add pet_expr_map_call
[pet.git] / scan.cc
blobc59069e2bd4dbbb80c5abdb6ccc6824f441f4cc7
1 /*
2 * Copyright 2011 Leiden University. All rights reserved.
3 * Copyright 2012-2014 Ecole Normale Superieure. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above
13 * copyright notice, this list of conditions and the following
14 * disclaimer in the documentation and/or other materials provided
15 * with the distribution.
17 * THIS SOFTWARE IS PROVIDED BY LEIDEN UNIVERSITY ''AS IS'' AND ANY
18 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
20 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL LEIDEN UNIVERSITY OR
21 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
22 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
23 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
24 * OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 * The views and conclusions contained in the software and documentation
30 * are those of the authors and should not be interpreted as
31 * representing official policies, either expressed or implied, of
32 * Leiden University.
33 */
35 #include <string.h>
36 #include <set>
37 #include <map>
38 #include <iostream>
39 #include <llvm/Support/raw_ostream.h>
40 #include <clang/AST/ASTContext.h>
41 #include <clang/AST/ASTDiagnostic.h>
42 #include <clang/AST/Expr.h>
43 #include <clang/AST/RecursiveASTVisitor.h>
45 #include <isl/id.h>
46 #include <isl/space.h>
47 #include <isl/aff.h>
48 #include <isl/set.h>
50 #include "aff.h"
51 #include "array.h"
52 #include "clang.h"
53 #include "context.h"
54 #include "expr.h"
55 #include "nest.h"
56 #include "options.h"
57 #include "scan.h"
58 #include "scop.h"
59 #include "scop_plus.h"
60 #include "tree.h"
61 #include "tree2scop.h"
63 #include "config.h"
65 using namespace std;
66 using namespace clang;
68 static enum pet_op_type UnaryOperatorKind2pet_op_type(UnaryOperatorKind kind)
70 switch (kind) {
71 case UO_Minus:
72 return pet_op_minus;
73 case UO_Not:
74 return pet_op_not;
75 case UO_LNot:
76 return pet_op_lnot;
77 case UO_PostInc:
78 return pet_op_post_inc;
79 case UO_PostDec:
80 return pet_op_post_dec;
81 case UO_PreInc:
82 return pet_op_pre_inc;
83 case UO_PreDec:
84 return pet_op_pre_dec;
85 default:
86 return pet_op_last;
90 static enum pet_op_type BinaryOperatorKind2pet_op_type(BinaryOperatorKind kind)
92 switch (kind) {
93 case BO_AddAssign:
94 return pet_op_add_assign;
95 case BO_SubAssign:
96 return pet_op_sub_assign;
97 case BO_MulAssign:
98 return pet_op_mul_assign;
99 case BO_DivAssign:
100 return pet_op_div_assign;
101 case BO_Assign:
102 return pet_op_assign;
103 case BO_Add:
104 return pet_op_add;
105 case BO_Sub:
106 return pet_op_sub;
107 case BO_Mul:
108 return pet_op_mul;
109 case BO_Div:
110 return pet_op_div;
111 case BO_Rem:
112 return pet_op_mod;
113 case BO_Shl:
114 return pet_op_shl;
115 case BO_Shr:
116 return pet_op_shr;
117 case BO_EQ:
118 return pet_op_eq;
119 case BO_NE:
120 return pet_op_ne;
121 case BO_LE:
122 return pet_op_le;
123 case BO_GE:
124 return pet_op_ge;
125 case BO_LT:
126 return pet_op_lt;
127 case BO_GT:
128 return pet_op_gt;
129 case BO_And:
130 return pet_op_and;
131 case BO_Xor:
132 return pet_op_xor;
133 case BO_Or:
134 return pet_op_or;
135 case BO_LAnd:
136 return pet_op_land;
137 case BO_LOr:
138 return pet_op_lor;
139 default:
140 return pet_op_last;
144 #if defined(DECLREFEXPR_CREATE_REQUIRES_BOOL)
145 static DeclRefExpr *create_DeclRefExpr(VarDecl *var)
147 return DeclRefExpr::Create(var->getASTContext(), var->getQualifierLoc(),
148 SourceLocation(), var, false, var->getInnerLocStart(),
149 var->getType(), VK_LValue);
151 #elif defined(DECLREFEXPR_CREATE_REQUIRES_SOURCELOCATION)
152 static DeclRefExpr *create_DeclRefExpr(VarDecl *var)
154 return DeclRefExpr::Create(var->getASTContext(), var->getQualifierLoc(),
155 SourceLocation(), var, var->getInnerLocStart(), var->getType(),
156 VK_LValue);
158 #else
159 static DeclRefExpr *create_DeclRefExpr(VarDecl *var)
161 return DeclRefExpr::Create(var->getASTContext(), var->getQualifierLoc(),
162 var, var->getInnerLocStart(), var->getType(), VK_LValue);
164 #endif
166 /* Check if the element type corresponding to the given array type
167 * has a const qualifier.
169 static bool const_base(QualType qt)
171 const Type *type = qt.getTypePtr();
173 if (type->isPointerType())
174 return const_base(type->getPointeeType());
175 if (type->isArrayType()) {
176 const ArrayType *atype;
177 type = type->getCanonicalTypeInternal().getTypePtr();
178 atype = cast<ArrayType>(type);
179 return const_base(atype->getElementType());
182 return qt.isConstQualified();
185 /* Create an isl_id that refers to the named declarator "decl".
187 static __isl_give isl_id *create_decl_id(isl_ctx *ctx, NamedDecl *decl)
189 return isl_id_alloc(ctx, decl->getName().str().c_str(), decl);
192 PetScan::~PetScan()
194 std::map<const Type *, pet_expr *>::iterator it;
195 std::map<FunctionDecl *, pet_function_summary *>::iterator it_s;
197 for (it = type_size.begin(); it != type_size.end(); ++it)
198 pet_expr_free(it->second);
199 for (it_s = summary_cache.begin(); it_s != summary_cache.end(); ++it_s)
200 pet_function_summary_free(it_s->second);
202 isl_union_map_free(value_bounds);
205 /* Report a diagnostic, unless autodetect is set.
207 void PetScan::report(Stmt *stmt, unsigned id)
209 if (options->autodetect)
210 return;
212 SourceLocation loc = stmt->getLocStart();
213 DiagnosticsEngine &diag = PP.getDiagnostics();
214 DiagnosticBuilder B = diag.Report(loc, id) << stmt->getSourceRange();
217 /* Called if we found something we (currently) cannot handle.
218 * We'll provide more informative warnings later.
220 * We only actually complain if autodetect is false.
222 void PetScan::unsupported(Stmt *stmt)
224 DiagnosticsEngine &diag = PP.getDiagnostics();
225 unsigned id = diag.getCustomDiagID(DiagnosticsEngine::Warning,
226 "unsupported");
227 report(stmt, id);
230 /* Report a missing prototype, unless autodetect is set.
232 void PetScan::report_prototype_required(Stmt *stmt)
234 DiagnosticsEngine &diag = PP.getDiagnostics();
235 unsigned id = diag.getCustomDiagID(DiagnosticsEngine::Warning,
236 "prototype required");
237 report(stmt, id);
240 /* Report a missing increment, unless autodetect is set.
242 void PetScan::report_missing_increment(Stmt *stmt)
244 DiagnosticsEngine &diag = PP.getDiagnostics();
245 unsigned id = diag.getCustomDiagID(DiagnosticsEngine::Warning,
246 "missing increment");
247 report(stmt, id);
250 /* Extract an integer from "val", which is assumed to be non-negative.
252 static __isl_give isl_val *extract_unsigned(isl_ctx *ctx,
253 const llvm::APInt &val)
255 unsigned n;
256 const uint64_t *data;
258 data = val.getRawData();
259 n = val.getNumWords();
260 return isl_val_int_from_chunks(ctx, n, sizeof(uint64_t), data);
263 /* Extract an integer from "val". If "is_signed" is set, then "val"
264 * is signed. Otherwise it it unsigned.
266 static __isl_give isl_val *extract_int(isl_ctx *ctx, bool is_signed,
267 llvm::APInt val)
269 int is_negative = is_signed && val.isNegative();
270 isl_val *v;
272 if (is_negative)
273 val = -val;
275 v = extract_unsigned(ctx, val);
277 if (is_negative)
278 v = isl_val_neg(v);
279 return v;
282 /* Extract an integer from "expr".
284 __isl_give isl_val *PetScan::extract_int(isl_ctx *ctx, IntegerLiteral *expr)
286 const Type *type = expr->getType().getTypePtr();
287 bool is_signed = type->hasSignedIntegerRepresentation();
289 return ::extract_int(ctx, is_signed, expr->getValue());
292 /* Extract an integer from "expr".
293 * Return NULL if "expr" does not (obviously) represent an integer.
295 __isl_give isl_val *PetScan::extract_int(clang::ParenExpr *expr)
297 return extract_int(expr->getSubExpr());
300 /* Extract an integer from "expr".
301 * Return NULL if "expr" does not (obviously) represent an integer.
303 __isl_give isl_val *PetScan::extract_int(clang::Expr *expr)
305 if (expr->getStmtClass() == Stmt::IntegerLiteralClass)
306 return extract_int(ctx, cast<IntegerLiteral>(expr));
307 if (expr->getStmtClass() == Stmt::ParenExprClass)
308 return extract_int(cast<ParenExpr>(expr));
310 unsupported(expr);
311 return NULL;
314 /* Extract a pet_expr from the APInt "val", which is assumed
315 * to be non-negative.
317 __isl_give pet_expr *PetScan::extract_expr(const llvm::APInt &val)
319 return pet_expr_new_int(extract_unsigned(ctx, val));
322 /* Return the number of bits needed to represent the type "qt",
323 * if it is an integer type. Otherwise return 0.
324 * If qt is signed then return the opposite of the number of bits.
326 static int get_type_size(QualType qt, ASTContext &ast_context)
328 int size;
330 if (!qt->isIntegerType())
331 return 0;
333 size = ast_context.getIntWidth(qt);
334 if (!qt->isUnsignedIntegerType())
335 size = -size;
337 return size;
340 /* Return the number of bits needed to represent the type of "decl",
341 * if it is an integer type. Otherwise return 0.
342 * If qt is signed then return the opposite of the number of bits.
344 static int get_type_size(ValueDecl *decl)
346 return get_type_size(decl->getType(), decl->getASTContext());
349 /* Bound parameter "pos" of "set" to the possible values of "decl".
351 static __isl_give isl_set *set_parameter_bounds(__isl_take isl_set *set,
352 unsigned pos, ValueDecl *decl)
354 int type_size;
355 isl_ctx *ctx;
356 isl_val *bound;
358 ctx = isl_set_get_ctx(set);
359 type_size = get_type_size(decl);
360 if (type_size == 0)
361 isl_die(ctx, isl_error_invalid, "not an integer type",
362 return isl_set_free(set));
363 if (type_size > 0) {
364 set = isl_set_lower_bound_si(set, isl_dim_param, pos, 0);
365 bound = isl_val_int_from_ui(ctx, type_size);
366 bound = isl_val_2exp(bound);
367 bound = isl_val_sub_ui(bound, 1);
368 set = isl_set_upper_bound_val(set, isl_dim_param, pos, bound);
369 } else {
370 bound = isl_val_int_from_ui(ctx, -type_size - 1);
371 bound = isl_val_2exp(bound);
372 bound = isl_val_sub_ui(bound, 1);
373 set = isl_set_upper_bound_val(set, isl_dim_param, pos,
374 isl_val_copy(bound));
375 bound = isl_val_neg(bound);
376 bound = isl_val_sub_ui(bound, 1);
377 set = isl_set_lower_bound_val(set, isl_dim_param, pos, bound);
380 return set;
383 __isl_give pet_expr *PetScan::extract_index_expr(ImplicitCastExpr *expr)
385 return extract_index_expr(expr->getSubExpr());
388 /* Return the depth of an array of the given type.
390 static int array_depth(const Type *type)
392 if (type->isPointerType())
393 return 1 + array_depth(type->getPointeeType().getTypePtr());
394 if (type->isArrayType()) {
395 const ArrayType *atype;
396 type = type->getCanonicalTypeInternal().getTypePtr();
397 atype = cast<ArrayType>(type);
398 return 1 + array_depth(atype->getElementType().getTypePtr());
400 return 0;
403 /* Return the depth of the array accessed by the index expression "index".
404 * If "index" is an affine expression, i.e., if it does not access
405 * any array, then return 1.
406 * If "index" represent a member access, i.e., if its range is a wrapped
407 * relation, then return the sum of the depth of the array of structures
408 * and that of the member inside the structure.
410 static int extract_depth(__isl_keep isl_multi_pw_aff *index)
412 isl_id *id;
413 ValueDecl *decl;
415 if (!index)
416 return -1;
418 if (isl_multi_pw_aff_range_is_wrapping(index)) {
419 int domain_depth, range_depth;
420 isl_multi_pw_aff *domain, *range;
422 domain = isl_multi_pw_aff_copy(index);
423 domain = isl_multi_pw_aff_range_factor_domain(domain);
424 domain_depth = extract_depth(domain);
425 isl_multi_pw_aff_free(domain);
426 range = isl_multi_pw_aff_copy(index);
427 range = isl_multi_pw_aff_range_factor_range(range);
428 range_depth = extract_depth(range);
429 isl_multi_pw_aff_free(range);
431 return domain_depth + range_depth;
434 if (!isl_multi_pw_aff_has_tuple_id(index, isl_dim_out))
435 return 1;
437 id = isl_multi_pw_aff_get_tuple_id(index, isl_dim_out);
438 if (!id)
439 return -1;
440 decl = (ValueDecl *) isl_id_get_user(id);
441 isl_id_free(id);
443 return array_depth(decl->getType().getTypePtr());
446 /* Return the depth of the array accessed by the access expression "expr".
448 static int extract_depth(__isl_keep pet_expr *expr)
450 isl_multi_pw_aff *index;
451 int depth;
453 index = pet_expr_access_get_index(expr);
454 depth = extract_depth(index);
455 isl_multi_pw_aff_free(index);
457 return depth;
460 /* Construct a pet_expr representing an index expression for an access
461 * to the variable referenced by "expr".
463 * If "expr" references an enum constant, then return an integer expression
464 * instead, representing the value of the enum constant.
466 __isl_give pet_expr *PetScan::extract_index_expr(DeclRefExpr *expr)
468 return extract_index_expr(expr->getDecl());
471 /* Construct a pet_expr representing an index expression for an access
472 * to the variable "decl".
474 * If "decl" is an enum constant, then we return an integer expression
475 * instead, representing the value of the enum constant.
477 __isl_give pet_expr *PetScan::extract_index_expr(ValueDecl *decl)
479 isl_id *id;
480 isl_space *space;
482 if (isa<EnumConstantDecl>(decl))
483 return extract_expr(cast<EnumConstantDecl>(decl));
485 id = create_decl_id(ctx, decl);
486 space = isl_space_alloc(ctx, 0, 0, 0);
487 space = isl_space_set_tuple_id(space, isl_dim_out, id);
489 return pet_expr_from_index(isl_multi_pw_aff_zero(space));
492 /* Construct a pet_expr representing the index expression "expr"
493 * Return NULL on error.
495 * If "expr" is a reference to an enum constant, then return
496 * an integer expression instead, representing the value of the enum constant.
498 __isl_give pet_expr *PetScan::extract_index_expr(Expr *expr)
500 switch (expr->getStmtClass()) {
501 case Stmt::ImplicitCastExprClass:
502 return extract_index_expr(cast<ImplicitCastExpr>(expr));
503 case Stmt::DeclRefExprClass:
504 return extract_index_expr(cast<DeclRefExpr>(expr));
505 case Stmt::ArraySubscriptExprClass:
506 return extract_index_expr(cast<ArraySubscriptExpr>(expr));
507 case Stmt::IntegerLiteralClass:
508 return extract_expr(cast<IntegerLiteral>(expr));
509 case Stmt::MemberExprClass:
510 return extract_index_expr(cast<MemberExpr>(expr));
511 default:
512 unsupported(expr);
514 return NULL;
517 /* Extract an index expression from the given array subscript expression.
519 * We first extract an index expression from the base.
520 * This will result in an index expression with a range that corresponds
521 * to the earlier indices.
522 * We then extract the current index and let
523 * pet_expr_access_subscript combine the two.
525 __isl_give pet_expr *PetScan::extract_index_expr(ArraySubscriptExpr *expr)
527 Expr *base = expr->getBase();
528 Expr *idx = expr->getIdx();
529 pet_expr *index;
530 pet_expr *base_expr;
532 base_expr = extract_index_expr(base);
533 index = extract_expr(idx);
535 base_expr = pet_expr_access_subscript(base_expr, index);
537 return base_expr;
540 /* Extract an index expression from a member expression.
542 * If the base access (to the structure containing the member)
543 * is of the form
545 * A[..]
547 * and the member is called "f", then the member access is of
548 * the form
550 * A_f[A[..] -> f[]]
552 * If the member access is to an anonymous struct, then simply return
554 * A[..]
556 * If the member access in the source code is of the form
558 * A->f
560 * then it is treated as
562 * A[0].f
564 __isl_give pet_expr *PetScan::extract_index_expr(MemberExpr *expr)
566 Expr *base = expr->getBase();
567 FieldDecl *field = cast<FieldDecl>(expr->getMemberDecl());
568 pet_expr *base_index;
569 isl_id *id;
571 base_index = extract_index_expr(base);
573 if (expr->isArrow()) {
574 pet_expr *index = pet_expr_new_int(isl_val_zero(ctx));
575 base_index = pet_expr_access_subscript(base_index, index);
578 if (field->isAnonymousStructOrUnion())
579 return base_index;
581 id = create_decl_id(ctx, field);
583 return pet_expr_access_member(base_index, id);
586 /* Mark the given access pet_expr as a write.
588 static __isl_give pet_expr *mark_write(__isl_take pet_expr *access)
590 access = pet_expr_access_set_write(access, 1);
591 access = pet_expr_access_set_read(access, 0);
593 return access;
596 /* Construct a pet_expr representing a unary operator expression.
598 __isl_give pet_expr *PetScan::extract_expr(UnaryOperator *expr)
600 pet_expr *arg;
601 enum pet_op_type op;
603 op = UnaryOperatorKind2pet_op_type(expr->getOpcode());
604 if (op == pet_op_last) {
605 unsupported(expr);
606 return NULL;
609 arg = extract_expr(expr->getSubExpr());
611 if (expr->isIncrementDecrementOp() &&
612 pet_expr_get_type(arg) == pet_expr_access) {
613 arg = mark_write(arg);
614 arg = pet_expr_access_set_read(arg, 1);
617 return pet_expr_new_unary(op, arg);
620 /* Construct a pet_expr representing a binary operator expression.
622 * If the top level operator is an assignment and the LHS is an access,
623 * then we mark that access as a write. If the operator is a compound
624 * assignment, the access is marked as both a read and a write.
626 __isl_give pet_expr *PetScan::extract_expr(BinaryOperator *expr)
628 int type_size;
629 pet_expr *lhs, *rhs;
630 enum pet_op_type op;
632 op = BinaryOperatorKind2pet_op_type(expr->getOpcode());
633 if (op == pet_op_last) {
634 unsupported(expr);
635 return NULL;
638 lhs = extract_expr(expr->getLHS());
639 rhs = extract_expr(expr->getRHS());
641 if (expr->isAssignmentOp() &&
642 pet_expr_get_type(lhs) == pet_expr_access) {
643 lhs = mark_write(lhs);
644 if (expr->isCompoundAssignmentOp())
645 lhs = pet_expr_access_set_read(lhs, 1);
648 type_size = get_type_size(expr->getType(), ast_context);
649 return pet_expr_new_binary(type_size, op, lhs, rhs);
652 /* Construct a pet_tree for a (single) variable declaration.
654 __isl_give pet_tree *PetScan::extract(DeclStmt *stmt)
656 Decl *decl;
657 VarDecl *vd;
658 pet_expr *lhs, *rhs;
659 pet_tree *tree;
661 if (!stmt->isSingleDecl()) {
662 unsupported(stmt);
663 return NULL;
666 decl = stmt->getSingleDecl();
667 vd = cast<VarDecl>(decl);
669 lhs = extract_access_expr(vd);
670 lhs = mark_write(lhs);
671 if (!vd->getInit())
672 tree = pet_tree_new_decl(lhs);
673 else {
674 rhs = extract_expr(vd->getInit());
675 tree = pet_tree_new_decl_init(lhs, rhs);
678 return tree;
681 /* Construct a pet_expr representing a conditional operation.
683 __isl_give pet_expr *PetScan::extract_expr(ConditionalOperator *expr)
685 pet_expr *cond, *lhs, *rhs;
686 isl_pw_aff *pa;
688 cond = extract_expr(expr->getCond());
689 lhs = extract_expr(expr->getTrueExpr());
690 rhs = extract_expr(expr->getFalseExpr());
692 return pet_expr_new_ternary(cond, lhs, rhs);
695 __isl_give pet_expr *PetScan::extract_expr(ImplicitCastExpr *expr)
697 return extract_expr(expr->getSubExpr());
700 /* Construct a pet_expr representing a floating point value.
702 * If the floating point literal does not appear in a macro,
703 * then we use the original representation in the source code
704 * as the string representation. Otherwise, we use the pretty
705 * printer to produce a string representation.
707 __isl_give pet_expr *PetScan::extract_expr(FloatingLiteral *expr)
709 double d;
710 string s;
711 const LangOptions &LO = PP.getLangOpts();
712 SourceLocation loc = expr->getLocation();
714 if (!loc.isMacroID()) {
715 SourceManager &SM = PP.getSourceManager();
716 unsigned len = Lexer::MeasureTokenLength(loc, SM, LO);
717 s = string(SM.getCharacterData(loc), len);
718 } else {
719 llvm::raw_string_ostream S(s);
720 expr->printPretty(S, 0, PrintingPolicy(LO));
721 S.str();
723 d = expr->getValueAsApproximateDouble();
724 return pet_expr_new_double(ctx, d, s.c_str());
727 /* Convert the index expression "index" into an access pet_expr of type "qt".
729 __isl_give pet_expr *PetScan::extract_access_expr(QualType qt,
730 __isl_take pet_expr *index)
732 int depth;
733 int type_size;
735 depth = extract_depth(index);
736 type_size = get_type_size(qt, ast_context);
738 index = pet_expr_set_type_size(index, type_size);
739 index = pet_expr_access_set_depth(index, depth);
741 return index;
744 /* Extract an index expression from "expr" and then convert it into
745 * an access pet_expr.
747 * If "expr" is a reference to an enum constant, then return
748 * an integer expression instead, representing the value of the enum constant.
750 __isl_give pet_expr *PetScan::extract_access_expr(Expr *expr)
752 pet_expr *index;
754 index = extract_index_expr(expr);
756 if (pet_expr_get_type(index) == pet_expr_int)
757 return index;
759 return extract_access_expr(expr->getType(), index);
762 /* Extract an index expression from "decl" and then convert it into
763 * an access pet_expr.
765 __isl_give pet_expr *PetScan::extract_access_expr(ValueDecl *decl)
767 return extract_access_expr(decl->getType(), extract_index_expr(decl));
770 __isl_give pet_expr *PetScan::extract_expr(ParenExpr *expr)
772 return extract_expr(expr->getSubExpr());
775 /* Extract an assume statement from the argument "expr"
776 * of a __pencil_assume statement.
778 __isl_give pet_expr *PetScan::extract_assume(Expr *expr)
780 return pet_expr_new_unary(pet_op_assume, extract_expr(expr));
783 /* Construct a pet_expr corresponding to the function call argument "expr".
784 * The argument appears in position "pos" of a call to function "fd".
786 * If we are passing along a pointer to an array element
787 * or an entire row or even higher dimensional slice of an array,
788 * then the function being called may write into the array.
790 * We assume here that if the function is declared to take a pointer
791 * to a const type, then the function will perform a read
792 * and that otherwise, it will perform a write.
794 __isl_give pet_expr *PetScan::extract_argument(FunctionDecl *fd, int pos,
795 Expr *expr)
797 pet_expr *res;
798 int is_addr = 0, is_partial = 0;
799 Stmt::StmtClass sc;
801 if (expr->getStmtClass() == Stmt::ImplicitCastExprClass) {
802 ImplicitCastExpr *ice = cast<ImplicitCastExpr>(expr);
803 expr = ice->getSubExpr();
805 if (expr->getStmtClass() == Stmt::UnaryOperatorClass) {
806 UnaryOperator *op = cast<UnaryOperator>(expr);
807 if (op->getOpcode() == UO_AddrOf) {
808 is_addr = 1;
809 expr = op->getSubExpr();
812 res = extract_expr(expr);
813 if (!res)
814 return NULL;
815 sc = expr->getStmtClass();
816 if ((sc == Stmt::ArraySubscriptExprClass ||
817 sc == Stmt::DeclRefExprClass ||
818 sc == Stmt::MemberExprClass) &&
819 array_depth(expr->getType().getTypePtr()) > 0)
820 is_partial = 1;
821 if ((is_addr || is_partial) &&
822 pet_expr_get_type(res) == pet_expr_access) {
823 ParmVarDecl *parm;
824 if (!fd->hasPrototype()) {
825 report_prototype_required(expr);
826 return pet_expr_free(res);
828 parm = fd->getParamDecl(pos);
829 if (!const_base(parm->getType()))
830 res = mark_write(res);
833 if (is_addr)
834 res = pet_expr_new_unary(pet_op_address_of, res);
835 return res;
838 /* Construct a pet_expr representing a function call.
840 * In the special case of a "call" to __pencil_assume,
841 * construct an assume expression instead.
843 __isl_give pet_expr *PetScan::extract_expr(CallExpr *expr)
845 pet_expr *res = NULL;
846 FunctionDecl *fd;
847 string name;
848 unsigned n_arg;
850 fd = expr->getDirectCallee();
851 if (!fd) {
852 unsupported(expr);
853 return NULL;
856 name = fd->getDeclName().getAsString();
857 n_arg = expr->getNumArgs();
859 if (n_arg == 1 && name == "__pencil_assume")
860 return extract_assume(expr->getArg(0));
862 res = pet_expr_new_call(ctx, name.c_str(), n_arg);
863 if (!res)
864 return NULL;
866 for (int i = 0; i < n_arg; ++i) {
867 Expr *arg = expr->getArg(i);
868 res = pet_expr_set_arg(res, i,
869 PetScan::extract_argument(fd, i, arg));
872 res = set_summary(res, fd);
874 return res;
877 /* Construct a pet_expr representing a (C style) cast.
879 __isl_give pet_expr *PetScan::extract_expr(CStyleCastExpr *expr)
881 pet_expr *arg;
882 QualType type;
884 arg = extract_expr(expr->getSubExpr());
885 if (!arg)
886 return NULL;
888 type = expr->getTypeAsWritten();
889 return pet_expr_new_cast(type.getAsString().c_str(), arg);
892 /* Construct a pet_expr representing an integer.
894 __isl_give pet_expr *PetScan::extract_expr(IntegerLiteral *expr)
896 return pet_expr_new_int(extract_int(expr));
899 /* Construct a pet_expr representing the integer enum constant "ecd".
901 __isl_give pet_expr *PetScan::extract_expr(EnumConstantDecl *ecd)
903 isl_val *v;
904 const llvm::APSInt &init = ecd->getInitVal();
905 v = ::extract_int(ctx, init.isSigned(), init);
906 return pet_expr_new_int(v);
909 /* Try and construct a pet_expr representing "expr".
911 __isl_give pet_expr *PetScan::extract_expr(Expr *expr)
913 switch (expr->getStmtClass()) {
914 case Stmt::UnaryOperatorClass:
915 return extract_expr(cast<UnaryOperator>(expr));
916 case Stmt::CompoundAssignOperatorClass:
917 case Stmt::BinaryOperatorClass:
918 return extract_expr(cast<BinaryOperator>(expr));
919 case Stmt::ImplicitCastExprClass:
920 return extract_expr(cast<ImplicitCastExpr>(expr));
921 case Stmt::ArraySubscriptExprClass:
922 case Stmt::DeclRefExprClass:
923 case Stmt::MemberExprClass:
924 return extract_access_expr(expr);
925 case Stmt::IntegerLiteralClass:
926 return extract_expr(cast<IntegerLiteral>(expr));
927 case Stmt::FloatingLiteralClass:
928 return extract_expr(cast<FloatingLiteral>(expr));
929 case Stmt::ParenExprClass:
930 return extract_expr(cast<ParenExpr>(expr));
931 case Stmt::ConditionalOperatorClass:
932 return extract_expr(cast<ConditionalOperator>(expr));
933 case Stmt::CallExprClass:
934 return extract_expr(cast<CallExpr>(expr));
935 case Stmt::CStyleCastExprClass:
936 return extract_expr(cast<CStyleCastExpr>(expr));
937 default:
938 unsupported(expr);
940 return NULL;
943 /* Check if the given initialization statement is an assignment.
944 * If so, return that assignment. Otherwise return NULL.
946 BinaryOperator *PetScan::initialization_assignment(Stmt *init)
948 BinaryOperator *ass;
950 if (init->getStmtClass() != Stmt::BinaryOperatorClass)
951 return NULL;
953 ass = cast<BinaryOperator>(init);
954 if (ass->getOpcode() != BO_Assign)
955 return NULL;
957 return ass;
960 /* Check if the given initialization statement is a declaration
961 * of a single variable.
962 * If so, return that declaration. Otherwise return NULL.
964 Decl *PetScan::initialization_declaration(Stmt *init)
966 DeclStmt *decl;
968 if (init->getStmtClass() != Stmt::DeclStmtClass)
969 return NULL;
971 decl = cast<DeclStmt>(init);
973 if (!decl->isSingleDecl())
974 return NULL;
976 return decl->getSingleDecl();
979 /* Given the assignment operator in the initialization of a for loop,
980 * extract the induction variable, i.e., the (integer)variable being
981 * assigned.
983 ValueDecl *PetScan::extract_induction_variable(BinaryOperator *init)
985 Expr *lhs;
986 DeclRefExpr *ref;
987 ValueDecl *decl;
988 const Type *type;
990 lhs = init->getLHS();
991 if (lhs->getStmtClass() != Stmt::DeclRefExprClass) {
992 unsupported(init);
993 return NULL;
996 ref = cast<DeclRefExpr>(lhs);
997 decl = ref->getDecl();
998 type = decl->getType().getTypePtr();
1000 if (!type->isIntegerType()) {
1001 unsupported(lhs);
1002 return NULL;
1005 return decl;
1008 /* Given the initialization statement of a for loop and the single
1009 * declaration in this initialization statement,
1010 * extract the induction variable, i.e., the (integer) variable being
1011 * declared.
1013 VarDecl *PetScan::extract_induction_variable(Stmt *init, Decl *decl)
1015 VarDecl *vd;
1017 vd = cast<VarDecl>(decl);
1019 const QualType type = vd->getType();
1020 if (!type->isIntegerType()) {
1021 unsupported(init);
1022 return NULL;
1025 if (!vd->getInit()) {
1026 unsupported(init);
1027 return NULL;
1030 return vd;
1033 /* Check that op is of the form iv++ or iv--.
1034 * Return a pet_expr representing "1" or "-1" accordingly.
1036 __isl_give pet_expr *PetScan::extract_unary_increment(
1037 clang::UnaryOperator *op, clang::ValueDecl *iv)
1039 Expr *sub;
1040 DeclRefExpr *ref;
1041 isl_val *v;
1043 if (!op->isIncrementDecrementOp()) {
1044 unsupported(op);
1045 return NULL;
1048 sub = op->getSubExpr();
1049 if (sub->getStmtClass() != Stmt::DeclRefExprClass) {
1050 unsupported(op);
1051 return NULL;
1054 ref = cast<DeclRefExpr>(sub);
1055 if (ref->getDecl() != iv) {
1056 unsupported(op);
1057 return NULL;
1060 if (op->isIncrementOp())
1061 v = isl_val_one(ctx);
1062 else
1063 v = isl_val_negone(ctx);
1065 return pet_expr_new_int(v);
1068 /* Check if op is of the form
1070 * iv = expr
1072 * and return the increment "expr - iv" as a pet_expr.
1074 __isl_give pet_expr *PetScan::extract_binary_increment(BinaryOperator *op,
1075 clang::ValueDecl *iv)
1077 int type_size;
1078 Expr *lhs;
1079 DeclRefExpr *ref;
1080 pet_expr *expr, *expr_iv;
1082 if (op->getOpcode() != BO_Assign) {
1083 unsupported(op);
1084 return NULL;
1087 lhs = op->getLHS();
1088 if (lhs->getStmtClass() != Stmt::DeclRefExprClass) {
1089 unsupported(op);
1090 return NULL;
1093 ref = cast<DeclRefExpr>(lhs);
1094 if (ref->getDecl() != iv) {
1095 unsupported(op);
1096 return NULL;
1099 expr = extract_expr(op->getRHS());
1100 expr_iv = extract_expr(lhs);
1102 type_size = get_type_size(iv->getType(), ast_context);
1103 return pet_expr_new_binary(type_size, pet_op_sub, expr, expr_iv);
1106 /* Check that op is of the form iv += cst or iv -= cst
1107 * and return a pet_expr corresponding to cst or -cst accordingly.
1109 __isl_give pet_expr *PetScan::extract_compound_increment(
1110 CompoundAssignOperator *op, clang::ValueDecl *iv)
1112 Expr *lhs;
1113 DeclRefExpr *ref;
1114 bool neg = false;
1115 pet_expr *expr;
1116 BinaryOperatorKind opcode;
1118 opcode = op->getOpcode();
1119 if (opcode != BO_AddAssign && opcode != BO_SubAssign) {
1120 unsupported(op);
1121 return NULL;
1123 if (opcode == BO_SubAssign)
1124 neg = true;
1126 lhs = op->getLHS();
1127 if (lhs->getStmtClass() != Stmt::DeclRefExprClass) {
1128 unsupported(op);
1129 return NULL;
1132 ref = cast<DeclRefExpr>(lhs);
1133 if (ref->getDecl() != iv) {
1134 unsupported(op);
1135 return NULL;
1138 expr = extract_expr(op->getRHS());
1139 if (neg)
1140 expr = pet_expr_new_unary(pet_op_minus, expr);
1142 return expr;
1145 /* Check that the increment of the given for loop increments
1146 * (or decrements) the induction variable "iv" and return
1147 * the increment as a pet_expr if successful.
1149 __isl_give pet_expr *PetScan::extract_increment(clang::ForStmt *stmt,
1150 ValueDecl *iv)
1152 Stmt *inc = stmt->getInc();
1154 if (!inc) {
1155 report_missing_increment(stmt);
1156 return NULL;
1159 if (inc->getStmtClass() == Stmt::UnaryOperatorClass)
1160 return extract_unary_increment(cast<UnaryOperator>(inc), iv);
1161 if (inc->getStmtClass() == Stmt::CompoundAssignOperatorClass)
1162 return extract_compound_increment(
1163 cast<CompoundAssignOperator>(inc), iv);
1164 if (inc->getStmtClass() == Stmt::BinaryOperatorClass)
1165 return extract_binary_increment(cast<BinaryOperator>(inc), iv);
1167 unsupported(inc);
1168 return NULL;
1171 /* Construct a pet_tree for a while loop.
1173 * If we were only able to extract part of the body, then simply
1174 * return that part.
1176 __isl_give pet_tree *PetScan::extract(WhileStmt *stmt)
1178 pet_expr *pe_cond;
1179 pet_tree *tree;
1181 tree = extract(stmt->getBody());
1182 if (partial)
1183 return tree;
1184 pe_cond = extract_expr(stmt->getCond());
1185 tree = pet_tree_new_while(pe_cond, tree);
1187 return tree;
1190 /* Construct a pet_tree for a for statement.
1191 * The for loop is required to be of one of the following forms
1193 * for (i = init; condition; ++i)
1194 * for (i = init; condition; --i)
1195 * for (i = init; condition; i += constant)
1196 * for (i = init; condition; i -= constant)
1198 * We extract a pet_tree for the body and then include it in a pet_tree
1199 * of type pet_tree_for.
1201 * As a special case, we also allow a for loop of the form
1203 * for (;;)
1205 * in which case we return a pet_tree of type pet_tree_infinite_loop.
1207 * If we were only able to extract part of the body, then simply
1208 * return that part.
1210 __isl_give pet_tree *PetScan::extract_for(ForStmt *stmt)
1212 BinaryOperator *ass;
1213 Decl *decl;
1214 Stmt *init;
1215 Expr *lhs, *rhs;
1216 ValueDecl *iv;
1217 pet_tree *tree;
1218 struct pet_scop *scop;
1219 int independent;
1220 int declared;
1221 pet_expr *pe_init, *pe_inc, *pe_iv, *pe_cond;
1223 independent = is_current_stmt_marked_independent();
1225 if (!stmt->getInit() && !stmt->getCond() && !stmt->getInc()) {
1226 tree = extract(stmt->getBody());
1227 if (partial)
1228 return tree;
1229 tree = pet_tree_new_infinite_loop(tree);
1230 return tree;
1233 init = stmt->getInit();
1234 if (!init) {
1235 unsupported(stmt);
1236 return NULL;
1238 if ((ass = initialization_assignment(init)) != NULL) {
1239 iv = extract_induction_variable(ass);
1240 if (!iv)
1241 return NULL;
1242 lhs = ass->getLHS();
1243 rhs = ass->getRHS();
1244 } else if ((decl = initialization_declaration(init)) != NULL) {
1245 VarDecl *var = extract_induction_variable(init, decl);
1246 if (!var)
1247 return NULL;
1248 iv = var;
1249 rhs = var->getInit();
1250 lhs = create_DeclRefExpr(var);
1251 } else {
1252 unsupported(stmt->getInit());
1253 return NULL;
1256 declared = !initialization_assignment(stmt->getInit());
1257 tree = extract(stmt->getBody());
1258 if (partial)
1259 return tree;
1260 pe_iv = extract_access_expr(iv);
1261 pe_iv = mark_write(pe_iv);
1262 pe_init = extract_expr(rhs);
1263 if (!stmt->getCond())
1264 pe_cond = pet_expr_new_int(isl_val_one(ctx));
1265 else
1266 pe_cond = extract_expr(stmt->getCond());
1267 pe_inc = extract_increment(stmt, iv);
1268 tree = pet_tree_new_for(independent, declared, pe_iv, pe_init, pe_cond,
1269 pe_inc, tree);
1270 return tree;
1273 /* Try and construct a pet_tree corresponding to a compound statement.
1275 * "skip_declarations" is set if we should skip initial declarations
1276 * in the children of the compound statements. This then implies
1277 * that this sequence of children should not be treated as a block
1278 * since the initial statements may be skipped.
1280 __isl_give pet_tree *PetScan::extract(CompoundStmt *stmt,
1281 bool skip_declarations)
1283 return extract(stmt->children(), !skip_declarations, skip_declarations);
1286 /* Return the file offset of the expansion location of "Loc".
1288 static unsigned getExpansionOffset(SourceManager &SM, SourceLocation Loc)
1290 return SM.getFileOffset(SM.getExpansionLoc(Loc));
1293 #ifdef HAVE_FINDLOCATIONAFTERTOKEN
1295 /* Return a SourceLocation for the location after the first semicolon
1296 * after "loc". If Lexer::findLocationAfterToken is available, we simply
1297 * call it and also skip trailing spaces and newline.
1299 static SourceLocation location_after_semi(SourceLocation loc, SourceManager &SM,
1300 const LangOptions &LO)
1302 return Lexer::findLocationAfterToken(loc, tok::semi, SM, LO, true);
1305 #else
1307 /* Return a SourceLocation for the location after the first semicolon
1308 * after "loc". If Lexer::findLocationAfterToken is not available,
1309 * we look in the underlying character data for the first semicolon.
1311 static SourceLocation location_after_semi(SourceLocation loc, SourceManager &SM,
1312 const LangOptions &LO)
1314 const char *semi;
1315 const char *s = SM.getCharacterData(loc);
1317 semi = strchr(s, ';');
1318 if (!semi)
1319 return SourceLocation();
1320 return loc.getFileLocWithOffset(semi + 1 - s);
1323 #endif
1325 /* If the token at "loc" is the first token on the line, then return
1326 * a location referring to the start of the line and set *indent
1327 * to the indentation of "loc"
1328 * Otherwise, return "loc" and set *indent to "".
1330 * This function is used to extend a scop to the start of the line
1331 * if the first token of the scop is also the first token on the line.
1333 * We look for the first token on the line. If its location is equal to "loc",
1334 * then the latter is the location of the first token on the line.
1336 static SourceLocation move_to_start_of_line_if_first_token(SourceLocation loc,
1337 SourceManager &SM, const LangOptions &LO, char **indent)
1339 std::pair<FileID, unsigned> file_offset_pair;
1340 llvm::StringRef file;
1341 const char *pos;
1342 Token tok;
1343 SourceLocation token_loc, line_loc;
1344 int col;
1345 const char *s;
1347 loc = SM.getExpansionLoc(loc);
1348 col = SM.getExpansionColumnNumber(loc);
1349 line_loc = loc.getLocWithOffset(1 - col);
1350 file_offset_pair = SM.getDecomposedLoc(line_loc);
1351 file = SM.getBufferData(file_offset_pair.first, NULL);
1352 pos = file.data() + file_offset_pair.second;
1354 Lexer lexer(SM.getLocForStartOfFile(file_offset_pair.first), LO,
1355 file.begin(), pos, file.end());
1356 lexer.LexFromRawLexer(tok);
1357 token_loc = tok.getLocation();
1359 s = SM.getCharacterData(line_loc);
1360 *indent = strndup(s, token_loc == loc ? col - 1 : 0);
1362 if (token_loc == loc)
1363 return line_loc;
1364 else
1365 return loc;
1368 /* Construct a pet_loc corresponding to the region covered by "range".
1369 * If "skip_semi" is set, then we assume "range" is followed by
1370 * a semicolon and also include this semicolon.
1372 __isl_give pet_loc *PetScan::construct_pet_loc(SourceRange range,
1373 bool skip_semi)
1375 SourceLocation loc = range.getBegin();
1376 SourceManager &SM = PP.getSourceManager();
1377 const LangOptions &LO = PP.getLangOpts();
1378 int line = PP.getSourceManager().getExpansionLineNumber(loc);
1379 unsigned start, end;
1380 char *indent;
1382 loc = move_to_start_of_line_if_first_token(loc, SM, LO, &indent);
1383 start = getExpansionOffset(SM, loc);
1384 loc = range.getEnd();
1385 if (skip_semi)
1386 loc = location_after_semi(loc, SM, LO);
1387 else
1388 loc = PP.getLocForEndOfToken(loc);
1389 end = getExpansionOffset(SM, loc);
1391 return pet_loc_alloc(ctx, start, end, line, indent);
1394 /* Convert a top-level pet_expr to an expression pet_tree.
1396 __isl_give pet_tree *PetScan::extract(__isl_take pet_expr *expr,
1397 SourceRange range, bool skip_semi)
1399 pet_loc *loc;
1400 pet_tree *tree;
1402 tree = pet_tree_new_expr(expr);
1403 loc = construct_pet_loc(range, skip_semi);
1404 tree = pet_tree_set_loc(tree, loc);
1406 return tree;
1409 /* Construct a pet_tree for an if statement.
1411 __isl_give pet_tree *PetScan::extract(IfStmt *stmt)
1413 pet_expr *pe_cond;
1414 pet_tree *tree, *tree_else;
1415 struct pet_scop *scop;
1416 int int_size;
1418 pe_cond = extract_expr(stmt->getCond());
1419 tree = extract(stmt->getThen());
1420 if (stmt->getElse()) {
1421 tree_else = extract(stmt->getElse());
1422 if (options->autodetect) {
1423 if (tree && !tree_else) {
1424 partial = true;
1425 pet_expr_free(pe_cond);
1426 return tree;
1428 if (!tree && tree_else) {
1429 partial = true;
1430 pet_expr_free(pe_cond);
1431 return tree_else;
1434 tree = pet_tree_new_if_else(pe_cond, tree, tree_else);
1435 } else
1436 tree = pet_tree_new_if(pe_cond, tree);
1437 return tree;
1440 /* Try and construct a pet_tree for a label statement.
1441 * We currently only allow labels on expression statements.
1443 __isl_give pet_tree *PetScan::extract(LabelStmt *stmt)
1445 isl_id *label;
1446 pet_tree *tree;
1447 Stmt *sub;
1449 sub = stmt->getSubStmt();
1450 if (!isa<Expr>(sub)) {
1451 unsupported(stmt);
1452 return NULL;
1455 label = isl_id_alloc(ctx, stmt->getName(), NULL);
1457 tree = extract(extract_expr(cast<Expr>(sub)), stmt->getSourceRange(),
1458 true);
1459 tree = pet_tree_set_label(tree, label);
1460 return tree;
1463 /* Update the location of "tree" to include the source range of "stmt".
1465 * Actually, we create a new location based on the source range of "stmt" and
1466 * then extend this new location to include the region of the original location.
1467 * This ensures that the line number of the final location refers to "stmt".
1469 __isl_give pet_tree *PetScan::update_loc(__isl_take pet_tree *tree, Stmt *stmt)
1471 pet_loc *loc, *tree_loc;
1473 tree_loc = pet_tree_get_loc(tree);
1474 loc = construct_pet_loc(stmt->getSourceRange(), false);
1475 loc = pet_loc_update_start_end_from_loc(loc, tree_loc);
1476 pet_loc_free(tree_loc);
1478 tree = pet_tree_set_loc(tree, loc);
1479 return tree;
1482 /* Try and construct a pet_tree corresponding to "stmt".
1484 * If "stmt" is a compound statement, then "skip_declarations"
1485 * indicates whether we should skip initial declarations in the
1486 * compound statement.
1488 * If the constructed pet_tree is not a (possibly) partial representation
1489 * of "stmt", we update start and end of the pet_scop to those of "stmt".
1490 * In particular, if skip_declarations is set, then we may have skipped
1491 * declarations inside "stmt" and so the pet_scop may not represent
1492 * the entire "stmt".
1493 * Note that this function may be called with "stmt" referring to the entire
1494 * body of the function, including the outer braces. In such cases,
1495 * skip_declarations will be set and the braces will not be taken into
1496 * account in tree->loc.
1498 __isl_give pet_tree *PetScan::extract(Stmt *stmt, bool skip_declarations)
1500 pet_tree *tree;
1502 set_current_stmt(stmt);
1504 if (isa<Expr>(stmt))
1505 return extract(extract_expr(cast<Expr>(stmt)),
1506 stmt->getSourceRange(), true);
1508 switch (stmt->getStmtClass()) {
1509 case Stmt::WhileStmtClass:
1510 tree = extract(cast<WhileStmt>(stmt));
1511 break;
1512 case Stmt::ForStmtClass:
1513 tree = extract_for(cast<ForStmt>(stmt));
1514 break;
1515 case Stmt::IfStmtClass:
1516 tree = extract(cast<IfStmt>(stmt));
1517 break;
1518 case Stmt::CompoundStmtClass:
1519 tree = extract(cast<CompoundStmt>(stmt), skip_declarations);
1520 break;
1521 case Stmt::LabelStmtClass:
1522 tree = extract(cast<LabelStmt>(stmt));
1523 break;
1524 case Stmt::ContinueStmtClass:
1525 tree = pet_tree_new_continue(ctx);
1526 break;
1527 case Stmt::BreakStmtClass:
1528 tree = pet_tree_new_break(ctx);
1529 break;
1530 case Stmt::DeclStmtClass:
1531 tree = extract(cast<DeclStmt>(stmt));
1532 break;
1533 default:
1534 unsupported(stmt);
1535 return NULL;
1538 if (partial || skip_declarations)
1539 return tree;
1541 return update_loc(tree, stmt);
1544 /* Try and construct a pet_tree corresponding to (part of)
1545 * a sequence of statements.
1547 * "block" is set if the sequence represents the children of
1548 * a compound statement.
1549 * "skip_declarations" is set if we should skip initial declarations
1550 * in the sequence of statements.
1552 * If autodetect is set, then we allow the extraction of only a subrange
1553 * of the sequence of statements. However, if there is at least one statement
1554 * for which we could not construct a scop and the final range contains
1555 * either no statements or at least one kill, then we discard the entire
1556 * range.
1558 __isl_give pet_tree *PetScan::extract(StmtRange stmt_range, bool block,
1559 bool skip_declarations)
1561 StmtIterator i;
1562 int j;
1563 bool has_kills = false;
1564 bool partial_range = false;
1565 pet_tree *tree;
1566 set<struct pet_stmt *> kills;
1567 set<struct pet_stmt *>::iterator it;
1569 for (i = stmt_range.first, j = 0; i != stmt_range.second; ++i, ++j)
1572 tree = pet_tree_new_block(ctx, block, j);
1574 for (i = stmt_range.first; i != stmt_range.second; ++i) {
1575 Stmt *child = *i;
1576 pet_tree *tree_i;
1578 if (pet_tree_block_n_child(tree) == 0 && skip_declarations &&
1579 child->getStmtClass() == Stmt::DeclStmtClass)
1580 continue;
1582 tree_i = extract(child);
1583 if (pet_tree_block_n_child(tree) != 0 && partial) {
1584 pet_tree_free(tree_i);
1585 break;
1587 if (tree_i && child->getStmtClass() == Stmt::DeclStmtClass &&
1588 block)
1589 has_kills = true;
1590 if (options->autodetect) {
1591 if (tree_i)
1592 tree = pet_tree_block_add_child(tree, tree_i);
1593 else
1594 partial_range = true;
1595 if (pet_tree_block_n_child(tree) != 0 && !tree_i)
1596 partial = true;
1597 } else {
1598 tree = pet_tree_block_add_child(tree, tree_i);
1601 if (partial || !tree)
1602 break;
1605 if (tree && partial_range) {
1606 if (pet_tree_block_n_child(tree) == 0 || has_kills) {
1607 pet_tree_free(tree);
1608 return NULL;
1610 partial = true;
1613 return tree;
1616 /* Is "T" the type of a variable length array with static size?
1618 static bool is_vla_with_static_size(QualType T)
1620 const VariableArrayType *vlatype;
1622 if (!T->isVariableArrayType())
1623 return false;
1624 vlatype = cast<VariableArrayType>(T);
1625 return vlatype->getSizeModifier() == VariableArrayType::Static;
1628 /* Return the type of "decl" as an array.
1630 * In particular, if "decl" is a parameter declaration that
1631 * is a variable length array with a static size, then
1632 * return the original type (i.e., the variable length array).
1633 * Otherwise, return the type of decl.
1635 static QualType get_array_type(ValueDecl *decl)
1637 ParmVarDecl *parm;
1638 QualType T;
1640 parm = dyn_cast<ParmVarDecl>(decl);
1641 if (!parm)
1642 return decl->getType();
1644 T = parm->getOriginalType();
1645 if (!is_vla_with_static_size(T))
1646 return decl->getType();
1647 return T;
1650 extern "C" {
1651 static __isl_give pet_expr *get_array_size(__isl_keep pet_expr *access,
1652 void *user);
1653 static struct pet_array *extract_array(__isl_keep pet_expr *access,
1654 __isl_keep pet_context *pc, void *user);
1657 /* Construct a pet_expr that holds the sizes of the array accessed
1658 * by "access".
1659 * This function is used as a callback to pet_context_add_parameters,
1660 * which is also passed a pointer to the PetScan object.
1662 static __isl_give pet_expr *get_array_size(__isl_keep pet_expr *access,
1663 void *user)
1665 PetScan *ps = (PetScan *) user;
1666 isl_id *id;
1667 ValueDecl *decl;
1668 const Type *type;
1670 id = pet_expr_access_get_id(access);
1671 decl = (ValueDecl *) isl_id_get_user(id);
1672 isl_id_free(id);
1673 type = get_array_type(decl).getTypePtr();
1674 return ps->get_array_size(type);
1677 /* Construct and return a pet_array corresponding to the variable
1678 * accessed by "access".
1679 * This function is used as a callback to pet_scop_from_pet_tree,
1680 * which is also passed a pointer to the PetScan object.
1682 static struct pet_array *extract_array(__isl_keep pet_expr *access,
1683 __isl_keep pet_context *pc, void *user)
1685 PetScan *ps = (PetScan *) user;
1686 isl_ctx *ctx;
1687 isl_id *id;
1688 ValueDecl *iv;
1690 ctx = pet_expr_get_ctx(access);
1691 id = pet_expr_access_get_id(access);
1692 iv = (ValueDecl *) isl_id_get_user(id);
1693 isl_id_free(id);
1694 return ps->extract_array(ctx, iv, NULL, pc);
1697 /* Extract a function summary from the body of "fd".
1699 * We extract a scop from the function body in a context with as
1700 * parameters the integer arguments of the function.
1701 * We turn off autodetection (in case it was set) to ensure that
1702 * the entire function body is considered.
1703 * We then collect the accessed array elements and attach them
1704 * to the corresponding array arguments, taking into account
1705 * that the function body may access members of array elements.
1707 * The reason for representing the integer arguments as parameters in
1708 * the context is that if we were to instead start with a context
1709 * with the function arguments as initial dimensions, then we would not
1710 * be able to refer to them from the array extents, without turning
1711 * array extents into maps.
1713 * The result is stored in the summary_cache cache so that we can reuse
1714 * it if this method gets called on the same function again later on.
1716 __isl_give pet_function_summary *PetScan::get_summary(FunctionDecl *fd)
1718 isl_space *space;
1719 isl_set *domain;
1720 pet_context *pc;
1721 pet_tree *tree;
1722 pet_function_summary *summary;
1723 unsigned n;
1724 ScopLoc loc;
1725 int save_autodetect;
1726 struct pet_scop *scop;
1727 int int_size;
1728 isl_union_set *may_read, *may_write, *must_write;
1729 isl_union_map *to_inner;
1731 if (summary_cache.find(fd) != summary_cache.end())
1732 return pet_function_summary_copy(summary_cache[fd]);
1734 space = isl_space_set_alloc(ctx, 0, 0);
1736 n = fd->getNumParams();
1737 summary = pet_function_summary_alloc(ctx, n);
1738 for (int i = 0; i < n; ++i) {
1739 ParmVarDecl *parm = fd->getParamDecl(i);
1740 QualType type = parm->getType();
1741 isl_id *id;
1743 if (!type->isIntegerType())
1744 continue;
1745 id = create_decl_id(ctx, parm);
1746 space = isl_space_insert_dims(space, isl_dim_param, 0, 1);
1747 space = isl_space_set_dim_id(space, isl_dim_param, 0,
1748 isl_id_copy(id));
1749 summary = pet_function_summary_set_int(summary, i, id);
1752 save_autodetect = options->autodetect;
1753 options->autodetect = 0;
1754 PetScan body_scan(PP, ast_context, loc, options,
1755 isl_union_map_copy(value_bounds), independent);
1757 tree = body_scan.extract(fd->getBody(), false);
1759 domain = isl_set_universe(space);
1760 pc = pet_context_alloc(domain);
1761 pc = pet_context_add_parameters(pc, tree,
1762 &::get_array_size, &body_scan);
1763 int_size = ast_context.getTypeInfo(ast_context.IntTy).first / 8;
1764 scop = pet_scop_from_pet_tree(tree, int_size,
1765 &::extract_array, &body_scan, pc);
1766 scop = scan_arrays(scop, pc);
1767 may_read = isl_union_map_range(pet_scop_collect_may_reads(scop));
1768 may_write = isl_union_map_range(pet_scop_collect_may_writes(scop));
1769 must_write = isl_union_map_range(pet_scop_collect_must_writes(scop));
1770 to_inner = pet_scop_compute_outer_to_inner(scop);
1771 pet_scop_free(scop);
1773 for (int i = 0; i < n; ++i) {
1774 ParmVarDecl *parm = fd->getParamDecl(i);
1775 QualType type = parm->getType();
1776 struct pet_array *array;
1777 isl_space *space;
1778 isl_union_set *data_set;
1779 isl_union_set *may_read_i, *may_write_i, *must_write_i;
1781 if (array_depth(type.getTypePtr()) == 0)
1782 continue;
1784 array = body_scan.extract_array(ctx, parm, NULL, pc);
1785 space = array ? isl_set_get_space(array->extent) : NULL;
1786 pet_array_free(array);
1787 data_set = isl_union_set_from_set(isl_set_universe(space));
1788 data_set = isl_union_set_apply(data_set,
1789 isl_union_map_copy(to_inner));
1790 may_read_i = isl_union_set_intersect(
1791 isl_union_set_copy(may_read),
1792 isl_union_set_copy(data_set));
1793 may_write_i = isl_union_set_intersect(
1794 isl_union_set_copy(may_write),
1795 isl_union_set_copy(data_set));
1796 must_write_i = isl_union_set_intersect(
1797 isl_union_set_copy(must_write), data_set);
1798 summary = pet_function_summary_set_array(summary, i,
1799 may_read_i, may_write_i, must_write_i);
1802 isl_union_set_free(may_read);
1803 isl_union_set_free(may_write);
1804 isl_union_set_free(must_write);
1805 isl_union_map_free(to_inner);
1807 options->autodetect = save_autodetect;
1808 pet_context_free(pc);
1810 summary_cache[fd] = pet_function_summary_copy(summary);
1812 return summary;
1815 /* If "fd" has a function body, then extract a function summary from
1816 * this body and attach it to the call expression "expr".
1818 * Even if a function body is available, "fd" itself may point
1819 * to a declaration without function body. We therefore first
1820 * replace it by the declaration that comes with a body (if any).
1822 * It is not clear why hasBody takes a reference to a const FunctionDecl *.
1823 * It seems that it is possible to directly use the iterators to obtain
1824 * a non-const pointer.
1825 * Since we are not going to use the pointer to modify anything anyway,
1826 * it seems safe to drop the constness. The alternative would be to
1827 * modify a lot of other functions to include const qualifiers.
1829 __isl_give pet_expr *PetScan::set_summary(__isl_take pet_expr *expr,
1830 FunctionDecl *fd)
1832 pet_function_summary *summary;
1833 const FunctionDecl *def;
1835 if (!expr)
1836 return NULL;
1837 if (!fd->hasBody(def))
1838 return expr;
1840 fd = const_cast<FunctionDecl *>(def);
1842 summary = get_summary(fd);
1844 expr = pet_expr_call_set_summary(expr, summary);
1846 return expr;
1849 /* Extract a pet_scop from "tree".
1851 * We simply call pet_scop_from_pet_tree with the appropriate arguments and
1852 * then add pet_arrays for all accessed arrays.
1853 * We populate the pet_context with assignments for all parameters used
1854 * inside "tree" or any of the size expressions for the arrays accessed
1855 * by "tree" so that they can be used in affine expressions.
1857 struct pet_scop *PetScan::extract_scop(__isl_take pet_tree *tree)
1859 int int_size;
1860 isl_set *domain;
1861 pet_context *pc;
1862 pet_scop *scop;
1864 int_size = ast_context.getTypeInfo(ast_context.IntTy).first / 8;
1866 domain = isl_set_universe(isl_space_set_alloc(ctx, 0, 0));
1867 pc = pet_context_alloc(domain);
1868 pc = pet_context_add_parameters(pc, tree, &::get_array_size, this);
1869 scop = pet_scop_from_pet_tree(tree, int_size,
1870 &::extract_array, this, pc);
1871 scop = scan_arrays(scop, pc);
1872 pet_context_free(pc);
1874 return scop;
1877 /* Check if the scop marked by the user is exactly this Stmt
1878 * or part of this Stmt.
1879 * If so, return a pet_scop corresponding to the marked region.
1880 * Otherwise, return NULL.
1882 struct pet_scop *PetScan::scan(Stmt *stmt)
1884 SourceManager &SM = PP.getSourceManager();
1885 unsigned start_off, end_off;
1887 start_off = getExpansionOffset(SM, stmt->getLocStart());
1888 end_off = getExpansionOffset(SM, stmt->getLocEnd());
1890 if (start_off > loc.end)
1891 return NULL;
1892 if (end_off < loc.start)
1893 return NULL;
1895 if (start_off >= loc.start && end_off <= loc.end)
1896 return extract_scop(extract(stmt));
1898 StmtIterator start;
1899 for (start = stmt->child_begin(); start != stmt->child_end(); ++start) {
1900 Stmt *child = *start;
1901 if (!child)
1902 continue;
1903 start_off = getExpansionOffset(SM, child->getLocStart());
1904 end_off = getExpansionOffset(SM, child->getLocEnd());
1905 if (start_off < loc.start && end_off >= loc.end)
1906 return scan(child);
1907 if (start_off >= loc.start)
1908 break;
1911 StmtIterator end;
1912 for (end = start; end != stmt->child_end(); ++end) {
1913 Stmt *child = *end;
1914 start_off = SM.getFileOffset(child->getLocStart());
1915 if (start_off >= loc.end)
1916 break;
1919 return extract_scop(extract(StmtRange(start, end), false, false));
1922 /* Set the size of index "pos" of "array" to "size".
1923 * In particular, add a constraint of the form
1925 * i_pos < size
1927 * to array->extent and a constraint of the form
1929 * size >= 0
1931 * to array->context.
1933 static struct pet_array *update_size(struct pet_array *array, int pos,
1934 __isl_take isl_pw_aff *size)
1936 isl_set *valid;
1937 isl_set *univ;
1938 isl_set *bound;
1939 isl_space *dim;
1940 isl_aff *aff;
1941 isl_pw_aff *index;
1942 isl_id *id;
1944 if (!array)
1945 goto error;
1947 valid = isl_set_params(isl_pw_aff_nonneg_set(isl_pw_aff_copy(size)));
1948 array->context = isl_set_intersect(array->context, valid);
1950 dim = isl_set_get_space(array->extent);
1951 aff = isl_aff_zero_on_domain(isl_local_space_from_space(dim));
1952 aff = isl_aff_add_coefficient_si(aff, isl_dim_in, pos, 1);
1953 univ = isl_set_universe(isl_aff_get_domain_space(aff));
1954 index = isl_pw_aff_alloc(univ, aff);
1956 size = isl_pw_aff_add_dims(size, isl_dim_in,
1957 isl_set_dim(array->extent, isl_dim_set));
1958 id = isl_set_get_tuple_id(array->extent);
1959 size = isl_pw_aff_set_tuple_id(size, isl_dim_in, id);
1960 bound = isl_pw_aff_lt_set(index, size);
1962 array->extent = isl_set_intersect(array->extent, bound);
1964 if (!array->context || !array->extent)
1965 return pet_array_free(array);
1967 return array;
1968 error:
1969 isl_pw_aff_free(size);
1970 return NULL;
1973 #ifdef HAVE_DECAYEDTYPE
1975 /* If "type" is a decayed type, then set *decayed to true and
1976 * return the original type.
1978 static const Type *undecay(const Type *type, bool *decayed)
1980 *decayed = isa<DecayedType>(type);
1981 if (*decayed)
1982 type = cast<DecayedType>(type)->getOriginalType().getTypePtr();
1983 return type;
1986 #else
1988 /* If "type" is a decayed type, then set *decayed to true and
1989 * return the original type.
1990 * Since this version of clang does not define a DecayedType,
1991 * we cannot obtain the original type even if it had been decayed and
1992 * we set *decayed to false.
1994 static const Type *undecay(const Type *type, bool *decayed)
1996 *decayed = false;
1997 return type;
2000 #endif
2002 /* Figure out the size of the array at position "pos" and all
2003 * subsequent positions from "type" and update the corresponding
2004 * argument of "expr" accordingly.
2006 * The initial type (when pos is zero) may be a pointer type decayed
2007 * from an array type, if this initial type is the type of a function
2008 * argument. This only happens if the original array type has
2009 * a constant size in the outer dimension as otherwise we get
2010 * a VariableArrayType. Try and obtain this original type (if available) and
2011 * take the outer array size into account if it was marked static.
2013 __isl_give pet_expr *PetScan::set_upper_bounds(__isl_take pet_expr *expr,
2014 const Type *type, int pos)
2016 const ArrayType *atype;
2017 pet_expr *size;
2018 bool decayed = false;
2020 if (!expr)
2021 return NULL;
2023 if (pos == 0)
2024 type = undecay(type, &decayed);
2026 if (type->isPointerType()) {
2027 type = type->getPointeeType().getTypePtr();
2028 return set_upper_bounds(expr, type, pos + 1);
2030 if (!type->isArrayType())
2031 return expr;
2033 type = type->getCanonicalTypeInternal().getTypePtr();
2034 atype = cast<ArrayType>(type);
2036 if (decayed && atype->getSizeModifier() != ArrayType::Static) {
2037 type = atype->getElementType().getTypePtr();
2038 return set_upper_bounds(expr, type, pos + 1);
2041 if (type->isConstantArrayType()) {
2042 const ConstantArrayType *ca = cast<ConstantArrayType>(atype);
2043 size = extract_expr(ca->getSize());
2044 expr = pet_expr_set_arg(expr, pos, size);
2045 } else if (type->isVariableArrayType()) {
2046 const VariableArrayType *vla = cast<VariableArrayType>(atype);
2047 size = extract_expr(vla->getSizeExpr());
2048 expr = pet_expr_set_arg(expr, pos, size);
2051 type = atype->getElementType().getTypePtr();
2053 return set_upper_bounds(expr, type, pos + 1);
2056 /* Construct a pet_expr that holds the sizes of an array of the given type.
2057 * The returned expression is a call expression with as arguments
2058 * the sizes in each dimension. If we are unable to derive the size
2059 * in a given dimension, then the corresponding argument is set to infinity.
2060 * In fact, we initialize all arguments to infinity and then update
2061 * them if we are able to figure out the size.
2063 * The result is stored in the type_size cache so that we can reuse
2064 * it if this method gets called on the same type again later on.
2066 __isl_give pet_expr *PetScan::get_array_size(const Type *type)
2068 int depth;
2069 pet_expr *expr, *inf;
2071 if (type_size.find(type) != type_size.end())
2072 return pet_expr_copy(type_size[type]);
2074 depth = array_depth(type);
2075 inf = pet_expr_new_int(isl_val_infty(ctx));
2076 expr = pet_expr_new_call(ctx, "bounds", depth);
2077 for (int i = 0; i < depth; ++i)
2078 expr = pet_expr_set_arg(expr, i, pet_expr_copy(inf));
2079 pet_expr_free(inf);
2081 expr = set_upper_bounds(expr, type, 0);
2082 type_size[type] = pet_expr_copy(expr);
2084 return expr;
2087 /* Does "expr" represent the "integer" infinity?
2089 static int is_infty(__isl_keep pet_expr *expr)
2091 isl_val *v;
2092 int res;
2094 if (pet_expr_get_type(expr) != pet_expr_int)
2095 return 0;
2096 v = pet_expr_int_get_val(expr);
2097 res = isl_val_is_infty(v);
2098 isl_val_free(v);
2100 return res;
2103 /* Figure out the dimensions of an array "array" based on its type
2104 * "type" and update "array" accordingly.
2106 * We first construct a pet_expr that holds the sizes of the array
2107 * in each dimension. The resulting expression may containing
2108 * infinity values for dimension where we are unable to derive
2109 * a size expression.
2111 * The arguments of the size expression that have a value different from
2112 * infinity are then converted to an affine expression
2113 * within the context "pc" and incorporated into the size of "array".
2114 * If we are unable to convert a size expression to an affine expression,
2115 * then we leave the corresponding size of "array" untouched.
2117 struct pet_array *PetScan::set_upper_bounds(struct pet_array *array,
2118 const Type *type, __isl_keep pet_context *pc)
2120 int n;
2121 pet_expr *expr;
2123 if (!array)
2124 return NULL;
2126 expr = get_array_size(type);
2128 n = pet_expr_get_n_arg(expr);
2129 for (int i = 0; i < n; ++i) {
2130 pet_expr *arg;
2131 isl_pw_aff *size;
2133 arg = pet_expr_get_arg(expr, i);
2134 if (!is_infty(arg)) {
2135 size = pet_expr_extract_affine(arg, pc);
2136 if (!size)
2137 array = pet_array_free(array);
2138 else if (isl_pw_aff_involves_nan(size))
2139 isl_pw_aff_free(size);
2140 else
2141 array = update_size(array, i, size);
2143 pet_expr_free(arg);
2145 pet_expr_free(expr);
2147 return array;
2150 /* Does "decl" have definition that we can keep track of in a pet_type?
2152 static bool has_printable_definition(RecordDecl *decl)
2154 if (!decl->getDeclName())
2155 return false;
2156 return decl->getLexicalDeclContext() == decl->getDeclContext();
2159 /* Construct and return a pet_array corresponding to the variable "decl".
2160 * In particular, initialize array->extent to
2162 * { name[i_1,...,i_d] : i_1,...,i_d >= 0 }
2164 * and then call set_upper_bounds to set the upper bounds on the indices
2165 * based on the type of the variable. The upper bounds are converted
2166 * to affine expressions within the context "pc".
2168 * If the base type is that of a record with a top-level definition and
2169 * if "types" is not null, then the RecordDecl corresponding to the type
2170 * is added to "types".
2172 * If the base type is that of a record with no top-level definition,
2173 * then we replace it by "<subfield>".
2175 struct pet_array *PetScan::extract_array(isl_ctx *ctx, ValueDecl *decl,
2176 lex_recorddecl_set *types, __isl_keep pet_context *pc)
2178 struct pet_array *array;
2179 QualType qt = get_array_type(decl);
2180 const Type *type = qt.getTypePtr();
2181 int depth = array_depth(type);
2182 QualType base = pet_clang_base_type(qt);
2183 string name;
2184 isl_id *id;
2185 isl_space *dim;
2187 array = isl_calloc_type(ctx, struct pet_array);
2188 if (!array)
2189 return NULL;
2191 id = create_decl_id(ctx, decl);
2192 dim = isl_space_set_alloc(ctx, 0, depth);
2193 dim = isl_space_set_tuple_id(dim, isl_dim_set, id);
2195 array->extent = isl_set_nat_universe(dim);
2197 dim = isl_space_params_alloc(ctx, 0);
2198 array->context = isl_set_universe(dim);
2200 array = set_upper_bounds(array, type, pc);
2201 if (!array)
2202 return NULL;
2204 name = base.getAsString();
2206 if (types && base->isRecordType()) {
2207 RecordDecl *decl = pet_clang_record_decl(base);
2208 if (has_printable_definition(decl))
2209 types->insert(decl);
2210 else
2211 name = "<subfield>";
2214 array->element_type = strdup(name.c_str());
2215 array->element_is_record = base->isRecordType();
2216 array->element_size = decl->getASTContext().getTypeInfo(base).first / 8;
2218 return array;
2221 /* Construct and return a pet_array corresponding to the sequence
2222 * of declarations "decls".
2223 * The upper bounds of the array are converted to affine expressions
2224 * within the context "pc".
2225 * If the sequence contains a single declaration, then it corresponds
2226 * to a simple array access. Otherwise, it corresponds to a member access,
2227 * with the declaration for the substructure following that of the containing
2228 * structure in the sequence of declarations.
2229 * We start with the outermost substructure and then combine it with
2230 * information from the inner structures.
2232 * Additionally, keep track of all required types in "types".
2234 struct pet_array *PetScan::extract_array(isl_ctx *ctx,
2235 vector<ValueDecl *> decls, lex_recorddecl_set *types,
2236 __isl_keep pet_context *pc)
2238 struct pet_array *array;
2239 vector<ValueDecl *>::iterator it;
2241 it = decls.begin();
2243 array = extract_array(ctx, *it, types, pc);
2245 for (++it; it != decls.end(); ++it) {
2246 struct pet_array *parent;
2247 const char *base_name, *field_name;
2248 char *product_name;
2250 parent = array;
2251 array = extract_array(ctx, *it, types, pc);
2252 if (!array)
2253 return pet_array_free(parent);
2255 base_name = isl_set_get_tuple_name(parent->extent);
2256 field_name = isl_set_get_tuple_name(array->extent);
2257 product_name = pet_array_member_access_name(ctx,
2258 base_name, field_name);
2260 array->extent = isl_set_product(isl_set_copy(parent->extent),
2261 array->extent);
2262 if (product_name)
2263 array->extent = isl_set_set_tuple_name(array->extent,
2264 product_name);
2265 array->context = isl_set_intersect(array->context,
2266 isl_set_copy(parent->context));
2268 pet_array_free(parent);
2269 free(product_name);
2271 if (!array->extent || !array->context || !product_name)
2272 return pet_array_free(array);
2275 return array;
2278 /* Add a pet_type corresponding to "decl" to "scop, provided
2279 * it is a member of "types" and it has not been added before
2280 * (i.e., it is not a member of "types_done".
2282 * Since we want the user to be able to print the types
2283 * in the order in which they appear in the scop, we need to
2284 * make sure that types of fields in a structure appear before
2285 * that structure. We therefore call ourselves recursively
2286 * on the types of all record subfields.
2288 static struct pet_scop *add_type(isl_ctx *ctx, struct pet_scop *scop,
2289 RecordDecl *decl, Preprocessor &PP, lex_recorddecl_set &types,
2290 lex_recorddecl_set &types_done)
2292 string s;
2293 llvm::raw_string_ostream S(s);
2294 RecordDecl::field_iterator it;
2296 if (types.find(decl) == types.end())
2297 return scop;
2298 if (types_done.find(decl) != types_done.end())
2299 return scop;
2301 for (it = decl->field_begin(); it != decl->field_end(); ++it) {
2302 RecordDecl *record;
2303 QualType type = it->getType();
2305 if (!type->isRecordType())
2306 continue;
2307 record = pet_clang_record_decl(type);
2308 scop = add_type(ctx, scop, record, PP, types, types_done);
2311 if (strlen(decl->getName().str().c_str()) == 0)
2312 return scop;
2314 decl->print(S, PrintingPolicy(PP.getLangOpts()));
2315 S.str();
2317 scop->types[scop->n_type] = pet_type_alloc(ctx,
2318 decl->getName().str().c_str(), s.c_str());
2319 if (!scop->types[scop->n_type])
2320 return pet_scop_free(scop);
2322 types_done.insert(decl);
2324 scop->n_type++;
2326 return scop;
2329 /* Construct a list of pet_arrays, one for each array (or scalar)
2330 * accessed inside "scop", add this list to "scop" and return the result.
2331 * The upper bounds of the arrays are converted to affine expressions
2332 * within the context "pc".
2334 * The context of "scop" is updated with the intersection of
2335 * the contexts of all arrays, i.e., constraints on the parameters
2336 * that ensure that the arrays have a valid (non-negative) size.
2338 * If the any of the extracted arrays refers to a member access,
2339 * then also add the required types to "scop".
2341 struct pet_scop *PetScan::scan_arrays(struct pet_scop *scop,
2342 __isl_keep pet_context *pc)
2344 int i;
2345 array_desc_set arrays;
2346 array_desc_set::iterator it;
2347 lex_recorddecl_set types;
2348 lex_recorddecl_set types_done;
2349 lex_recorddecl_set::iterator types_it;
2350 int n_array;
2351 struct pet_array **scop_arrays;
2353 if (!scop)
2354 return NULL;
2356 pet_scop_collect_arrays(scop, arrays);
2357 if (arrays.size() == 0)
2358 return scop;
2360 n_array = scop->n_array;
2362 scop_arrays = isl_realloc_array(ctx, scop->arrays, struct pet_array *,
2363 n_array + arrays.size());
2364 if (!scop_arrays)
2365 goto error;
2366 scop->arrays = scop_arrays;
2368 for (it = arrays.begin(), i = 0; it != arrays.end(); ++it, ++i) {
2369 struct pet_array *array;
2370 array = extract_array(ctx, *it, &types, pc);
2371 scop->arrays[n_array + i] = array;
2372 if (!scop->arrays[n_array + i])
2373 goto error;
2374 scop->n_array++;
2375 scop->context = isl_set_intersect(scop->context,
2376 isl_set_copy(array->context));
2377 if (!scop->context)
2378 goto error;
2381 if (types.size() == 0)
2382 return scop;
2384 scop->types = isl_alloc_array(ctx, struct pet_type *, types.size());
2385 if (!scop->types)
2386 goto error;
2388 for (types_it = types.begin(); types_it != types.end(); ++types_it)
2389 scop = add_type(ctx, scop, *types_it, PP, types, types_done);
2391 return scop;
2392 error:
2393 pet_scop_free(scop);
2394 return NULL;
2397 /* Bound all parameters in scop->context to the possible values
2398 * of the corresponding C variable.
2400 static struct pet_scop *add_parameter_bounds(struct pet_scop *scop)
2402 int n;
2404 if (!scop)
2405 return NULL;
2407 n = isl_set_dim(scop->context, isl_dim_param);
2408 for (int i = 0; i < n; ++i) {
2409 isl_id *id;
2410 ValueDecl *decl;
2412 id = isl_set_get_dim_id(scop->context, isl_dim_param, i);
2413 if (pet_nested_in_id(id)) {
2414 isl_id_free(id);
2415 isl_die(isl_set_get_ctx(scop->context),
2416 isl_error_internal,
2417 "unresolved nested parameter", goto error);
2419 decl = (ValueDecl *) isl_id_get_user(id);
2420 isl_id_free(id);
2422 scop->context = set_parameter_bounds(scop->context, i, decl);
2424 if (!scop->context)
2425 goto error;
2428 return scop;
2429 error:
2430 pet_scop_free(scop);
2431 return NULL;
2434 /* Construct a pet_scop from the given function.
2436 * If the scop was delimited by scop and endscop pragmas, then we override
2437 * the file offsets by those derived from the pragmas.
2439 struct pet_scop *PetScan::scan(FunctionDecl *fd)
2441 pet_scop *scop;
2442 Stmt *stmt;
2444 stmt = fd->getBody();
2446 if (options->autodetect) {
2447 set_current_stmt(stmt);
2448 scop = extract_scop(extract(stmt, true));
2449 } else {
2450 current_line = loc.start_line;
2451 scop = scan(stmt);
2452 scop = pet_scop_update_start_end(scop, loc.start, loc.end);
2454 scop = add_parameter_bounds(scop);
2455 scop = pet_scop_gist(scop, value_bounds);
2457 return scop;
2460 /* Update this->last_line and this->current_line based on the fact
2461 * that we are about to consider "stmt".
2463 void PetScan::set_current_stmt(Stmt *stmt)
2465 SourceLocation loc = stmt->getLocStart();
2466 SourceManager &SM = PP.getSourceManager();
2468 last_line = current_line;
2469 current_line = SM.getExpansionLineNumber(loc);
2472 /* Is the current statement marked by an independent pragma?
2473 * That is, is there an independent pragma on a line between
2474 * the line of the current statement and the line of the previous statement.
2475 * The search is not implemented very efficiently. We currently
2476 * assume that there are only a few independent pragmas, if any.
2478 bool PetScan::is_current_stmt_marked_independent()
2480 for (int i = 0; i < independent.size(); ++i) {
2481 unsigned line = independent[i].line;
2483 if (last_line < line && line < current_line)
2484 return true;
2487 return false;