add functions for manipulating the domain of a pet_context
[pet.git] / tree2scop.c
blob29e89a298c33d078483c0fe66941c430545f9ecd
1 /*
2 * Copyright 2011 Leiden University. All rights reserved.
3 * Copyright 2012-2014 Ecole Normale Superieure. All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above
13 * copyright notice, this list of conditions and the following
14 * disclaimer in the documentation and/or other materials provided
15 * with the distribution.
17 * THIS SOFTWARE IS PROVIDED BY LEIDEN UNIVERSITY ''AS IS'' AND ANY
18 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
20 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL LEIDEN UNIVERSITY OR
21 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
22 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
23 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
24 * OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 * The views and conclusions contained in the software and documentation
30 * are those of the authors and should not be interpreted as
31 * representing official policies, either expressed or implied, of
32 * Leiden University.
35 #include <isl/id_to_pw_aff.h>
37 #include "aff.h"
38 #include "expr.h"
39 #include "expr_arg.h"
40 #include "nest.h"
41 #include "scop.h"
42 #include "skip.h"
43 #include "state.h"
44 #include "tree2scop.h"
46 /* Update "pc" by taking into account the writes in "stmt".
47 * That is, mark all scalar variables that are written by "stmt"
48 * as having an unknown value.
50 static __isl_give pet_context *handle_writes(struct pet_stmt *stmt,
51 __isl_take pet_context *pc)
53 return pet_context_clear_writes_in_expr(pc, stmt->body);
56 /* Update "pc" based on the write accesses in "scop".
58 static __isl_give pet_context *scop_handle_writes(struct pet_scop *scop,
59 __isl_take pet_context *pc)
61 int i;
63 if (!scop)
64 return pet_context_free(pc);
65 for (i = 0; i < scop->n_stmt; ++i)
66 pc = handle_writes(scop->stmts[i], pc);
68 return pc;
71 /* Convert a top-level pet_expr to a pet_scop with one statement
72 * within the context "pc".
73 * "expr" has already been evaluated in the context of "pc".
74 * This mainly involves resolving nested expression parameters
75 * and setting the name of the iteration space.
76 * The name is given by "label" if it is non-NULL. Otherwise,
77 * it is of the form S_<stmt_nr>.
78 * The location of the statement is set to "loc".
80 static struct pet_scop *scop_from_evaluated_expr(__isl_take pet_expr *expr,
81 __isl_take isl_id *label, int stmt_nr, __isl_take pet_loc *loc,
82 __isl_keep pet_context *pc)
84 isl_space *space;
85 isl_set *domain;
86 struct pet_stmt *ps;
88 space = pet_context_get_space(pc);
90 expr = pet_expr_resolve_nested(expr, space);
91 expr = pet_expr_resolve_assume(expr, pc);
92 domain = pet_context_get_domain(pc);
93 ps = pet_stmt_from_pet_expr(domain, loc, label, stmt_nr, expr);
94 return pet_scop_from_pet_stmt(space, ps);
97 /* Convert a top-level pet_expr to a pet_scop with one statement
98 * within the context "pc", where "expr" has not yet been evaluated
99 * in the context of "pc".
100 * We evaluate "expr" in the context of "pc" and continue with
101 * scop_from_evaluated_expr.
102 * The statement name is given by "label" if it is non-NULL. Otherwise,
103 * it is of the form S_<stmt_nr>.
104 * The location of the statement is set to "loc".
106 static struct pet_scop *scop_from_expr(__isl_take pet_expr *expr,
107 __isl_take isl_id *label, int stmt_nr, __isl_take pet_loc *loc,
108 __isl_keep pet_context *pc)
110 expr = pet_context_evaluate_expr(pc, expr);
111 return scop_from_evaluated_expr(expr, label, stmt_nr, loc, pc);
114 /* Construct a pet_scop with a single statement killing the entire
115 * array "array".
116 * The location of the statement is set to "loc".
118 static struct pet_scop *kill(__isl_take pet_loc *loc, struct pet_array *array,
119 __isl_keep pet_context *pc, struct pet_state *state)
121 isl_ctx *ctx;
122 isl_id *id;
123 isl_space *space;
124 isl_multi_pw_aff *index;
125 isl_map *access;
126 pet_expr *expr;
127 struct pet_scop *scop;
129 if (!array)
130 goto error;
131 ctx = isl_set_get_ctx(array->extent);
132 access = isl_map_from_range(isl_set_copy(array->extent));
133 id = isl_set_get_tuple_id(array->extent);
134 space = isl_space_alloc(ctx, 0, 0, 0);
135 space = isl_space_set_tuple_id(space, isl_dim_out, id);
136 index = isl_multi_pw_aff_zero(space);
137 expr = pet_expr_kill_from_access_and_index(access, index);
138 return scop_from_expr(expr, NULL, state->n_stmt++, loc, pc);
139 error:
140 pet_loc_free(loc);
141 return NULL;
144 /* Construct and return a pet_array corresponding to the variable
145 * accessed by "access" by calling the extract_array callback.
147 static struct pet_array *extract_array(__isl_keep pet_expr *access,
148 __isl_keep pet_context *pc, struct pet_state *state)
150 return state->extract_array(access, pc, state->user);
153 /* Construct a pet_scop for a (single) variable declaration
154 * within the context "pc".
156 * The scop contains the variable being declared (as an array)
157 * and a statement killing the array.
159 * If the declaration comes with an initialization, then the scop
160 * also contains an assignment to the variable.
162 static struct pet_scop *scop_from_decl(__isl_keep pet_tree *tree,
163 __isl_keep pet_context *pc, struct pet_state *state)
165 int type_size;
166 isl_ctx *ctx;
167 struct pet_array *array;
168 struct pet_scop *scop_decl, *scop;
169 pet_expr *lhs, *rhs, *pe;
171 array = extract_array(tree->u.d.var, pc, state);
172 if (array)
173 array->declared = 1;
174 scop_decl = kill(pet_tree_get_loc(tree), array, pc, state);
175 scop_decl = pet_scop_add_array(scop_decl, array);
177 if (tree->type != pet_tree_decl_init)
178 return scop_decl;
180 lhs = pet_expr_copy(tree->u.d.var);
181 rhs = pet_expr_copy(tree->u.d.init);
182 type_size = pet_expr_get_type_size(lhs);
183 pe = pet_expr_new_binary(type_size, pet_op_assign, lhs, rhs);
184 scop = scop_from_expr(pe, NULL, state->n_stmt++,
185 pet_tree_get_loc(tree), pc);
187 scop_decl = pet_scop_prefix(scop_decl, 0);
188 scop = pet_scop_prefix(scop, 1);
190 ctx = pet_tree_get_ctx(tree);
191 scop = pet_scop_add_seq(ctx, scop_decl, scop);
193 return scop;
196 /* Embed the given iteration domain in an extra outer loop
197 * with induction variable "var".
198 * If this variable appeared as a parameter in the constraints,
199 * it is replaced by the new outermost dimension.
201 static __isl_give isl_set *embed(__isl_take isl_set *set,
202 __isl_take isl_id *var)
204 int pos;
206 set = isl_set_insert_dims(set, isl_dim_set, 0, 1);
207 pos = isl_set_find_dim_by_id(set, isl_dim_param, var);
208 if (pos >= 0) {
209 set = isl_set_equate(set, isl_dim_param, pos, isl_dim_set, 0);
210 set = isl_set_project_out(set, isl_dim_param, pos, 1);
213 isl_id_free(var);
214 return set;
217 /* Return those elements in the space of "cond" that come after
218 * (based on "sign") an element in "cond" in the final dimension.
220 static __isl_give isl_set *after(__isl_take isl_set *cond, int sign)
222 isl_space *space;
223 isl_map *previous_to_this;
224 int i, dim;
226 dim = isl_set_dim(cond, isl_dim_set);
227 space = isl_space_map_from_set(isl_set_get_space(cond));
228 previous_to_this = isl_map_universe(space);
229 for (i = 0; i + 1 < dim; ++i)
230 previous_to_this = isl_map_equate(previous_to_this,
231 isl_dim_in, i, isl_dim_out, i);
232 if (sign > 0)
233 previous_to_this = isl_map_order_lt(previous_to_this,
234 isl_dim_in, dim - 1, isl_dim_out, dim - 1);
235 else
236 previous_to_this = isl_map_order_gt(previous_to_this,
237 isl_dim_in, dim - 1, isl_dim_out, dim - 1);
239 cond = isl_set_apply(cond, previous_to_this);
241 return cond;
244 /* Remove those iterations of "domain" that have an earlier iteration
245 * (based on "sign") where "skip" is satisfied.
246 * "domain" has an extra outer loop compared to "skip".
247 * The skip condition is first embedded in the same space as "domain".
248 * If "apply_skip_map" is set, then "skip_map" is first applied
249 * to the embedded skip condition before removing it from the domain.
251 static __isl_give isl_set *apply_affine_break(__isl_take isl_set *domain,
252 __isl_take isl_set *skip, int sign,
253 int apply_skip_map, __isl_keep isl_map *skip_map)
255 skip = embed(skip, isl_set_get_dim_id(domain, isl_dim_set, 0));
256 if (apply_skip_map)
257 skip = isl_set_apply(skip, isl_map_copy(skip_map));
258 skip = isl_set_intersect(skip , isl_set_copy(domain));
259 return isl_set_subtract(domain, after(skip, sign));
262 /* Create the infinite iteration domain
264 * { [id] : id >= 0 }
266 static __isl_give isl_set *infinite_domain(__isl_take isl_id *id)
268 isl_ctx *ctx = isl_id_get_ctx(id);
269 isl_set *domain;
271 domain = isl_set_nat_universe(isl_space_set_alloc(ctx, 0, 1));
272 domain = isl_set_set_dim_id(domain, isl_dim_set, 0, id);
274 return domain;
277 /* Create an identity affine expression on the space containing "domain",
278 * which is assumed to be one-dimensional.
280 static __isl_give isl_aff *identity_aff(__isl_keep isl_set *domain)
282 isl_local_space *ls;
284 ls = isl_local_space_from_space(isl_set_get_space(domain));
285 return isl_aff_var_on_domain(ls, isl_dim_set, 0);
288 /* Create an affine expression that maps elements
289 * of an array "id_test" to the previous element in the final dimension
290 * (according to "inc"), provided this element belongs to "domain".
291 * That is, create the affine expression
293 * { id[outer,x] -> id[outer,x - inc] : (outer,x - inc) in domain }
295 static __isl_give isl_multi_pw_aff *map_to_previous(__isl_take isl_id *id_test,
296 __isl_take isl_set *domain, __isl_take isl_val *inc)
298 int pos;
299 isl_space *space;
300 isl_aff *aff;
301 isl_pw_aff *pa;
302 isl_multi_aff *ma;
303 isl_multi_pw_aff *prev;
305 pos = isl_set_dim(domain, isl_dim_set) - 1;
306 space = isl_set_get_space(domain);
307 space = isl_space_map_from_set(space);
308 ma = isl_multi_aff_identity(space);
309 aff = isl_multi_aff_get_aff(ma, pos);
310 aff = isl_aff_add_constant_val(aff, isl_val_neg(inc));
311 ma = isl_multi_aff_set_aff(ma, pos, aff);
312 domain = isl_set_preimage_multi_aff(domain, isl_multi_aff_copy(ma));
313 prev = isl_multi_pw_aff_from_multi_aff(ma);
314 pa = isl_multi_pw_aff_get_pw_aff(prev, pos);
315 pa = isl_pw_aff_intersect_domain(pa, domain);
316 prev = isl_multi_pw_aff_set_pw_aff(prev, pos, pa);
317 prev = isl_multi_pw_aff_set_tuple_id(prev, isl_dim_out, id_test);
319 return prev;
322 /* Add an implication to "scop" expressing that if an element of
323 * virtual array "id_test" has value "satisfied" then all previous elements
324 * of this array (in the final dimension) also have that value.
325 * The set of previous elements is bounded by "domain".
326 * If "sign" is negative then the iterator
327 * is decreasing and we express that all subsequent array elements
328 * (but still defined previously) have the same value.
330 static struct pet_scop *add_implication(struct pet_scop *scop,
331 __isl_take isl_id *id_test, __isl_take isl_set *domain, int sign,
332 int satisfied)
334 int i, dim;
335 isl_space *space;
336 isl_map *map;
338 dim = isl_set_dim(domain, isl_dim_set);
339 domain = isl_set_set_tuple_id(domain, id_test);
340 space = isl_space_map_from_set(isl_set_get_space(domain));
341 map = isl_map_universe(space);
342 for (i = 0; i + 1 < dim; ++i)
343 map = isl_map_equate(map, isl_dim_in, i, isl_dim_out, i);
344 if (sign > 0)
345 map = isl_map_order_ge(map,
346 isl_dim_in, dim - 1, isl_dim_out, dim - 1);
347 else
348 map = isl_map_order_le(map,
349 isl_dim_in, dim - 1, isl_dim_out, dim - 1);
350 map = isl_map_intersect_range(map, domain);
351 scop = pet_scop_add_implication(scop, map, satisfied);
353 return scop;
356 /* Add a filter to "scop" that imposes that it is only executed
357 * when the variable identified by "id_test" has a zero value
358 * for all previous iterations of "domain".
360 * In particular, add a filter that imposes that the array
361 * has a zero value at the previous iteration of domain and
362 * add an implication that implies that it then has that
363 * value for all previous iterations.
365 static struct pet_scop *scop_add_break(struct pet_scop *scop,
366 __isl_take isl_id *id_test, __isl_take isl_set *domain,
367 __isl_take isl_val *inc)
369 isl_multi_pw_aff *prev;
370 int sign = isl_val_sgn(inc);
372 prev = map_to_previous(isl_id_copy(id_test), isl_set_copy(domain), inc);
373 scop = add_implication(scop, id_test, domain, sign, 0);
374 scop = pet_scop_filter(scop, prev, 0);
376 return scop;
379 static struct pet_scop *scop_from_tree(__isl_keep pet_tree *tree,
380 __isl_keep pet_context *pc, struct pet_state *state);
382 /* Construct a pet_scop for an infinite loop around the given body
383 * within the context "pc".
385 * We extract a pet_scop for the body and then embed it in a loop with
386 * iteration domain
388 * { [t] : t >= 0 }
390 * and schedule
392 * { [t] -> [t] }
394 * If the body contains any break, then it is taken into
395 * account in apply_affine_break (if the skip condition is affine)
396 * or in scop_add_break (if the skip condition is not affine).
398 * Note that in case of an affine skip condition,
399 * since we are dealing with a loop without loop iterator,
400 * the skip condition cannot refer to the current loop iterator and
401 * so effectively, the iteration domain is of the form
403 * { [0]; [t] : t >= 1 and not skip }
405 static struct pet_scop *scop_from_infinite_loop(__isl_keep pet_tree *body,
406 __isl_keep pet_context *pc, struct pet_state *state)
408 isl_ctx *ctx;
409 isl_id *id, *id_test;
410 isl_set *domain;
411 isl_set *skip;
412 isl_aff *ident;
413 struct pet_scop *scop;
414 int has_affine_break;
415 int has_var_break;
417 ctx = pet_tree_get_ctx(body);
418 id = isl_id_alloc(ctx, "t", NULL);
419 domain = infinite_domain(isl_id_copy(id));
420 ident = identity_aff(domain);
422 scop = scop_from_tree(body, pc, state);
424 has_affine_break = pet_scop_has_affine_skip(scop, pet_skip_later);
425 if (has_affine_break)
426 skip = pet_scop_get_affine_skip_domain(scop, pet_skip_later);
427 has_var_break = pet_scop_has_var_skip(scop, pet_skip_later);
428 if (has_var_break)
429 id_test = pet_scop_get_skip_id(scop, pet_skip_later);
431 scop = pet_scop_embed(scop, isl_set_copy(domain),
432 isl_aff_copy(ident), ident, id);
433 if (has_affine_break) {
434 domain = apply_affine_break(domain, skip, 1, 0, NULL);
435 scop = pet_scop_intersect_domain_prefix(scop,
436 isl_set_copy(domain));
438 if (has_var_break)
439 scop = scop_add_break(scop, id_test, domain, isl_val_one(ctx));
440 else
441 isl_set_free(domain);
443 return scop;
446 /* Construct a pet_scop for an infinite loop, i.e., a loop of the form
448 * for (;;)
449 * body
451 * within the context "pc".
453 static struct pet_scop *scop_from_infinite_for(__isl_keep pet_tree *tree,
454 __isl_keep pet_context *pc, struct pet_state *state)
456 struct pet_scop *scop;
458 pc = pet_context_copy(pc);
459 pc = pet_context_clear_writes_in_tree(pc, tree->u.l.body);
461 scop = scop_from_infinite_loop(tree->u.l.body, pc, state);
463 pet_context_free(pc);
465 return scop;
468 /* Construct a pet_scop for a while loop of the form
470 * while (pa)
471 * body
473 * within the context "pc".
474 * In particular, construct a scop for an infinite loop around body and
475 * intersect the domain with the affine expression.
476 * Note that this intersection may result in an empty loop.
478 static struct pet_scop *scop_from_affine_while(__isl_keep pet_tree *tree,
479 __isl_take isl_pw_aff *pa, __isl_take pet_context *pc,
480 struct pet_state *state)
482 struct pet_scop *scop;
483 isl_set *dom;
484 isl_set *valid;
486 valid = isl_pw_aff_domain(isl_pw_aff_copy(pa));
487 dom = isl_pw_aff_non_zero_set(pa);
488 scop = scop_from_infinite_loop(tree->u.l.body, pc, state);
489 scop = pet_scop_restrict(scop, isl_set_params(dom));
490 scop = pet_scop_restrict_context(scop, isl_set_params(valid));
492 pet_context_free(pc);
493 return scop;
496 /* Construct a scop for a while, given the scops for the condition
497 * and the body, the filter identifier and the iteration domain of
498 * the while loop.
500 * In particular, the scop for the condition is filtered to depend
501 * on "id_test" evaluating to true for all previous iterations
502 * of the loop, while the scop for the body is filtered to depend
503 * on "id_test" evaluating to true for all iterations up to the
504 * current iteration.
505 * The actual filter only imposes that this virtual array has
506 * value one on the previous or the current iteration.
507 * The fact that this condition also applies to the previous
508 * iterations is enforced by an implication.
510 * These filtered scops are then combined into a single scop.
512 * "sign" is positive if the iterator increases and negative
513 * if it decreases.
515 static struct pet_scop *scop_add_while(struct pet_scop *scop_cond,
516 struct pet_scop *scop_body, __isl_take isl_id *id_test,
517 __isl_take isl_set *domain, __isl_take isl_val *inc)
519 isl_ctx *ctx = isl_set_get_ctx(domain);
520 isl_space *space;
521 isl_multi_pw_aff *test_index;
522 isl_multi_pw_aff *prev;
523 int sign = isl_val_sgn(inc);
524 struct pet_scop *scop;
526 prev = map_to_previous(isl_id_copy(id_test), isl_set_copy(domain), inc);
527 scop_cond = pet_scop_filter(scop_cond, prev, 1);
529 space = isl_space_map_from_set(isl_set_get_space(domain));
530 test_index = isl_multi_pw_aff_identity(space);
531 test_index = isl_multi_pw_aff_set_tuple_id(test_index, isl_dim_out,
532 isl_id_copy(id_test));
533 scop_body = pet_scop_filter(scop_body, test_index, 1);
535 scop = pet_scop_add_seq(ctx, scop_cond, scop_body);
536 scop = add_implication(scop, id_test, domain, sign, 1);
538 return scop;
541 /* Create a pet_scop with a single statement with name S_<stmt_nr>,
542 * evaluating "cond" and writing the result to a virtual scalar,
543 * as expressed by "index".
544 * The expression "cond" has not yet been evaluated in the context of "pc".
545 * Do so within the context "pc".
546 * The location of the statement is set to "loc".
548 static struct pet_scop *scop_from_non_affine_condition(
549 __isl_take pet_expr *cond, int stmt_nr,
550 __isl_take isl_multi_pw_aff *index,
551 __isl_take pet_loc *loc, __isl_keep pet_context *pc)
553 pet_expr *expr, *write;
555 cond = pet_context_evaluate_expr(pc, cond);
557 write = pet_expr_from_index(index);
558 write = pet_expr_access_set_write(write, 1);
559 write = pet_expr_access_set_read(write, 0);
560 expr = pet_expr_new_binary(1, pet_op_assign, write, cond);
562 return scop_from_evaluated_expr(expr, NULL, stmt_nr, loc, pc);
565 /* Construct a generic while scop, with iteration domain
566 * { [t] : t >= 0 } around the scop for "tree_body" within the context "pc".
567 * The scop consists of two parts,
568 * one for evaluating the condition "cond" and one for the body.
569 * If "expr_inc" is not NULL, then a scop for evaluating this expression
570 * is added at the end of the body,
571 * after replacing any skip conditions resulting from continue statements
572 * by the skip conditions resulting from break statements (if any).
574 * The schedule is adjusted to reflect that the condition is evaluated
575 * before the body is executed and the body is filtered to depend
576 * on the result of the condition evaluating to true on all iterations
577 * up to the current iteration, while the evaluation of the condition itself
578 * is filtered to depend on the result of the condition evaluating to true
579 * on all previous iterations.
580 * The context of the scop representing the body is dropped
581 * because we don't know how many times the body will be executed,
582 * if at all.
584 * If the body contains any break, then it is taken into
585 * account in apply_affine_break (if the skip condition is affine)
586 * or in scop_add_break (if the skip condition is not affine).
588 * Note that in case of an affine skip condition,
589 * since we are dealing with a loop without loop iterator,
590 * the skip condition cannot refer to the current loop iterator and
591 * so effectively, the iteration domain is of the form
593 * { [0]; [t] : t >= 1 and not skip }
595 static struct pet_scop *scop_from_non_affine_while(__isl_take pet_expr *cond,
596 __isl_take pet_loc *loc, __isl_keep pet_tree *tree_body,
597 __isl_take pet_expr *expr_inc, __isl_take pet_context *pc,
598 struct pet_state *state)
600 isl_ctx *ctx;
601 isl_id *id, *id_test, *id_break_test;
602 isl_space *space;
603 isl_multi_pw_aff *test_index;
604 isl_set *domain;
605 isl_set *skip;
606 isl_aff *ident;
607 struct pet_scop *scop, *scop_body;
608 int has_affine_break;
609 int has_var_break;
611 ctx = state->ctx;
612 space = pet_context_get_space(pc);
613 test_index = pet_create_test_index(space, state->n_test++);
614 scop = scop_from_non_affine_condition(cond, state->n_stmt++,
615 isl_multi_pw_aff_copy(test_index),
616 pet_loc_copy(loc), pc);
617 id_test = isl_multi_pw_aff_get_tuple_id(test_index, isl_dim_out);
618 domain = pet_context_get_domain(pc);
619 scop = pet_scop_add_boolean_array(scop, domain,
620 test_index, state->int_size);
622 id = isl_id_alloc(ctx, "t", NULL);
623 domain = infinite_domain(isl_id_copy(id));
624 ident = identity_aff(domain);
626 scop_body = scop_from_tree(tree_body, pc, state);
628 has_affine_break = pet_scop_has_affine_skip(scop_body, pet_skip_later);
629 if (has_affine_break)
630 skip = pet_scop_get_affine_skip_domain(scop_body,
631 pet_skip_later);
632 has_var_break = pet_scop_has_var_skip(scop_body, pet_skip_later);
633 if (has_var_break)
634 id_break_test = pet_scop_get_skip_id(scop_body, pet_skip_later);
636 scop = pet_scop_prefix(scop, 0);
637 scop = pet_scop_embed(scop, isl_set_copy(domain), isl_aff_copy(ident),
638 isl_aff_copy(ident), isl_id_copy(id));
639 scop_body = pet_scop_reset_context(scop_body);
640 scop_body = pet_scop_prefix(scop_body, 1);
641 if (expr_inc) {
642 struct pet_scop *scop_inc;
643 scop_inc = scop_from_expr(expr_inc, NULL, state->n_stmt++,
644 loc, pc);
645 scop_inc = pet_scop_prefix(scop_inc, 2);
646 if (pet_scop_has_skip(scop_body, pet_skip_later)) {
647 isl_multi_pw_aff *skip;
648 skip = pet_scop_get_skip(scop_body, pet_skip_later);
649 scop_body = pet_scop_set_skip(scop_body,
650 pet_skip_now, skip);
651 } else
652 pet_scop_reset_skip(scop_body, pet_skip_now);
653 scop_body = pet_scop_add_seq(ctx, scop_body, scop_inc);
654 } else
655 pet_loc_free(loc);
656 scop_body = pet_scop_embed(scop_body, isl_set_copy(domain),
657 isl_aff_copy(ident), ident, id);
659 if (has_affine_break) {
660 domain = apply_affine_break(domain, skip, 1, 0, NULL);
661 scop = pet_scop_intersect_domain_prefix(scop,
662 isl_set_copy(domain));
663 scop_body = pet_scop_intersect_domain_prefix(scop_body,
664 isl_set_copy(domain));
666 if (has_var_break) {
667 scop = scop_add_break(scop, isl_id_copy(id_break_test),
668 isl_set_copy(domain), isl_val_one(ctx));
669 scop_body = scop_add_break(scop_body, id_break_test,
670 isl_set_copy(domain), isl_val_one(ctx));
672 scop = scop_add_while(scop, scop_body, id_test, domain,
673 isl_val_one(ctx));
675 pet_context_free(pc);
676 return scop;
679 /* Check if the while loop is of the form
681 * while (affine expression)
682 * body
684 * If so, call scop_from_affine_while to construct a scop.
686 * Otherwise, pass control to scop_from_non_affine_while.
688 * "pc" is the context in which the affine expressions in the scop are created.
690 static struct pet_scop *scop_from_while(__isl_keep pet_tree *tree,
691 __isl_keep pet_context *pc, struct pet_state *state)
693 pet_expr *cond_expr;
694 isl_pw_aff *pa;
696 if (!tree)
697 return NULL;
699 pc = pet_context_copy(pc);
700 pc = pet_context_clear_writes_in_tree(pc, tree->u.l.body);
702 cond_expr = pet_expr_copy(tree->u.l.cond);
703 cond_expr = pet_context_evaluate_expr(pc, cond_expr);
704 pa = pet_expr_extract_affine_condition(cond_expr, pc);
705 pet_expr_free(cond_expr);
707 if (!pa)
708 goto error;
710 if (!isl_pw_aff_involves_nan(pa))
711 return scop_from_affine_while(tree, pa, pc, state);
712 isl_pw_aff_free(pa);
713 return scop_from_non_affine_while(pet_expr_copy(tree->u.l.cond),
714 pet_tree_get_loc(tree), tree->u.l.body, NULL,
715 pc, state);
716 error:
717 pet_context_free(pc);
718 return NULL;
721 /* Check whether "cond" expresses a simple loop bound
722 * on the final set dimension.
723 * In particular, if "up" is set then "cond" should contain only
724 * upper bounds on the final set dimension.
725 * Otherwise, it should contain only lower bounds.
727 static int is_simple_bound(__isl_keep isl_set *cond, __isl_keep isl_val *inc)
729 int pos;
731 pos = isl_set_dim(cond, isl_dim_set) - 1;
732 if (isl_val_is_pos(inc))
733 return !isl_set_dim_has_any_lower_bound(cond, isl_dim_set, pos);
734 else
735 return !isl_set_dim_has_any_upper_bound(cond, isl_dim_set, pos);
738 /* Extend a condition on a given iteration of a loop to one that
739 * imposes the same condition on all previous iterations.
740 * "domain" expresses the lower [upper] bound on the iterations
741 * when inc is positive [negative] in its final dimension.
743 * In particular, we construct the condition (when inc is positive)
745 * forall i' : (domain(i') and i' <= i) => cond(i')
747 * (where "<=" applies to the final dimension)
748 * which is equivalent to
750 * not exists i' : domain(i') and i' <= i and not cond(i')
752 * We construct this set by subtracting the satisfying cond from domain,
753 * applying a map
755 * { [i'] -> [i] : i' <= i }
757 * and then subtracting the result from domain again.
759 static __isl_give isl_set *valid_for_each_iteration(__isl_take isl_set *cond,
760 __isl_take isl_set *domain, __isl_take isl_val *inc)
762 isl_space *space;
763 isl_map *previous_to_this;
764 int i, dim;
766 dim = isl_set_dim(cond, isl_dim_set);
767 space = isl_space_map_from_set(isl_set_get_space(cond));
768 previous_to_this = isl_map_universe(space);
769 for (i = 0; i + 1 < dim; ++i)
770 previous_to_this = isl_map_equate(previous_to_this,
771 isl_dim_in, i, isl_dim_out, i);
772 if (isl_val_is_pos(inc))
773 previous_to_this = isl_map_order_le(previous_to_this,
774 isl_dim_in, dim - 1, isl_dim_out, dim - 1);
775 else
776 previous_to_this = isl_map_order_ge(previous_to_this,
777 isl_dim_in, dim - 1, isl_dim_out, dim - 1);
779 cond = isl_set_subtract(isl_set_copy(domain), cond);
780 cond = isl_set_apply(cond, previous_to_this);
781 cond = isl_set_subtract(domain, cond);
783 isl_val_free(inc);
785 return cond;
788 /* Construct a domain of the form
790 * [id] -> { : exists a: id = init + a * inc and a >= 0 }
792 static __isl_give isl_set *strided_domain(__isl_take isl_id *id,
793 __isl_take isl_pw_aff *init, __isl_take isl_val *inc)
795 isl_aff *aff;
796 isl_space *dim;
797 isl_set *set;
799 init = isl_pw_aff_insert_dims(init, isl_dim_in, 0, 1);
800 dim = isl_pw_aff_get_domain_space(init);
801 aff = isl_aff_zero_on_domain(isl_local_space_from_space(dim));
802 aff = isl_aff_add_coefficient_val(aff, isl_dim_in, 0, inc);
803 init = isl_pw_aff_add(init, isl_pw_aff_from_aff(aff));
805 dim = isl_space_set_alloc(isl_pw_aff_get_ctx(init), 1, 1);
806 dim = isl_space_set_dim_id(dim, isl_dim_param, 0, id);
807 aff = isl_aff_zero_on_domain(isl_local_space_from_space(dim));
808 aff = isl_aff_add_coefficient_si(aff, isl_dim_param, 0, 1);
810 set = isl_pw_aff_eq_set(isl_pw_aff_from_aff(aff), init);
812 set = isl_set_lower_bound_si(set, isl_dim_set, 0, 0);
814 return isl_set_params(set);
817 /* Assuming "cond" represents a bound on a loop where the loop
818 * iterator "iv" is incremented (or decremented) by one, check if wrapping
819 * is possible.
821 * Under the given assumptions, wrapping is only possible if "cond" allows
822 * for the last value before wrapping, i.e., 2^width - 1 in case of an
823 * increasing iterator and 0 in case of a decreasing iterator.
825 static int can_wrap(__isl_keep isl_set *cond, __isl_keep pet_expr *iv,
826 __isl_keep isl_val *inc)
828 int cw;
829 isl_ctx *ctx;
830 isl_val *limit;
831 isl_set *test;
833 test = isl_set_copy(cond);
835 ctx = isl_set_get_ctx(test);
836 if (isl_val_is_neg(inc))
837 limit = isl_val_zero(ctx);
838 else {
839 limit = isl_val_int_from_ui(ctx, pet_expr_get_type_size(iv));
840 limit = isl_val_2exp(limit);
841 limit = isl_val_sub_ui(limit, 1);
844 test = isl_set_fix_val(cond, isl_dim_set, 0, limit);
845 cw = !isl_set_is_empty(test);
846 isl_set_free(test);
848 return cw;
851 /* Given a one-dimensional space, construct the following affine expression
852 * on this space
854 * { [v] -> [v mod 2^width] }
856 * where width is the number of bits used to represent the values
857 * of the unsigned variable "iv".
859 static __isl_give isl_aff *compute_wrapping(__isl_take isl_space *dim,
860 __isl_keep pet_expr *iv)
862 isl_ctx *ctx;
863 isl_val *mod;
864 isl_aff *aff;
866 ctx = isl_space_get_ctx(dim);
867 mod = isl_val_int_from_ui(ctx, pet_expr_get_type_size(iv));
868 mod = isl_val_2exp(mod);
870 aff = isl_aff_zero_on_domain(isl_local_space_from_space(dim));
871 aff = isl_aff_add_coefficient_si(aff, isl_dim_in, 0, 1);
872 aff = isl_aff_mod_val(aff, mod);
874 return aff;
877 /* Project out the parameter "id" from "set".
879 static __isl_give isl_set *set_project_out_by_id(__isl_take isl_set *set,
880 __isl_keep isl_id *id)
882 int pos;
884 pos = isl_set_find_dim_by_id(set, isl_dim_param, id);
885 if (pos >= 0)
886 set = isl_set_project_out(set, isl_dim_param, pos, 1);
888 return set;
891 /* Compute the set of parameters for which "set1" is a subset of "set2".
893 * set1 is a subset of set2 if
895 * forall i in set1 : i in set2
897 * or
899 * not exists i in set1 and i not in set2
901 * i.e.,
903 * not exists i in set1 \ set2
905 static __isl_give isl_set *enforce_subset(__isl_take isl_set *set1,
906 __isl_take isl_set *set2)
908 return isl_set_complement(isl_set_params(isl_set_subtract(set1, set2)));
911 /* Compute the set of parameter values for which "cond" holds
912 * on the next iteration for each element of "dom".
914 * We first construct mapping { [i] -> [i + inc] }, apply that to "dom"
915 * and then compute the set of parameters for which the result is a subset
916 * of "cond".
918 static __isl_give isl_set *valid_on_next(__isl_take isl_set *cond,
919 __isl_take isl_set *dom, __isl_take isl_val *inc)
921 isl_space *space;
922 isl_aff *aff;
923 isl_map *next;
925 space = isl_set_get_space(dom);
926 aff = isl_aff_zero_on_domain(isl_local_space_from_space(space));
927 aff = isl_aff_add_coefficient_si(aff, isl_dim_in, 0, 1);
928 aff = isl_aff_add_constant_val(aff, inc);
929 next = isl_map_from_basic_map(isl_basic_map_from_aff(aff));
931 dom = isl_set_apply(dom, next);
933 return enforce_subset(dom, cond);
936 /* Extract the for loop "tree" as a while loop within the context "pc".
938 * That is, the for loop has the form
940 * for (iv = init; cond; iv += inc)
941 * body;
943 * and is treated as
945 * iv = init;
946 * while (cond) {
947 * body;
948 * iv += inc;
951 * except that the skips resulting from any continue statements
952 * in body do not apply to the increment, but are replaced by the skips
953 * resulting from break statements.
955 * If the loop iterator is declared in the for loop, then it is killed before
956 * and after the loop.
958 static struct pet_scop *scop_from_non_affine_for(__isl_keep pet_tree *tree,
959 __isl_take pet_context *pc, struct pet_state *state)
961 int declared;
962 isl_id *iv;
963 pet_expr *expr_iv, *init, *inc;
964 struct pet_scop *scop_init, *scop;
965 int type_size;
966 struct pet_array *array;
967 struct pet_scop *scop_kill;
969 iv = pet_expr_access_get_id(tree->u.l.iv);
970 pc = pet_context_mark_unknown(pc, iv);
972 declared = tree->u.l.declared;
974 expr_iv = pet_expr_copy(tree->u.l.iv);
975 type_size = pet_expr_get_type_size(expr_iv);
976 init = pet_expr_copy(tree->u.l.init);
977 init = pet_expr_new_binary(type_size, pet_op_assign, expr_iv, init);
978 scop_init = scop_from_expr(init, NULL, state->n_stmt++,
979 pet_tree_get_loc(tree), pc);
980 scop_init = pet_scop_prefix(scop_init, declared);
982 expr_iv = pet_expr_copy(tree->u.l.iv);
983 type_size = pet_expr_get_type_size(expr_iv);
984 inc = pet_expr_copy(tree->u.l.inc);
985 inc = pet_expr_new_binary(type_size, pet_op_add_assign, expr_iv, inc);
987 scop = scop_from_non_affine_while(pet_expr_copy(tree->u.l.cond),
988 pet_tree_get_loc(tree), tree->u.l.body, inc,
989 pet_context_copy(pc), state);
991 scop = pet_scop_prefix(scop, declared + 1);
992 scop = pet_scop_add_seq(state->ctx, scop_init, scop);
994 if (!declared) {
995 pet_context_free(pc);
996 return scop;
999 array = extract_array(tree->u.l.iv, pc, state);
1000 if (array)
1001 array->declared = 1;
1002 scop_kill = kill(pet_tree_get_loc(tree), array, pc, state);
1003 scop_kill = pet_scop_prefix(scop_kill, 0);
1004 scop = pet_scop_add_seq(state->ctx, scop_kill, scop);
1005 scop_kill = kill(pet_tree_get_loc(tree), array, pc, state);
1006 scop_kill = pet_scop_add_array(scop_kill, array);
1007 scop_kill = pet_scop_prefix(scop_kill, 3);
1008 scop = pet_scop_add_seq(state->ctx, scop, scop_kill);
1010 pet_context_free(pc);
1011 return scop;
1014 /* Given an access expression "expr", is the variable accessed by
1015 * "expr" assigned anywhere inside "tree"?
1017 static int is_assigned(__isl_keep pet_expr *expr, __isl_keep pet_tree *tree)
1019 int assigned = 0;
1020 isl_id *id;
1022 id = pet_expr_access_get_id(expr);
1023 assigned = pet_tree_writes(tree, id);
1024 isl_id_free(id);
1026 return assigned;
1029 /* Are all nested access parameters in "pa" allowed given "tree".
1030 * In particular, is none of them written by anywhere inside "tree".
1032 * If "tree" has any continue nodes in the current loop level,
1033 * then no nested access parameters are allowed.
1034 * In particular, if there is any nested access in a guard
1035 * for a piece of code containing a "continue", then we want to introduce
1036 * a separate statement for evaluating this guard so that we can express
1037 * that the result is false for all previous iterations.
1039 static int is_nested_allowed(__isl_keep isl_pw_aff *pa,
1040 __isl_keep pet_tree *tree)
1042 int i, nparam;
1044 if (!tree)
1045 return -1;
1047 if (!pet_nested_any_in_pw_aff(pa))
1048 return 1;
1050 if (pet_tree_has_continue(tree))
1051 return 0;
1053 nparam = isl_pw_aff_dim(pa, isl_dim_param);
1054 for (i = 0; i < nparam; ++i) {
1055 isl_id *id = isl_pw_aff_get_dim_id(pa, isl_dim_param, i);
1056 pet_expr *expr;
1057 int allowed;
1059 if (!pet_nested_in_id(id)) {
1060 isl_id_free(id);
1061 continue;
1064 expr = pet_nested_extract_expr(id);
1065 allowed = pet_expr_get_type(expr) == pet_expr_access &&
1066 !is_assigned(expr, tree);
1068 pet_expr_free(expr);
1069 isl_id_free(id);
1071 if (!allowed)
1072 return 0;
1075 return 1;
1078 /* Construct a pet_scop for a for tree with static affine initialization
1079 * and constant increment within the context "pc".
1081 * The condition is allowed to contain nested accesses, provided
1082 * they are not being written to inside the body of the loop.
1083 * Otherwise, or if the condition is otherwise non-affine, the for loop is
1084 * essentially treated as a while loop, with iteration domain
1085 * { [i] : i >= init }.
1087 * We extract a pet_scop for the body and then embed it in a loop with
1088 * iteration domain and schedule
1090 * { [i] : i >= init and condition' }
1091 * { [i] -> [i] }
1093 * or
1095 * { [i] : i <= init and condition' }
1096 * { [i] -> [-i] }
1098 * Where condition' is equal to condition if the latter is
1099 * a simple upper [lower] bound and a condition that is extended
1100 * to apply to all previous iterations otherwise.
1102 * If the condition is non-affine, then we drop the condition from the
1103 * iteration domain and instead create a separate statement
1104 * for evaluating the condition. The body is then filtered to depend
1105 * on the result of the condition evaluating to true on all iterations
1106 * up to the current iteration, while the evaluation the condition itself
1107 * is filtered to depend on the result of the condition evaluating to true
1108 * on all previous iterations.
1109 * The context of the scop representing the body is dropped
1110 * because we don't know how many times the body will be executed,
1111 * if at all.
1113 * If the stride of the loop is not 1, then "i >= init" is replaced by
1115 * (exists a: i = init + stride * a and a >= 0)
1117 * If the loop iterator i is unsigned, then wrapping may occur.
1118 * We therefore use a virtual iterator instead that does not wrap.
1119 * However, the condition in the code applies
1120 * to the wrapped value, so we need to change condition(i)
1121 * into condition([i % 2^width]). Similarly, we replace all accesses
1122 * to the original iterator by the wrapping of the virtual iterator.
1123 * Note that there may be no need to perform this final wrapping
1124 * if the loop condition (after wrapping) satisfies certain conditions.
1125 * However, the is_simple_bound condition is not enough since it doesn't
1126 * check if there even is an upper bound.
1128 * Wrapping on unsigned iterators can be avoided entirely if
1129 * loop condition is simple, the loop iterator is incremented
1130 * [decremented] by one and the last value before wrapping cannot
1131 * possibly satisfy the loop condition.
1133 * Valid parameters for a for loop are those for which the initial
1134 * value itself, the increment on each domain iteration and
1135 * the condition on both the initial value and
1136 * the result of incrementing the iterator for each iteration of the domain
1137 * can be evaluated.
1138 * If the loop condition is non-affine, then we only consider validity
1139 * of the initial value.
1141 * If the body contains any break, then we keep track of it in "skip"
1142 * (if the skip condition is affine) or it is handled in scop_add_break
1143 * (if the skip condition is not affine).
1144 * Note that the affine break condition needs to be considered with
1145 * respect to previous iterations in the virtual domain (if any).
1147 static struct pet_scop *scop_from_affine_for(__isl_keep pet_tree *tree,
1148 __isl_take isl_pw_aff *init_val, __isl_take isl_pw_aff *pa_inc,
1149 __isl_take isl_val *inc, __isl_take pet_context *pc,
1150 struct pet_state *state)
1152 isl_local_space *ls;
1153 isl_set *domain;
1154 isl_aff *sched;
1155 isl_set *cond = NULL;
1156 isl_set *skip = NULL;
1157 isl_id *id, *id_test = NULL, *id_break_test;
1158 struct pet_scop *scop, *scop_cond = NULL;
1159 int is_one;
1160 int is_unsigned;
1161 int is_simple;
1162 int is_virtual;
1163 int is_non_affine;
1164 int has_affine_break;
1165 int has_var_break;
1166 isl_map *rev_wrap = NULL;
1167 isl_aff *wrap = NULL;
1168 isl_pw_aff *pa;
1169 isl_set *valid_init;
1170 isl_set *valid_cond;
1171 isl_set *valid_cond_init;
1172 isl_set *valid_cond_next;
1173 isl_set *valid_inc;
1174 pet_expr *cond_expr;
1175 pet_context *pc_nested;
1177 id = pet_expr_access_get_id(tree->u.l.iv);
1179 cond_expr = pet_expr_copy(tree->u.l.cond);
1180 cond_expr = pet_context_evaluate_expr(pc, cond_expr);
1181 pc_nested = pet_context_copy(pc);
1182 pc_nested = pet_context_set_allow_nested(pc_nested, 1);
1183 pa = pet_expr_extract_affine_condition(cond_expr, pc_nested);
1184 pet_context_free(pc_nested);
1185 pet_expr_free(cond_expr);
1187 valid_inc = isl_pw_aff_domain(pa_inc);
1189 is_unsigned = pet_expr_get_type_size(tree->u.l.iv) > 0;
1191 is_non_affine = isl_pw_aff_involves_nan(pa) ||
1192 !is_nested_allowed(pa, tree->u.l.body);
1193 if (is_non_affine)
1194 pa = isl_pw_aff_free(pa);
1196 valid_cond = isl_pw_aff_domain(isl_pw_aff_copy(pa));
1197 cond = isl_pw_aff_non_zero_set(pa);
1198 if (is_non_affine)
1199 cond = isl_set_universe(isl_space_set_alloc(state->ctx, 0, 0));
1201 cond = embed(cond, isl_id_copy(id));
1202 valid_cond = isl_set_coalesce(valid_cond);
1203 valid_cond = embed(valid_cond, isl_id_copy(id));
1204 valid_inc = embed(valid_inc, isl_id_copy(id));
1205 is_one = isl_val_is_one(inc) || isl_val_is_negone(inc);
1206 is_virtual = is_unsigned &&
1207 (!is_one || can_wrap(cond, tree->u.l.iv, inc));
1209 valid_cond_init = enforce_subset(
1210 isl_map_range(isl_map_from_pw_aff(isl_pw_aff_copy(init_val))),
1211 isl_set_copy(valid_cond));
1212 if (is_one && !is_virtual) {
1213 isl_pw_aff_free(init_val);
1214 pa = pet_expr_extract_comparison(
1215 isl_val_is_pos(inc) ? pet_op_ge : pet_op_le,
1216 tree->u.l.iv, tree->u.l.init, pc);
1217 valid_init = isl_pw_aff_domain(isl_pw_aff_copy(pa));
1218 valid_init = set_project_out_by_id(valid_init, id);
1219 domain = isl_pw_aff_non_zero_set(pa);
1220 } else {
1221 valid_init = isl_pw_aff_domain(isl_pw_aff_copy(init_val));
1222 domain = strided_domain(isl_id_copy(id), init_val,
1223 isl_val_copy(inc));
1226 domain = embed(domain, isl_id_copy(id));
1227 if (is_virtual) {
1228 wrap = compute_wrapping(isl_set_get_space(cond), tree->u.l.iv);
1229 rev_wrap = isl_map_from_aff(isl_aff_copy(wrap));
1230 rev_wrap = isl_map_reverse(rev_wrap);
1231 cond = isl_set_apply(cond, isl_map_copy(rev_wrap));
1232 valid_cond = isl_set_apply(valid_cond, isl_map_copy(rev_wrap));
1233 valid_inc = isl_set_apply(valid_inc, isl_map_copy(rev_wrap));
1235 is_simple = is_simple_bound(cond, inc);
1236 if (!is_simple) {
1237 cond = isl_set_gist(cond, isl_set_copy(domain));
1238 is_simple = is_simple_bound(cond, inc);
1240 if (!is_simple)
1241 cond = valid_for_each_iteration(cond,
1242 isl_set_copy(domain), isl_val_copy(inc));
1243 domain = isl_set_intersect(domain, cond);
1244 domain = isl_set_set_dim_id(domain, isl_dim_set, 0, isl_id_copy(id));
1245 ls = isl_local_space_from_space(isl_set_get_space(domain));
1246 sched = isl_aff_var_on_domain(ls, isl_dim_set, 0);
1247 if (isl_val_is_neg(inc))
1248 sched = isl_aff_neg(sched);
1250 valid_cond_next = valid_on_next(valid_cond, isl_set_copy(domain),
1251 isl_val_copy(inc));
1252 valid_inc = enforce_subset(isl_set_copy(domain), valid_inc);
1254 if (!is_virtual)
1255 wrap = identity_aff(domain);
1257 if (is_non_affine) {
1258 isl_space *space;
1259 isl_multi_pw_aff *test_index;
1260 space = pet_context_get_space(pc);
1261 test_index = pet_create_test_index(space, state->n_test++);
1262 scop_cond = scop_from_non_affine_condition(
1263 pet_expr_copy(tree->u.l.cond), state->n_stmt++,
1264 isl_multi_pw_aff_copy(test_index),
1265 pet_tree_get_loc(tree), pc);
1266 id_test = isl_multi_pw_aff_get_tuple_id(test_index,
1267 isl_dim_out);
1268 scop_cond = pet_scop_add_boolean_array(scop_cond,
1269 pet_context_get_domain(pc), test_index,
1270 state->int_size);
1271 scop_cond = pet_scop_prefix(scop_cond, 0);
1272 scop_cond = pet_scop_embed(scop_cond, isl_set_copy(domain),
1273 isl_aff_copy(sched), isl_aff_copy(wrap),
1274 isl_id_copy(id));
1277 scop = scop_from_tree(tree->u.l.body, pc, state);
1278 has_affine_break = scop &&
1279 pet_scop_has_affine_skip(scop, pet_skip_later);
1280 if (has_affine_break)
1281 skip = pet_scop_get_affine_skip_domain(scop, pet_skip_later);
1282 has_var_break = scop && pet_scop_has_var_skip(scop, pet_skip_later);
1283 if (has_var_break)
1284 id_break_test = pet_scop_get_skip_id(scop, pet_skip_later);
1285 if (is_non_affine) {
1286 scop = pet_scop_reset_context(scop);
1287 scop = pet_scop_prefix(scop, 1);
1289 scop = pet_scop_embed(scop, isl_set_copy(domain), sched, wrap, id);
1290 scop = pet_scop_resolve_nested(scop);
1291 if (has_affine_break) {
1292 domain = apply_affine_break(domain, skip, isl_val_sgn(inc),
1293 is_virtual, rev_wrap);
1294 scop = pet_scop_intersect_domain_prefix(scop,
1295 isl_set_copy(domain));
1297 isl_map_free(rev_wrap);
1298 if (has_var_break)
1299 scop = scop_add_break(scop, id_break_test, isl_set_copy(domain),
1300 isl_val_copy(inc));
1301 if (is_non_affine) {
1302 scop = scop_add_while(scop_cond, scop, id_test, domain,
1303 isl_val_copy(inc));
1304 isl_set_free(valid_inc);
1305 } else {
1306 scop = pet_scop_restrict_context(scop, valid_inc);
1307 scop = pet_scop_restrict_context(scop, valid_cond_next);
1308 scop = pet_scop_restrict_context(scop, valid_cond_init);
1309 isl_set_free(domain);
1312 isl_val_free(inc);
1314 scop = pet_scop_restrict_context(scop, isl_set_params(valid_init));
1316 pet_context_free(pc);
1317 return scop;
1320 /* Construct a pet_scop for a for statement within the context of "pc".
1322 * We update the context to reflect the writes to the loop variable and
1323 * the writes inside the body.
1325 * Then we check if the initialization of the for loop
1326 * is a static affine value and the increment is a constant.
1327 * If so, we construct the pet_scop using scop_from_affine_for.
1328 * Otherwise, we treat the for loop as a while loop
1329 * in scop_from_non_affine_for.
1331 static struct pet_scop *scop_from_for(__isl_keep pet_tree *tree,
1332 __isl_keep pet_context *pc, struct pet_state *state)
1334 isl_id *iv;
1335 isl_val *inc;
1336 isl_pw_aff *pa_inc, *init_val;
1337 pet_context *pc_init_val;
1339 if (!tree)
1340 return NULL;
1342 iv = pet_expr_access_get_id(tree->u.l.iv);
1343 pc = pet_context_copy(pc);
1344 pc = pet_context_clear_value(pc, iv);
1345 pc = pet_context_clear_writes_in_tree(pc, tree->u.l.body);
1347 pc_init_val = pet_context_copy(pc);
1348 pc_init_val = pet_context_mark_unknown(pc_init_val, isl_id_copy(iv));
1349 init_val = pet_expr_extract_affine(tree->u.l.init, pc_init_val);
1350 pet_context_free(pc_init_val);
1351 pa_inc = pet_expr_extract_affine(tree->u.l.inc, pc);
1352 inc = pet_extract_cst(pa_inc);
1353 if (!pa_inc || !init_val || !inc)
1354 goto error;
1355 if (!isl_pw_aff_involves_nan(pa_inc) &&
1356 !isl_pw_aff_involves_nan(init_val) && !isl_val_is_nan(inc))
1357 return scop_from_affine_for(tree, init_val, pa_inc, inc,
1358 pc, state);
1360 isl_pw_aff_free(pa_inc);
1361 isl_pw_aff_free(init_val);
1362 isl_val_free(inc);
1363 return scop_from_non_affine_for(tree, pc, state);
1364 error:
1365 isl_pw_aff_free(pa_inc);
1366 isl_pw_aff_free(init_val);
1367 isl_val_free(inc);
1368 pet_context_free(pc);
1369 return NULL;
1372 /* Check whether "expr" is an affine constraint within the context "pc".
1374 static int is_affine_condition(__isl_keep pet_expr *expr,
1375 __isl_keep pet_context *pc)
1377 isl_pw_aff *pa;
1378 int is_affine;
1380 pa = pet_expr_extract_affine_condition(expr, pc);
1381 if (!pa)
1382 return -1;
1383 is_affine = !isl_pw_aff_involves_nan(pa);
1384 isl_pw_aff_free(pa);
1386 return is_affine;
1389 /* Check if the given if statement is a conditional assignement
1390 * with a non-affine condition.
1392 * In particular we check if "stmt" is of the form
1394 * if (condition)
1395 * a = f(...);
1396 * else
1397 * a = g(...);
1399 * where the condition is non-affine and a is some array or scalar access.
1401 static int is_conditional_assignment(__isl_keep pet_tree *tree,
1402 __isl_keep pet_context *pc)
1404 int equal;
1405 isl_ctx *ctx;
1406 pet_expr *expr1, *expr2;
1408 ctx = pet_tree_get_ctx(tree);
1409 if (!pet_options_get_detect_conditional_assignment(ctx))
1410 return 0;
1411 if (tree->type != pet_tree_if_else)
1412 return 0;
1413 if (tree->u.i.then_body->type != pet_tree_expr)
1414 return 0;
1415 if (tree->u.i.else_body->type != pet_tree_expr)
1416 return 0;
1417 expr1 = tree->u.i.then_body->u.e.expr;
1418 expr2 = tree->u.i.else_body->u.e.expr;
1419 if (pet_expr_get_type(expr1) != pet_expr_op)
1420 return 0;
1421 if (pet_expr_get_type(expr2) != pet_expr_op)
1422 return 0;
1423 if (pet_expr_op_get_type(expr1) != pet_op_assign)
1424 return 0;
1425 if (pet_expr_op_get_type(expr2) != pet_op_assign)
1426 return 0;
1427 expr1 = pet_expr_get_arg(expr1, 0);
1428 expr2 = pet_expr_get_arg(expr2, 0);
1429 equal = pet_expr_is_equal(expr1, expr2);
1430 pet_expr_free(expr1);
1431 pet_expr_free(expr2);
1432 if (equal < 0 || !equal)
1433 return 0;
1434 if (is_affine_condition(tree->u.i.cond, pc))
1435 return 0;
1437 return 1;
1440 /* Given that "tree" is of the form
1442 * if (condition)
1443 * a = f(...);
1444 * else
1445 * a = g(...);
1447 * where a is some array or scalar access, construct a pet_scop
1448 * corresponding to this conditional assignment within the context "pc".
1450 * The constructed pet_scop then corresponds to the expression
1452 * a = condition ? f(...) : g(...)
1454 * All access relations in f(...) are intersected with condition
1455 * while all access relation in g(...) are intersected with the complement.
1457 static struct pet_scop *scop_from_conditional_assignment(
1458 __isl_keep pet_tree *tree, __isl_take pet_context *pc,
1459 struct pet_state *state)
1461 int type_size;
1462 isl_pw_aff *pa;
1463 isl_set *cond, *comp;
1464 isl_multi_pw_aff *index;
1465 pet_expr *expr1, *expr2;
1466 pet_expr *pe_cond, *pe_then, *pe_else, *pe, *pe_write;
1467 pet_context *pc_nested;
1468 struct pet_scop *scop;
1470 pe_cond = pet_expr_copy(tree->u.i.cond);
1471 pe_cond = pet_context_evaluate_expr(pc, pe_cond);
1472 pc_nested = pet_context_copy(pc);
1473 pc_nested = pet_context_set_allow_nested(pc_nested, 1);
1474 pa = pet_expr_extract_affine_condition(pe_cond, pc_nested);
1475 pet_context_free(pc_nested);
1476 pet_expr_free(pe_cond);
1477 cond = isl_pw_aff_non_zero_set(isl_pw_aff_copy(pa));
1478 comp = isl_pw_aff_zero_set(isl_pw_aff_copy(pa));
1479 index = isl_multi_pw_aff_from_pw_aff(pa);
1481 expr1 = tree->u.i.then_body->u.e.expr;
1482 expr2 = tree->u.i.else_body->u.e.expr;
1484 pe_cond = pet_expr_from_index(index);
1486 pe_then = pet_expr_get_arg(expr1, 1);
1487 pe_then = pet_context_evaluate_expr(pc, pe_then);
1488 pe_then = pet_expr_restrict(pe_then, cond);
1489 pe_else = pet_expr_get_arg(expr2, 1);
1490 pe_else = pet_context_evaluate_expr(pc, pe_else);
1491 pe_else = pet_expr_restrict(pe_else, comp);
1492 pe_write = pet_expr_get_arg(expr1, 0);
1493 pe_write = pet_context_evaluate_expr(pc, pe_write);
1495 pe = pet_expr_new_ternary(pe_cond, pe_then, pe_else);
1496 type_size = pet_expr_get_type_size(pe_write);
1497 pe = pet_expr_new_binary(type_size, pet_op_assign, pe_write, pe);
1499 scop = scop_from_evaluated_expr(pe, NULL, state->n_stmt++,
1500 pet_tree_get_loc(tree), pc);
1502 pet_context_free(pc);
1504 return scop;
1507 /* Construct a pet_scop for a non-affine if statement within the context "pc".
1509 * We create a separate statement that writes the result
1510 * of the non-affine condition to a virtual scalar.
1511 * A constraint requiring the value of this virtual scalar to be one
1512 * is added to the iteration domains of the then branch.
1513 * Similarly, a constraint requiring the value of this virtual scalar
1514 * to be zero is added to the iteration domains of the else branch, if any.
1515 * We adjust the schedules to ensure that the virtual scalar is written
1516 * before it is read.
1518 * If there are any breaks or continues in the then and/or else
1519 * branches, then we may have to compute a new skip condition.
1520 * This is handled using a pet_skip_info object.
1521 * On initialization, the object checks if skip conditions need
1522 * to be computed. If so, it does so in pet_skip_info_if_extract_index and
1523 * adds them in pet_skip_info_if_add.
1525 static struct pet_scop *scop_from_non_affine_if(__isl_keep pet_tree *tree,
1526 __isl_take pet_context *pc, struct pet_state *state)
1528 int has_else;
1529 isl_space *space;
1530 isl_set *domain;
1531 isl_multi_pw_aff *test_index;
1532 struct pet_skip_info skip;
1533 struct pet_scop *scop, *scop_then, *scop_else = NULL;
1535 has_else = tree->type == pet_tree_if_else;
1537 space = pet_context_get_space(pc);
1538 test_index = pet_create_test_index(space, state->n_test++);
1539 scop = scop_from_non_affine_condition(pet_expr_copy(tree->u.i.cond),
1540 state->n_stmt++, isl_multi_pw_aff_copy(test_index),
1541 pet_tree_get_loc(tree), pc);
1542 domain = pet_context_get_domain(pc);
1543 scop = pet_scop_add_boolean_array(scop, domain,
1544 isl_multi_pw_aff_copy(test_index), state->int_size);
1546 scop_then = scop_from_tree(tree->u.i.then_body, pc, state);
1547 if (has_else)
1548 scop_else = scop_from_tree(tree->u.i.else_body, pc, state);
1550 pet_skip_info_if_init(&skip, state->ctx, scop_then, scop_else,
1551 has_else, 0);
1552 pet_skip_info_if_extract_index(&skip, test_index, pc, state);
1554 scop = pet_scop_prefix(scop, 0);
1555 scop_then = pet_scop_prefix(scop_then, 1);
1556 scop_then = pet_scop_filter(scop_then,
1557 isl_multi_pw_aff_copy(test_index), 1);
1558 if (has_else) {
1559 scop_else = pet_scop_prefix(scop_else, 1);
1560 scop_else = pet_scop_filter(scop_else, test_index, 0);
1561 scop_then = pet_scop_add_par(state->ctx, scop_then, scop_else);
1562 } else
1563 isl_multi_pw_aff_free(test_index);
1565 scop = pet_scop_add_seq(state->ctx, scop, scop_then);
1567 scop = pet_skip_info_if_add(&skip, scop, 2);
1569 pet_context_free(pc);
1570 return scop;
1573 /* Construct a pet_scop for an affine if statement within the context "pc".
1575 * The condition is added to the iteration domains of the then branch,
1576 * while the opposite of the condition in added to the iteration domains
1577 * of the else branch, if any.
1579 * If there are any breaks or continues in the then and/or else
1580 * branches, then we may have to compute a new skip condition.
1581 * This is handled using a pet_skip_info_if object.
1582 * On initialization, the object checks if skip conditions need
1583 * to be computed. If so, it does so in pet_skip_info_if_extract_cond and
1584 * adds them in pet_skip_info_if_add.
1586 static struct pet_scop *scop_from_affine_if(__isl_keep pet_tree *tree,
1587 __isl_take isl_pw_aff *cond, __isl_take pet_context *pc,
1588 struct pet_state *state)
1590 int has_else;
1591 isl_ctx *ctx;
1592 isl_set *set;
1593 isl_set *valid;
1594 struct pet_skip_info skip;
1595 struct pet_scop *scop, *scop_then, *scop_else = NULL;
1597 ctx = pet_tree_get_ctx(tree);
1599 has_else = tree->type == pet_tree_if_else;
1601 scop_then = scop_from_tree(tree->u.i.then_body, pc, state);
1602 if (has_else)
1603 scop_else = scop_from_tree(tree->u.i.else_body, pc, state);
1605 pet_skip_info_if_init(&skip, ctx, scop_then, scop_else, has_else, 1);
1606 pet_skip_info_if_extract_cond(&skip, cond, pc, state);
1608 valid = isl_pw_aff_domain(isl_pw_aff_copy(cond));
1609 set = isl_pw_aff_non_zero_set(cond);
1610 scop = pet_scop_restrict(scop_then, isl_set_params(isl_set_copy(set)));
1612 if (has_else) {
1613 set = isl_set_subtract(isl_set_copy(valid), set);
1614 scop_else = pet_scop_restrict(scop_else, isl_set_params(set));
1615 scop = pet_scop_add_par(ctx, scop, scop_else);
1616 } else
1617 isl_set_free(set);
1618 scop = pet_scop_resolve_nested(scop);
1619 scop = pet_scop_restrict_context(scop, isl_set_params(valid));
1621 if (pet_skip_info_has_skip(&skip))
1622 scop = pet_scop_prefix(scop, 0);
1623 scop = pet_skip_info_if_add(&skip, scop, 1);
1625 pet_context_free(pc);
1626 return scop;
1629 /* Construct a pet_scop for an if statement within the context "pc".
1631 * If the condition fits the pattern of a conditional assignment,
1632 * then it is handled by scop_from_conditional_assignment.
1634 * Otherwise, we check if the condition is affine.
1635 * If so, we construct the scop in scop_from_affine_if.
1636 * Otherwise, we construct the scop in scop_from_non_affine_if.
1638 * We allow the condition to be dynamic, i.e., to refer to
1639 * scalars or array elements that may be written to outside
1640 * of the given if statement. These nested accesses are then represented
1641 * as output dimensions in the wrapping iteration domain.
1642 * If it is also written _inside_ the then or else branch, then
1643 * we treat the condition as non-affine.
1644 * As explained in extract_non_affine_if, this will introduce
1645 * an extra statement.
1646 * For aesthetic reasons, we want this statement to have a statement
1647 * number that is lower than those of the then and else branches.
1648 * In order to evaluate if we will need such a statement, however, we
1649 * first construct scops for the then and else branches.
1650 * We therefore reserve a statement number if we might have to
1651 * introduce such an extra statement.
1653 static struct pet_scop *scop_from_if(__isl_keep pet_tree *tree,
1654 __isl_keep pet_context *pc, struct pet_state *state)
1656 int has_else;
1657 isl_pw_aff *cond;
1658 pet_expr *cond_expr;
1659 pet_context *pc_nested;
1661 if (!tree)
1662 return NULL;
1664 has_else = tree->type == pet_tree_if_else;
1666 pc = pet_context_copy(pc);
1667 pc = pet_context_clear_writes_in_tree(pc, tree->u.i.then_body);
1668 if (has_else)
1669 pc = pet_context_clear_writes_in_tree(pc, tree->u.i.else_body);
1671 if (is_conditional_assignment(tree, pc))
1672 return scop_from_conditional_assignment(tree, pc, state);
1674 cond_expr = pet_expr_copy(tree->u.i.cond);
1675 cond_expr = pet_context_evaluate_expr(pc, cond_expr);
1676 pc_nested = pet_context_copy(pc);
1677 pc_nested = pet_context_set_allow_nested(pc_nested, 1);
1678 cond = pet_expr_extract_affine_condition(cond_expr, pc_nested);
1679 pet_context_free(pc_nested);
1680 pet_expr_free(cond_expr);
1682 if (!cond) {
1683 pet_context_free(pc);
1684 return NULL;
1687 if (isl_pw_aff_involves_nan(cond)) {
1688 isl_pw_aff_free(cond);
1689 return scop_from_non_affine_if(tree, pc, state);
1692 if ((!is_nested_allowed(cond, tree->u.i.then_body) ||
1693 (has_else && !is_nested_allowed(cond, tree->u.i.else_body)))) {
1694 isl_pw_aff_free(cond);
1695 return scop_from_non_affine_if(tree, pc, state);
1698 return scop_from_affine_if(tree, cond, pc, state);
1701 /* Return a one-dimensional multi piecewise affine expression that is equal
1702 * to the constant 1 and is defined over the given domain.
1704 static __isl_give isl_multi_pw_aff *one_mpa(__isl_take isl_space *space)
1706 isl_local_space *ls;
1707 isl_aff *aff;
1709 ls = isl_local_space_from_space(space);
1710 aff = isl_aff_zero_on_domain(ls);
1711 aff = isl_aff_set_constant_si(aff, 1);
1713 return isl_multi_pw_aff_from_pw_aff(isl_pw_aff_from_aff(aff));
1716 /* Construct a pet_scop for a continue statement with the given domain space.
1718 * We simply create an empty scop with a universal pet_skip_now
1719 * skip condition. This skip condition will then be taken into
1720 * account by the enclosing loop construct, possibly after
1721 * being incorporated into outer skip conditions.
1723 static struct pet_scop *scop_from_continue(__isl_keep pet_tree *tree,
1724 __isl_take isl_space *space)
1726 struct pet_scop *scop;
1728 scop = pet_scop_empty(isl_space_copy(space));
1730 scop = pet_scop_set_skip(scop, pet_skip_now, one_mpa(space));
1732 return scop;
1735 /* Construct a pet_scop for a break statement with the given domain space.
1737 * We simply create an empty scop with both a universal pet_skip_now
1738 * skip condition and a universal pet_skip_later skip condition.
1739 * These skip conditions will then be taken into
1740 * account by the enclosing loop construct, possibly after
1741 * being incorporated into outer skip conditions.
1743 static struct pet_scop *scop_from_break(__isl_keep pet_tree *tree,
1744 __isl_take isl_space *space)
1746 struct pet_scop *scop;
1747 isl_multi_pw_aff *skip;
1749 scop = pet_scop_empty(isl_space_copy(space));
1751 skip = one_mpa(space);
1752 scop = pet_scop_set_skip(scop, pet_skip_now,
1753 isl_multi_pw_aff_copy(skip));
1754 scop = pet_scop_set_skip(scop, pet_skip_later, skip);
1756 return scop;
1759 /* Extract a clone of the kill statement in "scop".
1760 * The domain of the clone is given by "domain".
1761 * "scop" is expected to have been created from a DeclStmt
1762 * and should have the kill as its first statement.
1764 static struct pet_scop *extract_kill(__isl_keep isl_set *domain,
1765 struct pet_scop *scop, struct pet_state *state)
1767 pet_expr *kill;
1768 struct pet_stmt *stmt;
1769 isl_multi_pw_aff *index;
1770 isl_map *access;
1771 pet_expr *arg;
1773 if (!domain || !scop)
1774 return NULL;
1775 if (scop->n_stmt < 1)
1776 isl_die(isl_set_get_ctx(domain), isl_error_internal,
1777 "expecting at least one statement", return NULL);
1778 stmt = scop->stmts[0];
1779 if (!pet_stmt_is_kill(stmt))
1780 isl_die(isl_set_get_ctx(domain), isl_error_internal,
1781 "expecting kill statement", return NULL);
1783 arg = pet_expr_get_arg(stmt->body, 0);
1784 index = pet_expr_access_get_index(arg);
1785 access = pet_expr_access_get_access(arg);
1786 pet_expr_free(arg);
1787 index = isl_multi_pw_aff_reset_tuple_id(index, isl_dim_in);
1788 access = isl_map_reset_tuple_id(access, isl_dim_in);
1789 kill = pet_expr_kill_from_access_and_index(access, index);
1790 stmt = pet_stmt_from_pet_expr(isl_set_copy(domain),
1791 pet_loc_copy(stmt->loc), NULL, state->n_stmt++, kill);
1792 return pet_scop_from_pet_stmt(isl_set_get_space(domain), stmt);
1795 /* Does "tree" represent an assignment to a variable?
1797 * The assignment may be one of
1798 * - a declaration with initialization
1799 * - an expression with a top-level assignment operator
1801 static int is_assignment(__isl_keep pet_tree *tree)
1803 if (!tree)
1804 return 0;
1805 if (tree->type == pet_tree_decl_init)
1806 return 1;
1807 return pet_tree_is_assign(tree);
1810 /* Update "pc" by taking into account the assignment performed by "tree",
1811 * where "tree" satisfies is_assignment.
1813 * In particular, if the lhs of the assignment is a scalar variable and
1814 * if the rhs is an affine expression, then keep track of this value in "pc"
1815 * so that we can plug it in when we later come across the same variable.
1817 * The variable has already been marked as having been assigned
1818 * an unknown value by scop_handle_writes.
1820 static __isl_give pet_context *handle_assignment(__isl_take pet_context *pc,
1821 __isl_keep pet_tree *tree)
1823 pet_expr *var, *val;
1824 isl_id *id;
1825 isl_pw_aff *pa;
1827 if (pet_tree_get_type(tree) == pet_tree_decl_init) {
1828 var = pet_tree_decl_get_var(tree);
1829 val = pet_tree_decl_get_init(tree);
1830 } else {
1831 pet_expr *expr;
1832 expr = pet_tree_expr_get_expr(tree);
1833 var = pet_expr_get_arg(expr, 0);
1834 val = pet_expr_get_arg(expr, 1);
1835 pet_expr_free(expr);
1838 if (!pet_expr_is_scalar_access(var)) {
1839 pet_expr_free(var);
1840 pet_expr_free(val);
1841 return pc;
1844 pa = pet_expr_extract_affine(val, pc);
1845 if (!pa)
1846 pc = pet_context_free(pc);
1848 if (!isl_pw_aff_involves_nan(pa)) {
1849 id = pet_expr_access_get_id(var);
1850 pc = pet_context_set_value(pc, id, pa);
1851 } else {
1852 isl_pw_aff_free(pa);
1854 pet_expr_free(var);
1855 pet_expr_free(val);
1857 return pc;
1860 /* Mark all arrays in "scop" as being exposed.
1862 static struct pet_scop *mark_exposed(struct pet_scop *scop)
1864 int i;
1866 if (!scop)
1867 return NULL;
1868 for (i = 0; i < scop->n_array; ++i)
1869 scop->arrays[i]->exposed = 1;
1870 return scop;
1873 /* Try and construct a pet_scop corresponding to (part of)
1874 * a sequence of statements within the context "pc".
1876 * After extracting a statement, we update "pc"
1877 * based on the top-level assignments in the statement
1878 * so that we can exploit them in subsequent statements in the same block.
1880 * If there are any breaks or continues in the individual statements,
1881 * then we may have to compute a new skip condition.
1882 * This is handled using a pet_skip_info object.
1883 * On initialization, the object checks if skip conditions need
1884 * to be computed. If so, it does so in pet_skip_info_seq_extract and
1885 * adds them in pet_skip_info_seq_add.
1887 * If "block" is set, then we need to insert kill statements at
1888 * the end of the block for any array that has been declared by
1889 * one of the statements in the sequence. Each of these declarations
1890 * results in the construction of a kill statement at the place
1891 * of the declaration, so we simply collect duplicates of
1892 * those kill statements and append these duplicates to the constructed scop.
1894 * If "block" is not set, then any array declared by one of the statements
1895 * in the sequence is marked as being exposed.
1897 * If autodetect is set, then we allow the extraction of only a subrange
1898 * of the sequence of statements. However, if there is at least one statement
1899 * for which we could not construct a scop and the final range contains
1900 * either no statements or at least one kill, then we discard the entire
1901 * range.
1903 static struct pet_scop *scop_from_block(__isl_keep pet_tree *tree,
1904 __isl_keep pet_context *pc, struct pet_state *state)
1906 int i;
1907 isl_ctx *ctx;
1908 isl_space *space;
1909 isl_set *domain;
1910 struct pet_scop *scop, *kills;
1912 ctx = pet_tree_get_ctx(tree);
1914 space = pet_context_get_space(pc);
1915 domain = pet_context_get_domain(pc);
1916 pc = pet_context_copy(pc);
1917 scop = pet_scop_empty(isl_space_copy(space));
1918 kills = pet_scop_empty(space);
1919 for (i = 0; i < tree->u.b.n; ++i) {
1920 struct pet_scop *scop_i;
1922 scop_i = scop_from_tree(tree->u.b.child[i], pc, state);
1923 pc = scop_handle_writes(scop_i, pc);
1924 if (is_assignment(tree->u.b.child[i]))
1925 pc = handle_assignment(pc, tree->u.b.child[i]);
1926 struct pet_skip_info skip;
1927 pet_skip_info_seq_init(&skip, ctx, scop, scop_i);
1928 pet_skip_info_seq_extract(&skip, pc, state);
1929 if (pet_skip_info_has_skip(&skip))
1930 scop_i = pet_scop_prefix(scop_i, 0);
1931 if (scop_i && pet_tree_is_decl(tree->u.b.child[i])) {
1932 if (tree->u.b.block) {
1933 struct pet_scop *kill;
1934 kill = extract_kill(domain, scop_i, state);
1935 kills = pet_scop_add_par(ctx, kills, kill);
1936 } else
1937 scop_i = mark_exposed(scop_i);
1939 scop_i = pet_scop_prefix(scop_i, i);
1940 scop = pet_scop_add_seq(ctx, scop, scop_i);
1942 scop = pet_skip_info_seq_add(&skip, scop, i);
1944 if (!scop)
1945 break;
1947 isl_set_free(domain);
1949 kills = pet_scop_prefix(kills, tree->u.b.n);
1950 scop = pet_scop_add_seq(ctx, scop, kills);
1952 pet_context_free(pc);
1954 return scop;
1957 /* Construct a pet_scop that corresponds to the pet_tree "tree"
1958 * within the context "pc" by calling the appropriate function
1959 * based on the type of "tree".
1961 static struct pet_scop *scop_from_tree(__isl_keep pet_tree *tree,
1962 __isl_keep pet_context *pc, struct pet_state *state)
1964 if (!tree)
1965 return NULL;
1967 switch (tree->type) {
1968 case pet_tree_error:
1969 return NULL;
1970 case pet_tree_block:
1971 return scop_from_block(tree, pc, state);
1972 case pet_tree_break:
1973 return scop_from_break(tree, pet_context_get_space(pc));
1974 case pet_tree_continue:
1975 return scop_from_continue(tree, pet_context_get_space(pc));
1976 case pet_tree_decl:
1977 case pet_tree_decl_init:
1978 return scop_from_decl(tree, pc, state);
1979 case pet_tree_expr:
1980 return scop_from_expr(pet_expr_copy(tree->u.e.expr),
1981 isl_id_copy(tree->label),
1982 state->n_stmt++,
1983 pet_tree_get_loc(tree), pc);
1984 case pet_tree_if:
1985 case pet_tree_if_else:
1986 return scop_from_if(tree, pc, state);
1987 case pet_tree_for:
1988 return scop_from_for(tree, pc, state);
1989 case pet_tree_while:
1990 return scop_from_while(tree, pc, state);
1991 case pet_tree_infinite_loop:
1992 return scop_from_infinite_for(tree, pc, state);
1995 isl_die(tree->ctx, isl_error_internal, "unhandled type",
1996 return NULL);
1999 /* Construct a pet_scop that corresponds to the pet_tree "tree".
2000 * "int_size" is the number of bytes need to represent an integer.
2001 * "extract_array" is a callback that we can use to create a pet_array
2002 * that corresponds to the variable accessed by an expression.
2004 * Initialize the global state, construct a context and then
2005 * construct the pet_scop by recursively visiting the tree.
2007 struct pet_scop *pet_scop_from_pet_tree(__isl_take pet_tree *tree, int int_size,
2008 struct pet_array *(*extract_array)(__isl_keep pet_expr *access,
2009 __isl_keep pet_context *pc, void *user), void *user,
2010 __isl_keep pet_context *pc)
2012 struct pet_scop *scop;
2013 struct pet_state state = { 0 };
2015 if (!tree)
2016 return NULL;
2018 state.ctx = pet_tree_get_ctx(tree);
2019 state.int_size = int_size;
2020 state.extract_array = extract_array;
2021 state.user = user;
2023 scop = scop_from_tree(tree, pc, &state);
2024 scop = pet_scop_set_loc(scop, pet_tree_get_loc(tree));
2026 pet_tree_free(tree);
2028 return scop;