add -D option
[pet.git] / scan.cc
blob7ed1a0acb9bfe0d4e11109065cfdd26c0e02f2d9
1 /*
2 * Copyright 2011 Leiden University. All rights reserved.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 *
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above
12 * copyright notice, this list of conditions and the following
13 * disclaimer in the documentation and/or other materials provided
14 * with the distribution.
16 * THIS SOFTWARE IS PROVIDED BY LEIDEN UNIVERSITY ''AS IS'' AND ANY
17 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL LEIDEN UNIVERSITY OR
20 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
21 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
23 * OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 * The views and conclusions contained in the software and documentation
29 * are those of the authors and should not be interpreted as
30 * representing official policies, either expressed or implied, of
31 * Leiden University.
32 */
34 #include <set>
35 #include <map>
36 #include <iostream>
37 #include <clang/AST/ASTDiagnostic.h>
38 #include <clang/AST/Expr.h>
39 #include <clang/AST/RecursiveASTVisitor.h>
41 #include <isl/id.h>
42 #include <isl/space.h>
43 #include <isl/aff.h>
44 #include <isl/set.h>
46 #include "scan.h"
47 #include "scop.h"
48 #include "scop_plus.h"
50 #include "config.h"
52 using namespace std;
53 using namespace clang;
56 /* Check if the element type corresponding to the given array type
57 * has a const qualifier.
59 static bool const_base(QualType qt)
61 const Type *type = qt.getTypePtr();
63 if (type->isPointerType())
64 return const_base(type->getPointeeType());
65 if (type->isArrayType()) {
66 const ArrayType *atype;
67 type = type->getCanonicalTypeInternal().getTypePtr();
68 atype = cast<ArrayType>(type);
69 return const_base(atype->getElementType());
72 return qt.isConstQualified();
75 /* Look for any assignments to scalar variables in part of the parse
76 * tree and set assigned_value to NULL for each of them.
77 * Also reset assigned_value if the address of a scalar variable
78 * is being taken. As an exception, if the address is passed to a function
79 * that is declared to receive a const pointer, then assigned_value is
80 * not reset.
82 * This ensures that we won't use any previously stored value
83 * in the current subtree and its parents.
85 struct clear_assignments : RecursiveASTVisitor<clear_assignments> {
86 map<ValueDecl *, Expr *> &assigned_value;
87 set<UnaryOperator *> skip;
89 clear_assignments(map<ValueDecl *, Expr *> &assigned_value) :
90 assigned_value(assigned_value) {}
92 /* Check for "address of" operators whose value is passed
93 * to a const pointer argument and add them to "skip", so that
94 * we can skip them in VisitUnaryOperator.
96 bool VisitCallExpr(CallExpr *expr) {
97 FunctionDecl *fd;
98 fd = expr->getDirectCallee();
99 if (!fd)
100 return true;
101 for (int i = 0; i < expr->getNumArgs(); ++i) {
102 Expr *arg = expr->getArg(i);
103 UnaryOperator *op;
104 if (arg->getStmtClass() == Stmt::ImplicitCastExprClass) {
105 ImplicitCastExpr *ice;
106 ice = cast<ImplicitCastExpr>(arg);
107 arg = ice->getSubExpr();
109 if (arg->getStmtClass() != Stmt::UnaryOperatorClass)
110 continue;
111 op = cast<UnaryOperator>(arg);
112 if (op->getOpcode() != UO_AddrOf)
113 continue;
114 if (const_base(fd->getParamDecl(i)->getType()))
115 skip.insert(op);
117 return true;
120 bool VisitUnaryOperator(UnaryOperator *expr) {
121 Expr *arg;
122 DeclRefExpr *ref;
123 ValueDecl *decl;
125 if (expr->getOpcode() != UO_AddrOf)
126 return true;
127 if (skip.find(expr) != skip.end())
128 return true;
130 arg = expr->getSubExpr();
131 if (arg->getStmtClass() != Stmt::DeclRefExprClass)
132 return true;
133 ref = cast<DeclRefExpr>(arg);
134 decl = ref->getDecl();
135 assigned_value[decl] = NULL;
136 return true;
139 bool VisitBinaryOperator(BinaryOperator *expr) {
140 Expr *lhs;
141 DeclRefExpr *ref;
142 ValueDecl *decl;
144 if (!expr->isAssignmentOp())
145 return true;
146 lhs = expr->getLHS();
147 if (lhs->getStmtClass() != Stmt::DeclRefExprClass)
148 return true;
149 ref = cast<DeclRefExpr>(lhs);
150 decl = ref->getDecl();
151 assigned_value[decl] = NULL;
152 return true;
156 /* Keep a copy of the currently assigned values.
158 * Any variable that is assigned a value inside the current scope
159 * is removed again when we leave the scope (either because it wasn't
160 * stored in the cache or because it has a different value in the cache).
162 struct assigned_value_cache {
163 map<ValueDecl *, Expr *> &assigned_value;
164 map<ValueDecl *, Expr *> cache;
166 assigned_value_cache(map<ValueDecl *, Expr *> &assigned_value) :
167 assigned_value(assigned_value), cache(assigned_value) {}
168 ~assigned_value_cache() {
169 map<ValueDecl *, Expr *>::iterator it = cache.begin();
170 for (it = assigned_value.begin(); it != assigned_value.end();
171 ++it) {
172 if (!it->second ||
173 (cache.find(it->first) != cache.end() &&
174 cache[it->first] != it->second))
175 cache[it->first] = NULL;
177 assigned_value = cache;
181 /* Called if we found something we (currently) cannot handle.
182 * We'll provide more informative warnings later.
184 * We only actually complain if autodetect is false.
186 void PetScan::unsupported(Stmt *stmt)
188 if (autodetect)
189 return;
191 SourceLocation loc = stmt->getLocStart();
192 DiagnosticsEngine &diag = PP.getDiagnostics();
193 unsigned id = diag.getCustomDiagID(DiagnosticsEngine::Warning,
194 "unsupported");
195 DiagnosticBuilder B = diag.Report(loc, id) << stmt->getSourceRange();
198 /* Extract an integer from "expr" and store it in "v".
200 int PetScan::extract_int(IntegerLiteral *expr, isl_int *v)
202 const Type *type = expr->getType().getTypePtr();
203 int is_signed = type->hasSignedIntegerRepresentation();
205 if (is_signed) {
206 int64_t i = expr->getValue().getSExtValue();
207 isl_int_set_si(*v, i);
208 } else {
209 uint64_t i = expr->getValue().getZExtValue();
210 isl_int_set_ui(*v, i);
213 return 0;
216 /* Extract an affine expression from the IntegerLiteral "expr".
218 __isl_give isl_pw_aff *PetScan::extract_affine(IntegerLiteral *expr)
220 isl_space *dim = isl_space_params_alloc(ctx, 0);
221 isl_local_space *ls = isl_local_space_from_space(isl_space_copy(dim));
222 isl_aff *aff = isl_aff_zero_on_domain(ls);
223 isl_set *dom = isl_set_universe(dim);
224 isl_int v;
226 isl_int_init(v);
227 extract_int(expr, &v);
228 aff = isl_aff_add_constant(aff, v);
229 isl_int_clear(v);
231 return isl_pw_aff_alloc(dom, aff);
234 /* Extract an affine expression from the APInt "val".
236 __isl_give isl_pw_aff *PetScan::extract_affine(const llvm::APInt &val)
238 isl_space *dim = isl_space_params_alloc(ctx, 0);
239 isl_local_space *ls = isl_local_space_from_space(isl_space_copy(dim));
240 isl_aff *aff = isl_aff_zero_on_domain(ls);
241 isl_set *dom = isl_set_universe(dim);
242 isl_int v;
244 isl_int_init(v);
245 isl_int_set_ui(v, val.getZExtValue());
246 aff = isl_aff_add_constant(aff, v);
247 isl_int_clear(v);
249 return isl_pw_aff_alloc(dom, aff);
252 __isl_give isl_pw_aff *PetScan::extract_affine(ImplicitCastExpr *expr)
254 return extract_affine(expr->getSubExpr());
257 /* Extract an affine expression from the DeclRefExpr "expr".
259 * If the variable has been assigned a value, then we check whether
260 * we know what expression was assigned and whether this expression
261 * is affine. If so, we convert the expression to an isl_pw_aff
262 * and to an extra parameter otherwise (provided nesting_enabled is set).
264 * Otherwise, we simply return an expression that is equal
265 * to a parameter corresponding to the referenced variable.
267 __isl_give isl_pw_aff *PetScan::extract_affine(DeclRefExpr *expr)
269 ValueDecl *decl = expr->getDecl();
270 const Type *type = decl->getType().getTypePtr();
271 isl_id *id;
272 isl_space *dim;
273 isl_aff *aff;
274 isl_set *dom;
276 if (!type->isIntegerType()) {
277 unsupported(expr);
278 return NULL;
281 if (assigned_value.find(decl) != assigned_value.end()) {
282 if (assigned_value[decl] && is_affine(assigned_value[decl]))
283 return extract_affine(assigned_value[decl]);
284 else
285 return non_affine(expr);
288 id = isl_id_alloc(ctx, decl->getName().str().c_str(), decl);
289 dim = isl_space_params_alloc(ctx, 1);
291 dim = isl_space_set_dim_id(dim, isl_dim_param, 0, id);
293 dom = isl_set_universe(isl_space_copy(dim));
294 aff = isl_aff_zero_on_domain(isl_local_space_from_space(dim));
295 aff = isl_aff_add_coefficient_si(aff, isl_dim_param, 0, 1);
297 return isl_pw_aff_alloc(dom, aff);
300 /* Extract an affine expression from an integer division operation.
301 * In particular, if "expr" is lhs/rhs, then return
303 * lhs >= 0 ? floor(lhs/rhs) : ceil(lhs/rhs)
305 * The second argument (rhs) is required to be a (positive) integer constant.
307 __isl_give isl_pw_aff *PetScan::extract_affine_div(BinaryOperator *expr)
309 Expr *rhs_expr;
310 isl_pw_aff *lhs, *lhs_f, *lhs_c;
311 isl_pw_aff *res;
312 isl_int v;
313 isl_set *cond;
315 rhs_expr = expr->getRHS();
316 if (rhs_expr->getStmtClass() != Stmt::IntegerLiteralClass) {
317 unsupported(expr);
318 return NULL;
321 lhs = extract_affine(expr->getLHS());
322 cond = isl_pw_aff_nonneg_set(isl_pw_aff_copy(lhs));
324 isl_int_init(v);
325 extract_int(cast<IntegerLiteral>(rhs_expr), &v);
326 lhs = isl_pw_aff_scale_down(lhs, v);
327 isl_int_clear(v);
329 lhs_f = isl_pw_aff_floor(isl_pw_aff_copy(lhs));
330 lhs_c = isl_pw_aff_ceil(lhs);
331 res = isl_pw_aff_cond(cond, lhs_f, lhs_c);
333 return res;
336 /* Extract an affine expression from a modulo operation.
337 * In particular, if "expr" is lhs/rhs, then return
339 * lhs - rhs * (lhs >= 0 ? floor(lhs/rhs) : ceil(lhs/rhs))
341 * The second argument (rhs) is required to be a (positive) integer constant.
343 __isl_give isl_pw_aff *PetScan::extract_affine_mod(BinaryOperator *expr)
345 Expr *rhs_expr;
346 isl_pw_aff *lhs, *lhs_f, *lhs_c;
347 isl_pw_aff *res;
348 isl_int v;
349 isl_set *cond;
351 rhs_expr = expr->getRHS();
352 if (rhs_expr->getStmtClass() != Stmt::IntegerLiteralClass) {
353 unsupported(expr);
354 return NULL;
357 lhs = extract_affine(expr->getLHS());
358 cond = isl_pw_aff_nonneg_set(isl_pw_aff_copy(lhs));
360 isl_int_init(v);
361 extract_int(cast<IntegerLiteral>(rhs_expr), &v);
362 res = isl_pw_aff_scale_down(isl_pw_aff_copy(lhs), v);
364 lhs_f = isl_pw_aff_floor(isl_pw_aff_copy(res));
365 lhs_c = isl_pw_aff_ceil(res);
366 res = isl_pw_aff_cond(cond, lhs_f, lhs_c);
368 res = isl_pw_aff_scale(res, v);
369 isl_int_clear(v);
371 res = isl_pw_aff_sub(lhs, res);
373 return res;
376 /* Extract an affine expression from a multiplication operation.
377 * This is only allowed if at least one of the two arguments
378 * is a (piecewise) constant.
380 __isl_give isl_pw_aff *PetScan::extract_affine_mul(BinaryOperator *expr)
382 isl_pw_aff *lhs;
383 isl_pw_aff *rhs;
385 lhs = extract_affine(expr->getLHS());
386 rhs = extract_affine(expr->getRHS());
388 if (!isl_pw_aff_is_cst(lhs) && !isl_pw_aff_is_cst(rhs)) {
389 isl_pw_aff_free(lhs);
390 isl_pw_aff_free(rhs);
391 unsupported(expr);
392 return NULL;
395 return isl_pw_aff_mul(lhs, rhs);
398 /* Extract an affine expression from an addition or subtraction operation.
400 __isl_give isl_pw_aff *PetScan::extract_affine_add(BinaryOperator *expr)
402 isl_pw_aff *lhs;
403 isl_pw_aff *rhs;
405 lhs = extract_affine(expr->getLHS());
406 rhs = extract_affine(expr->getRHS());
408 switch (expr->getOpcode()) {
409 case BO_Add:
410 return isl_pw_aff_add(lhs, rhs);
411 case BO_Sub:
412 return isl_pw_aff_sub(lhs, rhs);
413 default:
414 isl_pw_aff_free(lhs);
415 isl_pw_aff_free(rhs);
416 return NULL;
421 /* Compute
423 * pwaff mod 2^width
425 static __isl_give isl_pw_aff *wrap(__isl_take isl_pw_aff *pwaff,
426 unsigned width)
428 isl_int mod;
430 isl_int_init(mod);
431 isl_int_set_si(mod, 1);
432 isl_int_mul_2exp(mod, mod, width);
434 pwaff = isl_pw_aff_mod(pwaff, mod);
436 isl_int_clear(mod);
438 return pwaff;
441 /* Extract an affine expression from some binary operations.
442 * If the result of the expression is unsigned, then we wrap it
443 * based on the size of the type.
445 __isl_give isl_pw_aff *PetScan::extract_affine(BinaryOperator *expr)
447 isl_pw_aff *res;
449 switch (expr->getOpcode()) {
450 case BO_Add:
451 case BO_Sub:
452 res = extract_affine_add(expr);
453 break;
454 case BO_Div:
455 res = extract_affine_div(expr);
456 break;
457 case BO_Rem:
458 res = extract_affine_mod(expr);
459 break;
460 case BO_Mul:
461 res = extract_affine_mul(expr);
462 break;
463 default:
464 unsupported(expr);
465 return NULL;
468 if (expr->getType()->isUnsignedIntegerType())
469 res = wrap(res, ast_context.getIntWidth(expr->getType()));
471 return res;
474 /* Extract an affine expression from a negation operation.
476 __isl_give isl_pw_aff *PetScan::extract_affine(UnaryOperator *expr)
478 if (expr->getOpcode() == UO_Minus)
479 return isl_pw_aff_neg(extract_affine(expr->getSubExpr()));
481 unsupported(expr);
482 return NULL;
485 __isl_give isl_pw_aff *PetScan::extract_affine(ParenExpr *expr)
487 return extract_affine(expr->getSubExpr());
490 /* Extract an affine expression from some special function calls.
491 * In particular, we handle "min", "max", "ceild" and "floord".
492 * In case of the latter two, the second argument needs to be
493 * a (positive) integer constant.
495 __isl_give isl_pw_aff *PetScan::extract_affine(CallExpr *expr)
497 FunctionDecl *fd;
498 string name;
499 isl_pw_aff *aff1, *aff2;
501 fd = expr->getDirectCallee();
502 if (!fd) {
503 unsupported(expr);
504 return NULL;
507 name = fd->getDeclName().getAsString();
508 if (!(expr->getNumArgs() == 2 && name == "min") &&
509 !(expr->getNumArgs() == 2 && name == "max") &&
510 !(expr->getNumArgs() == 2 && name == "floord") &&
511 !(expr->getNumArgs() == 2 && name == "ceild")) {
512 unsupported(expr);
513 return NULL;
516 if (name == "min" || name == "max") {
517 aff1 = extract_affine(expr->getArg(0));
518 aff2 = extract_affine(expr->getArg(1));
520 if (name == "min")
521 aff1 = isl_pw_aff_min(aff1, aff2);
522 else
523 aff1 = isl_pw_aff_max(aff1, aff2);
524 } else if (name == "floord" || name == "ceild") {
525 isl_int v;
526 Expr *arg2 = expr->getArg(1);
528 if (arg2->getStmtClass() != Stmt::IntegerLiteralClass) {
529 unsupported(expr);
530 return NULL;
532 aff1 = extract_affine(expr->getArg(0));
533 isl_int_init(v);
534 extract_int(cast<IntegerLiteral>(arg2), &v);
535 aff1 = isl_pw_aff_scale_down(aff1, v);
536 isl_int_clear(v);
537 if (name == "floord")
538 aff1 = isl_pw_aff_floor(aff1);
539 else
540 aff1 = isl_pw_aff_ceil(aff1);
541 } else {
542 unsupported(expr);
543 return NULL;
546 return aff1;
550 /* This method is called when we come across a non-affine expression.
551 * If nesting is allowed, we return a new parameter that corresponds
552 * to the non-affine expression. Otherwise, we simply complain.
554 * The new parameter is resolved in resolve_nested.
556 isl_pw_aff *PetScan::non_affine(Expr *expr)
558 isl_id *id;
559 isl_space *dim;
560 isl_aff *aff;
561 isl_set *dom;
563 if (!nesting_enabled) {
564 unsupported(expr);
565 return NULL;
568 id = isl_id_alloc(ctx, NULL, expr);
569 dim = isl_space_params_alloc(ctx, 1);
571 dim = isl_space_set_dim_id(dim, isl_dim_param, 0, id);
573 dom = isl_set_universe(isl_space_copy(dim));
574 aff = isl_aff_zero_on_domain(isl_local_space_from_space(dim));
575 aff = isl_aff_add_coefficient_si(aff, isl_dim_param, 0, 1);
577 return isl_pw_aff_alloc(dom, aff);
580 /* Affine expressions are not supposed to contain array accesses,
581 * but if nesting is allowed, we return a parameter corresponding
582 * to the array access.
584 __isl_give isl_pw_aff *PetScan::extract_affine(ArraySubscriptExpr *expr)
586 return non_affine(expr);
589 /* Extract an affine expression from a conditional operation.
591 __isl_give isl_pw_aff *PetScan::extract_affine(ConditionalOperator *expr)
593 isl_set *cond;
594 isl_pw_aff *lhs, *rhs;
596 cond = extract_condition(expr->getCond());
597 lhs = extract_affine(expr->getTrueExpr());
598 rhs = extract_affine(expr->getFalseExpr());
600 return isl_pw_aff_cond(cond, lhs, rhs);
603 /* Extract an affine expression, if possible, from "expr".
604 * Otherwise return NULL.
606 __isl_give isl_pw_aff *PetScan::extract_affine(Expr *expr)
608 switch (expr->getStmtClass()) {
609 case Stmt::ImplicitCastExprClass:
610 return extract_affine(cast<ImplicitCastExpr>(expr));
611 case Stmt::IntegerLiteralClass:
612 return extract_affine(cast<IntegerLiteral>(expr));
613 case Stmt::DeclRefExprClass:
614 return extract_affine(cast<DeclRefExpr>(expr));
615 case Stmt::BinaryOperatorClass:
616 return extract_affine(cast<BinaryOperator>(expr));
617 case Stmt::UnaryOperatorClass:
618 return extract_affine(cast<UnaryOperator>(expr));
619 case Stmt::ParenExprClass:
620 return extract_affine(cast<ParenExpr>(expr));
621 case Stmt::CallExprClass:
622 return extract_affine(cast<CallExpr>(expr));
623 case Stmt::ArraySubscriptExprClass:
624 return extract_affine(cast<ArraySubscriptExpr>(expr));
625 case Stmt::ConditionalOperatorClass:
626 return extract_affine(cast<ConditionalOperator>(expr));
627 default:
628 unsupported(expr);
630 return NULL;
633 __isl_give isl_map *PetScan::extract_access(ImplicitCastExpr *expr)
635 return extract_access(expr->getSubExpr());
638 /* Return the depth of an array of the given type.
640 static int array_depth(const Type *type)
642 if (type->isPointerType())
643 return 1 + array_depth(type->getPointeeType().getTypePtr());
644 if (type->isArrayType()) {
645 const ArrayType *atype;
646 type = type->getCanonicalTypeInternal().getTypePtr();
647 atype = cast<ArrayType>(type);
648 return 1 + array_depth(atype->getElementType().getTypePtr());
650 return 0;
653 /* Return the element type of the given array type.
655 static QualType base_type(QualType qt)
657 const Type *type = qt.getTypePtr();
659 if (type->isPointerType())
660 return base_type(type->getPointeeType());
661 if (type->isArrayType()) {
662 const ArrayType *atype;
663 type = type->getCanonicalTypeInternal().getTypePtr();
664 atype = cast<ArrayType>(type);
665 return base_type(atype->getElementType());
667 return qt;
670 /* Extract an access relation from a reference to a variable.
671 * If the variable has name "A" and its type corresponds to an
672 * array of depth d, then the returned access relation is of the
673 * form
675 * { [] -> A[i_1,...,i_d] }
677 __isl_give isl_map *PetScan::extract_access(DeclRefExpr *expr)
679 ValueDecl *decl = expr->getDecl();
680 int depth = array_depth(decl->getType().getTypePtr());
681 isl_id *id = isl_id_alloc(ctx, decl->getName().str().c_str(), decl);
682 isl_space *dim = isl_space_alloc(ctx, 0, 0, depth);
683 isl_map *access_rel;
685 dim = isl_space_set_tuple_id(dim, isl_dim_out, id);
687 access_rel = isl_map_universe(dim);
689 return access_rel;
692 /* Extract an access relation from an integer contant.
693 * If the value of the constant is "v", then the returned access relation
694 * is
696 * { [] -> [v] }
698 __isl_give isl_map *PetScan::extract_access(IntegerLiteral *expr)
700 return isl_map_from_range(isl_set_from_pw_aff(extract_affine(expr)));
703 /* Try and extract an access relation from the given Expr.
704 * Return NULL if it doesn't work out.
706 __isl_give isl_map *PetScan::extract_access(Expr *expr)
708 switch (expr->getStmtClass()) {
709 case Stmt::ImplicitCastExprClass:
710 return extract_access(cast<ImplicitCastExpr>(expr));
711 case Stmt::DeclRefExprClass:
712 return extract_access(cast<DeclRefExpr>(expr));
713 case Stmt::ArraySubscriptExprClass:
714 return extract_access(cast<ArraySubscriptExpr>(expr));
715 default:
716 unsupported(expr);
718 return NULL;
721 /* Assign the affine expression "index" to the output dimension "pos" of "map"
722 * and return the result.
724 __isl_give isl_map *set_index(__isl_take isl_map *map, int pos,
725 __isl_take isl_pw_aff *index)
727 isl_map *index_map;
728 int len = isl_map_dim(map, isl_dim_out);
729 isl_id *id;
731 index_map = isl_map_from_range(isl_set_from_pw_aff(index));
732 index_map = isl_map_insert_dims(index_map, isl_dim_out, 0, pos);
733 index_map = isl_map_add_dims(index_map, isl_dim_out, len - pos - 1);
734 id = isl_map_get_tuple_id(map, isl_dim_out);
735 index_map = isl_map_set_tuple_id(index_map, isl_dim_out, id);
737 map = isl_map_intersect(map, index_map);
739 return map;
742 /* Extract an access relation from the given array subscript expression.
743 * If nesting is allowed in general, then we turn it on while
744 * examining the index expression.
746 * We first extract an access relation from the base.
747 * This will result in an access relation with a range that corresponds
748 * to the array being accessed and with earlier indices filled in already.
749 * We then extract the current index and fill that in as well.
750 * The position of the current index is based on the type of base.
751 * If base is the actual array variable, then the depth of this type
752 * will be the same as the depth of the array and we will fill in
753 * the first array index.
754 * Otherwise, the depth of the base type will be smaller and we will fill
755 * in a later index.
757 __isl_give isl_map *PetScan::extract_access(ArraySubscriptExpr *expr)
759 Expr *base = expr->getBase();
760 Expr *idx = expr->getIdx();
761 isl_pw_aff *index;
762 isl_map *base_access;
763 isl_map *access;
764 int depth = array_depth(base->getType().getTypePtr());
765 int pos;
766 bool save_nesting = nesting_enabled;
768 nesting_enabled = allow_nested;
770 base_access = extract_access(base);
771 index = extract_affine(idx);
773 nesting_enabled = save_nesting;
775 pos = isl_map_dim(base_access, isl_dim_out) - depth;
776 access = set_index(base_access, pos, index);
778 return access;
781 /* Check if "expr" calls function "minmax" with two arguments and if so
782 * make lhs and rhs refer to these two arguments.
784 static bool is_minmax(Expr *expr, const char *minmax, Expr *&lhs, Expr *&rhs)
786 CallExpr *call;
787 FunctionDecl *fd;
788 string name;
790 if (expr->getStmtClass() != Stmt::CallExprClass)
791 return false;
793 call = cast<CallExpr>(expr);
794 fd = call->getDirectCallee();
795 if (!fd)
796 return false;
798 if (call->getNumArgs() != 2)
799 return false;
801 name = fd->getDeclName().getAsString();
802 if (name != minmax)
803 return false;
805 lhs = call->getArg(0);
806 rhs = call->getArg(1);
808 return true;
811 /* Check if "expr" is of the form min(lhs, rhs) and if so make
812 * lhs and rhs refer to the two arguments.
814 static bool is_min(Expr *expr, Expr *&lhs, Expr *&rhs)
816 return is_minmax(expr, "min", lhs, rhs);
819 /* Check if "expr" is of the form max(lhs, rhs) and if so make
820 * lhs and rhs refer to the two arguments.
822 static bool is_max(Expr *expr, Expr *&lhs, Expr *&rhs)
824 return is_minmax(expr, "max", lhs, rhs);
827 /* Extract a set of values satisfying the comparison "LHS op RHS"
828 * "comp" is the original statement that "LHS op RHS" is derived from
829 * and is used for diagnostics.
831 * If the comparison is of the form
833 * a <= min(b,c)
835 * then the set is constructed as the intersection of the set corresponding
836 * to the comparisons
838 * a <= b and a <= c
840 * A similar optimization is performed for max(a,b) <= c.
841 * We do this because that will lead to simpler representations of the set.
842 * If isl is ever enhanced to explicitly deal with min and max expressions,
843 * this optimization can be removed.
845 __isl_give isl_set *PetScan::extract_comparison(BinaryOperatorKind op,
846 Expr *LHS, Expr *RHS, Stmt *comp)
848 isl_pw_aff *lhs;
849 isl_pw_aff *rhs;
850 isl_set *cond;
852 if (op == BO_GT)
853 return extract_comparison(BO_LT, RHS, LHS, comp);
854 if (op == BO_GE)
855 return extract_comparison(BO_LE, RHS, LHS, comp);
857 if (op == BO_LT || op == BO_LE) {
858 Expr *expr1, *expr2;
859 isl_set *set1, *set2;
860 if (is_min(RHS, expr1, expr2)) {
861 set1 = extract_comparison(op, LHS, expr1, comp);
862 set2 = extract_comparison(op, LHS, expr2, comp);
863 return isl_set_intersect(set1, set2);
865 if (is_max(LHS, expr1, expr2)) {
866 set1 = extract_comparison(op, expr1, RHS, comp);
867 set2 = extract_comparison(op, expr2, RHS, comp);
868 return isl_set_intersect(set1, set2);
872 lhs = extract_affine(LHS);
873 rhs = extract_affine(RHS);
875 switch (op) {
876 case BO_LT:
877 cond = isl_pw_aff_lt_set(lhs, rhs);
878 break;
879 case BO_LE:
880 cond = isl_pw_aff_le_set(lhs, rhs);
881 break;
882 case BO_EQ:
883 cond = isl_pw_aff_eq_set(lhs, rhs);
884 break;
885 case BO_NE:
886 cond = isl_pw_aff_ne_set(lhs, rhs);
887 break;
888 default:
889 isl_pw_aff_free(lhs);
890 isl_pw_aff_free(rhs);
891 unsupported(comp);
892 return NULL;
895 cond = isl_set_coalesce(cond);
897 return cond;
900 __isl_give isl_set *PetScan::extract_comparison(BinaryOperator *comp)
902 return extract_comparison(comp->getOpcode(), comp->getLHS(),
903 comp->getRHS(), comp);
906 /* Extract a set of values satisfying the negation (logical not)
907 * of a subexpression.
909 __isl_give isl_set *PetScan::extract_boolean(UnaryOperator *op)
911 isl_set *cond;
913 cond = extract_condition(op->getSubExpr());
915 return isl_set_complement(cond);
918 /* Extract a set of values satisfying the union (logical or)
919 * or intersection (logical and) of two subexpressions.
921 __isl_give isl_set *PetScan::extract_boolean(BinaryOperator *comp)
923 isl_set *lhs;
924 isl_set *rhs;
925 isl_set *cond;
927 lhs = extract_condition(comp->getLHS());
928 rhs = extract_condition(comp->getRHS());
930 switch (comp->getOpcode()) {
931 case BO_LAnd:
932 cond = isl_set_intersect(lhs, rhs);
933 break;
934 case BO_LOr:
935 cond = isl_set_union(lhs, rhs);
936 break;
937 default:
938 isl_set_free(lhs);
939 isl_set_free(rhs);
940 unsupported(comp);
941 return NULL;
944 return cond;
947 __isl_give isl_set *PetScan::extract_condition(UnaryOperator *expr)
949 switch (expr->getOpcode()) {
950 case UO_LNot:
951 return extract_boolean(expr);
952 default:
953 unsupported(expr);
954 return NULL;
958 /* Extract a set of values satisfying the condition "expr != 0".
960 __isl_give isl_set *PetScan::extract_implicit_condition(Expr *expr)
962 return isl_pw_aff_non_zero_set(extract_affine(expr));
965 /* Extract a set of values satisfying the condition expressed by "expr".
967 * If the expression doesn't look like a condition, we assume it
968 * is an affine expression and return the condition "expr != 0".
970 __isl_give isl_set *PetScan::extract_condition(Expr *expr)
972 BinaryOperator *comp;
974 if (!expr)
975 return isl_set_universe(isl_space_params_alloc(ctx, 0));
977 if (expr->getStmtClass() == Stmt::ParenExprClass)
978 return extract_condition(cast<ParenExpr>(expr)->getSubExpr());
980 if (expr->getStmtClass() == Stmt::UnaryOperatorClass)
981 return extract_condition(cast<UnaryOperator>(expr));
983 if (expr->getStmtClass() != Stmt::BinaryOperatorClass)
984 return extract_implicit_condition(expr);
986 comp = cast<BinaryOperator>(expr);
987 switch (comp->getOpcode()) {
988 case BO_LT:
989 case BO_LE:
990 case BO_GT:
991 case BO_GE:
992 case BO_EQ:
993 case BO_NE:
994 return extract_comparison(comp);
995 case BO_LAnd:
996 case BO_LOr:
997 return extract_boolean(comp);
998 default:
999 return extract_implicit_condition(expr);
1003 static enum pet_op_type UnaryOperatorKind2pet_op_type(UnaryOperatorKind kind)
1005 switch (kind) {
1006 case UO_Minus:
1007 return pet_op_minus;
1008 default:
1009 return pet_op_last;
1013 static enum pet_op_type BinaryOperatorKind2pet_op_type(BinaryOperatorKind kind)
1015 switch (kind) {
1016 case BO_AddAssign:
1017 return pet_op_add_assign;
1018 case BO_SubAssign:
1019 return pet_op_sub_assign;
1020 case BO_MulAssign:
1021 return pet_op_mul_assign;
1022 case BO_DivAssign:
1023 return pet_op_div_assign;
1024 case BO_Assign:
1025 return pet_op_assign;
1026 case BO_Add:
1027 return pet_op_add;
1028 case BO_Sub:
1029 return pet_op_sub;
1030 case BO_Mul:
1031 return pet_op_mul;
1032 case BO_Div:
1033 return pet_op_div;
1034 case BO_EQ:
1035 return pet_op_eq;
1036 case BO_LE:
1037 return pet_op_le;
1038 case BO_LT:
1039 return pet_op_lt;
1040 case BO_GT:
1041 return pet_op_gt;
1042 default:
1043 return pet_op_last;
1047 /* Construct a pet_expr representing a unary operator expression.
1049 struct pet_expr *PetScan::extract_expr(UnaryOperator *expr)
1051 struct pet_expr *arg;
1052 enum pet_op_type op;
1054 op = UnaryOperatorKind2pet_op_type(expr->getOpcode());
1055 if (op == pet_op_last) {
1056 unsupported(expr);
1057 return NULL;
1060 arg = extract_expr(expr->getSubExpr());
1062 return pet_expr_new_unary(ctx, op, arg);
1065 /* Mark the given access pet_expr as a write.
1066 * If a scalar is being accessed, then mark its value
1067 * as unknown in assigned_value.
1069 void PetScan::mark_write(struct pet_expr *access)
1071 isl_id *id;
1072 ValueDecl *decl;
1074 access->acc.write = 1;
1075 access->acc.read = 0;
1077 if (isl_map_dim(access->acc.access, isl_dim_out) != 0)
1078 return;
1080 id = isl_map_get_tuple_id(access->acc.access, isl_dim_out);
1081 decl = (ValueDecl *) isl_id_get_user(id);
1082 assigned_value[decl] = NULL;
1083 isl_id_free(id);
1086 /* Construct a pet_expr representing a binary operator expression.
1088 * If the top level operator is an assignment and the LHS is an access,
1089 * then we mark that access as a write. If the operator is a compound
1090 * assignment, the access is marked as both a read and a write.
1092 * If "expr" assigns something to a scalar variable, then we keep track
1093 * of the assigned expression in assigned_value so that we can plug
1094 * it in when we later come across the same variable.
1096 struct pet_expr *PetScan::extract_expr(BinaryOperator *expr)
1098 struct pet_expr *lhs, *rhs;
1099 enum pet_op_type op;
1101 op = BinaryOperatorKind2pet_op_type(expr->getOpcode());
1102 if (op == pet_op_last) {
1103 unsupported(expr);
1104 return NULL;
1107 lhs = extract_expr(expr->getLHS());
1108 rhs = extract_expr(expr->getRHS());
1110 if (expr->isAssignmentOp() && lhs && lhs->type == pet_expr_access) {
1111 mark_write(lhs);
1112 if (expr->isCompoundAssignmentOp())
1113 lhs->acc.read = 1;
1116 if (expr->getOpcode() == BO_Assign &&
1117 lhs && lhs->type == pet_expr_access &&
1118 isl_map_dim(lhs->acc.access, isl_dim_out) == 0) {
1119 isl_id *id = isl_map_get_tuple_id(lhs->acc.access, isl_dim_out);
1120 ValueDecl *decl = (ValueDecl *) isl_id_get_user(id);
1121 assigned_value[decl] = expr->getRHS();
1122 isl_id_free(id);
1125 return pet_expr_new_binary(ctx, op, lhs, rhs);
1128 /* Construct a pet_expr representing a conditional operation.
1130 struct pet_expr *PetScan::extract_expr(ConditionalOperator *expr)
1132 struct pet_expr *cond, *lhs, *rhs;
1134 cond = extract_expr(expr->getCond());
1135 lhs = extract_expr(expr->getTrueExpr());
1136 rhs = extract_expr(expr->getFalseExpr());
1138 return pet_expr_new_ternary(ctx, cond, lhs, rhs);
1141 struct pet_expr *PetScan::extract_expr(ImplicitCastExpr *expr)
1143 return extract_expr(expr->getSubExpr());
1146 /* Construct a pet_expr representing a floating point value.
1148 struct pet_expr *PetScan::extract_expr(FloatingLiteral *expr)
1150 return pet_expr_new_double(ctx, expr->getValueAsApproximateDouble());
1153 /* Extract an access relation from "expr" and then convert it into
1154 * a pet_expr.
1156 struct pet_expr *PetScan::extract_access_expr(Expr *expr)
1158 isl_map *access;
1159 struct pet_expr *pe;
1161 switch (expr->getStmtClass()) {
1162 case Stmt::ArraySubscriptExprClass:
1163 access = extract_access(cast<ArraySubscriptExpr>(expr));
1164 break;
1165 case Stmt::DeclRefExprClass:
1166 access = extract_access(cast<DeclRefExpr>(expr));
1167 break;
1168 case Stmt::IntegerLiteralClass:
1169 access = extract_access(cast<IntegerLiteral>(expr));
1170 break;
1171 default:
1172 unsupported(expr);
1173 return NULL;
1176 pe = pet_expr_from_access(access);
1178 return pe;
1181 struct pet_expr *PetScan::extract_expr(ParenExpr *expr)
1183 return extract_expr(expr->getSubExpr());
1186 /* Construct a pet_expr representing a function call.
1188 * If we are passing along a pointer to an array element
1189 * or an entire row or even higher dimensional slice of an array,
1190 * then the function being called may write into the array.
1192 * We assume here that if the function is declared to take a pointer
1193 * to a const type, then the function will perform a read
1194 * and that otherwise, it will perform a write.
1196 struct pet_expr *PetScan::extract_expr(CallExpr *expr)
1198 struct pet_expr *res = NULL;
1199 FunctionDecl *fd;
1200 string name;
1202 fd = expr->getDirectCallee();
1203 if (!fd) {
1204 unsupported(expr);
1205 return NULL;
1208 name = fd->getDeclName().getAsString();
1209 res = pet_expr_new_call(ctx, name.c_str(), expr->getNumArgs());
1210 if (!res)
1211 return NULL;
1213 for (int i = 0; i < expr->getNumArgs(); ++i) {
1214 Expr *arg = expr->getArg(i);
1215 int is_addr = 0;
1217 if (arg->getStmtClass() == Stmt::ImplicitCastExprClass) {
1218 ImplicitCastExpr *ice = cast<ImplicitCastExpr>(arg);
1219 arg = ice->getSubExpr();
1221 if (arg->getStmtClass() == Stmt::UnaryOperatorClass) {
1222 UnaryOperator *op = cast<UnaryOperator>(arg);
1223 if (op->getOpcode() == UO_AddrOf) {
1224 is_addr = 1;
1225 arg = op->getSubExpr();
1228 res->args[i] = PetScan::extract_expr(arg);
1229 if (!res->args[i])
1230 goto error;
1231 if (arg->getStmtClass() == Stmt::ArraySubscriptExprClass &&
1232 array_depth(arg->getType().getTypePtr()) > 0)
1233 is_addr = 1;
1234 if (is_addr && res->args[i]->type == pet_expr_access) {
1235 ParmVarDecl *parm = fd->getParamDecl(i);
1236 if (!const_base(parm->getType()))
1237 mark_write(res->args[i]);
1241 return res;
1242 error:
1243 pet_expr_free(res);
1244 return NULL;
1247 /* Try and onstruct a pet_expr representing "expr".
1249 struct pet_expr *PetScan::extract_expr(Expr *expr)
1251 switch (expr->getStmtClass()) {
1252 case Stmt::UnaryOperatorClass:
1253 return extract_expr(cast<UnaryOperator>(expr));
1254 case Stmt::CompoundAssignOperatorClass:
1255 case Stmt::BinaryOperatorClass:
1256 return extract_expr(cast<BinaryOperator>(expr));
1257 case Stmt::ImplicitCastExprClass:
1258 return extract_expr(cast<ImplicitCastExpr>(expr));
1259 case Stmt::ArraySubscriptExprClass:
1260 case Stmt::DeclRefExprClass:
1261 case Stmt::IntegerLiteralClass:
1262 return extract_access_expr(expr);
1263 case Stmt::FloatingLiteralClass:
1264 return extract_expr(cast<FloatingLiteral>(expr));
1265 case Stmt::ParenExprClass:
1266 return extract_expr(cast<ParenExpr>(expr));
1267 case Stmt::ConditionalOperatorClass:
1268 return extract_expr(cast<ConditionalOperator>(expr));
1269 case Stmt::CallExprClass:
1270 return extract_expr(cast<CallExpr>(expr));
1271 default:
1272 unsupported(expr);
1274 return NULL;
1277 /* Check if the given initialization statement is an assignment.
1278 * If so, return that assignment. Otherwise return NULL.
1280 BinaryOperator *PetScan::initialization_assignment(Stmt *init)
1282 BinaryOperator *ass;
1284 if (init->getStmtClass() != Stmt::BinaryOperatorClass)
1285 return NULL;
1287 ass = cast<BinaryOperator>(init);
1288 if (ass->getOpcode() != BO_Assign)
1289 return NULL;
1291 return ass;
1294 /* Check if the given initialization statement is a declaration
1295 * of a single variable.
1296 * If so, return that declaration. Otherwise return NULL.
1298 Decl *PetScan::initialization_declaration(Stmt *init)
1300 DeclStmt *decl;
1302 if (init->getStmtClass() != Stmt::DeclStmtClass)
1303 return NULL;
1305 decl = cast<DeclStmt>(init);
1307 if (!decl->isSingleDecl())
1308 return NULL;
1310 return decl->getSingleDecl();
1313 /* Given the assignment operator in the initialization of a for loop,
1314 * extract the induction variable, i.e., the (integer)variable being
1315 * assigned.
1317 ValueDecl *PetScan::extract_induction_variable(BinaryOperator *init)
1319 Expr *lhs;
1320 DeclRefExpr *ref;
1321 ValueDecl *decl;
1322 const Type *type;
1324 lhs = init->getLHS();
1325 if (lhs->getStmtClass() != Stmt::DeclRefExprClass) {
1326 unsupported(init);
1327 return NULL;
1330 ref = cast<DeclRefExpr>(lhs);
1331 decl = ref->getDecl();
1332 type = decl->getType().getTypePtr();
1334 if (!type->isIntegerType()) {
1335 unsupported(lhs);
1336 return NULL;
1339 return decl;
1342 /* Given the initialization statement of a for loop and the single
1343 * declaration in this initialization statement,
1344 * extract the induction variable, i.e., the (integer) variable being
1345 * declared.
1347 VarDecl *PetScan::extract_induction_variable(Stmt *init, Decl *decl)
1349 VarDecl *vd;
1351 vd = cast<VarDecl>(decl);
1353 const QualType type = vd->getType();
1354 if (!type->isIntegerType()) {
1355 unsupported(init);
1356 return NULL;
1359 if (!vd->getInit()) {
1360 unsupported(init);
1361 return NULL;
1364 return vd;
1367 /* Check that op is of the form iv++ or iv--.
1368 * "inc" is accordingly set to 1 or -1.
1370 bool PetScan::check_unary_increment(UnaryOperator *op, clang::ValueDecl *iv,
1371 isl_int &inc)
1373 Expr *sub;
1374 DeclRefExpr *ref;
1376 if (!op->isIncrementDecrementOp()) {
1377 unsupported(op);
1378 return false;
1381 if (op->isIncrementOp())
1382 isl_int_set_si(inc, 1);
1383 else
1384 isl_int_set_si(inc, -1);
1386 sub = op->getSubExpr();
1387 if (sub->getStmtClass() != Stmt::DeclRefExprClass) {
1388 unsupported(op);
1389 return false;
1392 ref = cast<DeclRefExpr>(sub);
1393 if (ref->getDecl() != iv) {
1394 unsupported(op);
1395 return false;
1398 return true;
1401 /* If the isl_pw_aff on which isl_pw_aff_foreach_piece is called
1402 * has a single constant expression on a universe domain, then
1403 * put this constant in *user.
1405 static int extract_cst(__isl_take isl_set *set, __isl_take isl_aff *aff,
1406 void *user)
1408 isl_int *inc = (isl_int *)user;
1409 int res = 0;
1411 if (!isl_set_plain_is_universe(set) || !isl_aff_is_cst(aff))
1412 res = -1;
1413 else
1414 isl_aff_get_constant(aff, inc);
1416 isl_set_free(set);
1417 isl_aff_free(aff);
1419 return res;
1422 /* Check if op is of the form
1424 * iv = iv + inc
1426 * with inc a constant and set "inc" accordingly.
1428 * We extract an affine expression from the RHS and the subtract iv.
1429 * The result should be a constant.
1431 bool PetScan::check_binary_increment(BinaryOperator *op, clang::ValueDecl *iv,
1432 isl_int &inc)
1434 Expr *lhs;
1435 DeclRefExpr *ref;
1436 isl_id *id;
1437 isl_space *dim;
1438 isl_aff *aff;
1439 isl_pw_aff *val;
1441 if (op->getOpcode() != BO_Assign) {
1442 unsupported(op);
1443 return false;
1446 lhs = op->getLHS();
1447 if (lhs->getStmtClass() != Stmt::DeclRefExprClass) {
1448 unsupported(op);
1449 return false;
1452 ref = cast<DeclRefExpr>(lhs);
1453 if (ref->getDecl() != iv) {
1454 unsupported(op);
1455 return false;
1458 val = extract_affine(op->getRHS());
1460 id = isl_id_alloc(ctx, iv->getName().str().c_str(), iv);
1462 dim = isl_space_params_alloc(ctx, 1);
1463 dim = isl_space_set_dim_id(dim, isl_dim_param, 0, id);
1464 aff = isl_aff_zero_on_domain(isl_local_space_from_space(dim));
1465 aff = isl_aff_add_coefficient_si(aff, isl_dim_param, 0, 1);
1467 val = isl_pw_aff_sub(val, isl_pw_aff_from_aff(aff));
1469 if (isl_pw_aff_foreach_piece(val, &extract_cst, &inc) < 0) {
1470 isl_pw_aff_free(val);
1471 unsupported(op);
1472 return false;
1475 isl_pw_aff_free(val);
1477 return true;
1480 /* Check that op is of the form iv += cst or iv -= cst.
1481 * "inc" is set to cst or -cst accordingly.
1483 bool PetScan::check_compound_increment(CompoundAssignOperator *op,
1484 clang::ValueDecl *iv, isl_int &inc)
1486 Expr *lhs, *rhs;
1487 DeclRefExpr *ref;
1488 bool neg = false;
1490 BinaryOperatorKind opcode;
1492 opcode = op->getOpcode();
1493 if (opcode != BO_AddAssign && opcode != BO_SubAssign) {
1494 unsupported(op);
1495 return false;
1497 if (opcode == BO_SubAssign)
1498 neg = true;
1500 lhs = op->getLHS();
1501 if (lhs->getStmtClass() != Stmt::DeclRefExprClass) {
1502 unsupported(op);
1503 return false;
1506 ref = cast<DeclRefExpr>(lhs);
1507 if (ref->getDecl() != iv) {
1508 unsupported(op);
1509 return false;
1512 rhs = op->getRHS();
1514 if (rhs->getStmtClass() == Stmt::UnaryOperatorClass) {
1515 UnaryOperator *op = cast<UnaryOperator>(rhs);
1516 if (op->getOpcode() != UO_Minus) {
1517 unsupported(op);
1518 return false;
1521 neg = !neg;
1523 rhs = op->getSubExpr();
1526 if (rhs->getStmtClass() != Stmt::IntegerLiteralClass) {
1527 unsupported(op);
1528 return false;
1531 extract_int(cast<IntegerLiteral>(rhs), &inc);
1532 if (neg)
1533 isl_int_neg(inc, inc);
1535 return true;
1538 /* Check that the increment of the given for loop increments
1539 * (or decrements) the induction variable "iv".
1540 * "up" is set to true if the induction variable is incremented.
1542 bool PetScan::check_increment(ForStmt *stmt, ValueDecl *iv, isl_int &v)
1544 Stmt *inc = stmt->getInc();
1546 if (!inc) {
1547 unsupported(stmt);
1548 return false;
1551 if (inc->getStmtClass() == Stmt::UnaryOperatorClass)
1552 return check_unary_increment(cast<UnaryOperator>(inc), iv, v);
1553 if (inc->getStmtClass() == Stmt::CompoundAssignOperatorClass)
1554 return check_compound_increment(
1555 cast<CompoundAssignOperator>(inc), iv, v);
1556 if (inc->getStmtClass() == Stmt::BinaryOperatorClass)
1557 return check_binary_increment(cast<BinaryOperator>(inc), iv, v);
1559 unsupported(inc);
1560 return false;
1563 /* Embed the given iteration domain in an extra outer loop
1564 * with induction variable "var".
1565 * If this variable appeared as a parameter in the constraints,
1566 * it is replaced by the new outermost dimension.
1568 static __isl_give isl_set *embed(__isl_take isl_set *set,
1569 __isl_take isl_id *var)
1571 int pos;
1573 set = isl_set_insert_dims(set, isl_dim_set, 0, 1);
1574 pos = isl_set_find_dim_by_id(set, isl_dim_param, var);
1575 if (pos >= 0) {
1576 set = isl_set_equate(set, isl_dim_param, pos, isl_dim_set, 0);
1577 set = isl_set_project_out(set, isl_dim_param, pos, 1);
1580 isl_id_free(var);
1581 return set;
1584 /* Construct a pet_scop for an infinite loop around the given body.
1586 * We extract a pet_scop for the body and then embed it in a loop with
1587 * iteration domain
1589 * { [t] : t >= 0 }
1591 * and schedule
1593 * { [t] -> [t] }
1595 struct pet_scop *PetScan::extract_infinite_loop(Stmt *body)
1597 isl_id *id;
1598 isl_space *dim;
1599 isl_set *domain;
1600 isl_map *sched;
1601 struct pet_scop *scop;
1603 scop = extract(body);
1604 if (!scop)
1605 return NULL;
1607 id = isl_id_alloc(ctx, "t", NULL);
1608 domain = isl_set_nat_universe(isl_space_set_alloc(ctx, 0, 1));
1609 domain = isl_set_set_dim_id(domain, isl_dim_set, 0, isl_id_copy(id));
1610 dim = isl_space_from_domain(isl_set_get_space(domain));
1611 dim = isl_space_add_dims(dim, isl_dim_out, 1);
1612 sched = isl_map_universe(dim);
1613 sched = isl_map_equate(sched, isl_dim_in, 0, isl_dim_out, 0);
1614 scop = pet_scop_embed(scop, domain, sched, id);
1616 return scop;
1619 /* Construct a pet_scop for an infinite loop, i.e., a loop of the form
1621 * for (;;)
1622 * body
1625 struct pet_scop *PetScan::extract_infinite_for(ForStmt *stmt)
1627 return extract_infinite_loop(stmt->getBody());
1630 /* Check if the while loop is of the form
1632 * while (1)
1633 * body
1635 * If so, construct a scop for an infinite loop around body.
1636 * Otherwise, fail.
1638 struct pet_scop *PetScan::extract(WhileStmt *stmt)
1640 Expr *cond;
1641 isl_set *set;
1642 int is_universe;
1644 cond = stmt->getCond();
1645 if (!cond) {
1646 unsupported(stmt);
1647 return NULL;
1650 set = extract_condition(cond);
1651 is_universe = isl_set_plain_is_universe(set);
1652 isl_set_free(set);
1654 if (!is_universe) {
1655 unsupported(stmt);
1656 return NULL;
1659 return extract_infinite_loop(stmt->getBody());
1662 /* Check whether "cond" expresses a simple loop bound
1663 * on the only set dimension.
1664 * In particular, if "up" is set then "cond" should contain only
1665 * upper bounds on the set dimension.
1666 * Otherwise, it should contain only lower bounds.
1668 static bool is_simple_bound(__isl_keep isl_set *cond, isl_int inc)
1670 if (isl_int_is_pos(inc))
1671 return !isl_set_dim_has_lower_bound(cond, isl_dim_set, 0);
1672 else
1673 return !isl_set_dim_has_upper_bound(cond, isl_dim_set, 0);
1676 /* Extend a condition on a given iteration of a loop to one that
1677 * imposes the same condition on all previous iterations.
1678 * "domain" expresses the lower [upper] bound on the iterations
1679 * when up is set [not set].
1681 * In particular, we construct the condition (when up is set)
1683 * forall i' : (domain(i') and i' <= i) => cond(i')
1685 * which is equivalent to
1687 * not exists i' : domain(i') and i' <= i and not cond(i')
1689 * We construct this set by negating cond, applying a map
1691 * { [i'] -> [i] : domain(i') and i' <= i }
1693 * and then negating the result again.
1695 static __isl_give isl_set *valid_for_each_iteration(__isl_take isl_set *cond,
1696 __isl_take isl_set *domain, isl_int inc)
1698 isl_map *previous_to_this;
1700 if (isl_int_is_pos(inc))
1701 previous_to_this = isl_map_lex_le(isl_set_get_space(domain));
1702 else
1703 previous_to_this = isl_map_lex_ge(isl_set_get_space(domain));
1705 previous_to_this = isl_map_intersect_domain(previous_to_this, domain);
1707 cond = isl_set_complement(cond);
1708 cond = isl_set_apply(cond, previous_to_this);
1709 cond = isl_set_complement(cond);
1711 return cond;
1714 /* Construct a domain of the form
1716 * [id] -> { [] : exists a: id = init + a * inc and a >= 0 }
1718 static __isl_give isl_set *strided_domain(__isl_take isl_id *id,
1719 __isl_take isl_pw_aff *init, isl_int inc)
1721 isl_aff *aff;
1722 isl_space *dim;
1723 isl_set *set;
1725 init = isl_pw_aff_insert_dims(init, isl_dim_in, 0, 1);
1726 dim = isl_pw_aff_get_domain_space(init);
1727 aff = isl_aff_zero_on_domain(isl_local_space_from_space(dim));
1728 aff = isl_aff_add_coefficient(aff, isl_dim_in, 0, inc);
1729 init = isl_pw_aff_add(init, isl_pw_aff_from_aff(aff));
1731 dim = isl_space_set_alloc(isl_pw_aff_get_ctx(init), 1, 1);
1732 dim = isl_space_set_dim_id(dim, isl_dim_param, 0, id);
1733 aff = isl_aff_zero_on_domain(isl_local_space_from_space(dim));
1734 aff = isl_aff_add_coefficient_si(aff, isl_dim_param, 0, 1);
1736 set = isl_pw_aff_eq_set(isl_pw_aff_from_aff(aff), init);
1738 set = isl_set_lower_bound_si(set, isl_dim_set, 0, 0);
1740 return isl_set_project_out(set, isl_dim_set, 0, 1);
1743 static unsigned get_type_size(ValueDecl *decl)
1745 return decl->getASTContext().getIntWidth(decl->getType());
1748 /* Assuming "cond" represents a simple bound on a loop where the loop
1749 * iterator "iv" is incremented (or decremented) by one, check if wrapping
1750 * is possible.
1752 * Under the given assumptions, wrapping is only possible if "cond" allows
1753 * for the last value before wrapping, i.e., 2^width - 1 in case of an
1754 * increasing iterator and 0 in case of a decreasing iterator.
1756 static bool can_wrap(__isl_keep isl_set *cond, ValueDecl *iv, isl_int inc)
1758 bool cw;
1759 isl_int limit;
1760 isl_set *test;
1762 test = isl_set_copy(cond);
1764 isl_int_init(limit);
1765 if (isl_int_is_neg(inc))
1766 isl_int_set_si(limit, 0);
1767 else {
1768 isl_int_set_si(limit, 1);
1769 isl_int_mul_2exp(limit, limit, get_type_size(iv));
1770 isl_int_sub_ui(limit, limit, 1);
1773 test = isl_set_fix(cond, isl_dim_set, 0, limit);
1774 cw = !isl_set_is_empty(test);
1775 isl_set_free(test);
1777 isl_int_clear(limit);
1779 return cw;
1782 /* Given a one-dimensional space, construct the following mapping on this
1783 * space
1785 * { [v] -> [v mod 2^width] }
1787 * where width is the number of bits used to represent the values
1788 * of the unsigned variable "iv".
1790 static __isl_give isl_map *compute_wrapping(__isl_take isl_space *dim,
1791 ValueDecl *iv)
1793 isl_int mod;
1794 isl_aff *aff;
1795 isl_map *map;
1797 isl_int_init(mod);
1798 isl_int_set_si(mod, 1);
1799 isl_int_mul_2exp(mod, mod, get_type_size(iv));
1801 aff = isl_aff_zero_on_domain(isl_local_space_from_space(dim));
1802 aff = isl_aff_add_coefficient_si(aff, isl_dim_in, 0, 1);
1803 aff = isl_aff_mod(aff, mod);
1805 isl_int_clear(mod);
1807 return isl_map_from_basic_map(isl_basic_map_from_aff(aff));
1808 map = isl_map_reverse(map);
1811 /* Construct a pet_scop for a for statement.
1812 * The for loop is required to be of the form
1814 * for (i = init; condition; ++i)
1816 * or
1818 * for (i = init; condition; --i)
1820 * The initialization of the for loop should either be an assignment
1821 * to an integer variable, or a declaration of such a variable with
1822 * initialization.
1824 * We extract a pet_scop for the body and then embed it in a loop with
1825 * iteration domain and schedule
1827 * { [i] : i >= init and condition' }
1828 * { [i] -> [i] }
1830 * or
1832 * { [i] : i <= init and condition' }
1833 * { [i] -> [-i] }
1835 * Where condition' is equal to condition if the latter is
1836 * a simple upper [lower] bound and a condition that is extended
1837 * to apply to all previous iterations otherwise.
1839 * If the stride of the loop is not 1, then "i >= init" is replaced by
1841 * (exists a: i = init + stride * a and a >= 0)
1843 * If the loop iterator i is unsigned, then wrapping may occur.
1844 * During the computation, we work with a virtual iterator that
1845 * does not wrap. However, the condition in the code applies
1846 * to the wrapped value, so we need to change condition(i)
1847 * into condition([i % 2^width]).
1848 * After computing the virtual domain and schedule, we apply
1849 * the function { [v] -> [v % 2^width] } to the domain and the domain
1850 * of the schedule. In order not to lose any information, we also
1851 * need to intersect the domain of the schedule with the virtual domain
1852 * first, since some iterations in the wrapped domain may be scheduled
1853 * several times, typically an infinite number of times.
1854 * Note that there is no need to perform this final wrapping
1855 * if the loop condition (after wrapping) is simple.
1857 * Wrapping on unsigned iterators can be avoided entirely if
1858 * loop condition is simple, the loop iterator is incremented
1859 * [decremented] by one and the last value before wrapping cannot
1860 * possibly satisfy the loop condition.
1862 * Before extracting a pet_scop from the body we remove all
1863 * assignments in assigned_value to variables that are assigned
1864 * somewhere in the body of the loop.
1866 struct pet_scop *PetScan::extract_for(ForStmt *stmt)
1868 BinaryOperator *ass;
1869 Decl *decl;
1870 Stmt *init;
1871 Expr *lhs, *rhs;
1872 ValueDecl *iv;
1873 isl_space *dim;
1874 isl_set *domain;
1875 isl_map *sched;
1876 isl_set *cond;
1877 isl_id *id;
1878 struct pet_scop *scop;
1879 assigned_value_cache cache(assigned_value);
1880 isl_int inc;
1881 bool is_one;
1882 bool is_unsigned;
1883 bool is_simple;
1884 isl_map *wrap = NULL;
1886 if (!stmt->getInit() && !stmt->getCond() && !stmt->getInc())
1887 return extract_infinite_for(stmt);
1889 init = stmt->getInit();
1890 if (!init) {
1891 unsupported(stmt);
1892 return NULL;
1894 if ((ass = initialization_assignment(init)) != NULL) {
1895 iv = extract_induction_variable(ass);
1896 if (!iv)
1897 return NULL;
1898 lhs = ass->getLHS();
1899 rhs = ass->getRHS();
1900 } else if ((decl = initialization_declaration(init)) != NULL) {
1901 VarDecl *var = extract_induction_variable(init, decl);
1902 if (!var)
1903 return NULL;
1904 iv = var;
1905 rhs = var->getInit();
1906 lhs = DeclRefExpr::Create(iv->getASTContext(),
1907 var->getQualifierLoc(), iv, var->getInnerLocStart(),
1908 var->getType(), VK_LValue);
1909 } else {
1910 unsupported(stmt->getInit());
1911 return NULL;
1914 isl_int_init(inc);
1915 if (!check_increment(stmt, iv, inc)) {
1916 isl_int_clear(inc);
1917 return NULL;
1920 is_unsigned = iv->getType()->isUnsignedIntegerType();
1922 assigned_value.erase(iv);
1923 clear_assignments clear(assigned_value);
1924 clear.TraverseStmt(stmt->getBody());
1926 id = isl_id_alloc(ctx, iv->getName().str().c_str(), iv);
1928 is_one = isl_int_is_one(inc) || isl_int_is_negone(inc);
1929 if (is_one)
1930 domain = extract_comparison(isl_int_is_pos(inc) ? BO_GE : BO_LE,
1931 lhs, rhs, init);
1932 else {
1933 isl_pw_aff *lb = extract_affine(rhs);
1934 domain = strided_domain(isl_id_copy(id), lb, inc);
1937 cond = extract_condition(stmt->getCond());
1938 cond = embed(cond, isl_id_copy(id));
1939 domain = embed(domain, isl_id_copy(id));
1940 is_simple = is_simple_bound(cond, inc);
1941 if (is_unsigned &&
1942 (!is_simple || !is_one || can_wrap(cond, iv, inc))) {
1943 wrap = compute_wrapping(isl_set_get_space(cond), iv);
1944 cond = isl_set_apply(cond, isl_map_reverse(isl_map_copy(wrap)));
1945 is_simple = is_simple && is_simple_bound(cond, inc);
1947 if (!is_simple)
1948 cond = valid_for_each_iteration(cond,
1949 isl_set_copy(domain), inc);
1950 domain = isl_set_intersect(domain, cond);
1951 domain = isl_set_set_dim_id(domain, isl_dim_set, 0, isl_id_copy(id));
1952 dim = isl_space_from_domain(isl_set_get_space(domain));
1953 dim = isl_space_add_dims(dim, isl_dim_out, 1);
1954 sched = isl_map_universe(dim);
1955 if (isl_int_is_pos(inc))
1956 sched = isl_map_equate(sched, isl_dim_in, 0, isl_dim_out, 0);
1957 else
1958 sched = isl_map_oppose(sched, isl_dim_in, 0, isl_dim_out, 0);
1960 if (is_unsigned && !is_simple) {
1961 wrap = isl_map_set_dim_id(wrap,
1962 isl_dim_out, 0, isl_id_copy(id));
1963 sched = isl_map_intersect_domain(sched, isl_set_copy(domain));
1964 domain = isl_set_apply(domain, isl_map_copy(wrap));
1965 sched = isl_map_apply_domain(sched, wrap);
1966 } else
1967 isl_map_free(wrap);
1969 scop = extract(stmt->getBody());
1970 scop = pet_scop_embed(scop, domain, sched, id);
1971 assigned_value[iv] = NULL;
1973 isl_int_clear(inc);
1974 return scop;
1977 struct pet_scop *PetScan::extract(CompoundStmt *stmt)
1979 return extract(stmt->children());
1982 /* Look for parameters in any access relation in "expr" that
1983 * refer to non-affine constructs. In particular, these are
1984 * parameters with no name.
1986 * If there are any such parameters, then the domain of the access
1987 * relation, which is still [] at this point, is replaced by
1988 * [[] -> [t_1,...,t_n]], with n the number of these parameters
1989 * (after identifying identical non-affine constructs).
1990 * The parameters are then equated to the corresponding t dimensions
1991 * and subsequently projected out.
1992 * param2pos maps the position of the parameter to the position
1993 * of the corresponding t dimension.
1995 struct pet_expr *PetScan::resolve_nested(struct pet_expr *expr)
1997 int n;
1998 int nparam;
1999 int n_in;
2000 isl_space *dim;
2001 isl_map *map;
2002 std::map<int,int> param2pos;
2004 if (!expr)
2005 return expr;
2007 for (int i = 0; i < expr->n_arg; ++i) {
2008 expr->args[i] = resolve_nested(expr->args[i]);
2009 if (!expr->args[i]) {
2010 pet_expr_free(expr);
2011 return NULL;
2015 if (expr->type != pet_expr_access)
2016 return expr;
2018 nparam = isl_map_dim(expr->acc.access, isl_dim_param);
2019 n = 0;
2020 for (int i = 0; i < nparam; ++i) {
2021 isl_id *id = isl_map_get_dim_id(expr->acc.access,
2022 isl_dim_param, i);
2023 if (id && isl_id_get_user(id) && !isl_id_get_name(id))
2024 n++;
2025 isl_id_free(id);
2028 if (n == 0)
2029 return expr;
2031 expr->n_arg = n;
2032 expr->args = isl_calloc_array(ctx, struct pet_expr *, n);
2033 if (!expr->args)
2034 goto error;
2036 n_in = isl_map_dim(expr->acc.access, isl_dim_in);
2037 for (int i = 0, pos = 0; i < nparam; ++i) {
2038 int j;
2039 isl_id *id = isl_map_get_dim_id(expr->acc.access,
2040 isl_dim_param, i);
2041 Expr *nested;
2043 if (!(id && isl_id_get_user(id) && !isl_id_get_name(id))) {
2044 isl_id_free(id);
2045 continue;
2048 nested = (Expr *) isl_id_get_user(id);
2049 expr->args[pos] = extract_expr(nested);
2051 for (j = 0; j < pos; ++j)
2052 if (pet_expr_is_equal(expr->args[j], expr->args[pos]))
2053 break;
2055 if (j < pos) {
2056 pet_expr_free(expr->args[pos]);
2057 param2pos[i] = n_in + j;
2058 n--;
2059 } else
2060 param2pos[i] = n_in + pos++;
2062 isl_id_free(id);
2064 expr->n_arg = n;
2066 dim = isl_map_get_space(expr->acc.access);
2067 dim = isl_space_domain(dim);
2068 dim = isl_space_from_domain(dim);
2069 dim = isl_space_add_dims(dim, isl_dim_out, n);
2070 map = isl_map_universe(dim);
2071 map = isl_map_domain_map(map);
2072 map = isl_map_reverse(map);
2073 expr->acc.access = isl_map_apply_domain(expr->acc.access, map);
2075 for (int i = nparam - 1; i >= 0; --i) {
2076 isl_id *id = isl_map_get_dim_id(expr->acc.access,
2077 isl_dim_param, i);
2078 if (!(id && isl_id_get_user(id) && !isl_id_get_name(id))) {
2079 isl_id_free(id);
2080 continue;
2083 expr->acc.access = isl_map_equate(expr->acc.access,
2084 isl_dim_param, i, isl_dim_in,
2085 param2pos[i]);
2086 expr->acc.access = isl_map_project_out(expr->acc.access,
2087 isl_dim_param, i, 1);
2089 isl_id_free(id);
2092 return expr;
2093 error:
2094 pet_expr_free(expr);
2095 return NULL;
2098 /* Convert a top-level pet_expr to a pet_scop with one statement.
2099 * This mainly involves resolving nested expression parameters
2100 * and setting the name of the iteration space.
2101 * The name is given by "label" if it is non-NULL. Otherwise,
2102 * it is of the form S_<n_stmt>.
2104 struct pet_scop *PetScan::extract(Stmt *stmt, struct pet_expr *expr,
2105 __isl_take isl_id *label)
2107 struct pet_stmt *ps;
2108 SourceLocation loc = stmt->getLocStart();
2109 int line = PP.getSourceManager().getExpansionLineNumber(loc);
2111 expr = resolve_nested(expr);
2112 ps = pet_stmt_from_pet_expr(ctx, line, label, n_stmt++, expr);
2113 return pet_scop_from_pet_stmt(ctx, ps);
2116 /* Check whether "expr" is an affine expression.
2117 * We turn on autodetection so that we won't generate any warnings
2118 * and turn off nesting, so that we won't accept any non-affine constructs.
2120 bool PetScan::is_affine(Expr *expr)
2122 isl_pw_aff *pwaff;
2123 int save_autodetect = autodetect;
2124 bool save_nesting = nesting_enabled;
2126 autodetect = 1;
2127 nesting_enabled = false;
2129 pwaff = extract_affine(expr);
2130 isl_pw_aff_free(pwaff);
2132 autodetect = save_autodetect;
2133 nesting_enabled = save_nesting;
2135 return pwaff != NULL;
2138 /* Check whether "expr" is an affine constraint.
2139 * We turn on autodetection so that we won't generate any warnings
2140 * and turn off nesting, so that we won't accept any non-affine constructs.
2142 bool PetScan::is_affine_condition(Expr *expr)
2144 isl_set *set;
2145 int save_autodetect = autodetect;
2146 bool save_nesting = nesting_enabled;
2148 autodetect = 1;
2149 nesting_enabled = false;
2151 set = extract_condition(expr);
2152 isl_set_free(set);
2154 autodetect = save_autodetect;
2155 nesting_enabled = save_nesting;
2157 return set != NULL;
2160 /* If the top-level expression of "stmt" is an assignment, then
2161 * return that assignment as a BinaryOperator.
2162 * Otherwise return NULL.
2164 static BinaryOperator *top_assignment_or_null(Stmt *stmt)
2166 BinaryOperator *ass;
2168 if (!stmt)
2169 return NULL;
2170 if (stmt->getStmtClass() != Stmt::BinaryOperatorClass)
2171 return NULL;
2173 ass = cast<BinaryOperator>(stmt);
2174 if(ass->getOpcode() != BO_Assign)
2175 return NULL;
2177 return ass;
2180 /* Check if the given if statement is a conditional assignement
2181 * with a non-affine condition. If so, construct a pet_scop
2182 * corresponding to this conditional assignment. Otherwise return NULL.
2184 * In particular we check if "stmt" is of the form
2186 * if (condition)
2187 * a = f(...);
2188 * else
2189 * a = g(...);
2191 * where a is some array or scalar access.
2192 * The constructed pet_scop then corresponds to the expression
2194 * a = condition ? f(...) : g(...)
2196 * All access relations in f(...) are intersected with condition
2197 * while all access relation in g(...) are intersected with the complement.
2199 struct pet_scop *PetScan::extract_conditional_assignment(IfStmt *stmt)
2201 BinaryOperator *ass_then, *ass_else;
2202 isl_map *write_then, *write_else;
2203 isl_set *cond, *comp;
2204 isl_map *map, *map_true, *map_false;
2205 int equal;
2206 struct pet_expr *pe_cond, *pe_then, *pe_else, *pe, *pe_write;
2207 bool save_nesting = nesting_enabled;
2209 ass_then = top_assignment_or_null(stmt->getThen());
2210 ass_else = top_assignment_or_null(stmt->getElse());
2212 if (!ass_then || !ass_else)
2213 return NULL;
2215 if (is_affine_condition(stmt->getCond()))
2216 return NULL;
2218 write_then = extract_access(ass_then->getLHS());
2219 write_else = extract_access(ass_else->getLHS());
2221 equal = isl_map_is_equal(write_then, write_else);
2222 isl_map_free(write_else);
2223 if (equal < 0 || !equal) {
2224 isl_map_free(write_then);
2225 return NULL;
2228 nesting_enabled = allow_nested;
2229 cond = extract_condition(stmt->getCond());
2230 nesting_enabled = save_nesting;
2231 comp = isl_set_complement(isl_set_copy(cond));
2232 map_true = isl_map_from_domain(isl_set_from_params(isl_set_copy(cond)));
2233 map_true = isl_map_add_dims(map_true, isl_dim_out, 1);
2234 map_true = isl_map_fix_si(map_true, isl_dim_out, 0, 1);
2235 map_false = isl_map_from_domain(isl_set_from_params(isl_set_copy(comp)));
2236 map_false = isl_map_add_dims(map_false, isl_dim_out, 1);
2237 map_false = isl_map_fix_si(map_false, isl_dim_out, 0, 0);
2238 map = isl_map_union_disjoint(map_true, map_false);
2240 pe_cond = pet_expr_from_access(map);
2242 pe_then = extract_expr(ass_then->getRHS());
2243 pe_then = pet_expr_restrict(pe_then, cond);
2244 pe_else = extract_expr(ass_else->getRHS());
2245 pe_else = pet_expr_restrict(pe_else, comp);
2247 pe = pet_expr_new_ternary(ctx, pe_cond, pe_then, pe_else);
2248 pe_write = pet_expr_from_access(write_then);
2249 if (pe_write) {
2250 pe_write->acc.write = 1;
2251 pe_write->acc.read = 0;
2253 pe = pet_expr_new_binary(ctx, pet_op_assign, pe_write, pe);
2254 return extract(stmt, pe);
2257 /* Create an access to a virtual array representing the result
2258 * of a condition.
2259 * Unlike other accessed data, the id of the array is NULL as
2260 * there is no ValueDecl in the program corresponding to the virtual
2261 * array.
2262 * The array starts out as a scalar, but grows along with the
2263 * statement writing to the array in pet_scop_embed.
2265 static __isl_give isl_map *create_test_access(isl_ctx *ctx, int test_nr)
2267 isl_space *dim = isl_space_alloc(ctx, 0, 0, 0);
2268 isl_id *id;
2269 char name[50];
2271 snprintf(name, sizeof(name), "__pet_test_%d", test_nr);
2272 id = isl_id_alloc(ctx, name, NULL);
2273 dim = isl_space_set_tuple_id(dim, isl_dim_out, id);
2274 return isl_map_universe(dim);
2277 /* Create a pet_scop with a single statement evaluating "cond"
2278 * and writing the result to a virtual scalar, as expressed by
2279 * "access".
2281 struct pet_scop *PetScan::extract_non_affine_condition(Expr *cond,
2282 __isl_take isl_map *access)
2284 struct pet_expr *expr, *write;
2285 struct pet_stmt *ps;
2286 SourceLocation loc = cond->getLocStart();
2287 int line = PP.getSourceManager().getExpansionLineNumber(loc);
2289 write = pet_expr_from_access(access);
2290 if (write) {
2291 write->acc.write = 1;
2292 write->acc.read = 0;
2294 expr = extract_expr(cond);
2295 expr = pet_expr_new_binary(ctx, pet_op_assign, write, expr);
2296 ps = pet_stmt_from_pet_expr(ctx, line, NULL, n_stmt++, expr);
2297 return pet_scop_from_pet_stmt(ctx, ps);
2300 /* Add an array with the given extend ("access") to the list
2301 * of arrays in "scop" and return the extended pet_scop.
2302 * The array is marked as attaining values 0 and 1 only.
2304 static struct pet_scop *scop_add_array(struct pet_scop *scop,
2305 __isl_keep isl_map *access)
2307 isl_ctx *ctx = isl_map_get_ctx(access);
2308 isl_space *dim;
2309 struct pet_array **arrays;
2310 struct pet_array *array;
2312 if (!scop)
2313 return NULL;
2314 if (!ctx)
2315 goto error;
2317 arrays = isl_realloc_array(ctx, scop->arrays, struct pet_array *,
2318 scop->n_array + 1);
2319 if (!arrays)
2320 goto error;
2321 scop->arrays = arrays;
2323 array = isl_calloc_type(ctx, struct pet_array);
2324 if (!array)
2325 goto error;
2327 array->extent = isl_map_range(isl_map_copy(access));
2328 dim = isl_space_params_alloc(ctx, 0);
2329 array->context = isl_set_universe(dim);
2330 dim = isl_space_set_alloc(ctx, 0, 1);
2331 array->value_bounds = isl_set_universe(dim);
2332 array->value_bounds = isl_set_lower_bound_si(array->value_bounds,
2333 isl_dim_set, 0, 0);
2334 array->value_bounds = isl_set_upper_bound_si(array->value_bounds,
2335 isl_dim_set, 0, 1);
2336 array->element_type = strdup("int");
2338 scop->arrays[scop->n_array] = array;
2339 scop->n_array++;
2341 if (!array->extent || !array->context)
2342 goto error;
2344 return scop;
2345 error:
2346 pet_scop_free(scop);
2347 return NULL;
2350 /* Construct a pet_scop for an if statement.
2352 * If the condition fits the pattern of a conditional assignment,
2353 * then it is handled by extract_conditional_assignment.
2354 * Otherwise, we do the following.
2356 * If the condition is affine, then the condition is added
2357 * to the iteration domains of the then branch, while the
2358 * opposite of the condition in added to the iteration domains
2359 * of the else branch, if any.
2361 * If the condition is not-affine, then we create a separate
2362 * statement that write the result of the condition to a virtual scalar.
2363 * A constraint requiring the value of this virtual scalar to be one
2364 * is added to the iteration domains of the then branch.
2365 * Similarly, a constraint requiring the value of this virtual scalar
2366 * to be zero is added to the iteration domains of the else branch, if any.
2367 * We adjust the schedules to ensure that the virtual scalar is written
2368 * before it is read.
2370 struct pet_scop *PetScan::extract(IfStmt *stmt)
2372 struct pet_scop *scop_then, *scop_else, *scop;
2373 assigned_value_cache cache(assigned_value);
2374 isl_map *test_access = NULL;
2376 scop = extract_conditional_assignment(stmt);
2377 if (scop)
2378 return scop;
2380 if (allow_nested && !is_affine_condition(stmt->getCond())) {
2381 test_access = create_test_access(ctx, n_test++);
2382 scop = extract_non_affine_condition(stmt->getCond(),
2383 isl_map_copy(test_access));
2384 scop = scop_add_array(scop, test_access);
2385 if (!scop) {
2386 isl_map_free(test_access);
2387 return NULL;
2391 scop_then = extract(stmt->getThen());
2393 if (stmt->getElse()) {
2394 scop_else = extract(stmt->getElse());
2395 if (autodetect) {
2396 if (scop_then && !scop_else) {
2397 partial = true;
2398 pet_scop_free(scop);
2399 isl_map_free(test_access);
2400 return scop_then;
2402 if (!scop_then && scop_else) {
2403 partial = true;
2404 pet_scop_free(scop);
2405 isl_map_free(test_access);
2406 return scop_else;
2411 if (!scop) {
2412 isl_set *cond;
2413 cond = extract_condition(stmt->getCond());
2414 scop = pet_scop_restrict(scop_then, isl_set_copy(cond));
2416 if (stmt->getElse()) {
2417 cond = isl_set_complement(cond);
2418 scop_else = pet_scop_restrict(scop_else, cond);
2419 scop = pet_scop_add(ctx, scop, scop_else);
2420 } else
2421 isl_set_free(cond);
2422 } else {
2423 scop = pet_scop_prefix(scop, 0);
2424 scop_then = pet_scop_prefix(scop_then, 1);
2425 scop_then = pet_scop_filter(scop_then,
2426 isl_map_copy(test_access), 1);
2427 scop = pet_scop_add(ctx, scop, scop_then);
2428 if (stmt->getElse()) {
2429 scop_else = pet_scop_prefix(scop_else, 1);
2430 scop_else = pet_scop_filter(scop_else, test_access, 0);
2431 scop = pet_scop_add(ctx, scop, scop_else);
2432 } else
2433 isl_map_free(test_access);
2436 return scop;
2439 /* Try and construct a pet_scop for a label statement.
2440 * We currently only allow labels on expression statements.
2442 struct pet_scop *PetScan::extract(LabelStmt *stmt)
2444 isl_id *label;
2445 Stmt *sub;
2447 sub = stmt->getSubStmt();
2448 if (!isa<Expr>(sub)) {
2449 unsupported(stmt);
2450 return NULL;
2453 label = isl_id_alloc(ctx, stmt->getName(), NULL);
2455 return extract(sub, extract_expr(cast<Expr>(sub)), label);
2458 /* Try and construct a pet_scop corresponding to "stmt".
2460 struct pet_scop *PetScan::extract(Stmt *stmt)
2462 if (isa<Expr>(stmt))
2463 return extract(stmt, extract_expr(cast<Expr>(stmt)));
2465 switch (stmt->getStmtClass()) {
2466 case Stmt::WhileStmtClass:
2467 return extract(cast<WhileStmt>(stmt));
2468 case Stmt::ForStmtClass:
2469 return extract_for(cast<ForStmt>(stmt));
2470 case Stmt::IfStmtClass:
2471 return extract(cast<IfStmt>(stmt));
2472 case Stmt::CompoundStmtClass:
2473 return extract(cast<CompoundStmt>(stmt));
2474 case Stmt::LabelStmtClass:
2475 return extract(cast<LabelStmt>(stmt));
2476 default:
2477 unsupported(stmt);
2480 return NULL;
2483 /* Try and construct a pet_scop corresponding to (part of)
2484 * a sequence of statements.
2486 struct pet_scop *PetScan::extract(StmtRange stmt_range)
2488 pet_scop *scop;
2489 StmtIterator i;
2490 int j;
2491 bool partial_range = false;
2493 scop = pet_scop_empty(ctx);
2494 for (i = stmt_range.first, j = 0; i != stmt_range.second; ++i, ++j) {
2495 Stmt *child = *i;
2496 struct pet_scop *scop_i;
2497 scop_i = extract(child);
2498 if (scop && partial) {
2499 pet_scop_free(scop_i);
2500 break;
2502 scop_i = pet_scop_prefix(scop_i, j);
2503 if (autodetect) {
2504 if (scop_i)
2505 scop = pet_scop_add(ctx, scop, scop_i);
2506 else
2507 partial_range = true;
2508 if (scop->n_stmt != 0 && !scop_i)
2509 partial = true;
2510 } else {
2511 scop = pet_scop_add(ctx, scop, scop_i);
2513 if (partial)
2514 break;
2517 if (scop && partial_range)
2518 partial = true;
2520 return scop;
2523 /* Check if the scop marked by the user is exactly this Stmt
2524 * or part of this Stmt.
2525 * If so, return a pet_scop corresponding to the marked region.
2526 * Otherwise, return NULL.
2528 struct pet_scop *PetScan::scan(Stmt *stmt)
2530 SourceManager &SM = PP.getSourceManager();
2531 unsigned start_off, end_off;
2533 start_off = SM.getFileOffset(stmt->getLocStart());
2534 end_off = SM.getFileOffset(stmt->getLocEnd());
2536 if (start_off > loc.end)
2537 return NULL;
2538 if (end_off < loc.start)
2539 return NULL;
2540 if (start_off >= loc.start && end_off <= loc.end) {
2541 return extract(stmt);
2544 StmtIterator start;
2545 for (start = stmt->child_begin(); start != stmt->child_end(); ++start) {
2546 Stmt *child = *start;
2547 if (!child)
2548 continue;
2549 start_off = SM.getFileOffset(child->getLocStart());
2550 end_off = SM.getFileOffset(child->getLocEnd());
2551 if (start_off < loc.start && end_off > loc.end)
2552 return scan(child);
2553 if (start_off >= loc.start)
2554 break;
2557 StmtIterator end;
2558 for (end = start; end != stmt->child_end(); ++end) {
2559 Stmt *child = *end;
2560 start_off = SM.getFileOffset(child->getLocStart());
2561 if (start_off >= loc.end)
2562 break;
2565 return extract(StmtRange(start, end));
2568 /* Set the size of index "pos" of "array" to "size".
2569 * In particular, add a constraint of the form
2571 * i_pos < size
2573 * to array->extent and a constraint of the form
2575 * size >= 0
2577 * to array->context.
2579 static struct pet_array *update_size(struct pet_array *array, int pos,
2580 __isl_take isl_pw_aff *size)
2582 isl_set *valid;
2583 isl_set *univ;
2584 isl_set *bound;
2585 isl_space *dim;
2586 isl_aff *aff;
2587 isl_pw_aff *index;
2588 isl_id *id;
2590 valid = isl_pw_aff_nonneg_set(isl_pw_aff_copy(size));
2591 array->context = isl_set_intersect(array->context, valid);
2593 dim = isl_set_get_space(array->extent);
2594 aff = isl_aff_zero_on_domain(isl_local_space_from_space(dim));
2595 aff = isl_aff_add_coefficient_si(aff, isl_dim_in, pos, 1);
2596 univ = isl_set_universe(isl_aff_get_domain_space(aff));
2597 index = isl_pw_aff_alloc(univ, aff);
2599 size = isl_pw_aff_add_dims(size, isl_dim_in,
2600 isl_set_dim(array->extent, isl_dim_set));
2601 id = isl_set_get_tuple_id(array->extent);
2602 size = isl_pw_aff_set_tuple_id(size, isl_dim_in, id);
2603 bound = isl_pw_aff_lt_set(index, size);
2605 array->extent = isl_set_intersect(array->extent, bound);
2607 if (!array->context || !array->extent)
2608 goto error;
2610 return array;
2611 error:
2612 pet_array_free(array);
2613 return NULL;
2616 /* Figure out the size of the array at position "pos" and all
2617 * subsequent positions from "type" and update "array" accordingly.
2619 struct pet_array *PetScan::set_upper_bounds(struct pet_array *array,
2620 const Type *type, int pos)
2622 const ArrayType *atype;
2623 isl_pw_aff *size;
2625 if (!array)
2626 return NULL;
2628 if (type->isPointerType()) {
2629 type = type->getPointeeType().getTypePtr();
2630 return set_upper_bounds(array, type, pos + 1);
2632 if (!type->isArrayType())
2633 return array;
2635 type = type->getCanonicalTypeInternal().getTypePtr();
2636 atype = cast<ArrayType>(type);
2638 if (type->isConstantArrayType()) {
2639 const ConstantArrayType *ca = cast<ConstantArrayType>(atype);
2640 size = extract_affine(ca->getSize());
2641 array = update_size(array, pos, size);
2642 } else if (type->isVariableArrayType()) {
2643 const VariableArrayType *vla = cast<VariableArrayType>(atype);
2644 size = extract_affine(vla->getSizeExpr());
2645 array = update_size(array, pos, size);
2648 type = atype->getElementType().getTypePtr();
2650 return set_upper_bounds(array, type, pos + 1);
2653 /* Construct and return a pet_array corresponding to the variable "decl".
2654 * In particular, initialize array->extent to
2656 * { name[i_1,...,i_d] : i_1,...,i_d >= 0 }
2658 * and then call set_upper_bounds to set the upper bounds on the indices
2659 * based on the type of the variable.
2661 struct pet_array *PetScan::extract_array(isl_ctx *ctx, ValueDecl *decl)
2663 struct pet_array *array;
2664 QualType qt = decl->getType();
2665 const Type *type = qt.getTypePtr();
2666 int depth = array_depth(type);
2667 QualType base = base_type(qt);
2668 string name;
2669 isl_id *id;
2670 isl_space *dim;
2672 array = isl_calloc_type(ctx, struct pet_array);
2673 if (!array)
2674 return NULL;
2676 id = isl_id_alloc(ctx, decl->getName().str().c_str(), decl);
2677 dim = isl_space_set_alloc(ctx, 0, depth);
2678 dim = isl_space_set_tuple_id(dim, isl_dim_set, id);
2680 array->extent = isl_set_nat_universe(dim);
2682 dim = isl_space_params_alloc(ctx, 0);
2683 array->context = isl_set_universe(dim);
2685 array = set_upper_bounds(array, type, 0);
2686 if (!array)
2687 return NULL;
2689 name = base.getAsString();
2690 array->element_type = strdup(name.c_str());
2692 return array;
2695 /* Construct a list of pet_arrays, one for each array (or scalar)
2696 * accessed inside "scop" add this list to "scop" and return the result.
2698 * The context of "scop" is updated with the intesection of
2699 * the contexts of all arrays, i.e., constraints on the parameters
2700 * that ensure that the arrays have a valid (non-negative) size.
2702 struct pet_scop *PetScan::scan_arrays(struct pet_scop *scop)
2704 int i;
2705 set<ValueDecl *> arrays;
2706 set<ValueDecl *>::iterator it;
2707 int n_array;
2708 struct pet_array **scop_arrays;
2710 if (!scop)
2711 return NULL;
2713 pet_scop_collect_arrays(scop, arrays);
2714 if (arrays.size() == 0)
2715 return scop;
2717 n_array = scop->n_array;
2719 scop_arrays = isl_realloc_array(ctx, scop->arrays, struct pet_array *,
2720 n_array + arrays.size());
2721 if (!scop_arrays)
2722 goto error;
2723 scop->arrays = scop_arrays;
2725 for (it = arrays.begin(), i = 0; it != arrays.end(); ++it, ++i) {
2726 struct pet_array *array;
2727 scop->arrays[n_array + i] = array = extract_array(ctx, *it);
2728 if (!scop->arrays[n_array + i])
2729 goto error;
2730 scop->n_array++;
2731 scop->context = isl_set_intersect(scop->context,
2732 isl_set_copy(array->context));
2733 if (!scop->context)
2734 goto error;
2737 return scop;
2738 error:
2739 pet_scop_free(scop);
2740 return NULL;
2743 /* Construct a pet_scop from the given function.
2745 struct pet_scop *PetScan::scan(FunctionDecl *fd)
2747 pet_scop *scop;
2748 Stmt *stmt;
2750 stmt = fd->getBody();
2752 if (autodetect)
2753 scop = extract(stmt);
2754 else
2755 scop = scan(stmt);
2756 scop = pet_scop_detect_parameter_accesses(scop);
2757 scop = scan_arrays(scop);
2759 return scop;