add pet_expr_access_pullback_multi_pw_aff
[pet.git] / scan.cc
blob6dfc6da133a197e3ce1b1aa8769b1d04b927df3d
1 /*
2 * Copyright 2011 Leiden University. All rights reserved.
3 * Copyright 2012-2014 Ecole Normale Superieure. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above
13 * copyright notice, this list of conditions and the following
14 * disclaimer in the documentation and/or other materials provided
15 * with the distribution.
17 * THIS SOFTWARE IS PROVIDED BY LEIDEN UNIVERSITY ''AS IS'' AND ANY
18 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
20 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL LEIDEN UNIVERSITY OR
21 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
22 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
23 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
24 * OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 * The views and conclusions contained in the software and documentation
30 * are those of the authors and should not be interpreted as
31 * representing official policies, either expressed or implied, of
32 * Leiden University.
33 */
35 #include <string.h>
36 #include <set>
37 #include <map>
38 #include <iostream>
39 #include <llvm/Support/raw_ostream.h>
40 #include <clang/AST/ASTContext.h>
41 #include <clang/AST/ASTDiagnostic.h>
42 #include <clang/AST/Expr.h>
43 #include <clang/AST/RecursiveASTVisitor.h>
45 #include <isl/id.h>
46 #include <isl/space.h>
47 #include <isl/aff.h>
48 #include <isl/set.h>
50 #include "aff.h"
51 #include "array.h"
52 #include "clang.h"
53 #include "context.h"
54 #include "expr.h"
55 #include "nest.h"
56 #include "options.h"
57 #include "scan.h"
58 #include "scop.h"
59 #include "scop_plus.h"
60 #include "skip.h"
62 #include "config.h"
64 using namespace std;
65 using namespace clang;
67 static enum pet_op_type UnaryOperatorKind2pet_op_type(UnaryOperatorKind kind)
69 switch (kind) {
70 case UO_Minus:
71 return pet_op_minus;
72 case UO_Not:
73 return pet_op_not;
74 case UO_LNot:
75 return pet_op_lnot;
76 case UO_PostInc:
77 return pet_op_post_inc;
78 case UO_PostDec:
79 return pet_op_post_dec;
80 case UO_PreInc:
81 return pet_op_pre_inc;
82 case UO_PreDec:
83 return pet_op_pre_dec;
84 default:
85 return pet_op_last;
89 static enum pet_op_type BinaryOperatorKind2pet_op_type(BinaryOperatorKind kind)
91 switch (kind) {
92 case BO_AddAssign:
93 return pet_op_add_assign;
94 case BO_SubAssign:
95 return pet_op_sub_assign;
96 case BO_MulAssign:
97 return pet_op_mul_assign;
98 case BO_DivAssign:
99 return pet_op_div_assign;
100 case BO_Assign:
101 return pet_op_assign;
102 case BO_Add:
103 return pet_op_add;
104 case BO_Sub:
105 return pet_op_sub;
106 case BO_Mul:
107 return pet_op_mul;
108 case BO_Div:
109 return pet_op_div;
110 case BO_Rem:
111 return pet_op_mod;
112 case BO_Shl:
113 return pet_op_shl;
114 case BO_Shr:
115 return pet_op_shr;
116 case BO_EQ:
117 return pet_op_eq;
118 case BO_NE:
119 return pet_op_ne;
120 case BO_LE:
121 return pet_op_le;
122 case BO_GE:
123 return pet_op_ge;
124 case BO_LT:
125 return pet_op_lt;
126 case BO_GT:
127 return pet_op_gt;
128 case BO_And:
129 return pet_op_and;
130 case BO_Xor:
131 return pet_op_xor;
132 case BO_Or:
133 return pet_op_or;
134 case BO_LAnd:
135 return pet_op_land;
136 case BO_LOr:
137 return pet_op_lor;
138 default:
139 return pet_op_last;
143 #if defined(DECLREFEXPR_CREATE_REQUIRES_BOOL)
144 static DeclRefExpr *create_DeclRefExpr(VarDecl *var)
146 return DeclRefExpr::Create(var->getASTContext(), var->getQualifierLoc(),
147 SourceLocation(), var, false, var->getInnerLocStart(),
148 var->getType(), VK_LValue);
150 #elif defined(DECLREFEXPR_CREATE_REQUIRES_SOURCELOCATION)
151 static DeclRefExpr *create_DeclRefExpr(VarDecl *var)
153 return DeclRefExpr::Create(var->getASTContext(), var->getQualifierLoc(),
154 SourceLocation(), var, var->getInnerLocStart(), var->getType(),
155 VK_LValue);
157 #else
158 static DeclRefExpr *create_DeclRefExpr(VarDecl *var)
160 return DeclRefExpr::Create(var->getASTContext(), var->getQualifierLoc(),
161 var, var->getInnerLocStart(), var->getType(), VK_LValue);
163 #endif
165 /* Check if the element type corresponding to the given array type
166 * has a const qualifier.
168 static bool const_base(QualType qt)
170 const Type *type = qt.getTypePtr();
172 if (type->isPointerType())
173 return const_base(type->getPointeeType());
174 if (type->isArrayType()) {
175 const ArrayType *atype;
176 type = type->getCanonicalTypeInternal().getTypePtr();
177 atype = cast<ArrayType>(type);
178 return const_base(atype->getElementType());
181 return qt.isConstQualified();
184 /* Create an isl_id that refers to the named declarator "decl".
186 static __isl_give isl_id *create_decl_id(isl_ctx *ctx, NamedDecl *decl)
188 return isl_id_alloc(ctx, decl->getName().str().c_str(), decl);
191 /* Mark "decl" as having an unknown value in "assigned_value".
193 * If no (known or unknown) value was assigned to "decl" before,
194 * then it may have been treated as a parameter before and may
195 * therefore appear in a value assigned to another variable.
196 * If so, this assignment needs to be turned into an unknown value too.
198 static void clear_assignment(map<ValueDecl *, isl_pw_aff *> &assigned_value,
199 ValueDecl *decl)
201 map<ValueDecl *, isl_pw_aff *>::iterator it;
203 it = assigned_value.find(decl);
205 assigned_value[decl] = NULL;
207 if (it != assigned_value.end())
208 return;
210 for (it = assigned_value.begin(); it != assigned_value.end(); ++it) {
211 isl_pw_aff *pa = it->second;
212 int nparam = isl_pw_aff_dim(pa, isl_dim_param);
214 for (int i = 0; i < nparam; ++i) {
215 isl_id *id;
217 if (!isl_pw_aff_has_dim_id(pa, isl_dim_param, i))
218 continue;
219 id = isl_pw_aff_get_dim_id(pa, isl_dim_param, i);
220 if (isl_id_get_user(id) == decl)
221 it->second = NULL;
222 isl_id_free(id);
227 /* Look for any assignments to scalar variables in part of the parse
228 * tree and set assigned_value to NULL for each of them.
229 * Also reset assigned_value if the address of a scalar variable
230 * is being taken. As an exception, if the address is passed to a function
231 * that is declared to receive a const pointer, then assigned_value is
232 * not reset.
234 * This ensures that we won't use any previously stored value
235 * in the current subtree and its parents.
237 struct clear_assignments : RecursiveASTVisitor<clear_assignments> {
238 map<ValueDecl *, isl_pw_aff *> &assigned_value;
239 set<UnaryOperator *> skip;
241 clear_assignments(map<ValueDecl *, isl_pw_aff *> &assigned_value) :
242 assigned_value(assigned_value) {}
244 /* Check for "address of" operators whose value is passed
245 * to a const pointer argument and add them to "skip", so that
246 * we can skip them in VisitUnaryOperator.
248 bool VisitCallExpr(CallExpr *expr) {
249 FunctionDecl *fd;
250 fd = expr->getDirectCallee();
251 if (!fd)
252 return true;
253 for (int i = 0; i < expr->getNumArgs(); ++i) {
254 Expr *arg = expr->getArg(i);
255 UnaryOperator *op;
256 if (arg->getStmtClass() == Stmt::ImplicitCastExprClass) {
257 ImplicitCastExpr *ice;
258 ice = cast<ImplicitCastExpr>(arg);
259 arg = ice->getSubExpr();
261 if (arg->getStmtClass() != Stmt::UnaryOperatorClass)
262 continue;
263 op = cast<UnaryOperator>(arg);
264 if (op->getOpcode() != UO_AddrOf)
265 continue;
266 if (const_base(fd->getParamDecl(i)->getType()))
267 skip.insert(op);
269 return true;
272 bool VisitUnaryOperator(UnaryOperator *expr) {
273 Expr *arg;
274 DeclRefExpr *ref;
275 ValueDecl *decl;
277 switch (expr->getOpcode()) {
278 case UO_AddrOf:
279 case UO_PostInc:
280 case UO_PostDec:
281 case UO_PreInc:
282 case UO_PreDec:
283 break;
284 default:
285 return true;
287 if (skip.find(expr) != skip.end())
288 return true;
290 arg = expr->getSubExpr();
291 if (arg->getStmtClass() != Stmt::DeclRefExprClass)
292 return true;
293 ref = cast<DeclRefExpr>(arg);
294 decl = ref->getDecl();
295 clear_assignment(assigned_value, decl);
296 return true;
299 bool VisitBinaryOperator(BinaryOperator *expr) {
300 Expr *lhs;
301 DeclRefExpr *ref;
302 ValueDecl *decl;
304 if (!expr->isAssignmentOp())
305 return true;
306 lhs = expr->getLHS();
307 if (lhs->getStmtClass() != Stmt::DeclRefExprClass)
308 return true;
309 ref = cast<DeclRefExpr>(lhs);
310 decl = ref->getDecl();
311 clear_assignment(assigned_value, decl);
312 return true;
316 /* Keep a copy of the currently assigned values.
318 * Any variable that is assigned a value inside the current scope
319 * is removed again when we leave the scope (either because it wasn't
320 * stored in the cache or because it has a different value in the cache).
322 struct assigned_value_cache {
323 map<ValueDecl *, isl_pw_aff *> &assigned_value;
324 map<ValueDecl *, isl_pw_aff *> cache;
326 assigned_value_cache(map<ValueDecl *, isl_pw_aff *> &assigned_value) :
327 assigned_value(assigned_value), cache(assigned_value) {}
328 ~assigned_value_cache() {
329 map<ValueDecl *, isl_pw_aff *>::iterator it = cache.begin();
330 for (it = assigned_value.begin(); it != assigned_value.end();
331 ++it) {
332 if (!it->second ||
333 (cache.find(it->first) != cache.end() &&
334 cache[it->first] != it->second))
335 cache[it->first] = NULL;
337 assigned_value = cache;
341 /* Convert the mapping from identifiers to values in "assigned_value"
342 * to a pet_context to be used by pet_expr_extract_*.
343 * In particular, the clang identifiers are wrapped in an isl_id and
344 * a NULL value (representing an unknown value) is replaced by a NaN.
346 static __isl_give pet_context *convert_assignments(isl_ctx *ctx,
347 map<ValueDecl *, isl_pw_aff *> &assigned_value)
349 pet_context *pc;
350 map<ValueDecl *, isl_pw_aff *>::iterator it;
352 pc = pet_context_alloc(isl_space_set_alloc(ctx, 0, 0));
354 for (it = assigned_value.begin(); it != assigned_value.end(); ++it) {
355 ValueDecl *decl = it->first;
356 isl_pw_aff *pa = it->second;
357 isl_id *id;
359 id = create_decl_id(ctx, decl);
360 if (pa)
361 pc = pet_context_set_value(pc, id, isl_pw_aff_copy(pa));
362 else
363 pc = pet_context_mark_unknown(pc, id);
366 return pc;
369 /* Insert an expression into the collection of expressions,
370 * provided it is not already in there.
371 * The isl_pw_affs are freed in the destructor.
373 void PetScan::insert_expression(__isl_take isl_pw_aff *expr)
375 std::set<isl_pw_aff *>::iterator it;
377 if (expressions.find(expr) == expressions.end())
378 expressions.insert(expr);
379 else
380 isl_pw_aff_free(expr);
383 PetScan::~PetScan()
385 std::set<isl_pw_aff *>::iterator it;
387 for (it = expressions.begin(); it != expressions.end(); ++it)
388 isl_pw_aff_free(*it);
390 isl_union_map_free(value_bounds);
393 /* Report a diagnostic, unless autodetect is set.
395 void PetScan::report(Stmt *stmt, unsigned id)
397 if (options->autodetect)
398 return;
400 SourceLocation loc = stmt->getLocStart();
401 DiagnosticsEngine &diag = PP.getDiagnostics();
402 DiagnosticBuilder B = diag.Report(loc, id) << stmt->getSourceRange();
405 /* Called if we found something we (currently) cannot handle.
406 * We'll provide more informative warnings later.
408 * We only actually complain if autodetect is false.
410 void PetScan::unsupported(Stmt *stmt)
412 DiagnosticsEngine &diag = PP.getDiagnostics();
413 unsigned id = diag.getCustomDiagID(DiagnosticsEngine::Warning,
414 "unsupported");
415 report(stmt, id);
418 /* Report a missing prototype, unless autodetect is set.
420 void PetScan::report_prototype_required(Stmt *stmt)
422 DiagnosticsEngine &diag = PP.getDiagnostics();
423 unsigned id = diag.getCustomDiagID(DiagnosticsEngine::Warning,
424 "prototype required");
425 report(stmt, id);
428 /* Report a missing increment, unless autodetect is set.
430 void PetScan::report_missing_increment(Stmt *stmt)
432 DiagnosticsEngine &diag = PP.getDiagnostics();
433 unsigned id = diag.getCustomDiagID(DiagnosticsEngine::Warning,
434 "missing increment");
435 report(stmt, id);
438 /* Extract an integer from "expr".
440 __isl_give isl_val *PetScan::extract_int(isl_ctx *ctx, IntegerLiteral *expr)
442 const Type *type = expr->getType().getTypePtr();
443 int is_signed = type->hasSignedIntegerRepresentation();
444 llvm::APInt val = expr->getValue();
445 int is_negative = is_signed && val.isNegative();
446 isl_val *v;
448 if (is_negative)
449 val = -val;
451 v = extract_unsigned(ctx, val);
453 if (is_negative)
454 v = isl_val_neg(v);
455 return v;
458 /* Extract an integer from "val", which is assumed to be non-negative.
460 __isl_give isl_val *PetScan::extract_unsigned(isl_ctx *ctx,
461 const llvm::APInt &val)
463 unsigned n;
464 const uint64_t *data;
466 data = val.getRawData();
467 n = val.getNumWords();
468 return isl_val_int_from_chunks(ctx, n, sizeof(uint64_t), data);
471 /* Extract an integer from "expr".
472 * Return NULL if "expr" does not (obviously) represent an integer.
474 __isl_give isl_val *PetScan::extract_int(clang::ParenExpr *expr)
476 return extract_int(expr->getSubExpr());
479 /* Extract an integer from "expr".
480 * Return NULL if "expr" does not (obviously) represent an integer.
482 __isl_give isl_val *PetScan::extract_int(clang::Expr *expr)
484 if (expr->getStmtClass() == Stmt::IntegerLiteralClass)
485 return extract_int(ctx, cast<IntegerLiteral>(expr));
486 if (expr->getStmtClass() == Stmt::ParenExprClass)
487 return extract_int(cast<ParenExpr>(expr));
489 unsupported(expr);
490 return NULL;
493 /* Extract an affine expression from the APInt "val", which is assumed
494 * to be non-negative.
495 * If the value of "val" is "v", then the returned expression
496 * is
498 * { [] -> [v] }
500 __isl_give isl_pw_aff *PetScan::extract_affine(const llvm::APInt &val)
502 isl_space *space = isl_space_set_alloc(ctx, 0, 0);
503 isl_local_space *ls = isl_local_space_from_space(isl_space_copy(space));
504 isl_aff *aff = isl_aff_zero_on_domain(ls);
505 isl_set *dom = isl_set_universe(space);
506 isl_val *v;
508 v = extract_unsigned(ctx, val);
509 aff = isl_aff_add_constant_val(aff, v);
511 return isl_pw_aff_alloc(dom, aff);
514 /* Return the number of bits needed to represent the type "qt",
515 * if it is an integer type. Otherwise return 0.
516 * If qt is signed then return the opposite of the number of bits.
518 static int get_type_size(QualType qt, ASTContext &ast_context)
520 int size;
522 if (!qt->isIntegerType())
523 return 0;
525 size = ast_context.getIntWidth(qt);
526 if (!qt->isUnsignedIntegerType())
527 size = -size;
529 return size;
532 /* Return the number of bits needed to represent the type of "decl",
533 * if it is an integer type. Otherwise return 0.
534 * If qt is signed then return the opposite of the number of bits.
536 static int get_type_size(ValueDecl *decl)
538 return get_type_size(decl->getType(), decl->getASTContext());
541 /* Bound parameter "pos" of "set" to the possible values of "decl".
543 static __isl_give isl_set *set_parameter_bounds(__isl_take isl_set *set,
544 unsigned pos, ValueDecl *decl)
546 int type_size;
547 isl_ctx *ctx;
548 isl_val *bound;
550 ctx = isl_set_get_ctx(set);
551 type_size = get_type_size(decl);
552 if (type_size == 0)
553 isl_die(ctx, isl_error_invalid, "not an integer type",
554 return isl_set_free(set));
555 if (type_size > 0) {
556 set = isl_set_lower_bound_si(set, isl_dim_param, pos, 0);
557 bound = isl_val_int_from_ui(ctx, type_size);
558 bound = isl_val_2exp(bound);
559 bound = isl_val_sub_ui(bound, 1);
560 set = isl_set_upper_bound_val(set, isl_dim_param, pos, bound);
561 } else {
562 bound = isl_val_int_from_ui(ctx, -type_size - 1);
563 bound = isl_val_2exp(bound);
564 bound = isl_val_sub_ui(bound, 1);
565 set = isl_set_upper_bound_val(set, isl_dim_param, pos,
566 isl_val_copy(bound));
567 bound = isl_val_neg(bound);
568 bound = isl_val_sub_ui(bound, 1);
569 set = isl_set_lower_bound_val(set, isl_dim_param, pos, bound);
572 return set;
575 /* Return the piecewise affine expression "set ? 1 : 0" defined on "dom".
577 static __isl_give isl_pw_aff *indicator_function(__isl_take isl_set *set,
578 __isl_take isl_set *dom)
580 isl_pw_aff *pa;
581 pa = isl_set_indicator_function(set);
582 pa = isl_pw_aff_intersect_domain(pa, isl_set_coalesce(dom));
583 return pa;
586 /* Extract an affine expression, if possible, from "expr".
587 * Otherwise return NULL.
589 __isl_give isl_pw_aff *PetScan::extract_affine(Expr *expr)
591 pet_expr *pe;
592 pet_context *pc;
593 isl_pw_aff *pa;
595 pe = extract_expr(expr);
596 if (!pe)
597 return NULL;
598 pc = convert_assignments(ctx, assigned_value);
599 pc = pet_context_set_allow_nested(pc, nesting_enabled);
600 pa = pet_expr_extract_affine(pe, pc);
601 if (isl_pw_aff_involves_nan(pa)) {
602 unsupported(expr);
603 pa = isl_pw_aff_free(pa);
605 pet_context_free(pc);
606 pet_expr_free(pe);
608 return pa;
611 __isl_give isl_multi_pw_aff *PetScan::extract_index(ImplicitCastExpr *expr)
613 return extract_index(expr->getSubExpr());
616 /* Return the depth of an array of the given type.
618 static int array_depth(const Type *type)
620 if (type->isPointerType())
621 return 1 + array_depth(type->getPointeeType().getTypePtr());
622 if (type->isArrayType()) {
623 const ArrayType *atype;
624 type = type->getCanonicalTypeInternal().getTypePtr();
625 atype = cast<ArrayType>(type);
626 return 1 + array_depth(atype->getElementType().getTypePtr());
628 return 0;
631 /* Return the depth of the array accessed by the index expression "index".
632 * If "index" is an affine expression, i.e., if it does not access
633 * any array, then return 1.
634 * If "index" represent a member access, i.e., if its range is a wrapped
635 * relation, then return the sum of the depth of the array of structures
636 * and that of the member inside the structure.
638 static int extract_depth(__isl_keep isl_multi_pw_aff *index)
640 isl_id *id;
641 ValueDecl *decl;
643 if (!index)
644 return -1;
646 if (isl_multi_pw_aff_range_is_wrapping(index)) {
647 int domain_depth, range_depth;
648 isl_multi_pw_aff *domain, *range;
650 domain = isl_multi_pw_aff_copy(index);
651 domain = isl_multi_pw_aff_range_factor_domain(domain);
652 domain_depth = extract_depth(domain);
653 isl_multi_pw_aff_free(domain);
654 range = isl_multi_pw_aff_copy(index);
655 range = isl_multi_pw_aff_range_factor_range(range);
656 range_depth = extract_depth(range);
657 isl_multi_pw_aff_free(range);
659 return domain_depth + range_depth;
662 if (!isl_multi_pw_aff_has_tuple_id(index, isl_dim_out))
663 return 1;
665 id = isl_multi_pw_aff_get_tuple_id(index, isl_dim_out);
666 if (!id)
667 return -1;
668 decl = (ValueDecl *) isl_id_get_user(id);
669 isl_id_free(id);
671 return array_depth(decl->getType().getTypePtr());
674 /* Extract an index expression from a reference to a variable.
675 * If the variable has name "A", then the returned index expression
676 * is of the form
678 * { [] -> A[] }
680 __isl_give isl_multi_pw_aff *PetScan::extract_index(DeclRefExpr *expr)
682 return extract_index(expr->getDecl());
685 /* Extract an index expression from a variable.
686 * If the variable has name "A", then the returned index expression
687 * is of the form
689 * { [] -> A[] }
691 __isl_give isl_multi_pw_aff *PetScan::extract_index(ValueDecl *decl)
693 isl_id *id = create_decl_id(ctx, decl);
694 isl_space *space = isl_space_alloc(ctx, 0, 0, 0);
696 space = isl_space_set_tuple_id(space, isl_dim_out, id);
698 return isl_multi_pw_aff_zero(space);
701 /* Extract an index expression from an integer contant.
702 * If the value of the constant is "v", then the returned access relation
703 * is
705 * { [] -> [v] }
707 __isl_give isl_multi_pw_aff *PetScan::extract_index(IntegerLiteral *expr)
709 isl_multi_pw_aff *mpa;
711 mpa = isl_multi_pw_aff_from_pw_aff(extract_affine(expr));
712 return mpa;
715 /* Try and extract an index expression from the given Expr.
716 * Return NULL if it doesn't work out.
718 __isl_give isl_multi_pw_aff *PetScan::extract_index(Expr *expr)
720 switch (expr->getStmtClass()) {
721 case Stmt::ImplicitCastExprClass:
722 return extract_index(cast<ImplicitCastExpr>(expr));
723 case Stmt::DeclRefExprClass:
724 return extract_index(cast<DeclRefExpr>(expr));
725 case Stmt::ArraySubscriptExprClass:
726 return extract_index(cast<ArraySubscriptExpr>(expr));
727 case Stmt::IntegerLiteralClass:
728 return extract_index(cast<IntegerLiteral>(expr));
729 case Stmt::MemberExprClass:
730 return extract_index(cast<MemberExpr>(expr));
731 default:
732 unsupported(expr);
734 return NULL;
737 /* Extract an index expression from the given array subscript expression.
738 * If nesting is allowed in general, then we turn it on while
739 * examining the index expression.
741 * We first extract an index expression from the base.
742 * This will result in an index expression with a range that corresponds
743 * to the earlier indices.
744 * We then extract the current index, restrict its domain
745 * to those values that result in a non-negative index and
746 * append the index to the base index expression.
748 __isl_give isl_multi_pw_aff *PetScan::extract_index(ArraySubscriptExpr *expr)
750 Expr *base = expr->getBase();
751 Expr *idx = expr->getIdx();
752 isl_pw_aff *index;
753 isl_multi_pw_aff *base_access;
754 isl_multi_pw_aff *access;
755 bool save_nesting = nesting_enabled;
757 nesting_enabled = allow_nested;
759 base_access = extract_index(base);
760 index = extract_affine(idx);
762 nesting_enabled = save_nesting;
764 access = pet_array_subscript(base_access, index);
766 return access;
769 /* Extract an index expression from a member expression.
771 * If the base access (to the structure containing the member)
772 * is of the form
774 * [] -> A[..]
776 * and the member is called "f", then the member access is of
777 * the form
779 * [] -> A_f[A[..] -> f[]]
781 * If the member access is to an anonymous struct, then simply return
783 * [] -> A[..]
785 * If the member access in the source code is of the form
787 * A->f
789 * then it is treated as
791 * A[0].f
793 __isl_give isl_multi_pw_aff *PetScan::extract_index(MemberExpr *expr)
795 Expr *base = expr->getBase();
796 FieldDecl *field = cast<FieldDecl>(expr->getMemberDecl());
797 isl_multi_pw_aff *base_access, *field_access;
798 isl_id *id;
799 isl_space *space;
801 base_access = extract_index(base);
803 if (expr->isArrow()) {
804 isl_space *space = isl_space_set_alloc(ctx, 0, 0);
805 isl_local_space *ls = isl_local_space_from_space(space);
806 isl_aff *aff = isl_aff_zero_on_domain(ls);
807 isl_pw_aff *index = isl_pw_aff_from_aff(aff);
808 base_access = pet_array_subscript(base_access, index);
811 if (field->isAnonymousStructOrUnion())
812 return base_access;
814 id = create_decl_id(ctx, field);
815 space = isl_multi_pw_aff_get_domain_space(base_access);
816 space = isl_space_from_domain(space);
817 space = isl_space_set_tuple_id(space, isl_dim_out, id);
818 field_access = isl_multi_pw_aff_zero(space);
820 return pet_array_member(base_access, field_access);
823 /* Check if "expr" calls function "minmax" with two arguments and if so
824 * make lhs and rhs refer to these two arguments.
826 static bool is_minmax(Expr *expr, const char *minmax, Expr *&lhs, Expr *&rhs)
828 CallExpr *call;
829 FunctionDecl *fd;
830 string name;
832 if (expr->getStmtClass() != Stmt::CallExprClass)
833 return false;
835 call = cast<CallExpr>(expr);
836 fd = call->getDirectCallee();
837 if (!fd)
838 return false;
840 if (call->getNumArgs() != 2)
841 return false;
843 name = fd->getDeclName().getAsString();
844 if (name != minmax)
845 return false;
847 lhs = call->getArg(0);
848 rhs = call->getArg(1);
850 return true;
853 /* Check if "expr" is of the form min(lhs, rhs) and if so make
854 * lhs and rhs refer to the two arguments.
856 static bool is_min(Expr *expr, Expr *&lhs, Expr *&rhs)
858 return is_minmax(expr, "min", lhs, rhs);
861 /* Check if "expr" is of the form max(lhs, rhs) and if so make
862 * lhs and rhs refer to the two arguments.
864 static bool is_max(Expr *expr, Expr *&lhs, Expr *&rhs)
866 return is_minmax(expr, "max", lhs, rhs);
869 /* Extract an affine expressions representing the comparison "LHS op RHS"
870 * "comp" is the original statement that "LHS op RHS" is derived from
871 * and is used for diagnostics.
873 * If the comparison is of the form
875 * a <= min(b,c)
877 * then the expression is constructed as the conjunction of
878 * the comparisons
880 * a <= b and a <= c
882 * A similar optimization is performed for max(a,b) <= c.
883 * We do this because that will lead to simpler representations
884 * of the expression.
885 * If isl is ever enhanced to explicitly deal with min and max expressions,
886 * this optimization can be removed.
888 __isl_give isl_pw_aff *PetScan::extract_comparison(BinaryOperatorKind op,
889 Expr *LHS, Expr *RHS, Stmt *comp)
891 isl_pw_aff *lhs;
892 isl_pw_aff *rhs;
893 isl_pw_aff *res;
894 isl_set *cond;
895 isl_set *dom;
896 enum pet_op_type type;
898 if (op == BO_GT)
899 return extract_comparison(BO_LT, RHS, LHS, comp);
900 if (op == BO_GE)
901 return extract_comparison(BO_LE, RHS, LHS, comp);
903 if (op == BO_LT || op == BO_LE) {
904 Expr *expr1, *expr2;
905 if (is_min(RHS, expr1, expr2)) {
906 lhs = extract_comparison(op, LHS, expr1, comp);
907 rhs = extract_comparison(op, LHS, expr2, comp);
908 return pet_and(lhs, rhs);
910 if (is_max(LHS, expr1, expr2)) {
911 lhs = extract_comparison(op, expr1, RHS, comp);
912 rhs = extract_comparison(op, expr2, RHS, comp);
913 return pet_and(lhs, rhs);
917 lhs = extract_affine(LHS);
918 rhs = extract_affine(RHS);
920 type = BinaryOperatorKind2pet_op_type(op);
921 return pet_comparison(type, lhs, rhs);
924 __isl_give isl_pw_aff *PetScan::extract_comparison(BinaryOperator *comp)
926 return extract_comparison(comp->getOpcode(), comp->getLHS(),
927 comp->getRHS(), comp);
930 /* Extract an affine expression from a boolean expression.
931 * In particular, return the expression "expr ? 1 : 0".
932 * Return NULL if we are unable to extract an affine expression.
934 * We first convert the clang::Expr to a pet_expr and
935 * then extract an affine expression from that pet_expr.
937 __isl_give isl_pw_aff *PetScan::extract_condition(Expr *expr)
939 isl_pw_aff *cond;
940 pet_expr *pe;
941 pet_context *pc;
943 if (!expr) {
944 isl_set *u = isl_set_universe(isl_space_set_alloc(ctx, 0, 0));
945 return indicator_function(u, isl_set_copy(u));
948 pe = extract_expr(expr);
949 pc = convert_assignments(ctx, assigned_value);
950 pc = pet_context_set_allow_nested(pc, nesting_enabled);
951 cond = pet_expr_extract_affine_condition(pe, pc);
952 if (isl_pw_aff_involves_nan(cond))
953 cond = isl_pw_aff_free(cond);
954 pet_context_free(pc);
955 pet_expr_free(pe);
956 return cond;
959 /* Mark the given access pet_expr as a write.
961 static __isl_give pet_expr *mark_write(__isl_take pet_expr *access)
963 access = pet_expr_access_set_write(access, 1);
964 access = pet_expr_access_set_read(access, 0);
966 return access;
969 /* Construct a pet_expr representing a unary operator expression.
971 __isl_give pet_expr *PetScan::extract_expr(UnaryOperator *expr)
973 pet_expr *arg;
974 enum pet_op_type op;
976 op = UnaryOperatorKind2pet_op_type(expr->getOpcode());
977 if (op == pet_op_last) {
978 unsupported(expr);
979 return NULL;
982 arg = extract_expr(expr->getSubExpr());
984 if (expr->isIncrementDecrementOp() &&
985 pet_expr_get_type(arg) == pet_expr_access) {
986 arg = mark_write(arg);
987 arg = pet_expr_access_set_read(arg, 1);
990 return pet_expr_new_unary(op, arg);
993 /* If the access expression "expr" writes to a (non-virtual) scalar,
994 * then mark the scalar as having an unknown value in "assigned_value".
996 static int clear_write(__isl_keep pet_expr *expr, void *user)
998 isl_id *id;
999 ValueDecl *decl;
1000 PetScan *ps = (PetScan *) user;
1002 if (!pet_expr_access_is_write(expr))
1003 return 0;
1004 if (!pet_expr_is_scalar_access(expr))
1005 return 0;
1007 id = pet_expr_access_get_id(expr);
1008 decl = (ValueDecl *) isl_id_get_user(id);
1009 isl_id_free(id);
1011 if (decl)
1012 clear_assignment(ps->assigned_value, decl);
1014 return 0;
1017 /* Take into account the writes in "stmt".
1018 * That is, first mark all scalar variables that are written by "stmt"
1019 * as having an unknown value. Afterwards,
1020 * if "stmt" is a top-level (i.e., unconditional) assignment
1021 * to a scalar variable, then update "assigned_value" accordingly.
1023 * In particular, if the lhs of the assignment is a scalar variable, then mark
1024 * the variable as having been assigned. If, furthermore, the rhs
1025 * is an affine expression, then keep track of this value in assigned_value
1026 * so that we can plug it in when we later come across the same variable.
1028 * We skip assignments to virtual arrays (those with NULL user pointer).
1030 void PetScan::handle_writes(struct pet_stmt *stmt)
1032 pet_expr *body = stmt->body;
1033 pet_expr *arg;
1034 isl_id *id;
1035 ValueDecl *decl;
1036 pet_context *pc;
1037 isl_pw_aff *pa;
1039 pet_expr_foreach_access_expr(body, &clear_write, this);
1041 if (!pet_stmt_is_assign(stmt))
1042 return;
1043 if (!isl_set_plain_is_universe(stmt->domain))
1044 return;
1045 arg = pet_expr_get_arg(body, 0);
1046 if (!pet_expr_is_scalar_access(arg)) {
1047 pet_expr_free(arg);
1048 return;
1051 id = pet_expr_access_get_id(arg);
1052 decl = (ValueDecl *) isl_id_get_user(id);
1053 isl_id_free(id);
1054 pet_expr_free(arg);
1056 if (!decl)
1057 return;
1059 arg = pet_expr_get_arg(body, 1);
1060 pc = convert_assignments(ctx, assigned_value);
1061 pa = pet_expr_extract_affine(arg, pc);
1062 pet_context_free(pc);
1063 clear_assignment(assigned_value, decl);
1064 pet_expr_free(arg);
1066 if (isl_pw_aff_involves_nan(pa))
1067 pa = isl_pw_aff_free(pa);
1068 if (!pa)
1069 return;
1070 assigned_value[decl] = pa;
1071 insert_expression(pa);
1074 /* Update "assigned_value" based on the write accesses (and, in particular,
1075 * assignments) in "scop".
1077 void PetScan::handle_writes(struct pet_scop *scop)
1079 if (!scop)
1080 return;
1081 for (int i = 0; i < scop->n_stmt; ++i)
1082 handle_writes(scop->stmts[i]);
1085 /* Construct a pet_expr representing a binary operator expression.
1087 * If the top level operator is an assignment and the LHS is an access,
1088 * then we mark that access as a write. If the operator is a compound
1089 * assignment, the access is marked as both a read and a write.
1091 __isl_give pet_expr *PetScan::extract_expr(BinaryOperator *expr)
1093 int type_size;
1094 pet_expr *lhs, *rhs;
1095 enum pet_op_type op;
1097 op = BinaryOperatorKind2pet_op_type(expr->getOpcode());
1098 if (op == pet_op_last) {
1099 unsupported(expr);
1100 return NULL;
1103 lhs = extract_expr(expr->getLHS());
1104 rhs = extract_expr(expr->getRHS());
1106 if (expr->isAssignmentOp() &&
1107 pet_expr_get_type(lhs) == pet_expr_access) {
1108 lhs = mark_write(lhs);
1109 if (expr->isCompoundAssignmentOp())
1110 lhs = pet_expr_access_set_read(lhs, 1);
1113 type_size = get_type_size(expr->getType(), ast_context);
1114 return pet_expr_new_binary(type_size, op, lhs, rhs);
1117 /* Construct a pet_scop with a single statement killing the entire
1118 * array "array".
1120 struct pet_scop *PetScan::kill(Stmt *stmt, struct pet_array *array)
1122 isl_id *id;
1123 isl_space *space;
1124 isl_multi_pw_aff *index;
1125 isl_map *access;
1126 pet_expr *expr;
1128 if (!array)
1129 return NULL;
1130 access = isl_map_from_range(isl_set_copy(array->extent));
1131 id = isl_set_get_tuple_id(array->extent);
1132 space = isl_space_alloc(ctx, 0, 0, 0);
1133 space = isl_space_set_tuple_id(space, isl_dim_out, id);
1134 index = isl_multi_pw_aff_zero(space);
1135 expr = pet_expr_kill_from_access_and_index(access, index);
1136 return extract(expr, stmt->getSourceRange(), false);
1139 /* Construct a pet_scop for a (single) variable declaration.
1141 * The scop contains the variable being declared (as an array)
1142 * and a statement killing the array.
1144 * If the variable is initialized in the AST, then the scop
1145 * also contains an assignment to the variable.
1147 struct pet_scop *PetScan::extract(DeclStmt *stmt)
1149 int type_size;
1150 Decl *decl;
1151 VarDecl *vd;
1152 pet_expr *lhs, *rhs, *pe;
1153 struct pet_scop *scop_decl, *scop;
1154 struct pet_array *array;
1156 if (!stmt->isSingleDecl()) {
1157 unsupported(stmt);
1158 return NULL;
1161 decl = stmt->getSingleDecl();
1162 vd = cast<VarDecl>(decl);
1164 array = extract_array(ctx, vd, NULL);
1165 if (array)
1166 array->declared = 1;
1167 scop_decl = kill(stmt, array);
1168 scop_decl = pet_scop_add_array(scop_decl, array);
1170 if (!vd->getInit())
1171 return scop_decl;
1173 lhs = extract_access_expr(vd);
1174 rhs = extract_expr(vd->getInit());
1176 lhs = mark_write(lhs);
1178 type_size = get_type_size(vd->getType(), ast_context);
1179 pe = pet_expr_new_binary(type_size, pet_op_assign, lhs, rhs);
1180 scop = extract(pe, stmt->getSourceRange(), false);
1182 scop_decl = pet_scop_prefix(scop_decl, 0);
1183 scop = pet_scop_prefix(scop, 1);
1185 scop = pet_scop_add_seq(ctx, scop_decl, scop);
1187 return scop;
1190 /* Construct a pet_expr representing a conditional operation.
1192 __isl_give pet_expr *PetScan::extract_expr(ConditionalOperator *expr)
1194 pet_expr *cond, *lhs, *rhs;
1195 isl_pw_aff *pa;
1197 cond = extract_expr(expr->getCond());
1198 lhs = extract_expr(expr->getTrueExpr());
1199 rhs = extract_expr(expr->getFalseExpr());
1201 return pet_expr_new_ternary(cond, lhs, rhs);
1204 __isl_give pet_expr *PetScan::extract_expr(ImplicitCastExpr *expr)
1206 return extract_expr(expr->getSubExpr());
1209 /* Construct a pet_expr representing a floating point value.
1211 * If the floating point literal does not appear in a macro,
1212 * then we use the original representation in the source code
1213 * as the string representation. Otherwise, we use the pretty
1214 * printer to produce a string representation.
1216 __isl_give pet_expr *PetScan::extract_expr(FloatingLiteral *expr)
1218 double d;
1219 string s;
1220 const LangOptions &LO = PP.getLangOpts();
1221 SourceLocation loc = expr->getLocation();
1223 if (!loc.isMacroID()) {
1224 SourceManager &SM = PP.getSourceManager();
1225 unsigned len = Lexer::MeasureTokenLength(loc, SM, LO);
1226 s = string(SM.getCharacterData(loc), len);
1227 } else {
1228 llvm::raw_string_ostream S(s);
1229 expr->printPretty(S, 0, PrintingPolicy(LO));
1230 S.str();
1232 d = expr->getValueAsApproximateDouble();
1233 return pet_expr_new_double(ctx, d, s.c_str());
1236 /* Convert the index expression "index" into an access pet_expr of type "qt".
1238 __isl_give pet_expr *PetScan::extract_access_expr(QualType qt,
1239 __isl_take isl_multi_pw_aff *index)
1241 pet_expr *pe;
1242 int depth;
1243 int type_size;
1245 depth = extract_depth(index);
1246 type_size = get_type_size(qt, ast_context);
1248 pe = pet_expr_from_index_and_depth(type_size, index, depth);
1250 return pe;
1253 /* Extract an index expression from "expr" and then convert it into
1254 * an access pet_expr.
1256 __isl_give pet_expr *PetScan::extract_access_expr(Expr *expr)
1258 return extract_access_expr(expr->getType(), extract_index(expr));
1261 /* Extract an index expression from "decl" and then convert it into
1262 * an access pet_expr.
1264 __isl_give pet_expr *PetScan::extract_access_expr(ValueDecl *decl)
1266 return extract_access_expr(decl->getType(), extract_index(decl));
1269 __isl_give pet_expr *PetScan::extract_expr(ParenExpr *expr)
1271 return extract_expr(expr->getSubExpr());
1274 /* Extract an assume statement from the argument "expr"
1275 * of a __pencil_assume statement.
1277 __isl_give pet_expr *PetScan::extract_assume(Expr *expr)
1279 isl_pw_aff *cond;
1280 pet_expr *res;
1282 cond = try_extract_affine_condition(expr);
1283 if (!cond) {
1284 res = extract_expr(expr);
1285 } else {
1286 isl_multi_pw_aff *index;
1287 index = isl_multi_pw_aff_from_pw_aff(cond);
1288 res = pet_expr_from_index(index);
1290 return pet_expr_new_unary(pet_op_assume, res);
1293 /* Construct a pet_expr corresponding to the function call argument "expr".
1294 * The argument appears in position "pos" of a call to function "fd".
1296 * If we are passing along a pointer to an array element
1297 * or an entire row or even higher dimensional slice of an array,
1298 * then the function being called may write into the array.
1300 * We assume here that if the function is declared to take a pointer
1301 * to a const type, then the function will perform a read
1302 * and that otherwise, it will perform a write.
1304 __isl_give pet_expr *PetScan::extract_argument(FunctionDecl *fd, int pos,
1305 Expr *expr)
1307 pet_expr *res;
1308 int is_addr = 0, is_partial = 0;
1309 Stmt::StmtClass sc;
1311 if (expr->getStmtClass() == Stmt::ImplicitCastExprClass) {
1312 ImplicitCastExpr *ice = cast<ImplicitCastExpr>(expr);
1313 expr = ice->getSubExpr();
1315 if (expr->getStmtClass() == Stmt::UnaryOperatorClass) {
1316 UnaryOperator *op = cast<UnaryOperator>(expr);
1317 if (op->getOpcode() == UO_AddrOf) {
1318 is_addr = 1;
1319 expr = op->getSubExpr();
1322 res = extract_expr(expr);
1323 if (!res)
1324 return NULL;
1325 sc = expr->getStmtClass();
1326 if ((sc == Stmt::ArraySubscriptExprClass ||
1327 sc == Stmt::MemberExprClass) &&
1328 array_depth(expr->getType().getTypePtr()) > 0)
1329 is_partial = 1;
1330 if ((is_addr || is_partial) &&
1331 pet_expr_get_type(res) == pet_expr_access) {
1332 ParmVarDecl *parm;
1333 if (!fd->hasPrototype()) {
1334 report_prototype_required(expr);
1335 return pet_expr_free(res);
1337 parm = fd->getParamDecl(pos);
1338 if (!const_base(parm->getType()))
1339 res = mark_write(res);
1342 if (is_addr)
1343 res = pet_expr_new_unary(pet_op_address_of, res);
1344 return res;
1347 /* Construct a pet_expr representing a function call.
1349 * In the special case of a "call" to __pencil_assume,
1350 * construct an assume expression instead.
1352 __isl_give pet_expr *PetScan::extract_expr(CallExpr *expr)
1354 pet_expr *res = NULL;
1355 FunctionDecl *fd;
1356 string name;
1357 unsigned n_arg;
1359 fd = expr->getDirectCallee();
1360 if (!fd) {
1361 unsupported(expr);
1362 return NULL;
1365 name = fd->getDeclName().getAsString();
1366 n_arg = expr->getNumArgs();
1368 if (n_arg == 1 && name == "__pencil_assume")
1369 return extract_assume(expr->getArg(0));
1371 res = pet_expr_new_call(ctx, name.c_str(), n_arg);
1372 if (!res)
1373 return NULL;
1375 for (int i = 0; i < n_arg; ++i) {
1376 Expr *arg = expr->getArg(i);
1377 res = pet_expr_set_arg(res, i,
1378 PetScan::extract_argument(fd, i, arg));
1381 return res;
1384 /* Construct a pet_expr representing a (C style) cast.
1386 __isl_give pet_expr *PetScan::extract_expr(CStyleCastExpr *expr)
1388 pet_expr *arg;
1389 QualType type;
1391 arg = extract_expr(expr->getSubExpr());
1392 if (!arg)
1393 return NULL;
1395 type = expr->getTypeAsWritten();
1396 return pet_expr_new_cast(type.getAsString().c_str(), arg);
1399 /* Construct a pet_expr representing an integer.
1401 __isl_give pet_expr *PetScan::extract_expr(IntegerLiteral *expr)
1403 return pet_expr_new_int(extract_int(expr));
1406 /* Try and construct a pet_expr representing "expr".
1408 __isl_give pet_expr *PetScan::extract_expr(Expr *expr)
1410 switch (expr->getStmtClass()) {
1411 case Stmt::UnaryOperatorClass:
1412 return extract_expr(cast<UnaryOperator>(expr));
1413 case Stmt::CompoundAssignOperatorClass:
1414 case Stmt::BinaryOperatorClass:
1415 return extract_expr(cast<BinaryOperator>(expr));
1416 case Stmt::ImplicitCastExprClass:
1417 return extract_expr(cast<ImplicitCastExpr>(expr));
1418 case Stmt::ArraySubscriptExprClass:
1419 case Stmt::DeclRefExprClass:
1420 case Stmt::MemberExprClass:
1421 return extract_access_expr(expr);
1422 case Stmt::IntegerLiteralClass:
1423 return extract_expr(cast<IntegerLiteral>(expr));
1424 case Stmt::FloatingLiteralClass:
1425 return extract_expr(cast<FloatingLiteral>(expr));
1426 case Stmt::ParenExprClass:
1427 return extract_expr(cast<ParenExpr>(expr));
1428 case Stmt::ConditionalOperatorClass:
1429 return extract_expr(cast<ConditionalOperator>(expr));
1430 case Stmt::CallExprClass:
1431 return extract_expr(cast<CallExpr>(expr));
1432 case Stmt::CStyleCastExprClass:
1433 return extract_expr(cast<CStyleCastExpr>(expr));
1434 default:
1435 unsupported(expr);
1437 return NULL;
1440 /* Check if the given initialization statement is an assignment.
1441 * If so, return that assignment. Otherwise return NULL.
1443 BinaryOperator *PetScan::initialization_assignment(Stmt *init)
1445 BinaryOperator *ass;
1447 if (init->getStmtClass() != Stmt::BinaryOperatorClass)
1448 return NULL;
1450 ass = cast<BinaryOperator>(init);
1451 if (ass->getOpcode() != BO_Assign)
1452 return NULL;
1454 return ass;
1457 /* Check if the given initialization statement is a declaration
1458 * of a single variable.
1459 * If so, return that declaration. Otherwise return NULL.
1461 Decl *PetScan::initialization_declaration(Stmt *init)
1463 DeclStmt *decl;
1465 if (init->getStmtClass() != Stmt::DeclStmtClass)
1466 return NULL;
1468 decl = cast<DeclStmt>(init);
1470 if (!decl->isSingleDecl())
1471 return NULL;
1473 return decl->getSingleDecl();
1476 /* Given the assignment operator in the initialization of a for loop,
1477 * extract the induction variable, i.e., the (integer)variable being
1478 * assigned.
1480 ValueDecl *PetScan::extract_induction_variable(BinaryOperator *init)
1482 Expr *lhs;
1483 DeclRefExpr *ref;
1484 ValueDecl *decl;
1485 const Type *type;
1487 lhs = init->getLHS();
1488 if (lhs->getStmtClass() != Stmt::DeclRefExprClass) {
1489 unsupported(init);
1490 return NULL;
1493 ref = cast<DeclRefExpr>(lhs);
1494 decl = ref->getDecl();
1495 type = decl->getType().getTypePtr();
1497 if (!type->isIntegerType()) {
1498 unsupported(lhs);
1499 return NULL;
1502 return decl;
1505 /* Given the initialization statement of a for loop and the single
1506 * declaration in this initialization statement,
1507 * extract the induction variable, i.e., the (integer) variable being
1508 * declared.
1510 VarDecl *PetScan::extract_induction_variable(Stmt *init, Decl *decl)
1512 VarDecl *vd;
1514 vd = cast<VarDecl>(decl);
1516 const QualType type = vd->getType();
1517 if (!type->isIntegerType()) {
1518 unsupported(init);
1519 return NULL;
1522 if (!vd->getInit()) {
1523 unsupported(init);
1524 return NULL;
1527 return vd;
1530 /* Check that op is of the form iv++ or iv--.
1531 * Return a pet_expr representing "1" or "-1" accordingly.
1533 __isl_give pet_expr *PetScan::extract_unary_increment(
1534 clang::UnaryOperator *op, clang::ValueDecl *iv)
1536 Expr *sub;
1537 DeclRefExpr *ref;
1538 isl_val *v;
1540 if (!op->isIncrementDecrementOp()) {
1541 unsupported(op);
1542 return NULL;
1545 sub = op->getSubExpr();
1546 if (sub->getStmtClass() != Stmt::DeclRefExprClass) {
1547 unsupported(op);
1548 return NULL;
1551 ref = cast<DeclRefExpr>(sub);
1552 if (ref->getDecl() != iv) {
1553 unsupported(op);
1554 return NULL;
1557 if (op->isIncrementOp())
1558 v = isl_val_one(ctx);
1559 else
1560 v = isl_val_negone(ctx);
1562 return pet_expr_new_int(v);
1565 /* Check if op is of the form
1567 * iv = expr
1569 * and return the increment "expr - iv" as a pet_expr.
1571 __isl_give pet_expr *PetScan::extract_binary_increment(BinaryOperator *op,
1572 clang::ValueDecl *iv)
1574 int type_size;
1575 Expr *lhs;
1576 DeclRefExpr *ref;
1577 pet_expr *expr, *expr_iv;
1579 if (op->getOpcode() != BO_Assign) {
1580 unsupported(op);
1581 return NULL;
1584 lhs = op->getLHS();
1585 if (lhs->getStmtClass() != Stmt::DeclRefExprClass) {
1586 unsupported(op);
1587 return NULL;
1590 ref = cast<DeclRefExpr>(lhs);
1591 if (ref->getDecl() != iv) {
1592 unsupported(op);
1593 return NULL;
1596 expr = extract_expr(op->getRHS());
1597 expr_iv = extract_expr(lhs);
1599 type_size = get_type_size(iv->getType(), ast_context);
1600 return pet_expr_new_binary(type_size, pet_op_sub, expr, expr_iv);
1603 /* Check that op is of the form iv += cst or iv -= cst
1604 * and return a pet_expr corresponding to cst or -cst accordingly.
1606 __isl_give pet_expr *PetScan::extract_compound_increment(
1607 CompoundAssignOperator *op, clang::ValueDecl *iv)
1609 Expr *lhs;
1610 DeclRefExpr *ref;
1611 bool neg = false;
1612 pet_expr *expr;
1613 BinaryOperatorKind opcode;
1615 opcode = op->getOpcode();
1616 if (opcode != BO_AddAssign && opcode != BO_SubAssign) {
1617 unsupported(op);
1618 return NULL;
1620 if (opcode == BO_SubAssign)
1621 neg = true;
1623 lhs = op->getLHS();
1624 if (lhs->getStmtClass() != Stmt::DeclRefExprClass) {
1625 unsupported(op);
1626 return NULL;
1629 ref = cast<DeclRefExpr>(lhs);
1630 if (ref->getDecl() != iv) {
1631 unsupported(op);
1632 return NULL;
1635 expr = extract_expr(op->getRHS());
1636 if (neg)
1637 expr = pet_expr_new_unary(pet_op_minus, expr);
1639 return expr;
1642 /* Check that the increment of the given for loop increments
1643 * (or decrements) the induction variable "iv" and return
1644 * the increment as a pet_expr if successful.
1646 __isl_give pet_expr *PetScan::extract_increment(clang::ForStmt *stmt,
1647 ValueDecl *iv)
1649 Stmt *inc = stmt->getInc();
1651 if (!inc) {
1652 report_missing_increment(stmt);
1653 return NULL;
1656 if (inc->getStmtClass() == Stmt::UnaryOperatorClass)
1657 return extract_unary_increment(cast<UnaryOperator>(inc), iv);
1658 if (inc->getStmtClass() == Stmt::CompoundAssignOperatorClass)
1659 return extract_compound_increment(
1660 cast<CompoundAssignOperator>(inc), iv);
1661 if (inc->getStmtClass() == Stmt::BinaryOperatorClass)
1662 return extract_binary_increment(cast<BinaryOperator>(inc), iv);
1664 unsupported(inc);
1665 return NULL;
1668 /* Embed the given iteration domain in an extra outer loop
1669 * with induction variable "var".
1670 * If this variable appeared as a parameter in the constraints,
1671 * it is replaced by the new outermost dimension.
1673 static __isl_give isl_set *embed(__isl_take isl_set *set,
1674 __isl_take isl_id *var)
1676 int pos;
1678 set = isl_set_insert_dims(set, isl_dim_set, 0, 1);
1679 pos = isl_set_find_dim_by_id(set, isl_dim_param, var);
1680 if (pos >= 0) {
1681 set = isl_set_equate(set, isl_dim_param, pos, isl_dim_set, 0);
1682 set = isl_set_project_out(set, isl_dim_param, pos, 1);
1685 isl_id_free(var);
1686 return set;
1689 /* Return those elements in the space of "cond" that come after
1690 * (based on "sign") an element in "cond".
1692 static __isl_give isl_set *after(__isl_take isl_set *cond, int sign)
1694 isl_map *previous_to_this;
1696 if (sign > 0)
1697 previous_to_this = isl_map_lex_lt(isl_set_get_space(cond));
1698 else
1699 previous_to_this = isl_map_lex_gt(isl_set_get_space(cond));
1701 cond = isl_set_apply(cond, previous_to_this);
1703 return cond;
1706 /* Create the infinite iteration domain
1708 * { [id] : id >= 0 }
1710 * If "scop" has an affine skip of type pet_skip_later,
1711 * then remove those iterations i that have an earlier iteration
1712 * where the skip condition is satisfied, meaning that iteration i
1713 * is not executed.
1714 * Since we are dealing with a loop without loop iterator,
1715 * the skip condition cannot refer to the current loop iterator and
1716 * so effectively, the returned set is of the form
1718 * { [0]; [id] : id >= 1 and not skip }
1720 static __isl_give isl_set *infinite_domain(__isl_take isl_id *id,
1721 struct pet_scop *scop)
1723 isl_ctx *ctx = isl_id_get_ctx(id);
1724 isl_set *domain;
1725 isl_set *skip;
1727 domain = isl_set_nat_universe(isl_space_set_alloc(ctx, 0, 1));
1728 domain = isl_set_set_dim_id(domain, isl_dim_set, 0, id);
1730 if (!pet_scop_has_affine_skip(scop, pet_skip_later))
1731 return domain;
1733 skip = pet_scop_get_affine_skip_domain(scop, pet_skip_later);
1734 skip = embed(skip, isl_id_copy(id));
1735 skip = isl_set_intersect(skip , isl_set_copy(domain));
1736 domain = isl_set_subtract(domain, after(skip, 1));
1738 return domain;
1741 /* Create an identity affine expression on the space containing "domain",
1742 * which is assumed to be one-dimensional.
1744 static __isl_give isl_aff *identity_aff(__isl_keep isl_set *domain)
1746 isl_local_space *ls;
1748 ls = isl_local_space_from_space(isl_set_get_space(domain));
1749 return isl_aff_var_on_domain(ls, isl_dim_set, 0);
1752 /* Create an affine expression that maps elements
1753 * of a single-dimensional array "id_test" to the previous element
1754 * (according to "inc"), provided this element belongs to "domain".
1755 * That is, create the affine expression
1757 * { id[x] -> id[x - inc] : x - inc in domain }
1759 static __isl_give isl_multi_pw_aff *map_to_previous(__isl_take isl_id *id_test,
1760 __isl_take isl_set *domain, __isl_take isl_val *inc)
1762 isl_space *space;
1763 isl_local_space *ls;
1764 isl_aff *aff;
1765 isl_multi_pw_aff *prev;
1767 space = isl_set_get_space(domain);
1768 ls = isl_local_space_from_space(space);
1769 aff = isl_aff_var_on_domain(ls, isl_dim_set, 0);
1770 aff = isl_aff_add_constant_val(aff, isl_val_neg(inc));
1771 prev = isl_multi_pw_aff_from_pw_aff(isl_pw_aff_from_aff(aff));
1772 domain = isl_set_preimage_multi_pw_aff(domain,
1773 isl_multi_pw_aff_copy(prev));
1774 prev = isl_multi_pw_aff_intersect_domain(prev, domain);
1775 prev = isl_multi_pw_aff_set_tuple_id(prev, isl_dim_out, id_test);
1777 return prev;
1780 /* Add an implication to "scop" expressing that if an element of
1781 * virtual array "id_test" has value "satisfied" then all previous elements
1782 * of this array also have that value. The set of previous elements
1783 * is bounded by "domain". If "sign" is negative then the iterator
1784 * is decreasing and we express that all subsequent array elements
1785 * (but still defined previously) have the same value.
1787 static struct pet_scop *add_implication(struct pet_scop *scop,
1788 __isl_take isl_id *id_test, __isl_take isl_set *domain, int sign,
1789 int satisfied)
1791 isl_space *space;
1792 isl_map *map;
1794 domain = isl_set_set_tuple_id(domain, id_test);
1795 space = isl_set_get_space(domain);
1796 if (sign > 0)
1797 map = isl_map_lex_ge(space);
1798 else
1799 map = isl_map_lex_le(space);
1800 map = isl_map_intersect_range(map, domain);
1801 scop = pet_scop_add_implication(scop, map, satisfied);
1803 return scop;
1806 /* Add a filter to "scop" that imposes that it is only executed
1807 * when the variable identified by "id_test" has a zero value
1808 * for all previous iterations of "domain".
1810 * In particular, add a filter that imposes that the array
1811 * has a zero value at the previous iteration of domain and
1812 * add an implication that implies that it then has that
1813 * value for all previous iterations.
1815 static struct pet_scop *scop_add_break(struct pet_scop *scop,
1816 __isl_take isl_id *id_test, __isl_take isl_set *domain,
1817 __isl_take isl_val *inc)
1819 isl_multi_pw_aff *prev;
1820 int sign = isl_val_sgn(inc);
1822 prev = map_to_previous(isl_id_copy(id_test), isl_set_copy(domain), inc);
1823 scop = add_implication(scop, id_test, domain, sign, 0);
1824 scop = pet_scop_filter(scop, prev, 0);
1826 return scop;
1829 /* Construct a pet_scop for an infinite loop around the given body.
1831 * We extract a pet_scop for the body and then embed it in a loop with
1832 * iteration domain
1834 * { [t] : t >= 0 }
1836 * and schedule
1838 * { [t] -> [t] }
1840 * If the body contains any break, then it is taken into
1841 * account in infinite_domain (if the skip condition is affine)
1842 * or in scop_add_break (if the skip condition is not affine).
1844 * If we were only able to extract part of the body, then simply
1845 * return that part.
1847 struct pet_scop *PetScan::extract_infinite_loop(Stmt *body)
1849 isl_id *id, *id_test;
1850 isl_set *domain;
1851 isl_aff *ident;
1852 struct pet_scop *scop;
1853 bool has_var_break;
1855 scop = extract(body);
1856 if (!scop)
1857 return NULL;
1858 if (partial)
1859 return scop;
1861 id = isl_id_alloc(ctx, "t", NULL);
1862 domain = infinite_domain(isl_id_copy(id), scop);
1863 ident = identity_aff(domain);
1865 has_var_break = pet_scop_has_var_skip(scop, pet_skip_later);
1866 if (has_var_break)
1867 id_test = pet_scop_get_skip_id(scop, pet_skip_later);
1869 scop = pet_scop_embed(scop, isl_set_copy(domain),
1870 isl_aff_copy(ident), ident, id);
1871 if (has_var_break)
1872 scop = scop_add_break(scop, id_test, domain, isl_val_one(ctx));
1873 else
1874 isl_set_free(domain);
1876 return scop;
1879 /* Construct a pet_scop for an infinite loop, i.e., a loop of the form
1881 * for (;;)
1882 * body
1885 struct pet_scop *PetScan::extract_infinite_for(ForStmt *stmt)
1887 clear_assignments clear(assigned_value);
1888 clear.TraverseStmt(stmt->getBody());
1890 return extract_infinite_loop(stmt->getBody());
1893 /* Add an array with the given extent (range of "index") to the list
1894 * of arrays in "scop" and return the extended pet_scop.
1895 * The array is marked as attaining values 0 and 1 only and
1896 * as each element being assigned at most once.
1898 static struct pet_scop *scop_add_array(struct pet_scop *scop,
1899 __isl_keep isl_multi_pw_aff *index, clang::ASTContext &ast_ctx)
1901 int int_size = ast_ctx.getTypeInfo(ast_ctx.IntTy).first / 8;
1903 return pet_scop_add_boolean_array(scop, isl_multi_pw_aff_copy(index),
1904 int_size);
1907 /* Construct a pet_scop for a while loop of the form
1909 * while (pa)
1910 * body
1912 * In particular, construct a scop for an infinite loop around body and
1913 * intersect the domain with the affine expression.
1914 * Note that this intersection may result in an empty loop.
1916 struct pet_scop *PetScan::extract_affine_while(__isl_take isl_pw_aff *pa,
1917 Stmt *body)
1919 struct pet_scop *scop;
1920 isl_set *dom;
1921 isl_set *valid;
1923 valid = isl_pw_aff_domain(isl_pw_aff_copy(pa));
1924 dom = isl_pw_aff_non_zero_set(pa);
1925 scop = extract_infinite_loop(body);
1926 scop = pet_scop_restrict(scop, isl_set_params(dom));
1927 scop = pet_scop_restrict_context(scop, isl_set_params(valid));
1929 return scop;
1932 /* Construct a scop for a while, given the scops for the condition
1933 * and the body, the filter identifier and the iteration domain of
1934 * the while loop.
1936 * In particular, the scop for the condition is filtered to depend
1937 * on "id_test" evaluating to true for all previous iterations
1938 * of the loop, while the scop for the body is filtered to depend
1939 * on "id_test" evaluating to true for all iterations up to the
1940 * current iteration.
1941 * The actual filter only imposes that this virtual array has
1942 * value one on the previous or the current iteration.
1943 * The fact that this condition also applies to the previous
1944 * iterations is enforced by an implication.
1946 * These filtered scops are then combined into a single scop.
1948 * "sign" is positive if the iterator increases and negative
1949 * if it decreases.
1951 static struct pet_scop *scop_add_while(struct pet_scop *scop_cond,
1952 struct pet_scop *scop_body, __isl_take isl_id *id_test,
1953 __isl_take isl_set *domain, __isl_take isl_val *inc)
1955 isl_ctx *ctx = isl_set_get_ctx(domain);
1956 isl_space *space;
1957 isl_multi_pw_aff *test_index;
1958 isl_multi_pw_aff *prev;
1959 int sign = isl_val_sgn(inc);
1960 struct pet_scop *scop;
1962 prev = map_to_previous(isl_id_copy(id_test), isl_set_copy(domain), inc);
1963 scop_cond = pet_scop_filter(scop_cond, prev, 1);
1965 space = isl_space_map_from_set(isl_set_get_space(domain));
1966 test_index = isl_multi_pw_aff_identity(space);
1967 test_index = isl_multi_pw_aff_set_tuple_id(test_index, isl_dim_out,
1968 isl_id_copy(id_test));
1969 scop_body = pet_scop_filter(scop_body, test_index, 1);
1971 scop = pet_scop_add_seq(ctx, scop_cond, scop_body);
1972 scop = add_implication(scop, id_test, domain, sign, 1);
1974 return scop;
1977 /* Check if the while loop is of the form
1979 * while (affine expression)
1980 * body
1982 * If so, call extract_affine_while to construct a scop.
1984 * Otherwise, extract the body and pass control to extract_while
1985 * to extend the iteration domain with an infinite loop.
1986 * If we were only able to extract part of the body, then simply
1987 * return that part.
1989 struct pet_scop *PetScan::extract(WhileStmt *stmt)
1991 Expr *cond;
1992 int test_nr, stmt_nr;
1993 isl_pw_aff *pa;
1994 struct pet_scop *scop_body;
1996 cond = stmt->getCond();
1997 if (!cond) {
1998 unsupported(stmt);
1999 return NULL;
2002 clear_assignments clear(assigned_value);
2003 clear.TraverseStmt(stmt->getBody());
2005 pa = try_extract_affine_condition(cond);
2006 if (pa)
2007 return extract_affine_while(pa, stmt->getBody());
2009 if (!allow_nested) {
2010 unsupported(stmt);
2011 return NULL;
2014 test_nr = n_test++;
2015 stmt_nr = n_stmt++;
2016 scop_body = extract(stmt->getBody());
2017 if (partial)
2018 return scop_body;
2020 return extract_while(cond, test_nr, stmt_nr, scop_body, NULL);
2023 /* Construct a generic while scop, with iteration domain
2024 * { [t] : t >= 0 } around "scop_body". The scop consists of two parts,
2025 * one for evaluating the condition "cond" and one for the body.
2026 * "test_nr" is the sequence number of the virtual test variable that contains
2027 * the result of the condition and "stmt_nr" is the sequence number
2028 * of the statement that evaluates the condition.
2029 * If "scop_inc" is not NULL, then it is added at the end of the body,
2030 * after replacing any skip conditions resulting from continue statements
2031 * by the skip conditions resulting from break statements (if any).
2033 * The schedule is adjusted to reflect that the condition is evaluated
2034 * before the body is executed and the body is filtered to depend
2035 * on the result of the condition evaluating to true on all iterations
2036 * up to the current iteration, while the evaluation of the condition itself
2037 * is filtered to depend on the result of the condition evaluating to true
2038 * on all previous iterations.
2039 * The context of the scop representing the body is dropped
2040 * because we don't know how many times the body will be executed,
2041 * if at all.
2043 * If the body contains any break, then it is taken into
2044 * account in infinite_domain (if the skip condition is affine)
2045 * or in scop_add_break (if the skip condition is not affine).
2047 struct pet_scop *PetScan::extract_while(Expr *cond, int test_nr, int stmt_nr,
2048 struct pet_scop *scop_body, struct pet_scop *scop_inc)
2050 isl_id *id, *id_test, *id_break_test;
2051 isl_set *domain;
2052 isl_aff *ident;
2053 isl_multi_pw_aff *test_index;
2054 struct pet_scop *scop;
2055 bool has_var_break;
2057 test_index = pet_create_test_index(ctx, test_nr);
2058 scop = extract_non_affine_condition(cond, stmt_nr,
2059 isl_multi_pw_aff_copy(test_index));
2060 scop = scop_add_array(scop, test_index, ast_context);
2061 id_test = isl_multi_pw_aff_get_tuple_id(test_index, isl_dim_out);
2062 isl_multi_pw_aff_free(test_index);
2064 id = isl_id_alloc(ctx, "t", NULL);
2065 domain = infinite_domain(isl_id_copy(id), scop_body);
2066 ident = identity_aff(domain);
2068 has_var_break = pet_scop_has_var_skip(scop_body, pet_skip_later);
2069 if (has_var_break)
2070 id_break_test = pet_scop_get_skip_id(scop_body, pet_skip_later);
2072 scop = pet_scop_prefix(scop, 0);
2073 scop = pet_scop_embed(scop, isl_set_copy(domain), isl_aff_copy(ident),
2074 isl_aff_copy(ident), isl_id_copy(id));
2075 scop_body = pet_scop_reset_context(scop_body);
2076 scop_body = pet_scop_prefix(scop_body, 1);
2077 if (scop_inc) {
2078 scop_inc = pet_scop_prefix(scop_inc, 2);
2079 if (pet_scop_has_skip(scop_body, pet_skip_later)) {
2080 isl_multi_pw_aff *skip;
2081 skip = pet_scop_get_skip(scop_body, pet_skip_later);
2082 scop_body = pet_scop_set_skip(scop_body,
2083 pet_skip_now, skip);
2084 } else
2085 pet_scop_reset_skip(scop_body, pet_skip_now);
2086 scop_body = pet_scop_add_seq(ctx, scop_body, scop_inc);
2088 scop_body = pet_scop_embed(scop_body, isl_set_copy(domain),
2089 isl_aff_copy(ident), ident, id);
2091 if (has_var_break) {
2092 scop = scop_add_break(scop, isl_id_copy(id_break_test),
2093 isl_set_copy(domain), isl_val_one(ctx));
2094 scop_body = scop_add_break(scop_body, id_break_test,
2095 isl_set_copy(domain), isl_val_one(ctx));
2097 scop = scop_add_while(scop, scop_body, id_test, domain,
2098 isl_val_one(ctx));
2100 return scop;
2103 /* Check whether "cond" expresses a simple loop bound
2104 * on the only set dimension.
2105 * In particular, if "up" is set then "cond" should contain only
2106 * upper bounds on the set dimension.
2107 * Otherwise, it should contain only lower bounds.
2109 static bool is_simple_bound(__isl_keep isl_set *cond, __isl_keep isl_val *inc)
2111 if (isl_val_is_pos(inc))
2112 return !isl_set_dim_has_any_lower_bound(cond, isl_dim_set, 0);
2113 else
2114 return !isl_set_dim_has_any_upper_bound(cond, isl_dim_set, 0);
2117 /* Extend a condition on a given iteration of a loop to one that
2118 * imposes the same condition on all previous iterations.
2119 * "domain" expresses the lower [upper] bound on the iterations
2120 * when inc is positive [negative].
2122 * In particular, we construct the condition (when inc is positive)
2124 * forall i' : (domain(i') and i' <= i) => cond(i')
2126 * which is equivalent to
2128 * not exists i' : domain(i') and i' <= i and not cond(i')
2130 * We construct this set by negating cond, applying a map
2132 * { [i'] -> [i] : domain(i') and i' <= i }
2134 * and then negating the result again.
2136 static __isl_give isl_set *valid_for_each_iteration(__isl_take isl_set *cond,
2137 __isl_take isl_set *domain, __isl_take isl_val *inc)
2139 isl_map *previous_to_this;
2141 if (isl_val_is_pos(inc))
2142 previous_to_this = isl_map_lex_le(isl_set_get_space(domain));
2143 else
2144 previous_to_this = isl_map_lex_ge(isl_set_get_space(domain));
2146 previous_to_this = isl_map_intersect_domain(previous_to_this, domain);
2148 cond = isl_set_complement(cond);
2149 cond = isl_set_apply(cond, previous_to_this);
2150 cond = isl_set_complement(cond);
2152 isl_val_free(inc);
2154 return cond;
2157 /* Construct a domain of the form
2159 * [id] -> { : exists a: id = init + a * inc and a >= 0 }
2161 static __isl_give isl_set *strided_domain(__isl_take isl_id *id,
2162 __isl_take isl_pw_aff *init, __isl_take isl_val *inc)
2164 isl_aff *aff;
2165 isl_space *dim;
2166 isl_set *set;
2168 init = isl_pw_aff_insert_dims(init, isl_dim_in, 0, 1);
2169 dim = isl_pw_aff_get_domain_space(init);
2170 aff = isl_aff_zero_on_domain(isl_local_space_from_space(dim));
2171 aff = isl_aff_add_coefficient_val(aff, isl_dim_in, 0, inc);
2172 init = isl_pw_aff_add(init, isl_pw_aff_from_aff(aff));
2174 dim = isl_space_set_alloc(isl_pw_aff_get_ctx(init), 1, 1);
2175 dim = isl_space_set_dim_id(dim, isl_dim_param, 0, id);
2176 aff = isl_aff_zero_on_domain(isl_local_space_from_space(dim));
2177 aff = isl_aff_add_coefficient_si(aff, isl_dim_param, 0, 1);
2179 set = isl_pw_aff_eq_set(isl_pw_aff_from_aff(aff), init);
2181 set = isl_set_lower_bound_si(set, isl_dim_set, 0, 0);
2183 return isl_set_params(set);
2186 /* Assuming "cond" represents a bound on a loop where the loop
2187 * iterator "iv" is incremented (or decremented) by one, check if wrapping
2188 * is possible.
2190 * Under the given assumptions, wrapping is only possible if "cond" allows
2191 * for the last value before wrapping, i.e., 2^width - 1 in case of an
2192 * increasing iterator and 0 in case of a decreasing iterator.
2194 static bool can_wrap(__isl_keep isl_set *cond, ValueDecl *iv,
2195 __isl_keep isl_val *inc)
2197 bool cw;
2198 isl_ctx *ctx;
2199 isl_val *limit;
2200 isl_set *test;
2202 test = isl_set_copy(cond);
2204 ctx = isl_set_get_ctx(test);
2205 if (isl_val_is_neg(inc))
2206 limit = isl_val_zero(ctx);
2207 else {
2208 limit = isl_val_int_from_ui(ctx, get_type_size(iv));
2209 limit = isl_val_2exp(limit);
2210 limit = isl_val_sub_ui(limit, 1);
2213 test = isl_set_fix_val(cond, isl_dim_set, 0, limit);
2214 cw = !isl_set_is_empty(test);
2215 isl_set_free(test);
2217 return cw;
2220 /* Given a one-dimensional space, construct the following affine expression
2221 * on this space
2223 * { [v] -> [v mod 2^width] }
2225 * where width is the number of bits used to represent the values
2226 * of the unsigned variable "iv".
2228 static __isl_give isl_aff *compute_wrapping(__isl_take isl_space *dim,
2229 ValueDecl *iv)
2231 isl_ctx *ctx;
2232 isl_val *mod;
2233 isl_aff *aff;
2235 ctx = isl_space_get_ctx(dim);
2236 mod = isl_val_int_from_ui(ctx, get_type_size(iv));
2237 mod = isl_val_2exp(mod);
2239 aff = isl_aff_zero_on_domain(isl_local_space_from_space(dim));
2240 aff = isl_aff_add_coefficient_si(aff, isl_dim_in, 0, 1);
2241 aff = isl_aff_mod_val(aff, mod);
2243 return aff;
2246 /* Project out the parameter "id" from "set".
2248 static __isl_give isl_set *set_project_out_by_id(__isl_take isl_set *set,
2249 __isl_keep isl_id *id)
2251 int pos;
2253 pos = isl_set_find_dim_by_id(set, isl_dim_param, id);
2254 if (pos >= 0)
2255 set = isl_set_project_out(set, isl_dim_param, pos, 1);
2257 return set;
2260 /* Compute the set of parameters for which "set1" is a subset of "set2".
2262 * set1 is a subset of set2 if
2264 * forall i in set1 : i in set2
2266 * or
2268 * not exists i in set1 and i not in set2
2270 * i.e.,
2272 * not exists i in set1 \ set2
2274 static __isl_give isl_set *enforce_subset(__isl_take isl_set *set1,
2275 __isl_take isl_set *set2)
2277 return isl_set_complement(isl_set_params(isl_set_subtract(set1, set2)));
2280 /* Compute the set of parameter values for which "cond" holds
2281 * on the next iteration for each element of "dom".
2283 * We first construct mapping { [i] -> [i + inc] }, apply that to "dom"
2284 * and then compute the set of parameters for which the result is a subset
2285 * of "cond".
2287 static __isl_give isl_set *valid_on_next(__isl_take isl_set *cond,
2288 __isl_take isl_set *dom, __isl_take isl_val *inc)
2290 isl_space *space;
2291 isl_aff *aff;
2292 isl_map *next;
2294 space = isl_set_get_space(dom);
2295 aff = isl_aff_zero_on_domain(isl_local_space_from_space(space));
2296 aff = isl_aff_add_coefficient_si(aff, isl_dim_in, 0, 1);
2297 aff = isl_aff_add_constant_val(aff, inc);
2298 next = isl_map_from_basic_map(isl_basic_map_from_aff(aff));
2300 dom = isl_set_apply(dom, next);
2302 return enforce_subset(dom, cond);
2305 /* Extract the for loop "stmt" as a while loop.
2306 * "iv" is the loop iterator. "init" is the initialization.
2307 * "inc" is the increment.
2309 * That is, the for loop has the form
2311 * for (iv = init; cond; iv += inc)
2312 * body;
2314 * and is treated as
2316 * iv = init;
2317 * while (cond) {
2318 * body;
2319 * iv += inc;
2322 * except that the skips resulting from any continue statements
2323 * in body do not apply to the increment, but are replaced by the skips
2324 * resulting from break statements.
2326 * If "iv" is declared in the for loop, then it is killed before
2327 * and after the loop.
2329 struct pet_scop *PetScan::extract_non_affine_for(ForStmt *stmt, ValueDecl *iv,
2330 __isl_take pet_expr *init, __isl_take pet_expr *inc)
2332 int declared;
2333 int test_nr, stmt_nr;
2334 pet_expr *expr_iv;
2335 struct pet_scop *scop_init, *scop_inc, *scop, *scop_body;
2336 int type_size;
2337 struct pet_array *array;
2338 struct pet_scop *scop_kill;
2340 if (!allow_nested) {
2341 unsupported(stmt);
2342 return NULL;
2345 clear_assignment(assigned_value, iv);
2347 declared = !initialization_assignment(stmt->getInit());
2349 expr_iv = extract_access_expr(iv);
2350 expr_iv = mark_write(expr_iv);
2351 type_size = pet_expr_get_type_size(expr_iv);
2352 init = pet_expr_new_binary(type_size, pet_op_assign, expr_iv, init);
2353 scop_init = extract(init, stmt->getInit()->getSourceRange(), false);
2354 scop_init = pet_scop_prefix(scop_init, declared);
2356 test_nr = n_test++;
2357 stmt_nr = n_stmt++;
2358 scop_body = extract(stmt->getBody());
2359 if (partial) {
2360 pet_scop_free(scop_init);
2361 return scop_body;
2364 expr_iv = extract_access_expr(iv);
2365 expr_iv = mark_write(expr_iv);
2366 type_size = pet_expr_get_type_size(expr_iv);
2367 inc = pet_expr_new_binary(type_size, pet_op_add_assign, expr_iv, inc);
2368 scop_inc = extract(inc, stmt->getInc()->getSourceRange(), false);
2369 if (!scop_inc) {
2370 pet_scop_free(scop_init);
2371 pet_scop_free(scop_body);
2372 return NULL;
2375 scop = extract_while(stmt->getCond(), test_nr, stmt_nr, scop_body,
2376 scop_inc);
2378 scop = pet_scop_prefix(scop, declared + 1);
2379 scop = pet_scop_add_seq(ctx, scop_init, scop);
2381 if (!declared)
2382 return scop;
2384 array = extract_array(ctx, iv, NULL);
2385 if (array)
2386 array->declared = 1;
2387 scop_kill = kill(stmt, array);
2388 scop_kill = pet_scop_prefix(scop_kill, 0);
2389 scop = pet_scop_add_seq(ctx, scop_kill, scop);
2390 scop_kill = kill(stmt, array);
2391 scop_kill = pet_scop_add_array(scop_kill, array);
2392 scop_kill = pet_scop_prefix(scop_kill, 3);
2393 scop = pet_scop_add_seq(ctx, scop, scop_kill);
2395 return scop;
2398 /* Construct a pet_scop for a for statement.
2399 * The for loop is required to be of one of the following forms
2401 * for (i = init; condition; ++i)
2402 * for (i = init; condition; --i)
2403 * for (i = init; condition; i += constant)
2404 * for (i = init; condition; i -= constant)
2406 * The initialization of the for loop should either be an assignment
2407 * of a static affine value to an integer variable, or a declaration
2408 * of such a variable with initialization.
2410 * If the initialization or the increment do not satisfy the above
2411 * conditions, i.e., if the initialization is not static affine
2412 * or the increment is not constant, then the for loop is extracted
2413 * as a while loop instead.
2415 * The condition is allowed to contain nested accesses, provided
2416 * they are not being written to inside the body of the loop.
2417 * Otherwise, or if the condition is otherwise non-affine, the for loop is
2418 * essentially treated as a while loop, with iteration domain
2419 * { [i] : i >= init }.
2421 * We extract a pet_scop for the body and then embed it in a loop with
2422 * iteration domain and schedule
2424 * { [i] : i >= init and condition' }
2425 * { [i] -> [i] }
2427 * or
2429 * { [i] : i <= init and condition' }
2430 * { [i] -> [-i] }
2432 * Where condition' is equal to condition if the latter is
2433 * a simple upper [lower] bound and a condition that is extended
2434 * to apply to all previous iterations otherwise.
2436 * If the condition is non-affine, then we drop the condition from the
2437 * iteration domain and instead create a separate statement
2438 * for evaluating the condition. The body is then filtered to depend
2439 * on the result of the condition evaluating to true on all iterations
2440 * up to the current iteration, while the evaluation the condition itself
2441 * is filtered to depend on the result of the condition evaluating to true
2442 * on all previous iterations.
2443 * The context of the scop representing the body is dropped
2444 * because we don't know how many times the body will be executed,
2445 * if at all.
2447 * If the stride of the loop is not 1, then "i >= init" is replaced by
2449 * (exists a: i = init + stride * a and a >= 0)
2451 * If the loop iterator i is unsigned, then wrapping may occur.
2452 * We therefore use a virtual iterator instead that does not wrap.
2453 * However, the condition in the code applies
2454 * to the wrapped value, so we need to change condition(i)
2455 * into condition([i % 2^width]). Similarly, we replace all accesses
2456 * to the original iterator by the wrapping of the virtual iterator.
2457 * Note that there may be no need to perform this final wrapping
2458 * if the loop condition (after wrapping) satisfies certain conditions.
2459 * However, the is_simple_bound condition is not enough since it doesn't
2460 * check if there even is an upper bound.
2462 * Wrapping on unsigned iterators can be avoided entirely if
2463 * loop condition is simple, the loop iterator is incremented
2464 * [decremented] by one and the last value before wrapping cannot
2465 * possibly satisfy the loop condition.
2467 * Before extracting a pet_scop from the body we remove all
2468 * assignments in assigned_value to variables that are assigned
2469 * somewhere in the body of the loop.
2471 * Valid parameters for a for loop are those for which the initial
2472 * value itself, the increment on each domain iteration and
2473 * the condition on both the initial value and
2474 * the result of incrementing the iterator for each iteration of the domain
2475 * can be evaluated.
2476 * If the loop condition is non-affine, then we only consider validity
2477 * of the initial value.
2479 * If the body contains any break, then we keep track of it in "skip"
2480 * (if the skip condition is affine) or it is handled in scop_add_break
2481 * (if the skip condition is not affine).
2482 * Note that the affine break condition needs to be considered with
2483 * respect to previous iterations in the virtual domain (if any).
2485 * If we were only able to extract part of the body, then simply
2486 * return that part.
2488 struct pet_scop *PetScan::extract_for(ForStmt *stmt)
2490 BinaryOperator *ass;
2491 Decl *decl;
2492 Stmt *init;
2493 Expr *lhs, *rhs;
2494 ValueDecl *iv;
2495 isl_local_space *ls;
2496 isl_set *domain;
2497 isl_aff *sched;
2498 isl_set *cond = NULL;
2499 isl_set *skip = NULL;
2500 isl_id *id, *id_test = NULL, *id_break_test;
2501 struct pet_scop *scop, *scop_cond = NULL;
2502 assigned_value_cache cache(assigned_value);
2503 isl_val *inc;
2504 bool is_one;
2505 bool is_unsigned;
2506 bool is_simple;
2507 bool is_virtual;
2508 bool has_affine_break;
2509 bool has_var_break;
2510 isl_aff *wrap = NULL;
2511 isl_pw_aff *pa, *pa_inc, *init_val;
2512 isl_set *valid_init;
2513 isl_set *valid_cond;
2514 isl_set *valid_cond_init;
2515 isl_set *valid_cond_next;
2516 isl_set *valid_inc;
2517 int stmt_id;
2518 pet_expr *pe_init, *pe_inc;
2519 pet_context *pc, *pc_init_val;
2521 if (!stmt->getInit() && !stmt->getCond() && !stmt->getInc())
2522 return extract_infinite_for(stmt);
2524 init = stmt->getInit();
2525 if (!init) {
2526 unsupported(stmt);
2527 return NULL;
2529 if ((ass = initialization_assignment(init)) != NULL) {
2530 iv = extract_induction_variable(ass);
2531 if (!iv)
2532 return NULL;
2533 lhs = ass->getLHS();
2534 rhs = ass->getRHS();
2535 } else if ((decl = initialization_declaration(init)) != NULL) {
2536 VarDecl *var = extract_induction_variable(init, decl);
2537 if (!var)
2538 return NULL;
2539 iv = var;
2540 rhs = var->getInit();
2541 lhs = create_DeclRefExpr(var);
2542 } else {
2543 unsupported(stmt->getInit());
2544 return NULL;
2547 id = create_decl_id(ctx, iv);
2549 assigned_value.erase(iv);
2550 clear_assignments clear(assigned_value);
2551 clear.TraverseStmt(stmt->getBody());
2553 pe_init = extract_expr(rhs);
2554 pe_inc = extract_increment(stmt, iv);
2555 pc = convert_assignments(ctx, assigned_value);
2556 pc_init_val = pet_context_copy(pc);
2557 pc_init_val = pet_context_mark_unknown(pc_init_val, isl_id_copy(id));
2558 init_val = pet_expr_extract_affine(pe_init, pc_init_val);
2559 pet_context_free(pc_init_val);
2560 pa_inc = pet_expr_extract_affine(pe_inc, pc);
2561 pet_context_free(pc);
2562 inc = pet_extract_cst(pa_inc);
2563 if (!pe_init || !pe_inc || !inc || isl_val_is_nan(inc) ||
2564 isl_pw_aff_involves_nan(pa_inc) ||
2565 isl_pw_aff_involves_nan(init_val)) {
2566 isl_id_free(id);
2567 isl_val_free(inc);
2568 isl_pw_aff_free(pa_inc);
2569 isl_pw_aff_free(init_val);
2570 if (pe_init && pe_inc && !(pa_inc && !inc))
2571 return extract_non_affine_for(stmt, iv,
2572 pe_init, pe_inc);
2573 pet_expr_free(pe_init);
2574 pet_expr_free(pe_inc);
2575 return NULL;
2577 pet_expr_free(pe_init);
2578 pet_expr_free(pe_inc);
2580 pa = try_extract_nested_condition(stmt->getCond());
2581 if (allow_nested && (!pa || pet_nested_any_in_pw_aff(pa)))
2582 stmt_id = n_stmt++;
2584 scop = extract(stmt->getBody());
2585 if (partial) {
2586 isl_id_free(id);
2587 isl_pw_aff_free(init_val);
2588 isl_pw_aff_free(pa_inc);
2589 isl_pw_aff_free(pa);
2590 isl_val_free(inc);
2591 return scop;
2594 valid_inc = isl_pw_aff_domain(pa_inc);
2596 is_unsigned = iv->getType()->isUnsignedIntegerType();
2598 has_affine_break = scop &&
2599 pet_scop_has_affine_skip(scop, pet_skip_later);
2600 if (has_affine_break)
2601 skip = pet_scop_get_affine_skip_domain(scop, pet_skip_later);
2602 has_var_break = scop && pet_scop_has_var_skip(scop, pet_skip_later);
2603 if (has_var_break)
2604 id_break_test = pet_scop_get_skip_id(scop, pet_skip_later);
2606 if (pa && !is_nested_allowed(pa, scop)) {
2607 isl_pw_aff_free(pa);
2608 pa = NULL;
2611 if (!allow_nested && !pa)
2612 pa = try_extract_affine_condition(stmt->getCond());
2613 valid_cond = isl_pw_aff_domain(isl_pw_aff_copy(pa));
2614 cond = isl_pw_aff_non_zero_set(pa);
2615 if (allow_nested && !cond) {
2616 isl_multi_pw_aff *test_index;
2617 int save_n_stmt = n_stmt;
2618 test_index = pet_create_test_index(ctx, n_test++);
2619 n_stmt = stmt_id;
2620 scop_cond = extract_non_affine_condition(stmt->getCond(),
2621 n_stmt++, isl_multi_pw_aff_copy(test_index));
2622 n_stmt = save_n_stmt;
2623 scop_cond = scop_add_array(scop_cond, test_index, ast_context);
2624 id_test = isl_multi_pw_aff_get_tuple_id(test_index,
2625 isl_dim_out);
2626 isl_multi_pw_aff_free(test_index);
2627 scop_cond = pet_scop_prefix(scop_cond, 0);
2628 scop = pet_scop_reset_context(scop);
2629 scop = pet_scop_prefix(scop, 1);
2630 cond = isl_set_universe(isl_space_set_alloc(ctx, 0, 0));
2633 cond = embed(cond, isl_id_copy(id));
2634 skip = embed(skip, isl_id_copy(id));
2635 valid_cond = isl_set_coalesce(valid_cond);
2636 valid_cond = embed(valid_cond, isl_id_copy(id));
2637 valid_inc = embed(valid_inc, isl_id_copy(id));
2638 is_one = isl_val_is_one(inc) || isl_val_is_negone(inc);
2639 is_virtual = is_unsigned && (!is_one || can_wrap(cond, iv, inc));
2641 valid_cond_init = enforce_subset(
2642 isl_map_range(isl_map_from_pw_aff(isl_pw_aff_copy(init_val))),
2643 isl_set_copy(valid_cond));
2644 if (is_one && !is_virtual) {
2645 isl_pw_aff_free(init_val);
2646 pa = extract_comparison(isl_val_is_pos(inc) ? BO_GE : BO_LE,
2647 lhs, rhs, init);
2648 valid_init = isl_pw_aff_domain(isl_pw_aff_copy(pa));
2649 valid_init = set_project_out_by_id(valid_init, id);
2650 domain = isl_pw_aff_non_zero_set(pa);
2651 } else {
2652 valid_init = isl_pw_aff_domain(isl_pw_aff_copy(init_val));
2653 domain = strided_domain(isl_id_copy(id), init_val,
2654 isl_val_copy(inc));
2657 domain = embed(domain, isl_id_copy(id));
2658 if (is_virtual) {
2659 isl_map *rev_wrap;
2660 wrap = compute_wrapping(isl_set_get_space(cond), iv);
2661 rev_wrap = isl_map_from_aff(isl_aff_copy(wrap));
2662 rev_wrap = isl_map_reverse(rev_wrap);
2663 cond = isl_set_apply(cond, isl_map_copy(rev_wrap));
2664 skip = isl_set_apply(skip, isl_map_copy(rev_wrap));
2665 valid_cond = isl_set_apply(valid_cond, isl_map_copy(rev_wrap));
2666 valid_inc = isl_set_apply(valid_inc, rev_wrap);
2668 is_simple = is_simple_bound(cond, inc);
2669 if (!is_simple) {
2670 cond = isl_set_gist(cond, isl_set_copy(domain));
2671 is_simple = is_simple_bound(cond, inc);
2673 if (!is_simple)
2674 cond = valid_for_each_iteration(cond,
2675 isl_set_copy(domain), isl_val_copy(inc));
2676 domain = isl_set_intersect(domain, cond);
2677 if (has_affine_break) {
2678 skip = isl_set_intersect(skip , isl_set_copy(domain));
2679 skip = after(skip, isl_val_sgn(inc));
2680 domain = isl_set_subtract(domain, skip);
2682 domain = isl_set_set_dim_id(domain, isl_dim_set, 0, isl_id_copy(id));
2683 ls = isl_local_space_from_space(isl_set_get_space(domain));
2684 sched = isl_aff_var_on_domain(ls, isl_dim_set, 0);
2685 if (isl_val_is_neg(inc))
2686 sched = isl_aff_neg(sched);
2688 valid_cond_next = valid_on_next(valid_cond, isl_set_copy(domain),
2689 isl_val_copy(inc));
2690 valid_inc = enforce_subset(isl_set_copy(domain), valid_inc);
2692 if (!is_virtual)
2693 wrap = identity_aff(domain);
2695 scop_cond = pet_scop_embed(scop_cond, isl_set_copy(domain),
2696 isl_aff_copy(sched), isl_aff_copy(wrap), isl_id_copy(id));
2697 scop = pet_scop_embed(scop, isl_set_copy(domain), sched, wrap, id);
2698 scop = resolve_nested(scop);
2699 if (has_var_break)
2700 scop = scop_add_break(scop, id_break_test, isl_set_copy(domain),
2701 isl_val_copy(inc));
2702 if (id_test) {
2703 scop = scop_add_while(scop_cond, scop, id_test, domain,
2704 isl_val_copy(inc));
2705 isl_set_free(valid_inc);
2706 } else {
2707 scop = pet_scop_restrict_context(scop, valid_inc);
2708 scop = pet_scop_restrict_context(scop, valid_cond_next);
2709 scop = pet_scop_restrict_context(scop, valid_cond_init);
2710 isl_set_free(domain);
2712 clear_assignment(assigned_value, iv);
2714 isl_val_free(inc);
2716 scop = pet_scop_restrict_context(scop, isl_set_params(valid_init));
2718 return scop;
2721 /* Try and construct a pet_scop corresponding to a compound statement.
2723 * "skip_declarations" is set if we should skip initial declarations
2724 * in the children of the compound statements. This then implies
2725 * that this sequence of children should not be treated as a block
2726 * since the initial statements may be skipped.
2728 struct pet_scop *PetScan::extract(CompoundStmt *stmt, bool skip_declarations)
2730 return extract(stmt->children(), !skip_declarations, skip_declarations);
2733 /* For each nested access parameter in "space",
2734 * construct a corresponding pet_expr, place it in args and
2735 * record its position in "param2pos".
2736 * "n_arg" is the number of elements that are already in args.
2737 * The position recorded in "param2pos" takes this number into account.
2738 * If the pet_expr corresponding to a parameter is identical to
2739 * the pet_expr corresponding to an earlier parameter, then these two
2740 * parameters are made to refer to the same element in args.
2742 * Return the final number of elements in args or -1 if an error has occurred.
2744 int PetScan::extract_nested(__isl_keep isl_space *space,
2745 int n_arg, pet_expr **args, std::map<int,int> &param2pos)
2747 int nparam;
2749 nparam = isl_space_dim(space, isl_dim_param);
2750 for (int i = 0; i < nparam; ++i) {
2751 int j;
2752 isl_id *id = isl_space_get_dim_id(space, isl_dim_param, i);
2754 if (!pet_nested_in_id(id)) {
2755 isl_id_free(id);
2756 continue;
2759 args[n_arg] = pet_nested_extract_expr(id);
2760 isl_id_free(id);
2761 if (!args[n_arg])
2762 return -1;
2764 for (j = 0; j < n_arg; ++j)
2765 if (pet_expr_is_equal(args[j], args[n_arg]))
2766 break;
2768 if (j < n_arg) {
2769 pet_expr_free(args[n_arg]);
2770 args[n_arg] = NULL;
2771 param2pos[i] = j;
2772 } else
2773 param2pos[i] = n_arg++;
2776 return n_arg;
2779 /* For each nested access parameter in the access relations in "expr",
2780 * construct a corresponding pet_expr, place it in the arguments of "expr"
2781 * and record its position in "param2pos".
2782 * n is the number of nested access parameters.
2784 __isl_give pet_expr *PetScan::extract_nested(__isl_take pet_expr *expr, int n,
2785 std::map<int,int> &param2pos)
2787 isl_space *space;
2788 int i;
2789 pet_expr **args;
2791 args = isl_calloc_array(ctx, pet_expr *, n);
2792 if (!args)
2793 return pet_expr_free(expr);
2795 space = pet_expr_access_get_parameter_space(expr);
2796 n = extract_nested(space, 0, args, param2pos);
2797 isl_space_free(space);
2799 if (n < 0)
2800 expr = pet_expr_free(expr);
2801 else
2802 expr = pet_expr_set_n_arg(expr, n);
2804 for (i = 0; i < n; ++i)
2805 expr = pet_expr_set_arg(expr, i, args[i]);
2806 free(args);
2808 return expr;
2811 /* Look for parameters in any access relation in "expr" that
2812 * refer to nested accesses. In particular, these are
2813 * parameters with name "__pet_expr".
2815 * If there are any such parameters, then the domain of the index
2816 * expression and the access relation, which is still [] at this point,
2817 * is replaced by [[] -> [t_1,...,t_n]], with n the number of these parameters
2818 * (after identifying identical nested accesses).
2820 * This transformation is performed in several steps.
2821 * We first extract the arguments in extract_nested.
2822 * param2pos maps the original parameter position to the position
2823 * of the argument.
2824 * Then we move these parameters to input dimensions.
2825 * t2pos maps the positions of these temporary input dimensions
2826 * to the positions of the corresponding arguments.
2827 * Finally, we express these temporary dimensions in terms of the domain
2828 * [[] -> [t_1,...,t_n]] and precompose index expression and access
2829 * relations with this function.
2831 __isl_give pet_expr *PetScan::resolve_nested(__isl_take pet_expr *expr)
2833 int n;
2834 int nparam;
2835 isl_space *space;
2836 isl_local_space *ls;
2837 isl_aff *aff;
2838 isl_multi_aff *ma;
2839 std::map<int,int> param2pos;
2840 std::map<int,int> t2pos;
2842 if (!expr)
2843 return expr;
2845 n = pet_expr_get_n_arg(expr);
2846 for (int i = 0; i < n; ++i) {
2847 pet_expr *arg;
2848 arg = pet_expr_get_arg(expr, i);
2849 arg = resolve_nested(arg);
2850 expr = pet_expr_set_arg(expr, i, arg);
2853 if (pet_expr_get_type(expr) != pet_expr_access)
2854 return expr;
2856 space = pet_expr_access_get_parameter_space(expr);
2857 n = pet_nested_n_in_space(space);
2858 isl_space_free(space);
2859 if (n == 0)
2860 return expr;
2862 expr = extract_nested(expr, n, param2pos);
2863 if (!expr)
2864 return NULL;
2866 expr = pet_expr_access_align_params(expr);
2867 if (!expr)
2868 return NULL;
2870 n = 0;
2871 space = pet_expr_access_get_parameter_space(expr);
2872 nparam = isl_space_dim(space, isl_dim_param);
2873 for (int i = nparam - 1; i >= 0; --i) {
2874 isl_id *id = isl_space_get_dim_id(space, isl_dim_param, i);
2875 if (!pet_nested_in_id(id)) {
2876 isl_id_free(id);
2877 continue;
2880 expr = pet_expr_access_move_dims(expr,
2881 isl_dim_in, n, isl_dim_param, i, 1);
2882 t2pos[n] = param2pos[i];
2883 n++;
2885 isl_id_free(id);
2887 isl_space_free(space);
2889 space = pet_expr_access_get_parameter_space(expr);
2890 space = isl_space_set_from_params(space);
2891 space = isl_space_add_dims(space, isl_dim_set,
2892 pet_expr_get_n_arg(expr));
2893 space = isl_space_wrap(isl_space_from_range(space));
2894 ls = isl_local_space_from_space(isl_space_copy(space));
2895 space = isl_space_from_domain(space);
2896 space = isl_space_add_dims(space, isl_dim_out, n);
2897 ma = isl_multi_aff_zero(space);
2899 for (int i = 0; i < n; ++i) {
2900 aff = isl_aff_var_on_domain(isl_local_space_copy(ls),
2901 isl_dim_set, t2pos[i]);
2902 ma = isl_multi_aff_set_aff(ma, i, aff);
2904 isl_local_space_free(ls);
2906 expr = pet_expr_access_pullback_multi_aff(expr, ma);
2908 return expr;
2911 /* Return the file offset of the expansion location of "Loc".
2913 static unsigned getExpansionOffset(SourceManager &SM, SourceLocation Loc)
2915 return SM.getFileOffset(SM.getExpansionLoc(Loc));
2918 #ifdef HAVE_FINDLOCATIONAFTERTOKEN
2920 /* Return a SourceLocation for the location after the first semicolon
2921 * after "loc". If Lexer::findLocationAfterToken is available, we simply
2922 * call it and also skip trailing spaces and newline.
2924 static SourceLocation location_after_semi(SourceLocation loc, SourceManager &SM,
2925 const LangOptions &LO)
2927 return Lexer::findLocationAfterToken(loc, tok::semi, SM, LO, true);
2930 #else
2932 /* Return a SourceLocation for the location after the first semicolon
2933 * after "loc". If Lexer::findLocationAfterToken is not available,
2934 * we look in the underlying character data for the first semicolon.
2936 static SourceLocation location_after_semi(SourceLocation loc, SourceManager &SM,
2937 const LangOptions &LO)
2939 const char *semi;
2940 const char *s = SM.getCharacterData(loc);
2942 semi = strchr(s, ';');
2943 if (!semi)
2944 return SourceLocation();
2945 return loc.getFileLocWithOffset(semi + 1 - s);
2948 #endif
2950 /* If the token at "loc" is the first token on the line, then return
2951 * a location referring to the start of the line.
2952 * Otherwise, return "loc".
2954 * This function is used to extend a scop to the start of the line
2955 * if the first token of the scop is also the first token on the line.
2957 * We look for the first token on the line. If its location is equal to "loc",
2958 * then the latter is the location of the first token on the line.
2960 static SourceLocation move_to_start_of_line_if_first_token(SourceLocation loc,
2961 SourceManager &SM, const LangOptions &LO)
2963 std::pair<FileID, unsigned> file_offset_pair;
2964 llvm::StringRef file;
2965 const char *pos;
2966 Token tok;
2967 SourceLocation token_loc, line_loc;
2968 int col;
2970 loc = SM.getExpansionLoc(loc);
2971 col = SM.getExpansionColumnNumber(loc);
2972 line_loc = loc.getLocWithOffset(1 - col);
2973 file_offset_pair = SM.getDecomposedLoc(line_loc);
2974 file = SM.getBufferData(file_offset_pair.first, NULL);
2975 pos = file.data() + file_offset_pair.second;
2977 Lexer lexer(SM.getLocForStartOfFile(file_offset_pair.first), LO,
2978 file.begin(), pos, file.end());
2979 lexer.LexFromRawLexer(tok);
2980 token_loc = tok.getLocation();
2982 if (token_loc == loc)
2983 return line_loc;
2984 else
2985 return loc;
2988 /* Update start and end of "scop" to include the region covered by "range".
2989 * If "skip_semi" is set, then we assume "range" is followed by
2990 * a semicolon and also include this semicolon.
2992 struct pet_scop *PetScan::update_scop_start_end(struct pet_scop *scop,
2993 SourceRange range, bool skip_semi)
2995 SourceLocation loc = range.getBegin();
2996 SourceManager &SM = PP.getSourceManager();
2997 const LangOptions &LO = PP.getLangOpts();
2998 unsigned start, end;
3000 loc = move_to_start_of_line_if_first_token(loc, SM, LO);
3001 start = getExpansionOffset(SM, loc);
3002 loc = range.getEnd();
3003 if (skip_semi)
3004 loc = location_after_semi(loc, SM, LO);
3005 else
3006 loc = PP.getLocForEndOfToken(loc);
3007 end = getExpansionOffset(SM, loc);
3009 scop = pet_scop_update_start_end(scop, start, end);
3010 return scop;
3013 /* Convert a top-level pet_expr to a pet_scop with one statement.
3014 * This mainly involves resolving nested expression parameters
3015 * and setting the name of the iteration space.
3016 * The name is given by "label" if it is non-NULL. Otherwise,
3017 * it is of the form S_<n_stmt>.
3018 * start and end of the pet_scop are derived from "range" and "skip_semi".
3019 * In particular, if "skip_semi" is set then the semicolon following "range"
3020 * is also included.
3022 struct pet_scop *PetScan::extract(__isl_take pet_expr *expr, SourceRange range,
3023 bool skip_semi, __isl_take isl_id *label)
3025 struct pet_stmt *ps;
3026 struct pet_scop *scop;
3027 SourceLocation loc = range.getBegin();
3028 int line = PP.getSourceManager().getExpansionLineNumber(loc);
3030 expr = resolve_nested(expr);
3031 ps = pet_stmt_from_pet_expr(line, label, n_stmt++, expr);
3032 scop = pet_scop_from_pet_stmt(ctx, ps);
3034 scop = update_scop_start_end(scop, range, skip_semi);
3035 return scop;
3038 /* Check if we can extract an affine constraint from "expr".
3039 * Return the constraint as an isl_set if we can and NULL otherwise.
3040 * We turn on autodetection so that we won't generate any warnings
3041 * and turn off nesting, so that we won't accept any non-affine constructs.
3043 __isl_give isl_pw_aff *PetScan::try_extract_affine_condition(Expr *expr)
3045 isl_pw_aff *cond;
3046 int save_autodetect = options->autodetect;
3047 bool save_nesting = nesting_enabled;
3049 options->autodetect = 1;
3050 nesting_enabled = false;
3052 cond = extract_condition(expr);
3054 options->autodetect = save_autodetect;
3055 nesting_enabled = save_nesting;
3057 return cond;
3060 /* Check whether "expr" is an affine constraint.
3062 bool PetScan::is_affine_condition(Expr *expr)
3064 isl_pw_aff *cond;
3066 cond = try_extract_affine_condition(expr);
3067 isl_pw_aff_free(cond);
3069 return cond != NULL;
3072 /* Check if we can extract a condition from "expr".
3073 * Return the condition as an isl_pw_aff if we can and NULL otherwise.
3074 * If allow_nested is set, then the condition may involve parameters
3075 * corresponding to nested accesses.
3076 * We turn on autodetection so that we won't generate any warnings.
3078 __isl_give isl_pw_aff *PetScan::try_extract_nested_condition(Expr *expr)
3080 isl_pw_aff *cond;
3081 int save_autodetect = options->autodetect;
3082 bool save_nesting = nesting_enabled;
3084 options->autodetect = 1;
3085 nesting_enabled = allow_nested;
3086 cond = extract_condition(expr);
3088 options->autodetect = save_autodetect;
3089 nesting_enabled = save_nesting;
3091 return cond;
3094 /* If the top-level expression of "stmt" is an assignment, then
3095 * return that assignment as a BinaryOperator.
3096 * Otherwise return NULL.
3098 static BinaryOperator *top_assignment_or_null(Stmt *stmt)
3100 BinaryOperator *ass;
3102 if (!stmt)
3103 return NULL;
3104 if (stmt->getStmtClass() != Stmt::BinaryOperatorClass)
3105 return NULL;
3107 ass = cast<BinaryOperator>(stmt);
3108 if(ass->getOpcode() != BO_Assign)
3109 return NULL;
3111 return ass;
3114 /* Check if the given if statement is a conditional assignement
3115 * with a non-affine condition. If so, construct a pet_scop
3116 * corresponding to this conditional assignment. Otherwise return NULL.
3118 * In particular we check if "stmt" is of the form
3120 * if (condition)
3121 * a = f(...);
3122 * else
3123 * a = g(...);
3125 * where a is some array or scalar access.
3126 * The constructed pet_scop then corresponds to the expression
3128 * a = condition ? f(...) : g(...)
3130 * All access relations in f(...) are intersected with condition
3131 * while all access relation in g(...) are intersected with the complement.
3133 struct pet_scop *PetScan::extract_conditional_assignment(IfStmt *stmt)
3135 BinaryOperator *ass_then, *ass_else;
3136 pet_expr *write_then, *write_else;
3137 isl_set *cond, *comp;
3138 isl_multi_pw_aff *index;
3139 isl_pw_aff *pa;
3140 int equal;
3141 int type_size;
3142 pet_expr *pe_cond, *pe_then, *pe_else, *pe;
3143 bool save_nesting = nesting_enabled;
3145 if (!options->detect_conditional_assignment)
3146 return NULL;
3148 ass_then = top_assignment_or_null(stmt->getThen());
3149 ass_else = top_assignment_or_null(stmt->getElse());
3151 if (!ass_then || !ass_else)
3152 return NULL;
3154 if (is_affine_condition(stmt->getCond()))
3155 return NULL;
3157 write_then = extract_access_expr(ass_then->getLHS());
3158 write_else = extract_access_expr(ass_else->getLHS());
3160 equal = pet_expr_is_equal(write_then, write_else);
3161 pet_expr_free(write_else);
3162 if (equal < 0 || !equal) {
3163 pet_expr_free(write_then);
3164 return NULL;
3167 nesting_enabled = allow_nested;
3168 pa = extract_condition(stmt->getCond());
3169 nesting_enabled = save_nesting;
3170 cond = isl_pw_aff_non_zero_set(isl_pw_aff_copy(pa));
3171 comp = isl_pw_aff_zero_set(isl_pw_aff_copy(pa));
3172 index = isl_multi_pw_aff_from_pw_aff(pa);
3174 pe_cond = pet_expr_from_index(index);
3176 pe_then = extract_expr(ass_then->getRHS());
3177 pe_then = pet_expr_restrict(pe_then, cond);
3178 pe_else = extract_expr(ass_else->getRHS());
3179 pe_else = pet_expr_restrict(pe_else, comp);
3181 pe = pet_expr_new_ternary(pe_cond, pe_then, pe_else);
3182 write_then = pet_expr_access_set_write(write_then, 1);
3183 write_then = pet_expr_access_set_read(write_then, 0);
3184 type_size = get_type_size(ass_then->getType(), ast_context);
3185 pe = pet_expr_new_binary(type_size, pet_op_assign, write_then, pe);
3186 return extract(pe, stmt->getSourceRange(), false);
3189 /* Create a pet_scop with a single statement with name S_<stmt_nr>,
3190 * evaluating "cond" and writing the result to a virtual scalar,
3191 * as expressed by "index".
3193 struct pet_scop *PetScan::extract_non_affine_condition(Expr *cond, int stmt_nr,
3194 __isl_take isl_multi_pw_aff *index)
3196 pet_expr *expr, *write;
3197 struct pet_stmt *ps;
3198 SourceLocation loc = cond->getLocStart();
3199 int line = PP.getSourceManager().getExpansionLineNumber(loc);
3201 write = pet_expr_from_index(index);
3202 write = pet_expr_access_set_write(write, 1);
3203 write = pet_expr_access_set_read(write, 0);
3204 expr = extract_expr(cond);
3205 expr = resolve_nested(expr);
3206 expr = pet_expr_new_binary(1, pet_op_assign, write, expr);
3207 ps = pet_stmt_from_pet_expr(line, NULL, stmt_nr, expr);
3208 return pet_scop_from_pet_stmt(ctx, ps);
3211 extern "C" {
3212 static __isl_give pet_expr *embed_access(__isl_take pet_expr *expr,
3213 void *user);
3216 /* Precompose the access relation and the index expression associated
3217 * to "expr" with the function pointed to by "user",
3218 * thereby embedding the access relation in the domain of this function.
3219 * The initial domain of the access relation and the index expression
3220 * is the zero-dimensional domain.
3222 static __isl_give pet_expr *embed_access(__isl_take pet_expr *expr, void *user)
3224 isl_multi_aff *ma = (isl_multi_aff *) user;
3226 return pet_expr_access_pullback_multi_aff(expr, isl_multi_aff_copy(ma));
3229 /* Precompose all access relations in "expr" with "ma", thereby
3230 * embedding them in the domain of "ma".
3232 static __isl_give pet_expr *embed(__isl_take pet_expr *expr,
3233 __isl_keep isl_multi_aff *ma)
3235 return pet_expr_map_access(expr, &embed_access, ma);
3238 /* For each nested access parameter in the domain of "stmt",
3239 * construct a corresponding pet_expr, place it before the original
3240 * elements in stmt->args and record its position in "param2pos".
3241 * n is the number of nested access parameters.
3243 struct pet_stmt *PetScan::extract_nested(struct pet_stmt *stmt, int n,
3244 std::map<int,int> &param2pos)
3246 int i;
3247 isl_space *space;
3248 int n_arg;
3249 pet_expr **args;
3251 n_arg = stmt->n_arg;
3252 args = isl_calloc_array(ctx, pet_expr *, n + n_arg);
3253 if (!args)
3254 goto error;
3256 space = isl_set_get_space(stmt->domain);
3257 n_arg = extract_nested(space, 0, args, param2pos);
3258 isl_space_free(space);
3260 if (n_arg < 0)
3261 goto error;
3263 for (i = 0; i < stmt->n_arg; ++i)
3264 args[n_arg + i] = stmt->args[i];
3265 free(stmt->args);
3266 stmt->args = args;
3267 stmt->n_arg += n_arg;
3269 return stmt;
3270 error:
3271 if (args) {
3272 for (i = 0; i < n; ++i)
3273 pet_expr_free(args[i]);
3274 free(args);
3276 pet_stmt_free(stmt);
3277 return NULL;
3280 /* Check whether any of the arguments i of "stmt" starting at position "n"
3281 * is equal to one of the first "n" arguments j.
3282 * If so, combine the constraints on arguments i and j and remove
3283 * argument i.
3285 static struct pet_stmt *remove_duplicate_arguments(struct pet_stmt *stmt, int n)
3287 int i, j;
3288 isl_map *map;
3290 if (!stmt)
3291 return NULL;
3292 if (n == 0)
3293 return stmt;
3294 if (n == stmt->n_arg)
3295 return stmt;
3297 map = isl_set_unwrap(stmt->domain);
3299 for (i = stmt->n_arg - 1; i >= n; --i) {
3300 for (j = 0; j < n; ++j)
3301 if (pet_expr_is_equal(stmt->args[i], stmt->args[j]))
3302 break;
3303 if (j >= n)
3304 continue;
3306 map = isl_map_equate(map, isl_dim_out, i, isl_dim_out, j);
3307 map = isl_map_project_out(map, isl_dim_out, i, 1);
3309 pet_expr_free(stmt->args[i]);
3310 for (j = i; j + 1 < stmt->n_arg; ++j)
3311 stmt->args[j] = stmt->args[j + 1];
3312 stmt->n_arg--;
3315 stmt->domain = isl_map_wrap(map);
3316 if (!stmt->domain)
3317 goto error;
3318 return stmt;
3319 error:
3320 pet_stmt_free(stmt);
3321 return NULL;
3324 /* Look for parameters in the iteration domain of "stmt" that
3325 * refer to nested accesses. In particular, these are
3326 * parameters with name "__pet_expr".
3328 * If there are any such parameters, then as many extra variables
3329 * (after identifying identical nested accesses) are inserted in the
3330 * range of the map wrapped inside the domain, before the original variables.
3331 * If the original domain is not a wrapped map, then a new wrapped
3332 * map is created with zero output dimensions.
3333 * The parameters are then equated to the corresponding output dimensions
3334 * and subsequently projected out, from the iteration domain,
3335 * the schedule and the access relations.
3336 * For each of the output dimensions, a corresponding argument
3337 * expression is inserted. Initially they are created with
3338 * a zero-dimensional domain, so they have to be embedded
3339 * in the current iteration domain.
3340 * param2pos maps the position of the parameter to the position
3341 * of the corresponding output dimension in the wrapped map.
3343 struct pet_stmt *PetScan::resolve_nested(struct pet_stmt *stmt)
3345 int n;
3346 int nparam;
3347 unsigned n_arg;
3348 isl_map *map;
3349 isl_space *space;
3350 isl_multi_aff *ma;
3351 std::map<int,int> param2pos;
3353 if (!stmt)
3354 return NULL;
3356 n = pet_nested_n_in_set(stmt->domain);
3357 if (n == 0)
3358 return stmt;
3360 n_arg = stmt->n_arg;
3361 stmt = extract_nested(stmt, n, param2pos);
3362 if (!stmt)
3363 return NULL;
3365 n = stmt->n_arg - n_arg;
3366 nparam = isl_set_dim(stmt->domain, isl_dim_param);
3367 if (isl_set_is_wrapping(stmt->domain))
3368 map = isl_set_unwrap(stmt->domain);
3369 else
3370 map = isl_map_from_domain(stmt->domain);
3371 map = isl_map_insert_dims(map, isl_dim_out, 0, n);
3373 for (int i = nparam - 1; i >= 0; --i) {
3374 isl_id *id;
3376 if (!pet_nested_in_map(map, i))
3377 continue;
3379 id = pet_expr_access_get_id(stmt->args[param2pos[i]]);
3380 map = isl_map_set_dim_id(map, isl_dim_out, param2pos[i], id);
3381 map = isl_map_equate(map, isl_dim_param, i, isl_dim_out,
3382 param2pos[i]);
3383 map = isl_map_project_out(map, isl_dim_param, i, 1);
3386 stmt->domain = isl_map_wrap(map);
3388 space = isl_space_unwrap(isl_set_get_space(stmt->domain));
3389 space = isl_space_from_domain(isl_space_domain(space));
3390 ma = isl_multi_aff_zero(space);
3391 for (int pos = 0; pos < n; ++pos)
3392 stmt->args[pos] = embed(stmt->args[pos], ma);
3393 isl_multi_aff_free(ma);
3395 stmt = pet_stmt_remove_nested_parameters(stmt);
3396 stmt = remove_duplicate_arguments(stmt, n);
3398 return stmt;
3401 /* For each statement in "scop", move the parameters that correspond
3402 * to nested access into the ranges of the domains and create
3403 * corresponding argument expressions.
3405 struct pet_scop *PetScan::resolve_nested(struct pet_scop *scop)
3407 if (!scop)
3408 return NULL;
3410 for (int i = 0; i < scop->n_stmt; ++i) {
3411 scop->stmts[i] = resolve_nested(scop->stmts[i]);
3412 if (!scop->stmts[i])
3413 goto error;
3416 return scop;
3417 error:
3418 pet_scop_free(scop);
3419 return NULL;
3422 /* Given an access expression "expr", is the variable accessed by
3423 * "expr" assigned anywhere inside "scop"?
3425 static bool is_assigned(__isl_keep pet_expr *expr, pet_scop *scop)
3427 bool assigned = false;
3428 isl_id *id;
3430 id = pet_expr_access_get_id(expr);
3431 assigned = pet_scop_writes(scop, id);
3432 isl_id_free(id);
3434 return assigned;
3437 /* Are all nested access parameters in "pa" allowed given "scop".
3438 * In particular, is none of them written by anywhere inside "scop".
3440 * If "scop" has any skip conditions, then no nested access parameters
3441 * are allowed. In particular, if there is any nested access in a guard
3442 * for a piece of code containing a "continue", then we want to introduce
3443 * a separate statement for evaluating this guard so that we can express
3444 * that the result is false for all previous iterations.
3446 bool PetScan::is_nested_allowed(__isl_keep isl_pw_aff *pa, pet_scop *scop)
3448 int nparam;
3450 if (!scop)
3451 return true;
3453 if (!pet_nested_any_in_pw_aff(pa))
3454 return true;
3456 if (pet_scop_has_skip(scop, pet_skip_now))
3457 return false;
3459 nparam = isl_pw_aff_dim(pa, isl_dim_param);
3460 for (int i = 0; i < nparam; ++i) {
3461 isl_id *id = isl_pw_aff_get_dim_id(pa, isl_dim_param, i);
3462 pet_expr *expr;
3463 bool allowed;
3465 if (!pet_nested_in_id(id)) {
3466 isl_id_free(id);
3467 continue;
3470 expr = pet_nested_extract_expr(id);
3471 allowed = pet_expr_get_type(expr) == pet_expr_access &&
3472 !is_assigned(expr, scop);
3474 pet_expr_free(expr);
3475 isl_id_free(id);
3477 if (!allowed)
3478 return false;
3481 return true;
3484 /* Construct a pet_scop for a non-affine if statement.
3486 * We create a separate statement that writes the result
3487 * of the non-affine condition to a virtual scalar.
3488 * A constraint requiring the value of this virtual scalar to be one
3489 * is added to the iteration domains of the then branch.
3490 * Similarly, a constraint requiring the value of this virtual scalar
3491 * to be zero is added to the iteration domains of the else branch, if any.
3492 * We adjust the schedules to ensure that the virtual scalar is written
3493 * before it is read.
3495 * If there are any breaks or continues in the then and/or else
3496 * branches, then we may have to compute a new skip condition.
3497 * This is handled using a pet_skip_info object.
3498 * On initialization, the object checks if skip conditions need
3499 * to be computed. If so, it does so in pet_skip_info_if_extract_index and
3500 * adds them in pet_skip_info_if_add.
3502 struct pet_scop *PetScan::extract_non_affine_if(Expr *cond,
3503 struct pet_scop *scop_then, struct pet_scop *scop_else,
3504 bool have_else, int stmt_id)
3506 struct pet_scop *scop;
3507 isl_multi_pw_aff *test_index;
3508 int int_size;
3509 int save_n_stmt = n_stmt;
3511 test_index = pet_create_test_index(ctx, n_test++);
3512 n_stmt = stmt_id;
3513 scop = extract_non_affine_condition(cond, n_stmt++,
3514 isl_multi_pw_aff_copy(test_index));
3515 n_stmt = save_n_stmt;
3516 scop = scop_add_array(scop, test_index, ast_context);
3518 pet_skip_info skip;
3519 pet_skip_info_if_init(&skip, ctx, scop_then, scop_else, have_else, 0);
3520 int_size = ast_context.getTypeInfo(ast_context.IntTy).first / 8;
3521 pet_skip_info_if_extract_index(&skip, test_index, int_size,
3522 &n_stmt, &n_test);
3524 scop = pet_scop_prefix(scop, 0);
3525 scop_then = pet_scop_prefix(scop_then, 1);
3526 scop_then = pet_scop_filter(scop_then,
3527 isl_multi_pw_aff_copy(test_index), 1);
3528 if (have_else) {
3529 scop_else = pet_scop_prefix(scop_else, 1);
3530 scop_else = pet_scop_filter(scop_else, test_index, 0);
3531 scop_then = pet_scop_add_par(ctx, scop_then, scop_else);
3532 } else
3533 isl_multi_pw_aff_free(test_index);
3535 scop = pet_scop_add_seq(ctx, scop, scop_then);
3537 scop = pet_skip_info_if_add(&skip, scop, 2);
3539 return scop;
3542 /* Construct a pet_scop for an if statement.
3544 * If the condition fits the pattern of a conditional assignment,
3545 * then it is handled by extract_conditional_assignment.
3546 * Otherwise, we do the following.
3548 * If the condition is affine, then the condition is added
3549 * to the iteration domains of the then branch, while the
3550 * opposite of the condition in added to the iteration domains
3551 * of the else branch, if any.
3552 * We allow the condition to be dynamic, i.e., to refer to
3553 * scalars or array elements that may be written to outside
3554 * of the given if statement. These nested accesses are then represented
3555 * as output dimensions in the wrapping iteration domain.
3556 * If it is also written _inside_ the then or else branch, then
3557 * we treat the condition as non-affine.
3558 * As explained in extract_non_affine_if, this will introduce
3559 * an extra statement.
3560 * For aesthetic reasons, we want this statement to have a statement
3561 * number that is lower than those of the then and else branches.
3562 * In order to evaluate if we will need such a statement, however, we
3563 * first construct scops for the then and else branches.
3564 * We therefore reserve a statement number if we might have to
3565 * introduce such an extra statement.
3567 * If the condition is not affine, then the scop is created in
3568 * extract_non_affine_if.
3570 * If there are any breaks or continues in the then and/or else
3571 * branches, then we may have to compute a new skip condition.
3572 * This is handled using a pet_skip_info object.
3573 * On initialization, the object checks if skip conditions need
3574 * to be computed. If so, it does so in pet_skip_info_if_extract_cond and
3575 * adds them in pet_skip_info_if_add.
3577 struct pet_scop *PetScan::extract(IfStmt *stmt)
3579 struct pet_scop *scop_then, *scop_else = NULL, *scop;
3580 isl_pw_aff *cond;
3581 int stmt_id;
3582 int int_size;
3583 isl_set *set;
3584 isl_set *valid;
3586 clear_assignments clear(assigned_value);
3587 clear.TraverseStmt(stmt->getThen());
3588 if (stmt->getElse())
3589 clear.TraverseStmt(stmt->getElse());
3591 scop = extract_conditional_assignment(stmt);
3592 if (scop)
3593 return scop;
3595 cond = try_extract_nested_condition(stmt->getCond());
3596 if (allow_nested && (!cond || pet_nested_any_in_pw_aff(cond)))
3597 stmt_id = n_stmt++;
3600 assigned_value_cache cache(assigned_value);
3601 scop_then = extract(stmt->getThen());
3604 if (stmt->getElse()) {
3605 assigned_value_cache cache(assigned_value);
3606 scop_else = extract(stmt->getElse());
3607 if (options->autodetect) {
3608 if (scop_then && !scop_else) {
3609 partial = true;
3610 isl_pw_aff_free(cond);
3611 return scop_then;
3613 if (!scop_then && scop_else) {
3614 partial = true;
3615 isl_pw_aff_free(cond);
3616 return scop_else;
3621 if (cond &&
3622 (!is_nested_allowed(cond, scop_then) ||
3623 (stmt->getElse() && !is_nested_allowed(cond, scop_else)))) {
3624 isl_pw_aff_free(cond);
3625 cond = NULL;
3627 if (allow_nested && !cond)
3628 return extract_non_affine_if(stmt->getCond(), scop_then,
3629 scop_else, stmt->getElse(), stmt_id);
3631 if (!cond)
3632 cond = extract_condition(stmt->getCond());
3634 pet_skip_info skip;
3635 pet_skip_info_if_init(&skip, ctx, scop_then, scop_else,
3636 stmt->getElse() != NULL, 1);
3637 pet_skip_info_if_extract_cond(&skip, cond, int_size, &n_stmt, &n_test);
3639 valid = isl_pw_aff_domain(isl_pw_aff_copy(cond));
3640 set = isl_pw_aff_non_zero_set(cond);
3641 scop = pet_scop_restrict(scop_then, isl_set_params(isl_set_copy(set)));
3643 if (stmt->getElse()) {
3644 set = isl_set_subtract(isl_set_copy(valid), set);
3645 scop_else = pet_scop_restrict(scop_else, isl_set_params(set));
3646 scop = pet_scop_add_par(ctx, scop, scop_else);
3647 } else
3648 isl_set_free(set);
3649 scop = resolve_nested(scop);
3650 scop = pet_scop_restrict_context(scop, isl_set_params(valid));
3652 if (pet_skip_info_has_skip(&skip))
3653 scop = pet_scop_prefix(scop, 0);
3654 scop = pet_skip_info_if_add(&skip, scop, 1);
3656 return scop;
3659 /* Try and construct a pet_scop for a label statement.
3660 * We currently only allow labels on expression statements.
3662 struct pet_scop *PetScan::extract(LabelStmt *stmt)
3664 isl_id *label;
3665 Stmt *sub;
3667 sub = stmt->getSubStmt();
3668 if (!isa<Expr>(sub)) {
3669 unsupported(stmt);
3670 return NULL;
3673 label = isl_id_alloc(ctx, stmt->getName(), NULL);
3675 return extract(extract_expr(cast<Expr>(sub)), stmt->getSourceRange(),
3676 true, label);
3679 /* Return a one-dimensional multi piecewise affine expression that is equal
3680 * to the constant 1 and is defined over a zero-dimensional domain.
3682 static __isl_give isl_multi_pw_aff *one_mpa(isl_ctx *ctx)
3684 isl_space *space;
3685 isl_local_space *ls;
3686 isl_aff *aff;
3688 space = isl_space_set_alloc(ctx, 0, 0);
3689 ls = isl_local_space_from_space(space);
3690 aff = isl_aff_zero_on_domain(ls);
3691 aff = isl_aff_set_constant_si(aff, 1);
3693 return isl_multi_pw_aff_from_pw_aff(isl_pw_aff_from_aff(aff));
3696 /* Construct a pet_scop for a continue statement.
3698 * We simply create an empty scop with a universal pet_skip_now
3699 * skip condition. This skip condition will then be taken into
3700 * account by the enclosing loop construct, possibly after
3701 * being incorporated into outer skip conditions.
3703 struct pet_scop *PetScan::extract(ContinueStmt *stmt)
3705 pet_scop *scop;
3707 scop = pet_scop_empty(ctx);
3708 if (!scop)
3709 return NULL;
3711 scop = pet_scop_set_skip(scop, pet_skip_now, one_mpa(ctx));
3713 return scop;
3716 /* Construct a pet_scop for a break statement.
3718 * We simply create an empty scop with both a universal pet_skip_now
3719 * skip condition and a universal pet_skip_later skip condition.
3720 * These skip conditions will then be taken into
3721 * account by the enclosing loop construct, possibly after
3722 * being incorporated into outer skip conditions.
3724 struct pet_scop *PetScan::extract(BreakStmt *stmt)
3726 pet_scop *scop;
3727 isl_multi_pw_aff *skip;
3729 scop = pet_scop_empty(ctx);
3730 if (!scop)
3731 return NULL;
3733 skip = one_mpa(ctx);
3734 scop = pet_scop_set_skip(scop, pet_skip_now,
3735 isl_multi_pw_aff_copy(skip));
3736 scop = pet_scop_set_skip(scop, pet_skip_later, skip);
3738 return scop;
3741 /* Try and construct a pet_scop corresponding to "stmt".
3743 * If "stmt" is a compound statement, then "skip_declarations"
3744 * indicates whether we should skip initial declarations in the
3745 * compound statement.
3747 * If the constructed pet_scop is not a (possibly) partial representation
3748 * of "stmt", we update start and end of the pet_scop to those of "stmt".
3749 * In particular, if skip_declarations is set, then we may have skipped
3750 * declarations inside "stmt" and so the pet_scop may not represent
3751 * the entire "stmt".
3752 * Note that this function may be called with "stmt" referring to the entire
3753 * body of the function, including the outer braces. In such cases,
3754 * skip_declarations will be set and the braces will not be taken into
3755 * account in scop->start and scop->end.
3757 struct pet_scop *PetScan::extract(Stmt *stmt, bool skip_declarations)
3759 struct pet_scop *scop;
3761 if (isa<Expr>(stmt))
3762 return extract(extract_expr(cast<Expr>(stmt)),
3763 stmt->getSourceRange(), true);
3765 switch (stmt->getStmtClass()) {
3766 case Stmt::WhileStmtClass:
3767 scop = extract(cast<WhileStmt>(stmt));
3768 break;
3769 case Stmt::ForStmtClass:
3770 scop = extract_for(cast<ForStmt>(stmt));
3771 break;
3772 case Stmt::IfStmtClass:
3773 scop = extract(cast<IfStmt>(stmt));
3774 break;
3775 case Stmt::CompoundStmtClass:
3776 scop = extract(cast<CompoundStmt>(stmt), skip_declarations);
3777 break;
3778 case Stmt::LabelStmtClass:
3779 scop = extract(cast<LabelStmt>(stmt));
3780 break;
3781 case Stmt::ContinueStmtClass:
3782 scop = extract(cast<ContinueStmt>(stmt));
3783 break;
3784 case Stmt::BreakStmtClass:
3785 scop = extract(cast<BreakStmt>(stmt));
3786 break;
3787 case Stmt::DeclStmtClass:
3788 scop = extract(cast<DeclStmt>(stmt));
3789 break;
3790 default:
3791 unsupported(stmt);
3792 return NULL;
3795 if (partial || skip_declarations)
3796 return scop;
3798 scop = update_scop_start_end(scop, stmt->getSourceRange(), false);
3800 return scop;
3803 /* Extract a clone of the kill statement in "scop".
3804 * "scop" is expected to have been created from a DeclStmt
3805 * and should have the kill as its first statement.
3807 struct pet_stmt *PetScan::extract_kill(struct pet_scop *scop)
3809 pet_expr *kill;
3810 struct pet_stmt *stmt;
3811 isl_multi_pw_aff *index;
3812 isl_map *access;
3813 pet_expr *arg;
3815 if (!scop)
3816 return NULL;
3817 if (scop->n_stmt < 1)
3818 isl_die(ctx, isl_error_internal,
3819 "expecting at least one statement", return NULL);
3820 stmt = scop->stmts[0];
3821 if (!pet_stmt_is_kill(stmt))
3822 isl_die(ctx, isl_error_internal,
3823 "expecting kill statement", return NULL);
3825 arg = pet_expr_get_arg(stmt->body, 0);
3826 index = pet_expr_access_get_index(arg);
3827 access = pet_expr_access_get_access(arg);
3828 pet_expr_free(arg);
3829 index = isl_multi_pw_aff_reset_tuple_id(index, isl_dim_in);
3830 access = isl_map_reset_tuple_id(access, isl_dim_in);
3831 kill = pet_expr_kill_from_access_and_index(access, index);
3832 return pet_stmt_from_pet_expr(stmt->line, NULL, n_stmt++, kill);
3835 /* Mark all arrays in "scop" as being exposed.
3837 static struct pet_scop *mark_exposed(struct pet_scop *scop)
3839 if (!scop)
3840 return NULL;
3841 for (int i = 0; i < scop->n_array; ++i)
3842 scop->arrays[i]->exposed = 1;
3843 return scop;
3846 /* Try and construct a pet_scop corresponding to (part of)
3847 * a sequence of statements.
3849 * "block" is set if the sequence respresents the children of
3850 * a compound statement.
3851 * "skip_declarations" is set if we should skip initial declarations
3852 * in the sequence of statements.
3854 * After extracting a statement, we update "assigned_value"
3855 * based on the top-level assignments in the statement
3856 * so that we can exploit them in subsequent statements in the same block.
3858 * If there are any breaks or continues in the individual statements,
3859 * then we may have to compute a new skip condition.
3860 * This is handled using a pet_skip_info object.
3861 * On initialization, the object checks if skip conditions need
3862 * to be computed. If so, it does so in pet_skip_info_seq_extract and
3863 * adds them in pet_skip_info_seq_add.
3865 * If "block" is set, then we need to insert kill statements at
3866 * the end of the block for any array that has been declared by
3867 * one of the statements in the sequence. Each of these declarations
3868 * results in the construction of a kill statement at the place
3869 * of the declaration, so we simply collect duplicates of
3870 * those kill statements and append these duplicates to the constructed scop.
3872 * If "block" is not set, then any array declared by one of the statements
3873 * in the sequence is marked as being exposed.
3875 * If autodetect is set, then we allow the extraction of only a subrange
3876 * of the sequence of statements. However, if there is at least one statement
3877 * for which we could not construct a scop and the final range contains
3878 * either no statements or at least one kill, then we discard the entire
3879 * range.
3881 struct pet_scop *PetScan::extract(StmtRange stmt_range, bool block,
3882 bool skip_declarations)
3884 pet_scop *scop;
3885 StmtIterator i;
3886 int int_size;
3887 int j;
3888 bool partial_range = false;
3889 set<struct pet_stmt *> kills;
3890 set<struct pet_stmt *>::iterator it;
3892 int_size = ast_context.getTypeInfo(ast_context.IntTy).first / 8;
3894 scop = pet_scop_empty(ctx);
3895 for (i = stmt_range.first, j = 0; i != stmt_range.second; ++i, ++j) {
3896 Stmt *child = *i;
3897 struct pet_scop *scop_i;
3899 if (scop->n_stmt == 0 && skip_declarations &&
3900 child->getStmtClass() == Stmt::DeclStmtClass)
3901 continue;
3903 scop_i = extract(child);
3904 if (scop->n_stmt != 0 && partial) {
3905 pet_scop_free(scop_i);
3906 break;
3908 handle_writes(scop_i);
3909 pet_skip_info skip;
3910 pet_skip_info_seq_init(&skip, ctx, scop, scop_i);
3911 pet_skip_info_seq_extract(&skip, int_size, &n_stmt, &n_test);
3912 if (pet_skip_info_has_skip(&skip))
3913 scop_i = pet_scop_prefix(scop_i, 0);
3914 if (scop_i && child->getStmtClass() == Stmt::DeclStmtClass) {
3915 if (block)
3916 kills.insert(extract_kill(scop_i));
3917 else
3918 scop_i = mark_exposed(scop_i);
3920 scop_i = pet_scop_prefix(scop_i, j);
3921 if (options->autodetect) {
3922 if (scop_i)
3923 scop = pet_scop_add_seq(ctx, scop, scop_i);
3924 else
3925 partial_range = true;
3926 if (scop->n_stmt != 0 && !scop_i)
3927 partial = true;
3928 } else {
3929 scop = pet_scop_add_seq(ctx, scop, scop_i);
3932 scop = pet_skip_info_seq_add(&skip, scop, j);
3934 if (partial || !scop)
3935 break;
3938 for (it = kills.begin(); it != kills.end(); ++it) {
3939 pet_scop *scop_j;
3940 scop_j = pet_scop_from_pet_stmt(ctx, *it);
3941 scop_j = pet_scop_prefix(scop_j, j);
3942 scop = pet_scop_add_seq(ctx, scop, scop_j);
3945 if (scop && partial_range) {
3946 if (scop->n_stmt == 0 || kills.size() != 0) {
3947 pet_scop_free(scop);
3948 return NULL;
3950 partial = true;
3953 return scop;
3956 /* Check if the scop marked by the user is exactly this Stmt
3957 * or part of this Stmt.
3958 * If so, return a pet_scop corresponding to the marked region.
3959 * Otherwise, return NULL.
3961 struct pet_scop *PetScan::scan(Stmt *stmt)
3963 SourceManager &SM = PP.getSourceManager();
3964 unsigned start_off, end_off;
3966 start_off = getExpansionOffset(SM, stmt->getLocStart());
3967 end_off = getExpansionOffset(SM, stmt->getLocEnd());
3969 if (start_off > loc.end)
3970 return NULL;
3971 if (end_off < loc.start)
3972 return NULL;
3973 if (start_off >= loc.start && end_off <= loc.end) {
3974 return extract(stmt);
3977 StmtIterator start;
3978 for (start = stmt->child_begin(); start != stmt->child_end(); ++start) {
3979 Stmt *child = *start;
3980 if (!child)
3981 continue;
3982 start_off = getExpansionOffset(SM, child->getLocStart());
3983 end_off = getExpansionOffset(SM, child->getLocEnd());
3984 if (start_off < loc.start && end_off >= loc.end)
3985 return scan(child);
3986 if (start_off >= loc.start)
3987 break;
3990 StmtIterator end;
3991 for (end = start; end != stmt->child_end(); ++end) {
3992 Stmt *child = *end;
3993 start_off = SM.getFileOffset(child->getLocStart());
3994 if (start_off >= loc.end)
3995 break;
3998 return extract(StmtRange(start, end), false, false);
4001 /* Set the size of index "pos" of "array" to "size".
4002 * In particular, add a constraint of the form
4004 * i_pos < size
4006 * to array->extent and a constraint of the form
4008 * size >= 0
4010 * to array->context.
4012 static struct pet_array *update_size(struct pet_array *array, int pos,
4013 __isl_take isl_pw_aff *size)
4015 isl_set *valid;
4016 isl_set *univ;
4017 isl_set *bound;
4018 isl_space *dim;
4019 isl_aff *aff;
4020 isl_pw_aff *index;
4021 isl_id *id;
4023 valid = isl_set_params(isl_pw_aff_nonneg_set(isl_pw_aff_copy(size)));
4024 array->context = isl_set_intersect(array->context, valid);
4026 dim = isl_set_get_space(array->extent);
4027 aff = isl_aff_zero_on_domain(isl_local_space_from_space(dim));
4028 aff = isl_aff_add_coefficient_si(aff, isl_dim_in, pos, 1);
4029 univ = isl_set_universe(isl_aff_get_domain_space(aff));
4030 index = isl_pw_aff_alloc(univ, aff);
4032 size = isl_pw_aff_add_dims(size, isl_dim_in,
4033 isl_set_dim(array->extent, isl_dim_set));
4034 id = isl_set_get_tuple_id(array->extent);
4035 size = isl_pw_aff_set_tuple_id(size, isl_dim_in, id);
4036 bound = isl_pw_aff_lt_set(index, size);
4038 array->extent = isl_set_intersect(array->extent, bound);
4040 if (!array->context || !array->extent)
4041 goto error;
4043 return array;
4044 error:
4045 pet_array_free(array);
4046 return NULL;
4049 /* Figure out the size of the array at position "pos" and all
4050 * subsequent positions from "type" and update "array" accordingly.
4052 struct pet_array *PetScan::set_upper_bounds(struct pet_array *array,
4053 const Type *type, int pos)
4055 const ArrayType *atype;
4056 isl_pw_aff *size;
4058 if (!array)
4059 return NULL;
4061 if (type->isPointerType()) {
4062 type = type->getPointeeType().getTypePtr();
4063 return set_upper_bounds(array, type, pos + 1);
4065 if (!type->isArrayType())
4066 return array;
4068 type = type->getCanonicalTypeInternal().getTypePtr();
4069 atype = cast<ArrayType>(type);
4071 if (type->isConstantArrayType()) {
4072 const ConstantArrayType *ca = cast<ConstantArrayType>(atype);
4073 size = extract_affine(ca->getSize());
4074 array = update_size(array, pos, size);
4075 } else if (type->isVariableArrayType()) {
4076 const VariableArrayType *vla = cast<VariableArrayType>(atype);
4077 size = extract_affine(vla->getSizeExpr());
4078 array = update_size(array, pos, size);
4081 type = atype->getElementType().getTypePtr();
4083 return set_upper_bounds(array, type, pos + 1);
4086 /* Is "T" the type of a variable length array with static size?
4088 static bool is_vla_with_static_size(QualType T)
4090 const VariableArrayType *vlatype;
4092 if (!T->isVariableArrayType())
4093 return false;
4094 vlatype = cast<VariableArrayType>(T);
4095 return vlatype->getSizeModifier() == VariableArrayType::Static;
4098 /* Return the type of "decl" as an array.
4100 * In particular, if "decl" is a parameter declaration that
4101 * is a variable length array with a static size, then
4102 * return the original type (i.e., the variable length array).
4103 * Otherwise, return the type of decl.
4105 static QualType get_array_type(ValueDecl *decl)
4107 ParmVarDecl *parm;
4108 QualType T;
4110 parm = dyn_cast<ParmVarDecl>(decl);
4111 if (!parm)
4112 return decl->getType();
4114 T = parm->getOriginalType();
4115 if (!is_vla_with_static_size(T))
4116 return decl->getType();
4117 return T;
4120 /* Does "decl" have definition that we can keep track of in a pet_type?
4122 static bool has_printable_definition(RecordDecl *decl)
4124 if (!decl->getDeclName())
4125 return false;
4126 return decl->getLexicalDeclContext() == decl->getDeclContext();
4129 /* Construct and return a pet_array corresponding to the variable "decl".
4130 * In particular, initialize array->extent to
4132 * { name[i_1,...,i_d] : i_1,...,i_d >= 0 }
4134 * and then call set_upper_bounds to set the upper bounds on the indices
4135 * based on the type of the variable.
4137 * If the base type is that of a record with a top-level definition and
4138 * if "types" is not null, then the RecordDecl corresponding to the type
4139 * is added to "types".
4141 * If the base type is that of a record with no top-level definition,
4142 * then we replace it by "<subfield>".
4144 struct pet_array *PetScan::extract_array(isl_ctx *ctx, ValueDecl *decl,
4145 lex_recorddecl_set *types)
4147 struct pet_array *array;
4148 QualType qt = get_array_type(decl);
4149 const Type *type = qt.getTypePtr();
4150 int depth = array_depth(type);
4151 QualType base = pet_clang_base_type(qt);
4152 string name;
4153 isl_id *id;
4154 isl_space *dim;
4156 array = isl_calloc_type(ctx, struct pet_array);
4157 if (!array)
4158 return NULL;
4160 id = create_decl_id(ctx, decl);
4161 dim = isl_space_set_alloc(ctx, 0, depth);
4162 dim = isl_space_set_tuple_id(dim, isl_dim_set, id);
4164 array->extent = isl_set_nat_universe(dim);
4166 dim = isl_space_params_alloc(ctx, 0);
4167 array->context = isl_set_universe(dim);
4169 array = set_upper_bounds(array, type, 0);
4170 if (!array)
4171 return NULL;
4173 name = base.getAsString();
4175 if (types && base->isRecordType()) {
4176 RecordDecl *decl = pet_clang_record_decl(base);
4177 if (has_printable_definition(decl))
4178 types->insert(decl);
4179 else
4180 name = "<subfield>";
4183 array->element_type = strdup(name.c_str());
4184 array->element_is_record = base->isRecordType();
4185 array->element_size = decl->getASTContext().getTypeInfo(base).first / 8;
4187 return array;
4190 /* Construct and return a pet_array corresponding to the sequence
4191 * of declarations "decls".
4192 * If the sequence contains a single declaration, then it corresponds
4193 * to a simple array access. Otherwise, it corresponds to a member access,
4194 * with the declaration for the substructure following that of the containing
4195 * structure in the sequence of declarations.
4196 * We start with the outermost substructure and then combine it with
4197 * information from the inner structures.
4199 * Additionally, keep track of all required types in "types".
4201 struct pet_array *PetScan::extract_array(isl_ctx *ctx,
4202 vector<ValueDecl *> decls, lex_recorddecl_set *types)
4204 struct pet_array *array;
4205 vector<ValueDecl *>::iterator it;
4207 it = decls.begin();
4209 array = extract_array(ctx, *it, types);
4211 for (++it; it != decls.end(); ++it) {
4212 struct pet_array *parent;
4213 const char *base_name, *field_name;
4214 char *product_name;
4216 parent = array;
4217 array = extract_array(ctx, *it, types);
4218 if (!array)
4219 return pet_array_free(parent);
4221 base_name = isl_set_get_tuple_name(parent->extent);
4222 field_name = isl_set_get_tuple_name(array->extent);
4223 product_name = pet_array_member_access_name(ctx,
4224 base_name, field_name);
4226 array->extent = isl_set_product(isl_set_copy(parent->extent),
4227 array->extent);
4228 if (product_name)
4229 array->extent = isl_set_set_tuple_name(array->extent,
4230 product_name);
4231 array->context = isl_set_intersect(array->context,
4232 isl_set_copy(parent->context));
4234 pet_array_free(parent);
4235 free(product_name);
4237 if (!array->extent || !array->context || !product_name)
4238 return pet_array_free(array);
4241 return array;
4244 /* Add a pet_type corresponding to "decl" to "scop, provided
4245 * it is a member of "types" and it has not been added before
4246 * (i.e., it is not a member of "types_done".
4248 * Since we want the user to be able to print the types
4249 * in the order in which they appear in the scop, we need to
4250 * make sure that types of fields in a structure appear before
4251 * that structure. We therefore call ourselves recursively
4252 * on the types of all record subfields.
4254 static struct pet_scop *add_type(isl_ctx *ctx, struct pet_scop *scop,
4255 RecordDecl *decl, Preprocessor &PP, lex_recorddecl_set &types,
4256 lex_recorddecl_set &types_done)
4258 string s;
4259 llvm::raw_string_ostream S(s);
4260 RecordDecl::field_iterator it;
4262 if (types.find(decl) == types.end())
4263 return scop;
4264 if (types_done.find(decl) != types_done.end())
4265 return scop;
4267 for (it = decl->field_begin(); it != decl->field_end(); ++it) {
4268 RecordDecl *record;
4269 QualType type = it->getType();
4271 if (!type->isRecordType())
4272 continue;
4273 record = pet_clang_record_decl(type);
4274 scop = add_type(ctx, scop, record, PP, types, types_done);
4277 if (strlen(decl->getName().str().c_str()) == 0)
4278 return scop;
4280 decl->print(S, PrintingPolicy(PP.getLangOpts()));
4281 S.str();
4283 scop->types[scop->n_type] = pet_type_alloc(ctx,
4284 decl->getName().str().c_str(), s.c_str());
4285 if (!scop->types[scop->n_type])
4286 return pet_scop_free(scop);
4288 types_done.insert(decl);
4290 scop->n_type++;
4292 return scop;
4295 /* Construct a list of pet_arrays, one for each array (or scalar)
4296 * accessed inside "scop", add this list to "scop" and return the result.
4298 * The context of "scop" is updated with the intersection of
4299 * the contexts of all arrays, i.e., constraints on the parameters
4300 * that ensure that the arrays have a valid (non-negative) size.
4302 * If the any of the extracted arrays refers to a member access,
4303 * then also add the required types to "scop".
4305 struct pet_scop *PetScan::scan_arrays(struct pet_scop *scop)
4307 int i;
4308 array_desc_set arrays;
4309 array_desc_set::iterator it;
4310 lex_recorddecl_set types;
4311 lex_recorddecl_set types_done;
4312 lex_recorddecl_set::iterator types_it;
4313 int n_array;
4314 struct pet_array **scop_arrays;
4316 if (!scop)
4317 return NULL;
4319 pet_scop_collect_arrays(scop, arrays);
4320 if (arrays.size() == 0)
4321 return scop;
4323 n_array = scop->n_array;
4325 scop_arrays = isl_realloc_array(ctx, scop->arrays, struct pet_array *,
4326 n_array + arrays.size());
4327 if (!scop_arrays)
4328 goto error;
4329 scop->arrays = scop_arrays;
4331 for (it = arrays.begin(), i = 0; it != arrays.end(); ++it, ++i) {
4332 struct pet_array *array;
4333 array = extract_array(ctx, *it, &types);
4334 scop->arrays[n_array + i] = array;
4335 if (!scop->arrays[n_array + i])
4336 goto error;
4337 scop->n_array++;
4338 scop->context = isl_set_intersect(scop->context,
4339 isl_set_copy(array->context));
4340 if (!scop->context)
4341 goto error;
4344 if (types.size() == 0)
4345 return scop;
4347 scop->types = isl_alloc_array(ctx, struct pet_type *, types.size());
4348 if (!scop->types)
4349 goto error;
4351 for (types_it = types.begin(); types_it != types.end(); ++types_it)
4352 scop = add_type(ctx, scop, *types_it, PP, types, types_done);
4354 return scop;
4355 error:
4356 pet_scop_free(scop);
4357 return NULL;
4360 /* Bound all parameters in scop->context to the possible values
4361 * of the corresponding C variable.
4363 static struct pet_scop *add_parameter_bounds(struct pet_scop *scop)
4365 int n;
4367 if (!scop)
4368 return NULL;
4370 n = isl_set_dim(scop->context, isl_dim_param);
4371 for (int i = 0; i < n; ++i) {
4372 isl_id *id;
4373 ValueDecl *decl;
4375 id = isl_set_get_dim_id(scop->context, isl_dim_param, i);
4376 if (pet_nested_in_id(id)) {
4377 isl_id_free(id);
4378 isl_die(isl_set_get_ctx(scop->context),
4379 isl_error_internal,
4380 "unresolved nested parameter", goto error);
4382 decl = (ValueDecl *) isl_id_get_user(id);
4383 isl_id_free(id);
4385 scop->context = set_parameter_bounds(scop->context, i, decl);
4387 if (!scop->context)
4388 goto error;
4391 return scop;
4392 error:
4393 pet_scop_free(scop);
4394 return NULL;
4397 /* Construct a pet_scop from the given function.
4399 * If the scop was delimited by scop and endscop pragmas, then we override
4400 * the file offsets by those derived from the pragmas.
4402 struct pet_scop *PetScan::scan(FunctionDecl *fd)
4404 pet_scop *scop;
4405 Stmt *stmt;
4407 stmt = fd->getBody();
4409 if (options->autodetect)
4410 scop = extract(stmt, true);
4411 else {
4412 scop = scan(stmt);
4413 scop = pet_scop_update_start_end(scop, loc.start, loc.end);
4415 scop = pet_scop_detect_parameter_accesses(scop);
4416 scop = scan_arrays(scop);
4417 scop = add_parameter_bounds(scop);
4418 scop = pet_scop_gist(scop, value_bounds);
4420 return scop;