if (!expr)
968 return NULL;
969 if (expr->type != pet_expr_access)
970 isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
971 "not an access expression", return NULL);
973 space = isl_multi_pw_aff_get_space(expr->acc.index);
974 space = isl_space_range(space);
976 return space;
979 /* Modify all expressions of type pet_expr_access in "expr"
980 * by calling "fn" on them.
982 __isl_give pet_expr *pet_expr_map_access(__isl_take pet_expr *expr,
983 __isl_give pet_expr *(*fn)(__isl_take pet_expr *expr, void *user),
984 void *user)
986 int i, n;
988 n = pet_expr_get_n_arg(expr);
989 for (i = 0; i < n; ++i) {
990 pet_expr *arg = pet_expr_get_arg(expr, i);
991 arg = pet_expr_map_access(arg, fn, user);
992 expr = pet_expr_set_arg(expr, i, arg);
995 if (!expr)
996 return NULL;
998 if (expr->type == pet_expr_access)
999 expr = fn(expr, user);
1001 return expr;
1004 /* Call "fn" on each of the subexpressions of "expr" of type "type".
1006 * Return -1 on error (where fn returning a negative value is treated as
1007 * an error).
1008 * Otherwise return 0.
1010 int pet_expr_foreach_expr_of_type(__isl_keep pet_expr *expr,
1011 enum pet_expr_type type,
1012 int (*fn)(__isl_keep pet_expr *expr, void *user), void *user)
1014 int i;
1016 if (!expr)
1017 return -1;
1019 for (i = 0; i < expr->n_arg; ++i)
1020 if (pet_expr_foreach_expr_of_type(expr->args[i],
1021 type, fn, user) < 0)
1022 return -1;
1024 if (expr->type == type)
1025 return fn(expr, user);
1027 return 0;
1030 /* Call "fn" on each of the subexpressions of "expr" of type pet_expr_access.
1032 * Return -1 on error (where fn returning a negative value is treated as
1033 * an error).
1034 * Otherwise return 0.
1036 int pet_expr_foreach_access_expr(__isl_keep pet_expr *expr,
1037 int (*fn)(__isl_keep pet_expr *expr, void *user), void *user)
1039 return pet_expr_foreach_expr_of_type(expr, pet_expr_access, fn, user);
1042 /* Call "fn" on each of the subexpressions of "expr" of type pet_expr_call.
1044 * Return -1 on error (where fn returning a negative value is treated as
1045 * an error).
1046 * Otherwise return 0.
1048 int pet_expr_foreach_call_expr(__isl_keep pet_expr *expr,
1049 int (*fn)(__isl_keep pet_expr *expr, void *user), void *user)
1051 return pet_expr_foreach_expr_of_type(expr, pet_expr_call, fn, user);
1054 /* Internal data structure for pet_expr_writes.
1055 * "id" is the identifier that we are looking for.
1056 * "found" is set if we have found the identifier being written to.
1058 struct pet_expr_writes_data {
1059 isl_id *id;
1060 int found;
1063 /* Given an access expression, check if it writes to data->id.
1064 * If so, set data->found and abort the search.
1066 static int writes(__isl_keep pet_expr *expr, void *user)
1068 struct pet_expr_writes_data *data = user;
1069 isl_id *write_id;
1071 if (!expr->acc.write)
1072 return 0;
1073 if (pet_expr_is_affine(expr))
1074 return 0;
1076 write_id = pet_expr_access_get_id(expr);
1077 isl_id_free(write_id);
1079 if (!write_id)
1080 return -1;
1082 if (write_id != data->id)
1083 return 0;
1085 data->found = 1;
1086 return -1;
1089 /* Does expression "expr" write to "id"?
1091 int pet_expr_writes(__isl_keep pet_expr *expr, __isl_keep isl_id *id)
1093 struct pet_expr_writes_data data;
1095 data.id = id;
1096 data.found = 0;
1097 if (pet_expr_foreach_access_expr(expr, &writes, &data) < 0 &&
1098 !data.found)
1099 return -1;
1101 return data.found;
1104 /* Move the "n" dimensions of "src_type" starting at "src_pos" of
1105 * index expression and access relation of "expr"
1106 * to dimensions of "dst_type" at "dst_pos".
1108 __isl_give pet_expr *pet_expr_access_move_dims(__isl_take pet_expr *expr,
1109 enum isl_dim_type dst_type, unsigned dst_pos,
1110 enum isl_dim_type src_type, unsigned src_pos, unsigned n)
1112 expr = pet_expr_cow(expr);
1113 if (!expr)
1114 return NULL;
1115 if (expr->type != pet_expr_access)
1116 isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
1117 "not an access pet_expr", return pet_expr_free(expr));
1119 expr->acc.access = isl_map_move_dims(expr->acc.access,
1120 dst_type, dst_pos, src_type, src_pos, n);
1121 expr->acc.index = isl_multi_pw_aff_move_dims(expr->acc.index,
1122 dst_type, dst_pos, src_type, src_pos, n);
1123 if (!expr->acc.access || !expr->acc.index)
1124 return pet_expr_free(expr);
1126 return expr;
1129 /* Replace the index expression and access relation of "expr"
1130 * by their preimages under the function represented by "ma".
1132 __isl_give pet_expr *pet_expr_access_pullback_multi_aff(
1133 __isl_take pet_expr *expr, __isl_take isl_multi_aff *ma)
1135 expr = pet_expr_cow(expr);
1136 if (!expr || !ma)
1137 goto error;
1138 if (expr->type != pet_expr_access)
1139 isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
1140 "not an access pet_expr", goto error);
1142 expr->acc.access = isl_map_preimage_domain_multi_aff(expr->acc.access,
1143 isl_multi_aff_copy(ma));
1144 expr->acc.index = isl_multi_pw_aff_pullback_multi_aff(expr->acc.index,
1145 ma);
1146 if (!expr->acc.access || !expr->acc.index)
1147 return pet_expr_free(expr);
1149 return expr;
1150 error:
1151 isl_multi_aff_free(ma);
1152 pet_expr_free(expr);
1153 return NULL;
1156 /* Replace the index expression and access relation of "expr"
1157 * by their preimages under the function represented by "mpa".
1159 __isl_give pet_expr *pet_expr_access_pullback_multi_pw_aff(
1160 __isl_take pet_expr *expr, __isl_take isl_multi_pw_aff *mpa)
1162 expr = pet_expr_cow(expr);
1163 if (!expr || !mpa)
1164 goto error;
1165 if (expr->type != pet_expr_access)
1166 isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
1167 "not an access pet_expr", goto error);
1169 expr->acc.access = isl_map_preimage_domain_multi_pw_aff(
1170 expr->acc.access, isl_multi_pw_aff_copy(mpa));
1171 expr->acc.index = isl_multi_pw_aff_pullback_multi_pw_aff(
1172 expr->acc.index, mpa);
1173 if (!expr->acc.access || !expr->acc.index)
1174 return pet_expr_free(expr);
1176 return expr;
1177 error:
1178 isl_multi_pw_aff_free(mpa);
1179 pet_expr_free(expr);
1180 return NULL;
1183 /* Return the access relation of access expression "expr".
1185 __isl_give isl_map *pet_expr_access_get_access(__isl_keep pet_expr *expr)
1187 if (!expr)
1188 return NULL;
1189 if (expr->type != pet_expr_access)
1190 isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
1191 "not an access expression", return NULL);
1193 return isl_map_copy(expr->acc.access);
1196 /* Return the index expression of access expression "expr".
1198 __isl_give isl_multi_pw_aff *pet_expr_access_get_index(
1199 __isl_keep pet_expr *expr)
1201 if (!expr)
1202 return NULL;
1203 if (expr->type != pet_expr_access)
1204 isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
1205 "not an access expression", return NULL);
1207 return isl_multi_pw_aff_copy(expr->acc.index);
1210 /* Align the parameters of expr->acc.index and expr->acc.access.
1212 __isl_give pet_expr *pet_expr_access_align_params(__isl_take pet_expr *expr)
1214 expr = pet_expr_cow(expr);
1215 if (!expr)
1216 return NULL;
1217 if (expr->type != pet_expr_access)
1218 isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
1219 "not an access expression", return pet_expr_free(expr));
1221 expr->acc.access = isl_map_align_params(expr->acc.access,
1222 isl_multi_pw_aff_get_space(expr->acc.index));
1223 expr->acc.index = isl_multi_pw_aff_align_params(expr->acc.index,
1224 isl_map_get_space(expr->acc.access));
1225 if (!expr->acc.access || !expr->acc.index)
1226 return pet_expr_free(expr);
1228 return expr;
1231 /* Are "expr1" and "expr2" both array accesses such that
1232 * the access relation of "expr1" is a subset of that of "expr2"?
1233 * Only take into account the first "n_arg" arguments.
1235 * This function is tailored for use by mark_self_dependences in nest.c.
1236 * In particular, the input expressions may have more than "n_arg"
1237 * elements in their arguments arrays, while only the first "n_arg"
1238 * elements are referenced from the access relations.
1240 int pet_expr_is_sub_access(__isl_keep pet_expr *expr1,
1241 __isl_keep pet_expr *expr2, int n_arg)
1243 isl_id *id1, *id2;
1244 int i, n1, n2;
1246 if (!expr1 || !expr2)
1247 return 0;
1248 if (pet_expr_get_type(expr1) != pet_expr_access)
1249 return 0;
1250 if (pet_expr_get_type(expr2) != pet_expr_access)
1251 return 0;
1252 if (pet_expr_is_affine(expr1))
1253 return 0;
1254 if (pet_expr_is_affine(expr2))
1255 return 0;
1256 n1 = pet_expr_get_n_arg(expr1);
1257 if (n1 > n_arg)
1258 n1 = n_arg;
1259 n2 = pet_expr_get_n_arg(expr2);
1260 if (n2 > n_arg)
1261 n2 = n_arg;
1262 if (n1 != n2)
1263 return 0;
1264 for (i = 0; i < n1; ++i) {
1265 int equal;
1266 equal = pet_expr_is_equal(expr1->args[i], expr2->args[i]);
1267 if (equal < 0 || !equal)
1268 return equal;
1270 id1 = pet_expr_access_get_id(expr1);
1271 id2 = pet_expr_access_get_id(expr2);
1272 isl_id_free(id1);
1273 isl_id_free(id2);
1274 if (!id1 || !id2)
1275 return 0;
1276 if (id1 != id2)
1277 return 0;
1279 return isl_map_is_subset(expr1->acc.access, expr2->acc.access);
1282 /* Given a set in the iteration space "domain", extend it to live in the space
1283 * of the domain of access relations.
1285 * That, is the number of arguments "n" is 0, then simply return domain.
1286 * Otherwise, return [domain -> [a_1,...,a_n]].
1288 static __isl_give isl_set *add_arguments(__isl_take isl_set *domain, int n)
1290 isl_map *map;
1292 if (n == 0)
1293 return domain;
1295 map = isl_map_from_domain(domain);
1296 map = isl_map_add_dims(map, isl_dim_out, n);
1297 return isl_map_wrap(map);
1300 /* Add extra conditions to the domains of all access relations in "expr".
1302 * The conditions are not added to the index expression. Instead, they
1303 * are used to try and simplify the index expression.
1305 __isl_give pet_expr *pet_expr_restrict(__isl_take pet_expr *expr,
1306 __isl_take isl_set *cond)
1308 int i;
1310 expr = pet_expr_cow(expr);
1311 if (!expr)
1312 goto error;
1314 for (i = 0; i < expr->n_arg; ++i) {
1315 expr->args[i] = pet_expr_restrict(expr->args[i],
1316 isl_set_copy(cond));
1317 if (!expr->args[i])
1318 goto error;
1321 if (expr->type == pet_expr_access) {
1322 cond = add_arguments(cond, expr->n_arg);
1323 expr->acc.access = isl_map_intersect_domain(expr->acc.access,
1324 isl_set_copy(cond));
1325 expr->acc.index = isl_multi_pw_aff_gist(expr->acc.index,
1326 isl_set_copy(cond));
1327 if (!expr->acc.access || !expr->acc.index)
1328 goto error;
1331 isl_set_free(cond);
1332 return expr;
1333 error:
1334 isl_set_free(cond);
1335 return pet_expr_free(expr);
1338 /* Modify the access relation and index expression
1339 * of the given access expression
1340 * based on the given iteration space transformation.
1341 * In particular, precompose the access relation and index expression
1342 * with the update function.
1344 * If the access has any arguments then the domain of the access relation
1345 * is a wrapped mapping from the iteration space to the space of
1346 * argument values. We only need to change the domain of this wrapped
1347 * mapping, so we extend the input transformation with an identity mapping
1348 * on the space of argument values.
1350 __isl_give pet_expr *pet_expr_access_update_domain(__isl_take pet_expr *expr,
1351 __isl_keep isl_multi_pw_aff *update)
1353 expr = pet_expr_cow(expr);
1354 if (!expr)
1355 return NULL;
1356 if (expr->type != pet_expr_access)
1357 isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
1358 "not an access expression", return pet_expr_free(expr));
1360 update = isl_multi_pw_aff_copy(update);
1362 if (expr->n_arg > 0) {
1363 isl_space *space;
1364 isl_multi_pw_aff *id;
1366 space = isl_multi_pw_aff_get_space(expr->acc.index);
1367 space = isl_space_domain(space);
1368 space = isl_space_unwrap(space);
1369 space = isl_space_range(space);
1370 space = isl_space_map_from_set(space);
1371 id = isl_multi_pw_aff_identity(space);
1372 update = isl_multi_pw_aff_product(update, id);
1375 expr->acc.access = isl_map_preimage_domain_multi_pw_aff(
1376 expr->acc.access,
1377 isl_multi_pw_aff_copy(update));
1378 expr->acc.index = isl_multi_pw_aff_pullback_multi_pw_aff(
1379 expr->acc.index, update);
1380 if (!expr->acc.access || !expr->acc.index)
1381 return pet_expr_free(expr);
1383 return expr;
1386 static __isl_give pet_expr *update_domain(__isl_take pet_expr *expr, void *user)
1388 isl_multi_pw_aff *update = user;
1390 return pet_expr_access_update_domain(expr, update);
1393 /* Modify all access relations in "expr" by precomposing them with
1394 * the given iteration space transformation.
1396 __isl_give pet_expr *pet_expr_update_domain(__isl_take pet_expr *expr,
1397 __isl_take isl_multi_pw_aff *update)
1399 expr = pet_expr_map_access(expr, &update_domain, update);
1400 isl_multi_pw_aff_free(update);
1401 return expr;
1404 /* Given an expression with accesses that have a 0D anonymous domain,
1405 * replace those domains by "space".
1407 __isl_give pet_expr *pet_expr_insert_domain(__isl_take pet_expr *expr,
1408 __isl_take isl_space *space)
1410 isl_multi_pw_aff *mpa;
1412 space = isl_space_from_domain(space);
1413 mpa = isl_multi_pw_aff_zero(space);
1414 return pet_expr_update_domain(expr, mpa);
1417 /* Add all parameters in "space" to the access relation and index expression
1418 * of "expr".
1420 static __isl_give pet_expr *align_params(__isl_take pet_expr *expr, void *user)
1422 isl_space *space = user;
1424 expr = pet_expr_cow(expr);
1425 if (!expr)
1426 return NULL;
1427 if (expr->type != pet_expr_access)
1428 isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
1429 "not an access expression", return pet_expr_free(expr));
1431 expr->acc.access = isl_map_align_params(expr->acc.access,
1432 isl_space_copy(space));
1433 expr->acc.index = isl_multi_pw_aff_align_params(expr->acc.index,
1434 isl_space_copy(space));
1435 if (!expr->acc.access || !expr->acc.index)
1436 return pet_expr_free(expr);
1438 return expr;
1441 /* Add all parameters in "space" to all access relations and index expressions
1442 * in "expr".
1444 __isl_give pet_expr *pet_expr_align_params(__isl_take pet_expr *expr,
1445 __isl_take isl_space *space)
1447 expr = pet_expr_map_access(expr, &align_params, space);
1448 isl_space_free(space);
1449 return expr;
1452 /* Insert an argument expression corresponding to "test" in front
1453 * of the list of arguments described by *n_arg and *args.
1455 static __isl_give pet_expr *insert_access_arg(__isl_take pet_expr *expr,
1456 __isl_keep isl_multi_pw_aff *test)
1458 int i;
1459 isl_ctx *ctx = isl_multi_pw_aff_get_ctx(test);
1461 if (!test)
1462 return pet_expr_free(expr);
1463 expr = pet_expr_cow(expr);
1464 if (!expr)
1465 return NULL;
1467 if (!expr->args) {
1468 expr->args = isl_calloc_array(ctx, pet_expr *, 1);
1469 if (!expr->args)
1470 return pet_expr_free(expr);
1471 } else {
1472 pet_expr **ext;
1473 ext = isl_calloc_array(ctx, pet_expr *, 1 + expr->n_arg);
1474 if (!ext)
1475 return pet_expr_free(expr);
1476 for (i = 0; i < expr->n_arg; ++i)
1477 ext[1 + i] = expr->args[i];
1478 free(expr->args);
1479 expr->args = ext;
1481 expr->n_arg++;
1482 expr->args[0] = pet_expr_from_index(isl_multi_pw_aff_copy(test));
1483 if (!expr->args[0])
1484 return pet_expr_free(expr);
1486 return expr;
1489 /* Make the expression "expr" depend on the value of "test"
1490 * being equal to "satisfied".
1492 * If "test" is an affine expression, we simply add the conditions
1493 * on the expression having the value "satisfied" to all access relations
1494 * and index expressions.
1496 * Otherwise, we add a filter to "expr" (which is then assumed to be
1497 * an access expression) corresponding to "test" being equal to "satisfied".
1499 __isl_give pet_expr *pet_expr_filter(__isl_take pet_expr *expr,
1500 __isl_take isl_multi_pw_aff *test, int satisfied)
1502 isl_id *id;
1503 isl_ctx *ctx;
1504 isl_space *space;
1505 isl_pw_multi_aff *pma;
1507 expr = pet_expr_cow(expr);
1508 if (!expr || !test)
1509 goto error;
1511 if (!isl_multi_pw_aff_has_tuple_id(test, isl_dim_out)) {
1512 isl_pw_aff *pa;
1513 isl_set *cond;
1515 pa = isl_multi_pw_aff_get_pw_aff(test, 0);
1516 isl_multi_pw_aff_free(test);
1517 if (satisfied)
1518 cond = isl_pw_aff_non_zero_set(pa);
1519 else
1520 cond = isl_pw_aff_zero_set(pa);
1521 return pet_expr_restrict(expr, cond);
1524 ctx = isl_multi_pw_aff_get_ctx(test);
1525 if (expr->type != pet_expr_access)
1526 isl_die(ctx, isl_error_invalid,
1527 "can only filter access expressions", goto error);
1529 space = isl_space_domain(isl_multi_pw_aff_get_space(expr->acc.index));
1530 id = isl_multi_pw_aff_get_tuple_id(test, isl_dim_out);
1531 pma = pet_filter_insert_pma(space, id, satisfied);
1533 expr->acc.access = isl_map_preimage_domain_pw_multi_aff(
1534 expr->acc.access,
1535 isl_pw_multi_aff_copy(pma));
1536 pma = isl_pw_multi_aff_gist(pma,
1537 isl_pw_multi_aff_domain(isl_pw_multi_aff_copy(pma)));
1538 expr->acc.index = isl_multi_pw_aff_pullback_pw_multi_aff(
1539 expr->acc.index, pma);
1540 if (!expr->acc.access || !expr->acc.index)
1541 goto error;
1543 expr = insert_access_arg(expr, test);
1545 isl_multi_pw_aff_free(test);
1546 return expr;
1547 error:
1548 isl_multi_pw_aff_free(test);
1549 return pet_expr_free(expr);
1552 /* Add a reference identifier to access expression "expr".
1553 * "user" points to an integer that contains the sequence number
1554 * of the next reference.
1556 static __isl_give pet_expr *access_add_ref_id(__isl_take pet_expr *expr,
1557 void *user)
1559 isl_ctx *ctx;
1560 char name[50];
1561 int *n_ref = user;
1563 expr = pet_expr_cow(expr);
1564 if (!expr)
1565 return expr;
1566 if (expr->type != pet_expr_access)
1567 isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
1568 "not an access expression", return pet_expr_free(expr));
1570 ctx = pet_expr_get_ctx(expr);
1571 snprintf(name, sizeof(name), "__pet_ref_%d", (*n_ref)++);
1572 expr->acc.ref_id = isl_id_alloc(ctx, name, NULL);
1573 if (!expr->acc.ref_id)
1574 return pet_expr_free(expr);
1576 return expr;
1579 __isl_give pet_expr *pet_expr_add_ref_ids(__isl_take pet_expr *expr, int *n_ref)
1581 return pet_expr_map_access(expr, &access_add_ref_id, n_ref);
1584 /* Reset the user pointer on all parameter and tuple ids in
1585 * the access relation and the index expressions
1586 * of the access expression "expr".
1588 static __isl_give pet_expr *access_anonymize(__isl_take pet_expr *expr,
1589 void *user)
1591 expr = pet_expr_cow(expr);
1592 if (!expr)
1593 return expr;
1594 if (expr->type != pet_expr_access)
1595 isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
1596 "not an access expression", return pet_expr_free(expr));
1598 expr->acc.access = isl_map_reset_user(expr->acc.access);
1599 expr->acc.index = isl_multi_pw_aff_reset_user(expr->acc.index);
1600 if (!expr->acc.access || !expr->acc.index)
1601 return pet_expr_free(expr);
1603 return expr;
1606 __isl_give pet_expr *pet_expr_anonymize(__isl_take pet_expr *expr)
1608 return pet_expr_map_access(expr, &access_anonymize, NULL);
1611 /* Data used in access_gist() callback.
1613 struct pet_access_gist_data {
1614 isl_set *domain;
1615 isl_union_map *value_bounds;
1618 /* Given an expression "expr" of type pet_expr_access, compute
1619 * the gist of the associated access relation and index expression
1620 * with respect to data->domain and the bounds on the values of the arguments
1621 * of the expression.
1623 * The arguments of "expr" have been gisted right before "expr" itself
1624 * is gisted. The gisted arguments may have become equal where before
1625 * they may not have been (obviously) equal. We therefore take
1626 * the opportunity to remove duplicate arguments here.
1628 static __isl_give pet_expr *access_gist(__isl_take pet_expr *expr, void *user)
1630 struct pet_access_gist_data *data = user;
1631 isl_set *domain;
1633 expr = pet_expr_remove_duplicate_args(expr);
1634 expr = pet_expr_cow(expr);
1635 if (!expr)
1636 return expr;
1637 if (expr->type != pet_expr_access)
1638 isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
1639 "not an access expression", return pet_expr_free(expr));
1641 domain = isl_set_copy(data->domain);
1642 if (expr->n_arg > 0)
1643 domain = pet_value_bounds_apply(domain, expr->n_arg, expr->args,
1644 data->value_bounds);
1646 expr->acc.access = isl_map_gist_domain(expr->acc.access,
1647 isl_set_copy(domain));
1648 expr->acc.index = isl_multi_pw_aff_gist(expr->acc.index, domain);
1649 if (!expr->acc.access || !expr->acc.index)
1650 return pet_expr_free(expr);
1652 return expr;
1655 __isl_give pet_expr *pet_expr_gist(__isl_take pet_expr *expr,
1656 __isl_keep isl_set *context, __isl_keep isl_union_map *value_bounds)
1658 struct pet_access_gist_data data = { context, value_bounds };
1660 return pet_expr_map_access(expr, &access_gist, &data);
1663 /* Mark "expr" as a read dependening on "read".
1665 __isl_give pet_expr *pet_expr_access_set_read(__isl_take pet_expr *expr,
1666 int read)
1668 if (!expr)
1669 return pet_expr_free(expr);
1670 if (expr->type != pet_expr_access)
1671 isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
1672 "not an access expression", return pet_expr_free(expr));
1673 if (expr->acc.read == read)
1674 return expr;
1675 expr = pet_expr_cow(expr);
1676 if (!expr)
1677 return NULL;
1678 expr->acc.read = read;
1680 return expr;
1683 /* Mark "expr" as a write dependening on "write".
1685 __isl_give pet_expr *pet_expr_access_set_write(__isl_take pet_expr *expr,
1686 int write)
1688 if (!expr)
1689 return pet_expr_free(expr);
1690 if (expr->type != pet_expr_access)
1691 isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
1692 "not an access expression", return pet_expr_free(expr));
1693 if (expr->acc.write == write)
1694 return expr;
1695 expr = pet_expr_cow(expr);
1696 if (!expr)
1697 return NULL;
1698 expr->acc.write = write;
1700 return expr;
1703 /* Replace the access relation of "expr" by "access".
1705 __isl_give pet_expr *pet_expr_access_set_access(__isl_take pet_expr *expr,
1706 __isl_take isl_map *access)
1708 expr = pet_expr_cow(expr);
1709 if (!expr || !access)
1710 goto error;
1711 if (expr->type != pet_expr_access)
1712 isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
1713 "not an access expression", goto error);
1714 isl_map_free(expr->acc.access);
1715 expr->acc.access = access;
1717 return expr;
1718 error:
1719 isl_map_free(access);
1720 pet_expr_free(expr);
1721 return NULL;
1724 /* Replace the index expression of "expr" by "index".
1726 __isl_give pet_expr *pet_expr_access_set_index(__isl_take pet_expr *expr,
1727 __isl_take isl_multi_pw_aff *index)
1729 expr = pet_expr_cow(expr);
1730 if (!expr || !index)
1731 goto error;
1732 if (expr->type != pet_expr_access)
1733 isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
1734 "not an access expression", goto error);
1735 isl_multi_pw_aff_free(expr->acc.index);
1736 expr->acc.index = index;
1738 return expr;
1739 error:
1740 isl_multi_pw_aff_free(index);
1741 pet_expr_free(expr);
1742 return NULL;
1745 /* Return the reference identifier of access expression "expr".
1747 __isl_give isl_id *pet_expr_access_get_ref_id(__isl_keep pet_expr *expr)
1749 if (!expr)
1750 return NULL;
1751 if (expr->type != pet_expr_access)
1752 isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
1753 "not an access expression", return NULL);
1755 return isl_id_copy(expr->acc.ref_id);
1758 /* Replace the reference identifier of access expression "expr" by "ref_id".
1760 __isl_give pet_expr *pet_expr_access_set_ref_id(__isl_take pet_expr *expr,
1761 __isl_take isl_id *ref_id)
1763 expr = pet_expr_cow(expr);
1764 if (!expr || !ref_id)
1765 goto error;
1766 if (expr->type != pet_expr_access)
1767 isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
1768 "not an access expression", goto error);
1769 isl_id_free(expr->acc.ref_id);
1770 expr->acc.ref_id = ref_id;
1772 return expr;
1773 error:
1774 isl_id_free(ref_id);
1775 pet_expr_free(expr);
1776 return NULL;
1779 /* Tag the access relation "access" with "id".
1780 * That is, insert the id as the range of a wrapped relation
1781 * in the domain of "access".
1783 * If "access" is of the form
1785 * D[i] -> A[a]
1787 * then the result is of the form
1789 * [D[i] -> id[]] -> A[a]
1791 __isl_give isl_map *pet_expr_tag_access(__isl_keep pet_expr *expr,
1792 __isl_take isl_map *access)
1794 isl_space *space;
1795 isl_map *add_tag;
1796 isl_id *id;
1798 if (expr->type != pet_expr_access)
1799 isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
1800 "not an access expression",
1801 return isl_map_free(access));
1803 id = isl_id_copy(expr->acc.ref_id);
1804 space = isl_space_range(isl_map_get_space(access));
1805 space = isl_space_from_range(space);
1806 space = isl_space_set_tuple_id(space, isl_dim_in, id);
1807 add_tag = isl_map_universe(space);
1808 access = isl_map_domain_product(access, add_tag);
1810 return access;
1813 /* Return the relation mapping pairs of domain iterations and argument
1814 * values to the corresponding accessed data elements.
1816 __isl_give isl_map *pet_expr_access_get_dependent_access(
1817 __isl_keep pet_expr *expr)
1819 if (!expr)
1820 return NULL;
1821 if (expr->type != pet_expr_access)
1822 isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
1823 "not an access expression", return NULL);
1825 return isl_map_copy(expr->acc.access);
1828 /* Return the relation mapping domain iterations to all possibly
1829 * accessed data elements.
1830 * In particular, take the access relation and project out the values
1831 * of the arguments, if any.
1833 __isl_give isl_map *pet_expr_access_get_may_access(__isl_keep pet_expr *expr)
1835 isl_map *access;
1836 isl_space *space;
1837 isl_map *map;
1839 if (!expr)
1840 return NULL;
1841 if (expr->type != pet_expr_access)
1842 isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
1843 "not an access expression", return NULL);
1845 access = pet_expr_access_get_dependent_access(expr);
1846 if (expr->n_arg == 0)
1847 return access;
1849 space = isl_space_domain(isl_map_get_space(access));
1850 map = isl_map_universe(isl_space_unwrap(space));
1851 map = isl_map_domain_map(map);
1852 access = isl_map_apply_domain(access, map);
1854 return access;
1857 /* Return a relation mapping domain iterations to definitely
1858 * accessed data elements, assuming the statement containing
1859 * the expression is executed.
1861 * If there are no arguments, then all elements are accessed.
1862 * Otherwise, we conservatively return an empty relation.
1864 __isl_give isl_map *pet_expr_access_get_must_access(__isl_keep pet_expr *expr)
1866 isl_space *space;
1868 if (!expr)
1869 return NULL;
1870 if (expr->type != pet_expr_access)
1871 isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
1872 "not an access expression", return NULL);
1874 if (expr->n_arg == 0)
1875 return pet_expr_access_get_dependent_access(expr);
1877 space = isl_multi_pw_aff_get_space(expr->acc.index);
1878 space = isl_space_domain_factor_domain(space);
1880 return isl_map_empty(space);
1883 /* Return the relation mapping domain iterations to all possibly
1884 * accessed data elements, with its domain tagged with the reference
1885 * identifier.
1887 __isl_give isl_map *pet_expr_access_get_tagged_may_access(
1888 __isl_keep pet_expr *expr)
1890 isl_map *access;
1892 if (!expr)
1893 return NULL;
1895 access = pet_expr_access_get_may_access(expr);
1896 access = pet_expr_tag_access(expr, access);
1898 return access;
1901 /* Return the operation type of operation expression "expr".
1903 enum pet_op_type pet_expr_op_get_type(__isl_keep pet_expr *expr)
1905 if (!expr)
1906 return pet_op_last;
1907 if (expr->type != pet_expr_op)
1908 isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
1909 "not an operation expression", return pet_op_last);
1911 return expr->op;
1914 /* Replace the operation type of operation expression "expr" by "type".
1916 __isl_give pet_expr *pet_expr_op_set_type(__isl_take pet_expr *expr,
1917 enum pet_op_type type)
1919 if (!expr)
1920 return pet_expr_free(expr);
1921 if (expr->type != pet_expr_op)
1922 isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
1923 "not an operation expression",
1924 return pet_expr_free(expr));
1925 if (expr->op == type)
1926 return expr;
1927 expr = pet_expr_cow(expr);
1928 if (!expr)
1929 return NULL;
1930 expr->op = type;
1932 return expr;
1935 /* Return the name of the function called by "expr".
1937 __isl_keep const char *pet_expr_call_get_name(__isl_keep pet_expr *expr)
1939 if (!expr)
1940 return NULL;
1941 if (expr->type != pet_expr_call)
1942 isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
1943 "not a call expression", return NULL);
1944 return expr->name;
1947 /* Replace the name of the function called by "expr" by "name".
1949 __isl_give pet_expr *pet_expr_call_set_name(__isl_take pet_expr *expr,
1950 __isl_keep const char *name)
1952 expr = pet_expr_cow(expr);
1953 if (!expr || !name)
1954 return pet_expr_free(expr);
1955 if (expr->type != pet_expr_call)
1956 isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
1957 "not a call expression", return pet_expr_free(expr));
1958 free(expr->name);
1959 expr->name = strdup(name);
1960 if (!expr->name)
1961 return pet_expr_free(expr);
1962 return expr;
1965 /* Replace the type of the cast performed by "expr" by "name".
1967 __isl_give pet_expr *pet_expr_cast_set_type_name(__isl_take pet_expr *expr,
1968 __isl_keep const char *name)
1970 expr = pet_expr_cow(expr);
1971 if (!expr || !name)
1972 return pet_expr_free(expr);
1973 if (expr->type != pet_expr_cast)
1974 isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
1975 "not a cast expression", return pet_expr_free(expr));
1976 free(expr->type_name);
1977 expr->type_name = strdup(name);
1978 if (!expr->type_name)
1979 return pet_expr_free(expr);
1980 return expr;
1983 /* Return the value of the integer represented by "expr".
1985 __isl_give isl_val *pet_expr_int_get_val(__isl_keep pet_expr *expr)
1987 if (!expr)
1988 return NULL;
1989 if (expr->type != pet_expr_int)
1990 isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
1991 "not an int expression", return NULL);
1993 return isl_val_copy(expr->i);
1996 /* Replace the value of the integer represented by "expr" by "v".
1998 __isl_give pet_expr *pet_expr_int_set_val(__isl_take pet_expr *expr,
1999 __isl_take isl_val *v)
2001 expr = pet_expr_cow(expr);
2002 if (!expr || !v)
2003 goto error;
2004 if (expr->type != pet_expr_int)
2005 isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
2006 "not an int expression", goto error);
2007 isl_val_free(expr->i);
2008 expr->i = v;
2010 return expr;
2011 error:
2012 isl_val_free(v);
2013 pet_expr_free(expr);
2014 return NULL;
2017 /* Replace the value and string representation of the double
2018 * represented by "expr" by "d" and "s".
2020 __isl_give pet_expr *pet_expr_double_set(__isl_take pet_expr *expr,
2021 double d, __isl_keep const char *s)
2023 expr = pet_expr_cow(expr);
2024 if (!expr || !s)
2025 return pet_expr_free(expr);
2026 if (expr->type != pet_expr_double)
2027 isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
2028 "not a double expression", return pet_expr_free(expr));
2029 expr->d.val = d;
2030 free(expr->d.s);
2031 expr->d.s = strdup(s);
2032 if (!expr->d.s)
2033 return pet_expr_free(expr);
2034 return expr;
2037 /* Return a string representation of the double expression "expr".
2039 __isl_give char *pet_expr_double_get_str(__isl_keep pet_expr *expr)
2041 if (!expr)
2042 return NULL;
2043 if (expr->type != pet_expr_double)
2044 isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
2045 "not a double expression", return NULL);
2046 return strdup(expr->d.s);
2049 /* Return a piecewise affine expression defined on the specified domain
2050 * that represents NaN.
2052 static __isl_give isl_pw_aff *non_affine(__isl_take isl_space *space)
2054 return isl_pw_aff_nan_on_domain(isl_local_space_from_space(space));
2057 /* This function is called when we come across an access that is
2058 * nested in what is supposed to be an affine expression.
2059 * "pc" is the context in which the affine expression is created.
2060 * If nesting is allowed in "pc", we return an affine expression that is
2061 * equal to a new parameter corresponding to this nested access.
2062 * Otherwise, we return NaN.
2064 * Note that we currently don't allow nested accesses themselves
2065 * to contain any nested accesses, so we check if "expr" itself
2066 * involves any nested accesses (either explicitly as arguments
2067 * or implicitly through parameters) and return NaN if it does.
2069 * The new parameter is resolved in resolve_nested.
2071 static __isl_give isl_pw_aff *nested_access(__isl_keep pet_expr *expr,
2072 __isl_keep pet_context *pc)
2074 isl_ctx *ctx;
2075 isl_id *id;
2076 isl_space *space;
2077 isl_local_space *ls;
2078 isl_aff *aff;
2079 int nested;
2081 if (!expr || !pc)
2082 return NULL;
2083 if (!pet_context_allow_nesting(pc))
2084 return non_affine(pet_context_get_space(pc));
2086 if (pet_expr_get_type(expr) != pet_expr_access)
2087 isl_die(pet_expr_get_ctx(expr), isl_error_internal,
2088 "not an access expression", return NULL);
2090 if (expr->n_arg > 0)
2091 return non_affine(pet_context_get_space(pc));
2093 space = pet_expr_access_get_parameter_space(expr);
2094 nested = pet_nested_any_in_space(space);
2095 isl_space_free(space);
2096 if (nested)
2097 return non_affine(pet_context_get_space(pc));
2099 ctx = pet_expr_get_ctx(expr);
2100 id = pet_nested_pet_expr(pet_expr_copy(expr));
2101 space = pet_context_get_space(pc);
2102 space = isl_space_insert_dims(space, isl_dim_param, 0, 1);
2104 space = isl_space_set_dim_id(space, isl_dim_param, 0, id);
2105 ls = isl_local_space_from_space(space);
2106 aff = isl_aff_var_on_domain(ls, isl_dim_param, 0);
2108 return isl_pw_aff_from_aff(aff);
2111 /* Extract an affine expression from the access pet_expr "expr".
2112 * "pc" is the context in which the affine expression is created.
2114 * If "expr" is actually an affine expression rather than
2115 * a real access, then we return that expression.
2116 * Otherwise, we require that "expr" is of an integral type.
2117 * If not, we return NaN.
2119 * If the variable has been assigned a known affine expression,
2120 * then we return that expression.
2122 * Otherwise, we return an expression that is equal to a parameter
2123 * representing "expr" (if "allow_nested" is set).
2125 static __isl_give isl_pw_aff *extract_affine_from_access(
2126 __isl_keep pet_expr *expr, __isl_keep pet_context *pc)
2128 int pos;
2129 isl_id *id;
2131 if (pet_expr_is_affine(expr)) {
2132 isl_pw_aff *pa;
2133 isl_multi_pw_aff *mpa;
2135 mpa = pet_expr_access_get_index(expr);
2136 pa = isl_multi_pw_aff_get_pw_aff(mpa, 0);
2137 isl_multi_pw_aff_free(mpa);
2138 return pa;
2141 if (pet_expr_get_type_size(expr) == 0)
2142 return non_affine(pet_context_get_space(pc));
2144 if (!pet_expr_is_scalar_access(expr))
2145 return nested_access(expr, pc);
2147 id = pet_expr_access_get_id(expr);
2148 if (pet_context_is_assigned(pc, id))
2149 return pet_context_get_value(pc, id);
2151 isl_id_free(id);
2152 return nested_access(expr, pc);
2155 /* Construct an affine expression from the integer constant "expr".
2156 * "pc" is the context in which the affine expression is created.
2158 static __isl_give isl_pw_aff *extract_affine_from_int(__isl_keep pet_expr *expr,
2159 __isl_keep pet_context *pc)
2161 isl_local_space *ls;
2162 isl_aff *aff;
2164 if (!expr)
2165 return NULL;
2167 ls = isl_local_space_from_space(pet_context_get_space(pc));
2168 aff = isl_aff_val_on_domain(ls, pet_expr_int_get_val(expr));
2170 return isl_pw_aff_from_aff(aff);
2173 /* Extract an affine expression from an addition or subtraction operation.
2174 * Return NaN if we are unable to extract an affine expression.
2176 * "pc" is the context in which the affine expression is created.
2178 static __isl_give isl_pw_aff *extract_affine_add_sub(__isl_keep pet_expr *expr,
2179 __isl_keep pet_context *pc)
2181 isl_pw_aff *lhs;
2182 isl_pw_aff *rhs;
2184 if (!expr)
2185 return NULL;
2186 if (expr->n_arg != 2)
2187 isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
2188 "expecting two arguments", return NULL);
2190 lhs = pet_expr_extract_affine(expr->args[0], pc);
2191 rhs = pet_expr_extract_affine(expr->args[1], pc);
2193 switch (pet_expr_op_get_type(expr)) {
2194 case pet_op_add:
2195 return isl_pw_aff_add(lhs, rhs);
2196 case pet_op_sub:
2197 return isl_pw_aff_sub(lhs, rhs);
2198 default:
2199 isl_pw_aff_free(lhs);
2200 isl_pw_aff_free(rhs);
2201 isl_die(pet_expr_get_ctx(expr), isl_error_internal,
2202 "not an addition or subtraction operation",
2203 return NULL);
2208 /* Extract an affine expression from an integer division or a modulo operation.
2209 * Return NaN if we are unable to extract an affine expression.
2211 * "pc" is the context in which the affine expression is created.
2213 * In particular, if "expr" is lhs/rhs, then return
2215 * lhs >= 0 ? floor(lhs/rhs) : ceil(lhs/rhs)
2217 * If "expr" is lhs%rhs, then return
2219 * lhs - rhs * (lhs >= 0 ? floor(lhs/rhs) : ceil(lhs/rhs))
2221 * If the second argument (rhs) is not a (positive) integer constant,
2222 * then we fail to extract an affine expression.
2224 * We simplify the result in the context of the domain of "pc" in case
2225 * this domain implies that lhs >= 0 (or < 0).
2227 static __isl_give isl_pw_aff *extract_affine_div_mod(__isl_keep pet_expr *expr,
2228 __isl_keep pet_context *pc)
2230 int is_cst;
2231 isl_pw_aff *lhs;
2232 isl_pw_aff *rhs;
2233 isl_pw_aff *res;
2235 if (!expr)
2236 return NULL;
2237 if (expr->n_arg != 2)
2238 isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
2239 "expecting two arguments", return NULL);
2241 rhs = pet_expr_extract_affine(expr->args[1], pc);
2243 is_cst = isl_pw_aff_is_cst(rhs);
2244 if (is_cst < 0 || !is_cst) {
2245 isl_pw_aff_free(rhs);
2246 return non_affine(pet_context_get_space(pc));
2249 lhs = pet_expr_extract_affine(expr->args[0], pc);
2251 switch (pet_expr_op_get_type(expr)) {
2252 case pet_op_div:
2253 res = isl_pw_aff_tdiv_q(lhs, rhs);
2254 break;
2255 case pet_op_mod:
2256 res = isl_pw_aff_tdiv_r(lhs, rhs);
2257 break;
2258 default:
2259 isl_pw_aff_free(lhs);
2260 isl_pw_aff_free(rhs);
2261 isl_die(pet_expr_get_ctx(expr), isl_error_internal,
2262 "not a div or mod operator", return NULL);
2265 return isl_pw_aff_gist(res, pet_context_get_gist_domain(pc));
2268 /* Extract an affine expression from a multiplication operation.
2269 * Return NaN if we are unable to extract an affine expression.
2270 * In particular, if neither of the arguments is a (piecewise) constant
2271 * then we return NaN.
2273 * "pc" is the context in which the affine expression is created.
2275 static __isl_give isl_pw_aff *extract_affine_mul(__isl_keep pet_expr *expr,
2276 __isl_keep pet_context *pc)
2278 int lhs_cst, rhs_cst;
2279 isl_pw_aff *lhs;
2280 isl_pw_aff *rhs;
2282 if (!expr)
2283 return NULL;
2284 if (expr->n_arg != 2)
2285 isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
2286 "expecting two arguments", return NULL);
2288 lhs = pet_expr_extract_affine(expr->args[0], pc);
2289 rhs = pet_expr_extract_affine(expr->args[1], pc);
2291 lhs_cst = isl_pw_aff_is_cst(lhs);
2292 rhs_cst = isl_pw_aff_is_cst(rhs);
2293 if (lhs_cst < 0 || rhs_cst < 0 || (!lhs_cst && !rhs_cst)) {
2294 isl_pw_aff_free(lhs);
2295 isl_pw_aff_free(rhs);
2296 return non_affine(pet_context_get_space(pc));
2299 return isl_pw_aff_mul(lhs, rhs);
2302 /* Extract an affine expression from a negation operation.
2303 * Return NaN if we are unable to extract an affine expression.
2305 * "pc" is the context in which the affine expression is created.
2307 static __isl_give isl_pw_aff *extract_affine_neg(__isl_keep pet_expr *expr,
2308 __isl_keep pet_context *pc)
2310 isl_pw_aff *res;
2312 if (!expr)
2313 return NULL;
2314 if (expr->n_arg != 1)
2315 isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
2316 "expecting one argument", return NULL);
2318 res = pet_expr_extract_affine(expr->args[0], pc);
2319 return isl_pw_aff_neg(res);
2322 /* Extract an affine expression from a conditional operation.
2323 * Return NaN if we are unable to extract an affine expression.
2325 * "pc" is the context in which the affine expression is created.
2327 static __isl_give isl_pw_aff *extract_affine_cond(__isl_keep pet_expr *expr,
2328 __isl_keep pet_context *pc)
2330 isl_pw_aff *cond, *lhs, *rhs;
2332 if (!expr)
2333 return NULL;
2334 if (expr->n_arg != 3)
2335 isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
2336 "expecting three arguments", return NULL);
2338 cond = pet_expr_extract_affine_condition(expr->args[0], pc);
2339 lhs = pet_expr_extract_affine(expr->args[1], pc);
2340 rhs = pet_expr_extract_affine(expr->args[2], pc);
2342 return isl_pw_aff_cond(cond, lhs, rhs);
2345 /* Compute
2347 * pwaff mod 2^width
2349 static __isl_give isl_pw_aff *wrap(__isl_take isl_pw_aff *pwaff, unsigned width)
2351 isl_ctx *ctx;
2352 isl_val *mod;
2354 ctx = isl_pw_aff_get_ctx(pwaff);
2355 mod = isl_val_int_from_ui(ctx, width);
2356 mod = isl_val_2exp(mod);
2358 pwaff = isl_pw_aff_mod_val(pwaff, mod);
2360 return pwaff;
2363 /* Limit the domain of "pwaff" to those elements where the function
2364 * value satisfies
2366 * 2^{width-1} <= pwaff < 2^{width-1}
2368 static __isl_give isl_pw_aff *avoid_overflow(__isl_take isl_pw_aff *pwaff,
2369 unsigned width)
2371 isl_ctx *ctx;
2372 isl_val *v;
2373 isl_space *space = isl_pw_aff_get_domain_space(pwaff);
2374 isl_local_space *ls = isl_local_space_from_space(space);
2375 isl_aff *bound;
2376 isl_set *dom;
2377 isl_pw_aff *b;
2379 ctx = isl_pw_aff_get_ctx(pwaff);
2380 v = isl_val_int_from_ui(ctx, width - 1);
2381 v = isl_val_2exp(v);
2383 bound = isl_aff_zero_on_domain(ls);
2384 bound = isl_aff_add_constant_val(bound, v);
2385 b = isl_pw_aff_from_aff(bound);
2387 dom = isl_pw_aff_lt_set(isl_pw_aff_copy(pwaff), isl_pw_aff_copy(b));
2388 pwaff = isl_pw_aff_intersect_domain(pwaff, dom);
2390 b = isl_pw_aff_neg(b);
2391 dom = isl_pw_aff_ge_set(isl_pw_aff_copy(pwaff), b);
2392 pwaff = isl_pw_aff_intersect_domain(pwaff, dom);
2394 return pwaff;
2397 /* Handle potential overflows on signed computations.
2399 * If options->signed_overflow is set to PET_OVERFLOW_AVOID,
2400 * then we adjust the domain of "pa" to avoid overflows.
2402 static __isl_give isl_pw_aff *signed_overflow(__isl_take isl_pw_aff *pa,
2403 unsigned width)
2405 isl_ctx *ctx;
2406 struct pet_options *options;
2408 if (!pa)
2409 return NULL;
2411 ctx = isl_pw_aff_get_ctx(pa);
2412 options = isl_ctx_peek_pet_options(ctx);
2413 if (!options || options->signed_overflow == PET_OVERFLOW_AVOID)
2414 pa = avoid_overflow(pa, width);
2416 return pa;
2419 /* Extract an affine expression from some an operation.
2420 * Return NaN if we are unable to extract an affine expression.
2421 * If the result of a binary (non boolean) operation is unsigned,
2422 * then we wrap it based on the size of the type. If the result is signed,
2423 * then we ensure that no overflow occurs.
2425 * "pc" is the context in which the affine expression is created.
2427 static __isl_give isl_pw_aff *extract_affine_from_op(__isl_keep pet_expr *expr,
2428 __isl_keep pet_context *pc)
2430 isl_pw_aff *res;
2431 int type_size;
2433 switch (pet_expr_op_get_type(expr)) {
2434 case pet_op_add:
2435 case pet_op_sub:
2436 res = extract_affine_add_sub(expr, pc);
2437 break;
2438 case pet_op_div:
2439 case pet_op_mod:
2440 res = extract_affine_div_mod(expr, pc);
2441 break;
2442 case pet_op_mul:
2443 res = extract_affine_mul(expr, pc);
2444 break;
2445 case pet_op_minus:
2446 return extract_affine_neg(expr, pc);
2447 case pet_op_cond:
2448 return extract_affine_cond(expr, pc);
2449 case pet_op_eq:
2450 case pet_op_ne:
2451 case pet_op_le:
2452 case pet_op_ge:
2453 case pet_op_lt:
2454 case pet_op_gt:
2455 case pet_op_land:
2456 case pet_op_lor:
2457 case pet_op_lnot:
2458 return pet_expr_extract_affine_condition(expr, pc);
2459 default:
2460 return non_affine(pet_context_get_space(pc));
2463 if (!res)
2464 return NULL;
2465 if (isl_pw_aff_involves_nan(res)) {
2466 isl_space *space = isl_pw_aff_get_domain_space(res);
2467 isl_pw_aff_free(res);
2468 return non_affine(space);
2471 type_size = pet_expr_get_type_size(expr);
2472 if (type_size > 0)
2473 res = wrap(res, type_size);
2474 else
2475 res = signed_overflow(res, -type_size);
2477 return res;
2480 /* Extract an affine expression from some special function calls.
2481 * Return NaN if we are unable to extract an affine expression.
2482 * In particular, we handle "min", "max", "ceild", "floord",
2483 * "intMod", "intFloor" and "intCeil".
2484 * In case of the latter five, the second argument needs to be
2485 * a (positive) integer constant.
2487 * "pc" is the context in which the affine expression is created.
2489 static __isl_give isl_pw_aff *extract_affine_from_call(
2490 __isl_keep pet_expr *expr, __isl_keep pet_context *pc)
2492 isl_pw_aff *aff1, *aff2;
2493 int n;
2494 const char *name;
2496 n = pet_expr_get_n_arg(expr);
2497 name = pet_expr_call_get_name(expr);
2498 if (!(n == 2 && !strcmp(name, "min")) &&
2499 !(n == 2 && !strcmp(name, "max")) &&
2500 !(n == 2 && !strcmp(name, "intMod")) &&
2501 !(n == 2 && !strcmp(name, "intFloor")) &&
2502 !(n == 2 && !strcmp(name, "intCeil")) &&
2503 !(n == 2 && !strcmp(name, "floord")) &&
2504 !(n == 2 && !strcmp(name, "ceild")))
2505 return non_affine(pet_context_get_space(pc));
2507 if (!strcmp(name, "min") || !strcmp(name, "max")) {
2508 aff1 = pet_expr_extract_affine(expr->args[0], pc);
2509 aff2 = pet_expr_extract_affine(expr->args[1], pc);
2511 if (!strcmp(name, "min"))
2512 aff1 = isl_pw_aff_min(aff1, aff2);
2513 else
2514 aff1 = isl_pw_aff_max(aff1, aff2);
2515 } else if (!strcmp(name, "intMod")) {
2516 isl_val *v;
2518 if (pet_expr_get_type(expr->args[1]) != pet_expr_int)
2519 return non_affine(pet_context_get_space(pc));
2520 v = pet_expr_int_get_val(expr->args[1]);
2521 aff1 = pet_expr_extract_affine(expr->args[0], pc);
2522 aff1 = isl_pw_aff_mod_val(aff1, v);
2523 } else {
2524 isl_val *v;
2526 if (pet_expr_get_type(expr->args[1]) != pet_expr_int)
2527 return non_affine(pet_context_get_space(pc));
2528 v = pet_expr_int_get_val(expr->args[1]);
2529 aff1 = pet_expr_extract_affine(expr->args[0], pc);
2530 aff1 = isl_pw_aff_scale_down_val(aff1, v);
2531 if (!strcmp(name, "floord") || !strcmp(name, "intFloor"))
2532 aff1 = isl_pw_aff_floor(aff1);
2533 else
2534 aff1 = isl_pw_aff_ceil(aff1);
2537 return aff1;
2540 /* Extract an affine expression from "expr", if possible.
2541 * Otherwise return NaN.
2543 * "pc" is the context in which the affine expression is created.
2545 __isl_give isl_pw_aff *pet_expr_extract_affine(__isl_keep pet_expr *expr,
2546 __isl_keep pet_context *pc)
2548 if (!expr)
2549 return NULL;
2551 switch (pet_expr_get_type(expr)) {
2552 case pet_expr_access:
2553 return extract_affine_from_access(expr, pc);
2554 case pet_expr_int:
2555 return extract_affine_from_int(expr, pc);
2556 case pet_expr_op:
2557 return extract_affine_from_op(expr, pc);
2558 case pet_expr_call:
2559 return extract_affine_from_call(expr, pc);
2560 case pet_expr_cast:
2561 case pet_expr_double:
2562 case pet_expr_error:
2563 return non_affine(pet_context_get_space(pc));
2567 /* Extract an affine expressions representing the comparison "LHS op RHS"
2568 * Return NaN if we are unable to extract such an affine expression.
2570 * "pc" is the context in which the affine expression is created.
2572 * If the comparison is of the form
2574 * a <= min(b,c)
2576 * then the expression is constructed as the conjunction of
2577 * the comparisons
2579 * a <= b and a <= c
2581 * A similar optimization is performed for max(a,b) <= c.
2582 * We do this because that will lead to simpler representations
2583 * of the expression.
2584 * If isl is ever enhanced to explicitly deal with min and max expressions,
2585 * this optimization can be removed.
2587 __isl_give isl_pw_aff *pet_expr_extract_comparison(enum pet_op_type op,
2588 __isl_keep pet_expr *lhs, __isl_keep pet_expr *rhs,
2589 __isl_keep pet_context *pc)
2591 isl_pw_aff *lhs_pa, *rhs_pa;
2593 if (op == pet_op_gt)
2594 return pet_expr_extract_comparison(pet_op_lt, rhs, lhs, pc);
2595 if (op == pet_op_ge)
2596 return pet_expr_extract_comparison(pet_op_le, rhs, lhs, pc);
2598 if (op == pet_op_lt || op == pet_op_le) {
2599 if (pet_expr_is_min(rhs)) {
2600 lhs_pa = pet_expr_extract_comparison(op, lhs,
2601 rhs->args[0], pc);
2602 rhs_pa = pet_expr_extract_comparison(op, lhs,
2603 rhs->args[1], pc);
2604 return pet_and(lhs_pa, rhs_pa);
2606 if (pet_expr_is_max(lhs)) {
2607 lhs_pa = pet_expr_extract_comparison(op, lhs->args[0],
2608 rhs, pc);
2609 rhs_pa = pet_expr_extract_comparison(op, lhs->args[1],
2610 rhs, pc);
2611 return pet_and(lhs_pa, rhs_pa);
2615 lhs_pa = pet_expr_extract_affine(lhs, pc);
2616 rhs_pa = pet_expr_extract_affine(rhs, pc);
2618 return pet_comparison(op, lhs_pa, rhs_pa);
2621 /* Extract an affine expressions from the comparison "expr".
2622 * Return NaN if we are unable to extract such an affine expression.
2624 * "pc" is the context in which the affine expression is created.
2626 static __isl_give isl_pw_aff *extract_comparison(__isl_keep pet_expr *expr,
2627 __isl_keep pet_context *pc)
2629 enum pet_op_type type;
2631 if (!expr)
2632 return NULL;
2633 if (expr->n_arg != 2)
2634 isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
2635 "expecting two arguments", return NULL);
2637 type = pet_expr_op_get_type(expr);
2638 return pet_expr_extract_comparison(type, expr->args[0], expr->args[1],
2639 pc);
2642 /* Extract an affine expression representing the boolean operation
2643 * expressed by "expr".
2644 * Return NaN if we are unable to extract an affine expression.
2646 * "pc" is the context in which the affine expression is created.
2648 static __isl_give isl_pw_aff *extract_boolean(__isl_keep pet_expr *expr,
2649 __isl_keep pet_context *pc)
2651 isl_pw_aff *lhs, *rhs;
2652 int n;
2654 if (!expr)
2655 return NULL;
2657 n = pet_expr_get_n_arg(expr);
2658 lhs = pet_expr_extract_affine_condition(expr->args[0], pc);
2659 if (n == 1)
2660 return pet_not(lhs);
2662 rhs = pet_expr_extract_affine_condition(expr->args[1], pc);
2663 return pet_boolean(pet_expr_op_get_type(expr), lhs, rhs);
2666 /* Extract the affine expression "expr != 0 ? 1 : 0".
2667 * Return NaN if we are unable to extract an affine expression.
2669 * "pc" is the context in which the affine expression is created.
2671 static __isl_give isl_pw_aff *extract_implicit_condition(
2672 __isl_keep pet_expr *expr, __isl_keep pet_context *pc)
2674 isl_pw_aff *res;
2676 res = pet_expr_extract_affine(expr, pc);
2677 return pet_to_bool(res);
2680 /* Extract a boolean affine expression from "expr".
2681 * Return NaN if we are unable to extract an affine expression.
2683 * "pc" is the context in which the affine expression is created.
2685 * If "expr" is neither a comparison nor a boolean operation,
2686 * then we assume it is an affine expression and return the
2687 * boolean expression "expr != 0 ? 1 : 0".
2689 __isl_give isl_pw_aff *pet_expr_extract_affine_condition(
2690 __isl_keep pet_expr *expr, __isl_keep pet_context *pc)
2692 if (!expr)
2693 return NULL;
2695 if (pet_expr_is_comparison(expr))
2696 return extract_comparison(expr, pc);
2697 if (pet_expr_is_boolean(expr))
2698 return extract_boolean(expr, pc);
2700 return extract_implicit_condition(expr, pc);
2703 /* Check if "expr" is an assume expression and if its single argument
2704 * can be converted to an affine expression in the context of "pc".
2705 * If so, replace the argument by the affine expression.
2707 __isl_give pet_expr *pet_expr_resolve_assume(__isl_take pet_expr *expr,
2708 __isl_keep pet_context *pc)
2710 isl_pw_aff *cond;
2711 isl_multi_pw_aff *index;
2713 if (!expr)
2714 return NULL;
2715 if (!pet_expr_is_assume(expr))
2716 return expr;
2717 if (expr->n_arg != 1)
2718 isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
2719 "expecting one argument", return pet_expr_free(expr));
2721 cond = pet_expr_extract_affine_condition(expr->args[0], pc);
2722 if (!cond)
2723 return pet_expr_free(expr);
2724 if (isl_pw_aff_involves_nan(cond)) {
2725 isl_pw_aff_free(cond);
2726 return expr;
2729 index = isl_multi_pw_aff_from_pw_aff(cond);
2730 expr = pet_expr_set_arg(expr, 0, pet_expr_from_index(index));
2732 return expr;
2735 /* Return the number of bits needed to represent the type of "expr".
2736 * See the description of the type_size field of pet_expr.
2738 int pet_expr_get_type_size(__isl_keep pet_expr *expr)
2740 return expr ? expr->type_size : 0;
2743 /* Replace the number of bits needed to represent the type of "expr"
2744 * by "type_size".
2745 * See the description of the type_size field of pet_expr.
2747 __isl_give pet_expr *pet_expr_set_type_size(__isl_take pet_expr *expr,
2748 int type_size)
2750 expr = pet_expr_cow(expr);
2751 if (!expr)
2752 return NULL;
2754 expr->type_size = type_size;
2756 return expr;
2759 /* Extend an access expression "expr" with an additional index "index".
2760 * In particular, add "index" as an extra argument to "expr" and
2761 * adjust the index expression of "expr" to refer to this extra argument.
2762 * The caller is responsible for calling pet_expr_access_set_depth
2763 * to update the corresponding access relation.
2765 * Note that we only collect the individual index expressions as
2766 * arguments of "expr" here.
2767 * An attempt to integrate them into the index expression of "expr"
2768 * is performed in pet_expr_access_plug_in_args.
2770 __isl_give pet_expr *pet_expr_access_subscript(__isl_take pet_expr *expr,
2771 __isl_take pet_expr *index)
2773 int n;
2774 isl_space *space;
2775 isl_local_space *ls;
2776 isl_pw_aff *pa;
2778 expr = pet_expr_cow(expr);
2779 if (!expr || !index)
2780 goto error;
2781 if (expr->type != pet_expr_access)
2782 isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
2783 "not an access pet_expr", goto error);
2785 n = pet_expr_get_n_arg(expr);
2786 expr = pet_expr_insert_arg(expr, n, index);
2787 if (!expr)
2788 return NULL;
2790 space = isl_multi_pw_aff_get_domain_space(expr->acc.index);
2791 ls = isl_local_space_from_space(space);
2792 pa = isl_pw_aff_from_aff(isl_aff_var_on_domain(ls, isl_dim_set, n));
2793 expr->acc.index = pet_array_subscript(expr->acc.index, pa);
2794 if (!expr->acc.index)
2795 return pet_expr_free(expr);
2797 return expr;
2798 error:
2799 pet_expr_free(expr);
2800 pet_expr_free(index);
2801 return NULL;
2804 /* Extend an access expression "expr" with an additional member acces to "id".
2805 * In particular, extend the index expression of "expr" to include
2806 * the additional member access.
2807 * The caller is responsible for calling pet_expr_access_set_depth
2808 * to update the corresponding access relation.
2810 __isl_give pet_expr *pet_expr_access_member(__isl_take pet_expr *expr,
2811 __isl_take isl_id *id)
2813 isl_space *space;
2814 isl_multi_pw_aff *field_access;
2816 expr = pet_expr_cow(expr);
2817 if (!expr || !id)
2818 goto error;
2819 if (expr->type != pet_expr_access)
2820 isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
2821 "not an access pet_expr", goto error);
2823 space = isl_multi_pw_aff_get_domain_space(expr->acc.index);
2824 space = isl_space_from_domain(space);
2825 space = isl_space_set_tuple_id(space, isl_dim_out, id);
2826 field_access = isl_multi_pw_aff_zero(space);
2827 expr->acc.index = pet_array_member(expr->acc.index, field_access);
2828 if (!expr->acc.index)
2829 return pet_expr_free(expr);
2831 return expr;
2832 error:
2833 pet_expr_free(expr);
2834 isl_id_free(id);
2835 return NULL;
2838 void pet_expr_dump_with_indent(__isl_keep pet_expr *expr, int indent)
2840 int i;
2842 if (!expr)
2843 return;
2845 fprintf(stderr, "%*s", indent, "");
2847 switch (expr->type) {
2848 case pet_expr_double:
2849 fprintf(stderr, "%s\n", expr->d.s);
2850 break;
2851 case pet_expr_int:
2852 isl_val_dump(expr->i);
2853 break;
2854 case pet_expr_access:
2855 if (expr->acc.ref_id) {
2856 isl_id_dump(expr->acc.ref_id);
2857 fprintf(stderr, "%*s", indent, "");
2859 isl_map_dump(expr->acc.access);
2860 fprintf(stderr, "%*s", indent, "");
2861 isl_multi_pw_aff_dump(expr->acc.index);
2862 fprintf(stderr, "%*sread: %d\n", indent + 2,
2863 "", expr->acc.read);
2864 fprintf(stderr, "%*swrite: %d\n", indent + 2,
2865 "", expr->acc.write);
2866 for (i = 0; i < expr->n_arg; ++i)
2867 pet_expr_dump_with_indent(expr->args[i], indent + 2);
2868 break;
2869 case pet_expr_op:
2870 fprintf(stderr, "%s\n", op_str[expr->op]);
2871 for (i = 0; i < expr->n_arg; ++i)
2872 pet_expr_dump_with_indent(expr->args[i], indent + 2);
2873 break;
2874 case pet_expr_call:
2875 fprintf(stderr, "%s/%d\n", expr->name, expr->n_arg);
2876 for (i = 0; i < expr->n_arg; ++i)
2877 pet_expr_dump_with_indent(expr->args[i], indent + 2);
2878 break;
2879 case pet_expr_cast:
2880 fprintf(stderr, "(%s)\n", expr->type_name);
2881 for (i = 0; i < expr->n_arg; ++i)
2882 pet_expr_dump_with_indent(expr->args[i], indent + 2);
2883 break;
2884 case pet_expr_error:
2885 fprintf(stderr, "ERROR\n");
2886 break;
2890 void pet_expr_dump(__isl_keep pet_expr *expr)
2892 pet_expr_dump_with_indent(expr, 0);