pet_scop_embed: take mapping from virtual to real iterator
[pet.git] / scan.cc
blobc742345218451650b6158aaf7d6b6b0d48c05db8
1 /*
2 * Copyright 2011 Leiden University. All rights reserved.
3 * Copyright 2012 Ecole Normale Superieure. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above
13 * copyright notice, this list of conditions and the following
14 * disclaimer in the documentation and/or other materials provided
15 * with the distribution.
17 * THIS SOFTWARE IS PROVIDED BY LEIDEN UNIVERSITY ''AS IS'' AND ANY
18 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
20 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL LEIDEN UNIVERSITY OR
21 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
22 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
23 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
24 * OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 * The views and conclusions contained in the software and documentation
30 * are those of the authors and should not be interpreted as
31 * representing official policies, either expressed or implied, of
32 * Leiden University.
33 */
35 #include <set>
36 #include <map>
37 #include <iostream>
38 #include <clang/AST/ASTDiagnostic.h>
39 #include <clang/AST/Expr.h>
40 #include <clang/AST/RecursiveASTVisitor.h>
42 #include <isl/id.h>
43 #include <isl/space.h>
44 #include <isl/aff.h>
45 #include <isl/set.h>
47 #include "options.h"
48 #include "scan.h"
49 #include "scop.h"
50 #include "scop_plus.h"
52 #include "config.h"
54 using namespace std;
55 using namespace clang;
57 #if defined(DECLREFEXPR_CREATE_REQUIRES_BOOL)
58 static DeclRefExpr *create_DeclRefExpr(VarDecl *var)
60 return DeclRefExpr::Create(var->getASTContext(), var->getQualifierLoc(),
61 SourceLocation(), var, false, var->getInnerLocStart(),
62 var->getType(), VK_LValue);
64 #elif defined(DECLREFEXPR_CREATE_REQUIRES_SOURCELOCATION)
65 static DeclRefExpr *create_DeclRefExpr(VarDecl *var)
67 return DeclRefExpr::Create(var->getASTContext(), var->getQualifierLoc(),
68 SourceLocation(), var, var->getInnerLocStart(), var->getType(),
69 VK_LValue);
71 #else
72 static DeclRefExpr *create_DeclRefExpr(VarDecl *var)
74 return DeclRefExpr::Create(var->getASTContext(), var->getQualifierLoc(),
75 var, var->getInnerLocStart(), var->getType(), VK_LValue);
77 #endif
79 /* Check if the element type corresponding to the given array type
80 * has a const qualifier.
82 static bool const_base(QualType qt)
84 const Type *type = qt.getTypePtr();
86 if (type->isPointerType())
87 return const_base(type->getPointeeType());
88 if (type->isArrayType()) {
89 const ArrayType *atype;
90 type = type->getCanonicalTypeInternal().getTypePtr();
91 atype = cast<ArrayType>(type);
92 return const_base(atype->getElementType());
95 return qt.isConstQualified();
98 /* Mark "decl" as having an unknown value in "assigned_value".
100 * If no (known or unknown) value was assigned to "decl" before,
101 * then it may have been treated as a parameter before and may
102 * therefore appear in a value assigned to another variable.
103 * If so, this assignment needs to be turned into an unknown value too.
105 static void clear_assignment(map<ValueDecl *, isl_pw_aff *> &assigned_value,
106 ValueDecl *decl)
108 map<ValueDecl *, isl_pw_aff *>::iterator it;
110 it = assigned_value.find(decl);
112 assigned_value[decl] = NULL;
114 if (it == assigned_value.end())
115 return;
117 for (it = assigned_value.begin(); it != assigned_value.end(); ++it) {
118 isl_pw_aff *pa = it->second;
119 int nparam = isl_pw_aff_dim(pa, isl_dim_param);
121 for (int i = 0; i < nparam; ++i) {
122 isl_id *id;
124 if (!isl_pw_aff_has_dim_id(pa, isl_dim_param, i))
125 continue;
126 id = isl_pw_aff_get_dim_id(pa, isl_dim_param, i);
127 if (isl_id_get_user(id) == decl)
128 it->second = NULL;
129 isl_id_free(id);
134 /* Look for any assignments to scalar variables in part of the parse
135 * tree and set assigned_value to NULL for each of them.
136 * Also reset assigned_value if the address of a scalar variable
137 * is being taken. As an exception, if the address is passed to a function
138 * that is declared to receive a const pointer, then assigned_value is
139 * not reset.
141 * This ensures that we won't use any previously stored value
142 * in the current subtree and its parents.
144 struct clear_assignments : RecursiveASTVisitor<clear_assignments> {
145 map<ValueDecl *, isl_pw_aff *> &assigned_value;
146 set<UnaryOperator *> skip;
148 clear_assignments(map<ValueDecl *, isl_pw_aff *> &assigned_value) :
149 assigned_value(assigned_value) {}
151 /* Check for "address of" operators whose value is passed
152 * to a const pointer argument and add them to "skip", so that
153 * we can skip them in VisitUnaryOperator.
155 bool VisitCallExpr(CallExpr *expr) {
156 FunctionDecl *fd;
157 fd = expr->getDirectCallee();
158 if (!fd)
159 return true;
160 for (int i = 0; i < expr->getNumArgs(); ++i) {
161 Expr *arg = expr->getArg(i);
162 UnaryOperator *op;
163 if (arg->getStmtClass() == Stmt::ImplicitCastExprClass) {
164 ImplicitCastExpr *ice;
165 ice = cast<ImplicitCastExpr>(arg);
166 arg = ice->getSubExpr();
168 if (arg->getStmtClass() != Stmt::UnaryOperatorClass)
169 continue;
170 op = cast<UnaryOperator>(arg);
171 if (op->getOpcode() != UO_AddrOf)
172 continue;
173 if (const_base(fd->getParamDecl(i)->getType()))
174 skip.insert(op);
176 return true;
179 bool VisitUnaryOperator(UnaryOperator *expr) {
180 Expr *arg;
181 DeclRefExpr *ref;
182 ValueDecl *decl;
184 if (expr->getOpcode() != UO_AddrOf)
185 return true;
186 if (skip.find(expr) != skip.end())
187 return true;
189 arg = expr->getSubExpr();
190 if (arg->getStmtClass() != Stmt::DeclRefExprClass)
191 return true;
192 ref = cast<DeclRefExpr>(arg);
193 decl = ref->getDecl();
194 clear_assignment(assigned_value, decl);
195 return true;
198 bool VisitBinaryOperator(BinaryOperator *expr) {
199 Expr *lhs;
200 DeclRefExpr *ref;
201 ValueDecl *decl;
203 if (!expr->isAssignmentOp())
204 return true;
205 lhs = expr->getLHS();
206 if (lhs->getStmtClass() != Stmt::DeclRefExprClass)
207 return true;
208 ref = cast<DeclRefExpr>(lhs);
209 decl = ref->getDecl();
210 clear_assignment(assigned_value, decl);
211 return true;
215 /* Keep a copy of the currently assigned values.
217 * Any variable that is assigned a value inside the current scope
218 * is removed again when we leave the scope (either because it wasn't
219 * stored in the cache or because it has a different value in the cache).
221 struct assigned_value_cache {
222 map<ValueDecl *, isl_pw_aff *> &assigned_value;
223 map<ValueDecl *, isl_pw_aff *> cache;
225 assigned_value_cache(map<ValueDecl *, isl_pw_aff *> &assigned_value) :
226 assigned_value(assigned_value), cache(assigned_value) {}
227 ~assigned_value_cache() {
228 map<ValueDecl *, isl_pw_aff *>::iterator it = cache.begin();
229 for (it = assigned_value.begin(); it != assigned_value.end();
230 ++it) {
231 if (!it->second ||
232 (cache.find(it->first) != cache.end() &&
233 cache[it->first] != it->second))
234 cache[it->first] = NULL;
236 assigned_value = cache;
240 /* Insert an expression into the collection of expressions,
241 * provided it is not already in there.
242 * The isl_pw_affs are freed in the destructor.
244 void PetScan::insert_expression(__isl_take isl_pw_aff *expr)
246 std::set<isl_pw_aff *>::iterator it;
248 if (expressions.find(expr) == expressions.end())
249 expressions.insert(expr);
250 else
251 isl_pw_aff_free(expr);
254 PetScan::~PetScan()
256 std::set<isl_pw_aff *>::iterator it;
258 for (it = expressions.begin(); it != expressions.end(); ++it)
259 isl_pw_aff_free(*it);
261 isl_union_map_free(value_bounds);
264 /* Called if we found something we (currently) cannot handle.
265 * We'll provide more informative warnings later.
267 * We only actually complain if autodetect is false.
269 void PetScan::unsupported(Stmt *stmt, const char *msg)
271 if (options->autodetect)
272 return;
274 SourceLocation loc = stmt->getLocStart();
275 DiagnosticsEngine &diag = PP.getDiagnostics();
276 unsigned id = diag.getCustomDiagID(DiagnosticsEngine::Warning,
277 msg ? msg : "unsupported");
278 DiagnosticBuilder B = diag.Report(loc, id) << stmt->getSourceRange();
281 /* Extract an integer from "expr" and store it in "v".
283 int PetScan::extract_int(IntegerLiteral *expr, isl_int *v)
285 const Type *type = expr->getType().getTypePtr();
286 int is_signed = type->hasSignedIntegerRepresentation();
288 if (is_signed) {
289 int64_t i = expr->getValue().getSExtValue();
290 isl_int_set_si(*v, i);
291 } else {
292 uint64_t i = expr->getValue().getZExtValue();
293 isl_int_set_ui(*v, i);
296 return 0;
299 /* Extract an integer from "expr" and store it in "v".
300 * Return -1 if "expr" does not (obviously) represent an integer.
302 int PetScan::extract_int(clang::ParenExpr *expr, isl_int *v)
304 return extract_int(expr->getSubExpr(), v);
307 /* Extract an integer from "expr" and store it in "v".
308 * Return -1 if "expr" does not (obviously) represent an integer.
310 int PetScan::extract_int(clang::Expr *expr, isl_int *v)
312 if (expr->getStmtClass() == Stmt::IntegerLiteralClass)
313 return extract_int(cast<IntegerLiteral>(expr), v);
314 if (expr->getStmtClass() == Stmt::ParenExprClass)
315 return extract_int(cast<ParenExpr>(expr), v);
317 unsupported(expr);
318 return -1;
321 /* Extract an affine expression from the IntegerLiteral "expr".
323 __isl_give isl_pw_aff *PetScan::extract_affine(IntegerLiteral *expr)
325 isl_space *dim = isl_space_params_alloc(ctx, 0);
326 isl_local_space *ls = isl_local_space_from_space(isl_space_copy(dim));
327 isl_aff *aff = isl_aff_zero_on_domain(ls);
328 isl_set *dom = isl_set_universe(dim);
329 isl_int v;
331 isl_int_init(v);
332 extract_int(expr, &v);
333 aff = isl_aff_add_constant(aff, v);
334 isl_int_clear(v);
336 return isl_pw_aff_alloc(dom, aff);
339 /* Extract an affine expression from the APInt "val".
341 __isl_give isl_pw_aff *PetScan::extract_affine(const llvm::APInt &val)
343 isl_space *dim = isl_space_params_alloc(ctx, 0);
344 isl_local_space *ls = isl_local_space_from_space(isl_space_copy(dim));
345 isl_aff *aff = isl_aff_zero_on_domain(ls);
346 isl_set *dom = isl_set_universe(dim);
347 isl_int v;
349 isl_int_init(v);
350 isl_int_set_ui(v, val.getZExtValue());
351 aff = isl_aff_add_constant(aff, v);
352 isl_int_clear(v);
354 return isl_pw_aff_alloc(dom, aff);
357 __isl_give isl_pw_aff *PetScan::extract_affine(ImplicitCastExpr *expr)
359 return extract_affine(expr->getSubExpr());
362 static unsigned get_type_size(ValueDecl *decl)
364 return decl->getASTContext().getIntWidth(decl->getType());
367 /* Bound parameter "pos" of "set" to the possible values of "decl".
369 static __isl_give isl_set *set_parameter_bounds(__isl_take isl_set *set,
370 unsigned pos, ValueDecl *decl)
372 unsigned width;
373 isl_int v;
375 isl_int_init(v);
377 width = get_type_size(decl);
378 if (decl->getType()->isUnsignedIntegerType()) {
379 set = isl_set_lower_bound_si(set, isl_dim_param, pos, 0);
380 isl_int_set_si(v, 1);
381 isl_int_mul_2exp(v, v, width);
382 isl_int_sub_ui(v, v, 1);
383 set = isl_set_upper_bound(set, isl_dim_param, pos, v);
384 } else {
385 isl_int_set_si(v, 1);
386 isl_int_mul_2exp(v, v, width - 1);
387 isl_int_sub_ui(v, v, 1);
388 set = isl_set_upper_bound(set, isl_dim_param, pos, v);
389 isl_int_neg(v, v);
390 isl_int_sub_ui(v, v, 1);
391 set = isl_set_lower_bound(set, isl_dim_param, pos, v);
394 isl_int_clear(v);
396 return set;
399 /* Extract an affine expression from the DeclRefExpr "expr".
401 * If the variable has been assigned a value, then we check whether
402 * we know what (affine) value was assigned.
403 * If so, we return this value. Otherwise we convert "expr"
404 * to an extra parameter (provided nesting_enabled is set).
406 * Otherwise, we simply return an expression that is equal
407 * to a parameter corresponding to the referenced variable.
409 __isl_give isl_pw_aff *PetScan::extract_affine(DeclRefExpr *expr)
411 ValueDecl *decl = expr->getDecl();
412 const Type *type = decl->getType().getTypePtr();
413 isl_id *id;
414 isl_space *dim;
415 isl_aff *aff;
416 isl_set *dom;
418 if (!type->isIntegerType()) {
419 unsupported(expr);
420 return NULL;
423 if (assigned_value.find(decl) != assigned_value.end()) {
424 if (assigned_value[decl])
425 return isl_pw_aff_copy(assigned_value[decl]);
426 else
427 return nested_access(expr);
430 id = isl_id_alloc(ctx, decl->getName().str().c_str(), decl);
431 dim = isl_space_params_alloc(ctx, 1);
433 dim = isl_space_set_dim_id(dim, isl_dim_param, 0, id);
435 dom = isl_set_universe(isl_space_copy(dim));
436 aff = isl_aff_zero_on_domain(isl_local_space_from_space(dim));
437 aff = isl_aff_add_coefficient_si(aff, isl_dim_param, 0, 1);
439 return isl_pw_aff_alloc(dom, aff);
442 /* Extract an affine expression from an integer division operation.
443 * In particular, if "expr" is lhs/rhs, then return
445 * lhs >= 0 ? floor(lhs/rhs) : ceil(lhs/rhs)
447 * The second argument (rhs) is required to be a (positive) integer constant.
449 __isl_give isl_pw_aff *PetScan::extract_affine_div(BinaryOperator *expr)
451 Expr *rhs_expr;
452 isl_pw_aff *lhs, *lhs_f, *lhs_c;
453 isl_pw_aff *res;
454 isl_int v;
455 isl_set *cond;
457 rhs_expr = expr->getRHS();
458 isl_int_init(v);
459 if (extract_int(rhs_expr, &v) < 0) {
460 isl_int_clear(v);
461 return NULL;
464 lhs = extract_affine(expr->getLHS());
465 cond = isl_pw_aff_nonneg_set(isl_pw_aff_copy(lhs));
467 lhs = isl_pw_aff_scale_down(lhs, v);
468 isl_int_clear(v);
470 lhs_f = isl_pw_aff_floor(isl_pw_aff_copy(lhs));
471 lhs_c = isl_pw_aff_ceil(lhs);
472 res = isl_pw_aff_cond(isl_set_indicator_function(cond), lhs_f, lhs_c);
474 return res;
477 /* Extract an affine expression from a modulo operation.
478 * In particular, if "expr" is lhs/rhs, then return
480 * lhs - rhs * (lhs >= 0 ? floor(lhs/rhs) : ceil(lhs/rhs))
482 * The second argument (rhs) is required to be a (positive) integer constant.
484 __isl_give isl_pw_aff *PetScan::extract_affine_mod(BinaryOperator *expr)
486 Expr *rhs_expr;
487 isl_pw_aff *lhs, *lhs_f, *lhs_c;
488 isl_pw_aff *res;
489 isl_int v;
490 isl_set *cond;
492 rhs_expr = expr->getRHS();
493 if (rhs_expr->getStmtClass() != Stmt::IntegerLiteralClass) {
494 unsupported(expr);
495 return NULL;
498 lhs = extract_affine(expr->getLHS());
499 cond = isl_pw_aff_nonneg_set(isl_pw_aff_copy(lhs));
501 isl_int_init(v);
502 extract_int(cast<IntegerLiteral>(rhs_expr), &v);
503 res = isl_pw_aff_scale_down(isl_pw_aff_copy(lhs), v);
505 lhs_f = isl_pw_aff_floor(isl_pw_aff_copy(res));
506 lhs_c = isl_pw_aff_ceil(res);
507 res = isl_pw_aff_cond(isl_set_indicator_function(cond), lhs_f, lhs_c);
509 res = isl_pw_aff_scale(res, v);
510 isl_int_clear(v);
512 res = isl_pw_aff_sub(lhs, res);
514 return res;
517 /* Extract an affine expression from a multiplication operation.
518 * This is only allowed if at least one of the two arguments
519 * is a (piecewise) constant.
521 __isl_give isl_pw_aff *PetScan::extract_affine_mul(BinaryOperator *expr)
523 isl_pw_aff *lhs;
524 isl_pw_aff *rhs;
526 lhs = extract_affine(expr->getLHS());
527 rhs = extract_affine(expr->getRHS());
529 if (!isl_pw_aff_is_cst(lhs) && !isl_pw_aff_is_cst(rhs)) {
530 isl_pw_aff_free(lhs);
531 isl_pw_aff_free(rhs);
532 unsupported(expr);
533 return NULL;
536 return isl_pw_aff_mul(lhs, rhs);
539 /* Extract an affine expression from an addition or subtraction operation.
541 __isl_give isl_pw_aff *PetScan::extract_affine_add(BinaryOperator *expr)
543 isl_pw_aff *lhs;
544 isl_pw_aff *rhs;
546 lhs = extract_affine(expr->getLHS());
547 rhs = extract_affine(expr->getRHS());
549 switch (expr->getOpcode()) {
550 case BO_Add:
551 return isl_pw_aff_add(lhs, rhs);
552 case BO_Sub:
553 return isl_pw_aff_sub(lhs, rhs);
554 default:
555 isl_pw_aff_free(lhs);
556 isl_pw_aff_free(rhs);
557 return NULL;
562 /* Compute
564 * pwaff mod 2^width
566 static __isl_give isl_pw_aff *wrap(__isl_take isl_pw_aff *pwaff,
567 unsigned width)
569 isl_int mod;
571 isl_int_init(mod);
572 isl_int_set_si(mod, 1);
573 isl_int_mul_2exp(mod, mod, width);
575 pwaff = isl_pw_aff_mod(pwaff, mod);
577 isl_int_clear(mod);
579 return pwaff;
582 /* Limit the domain of "pwaff" to those elements where the function
583 * value satisfies
585 * 2^{width-1} <= pwaff < 2^{width-1}
587 static __isl_give isl_pw_aff *avoid_overflow(__isl_take isl_pw_aff *pwaff,
588 unsigned width)
590 isl_int v;
591 isl_space *space = isl_pw_aff_get_domain_space(pwaff);
592 isl_local_space *ls = isl_local_space_from_space(space);
593 isl_aff *bound;
594 isl_set *dom;
595 isl_pw_aff *b;
597 isl_int_init(v);
598 isl_int_set_si(v, 1);
599 isl_int_mul_2exp(v, v, width - 1);
601 bound = isl_aff_zero_on_domain(ls);
602 bound = isl_aff_add_constant(bound, v);
603 b = isl_pw_aff_from_aff(bound);
605 dom = isl_pw_aff_lt_set(isl_pw_aff_copy(pwaff), isl_pw_aff_copy(b));
606 pwaff = isl_pw_aff_intersect_domain(pwaff, dom);
608 b = isl_pw_aff_neg(b);
609 dom = isl_pw_aff_ge_set(isl_pw_aff_copy(pwaff), b);
610 pwaff = isl_pw_aff_intersect_domain(pwaff, dom);
612 isl_int_clear(v);
614 return pwaff;
617 /* Return the piecewise affine expression "set ? 1 : 0" defined on "dom".
619 static __isl_give isl_pw_aff *indicator_function(__isl_take isl_set *set,
620 __isl_take isl_set *dom)
622 isl_pw_aff *pa;
623 pa = isl_set_indicator_function(set);
624 pa = isl_pw_aff_intersect_domain(pa, dom);
625 return pa;
628 /* Extract an affine expression from some binary operations.
629 * If the result of the expression is unsigned, then we wrap it
630 * based on the size of the type. Otherwise, we ensure that
631 * no overflow occurs.
633 __isl_give isl_pw_aff *PetScan::extract_affine(BinaryOperator *expr)
635 isl_pw_aff *res;
636 unsigned width;
638 switch (expr->getOpcode()) {
639 case BO_Add:
640 case BO_Sub:
641 res = extract_affine_add(expr);
642 break;
643 case BO_Div:
644 res = extract_affine_div(expr);
645 break;
646 case BO_Rem:
647 res = extract_affine_mod(expr);
648 break;
649 case BO_Mul:
650 res = extract_affine_mul(expr);
651 break;
652 case BO_LT:
653 case BO_LE:
654 case BO_GT:
655 case BO_GE:
656 case BO_EQ:
657 case BO_NE:
658 case BO_LAnd:
659 case BO_LOr:
660 return extract_condition(expr);
661 default:
662 unsupported(expr);
663 return NULL;
666 width = ast_context.getIntWidth(expr->getType());
667 if (expr->getType()->isUnsignedIntegerType())
668 res = wrap(res, width);
669 else
670 res = avoid_overflow(res, width);
672 return res;
675 /* Extract an affine expression from a negation operation.
677 __isl_give isl_pw_aff *PetScan::extract_affine(UnaryOperator *expr)
679 if (expr->getOpcode() == UO_Minus)
680 return isl_pw_aff_neg(extract_affine(expr->getSubExpr()));
681 if (expr->getOpcode() == UO_LNot)
682 return extract_condition(expr);
684 unsupported(expr);
685 return NULL;
688 __isl_give isl_pw_aff *PetScan::extract_affine(ParenExpr *expr)
690 return extract_affine(expr->getSubExpr());
693 /* Extract an affine expression from some special function calls.
694 * In particular, we handle "min", "max", "ceild" and "floord".
695 * In case of the latter two, the second argument needs to be
696 * a (positive) integer constant.
698 __isl_give isl_pw_aff *PetScan::extract_affine(CallExpr *expr)
700 FunctionDecl *fd;
701 string name;
702 isl_pw_aff *aff1, *aff2;
704 fd = expr->getDirectCallee();
705 if (!fd) {
706 unsupported(expr);
707 return NULL;
710 name = fd->getDeclName().getAsString();
711 if (!(expr->getNumArgs() == 2 && name == "min") &&
712 !(expr->getNumArgs() == 2 && name == "max") &&
713 !(expr->getNumArgs() == 2 && name == "floord") &&
714 !(expr->getNumArgs() == 2 && name == "ceild")) {
715 unsupported(expr);
716 return NULL;
719 if (name == "min" || name == "max") {
720 aff1 = extract_affine(expr->getArg(0));
721 aff2 = extract_affine(expr->getArg(1));
723 if (name == "min")
724 aff1 = isl_pw_aff_min(aff1, aff2);
725 else
726 aff1 = isl_pw_aff_max(aff1, aff2);
727 } else if (name == "floord" || name == "ceild") {
728 isl_int v;
729 Expr *arg2 = expr->getArg(1);
731 if (arg2->getStmtClass() != Stmt::IntegerLiteralClass) {
732 unsupported(expr);
733 return NULL;
735 aff1 = extract_affine(expr->getArg(0));
736 isl_int_init(v);
737 extract_int(cast<IntegerLiteral>(arg2), &v);
738 aff1 = isl_pw_aff_scale_down(aff1, v);
739 isl_int_clear(v);
740 if (name == "floord")
741 aff1 = isl_pw_aff_floor(aff1);
742 else
743 aff1 = isl_pw_aff_ceil(aff1);
744 } else {
745 unsupported(expr);
746 return NULL;
749 return aff1;
752 /* This method is called when we come across an access that is
753 * nested in what is supposed to be an affine expression.
754 * If nesting is allowed, we return a new parameter that corresponds
755 * to this nested access. Otherwise, we simply complain.
757 * Note that we currently don't allow nested accesses themselves
758 * to contain any nested accesses, so we check if we can extract
759 * the access without any nesting and complain if we can't.
761 * The new parameter is resolved in resolve_nested.
763 isl_pw_aff *PetScan::nested_access(Expr *expr)
765 isl_id *id;
766 isl_space *dim;
767 isl_aff *aff;
768 isl_set *dom;
769 isl_map *access;
771 if (!nesting_enabled) {
772 unsupported(expr);
773 return NULL;
776 allow_nested = false;
777 access = extract_access(expr);
778 allow_nested = true;
779 if (!access) {
780 unsupported(expr);
781 return NULL;
783 isl_map_free(access);
785 id = isl_id_alloc(ctx, NULL, expr);
786 dim = isl_space_params_alloc(ctx, 1);
788 dim = isl_space_set_dim_id(dim, isl_dim_param, 0, id);
790 dom = isl_set_universe(isl_space_copy(dim));
791 aff = isl_aff_zero_on_domain(isl_local_space_from_space(dim));
792 aff = isl_aff_add_coefficient_si(aff, isl_dim_param, 0, 1);
794 return isl_pw_aff_alloc(dom, aff);
797 /* Affine expressions are not supposed to contain array accesses,
798 * but if nesting is allowed, we return a parameter corresponding
799 * to the array access.
801 __isl_give isl_pw_aff *PetScan::extract_affine(ArraySubscriptExpr *expr)
803 return nested_access(expr);
806 /* Extract an affine expression from a conditional operation.
808 __isl_give isl_pw_aff *PetScan::extract_affine(ConditionalOperator *expr)
810 isl_pw_aff *cond, *lhs, *rhs, *res;
812 cond = extract_condition(expr->getCond());
813 lhs = extract_affine(expr->getTrueExpr());
814 rhs = extract_affine(expr->getFalseExpr());
816 return isl_pw_aff_cond(cond, lhs, rhs);
819 /* Extract an affine expression, if possible, from "expr".
820 * Otherwise return NULL.
822 __isl_give isl_pw_aff *PetScan::extract_affine(Expr *expr)
824 switch (expr->getStmtClass()) {
825 case Stmt::ImplicitCastExprClass:
826 return extract_affine(cast<ImplicitCastExpr>(expr));
827 case Stmt::IntegerLiteralClass:
828 return extract_affine(cast<IntegerLiteral>(expr));
829 case Stmt::DeclRefExprClass:
830 return extract_affine(cast<DeclRefExpr>(expr));
831 case Stmt::BinaryOperatorClass:
832 return extract_affine(cast<BinaryOperator>(expr));
833 case Stmt::UnaryOperatorClass:
834 return extract_affine(cast<UnaryOperator>(expr));
835 case Stmt::ParenExprClass:
836 return extract_affine(cast<ParenExpr>(expr));
837 case Stmt::CallExprClass:
838 return extract_affine(cast<CallExpr>(expr));
839 case Stmt::ArraySubscriptExprClass:
840 return extract_affine(cast<ArraySubscriptExpr>(expr));
841 case Stmt::ConditionalOperatorClass:
842 return extract_affine(cast<ConditionalOperator>(expr));
843 default:
844 unsupported(expr);
846 return NULL;
849 __isl_give isl_map *PetScan::extract_access(ImplicitCastExpr *expr)
851 return extract_access(expr->getSubExpr());
854 /* Return the depth of an array of the given type.
856 static int array_depth(const Type *type)
858 if (type->isPointerType())
859 return 1 + array_depth(type->getPointeeType().getTypePtr());
860 if (type->isArrayType()) {
861 const ArrayType *atype;
862 type = type->getCanonicalTypeInternal().getTypePtr();
863 atype = cast<ArrayType>(type);
864 return 1 + array_depth(atype->getElementType().getTypePtr());
866 return 0;
869 /* Return the element type of the given array type.
871 static QualType base_type(QualType qt)
873 const Type *type = qt.getTypePtr();
875 if (type->isPointerType())
876 return base_type(type->getPointeeType());
877 if (type->isArrayType()) {
878 const ArrayType *atype;
879 type = type->getCanonicalTypeInternal().getTypePtr();
880 atype = cast<ArrayType>(type);
881 return base_type(atype->getElementType());
883 return qt;
886 /* Extract an access relation from a reference to a variable.
887 * If the variable has name "A" and its type corresponds to an
888 * array of depth d, then the returned access relation is of the
889 * form
891 * { [] -> A[i_1,...,i_d] }
893 __isl_give isl_map *PetScan::extract_access(DeclRefExpr *expr)
895 ValueDecl *decl = expr->getDecl();
896 int depth = array_depth(decl->getType().getTypePtr());
897 isl_id *id = isl_id_alloc(ctx, decl->getName().str().c_str(), decl);
898 isl_space *dim = isl_space_alloc(ctx, 0, 0, depth);
899 isl_map *access_rel;
901 dim = isl_space_set_tuple_id(dim, isl_dim_out, id);
903 access_rel = isl_map_universe(dim);
905 return access_rel;
908 /* Extract an access relation from an integer contant.
909 * If the value of the constant is "v", then the returned access relation
910 * is
912 * { [] -> [v] }
914 __isl_give isl_map *PetScan::extract_access(IntegerLiteral *expr)
916 return isl_map_from_range(isl_set_from_pw_aff(extract_affine(expr)));
919 /* Try and extract an access relation from the given Expr.
920 * Return NULL if it doesn't work out.
922 __isl_give isl_map *PetScan::extract_access(Expr *expr)
924 switch (expr->getStmtClass()) {
925 case Stmt::ImplicitCastExprClass:
926 return extract_access(cast<ImplicitCastExpr>(expr));
927 case Stmt::DeclRefExprClass:
928 return extract_access(cast<DeclRefExpr>(expr));
929 case Stmt::ArraySubscriptExprClass:
930 return extract_access(cast<ArraySubscriptExpr>(expr));
931 case Stmt::IntegerLiteralClass:
932 return extract_access(cast<IntegerLiteral>(expr));
933 default:
934 unsupported(expr);
936 return NULL;
939 /* Assign the affine expression "index" to the output dimension "pos" of "map",
940 * restrict the domain to those values that result in a non-negative index
941 * and return the result.
943 __isl_give isl_map *set_index(__isl_take isl_map *map, int pos,
944 __isl_take isl_pw_aff *index)
946 isl_map *index_map;
947 int len = isl_map_dim(map, isl_dim_out);
948 isl_id *id;
949 isl_set *domain;
951 domain = isl_pw_aff_nonneg_set(isl_pw_aff_copy(index));
952 index = isl_pw_aff_intersect_domain(index, domain);
953 index_map = isl_map_from_range(isl_set_from_pw_aff(index));
954 index_map = isl_map_insert_dims(index_map, isl_dim_out, 0, pos);
955 index_map = isl_map_add_dims(index_map, isl_dim_out, len - pos - 1);
956 id = isl_map_get_tuple_id(map, isl_dim_out);
957 index_map = isl_map_set_tuple_id(index_map, isl_dim_out, id);
959 map = isl_map_intersect(map, index_map);
961 return map;
964 /* Extract an access relation from the given array subscript expression.
965 * If nesting is allowed in general, then we turn it on while
966 * examining the index expression.
968 * We first extract an access relation from the base.
969 * This will result in an access relation with a range that corresponds
970 * to the array being accessed and with earlier indices filled in already.
971 * We then extract the current index and fill that in as well.
972 * The position of the current index is based on the type of base.
973 * If base is the actual array variable, then the depth of this type
974 * will be the same as the depth of the array and we will fill in
975 * the first array index.
976 * Otherwise, the depth of the base type will be smaller and we will fill
977 * in a later index.
979 __isl_give isl_map *PetScan::extract_access(ArraySubscriptExpr *expr)
981 Expr *base = expr->getBase();
982 Expr *idx = expr->getIdx();
983 isl_pw_aff *index;
984 isl_map *base_access;
985 isl_map *access;
986 int depth = array_depth(base->getType().getTypePtr());
987 int pos;
988 bool save_nesting = nesting_enabled;
990 nesting_enabled = allow_nested;
992 base_access = extract_access(base);
993 index = extract_affine(idx);
995 nesting_enabled = save_nesting;
997 pos = isl_map_dim(base_access, isl_dim_out) - depth;
998 access = set_index(base_access, pos, index);
1000 return access;
1003 /* Check if "expr" calls function "minmax" with two arguments and if so
1004 * make lhs and rhs refer to these two arguments.
1006 static bool is_minmax(Expr *expr, const char *minmax, Expr *&lhs, Expr *&rhs)
1008 CallExpr *call;
1009 FunctionDecl *fd;
1010 string name;
1012 if (expr->getStmtClass() != Stmt::CallExprClass)
1013 return false;
1015 call = cast<CallExpr>(expr);
1016 fd = call->getDirectCallee();
1017 if (!fd)
1018 return false;
1020 if (call->getNumArgs() != 2)
1021 return false;
1023 name = fd->getDeclName().getAsString();
1024 if (name != minmax)
1025 return false;
1027 lhs = call->getArg(0);
1028 rhs = call->getArg(1);
1030 return true;
1033 /* Check if "expr" is of the form min(lhs, rhs) and if so make
1034 * lhs and rhs refer to the two arguments.
1036 static bool is_min(Expr *expr, Expr *&lhs, Expr *&rhs)
1038 return is_minmax(expr, "min", lhs, rhs);
1041 /* Check if "expr" is of the form max(lhs, rhs) and if so make
1042 * lhs and rhs refer to the two arguments.
1044 static bool is_max(Expr *expr, Expr *&lhs, Expr *&rhs)
1046 return is_minmax(expr, "max", lhs, rhs);
1049 /* Return "lhs && rhs", defined on the shared definition domain.
1051 static __isl_give isl_pw_aff *pw_aff_and(__isl_take isl_pw_aff *lhs,
1052 __isl_take isl_pw_aff *rhs)
1054 isl_set *cond;
1055 isl_set *dom;
1057 dom = isl_set_intersect(isl_pw_aff_domain(isl_pw_aff_copy(lhs)),
1058 isl_pw_aff_domain(isl_pw_aff_copy(rhs)));
1059 cond = isl_set_intersect(isl_pw_aff_non_zero_set(lhs),
1060 isl_pw_aff_non_zero_set(rhs));
1061 return indicator_function(cond, dom);
1064 /* Return "lhs && rhs", with shortcut semantics.
1065 * That is, if lhs is false, then the result is defined even if rhs is not.
1066 * In practice, we compute lhs ? rhs : lhs.
1068 static __isl_give isl_pw_aff *pw_aff_and_then(__isl_take isl_pw_aff *lhs,
1069 __isl_take isl_pw_aff *rhs)
1071 return isl_pw_aff_cond(isl_pw_aff_copy(lhs), rhs, lhs);
1074 /* Return "lhs || rhs", with shortcut semantics.
1075 * That is, if lhs is true, then the result is defined even if rhs is not.
1076 * In practice, we compute lhs ? lhs : rhs.
1078 static __isl_give isl_pw_aff *pw_aff_or_else(__isl_take isl_pw_aff *lhs,
1079 __isl_take isl_pw_aff *rhs)
1081 return isl_pw_aff_cond(isl_pw_aff_copy(lhs), lhs, rhs);
1084 /* Extract an affine expressions representing the comparison "LHS op RHS"
1085 * "comp" is the original statement that "LHS op RHS" is derived from
1086 * and is used for diagnostics.
1088 * If the comparison is of the form
1090 * a <= min(b,c)
1092 * then the expression is constructed as the conjunction of
1093 * the comparisons
1095 * a <= b and a <= c
1097 * A similar optimization is performed for max(a,b) <= c.
1098 * We do this because that will lead to simpler representations
1099 * of the expression.
1100 * If isl is ever enhanced to explicitly deal with min and max expressions,
1101 * this optimization can be removed.
1103 __isl_give isl_pw_aff *PetScan::extract_comparison(BinaryOperatorKind op,
1104 Expr *LHS, Expr *RHS, Stmt *comp)
1106 isl_pw_aff *lhs;
1107 isl_pw_aff *rhs;
1108 isl_pw_aff *res;
1109 isl_set *cond;
1110 isl_set *dom;
1112 if (op == BO_GT)
1113 return extract_comparison(BO_LT, RHS, LHS, comp);
1114 if (op == BO_GE)
1115 return extract_comparison(BO_LE, RHS, LHS, comp);
1117 if (op == BO_LT || op == BO_LE) {
1118 Expr *expr1, *expr2;
1119 if (is_min(RHS, expr1, expr2)) {
1120 lhs = extract_comparison(op, LHS, expr1, comp);
1121 rhs = extract_comparison(op, LHS, expr2, comp);
1122 return pw_aff_and(lhs, rhs);
1124 if (is_max(LHS, expr1, expr2)) {
1125 lhs = extract_comparison(op, expr1, RHS, comp);
1126 rhs = extract_comparison(op, expr2, RHS, comp);
1127 return pw_aff_and(lhs, rhs);
1131 lhs = extract_affine(LHS);
1132 rhs = extract_affine(RHS);
1134 dom = isl_pw_aff_domain(isl_pw_aff_copy(lhs));
1135 dom = isl_set_intersect(dom, isl_pw_aff_domain(isl_pw_aff_copy(rhs)));
1137 switch (op) {
1138 case BO_LT:
1139 cond = isl_pw_aff_lt_set(lhs, rhs);
1140 break;
1141 case BO_LE:
1142 cond = isl_pw_aff_le_set(lhs, rhs);
1143 break;
1144 case BO_EQ:
1145 cond = isl_pw_aff_eq_set(lhs, rhs);
1146 break;
1147 case BO_NE:
1148 cond = isl_pw_aff_ne_set(lhs, rhs);
1149 break;
1150 default:
1151 isl_pw_aff_free(lhs);
1152 isl_pw_aff_free(rhs);
1153 isl_set_free(dom);
1154 unsupported(comp);
1155 return NULL;
1158 cond = isl_set_coalesce(cond);
1159 res = indicator_function(cond, dom);
1161 return res;
1164 __isl_give isl_pw_aff *PetScan::extract_comparison(BinaryOperator *comp)
1166 return extract_comparison(comp->getOpcode(), comp->getLHS(),
1167 comp->getRHS(), comp);
1170 /* Extract an affine expression representing the negation (logical not)
1171 * of a subexpression.
1173 __isl_give isl_pw_aff *PetScan::extract_boolean(UnaryOperator *op)
1175 isl_set *set_cond, *dom;
1176 isl_pw_aff *cond, *res;
1178 cond = extract_condition(op->getSubExpr());
1180 dom = isl_pw_aff_domain(isl_pw_aff_copy(cond));
1182 set_cond = isl_pw_aff_zero_set(cond);
1184 res = indicator_function(set_cond, dom);
1186 return res;
1189 /* Extract an affine expression representing the disjunction (logical or)
1190 * or conjunction (logical and) of two subexpressions.
1192 __isl_give isl_pw_aff *PetScan::extract_boolean(BinaryOperator *comp)
1194 isl_pw_aff *lhs, *rhs;
1196 lhs = extract_condition(comp->getLHS());
1197 rhs = extract_condition(comp->getRHS());
1199 switch (comp->getOpcode()) {
1200 case BO_LAnd:
1201 return pw_aff_and_then(lhs, rhs);
1202 case BO_LOr:
1203 return pw_aff_or_else(lhs, rhs);
1204 default:
1205 isl_pw_aff_free(lhs);
1206 isl_pw_aff_free(rhs);
1209 unsupported(comp);
1210 return NULL;
1213 __isl_give isl_pw_aff *PetScan::extract_condition(UnaryOperator *expr)
1215 switch (expr->getOpcode()) {
1216 case UO_LNot:
1217 return extract_boolean(expr);
1218 default:
1219 unsupported(expr);
1220 return NULL;
1224 /* Extract the affine expression "expr != 0 ? 1 : 0".
1226 __isl_give isl_pw_aff *PetScan::extract_implicit_condition(Expr *expr)
1228 isl_pw_aff *res;
1229 isl_set *set, *dom;
1231 res = extract_affine(expr);
1233 dom = isl_pw_aff_domain(isl_pw_aff_copy(res));
1234 set = isl_pw_aff_non_zero_set(res);
1236 res = indicator_function(set, dom);
1238 return res;
1241 /* Extract an affine expression from a boolean expression.
1242 * In particular, return the expression "expr ? 1 : 0".
1244 * If the expression doesn't look like a condition, we assume it
1245 * is an affine expression and return the condition "expr != 0 ? 1 : 0".
1247 __isl_give isl_pw_aff *PetScan::extract_condition(Expr *expr)
1249 BinaryOperator *comp;
1251 if (!expr) {
1252 isl_set *u = isl_set_universe(isl_space_params_alloc(ctx, 0));
1253 return indicator_function(u, isl_set_copy(u));
1256 if (expr->getStmtClass() == Stmt::ParenExprClass)
1257 return extract_condition(cast<ParenExpr>(expr)->getSubExpr());
1259 if (expr->getStmtClass() == Stmt::UnaryOperatorClass)
1260 return extract_condition(cast<UnaryOperator>(expr));
1262 if (expr->getStmtClass() != Stmt::BinaryOperatorClass)
1263 return extract_implicit_condition(expr);
1265 comp = cast<BinaryOperator>(expr);
1266 switch (comp->getOpcode()) {
1267 case BO_LT:
1268 case BO_LE:
1269 case BO_GT:
1270 case BO_GE:
1271 case BO_EQ:
1272 case BO_NE:
1273 return extract_comparison(comp);
1274 case BO_LAnd:
1275 case BO_LOr:
1276 return extract_boolean(comp);
1277 default:
1278 return extract_implicit_condition(expr);
1282 static enum pet_op_type UnaryOperatorKind2pet_op_type(UnaryOperatorKind kind)
1284 switch (kind) {
1285 case UO_Minus:
1286 return pet_op_minus;
1287 case UO_PostInc:
1288 return pet_op_post_inc;
1289 case UO_PostDec:
1290 return pet_op_post_dec;
1291 case UO_PreInc:
1292 return pet_op_pre_inc;
1293 case UO_PreDec:
1294 return pet_op_pre_dec;
1295 default:
1296 return pet_op_last;
1300 static enum pet_op_type BinaryOperatorKind2pet_op_type(BinaryOperatorKind kind)
1302 switch (kind) {
1303 case BO_AddAssign:
1304 return pet_op_add_assign;
1305 case BO_SubAssign:
1306 return pet_op_sub_assign;
1307 case BO_MulAssign:
1308 return pet_op_mul_assign;
1309 case BO_DivAssign:
1310 return pet_op_div_assign;
1311 case BO_Assign:
1312 return pet_op_assign;
1313 case BO_Add:
1314 return pet_op_add;
1315 case BO_Sub:
1316 return pet_op_sub;
1317 case BO_Mul:
1318 return pet_op_mul;
1319 case BO_Div:
1320 return pet_op_div;
1321 case BO_EQ:
1322 return pet_op_eq;
1323 case BO_LE:
1324 return pet_op_le;
1325 case BO_LT:
1326 return pet_op_lt;
1327 case BO_GT:
1328 return pet_op_gt;
1329 default:
1330 return pet_op_last;
1334 /* Construct a pet_expr representing a unary operator expression.
1336 struct pet_expr *PetScan::extract_expr(UnaryOperator *expr)
1338 struct pet_expr *arg;
1339 enum pet_op_type op;
1341 op = UnaryOperatorKind2pet_op_type(expr->getOpcode());
1342 if (op == pet_op_last) {
1343 unsupported(expr);
1344 return NULL;
1347 arg = extract_expr(expr->getSubExpr());
1349 if (expr->isIncrementDecrementOp() &&
1350 arg && arg->type == pet_expr_access) {
1351 mark_write(arg);
1352 arg->acc.read = 1;
1355 return pet_expr_new_unary(ctx, op, arg);
1358 /* Mark the given access pet_expr as a write.
1359 * If a scalar is being accessed, then mark its value
1360 * as unknown in assigned_value.
1362 void PetScan::mark_write(struct pet_expr *access)
1364 isl_id *id;
1365 ValueDecl *decl;
1367 access->acc.write = 1;
1368 access->acc.read = 0;
1370 if (isl_map_dim(access->acc.access, isl_dim_out) != 0)
1371 return;
1373 id = isl_map_get_tuple_id(access->acc.access, isl_dim_out);
1374 decl = (ValueDecl *) isl_id_get_user(id);
1375 clear_assignment(assigned_value, decl);
1376 isl_id_free(id);
1379 /* Construct a pet_expr representing a binary operator expression.
1381 * If the top level operator is an assignment and the LHS is an access,
1382 * then we mark that access as a write. If the operator is a compound
1383 * assignment, the access is marked as both a read and a write.
1385 * If "expr" assigns something to a scalar variable, then we mark
1386 * the variable as having been assigned. If, furthermore, the expression
1387 * is affine, then keep track of this value in assigned_value
1388 * so that we can plug it in when we later come across the same variable.
1390 struct pet_expr *PetScan::extract_expr(BinaryOperator *expr)
1392 struct pet_expr *lhs, *rhs;
1393 enum pet_op_type op;
1395 op = BinaryOperatorKind2pet_op_type(expr->getOpcode());
1396 if (op == pet_op_last) {
1397 unsupported(expr);
1398 return NULL;
1401 lhs = extract_expr(expr->getLHS());
1402 rhs = extract_expr(expr->getRHS());
1404 if (expr->isAssignmentOp() && lhs && lhs->type == pet_expr_access) {
1405 mark_write(lhs);
1406 if (expr->isCompoundAssignmentOp())
1407 lhs->acc.read = 1;
1410 if (expr->getOpcode() == BO_Assign &&
1411 lhs && lhs->type == pet_expr_access &&
1412 isl_map_dim(lhs->acc.access, isl_dim_out) == 0) {
1413 isl_id *id = isl_map_get_tuple_id(lhs->acc.access, isl_dim_out);
1414 ValueDecl *decl = (ValueDecl *) isl_id_get_user(id);
1415 Expr *rhs = expr->getRHS();
1416 isl_pw_aff *pa = try_extract_affine(rhs);
1417 clear_assignment(assigned_value, decl);
1418 if (pa) {
1419 assigned_value[decl] = pa;
1420 insert_expression(pa);
1422 isl_id_free(id);
1425 return pet_expr_new_binary(ctx, op, lhs, rhs);
1428 /* Construct a pet_expr representing a conditional operation.
1430 * We first try to extract the condition as an affine expression.
1431 * If that fails, we construct a pet_expr tree representing the condition.
1433 struct pet_expr *PetScan::extract_expr(ConditionalOperator *expr)
1435 struct pet_expr *cond, *lhs, *rhs;
1436 isl_pw_aff *pa;
1438 pa = try_extract_affine(expr->getCond());
1439 if (pa) {
1440 isl_set *test = isl_set_from_pw_aff(pa);
1441 cond = pet_expr_from_access(isl_map_from_range(test));
1442 } else
1443 cond = extract_expr(expr->getCond());
1444 lhs = extract_expr(expr->getTrueExpr());
1445 rhs = extract_expr(expr->getFalseExpr());
1447 return pet_expr_new_ternary(ctx, cond, lhs, rhs);
1450 struct pet_expr *PetScan::extract_expr(ImplicitCastExpr *expr)
1452 return extract_expr(expr->getSubExpr());
1455 /* Construct a pet_expr representing a floating point value.
1457 struct pet_expr *PetScan::extract_expr(FloatingLiteral *expr)
1459 return pet_expr_new_double(ctx, expr->getValueAsApproximateDouble());
1462 /* Extract an access relation from "expr" and then convert it into
1463 * a pet_expr.
1465 struct pet_expr *PetScan::extract_access_expr(Expr *expr)
1467 isl_map *access;
1468 struct pet_expr *pe;
1470 access = extract_access(expr);
1472 pe = pet_expr_from_access(access);
1474 return pe;
1477 struct pet_expr *PetScan::extract_expr(ParenExpr *expr)
1479 return extract_expr(expr->getSubExpr());
1482 /* Construct a pet_expr representing a function call.
1484 * If we are passing along a pointer to an array element
1485 * or an entire row or even higher dimensional slice of an array,
1486 * then the function being called may write into the array.
1488 * We assume here that if the function is declared to take a pointer
1489 * to a const type, then the function will perform a read
1490 * and that otherwise, it will perform a write.
1492 struct pet_expr *PetScan::extract_expr(CallExpr *expr)
1494 struct pet_expr *res = NULL;
1495 FunctionDecl *fd;
1496 string name;
1498 fd = expr->getDirectCallee();
1499 if (!fd) {
1500 unsupported(expr);
1501 return NULL;
1504 name = fd->getDeclName().getAsString();
1505 res = pet_expr_new_call(ctx, name.c_str(), expr->getNumArgs());
1506 if (!res)
1507 return NULL;
1509 for (int i = 0; i < expr->getNumArgs(); ++i) {
1510 Expr *arg = expr->getArg(i);
1511 int is_addr = 0;
1512 pet_expr *main_arg;
1514 if (arg->getStmtClass() == Stmt::ImplicitCastExprClass) {
1515 ImplicitCastExpr *ice = cast<ImplicitCastExpr>(arg);
1516 arg = ice->getSubExpr();
1518 if (arg->getStmtClass() == Stmt::UnaryOperatorClass) {
1519 UnaryOperator *op = cast<UnaryOperator>(arg);
1520 if (op->getOpcode() == UO_AddrOf) {
1521 is_addr = 1;
1522 arg = op->getSubExpr();
1525 res->args[i] = PetScan::extract_expr(arg);
1526 main_arg = res->args[i];
1527 if (is_addr)
1528 res->args[i] = pet_expr_new_unary(ctx,
1529 pet_op_address_of, res->args[i]);
1530 if (!res->args[i])
1531 goto error;
1532 if (arg->getStmtClass() == Stmt::ArraySubscriptExprClass &&
1533 array_depth(arg->getType().getTypePtr()) > 0)
1534 is_addr = 1;
1535 if (is_addr && main_arg->type == pet_expr_access) {
1536 ParmVarDecl *parm;
1537 if (!fd->hasPrototype()) {
1538 unsupported(expr, "prototype required");
1539 goto error;
1541 parm = fd->getParamDecl(i);
1542 if (!const_base(parm->getType()))
1543 mark_write(main_arg);
1547 return res;
1548 error:
1549 pet_expr_free(res);
1550 return NULL;
1553 /* Try and onstruct a pet_expr representing "expr".
1555 struct pet_expr *PetScan::extract_expr(Expr *expr)
1557 switch (expr->getStmtClass()) {
1558 case Stmt::UnaryOperatorClass:
1559 return extract_expr(cast<UnaryOperator>(expr));
1560 case Stmt::CompoundAssignOperatorClass:
1561 case Stmt::BinaryOperatorClass:
1562 return extract_expr(cast<BinaryOperator>(expr));
1563 case Stmt::ImplicitCastExprClass:
1564 return extract_expr(cast<ImplicitCastExpr>(expr));
1565 case Stmt::ArraySubscriptExprClass:
1566 case Stmt::DeclRefExprClass:
1567 case Stmt::IntegerLiteralClass:
1568 return extract_access_expr(expr);
1569 case Stmt::FloatingLiteralClass:
1570 return extract_expr(cast<FloatingLiteral>(expr));
1571 case Stmt::ParenExprClass:
1572 return extract_expr(cast<ParenExpr>(expr));
1573 case Stmt::ConditionalOperatorClass:
1574 return extract_expr(cast<ConditionalOperator>(expr));
1575 case Stmt::CallExprClass:
1576 return extract_expr(cast<CallExpr>(expr));
1577 default:
1578 unsupported(expr);
1580 return NULL;
1583 /* Check if the given initialization statement is an assignment.
1584 * If so, return that assignment. Otherwise return NULL.
1586 BinaryOperator *PetScan::initialization_assignment(Stmt *init)
1588 BinaryOperator *ass;
1590 if (init->getStmtClass() != Stmt::BinaryOperatorClass)
1591 return NULL;
1593 ass = cast<BinaryOperator>(init);
1594 if (ass->getOpcode() != BO_Assign)
1595 return NULL;
1597 return ass;
1600 /* Check if the given initialization statement is a declaration
1601 * of a single variable.
1602 * If so, return that declaration. Otherwise return NULL.
1604 Decl *PetScan::initialization_declaration(Stmt *init)
1606 DeclStmt *decl;
1608 if (init->getStmtClass() != Stmt::DeclStmtClass)
1609 return NULL;
1611 decl = cast<DeclStmt>(init);
1613 if (!decl->isSingleDecl())
1614 return NULL;
1616 return decl->getSingleDecl();
1619 /* Given the assignment operator in the initialization of a for loop,
1620 * extract the induction variable, i.e., the (integer)variable being
1621 * assigned.
1623 ValueDecl *PetScan::extract_induction_variable(BinaryOperator *init)
1625 Expr *lhs;
1626 DeclRefExpr *ref;
1627 ValueDecl *decl;
1628 const Type *type;
1630 lhs = init->getLHS();
1631 if (lhs->getStmtClass() != Stmt::DeclRefExprClass) {
1632 unsupported(init);
1633 return NULL;
1636 ref = cast<DeclRefExpr>(lhs);
1637 decl = ref->getDecl();
1638 type = decl->getType().getTypePtr();
1640 if (!type->isIntegerType()) {
1641 unsupported(lhs);
1642 return NULL;
1645 return decl;
1648 /* Given the initialization statement of a for loop and the single
1649 * declaration in this initialization statement,
1650 * extract the induction variable, i.e., the (integer) variable being
1651 * declared.
1653 VarDecl *PetScan::extract_induction_variable(Stmt *init, Decl *decl)
1655 VarDecl *vd;
1657 vd = cast<VarDecl>(decl);
1659 const QualType type = vd->getType();
1660 if (!type->isIntegerType()) {
1661 unsupported(init);
1662 return NULL;
1665 if (!vd->getInit()) {
1666 unsupported(init);
1667 return NULL;
1670 return vd;
1673 /* Check that op is of the form iv++ or iv--.
1674 * Return an affine expression "1" or "-1" accordingly.
1676 __isl_give isl_pw_aff *PetScan::extract_unary_increment(
1677 clang::UnaryOperator *op, clang::ValueDecl *iv)
1679 Expr *sub;
1680 DeclRefExpr *ref;
1681 isl_space *space;
1682 isl_aff *aff;
1684 if (!op->isIncrementDecrementOp()) {
1685 unsupported(op);
1686 return NULL;
1689 sub = op->getSubExpr();
1690 if (sub->getStmtClass() != Stmt::DeclRefExprClass) {
1691 unsupported(op);
1692 return NULL;
1695 ref = cast<DeclRefExpr>(sub);
1696 if (ref->getDecl() != iv) {
1697 unsupported(op);
1698 return NULL;
1701 space = isl_space_params_alloc(ctx, 0);
1702 aff = isl_aff_zero_on_domain(isl_local_space_from_space(space));
1704 if (op->isIncrementOp())
1705 aff = isl_aff_add_constant_si(aff, 1);
1706 else
1707 aff = isl_aff_add_constant_si(aff, -1);
1709 return isl_pw_aff_from_aff(aff);
1712 /* If the isl_pw_aff on which isl_pw_aff_foreach_piece is called
1713 * has a single constant expression, then put this constant in *user.
1714 * The caller is assumed to have checked that this function will
1715 * be called exactly once.
1717 static int extract_cst(__isl_take isl_set *set, __isl_take isl_aff *aff,
1718 void *user)
1720 isl_int *inc = (isl_int *)user;
1721 int res = 0;
1723 if (isl_aff_is_cst(aff))
1724 isl_aff_get_constant(aff, inc);
1725 else
1726 res = -1;
1728 isl_set_free(set);
1729 isl_aff_free(aff);
1731 return res;
1734 /* Check if op is of the form
1736 * iv = iv + inc
1738 * and return inc as an affine expression.
1740 * We extract an affine expression from the RHS, subtract iv and return
1741 * the result.
1743 __isl_give isl_pw_aff *PetScan::extract_binary_increment(BinaryOperator *op,
1744 clang::ValueDecl *iv)
1746 Expr *lhs;
1747 DeclRefExpr *ref;
1748 isl_id *id;
1749 isl_space *dim;
1750 isl_aff *aff;
1751 isl_pw_aff *val;
1753 if (op->getOpcode() != BO_Assign) {
1754 unsupported(op);
1755 return NULL;
1758 lhs = op->getLHS();
1759 if (lhs->getStmtClass() != Stmt::DeclRefExprClass) {
1760 unsupported(op);
1761 return NULL;
1764 ref = cast<DeclRefExpr>(lhs);
1765 if (ref->getDecl() != iv) {
1766 unsupported(op);
1767 return NULL;
1770 val = extract_affine(op->getRHS());
1772 id = isl_id_alloc(ctx, iv->getName().str().c_str(), iv);
1774 dim = isl_space_params_alloc(ctx, 1);
1775 dim = isl_space_set_dim_id(dim, isl_dim_param, 0, id);
1776 aff = isl_aff_zero_on_domain(isl_local_space_from_space(dim));
1777 aff = isl_aff_add_coefficient_si(aff, isl_dim_param, 0, 1);
1779 val = isl_pw_aff_sub(val, isl_pw_aff_from_aff(aff));
1781 return val;
1784 /* Check that op is of the form iv += cst or iv -= cst
1785 * and return an affine expression corresponding oto cst or -cst accordingly.
1787 __isl_give isl_pw_aff *PetScan::extract_compound_increment(
1788 CompoundAssignOperator *op, clang::ValueDecl *iv)
1790 Expr *lhs;
1791 DeclRefExpr *ref;
1792 bool neg = false;
1793 isl_pw_aff *val;
1794 BinaryOperatorKind opcode;
1796 opcode = op->getOpcode();
1797 if (opcode != BO_AddAssign && opcode != BO_SubAssign) {
1798 unsupported(op);
1799 return NULL;
1801 if (opcode == BO_SubAssign)
1802 neg = true;
1804 lhs = op->getLHS();
1805 if (lhs->getStmtClass() != Stmt::DeclRefExprClass) {
1806 unsupported(op);
1807 return NULL;
1810 ref = cast<DeclRefExpr>(lhs);
1811 if (ref->getDecl() != iv) {
1812 unsupported(op);
1813 return NULL;
1816 val = extract_affine(op->getRHS());
1817 if (neg)
1818 val = isl_pw_aff_neg(val);
1820 return val;
1823 /* Check that the increment of the given for loop increments
1824 * (or decrements) the induction variable "iv" and return
1825 * the increment as an affine expression if successful.
1827 __isl_give isl_pw_aff *PetScan::extract_increment(clang::ForStmt *stmt,
1828 ValueDecl *iv)
1830 Stmt *inc = stmt->getInc();
1832 if (!inc) {
1833 unsupported(stmt);
1834 return NULL;
1837 if (inc->getStmtClass() == Stmt::UnaryOperatorClass)
1838 return extract_unary_increment(cast<UnaryOperator>(inc), iv);
1839 if (inc->getStmtClass() == Stmt::CompoundAssignOperatorClass)
1840 return extract_compound_increment(
1841 cast<CompoundAssignOperator>(inc), iv);
1842 if (inc->getStmtClass() == Stmt::BinaryOperatorClass)
1843 return extract_binary_increment(cast<BinaryOperator>(inc), iv);
1845 unsupported(inc);
1846 return NULL;
1849 /* Embed the given iteration domain in an extra outer loop
1850 * with induction variable "var".
1851 * If this variable appeared as a parameter in the constraints,
1852 * it is replaced by the new outermost dimension.
1854 static __isl_give isl_set *embed(__isl_take isl_set *set,
1855 __isl_take isl_id *var)
1857 int pos;
1859 set = isl_set_insert_dims(set, isl_dim_set, 0, 1);
1860 pos = isl_set_find_dim_by_id(set, isl_dim_param, var);
1861 if (pos >= 0) {
1862 set = isl_set_equate(set, isl_dim_param, pos, isl_dim_set, 0);
1863 set = isl_set_project_out(set, isl_dim_param, pos, 1);
1866 isl_id_free(var);
1867 return set;
1870 /* Create the infinite iteration domain
1872 * { [id] : id >= 0 }
1875 static __isl_give isl_set *infinite_domain(__isl_take isl_id *id)
1877 isl_ctx *ctx = isl_id_get_ctx(id);
1878 isl_set *domain;
1880 domain = isl_set_nat_universe(isl_space_set_alloc(ctx, 0, 1));
1881 domain = isl_set_set_dim_id(domain, isl_dim_set, 0, id);
1883 return domain;
1886 /* Create an identity mapping on the space containing "domain".
1888 static __isl_give isl_map *identity_map(__isl_keep isl_set *domain)
1890 isl_space *space;
1891 isl_map *id;
1893 space = isl_space_map_from_set(isl_set_get_space(domain));
1894 id = isl_map_identity(space);
1896 return id;
1899 /* Construct a pet_scop for an infinite loop around the given body.
1901 * We extract a pet_scop for the body and then embed it in a loop with
1902 * iteration domain
1904 * { [t] : t >= 0 }
1906 * and schedule
1908 * { [t] -> [t] }
1910 struct pet_scop *PetScan::extract_infinite_loop(Stmt *body)
1912 isl_id *id;
1913 isl_set *domain;
1914 isl_map *ident;
1915 struct pet_scop *scop;
1917 scop = extract(body);
1918 if (!scop)
1919 return NULL;
1921 id = isl_id_alloc(ctx, "t", NULL);
1922 domain = infinite_domain(isl_id_copy(id));
1923 ident = identity_map(domain);
1924 scop = pet_scop_embed(scop, domain, isl_map_copy(ident), ident, id);
1926 return scop;
1929 /* Construct a pet_scop for an infinite loop, i.e., a loop of the form
1931 * for (;;)
1932 * body
1935 struct pet_scop *PetScan::extract_infinite_for(ForStmt *stmt)
1937 return extract_infinite_loop(stmt->getBody());
1940 /* Create an access to a virtual array representing the result
1941 * of a condition.
1942 * Unlike other accessed data, the id of the array is NULL as
1943 * there is no ValueDecl in the program corresponding to the virtual
1944 * array.
1945 * The array starts out as a scalar, but grows along with the
1946 * statement writing to the array in pet_scop_embed.
1948 static __isl_give isl_map *create_test_access(isl_ctx *ctx, int test_nr)
1950 isl_space *dim = isl_space_alloc(ctx, 0, 0, 0);
1951 isl_id *id;
1952 char name[50];
1954 snprintf(name, sizeof(name), "__pet_test_%d", test_nr);
1955 id = isl_id_alloc(ctx, name, NULL);
1956 dim = isl_space_set_tuple_id(dim, isl_dim_out, id);
1957 return isl_map_universe(dim);
1960 /* Add an array with the given extent ("access") to the list
1961 * of arrays in "scop" and return the extended pet_scop.
1962 * The array is marked as attaining values 0 and 1 only and
1963 * as each element being assigned at most once.
1965 static struct pet_scop *scop_add_array(struct pet_scop *scop,
1966 __isl_keep isl_map *access, clang::ASTContext &ast_ctx)
1968 isl_ctx *ctx = isl_map_get_ctx(access);
1969 isl_space *dim;
1970 struct pet_array **arrays;
1971 struct pet_array *array;
1973 if (!scop)
1974 return NULL;
1975 if (!ctx)
1976 goto error;
1978 arrays = isl_realloc_array(ctx, scop->arrays, struct pet_array *,
1979 scop->n_array + 1);
1980 if (!arrays)
1981 goto error;
1982 scop->arrays = arrays;
1984 array = isl_calloc_type(ctx, struct pet_array);
1985 if (!array)
1986 goto error;
1988 array->extent = isl_map_range(isl_map_copy(access));
1989 dim = isl_space_params_alloc(ctx, 0);
1990 array->context = isl_set_universe(dim);
1991 dim = isl_space_set_alloc(ctx, 0, 1);
1992 array->value_bounds = isl_set_universe(dim);
1993 array->value_bounds = isl_set_lower_bound_si(array->value_bounds,
1994 isl_dim_set, 0, 0);
1995 array->value_bounds = isl_set_upper_bound_si(array->value_bounds,
1996 isl_dim_set, 0, 1);
1997 array->element_type = strdup("int");
1998 array->element_size = ast_ctx.getTypeInfo(ast_ctx.IntTy).first / 8;
1999 array->uniquely_defined = 1;
2001 scop->arrays[scop->n_array] = array;
2002 scop->n_array++;
2004 if (!array->extent || !array->context)
2005 goto error;
2007 return scop;
2008 error:
2009 pet_scop_free(scop);
2010 return NULL;
2013 /* Construct a pet_scop for a while loop of the form
2015 * while (pa)
2016 * body
2018 * In particular, construct a scop for an infinite loop around body and
2019 * intersect the domain with the affine expression.
2020 * Note that this intersection may result in an empty loop.
2022 struct pet_scop *PetScan::extract_affine_while(__isl_take isl_pw_aff *pa,
2023 Stmt *body)
2025 struct pet_scop *scop;
2026 isl_set *dom;
2027 isl_set *valid;
2029 valid = isl_pw_aff_domain(isl_pw_aff_copy(pa));
2030 dom = isl_pw_aff_non_zero_set(pa);
2031 scop = extract_infinite_loop(body);
2032 scop = pet_scop_restrict(scop, dom);
2033 scop = pet_scop_restrict_context(scop, valid);
2035 return scop;
2038 /* Construct a scop for a while, given the scops for the condition
2039 * and the body, the filter access and the iteration domain of
2040 * the while loop.
2042 * In particular, the scop for the condition is filtered to depend
2043 * on "test_access" evaluating to true for all previous iterations
2044 * of the loop, while the scop for the body is filtered to depend
2045 * on "test_access" evaluating to true for all iterations up to the
2046 * current iteration.
2048 * These filtered scops are then combined into a single scop.
2050 * "sign" is positive if the iterator increases and negative
2051 * if it decreases.
2053 static struct pet_scop *scop_add_while(struct pet_scop *scop_cond,
2054 struct pet_scop *scop_body, __isl_take isl_map *test_access,
2055 __isl_take isl_set *domain, int sign)
2057 isl_ctx *ctx = isl_set_get_ctx(domain);
2058 isl_id *id_test;
2059 isl_map *prev;
2061 id_test = isl_map_get_tuple_id(test_access, isl_dim_out);
2062 test_access = isl_map_add_dims(test_access, isl_dim_in, 1);
2063 test_access = isl_map_add_dims(test_access, isl_dim_out, 1);
2064 test_access = isl_map_intersect_range(test_access, domain);
2065 test_access = isl_map_set_tuple_id(test_access, isl_dim_out, id_test);
2066 if (sign > 0)
2067 prev = isl_map_lex_ge_first(isl_map_get_space(test_access), 1);
2068 else
2069 prev = isl_map_lex_le_first(isl_map_get_space(test_access), 1);
2070 test_access = isl_map_intersect(test_access, prev);
2071 scop_body = pet_scop_filter(scop_body, isl_map_copy(test_access), 1);
2072 if (sign > 0)
2073 prev = isl_map_lex_gt_first(isl_map_get_space(test_access), 1);
2074 else
2075 prev = isl_map_lex_lt_first(isl_map_get_space(test_access), 1);
2076 test_access = isl_map_intersect(test_access, prev);
2077 scop_cond = pet_scop_filter(scop_cond, test_access, 1);
2079 return pet_scop_add(ctx, scop_cond, scop_body);
2082 /* Check if the while loop is of the form
2084 * while (affine expression)
2085 * body
2087 * If so, call extract_affine_while to construct a scop.
2089 * Otherwise, construct a generic while scop, with iteration domain
2090 * { [t] : t >= 0 }. The scop consists of two parts, one for
2091 * evaluating the condition and one for the body.
2092 * The schedule is adjusted to reflect that the condition is evaluated
2093 * before the body is executed and the body is filtered to depend
2094 * on the result of the condition evaluating to true on all iterations
2095 * up to the current iteration, while the evaluation the condition itself
2096 * is filtered to depend on the result of the condition evaluating to true
2097 * on all previous iterations.
2098 * The context of the scop representing the body is dropped
2099 * because we don't know how many times the body will be executed,
2100 * if at all.
2102 struct pet_scop *PetScan::extract(WhileStmt *stmt)
2104 Expr *cond;
2105 isl_id *id;
2106 isl_map *test_access;
2107 isl_set *domain;
2108 isl_map *ident;
2109 isl_pw_aff *pa;
2110 struct pet_scop *scop, *scop_body;
2112 cond = stmt->getCond();
2113 if (!cond) {
2114 unsupported(stmt);
2115 return NULL;
2118 pa = try_extract_affine_condition(cond);
2119 if (pa)
2120 return extract_affine_while(pa, stmt->getBody());
2122 if (!allow_nested) {
2123 unsupported(stmt);
2124 return NULL;
2127 id = isl_id_alloc(ctx, "t", NULL);
2128 domain = infinite_domain(isl_id_copy(id));
2129 ident = identity_map(domain);
2131 test_access = create_test_access(ctx, n_test++);
2132 scop = extract_non_affine_condition(cond, isl_map_copy(test_access));
2133 scop = scop_add_array(scop, test_access, ast_context);
2134 scop = pet_scop_prefix(scop, 0);
2135 scop = pet_scop_embed(scop, isl_set_copy(domain), isl_map_copy(ident),
2136 isl_map_copy(ident), isl_id_copy(id));
2137 scop_body = extract(stmt->getBody());
2138 scop_body = pet_scop_reset_context(scop_body);
2139 scop_body = pet_scop_prefix(scop_body, 1);
2140 scop_body = pet_scop_embed(scop_body, isl_set_copy(domain),
2141 isl_map_copy(ident), ident, id);
2143 scop = scop_add_while(scop, scop_body, test_access, domain, 1);
2145 return scop;
2148 /* Check whether "cond" expresses a simple loop bound
2149 * on the only set dimension.
2150 * In particular, if "up" is set then "cond" should contain only
2151 * upper bounds on the set dimension.
2152 * Otherwise, it should contain only lower bounds.
2154 static bool is_simple_bound(__isl_keep isl_set *cond, isl_int inc)
2156 if (isl_int_is_pos(inc))
2157 return !isl_set_dim_has_lower_bound(cond, isl_dim_set, 0);
2158 else
2159 return !isl_set_dim_has_upper_bound(cond, isl_dim_set, 0);
2162 /* Extend a condition on a given iteration of a loop to one that
2163 * imposes the same condition on all previous iterations.
2164 * "domain" expresses the lower [upper] bound on the iterations
2165 * when inc is positive [negative].
2167 * In particular, we construct the condition (when inc is positive)
2169 * forall i' : (domain(i') and i' <= i) => cond(i')
2171 * which is equivalent to
2173 * not exists i' : domain(i') and i' <= i and not cond(i')
2175 * We construct this set by negating cond, applying a map
2177 * { [i'] -> [i] : domain(i') and i' <= i }
2179 * and then negating the result again.
2181 static __isl_give isl_set *valid_for_each_iteration(__isl_take isl_set *cond,
2182 __isl_take isl_set *domain, isl_int inc)
2184 isl_map *previous_to_this;
2186 if (isl_int_is_pos(inc))
2187 previous_to_this = isl_map_lex_le(isl_set_get_space(domain));
2188 else
2189 previous_to_this = isl_map_lex_ge(isl_set_get_space(domain));
2191 previous_to_this = isl_map_intersect_domain(previous_to_this, domain);
2193 cond = isl_set_complement(cond);
2194 cond = isl_set_apply(cond, previous_to_this);
2195 cond = isl_set_complement(cond);
2197 return cond;
2200 /* Construct a domain of the form
2202 * [id] -> { : exists a: id = init + a * inc and a >= 0 }
2204 static __isl_give isl_set *strided_domain(__isl_take isl_id *id,
2205 __isl_take isl_pw_aff *init, isl_int inc)
2207 isl_aff *aff;
2208 isl_space *dim;
2209 isl_set *set;
2211 init = isl_pw_aff_insert_dims(init, isl_dim_in, 0, 1);
2212 dim = isl_pw_aff_get_domain_space(init);
2213 aff = isl_aff_zero_on_domain(isl_local_space_from_space(dim));
2214 aff = isl_aff_add_coefficient(aff, isl_dim_in, 0, inc);
2215 init = isl_pw_aff_add(init, isl_pw_aff_from_aff(aff));
2217 dim = isl_space_set_alloc(isl_pw_aff_get_ctx(init), 1, 1);
2218 dim = isl_space_set_dim_id(dim, isl_dim_param, 0, id);
2219 aff = isl_aff_zero_on_domain(isl_local_space_from_space(dim));
2220 aff = isl_aff_add_coefficient_si(aff, isl_dim_param, 0, 1);
2222 set = isl_pw_aff_eq_set(isl_pw_aff_from_aff(aff), init);
2224 set = isl_set_lower_bound_si(set, isl_dim_set, 0, 0);
2226 return isl_set_params(set);
2229 /* Assuming "cond" represents a bound on a loop where the loop
2230 * iterator "iv" is incremented (or decremented) by one, check if wrapping
2231 * is possible.
2233 * Under the given assumptions, wrapping is only possible if "cond" allows
2234 * for the last value before wrapping, i.e., 2^width - 1 in case of an
2235 * increasing iterator and 0 in case of a decreasing iterator.
2237 static bool can_wrap(__isl_keep isl_set *cond, ValueDecl *iv, isl_int inc)
2239 bool cw;
2240 isl_int limit;
2241 isl_set *test;
2243 test = isl_set_copy(cond);
2245 isl_int_init(limit);
2246 if (isl_int_is_neg(inc))
2247 isl_int_set_si(limit, 0);
2248 else {
2249 isl_int_set_si(limit, 1);
2250 isl_int_mul_2exp(limit, limit, get_type_size(iv));
2251 isl_int_sub_ui(limit, limit, 1);
2254 test = isl_set_fix(cond, isl_dim_set, 0, limit);
2255 cw = !isl_set_is_empty(test);
2256 isl_set_free(test);
2258 isl_int_clear(limit);
2260 return cw;
2263 /* Given a one-dimensional space, construct the following mapping on this
2264 * space
2266 * { [v] -> [v mod 2^width] }
2268 * where width is the number of bits used to represent the values
2269 * of the unsigned variable "iv".
2271 static __isl_give isl_map *compute_wrapping(__isl_take isl_space *dim,
2272 ValueDecl *iv)
2274 isl_int mod;
2275 isl_aff *aff;
2276 isl_map *map;
2278 isl_int_init(mod);
2279 isl_int_set_si(mod, 1);
2280 isl_int_mul_2exp(mod, mod, get_type_size(iv));
2282 aff = isl_aff_zero_on_domain(isl_local_space_from_space(dim));
2283 aff = isl_aff_add_coefficient_si(aff, isl_dim_in, 0, 1);
2284 aff = isl_aff_mod(aff, mod);
2286 isl_int_clear(mod);
2288 return isl_map_from_basic_map(isl_basic_map_from_aff(aff));
2289 map = isl_map_reverse(map);
2292 /* Project out the parameter "id" from "set".
2294 static __isl_give isl_set *set_project_out_by_id(__isl_take isl_set *set,
2295 __isl_keep isl_id *id)
2297 int pos;
2299 pos = isl_set_find_dim_by_id(set, isl_dim_param, id);
2300 if (pos >= 0)
2301 set = isl_set_project_out(set, isl_dim_param, pos, 1);
2303 return set;
2306 /* Compute the set of parameters for which "set1" is a subset of "set2".
2308 * set1 is a subset of set2 if
2310 * forall i in set1 : i in set2
2312 * or
2314 * not exists i in set1 and i not in set2
2316 * i.e.,
2318 * not exists i in set1 \ set2
2320 static __isl_give isl_set *enforce_subset(__isl_take isl_set *set1,
2321 __isl_take isl_set *set2)
2323 return isl_set_complement(isl_set_params(isl_set_subtract(set1, set2)));
2326 /* Compute the set of parameter values for which "cond" holds
2327 * on the next iteration for each element of "dom".
2329 * We first construct mapping { [i] -> [i + inc] }, apply that to "dom"
2330 * and then compute the set of parameters for which the result is a subset
2331 * of "cond".
2333 static __isl_give isl_set *valid_on_next(__isl_take isl_set *cond,
2334 __isl_take isl_set *dom, isl_int inc)
2336 isl_space *space;
2337 isl_aff *aff;
2338 isl_map *next;
2340 space = isl_set_get_space(dom);
2341 aff = isl_aff_zero_on_domain(isl_local_space_from_space(space));
2342 aff = isl_aff_add_coefficient_si(aff, isl_dim_in, 0, 1);
2343 aff = isl_aff_add_constant(aff, inc);
2344 next = isl_map_from_basic_map(isl_basic_map_from_aff(aff));
2346 dom = isl_set_apply(dom, next);
2348 return enforce_subset(dom, cond);
2351 /* Does "id" refer to a nested access?
2353 static bool is_nested_parameter(__isl_keep isl_id *id)
2355 return id && isl_id_get_user(id) && !isl_id_get_name(id);
2358 /* Does parameter "pos" of "space" refer to a nested access?
2360 static bool is_nested_parameter(__isl_keep isl_space *space, int pos)
2362 bool nested;
2363 isl_id *id;
2365 id = isl_space_get_dim_id(space, isl_dim_param, pos);
2366 nested = is_nested_parameter(id);
2367 isl_id_free(id);
2369 return nested;
2372 /* Does "space" involve any parameters that refer to nested
2373 * accesses, i.e., parameters with no name?
2375 static bool has_nested(__isl_keep isl_space *space)
2377 int nparam;
2379 nparam = isl_space_dim(space, isl_dim_param);
2380 for (int i = 0; i < nparam; ++i)
2381 if (is_nested_parameter(space, i))
2382 return true;
2384 return false;
2387 /* Does "pa" involve any parameters that refer to nested
2388 * accesses, i.e., parameters with no name?
2390 static bool has_nested(__isl_keep isl_pw_aff *pa)
2392 isl_space *space;
2393 bool nested;
2395 space = isl_pw_aff_get_space(pa);
2396 nested = has_nested(space);
2397 isl_space_free(space);
2399 return nested;
2402 /* Construct a pet_scop for a for statement.
2403 * The for loop is required to be of the form
2405 * for (i = init; condition; ++i)
2407 * or
2409 * for (i = init; condition; --i)
2411 * The initialization of the for loop should either be an assignment
2412 * to an integer variable, or a declaration of such a variable with
2413 * initialization.
2415 * The condition is allowed to contain nested accesses, provided
2416 * they are not being written to inside the body of the loop.
2418 * We extract a pet_scop for the body and then embed it in a loop with
2419 * iteration domain and schedule
2421 * { [i] : i >= init and condition' }
2422 * { [i] -> [i] }
2424 * or
2426 * { [i] : i <= init and condition' }
2427 * { [i] -> [-i] }
2429 * Where condition' is equal to condition if the latter is
2430 * a simple upper [lower] bound and a condition that is extended
2431 * to apply to all previous iterations otherwise.
2433 * If the stride of the loop is not 1, then "i >= init" is replaced by
2435 * (exists a: i = init + stride * a and a >= 0)
2437 * If the loop iterator i is unsigned, then wrapping may occur.
2438 * During the computation, we work with a virtual iterator that
2439 * does not wrap. However, the condition in the code applies
2440 * to the wrapped value, so we need to change condition(i)
2441 * into condition([i % 2^width]).
2442 * After computing the virtual domain and schedule, we apply
2443 * the function { [v] -> [v % 2^width] } to the domain and the domain
2444 * of the schedule. In order not to lose any information, we also
2445 * need to intersect the domain of the schedule with the virtual domain
2446 * first, since some iterations in the wrapped domain may be scheduled
2447 * several times, typically an infinite number of times.
2448 * Note that there may be no need to perform this final wrapping
2449 * if the loop condition (after wrapping) satisfies certain conditions.
2450 * However, the is_simple_bound condition is not enough since it doesn't
2451 * check if there even is an upper bound.
2453 * Wrapping on unsigned iterators can be avoided entirely if
2454 * loop condition is simple, the loop iterator is incremented
2455 * [decremented] by one and the last value before wrapping cannot
2456 * possibly satisfy the loop condition.
2458 * Before extracting a pet_scop from the body we remove all
2459 * assignments in assigned_value to variables that are assigned
2460 * somewhere in the body of the loop.
2462 * Valid parameters for a for loop are those for which the initial
2463 * value itself, the increment on each domain iteration and
2464 * the condition on both the initial value and
2465 * the result of incrementing the iterator for each iteration of the domain
2466 * can be evaluated.
2468 struct pet_scop *PetScan::extract_for(ForStmt *stmt)
2470 BinaryOperator *ass;
2471 Decl *decl;
2472 Stmt *init;
2473 Expr *lhs, *rhs;
2474 ValueDecl *iv;
2475 isl_space *space;
2476 isl_set *domain;
2477 isl_map *sched;
2478 isl_set *cond = NULL;
2479 isl_id *id;
2480 struct pet_scop *scop;
2481 assigned_value_cache cache(assigned_value);
2482 isl_int inc;
2483 bool is_one;
2484 bool is_unsigned;
2485 bool is_simple;
2486 bool is_virtual;
2487 isl_map *wrap = NULL, *ident;
2488 isl_pw_aff *pa, *pa_inc, *init_val;
2489 isl_set *valid_init;
2490 isl_set *valid_cond;
2491 isl_set *valid_cond_init;
2492 isl_set *valid_cond_next;
2493 isl_set *valid_inc;
2495 if (!stmt->getInit() && !stmt->getCond() && !stmt->getInc())
2496 return extract_infinite_for(stmt);
2498 init = stmt->getInit();
2499 if (!init) {
2500 unsupported(stmt);
2501 return NULL;
2503 if ((ass = initialization_assignment(init)) != NULL) {
2504 iv = extract_induction_variable(ass);
2505 if (!iv)
2506 return NULL;
2507 lhs = ass->getLHS();
2508 rhs = ass->getRHS();
2509 } else if ((decl = initialization_declaration(init)) != NULL) {
2510 VarDecl *var = extract_induction_variable(init, decl);
2511 if (!var)
2512 return NULL;
2513 iv = var;
2514 rhs = var->getInit();
2515 lhs = create_DeclRefExpr(var);
2516 } else {
2517 unsupported(stmt->getInit());
2518 return NULL;
2521 pa_inc = extract_increment(stmt, iv);
2522 if (!pa_inc)
2523 return NULL;
2525 isl_int_init(inc);
2526 if (isl_pw_aff_n_piece(pa_inc) != 1 ||
2527 isl_pw_aff_foreach_piece(pa_inc, &extract_cst, &inc) < 0) {
2528 isl_pw_aff_free(pa_inc);
2529 unsupported(stmt->getInc());
2530 isl_int_clear(inc);
2531 return NULL;
2533 valid_inc = isl_pw_aff_domain(pa_inc);
2535 is_unsigned = iv->getType()->isUnsignedIntegerType();
2537 assigned_value.erase(iv);
2538 clear_assignments clear(assigned_value);
2539 clear.TraverseStmt(stmt->getBody());
2541 id = isl_id_alloc(ctx, iv->getName().str().c_str(), iv);
2543 scop = extract(stmt->getBody());
2545 pa = try_extract_nested_condition(stmt->getCond());
2546 if (pa && !is_nested_allowed(pa, scop)) {
2547 isl_pw_aff_free(pa);
2548 pa = NULL;
2551 if (!pa)
2552 pa = extract_condition(stmt->getCond());
2553 valid_cond = isl_pw_aff_domain(isl_pw_aff_copy(pa));
2554 cond = isl_pw_aff_non_zero_set(pa);
2555 cond = embed(cond, isl_id_copy(id));
2556 valid_cond = isl_set_coalesce(valid_cond);
2557 valid_cond = embed(valid_cond, isl_id_copy(id));
2558 valid_inc = embed(valid_inc, isl_id_copy(id));
2559 is_one = isl_int_is_one(inc) || isl_int_is_negone(inc);
2560 is_virtual = is_unsigned && (!is_one || can_wrap(cond, iv, inc));
2562 init_val = extract_affine(rhs);
2563 valid_cond_init = enforce_subset(
2564 isl_set_from_pw_aff(isl_pw_aff_copy(init_val)),
2565 isl_set_copy(valid_cond));
2566 if (is_one && !is_virtual) {
2567 isl_pw_aff_free(init_val);
2568 pa = extract_comparison(isl_int_is_pos(inc) ? BO_GE : BO_LE,
2569 lhs, rhs, init);
2570 valid_init = isl_pw_aff_domain(isl_pw_aff_copy(pa));
2571 valid_init = set_project_out_by_id(valid_init, id);
2572 domain = isl_pw_aff_non_zero_set(pa);
2573 } else {
2574 valid_init = isl_pw_aff_domain(isl_pw_aff_copy(init_val));
2575 domain = strided_domain(isl_id_copy(id), init_val, inc);
2578 domain = embed(domain, isl_id_copy(id));
2579 if (is_virtual) {
2580 isl_map *rev_wrap;
2581 wrap = compute_wrapping(isl_set_get_space(cond), iv);
2582 rev_wrap = isl_map_reverse(isl_map_copy(wrap));
2583 cond = isl_set_apply(cond, isl_map_copy(rev_wrap));
2584 valid_cond = isl_set_apply(valid_cond, isl_map_copy(rev_wrap));
2585 valid_inc = isl_set_apply(valid_inc, rev_wrap);
2587 cond = isl_set_gist(cond, isl_set_copy(domain));
2588 is_simple = is_simple_bound(cond, inc);
2589 if (!is_simple)
2590 cond = valid_for_each_iteration(cond,
2591 isl_set_copy(domain), inc);
2592 domain = isl_set_intersect(domain, cond);
2593 domain = isl_set_set_dim_id(domain, isl_dim_set, 0, isl_id_copy(id));
2594 space = isl_space_from_domain(isl_set_get_space(domain));
2595 space = isl_space_add_dims(space, isl_dim_out, 1);
2596 sched = isl_map_universe(space);
2597 if (isl_int_is_pos(inc))
2598 sched = isl_map_equate(sched, isl_dim_in, 0, isl_dim_out, 0);
2599 else
2600 sched = isl_map_oppose(sched, isl_dim_in, 0, isl_dim_out, 0);
2602 valid_cond_next = valid_on_next(valid_cond, isl_set_copy(domain), inc);
2603 valid_inc = enforce_subset(isl_set_copy(domain), valid_inc);
2605 if (is_virtual) {
2606 wrap = isl_map_set_dim_id(wrap,
2607 isl_dim_out, 0, isl_id_copy(id));
2608 sched = isl_map_intersect_domain(sched, isl_set_copy(domain));
2609 domain = isl_set_apply(domain, isl_map_copy(wrap));
2610 sched = isl_map_apply_domain(sched, wrap);
2612 space = isl_set_get_space(domain);
2613 ident = isl_map_identity(isl_space_map_from_set(space));
2615 scop = pet_scop_embed(scop, domain, sched, ident, id);
2616 scop = resolve_nested(scop);
2617 clear_assignment(assigned_value, iv);
2619 isl_int_clear(inc);
2621 scop = pet_scop_restrict_context(scop, valid_init);
2622 scop = pet_scop_restrict_context(scop, valid_inc);
2623 scop = pet_scop_restrict_context(scop, valid_cond_next);
2624 scop = pet_scop_restrict_context(scop, valid_cond_init);
2626 return scop;
2629 struct pet_scop *PetScan::extract(CompoundStmt *stmt)
2631 return extract(stmt->children());
2634 /* Does parameter "pos" of "map" refer to a nested access?
2636 static bool is_nested_parameter(__isl_keep isl_map *map, int pos)
2638 bool nested;
2639 isl_id *id;
2641 id = isl_map_get_dim_id(map, isl_dim_param, pos);
2642 nested = is_nested_parameter(id);
2643 isl_id_free(id);
2645 return nested;
2648 /* How many parameters of "space" refer to nested accesses, i.e., have no name?
2650 static int n_nested_parameter(__isl_keep isl_space *space)
2652 int n = 0;
2653 int nparam;
2655 nparam = isl_space_dim(space, isl_dim_param);
2656 for (int i = 0; i < nparam; ++i)
2657 if (is_nested_parameter(space, i))
2658 ++n;
2660 return n;
2663 /* How many parameters of "map" refer to nested accesses, i.e., have no name?
2665 static int n_nested_parameter(__isl_keep isl_map *map)
2667 isl_space *space;
2668 int n;
2670 space = isl_map_get_space(map);
2671 n = n_nested_parameter(space);
2672 isl_space_free(space);
2674 return n;
2677 /* For each nested access parameter in "space",
2678 * construct a corresponding pet_expr, place it in args and
2679 * record its position in "param2pos".
2680 * "n_arg" is the number of elements that are already in args.
2681 * The position recorded in "param2pos" takes this number into account.
2682 * If the pet_expr corresponding to a parameter is identical to
2683 * the pet_expr corresponding to an earlier parameter, then these two
2684 * parameters are made to refer to the same element in args.
2686 * Return the final number of elements in args or -1 if an error has occurred.
2688 int PetScan::extract_nested(__isl_keep isl_space *space,
2689 int n_arg, struct pet_expr **args, std::map<int,int> &param2pos)
2691 int nparam;
2693 nparam = isl_space_dim(space, isl_dim_param);
2694 for (int i = 0; i < nparam; ++i) {
2695 int j;
2696 isl_id *id = isl_space_get_dim_id(space, isl_dim_param, i);
2697 Expr *nested;
2699 if (!is_nested_parameter(id)) {
2700 isl_id_free(id);
2701 continue;
2704 nested = (Expr *) isl_id_get_user(id);
2705 args[n_arg] = extract_expr(nested);
2706 if (!args[n_arg])
2707 return -1;
2709 for (j = 0; j < n_arg; ++j)
2710 if (pet_expr_is_equal(args[j], args[n_arg]))
2711 break;
2713 if (j < n_arg) {
2714 pet_expr_free(args[n_arg]);
2715 args[n_arg] = NULL;
2716 param2pos[i] = j;
2717 } else
2718 param2pos[i] = n_arg++;
2720 isl_id_free(id);
2723 return n_arg;
2726 /* For each nested access parameter in the access relations in "expr",
2727 * construct a corresponding pet_expr, place it in expr->args and
2728 * record its position in "param2pos".
2729 * n is the number of nested access parameters.
2731 struct pet_expr *PetScan::extract_nested(struct pet_expr *expr, int n,
2732 std::map<int,int> &param2pos)
2734 isl_space *space;
2736 expr->args = isl_calloc_array(ctx, struct pet_expr *, n);
2737 expr->n_arg = n;
2738 if (!expr->args)
2739 goto error;
2741 space = isl_map_get_space(expr->acc.access);
2742 n = extract_nested(space, 0, expr->args, param2pos);
2743 isl_space_free(space);
2745 if (n < 0)
2746 goto error;
2748 expr->n_arg = n;
2749 return expr;
2750 error:
2751 pet_expr_free(expr);
2752 return NULL;
2755 /* Look for parameters in any access relation in "expr" that
2756 * refer to nested accesses. In particular, these are
2757 * parameters with no name.
2759 * If there are any such parameters, then the domain of the access
2760 * relation, which is still [] at this point, is replaced by
2761 * [[] -> [t_1,...,t_n]], with n the number of these parameters
2762 * (after identifying identical nested accesses).
2763 * The parameters are then equated to the corresponding t dimensions
2764 * and subsequently projected out.
2765 * param2pos maps the position of the parameter to the position
2766 * of the corresponding t dimension.
2768 struct pet_expr *PetScan::resolve_nested(struct pet_expr *expr)
2770 int n;
2771 int nparam;
2772 int n_in;
2773 isl_space *dim;
2774 isl_map *map;
2775 std::map<int,int> param2pos;
2777 if (!expr)
2778 return expr;
2780 for (int i = 0; i < expr->n_arg; ++i) {
2781 expr->args[i] = resolve_nested(expr->args[i]);
2782 if (!expr->args[i]) {
2783 pet_expr_free(expr);
2784 return NULL;
2788 if (expr->type != pet_expr_access)
2789 return expr;
2791 n = n_nested_parameter(expr->acc.access);
2792 if (n == 0)
2793 return expr;
2795 expr = extract_nested(expr, n, param2pos);
2796 if (!expr)
2797 return NULL;
2799 n = expr->n_arg;
2800 nparam = isl_map_dim(expr->acc.access, isl_dim_param);
2801 n_in = isl_map_dim(expr->acc.access, isl_dim_in);
2802 dim = isl_map_get_space(expr->acc.access);
2803 dim = isl_space_domain(dim);
2804 dim = isl_space_from_domain(dim);
2805 dim = isl_space_add_dims(dim, isl_dim_out, n);
2806 map = isl_map_universe(dim);
2807 map = isl_map_domain_map(map);
2808 map = isl_map_reverse(map);
2809 expr->acc.access = isl_map_apply_domain(expr->acc.access, map);
2811 for (int i = nparam - 1; i >= 0; --i) {
2812 isl_id *id = isl_map_get_dim_id(expr->acc.access,
2813 isl_dim_param, i);
2814 if (!is_nested_parameter(id)) {
2815 isl_id_free(id);
2816 continue;
2819 expr->acc.access = isl_map_equate(expr->acc.access,
2820 isl_dim_param, i, isl_dim_in,
2821 n_in + param2pos[i]);
2822 expr->acc.access = isl_map_project_out(expr->acc.access,
2823 isl_dim_param, i, 1);
2825 isl_id_free(id);
2828 return expr;
2829 error:
2830 pet_expr_free(expr);
2831 return NULL;
2834 /* Convert a top-level pet_expr to a pet_scop with one statement.
2835 * This mainly involves resolving nested expression parameters
2836 * and setting the name of the iteration space.
2837 * The name is given by "label" if it is non-NULL. Otherwise,
2838 * it is of the form S_<n_stmt>.
2840 struct pet_scop *PetScan::extract(Stmt *stmt, struct pet_expr *expr,
2841 __isl_take isl_id *label)
2843 struct pet_stmt *ps;
2844 SourceLocation loc = stmt->getLocStart();
2845 int line = PP.getSourceManager().getExpansionLineNumber(loc);
2847 expr = resolve_nested(expr);
2848 ps = pet_stmt_from_pet_expr(ctx, line, label, n_stmt++, expr);
2849 return pet_scop_from_pet_stmt(ctx, ps);
2852 /* Check if we can extract an affine expression from "expr".
2853 * Return the expressions as an isl_pw_aff if we can and NULL otherwise.
2854 * We turn on autodetection so that we won't generate any warnings
2855 * and turn off nesting, so that we won't accept any non-affine constructs.
2857 __isl_give isl_pw_aff *PetScan::try_extract_affine(Expr *expr)
2859 isl_pw_aff *pwaff;
2860 int save_autodetect = options->autodetect;
2861 bool save_nesting = nesting_enabled;
2863 options->autodetect = 1;
2864 nesting_enabled = false;
2866 pwaff = extract_affine(expr);
2868 options->autodetect = save_autodetect;
2869 nesting_enabled = save_nesting;
2871 return pwaff;
2874 /* Check whether "expr" is an affine expression.
2876 bool PetScan::is_affine(Expr *expr)
2878 isl_pw_aff *pwaff;
2880 pwaff = try_extract_affine(expr);
2881 isl_pw_aff_free(pwaff);
2883 return pwaff != NULL;
2886 /* Check if we can extract an affine constraint from "expr".
2887 * Return the constraint as an isl_set if we can and NULL otherwise.
2888 * We turn on autodetection so that we won't generate any warnings
2889 * and turn off nesting, so that we won't accept any non-affine constructs.
2891 __isl_give isl_pw_aff *PetScan::try_extract_affine_condition(Expr *expr)
2893 isl_pw_aff *cond;
2894 int save_autodetect = options->autodetect;
2895 bool save_nesting = nesting_enabled;
2897 options->autodetect = 1;
2898 nesting_enabled = false;
2900 cond = extract_condition(expr);
2902 options->autodetect = save_autodetect;
2903 nesting_enabled = save_nesting;
2905 return cond;
2908 /* Check whether "expr" is an affine constraint.
2910 bool PetScan::is_affine_condition(Expr *expr)
2912 isl_pw_aff *cond;
2914 cond = try_extract_affine_condition(expr);
2915 isl_pw_aff_free(cond);
2917 return cond != NULL;
2920 /* Check if we can extract a condition from "expr".
2921 * Return the condition as an isl_pw_aff if we can and NULL otherwise.
2922 * If allow_nested is set, then the condition may involve parameters
2923 * corresponding to nested accesses.
2924 * We turn on autodetection so that we won't generate any warnings.
2926 __isl_give isl_pw_aff *PetScan::try_extract_nested_condition(Expr *expr)
2928 isl_pw_aff *cond;
2929 int save_autodetect = options->autodetect;
2930 bool save_nesting = nesting_enabled;
2932 options->autodetect = 1;
2933 nesting_enabled = allow_nested;
2934 cond = extract_condition(expr);
2936 options->autodetect = save_autodetect;
2937 nesting_enabled = save_nesting;
2939 return cond;
2942 /* If the top-level expression of "stmt" is an assignment, then
2943 * return that assignment as a BinaryOperator.
2944 * Otherwise return NULL.
2946 static BinaryOperator *top_assignment_or_null(Stmt *stmt)
2948 BinaryOperator *ass;
2950 if (!stmt)
2951 return NULL;
2952 if (stmt->getStmtClass() != Stmt::BinaryOperatorClass)
2953 return NULL;
2955 ass = cast<BinaryOperator>(stmt);
2956 if(ass->getOpcode() != BO_Assign)
2957 return NULL;
2959 return ass;
2962 /* Check if the given if statement is a conditional assignement
2963 * with a non-affine condition. If so, construct a pet_scop
2964 * corresponding to this conditional assignment. Otherwise return NULL.
2966 * In particular we check if "stmt" is of the form
2968 * if (condition)
2969 * a = f(...);
2970 * else
2971 * a = g(...);
2973 * where a is some array or scalar access.
2974 * The constructed pet_scop then corresponds to the expression
2976 * a = condition ? f(...) : g(...)
2978 * All access relations in f(...) are intersected with condition
2979 * while all access relation in g(...) are intersected with the complement.
2981 struct pet_scop *PetScan::extract_conditional_assignment(IfStmt *stmt)
2983 BinaryOperator *ass_then, *ass_else;
2984 isl_map *write_then, *write_else;
2985 isl_set *cond, *comp;
2986 isl_map *map;
2987 isl_pw_aff *pa;
2988 int equal;
2989 struct pet_expr *pe_cond, *pe_then, *pe_else, *pe, *pe_write;
2990 bool save_nesting = nesting_enabled;
2992 if (!options->detect_conditional_assignment)
2993 return NULL;
2995 ass_then = top_assignment_or_null(stmt->getThen());
2996 ass_else = top_assignment_or_null(stmt->getElse());
2998 if (!ass_then || !ass_else)
2999 return NULL;
3001 if (is_affine_condition(stmt->getCond()))
3002 return NULL;
3004 write_then = extract_access(ass_then->getLHS());
3005 write_else = extract_access(ass_else->getLHS());
3007 equal = isl_map_is_equal(write_then, write_else);
3008 isl_map_free(write_else);
3009 if (equal < 0 || !equal) {
3010 isl_map_free(write_then);
3011 return NULL;
3014 nesting_enabled = allow_nested;
3015 pa = extract_condition(stmt->getCond());
3016 nesting_enabled = save_nesting;
3017 cond = isl_pw_aff_non_zero_set(isl_pw_aff_copy(pa));
3018 comp = isl_pw_aff_zero_set(isl_pw_aff_copy(pa));
3019 map = isl_map_from_range(isl_set_from_pw_aff(pa));
3021 pe_cond = pet_expr_from_access(map);
3023 pe_then = extract_expr(ass_then->getRHS());
3024 pe_then = pet_expr_restrict(pe_then, cond);
3025 pe_else = extract_expr(ass_else->getRHS());
3026 pe_else = pet_expr_restrict(pe_else, comp);
3028 pe = pet_expr_new_ternary(ctx, pe_cond, pe_then, pe_else);
3029 pe_write = pet_expr_from_access(write_then);
3030 if (pe_write) {
3031 pe_write->acc.write = 1;
3032 pe_write->acc.read = 0;
3034 pe = pet_expr_new_binary(ctx, pet_op_assign, pe_write, pe);
3035 return extract(stmt, pe);
3038 /* Create a pet_scop with a single statement evaluating "cond"
3039 * and writing the result to a virtual scalar, as expressed by
3040 * "access".
3042 struct pet_scop *PetScan::extract_non_affine_condition(Expr *cond,
3043 __isl_take isl_map *access)
3045 struct pet_expr *expr, *write;
3046 struct pet_stmt *ps;
3047 struct pet_scop *scop;
3048 SourceLocation loc = cond->getLocStart();
3049 int line = PP.getSourceManager().getExpansionLineNumber(loc);
3051 write = pet_expr_from_access(access);
3052 if (write) {
3053 write->acc.write = 1;
3054 write->acc.read = 0;
3056 expr = extract_expr(cond);
3057 expr = resolve_nested(expr);
3058 expr = pet_expr_new_binary(ctx, pet_op_assign, write, expr);
3059 ps = pet_stmt_from_pet_expr(ctx, line, NULL, n_stmt++, expr);
3060 scop = pet_scop_from_pet_stmt(ctx, ps);
3061 scop = resolve_nested(scop);
3063 return scop;
3066 extern "C" {
3067 static __isl_give isl_map *embed_access(__isl_take isl_map *access,
3068 void *user);
3071 /* Apply the map pointed to by "user" to the domain of the access
3072 * relation, thereby embedding it in the range of the map.
3073 * The domain of both relations is the zero-dimensional domain.
3075 static __isl_give isl_map *embed_access(__isl_take isl_map *access, void *user)
3077 isl_map *map = (isl_map *) user;
3079 return isl_map_apply_domain(access, isl_map_copy(map));
3082 /* Apply "map" to all access relations in "expr".
3084 static struct pet_expr *embed(struct pet_expr *expr, __isl_keep isl_map *map)
3086 return pet_expr_foreach_access(expr, &embed_access, map);
3089 /* How many parameters of "set" refer to nested accesses, i.e., have no name?
3091 static int n_nested_parameter(__isl_keep isl_set *set)
3093 isl_space *space;
3094 int n;
3096 space = isl_set_get_space(set);
3097 n = n_nested_parameter(space);
3098 isl_space_free(space);
3100 return n;
3103 /* Remove all parameters from "map" that refer to nested accesses.
3105 static __isl_give isl_map *remove_nested_parameters(__isl_take isl_map *map)
3107 int nparam;
3108 isl_space *space;
3110 space = isl_map_get_space(map);
3111 nparam = isl_space_dim(space, isl_dim_param);
3112 for (int i = nparam - 1; i >= 0; --i)
3113 if (is_nested_parameter(space, i))
3114 map = isl_map_project_out(map, isl_dim_param, i, 1);
3115 isl_space_free(space);
3117 return map;
3120 extern "C" {
3121 static __isl_give isl_map *access_remove_nested_parameters(
3122 __isl_take isl_map *access, void *user);
3125 static __isl_give isl_map *access_remove_nested_parameters(
3126 __isl_take isl_map *access, void *user)
3128 return remove_nested_parameters(access);
3131 /* Remove all nested access parameters from the schedule and all
3132 * accesses of "stmt".
3133 * There is no need to remove them from the domain as these parameters
3134 * have already been removed from the domain when this function is called.
3136 static struct pet_stmt *remove_nested_parameters(struct pet_stmt *stmt)
3138 if (!stmt)
3139 return NULL;
3140 stmt->schedule = remove_nested_parameters(stmt->schedule);
3141 stmt->body = pet_expr_foreach_access(stmt->body,
3142 &access_remove_nested_parameters, NULL);
3143 if (!stmt->schedule || !stmt->body)
3144 goto error;
3145 for (int i = 0; i < stmt->n_arg; ++i) {
3146 stmt->args[i] = pet_expr_foreach_access(stmt->args[i],
3147 &access_remove_nested_parameters, NULL);
3148 if (!stmt->args[i])
3149 goto error;
3152 return stmt;
3153 error:
3154 pet_stmt_free(stmt);
3155 return NULL;
3158 /* For each nested access parameter in the domain of "stmt",
3159 * construct a corresponding pet_expr, place it before the original
3160 * elements in stmt->args and record its position in "param2pos".
3161 * n is the number of nested access parameters.
3163 struct pet_stmt *PetScan::extract_nested(struct pet_stmt *stmt, int n,
3164 std::map<int,int> &param2pos)
3166 int i;
3167 isl_space *space;
3168 int n_arg;
3169 struct pet_expr **args;
3171 n_arg = stmt->n_arg;
3172 args = isl_calloc_array(ctx, struct pet_expr *, n + n_arg);
3173 if (!args)
3174 goto error;
3176 space = isl_set_get_space(stmt->domain);
3177 n_arg = extract_nested(space, 0, args, param2pos);
3178 isl_space_free(space);
3180 if (n_arg < 0)
3181 goto error;
3183 for (i = 0; i < stmt->n_arg; ++i)
3184 args[n_arg + i] = stmt->args[i];
3185 free(stmt->args);
3186 stmt->args = args;
3187 stmt->n_arg += n_arg;
3189 return stmt;
3190 error:
3191 if (args) {
3192 for (i = 0; i < n; ++i)
3193 pet_expr_free(args[i]);
3194 free(args);
3196 pet_stmt_free(stmt);
3197 return NULL;
3200 /* Check whether any of the arguments i of "stmt" starting at position "n"
3201 * is equal to one of the first "n" arguments j.
3202 * If so, combine the constraints on arguments i and j and remove
3203 * argument i.
3205 static struct pet_stmt *remove_duplicate_arguments(struct pet_stmt *stmt, int n)
3207 int i, j;
3208 isl_map *map;
3210 if (!stmt)
3211 return NULL;
3212 if (n == 0)
3213 return stmt;
3214 if (n == stmt->n_arg)
3215 return stmt;
3217 map = isl_set_unwrap(stmt->domain);
3219 for (i = stmt->n_arg - 1; i >= n; --i) {
3220 for (j = 0; j < n; ++j)
3221 if (pet_expr_is_equal(stmt->args[i], stmt->args[j]))
3222 break;
3223 if (j >= n)
3224 continue;
3226 map = isl_map_equate(map, isl_dim_out, i, isl_dim_out, j);
3227 map = isl_map_project_out(map, isl_dim_out, i, 1);
3229 pet_expr_free(stmt->args[i]);
3230 for (j = i; j + 1 < stmt->n_arg; ++j)
3231 stmt->args[j] = stmt->args[j + 1];
3232 stmt->n_arg--;
3235 stmt->domain = isl_map_wrap(map);
3236 if (!stmt->domain)
3237 goto error;
3238 return stmt;
3239 error:
3240 pet_stmt_free(stmt);
3241 return NULL;
3244 /* Look for parameters in the iteration domain of "stmt" that
3245 * refer to nested accesses. In particular, these are
3246 * parameters with no name.
3248 * If there are any such parameters, then as many extra variables
3249 * (after identifying identical nested accesses) are inserted in the
3250 * range of the map wrapped inside the domain, before the original variables.
3251 * If the original domain is not a wrapped map, then a new wrapped
3252 * map is created with zero output dimensions.
3253 * The parameters are then equated to the corresponding output dimensions
3254 * and subsequently projected out, from the iteration domain,
3255 * the schedule and the access relations.
3256 * For each of the output dimensions, a corresponding argument
3257 * expression is inserted. Initially they are created with
3258 * a zero-dimensional domain, so they have to be embedded
3259 * in the current iteration domain.
3260 * param2pos maps the position of the parameter to the position
3261 * of the corresponding output dimension in the wrapped map.
3263 struct pet_stmt *PetScan::resolve_nested(struct pet_stmt *stmt)
3265 int n;
3266 int nparam;
3267 unsigned n_arg;
3268 isl_map *map;
3269 std::map<int,int> param2pos;
3271 if (!stmt)
3272 return NULL;
3274 n = n_nested_parameter(stmt->domain);
3275 if (n == 0)
3276 return stmt;
3278 n_arg = stmt->n_arg;
3279 stmt = extract_nested(stmt, n, param2pos);
3280 if (!stmt)
3281 return NULL;
3283 n = stmt->n_arg - n_arg;
3284 nparam = isl_set_dim(stmt->domain, isl_dim_param);
3285 if (isl_set_is_wrapping(stmt->domain))
3286 map = isl_set_unwrap(stmt->domain);
3287 else
3288 map = isl_map_from_domain(stmt->domain);
3289 map = isl_map_insert_dims(map, isl_dim_out, 0, n);
3291 for (int i = nparam - 1; i >= 0; --i) {
3292 isl_id *id;
3294 if (!is_nested_parameter(map, i))
3295 continue;
3297 id = isl_map_get_tuple_id(stmt->args[param2pos[i]]->acc.access,
3298 isl_dim_out);
3299 map = isl_map_set_dim_id(map, isl_dim_out, param2pos[i], id);
3300 map = isl_map_equate(map, isl_dim_param, i, isl_dim_out,
3301 param2pos[i]);
3302 map = isl_map_project_out(map, isl_dim_param, i, 1);
3305 stmt->domain = isl_map_wrap(map);
3307 map = isl_set_unwrap(isl_set_copy(stmt->domain));
3308 map = isl_map_from_range(isl_map_domain(map));
3309 for (int pos = 0; pos < n; ++pos)
3310 stmt->args[pos] = embed(stmt->args[pos], map);
3311 isl_map_free(map);
3313 stmt = remove_nested_parameters(stmt);
3314 stmt = remove_duplicate_arguments(stmt, n);
3316 return stmt;
3317 error:
3318 pet_stmt_free(stmt);
3319 return NULL;
3322 /* For each statement in "scop", move the parameters that correspond
3323 * to nested access into the ranges of the domains and create
3324 * corresponding argument expressions.
3326 struct pet_scop *PetScan::resolve_nested(struct pet_scop *scop)
3328 if (!scop)
3329 return NULL;
3331 for (int i = 0; i < scop->n_stmt; ++i) {
3332 scop->stmts[i] = resolve_nested(scop->stmts[i]);
3333 if (!scop->stmts[i])
3334 goto error;
3337 return scop;
3338 error:
3339 pet_scop_free(scop);
3340 return NULL;
3343 /* Given an access expression "expr", is the variable accessed by
3344 * "expr" assigned anywhere inside "scop"?
3346 static bool is_assigned(pet_expr *expr, pet_scop *scop)
3348 bool assigned = false;
3349 isl_id *id;
3351 id = isl_map_get_tuple_id(expr->acc.access, isl_dim_out);
3352 assigned = pet_scop_writes(scop, id);
3353 isl_id_free(id);
3355 return assigned;
3358 /* Are all nested access parameters in "pa" allowed given "scop".
3359 * In particular, is none of them written by anywhere inside "scop".
3361 bool PetScan::is_nested_allowed(__isl_keep isl_pw_aff *pa, pet_scop *scop)
3363 int nparam;
3365 nparam = isl_pw_aff_dim(pa, isl_dim_param);
3366 for (int i = 0; i < nparam; ++i) {
3367 Expr *nested;
3368 isl_id *id = isl_pw_aff_get_dim_id(pa, isl_dim_param, i);
3369 pet_expr *expr;
3370 bool allowed;
3372 if (!is_nested_parameter(id)) {
3373 isl_id_free(id);
3374 continue;
3377 nested = (Expr *) isl_id_get_user(id);
3378 expr = extract_expr(nested);
3379 allowed = expr && expr->type == pet_expr_access &&
3380 !is_assigned(expr, scop);
3382 pet_expr_free(expr);
3383 isl_id_free(id);
3385 if (!allowed)
3386 return false;
3389 return true;
3392 /* Construct a pet_scop for an if statement.
3394 * If the condition fits the pattern of a conditional assignment,
3395 * then it is handled by extract_conditional_assignment.
3396 * Otherwise, we do the following.
3398 * If the condition is affine, then the condition is added
3399 * to the iteration domains of the then branch, while the
3400 * opposite of the condition in added to the iteration domains
3401 * of the else branch, if any.
3402 * We allow the condition to be dynamic, i.e., to refer to
3403 * scalars or array elements that may be written to outside
3404 * of the given if statement. These nested accesses are then represented
3405 * as output dimensions in the wrapping iteration domain.
3406 * If it also written _inside_ the then or else branch, then
3407 * we treat the condition as non-affine.
3408 * As explained below, this will introduce an extra statement.
3409 * For aesthetic reasons, we want this statement to have a statement
3410 * number that is lower than those of the then and else branches.
3411 * In order to evaluate if will need such a statement, however, we
3412 * first construct scops for the then and else branches.
3413 * We therefore reserve a statement number if we might have to
3414 * introduce such an extra statement.
3416 * If the condition is not affine, then we create a separate
3417 * statement that writes the result of the condition to a virtual scalar.
3418 * A constraint requiring the value of this virtual scalar to be one
3419 * is added to the iteration domains of the then branch.
3420 * Similarly, a constraint requiring the value of this virtual scalar
3421 * to be zero is added to the iteration domains of the else branch, if any.
3422 * We adjust the schedules to ensure that the virtual scalar is written
3423 * before it is read.
3425 struct pet_scop *PetScan::extract(IfStmt *stmt)
3427 struct pet_scop *scop_then, *scop_else, *scop;
3428 isl_map *test_access = NULL;
3429 isl_pw_aff *cond;
3430 int stmt_id;
3432 scop = extract_conditional_assignment(stmt);
3433 if (scop)
3434 return scop;
3436 cond = try_extract_nested_condition(stmt->getCond());
3437 if (allow_nested && (!cond || has_nested(cond)))
3438 stmt_id = n_stmt++;
3441 assigned_value_cache cache(assigned_value);
3442 scop_then = extract(stmt->getThen());
3445 if (stmt->getElse()) {
3446 assigned_value_cache cache(assigned_value);
3447 scop_else = extract(stmt->getElse());
3448 if (options->autodetect) {
3449 if (scop_then && !scop_else) {
3450 partial = true;
3451 isl_pw_aff_free(cond);
3452 return scop_then;
3454 if (!scop_then && scop_else) {
3455 partial = true;
3456 isl_pw_aff_free(cond);
3457 return scop_else;
3462 if (cond &&
3463 (!is_nested_allowed(cond, scop_then) ||
3464 (stmt->getElse() && !is_nested_allowed(cond, scop_else)))) {
3465 isl_pw_aff_free(cond);
3466 cond = NULL;
3468 if (allow_nested && !cond) {
3469 int save_n_stmt = n_stmt;
3470 test_access = create_test_access(ctx, n_test++);
3471 n_stmt = stmt_id;
3472 scop = extract_non_affine_condition(stmt->getCond(),
3473 isl_map_copy(test_access));
3474 n_stmt = save_n_stmt;
3475 scop = scop_add_array(scop, test_access, ast_context);
3476 if (!scop) {
3477 pet_scop_free(scop_then);
3478 pet_scop_free(scop_else);
3479 isl_map_free(test_access);
3480 return NULL;
3484 if (!scop) {
3485 isl_set *set;
3486 isl_set *valid;
3488 if (!cond)
3489 cond = extract_condition(stmt->getCond());
3490 valid = isl_pw_aff_domain(isl_pw_aff_copy(cond));
3491 set = isl_pw_aff_non_zero_set(cond);
3492 scop = pet_scop_restrict(scop_then, isl_set_copy(set));
3494 if (stmt->getElse()) {
3495 set = isl_set_subtract(isl_set_copy(valid), set);
3496 scop_else = pet_scop_restrict(scop_else, set);
3497 scop = pet_scop_add(ctx, scop, scop_else);
3498 } else
3499 isl_set_free(set);
3500 scop = resolve_nested(scop);
3501 scop = pet_scop_restrict_context(scop, valid);
3502 } else {
3503 scop = pet_scop_prefix(scop, 0);
3504 scop_then = pet_scop_prefix(scop_then, 1);
3505 scop_then = pet_scop_filter(scop_then,
3506 isl_map_copy(test_access), 1);
3507 scop = pet_scop_add(ctx, scop, scop_then);
3508 if (stmt->getElse()) {
3509 scop_else = pet_scop_prefix(scop_else, 1);
3510 scop_else = pet_scop_filter(scop_else, test_access, 0);
3511 scop = pet_scop_add(ctx, scop, scop_else);
3512 } else
3513 isl_map_free(test_access);
3516 return scop;
3519 /* Try and construct a pet_scop for a label statement.
3520 * We currently only allow labels on expression statements.
3522 struct pet_scop *PetScan::extract(LabelStmt *stmt)
3524 isl_id *label;
3525 Stmt *sub;
3527 sub = stmt->getSubStmt();
3528 if (!isa<Expr>(sub)) {
3529 unsupported(stmt);
3530 return NULL;
3533 label = isl_id_alloc(ctx, stmt->getName(), NULL);
3535 return extract(sub, extract_expr(cast<Expr>(sub)), label);
3538 /* Try and construct a pet_scop corresponding to "stmt".
3540 struct pet_scop *PetScan::extract(Stmt *stmt)
3542 if (isa<Expr>(stmt))
3543 return extract(stmt, extract_expr(cast<Expr>(stmt)));
3545 switch (stmt->getStmtClass()) {
3546 case Stmt::WhileStmtClass:
3547 return extract(cast<WhileStmt>(stmt));
3548 case Stmt::ForStmtClass:
3549 return extract_for(cast<ForStmt>(stmt));
3550 case Stmt::IfStmtClass:
3551 return extract(cast<IfStmt>(stmt));
3552 case Stmt::CompoundStmtClass:
3553 return extract(cast<CompoundStmt>(stmt));
3554 case Stmt::LabelStmtClass:
3555 return extract(cast<LabelStmt>(stmt));
3556 default:
3557 unsupported(stmt);
3560 return NULL;
3563 /* Try and construct a pet_scop corresponding to (part of)
3564 * a sequence of statements.
3566 struct pet_scop *PetScan::extract(StmtRange stmt_range)
3568 pet_scop *scop;
3569 StmtIterator i;
3570 int j;
3571 bool partial_range = false;
3573 scop = pet_scop_empty(ctx);
3574 for (i = stmt_range.first, j = 0; i != stmt_range.second; ++i, ++j) {
3575 Stmt *child = *i;
3576 struct pet_scop *scop_i;
3577 scop_i = extract(child);
3578 if (scop && partial) {
3579 pet_scop_free(scop_i);
3580 break;
3582 scop_i = pet_scop_prefix(scop_i, j);
3583 if (options->autodetect) {
3584 if (scop_i)
3585 scop = pet_scop_add(ctx, scop, scop_i);
3586 else
3587 partial_range = true;
3588 if (scop->n_stmt != 0 && !scop_i)
3589 partial = true;
3590 } else {
3591 scop = pet_scop_add(ctx, scop, scop_i);
3593 if (partial)
3594 break;
3597 if (scop && partial_range)
3598 partial = true;
3600 return scop;
3603 /* Check if the scop marked by the user is exactly this Stmt
3604 * or part of this Stmt.
3605 * If so, return a pet_scop corresponding to the marked region.
3606 * Otherwise, return NULL.
3608 struct pet_scop *PetScan::scan(Stmt *stmt)
3610 SourceManager &SM = PP.getSourceManager();
3611 unsigned start_off, end_off;
3613 start_off = SM.getFileOffset(stmt->getLocStart());
3614 end_off = SM.getFileOffset(stmt->getLocEnd());
3616 if (start_off > loc.end)
3617 return NULL;
3618 if (end_off < loc.start)
3619 return NULL;
3620 if (start_off >= loc.start && end_off <= loc.end) {
3621 return extract(stmt);
3624 StmtIterator start;
3625 for (start = stmt->child_begin(); start != stmt->child_end(); ++start) {
3626 Stmt *child = *start;
3627 if (!child)
3628 continue;
3629 start_off = SM.getFileOffset(child->getLocStart());
3630 end_off = SM.getFileOffset(child->getLocEnd());
3631 if (start_off < loc.start && end_off > loc.end)
3632 return scan(child);
3633 if (start_off >= loc.start)
3634 break;
3637 StmtIterator end;
3638 for (end = start; end != stmt->child_end(); ++end) {
3639 Stmt *child = *end;
3640 start_off = SM.getFileOffset(child->getLocStart());
3641 if (start_off >= loc.end)
3642 break;
3645 return extract(StmtRange(start, end));
3648 /* Set the size of index "pos" of "array" to "size".
3649 * In particular, add a constraint of the form
3651 * i_pos < size
3653 * to array->extent and a constraint of the form
3655 * size >= 0
3657 * to array->context.
3659 static struct pet_array *update_size(struct pet_array *array, int pos,
3660 __isl_take isl_pw_aff *size)
3662 isl_set *valid;
3663 isl_set *univ;
3664 isl_set *bound;
3665 isl_space *dim;
3666 isl_aff *aff;
3667 isl_pw_aff *index;
3668 isl_id *id;
3670 valid = isl_pw_aff_nonneg_set(isl_pw_aff_copy(size));
3671 array->context = isl_set_intersect(array->context, valid);
3673 dim = isl_set_get_space(array->extent);
3674 aff = isl_aff_zero_on_domain(isl_local_space_from_space(dim));
3675 aff = isl_aff_add_coefficient_si(aff, isl_dim_in, pos, 1);
3676 univ = isl_set_universe(isl_aff_get_domain_space(aff));
3677 index = isl_pw_aff_alloc(univ, aff);
3679 size = isl_pw_aff_add_dims(size, isl_dim_in,
3680 isl_set_dim(array->extent, isl_dim_set));
3681 id = isl_set_get_tuple_id(array->extent);
3682 size = isl_pw_aff_set_tuple_id(size, isl_dim_in, id);
3683 bound = isl_pw_aff_lt_set(index, size);
3685 array->extent = isl_set_intersect(array->extent, bound);
3687 if (!array->context || !array->extent)
3688 goto error;
3690 return array;
3691 error:
3692 pet_array_free(array);
3693 return NULL;
3696 /* Figure out the size of the array at position "pos" and all
3697 * subsequent positions from "type" and update "array" accordingly.
3699 struct pet_array *PetScan::set_upper_bounds(struct pet_array *array,
3700 const Type *type, int pos)
3702 const ArrayType *atype;
3703 isl_pw_aff *size;
3705 if (!array)
3706 return NULL;
3708 if (type->isPointerType()) {
3709 type = type->getPointeeType().getTypePtr();
3710 return set_upper_bounds(array, type, pos + 1);
3712 if (!type->isArrayType())
3713 return array;
3715 type = type->getCanonicalTypeInternal().getTypePtr();
3716 atype = cast<ArrayType>(type);
3718 if (type->isConstantArrayType()) {
3719 const ConstantArrayType *ca = cast<ConstantArrayType>(atype);
3720 size = extract_affine(ca->getSize());
3721 array = update_size(array, pos, size);
3722 } else if (type->isVariableArrayType()) {
3723 const VariableArrayType *vla = cast<VariableArrayType>(atype);
3724 size = extract_affine(vla->getSizeExpr());
3725 array = update_size(array, pos, size);
3728 type = atype->getElementType().getTypePtr();
3730 return set_upper_bounds(array, type, pos + 1);
3733 /* Construct and return a pet_array corresponding to the variable "decl".
3734 * In particular, initialize array->extent to
3736 * { name[i_1,...,i_d] : i_1,...,i_d >= 0 }
3738 * and then call set_upper_bounds to set the upper bounds on the indices
3739 * based on the type of the variable.
3741 struct pet_array *PetScan::extract_array(isl_ctx *ctx, ValueDecl *decl)
3743 struct pet_array *array;
3744 QualType qt = decl->getType();
3745 const Type *type = qt.getTypePtr();
3746 int depth = array_depth(type);
3747 QualType base = base_type(qt);
3748 string name;
3749 isl_id *id;
3750 isl_space *dim;
3752 array = isl_calloc_type(ctx, struct pet_array);
3753 if (!array)
3754 return NULL;
3756 id = isl_id_alloc(ctx, decl->getName().str().c_str(), decl);
3757 dim = isl_space_set_alloc(ctx, 0, depth);
3758 dim = isl_space_set_tuple_id(dim, isl_dim_set, id);
3760 array->extent = isl_set_nat_universe(dim);
3762 dim = isl_space_params_alloc(ctx, 0);
3763 array->context = isl_set_universe(dim);
3765 array = set_upper_bounds(array, type, 0);
3766 if (!array)
3767 return NULL;
3769 name = base.getAsString();
3770 array->element_type = strdup(name.c_str());
3771 array->element_size = decl->getASTContext().getTypeInfo(base).first / 8;
3773 return array;
3776 /* Construct a list of pet_arrays, one for each array (or scalar)
3777 * accessed inside "scop", add this list to "scop" and return the result.
3779 * The context of "scop" is updated with the intersection of
3780 * the contexts of all arrays, i.e., constraints on the parameters
3781 * that ensure that the arrays have a valid (non-negative) size.
3783 struct pet_scop *PetScan::scan_arrays(struct pet_scop *scop)
3785 int i;
3786 set<ValueDecl *> arrays;
3787 set<ValueDecl *>::iterator it;
3788 int n_array;
3789 struct pet_array **scop_arrays;
3791 if (!scop)
3792 return NULL;
3794 pet_scop_collect_arrays(scop, arrays);
3795 if (arrays.size() == 0)
3796 return scop;
3798 n_array = scop->n_array;
3800 scop_arrays = isl_realloc_array(ctx, scop->arrays, struct pet_array *,
3801 n_array + arrays.size());
3802 if (!scop_arrays)
3803 goto error;
3804 scop->arrays = scop_arrays;
3806 for (it = arrays.begin(), i = 0; it != arrays.end(); ++it, ++i) {
3807 struct pet_array *array;
3808 scop->arrays[n_array + i] = array = extract_array(ctx, *it);
3809 if (!scop->arrays[n_array + i])
3810 goto error;
3811 scop->n_array++;
3812 scop->context = isl_set_intersect(scop->context,
3813 isl_set_copy(array->context));
3814 if (!scop->context)
3815 goto error;
3818 return scop;
3819 error:
3820 pet_scop_free(scop);
3821 return NULL;
3824 /* Bound all parameters in scop->context to the possible values
3825 * of the corresponding C variable.
3827 static struct pet_scop *add_parameter_bounds(struct pet_scop *scop)
3829 int n;
3831 if (!scop)
3832 return NULL;
3834 n = isl_set_dim(scop->context, isl_dim_param);
3835 for (int i = 0; i < n; ++i) {
3836 isl_id *id;
3837 ValueDecl *decl;
3839 id = isl_set_get_dim_id(scop->context, isl_dim_param, i);
3840 if (is_nested_parameter(id)) {
3841 isl_id_free(id);
3842 isl_die(isl_set_get_ctx(scop->context),
3843 isl_error_internal,
3844 "unresolved nested parameter", goto error);
3846 decl = (ValueDecl *) isl_id_get_user(id);
3847 isl_id_free(id);
3849 scop->context = set_parameter_bounds(scop->context, i, decl);
3851 if (!scop->context)
3852 goto error;
3855 return scop;
3856 error:
3857 pet_scop_free(scop);
3858 return NULL;
3861 /* Construct a pet_scop from the given function.
3863 struct pet_scop *PetScan::scan(FunctionDecl *fd)
3865 pet_scop *scop;
3866 Stmt *stmt;
3868 stmt = fd->getBody();
3870 if (options->autodetect)
3871 scop = extract(stmt);
3872 else
3873 scop = scan(stmt);
3874 scop = pet_scop_detect_parameter_accesses(scop);
3875 scop = scan_arrays(scop);
3876 scop = add_parameter_bounds(scop);
3877 scop = pet_scop_gist(scop, value_bounds);
3879 return scop;