use an isl_multi_pw_aff to represent a skip condition
[pet.git] / scop.c
blob415b47892a6843501dbfdd83baeac57129d51ba6
1 /*
2 * Copyright 2011 Leiden University. All rights reserved.
3 * Copyright 2012-2013 Ecole Normale Superieure. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above
13 * copyright notice, this list of conditions and the following
14 * disclaimer in the documentation and/or other materials provided
15 * with the distribution.
17 * THIS SOFTWARE IS PROVIDED BY LEIDEN UNIVERSITY ''AS IS'' AND ANY
18 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
20 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL LEIDEN UNIVERSITY OR
21 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
22 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
23 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
24 * OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 * The views and conclusions contained in the software and documentation
30 * are those of the authors and should not be interpreted as
31 * representing official policies, either expressed or implied, of
32 * Leiden University.
33 */
35 #include <string.h>
36 #include <isl/constraint.h>
37 #include <isl/union_set.h>
39 #include "scop.h"
41 #define ARRAY_SIZE(array) (sizeof(array)/sizeof(*array))
43 static char *type_str[] = {
44 [pet_expr_access] = "access",
45 [pet_expr_call] = "call",
46 [pet_expr_cast] = "cast",
47 [pet_expr_double] = "double",
48 [pet_expr_unary] = "unary",
49 [pet_expr_binary] = "binary",
50 [pet_expr_ternary] = "ternary"
53 static char *op_str[] = {
54 [pet_op_add_assign] = "+=",
55 [pet_op_sub_assign] = "-=",
56 [pet_op_mul_assign] = "*=",
57 [pet_op_div_assign] = "/=",
58 [pet_op_assign] = "=",
59 [pet_op_add] = "+",
60 [pet_op_sub] = "-",
61 [pet_op_mul] = "*",
62 [pet_op_div] = "/",
63 [pet_op_mod] = "%",
64 [pet_op_eq] = "==",
65 [pet_op_le] = "<=",
66 [pet_op_lt] = "<",
67 [pet_op_gt] = ">",
68 [pet_op_minus] = "-",
69 [pet_op_post_inc] = "++",
70 [pet_op_post_dec] = "--",
71 [pet_op_pre_inc] = "++",
72 [pet_op_pre_dec] = "--",
73 [pet_op_address_of] = "&",
74 [pet_op_kill] = "kill"
77 /* pet_scop with extra information that is only used during parsing.
79 * In particular, we keep track of conditions under which we want
80 * to skip the rest of the current loop iteration (skip[pet_skip_now])
81 * and of conditions under which we want to skip subsequent
82 * loop iterations (skip[pet_skip_later]).
84 * The conditions are represented as index expressions defined
85 * over a zero-dimensiona domain. The index expression is either
86 * a boolean affine expression or an access to a variable, which
87 * is assumed to attain values zero and one. The condition holds
88 * if the variable has value one or if the affine expression
89 * has value one (typically for only part of the parameter space).
91 * A missing condition (skip[type] == NULL) means that we don't want
92 * to skip anything.
94 struct pet_scop_ext {
95 struct pet_scop scop;
97 isl_multi_pw_aff *skip[2];
100 const char *pet_op_str(enum pet_op_type op)
102 return op_str[op];
105 int pet_op_is_inc_dec(enum pet_op_type op)
107 return op == pet_op_post_inc || op == pet_op_post_dec ||
108 op == pet_op_pre_inc || op == pet_op_pre_dec;
111 const char *pet_type_str(enum pet_expr_type type)
113 return type_str[type];
116 enum pet_op_type pet_str_op(const char *str)
118 int i;
120 for (i = 0; i < ARRAY_SIZE(op_str); ++i)
121 if (!strcmp(op_str[i], str))
122 return i;
124 return -1;
127 enum pet_expr_type pet_str_type(const char *str)
129 int i;
131 for (i = 0; i < ARRAY_SIZE(type_str); ++i)
132 if (!strcmp(type_str[i], str))
133 return i;
135 return -1;
138 /* Construct a pet_expr from an access relation.
139 * By default, it is considered to be a read access.
141 struct pet_expr *pet_expr_from_access(__isl_take isl_map *access)
143 isl_ctx *ctx = isl_map_get_ctx(access);
144 struct pet_expr *expr;
146 if (!access)
147 return NULL;
148 expr = isl_calloc_type(ctx, struct pet_expr);
149 if (!expr)
150 goto error;
152 expr->type = pet_expr_access;
153 expr->acc.access = access;
154 expr->acc.read = 1;
155 expr->acc.write = 0;
157 return expr;
158 error:
159 isl_map_free(access);
160 return NULL;
163 /* Construct an access pet_expr from an index expression.
164 * By default, the access is considered to be a read access.
166 struct pet_expr *pet_expr_from_index(__isl_take isl_multi_pw_aff *index)
168 isl_map *access;
170 access = isl_map_from_multi_pw_aff(index);
171 return pet_expr_from_access(access);
174 /* Construct an access pet_expr from an index expression and
175 * the depth of the accessed array.
176 * By default, the access is considered to be a read access.
178 * If the number of indices is smaller than the depth of the array,
179 * then we assume that all elements of the remaining dimensions
180 * are accessed.
182 struct pet_expr *pet_expr_from_index_and_depth(
183 __isl_take isl_multi_pw_aff *index, int depth)
185 isl_id *id;
186 isl_map *access;
187 int dim;
189 access = isl_map_from_multi_pw_aff(index);
190 if (!access)
191 return NULL;
192 dim = isl_map_dim(access, isl_dim_out);
193 if (dim > depth)
194 isl_die(isl_map_get_ctx(access), isl_error_internal,
195 "number of indices greater than depth",
196 access = isl_map_free(access));
197 if (dim == depth)
198 return pet_expr_from_access(access);
200 id = isl_map_get_tuple_id(access, isl_dim_out);
201 access = isl_map_add_dims(access, isl_dim_out, depth - dim);
202 access = isl_map_set_tuple_id(access, isl_dim_out, id);
204 return pet_expr_from_access(access);
207 /* Construct a pet_expr that kills the elements specified by "access".
209 struct pet_expr *pet_expr_kill_from_access(__isl_take isl_map *access)
211 isl_ctx *ctx;
212 struct pet_expr *expr;
214 ctx = isl_map_get_ctx(access);
215 expr = pet_expr_from_access(access);
216 if (!expr)
217 return NULL;
218 expr->acc.read = 0;
219 return pet_expr_new_unary(ctx, pet_op_kill, expr);
222 /* Construct a pet_expr that kills the elements specified by
223 * the index expression "index" and the access relation "access".
225 * We currently ignore "index".
227 struct pet_expr *pet_expr_kill_from_access_and_index(__isl_take isl_map *access,
228 __isl_take isl_multi_pw_aff *index)
230 if (!access || !index)
231 goto error;
232 isl_multi_pw_aff_free(index);
233 return pet_expr_kill_from_access(access);
234 error:
235 isl_map_free(access);
236 isl_multi_pw_aff_free(index);
237 return NULL;
240 /* Construct a unary pet_expr that performs "op" on "arg".
242 struct pet_expr *pet_expr_new_unary(isl_ctx *ctx, enum pet_op_type op,
243 struct pet_expr *arg)
245 struct pet_expr *expr;
247 if (!arg)
248 goto error;
249 expr = isl_alloc_type(ctx, struct pet_expr);
250 if (!expr)
251 goto error;
253 expr->type = pet_expr_unary;
254 expr->op = op;
255 expr->n_arg = 1;
256 expr->args = isl_calloc_array(ctx, struct pet_expr *, 1);
257 if (!expr->args)
258 goto error;
259 expr->args[pet_un_arg] = arg;
261 return expr;
262 error:
263 pet_expr_free(arg);
264 return NULL;
267 /* Construct a binary pet_expr that performs "op" on "lhs" and "rhs".
269 struct pet_expr *pet_expr_new_binary(isl_ctx *ctx, enum pet_op_type op,
270 struct pet_expr *lhs, struct pet_expr *rhs)
272 struct pet_expr *expr;
274 if (!lhs || !rhs)
275 goto error;
276 expr = isl_alloc_type(ctx, struct pet_expr);
277 if (!expr)
278 goto error;
280 expr->type = pet_expr_binary;
281 expr->op = op;
282 expr->n_arg = 2;
283 expr->args = isl_calloc_array(ctx, struct pet_expr *, 2);
284 if (!expr->args)
285 goto error;
286 expr->args[pet_bin_lhs] = lhs;
287 expr->args[pet_bin_rhs] = rhs;
289 return expr;
290 error:
291 pet_expr_free(lhs);
292 pet_expr_free(rhs);
293 return NULL;
296 /* Construct a ternary pet_expr that performs "cond" ? "lhs" : "rhs".
298 struct pet_expr *pet_expr_new_ternary(isl_ctx *ctx, struct pet_expr *cond,
299 struct pet_expr *lhs, struct pet_expr *rhs)
301 struct pet_expr *expr;
303 if (!cond || !lhs || !rhs)
304 goto error;
305 expr = isl_alloc_type(ctx, struct pet_expr);
306 if (!expr)
307 goto error;
309 expr->type = pet_expr_ternary;
310 expr->n_arg = 3;
311 expr->args = isl_calloc_array(ctx, struct pet_expr *, 3);
312 if (!expr->args)
313 goto error;
314 expr->args[pet_ter_cond] = cond;
315 expr->args[pet_ter_true] = lhs;
316 expr->args[pet_ter_false] = rhs;
318 return expr;
319 error:
320 pet_expr_free(cond);
321 pet_expr_free(lhs);
322 pet_expr_free(rhs);
323 return NULL;
326 /* Construct a call pet_expr that calls function "name" with "n_arg"
327 * arguments. The caller is responsible for filling in the arguments.
329 struct pet_expr *pet_expr_new_call(isl_ctx *ctx, const char *name,
330 unsigned n_arg)
332 struct pet_expr *expr;
334 expr = isl_alloc_type(ctx, struct pet_expr);
335 if (!expr)
336 return NULL;
338 expr->type = pet_expr_call;
339 expr->n_arg = n_arg;
340 expr->name = strdup(name);
341 expr->args = isl_calloc_array(ctx, struct pet_expr *, n_arg);
342 if (!expr->name || !expr->args)
343 return pet_expr_free(expr);
345 return expr;
348 /* Construct a pet_expr that represents the cast of "arg" to "type_name".
350 struct pet_expr *pet_expr_new_cast(isl_ctx *ctx, const char *type_name,
351 struct pet_expr *arg)
353 struct pet_expr *expr;
355 if (!arg)
356 return NULL;
358 expr = isl_alloc_type(ctx, struct pet_expr);
359 if (!expr)
360 goto error;
362 expr->type = pet_expr_cast;
363 expr->n_arg = 1;
364 expr->type_name = strdup(type_name);
365 expr->args = isl_calloc_array(ctx, struct pet_expr *, 1);
366 if (!expr->type_name || !expr->args)
367 goto error;
369 expr->args[0] = arg;
371 return expr;
372 error:
373 pet_expr_free(arg);
374 pet_expr_free(expr);
375 return NULL;
378 /* Construct a pet_expr that represents the double "d".
380 struct pet_expr *pet_expr_new_double(isl_ctx *ctx, double val, const char *s)
382 struct pet_expr *expr;
384 expr = isl_calloc_type(ctx, struct pet_expr);
385 if (!expr)
386 return NULL;
388 expr->type = pet_expr_double;
389 expr->d.val = val;
390 expr->d.s = strdup(s);
391 if (!expr->d.s)
392 return pet_expr_free(expr);
394 return expr;
397 void *pet_expr_free(struct pet_expr *expr)
399 int i;
401 if (!expr)
402 return NULL;
404 for (i = 0; i < expr->n_arg; ++i)
405 pet_expr_free(expr->args[i]);
406 free(expr->args);
408 switch (expr->type) {
409 case pet_expr_access:
410 isl_id_free(expr->acc.ref_id);
411 isl_map_free(expr->acc.access);
412 break;
413 case pet_expr_call:
414 free(expr->name);
415 break;
416 case pet_expr_cast:
417 free(expr->type_name);
418 break;
419 case pet_expr_double:
420 free(expr->d.s);
421 break;
422 case pet_expr_unary:
423 case pet_expr_binary:
424 case pet_expr_ternary:
425 break;
428 free(expr);
429 return NULL;
432 static void expr_dump(struct pet_expr *expr, int indent)
434 int i;
436 if (!expr)
437 return;
439 fprintf(stderr, "%*s", indent, "");
441 switch (expr->type) {
442 case pet_expr_double:
443 fprintf(stderr, "%s\n", expr->d.s);
444 break;
445 case pet_expr_access:
446 isl_id_dump(expr->acc.ref_id);
447 fprintf(stderr, "%*s", indent, "");
448 isl_map_dump(expr->acc.access);
449 fprintf(stderr, "%*sread: %d\n", indent + 2,
450 "", expr->acc.read);
451 fprintf(stderr, "%*swrite: %d\n", indent + 2,
452 "", expr->acc.write);
453 for (i = 0; i < expr->n_arg; ++i)
454 expr_dump(expr->args[i], indent + 2);
455 break;
456 case pet_expr_unary:
457 fprintf(stderr, "%s\n", op_str[expr->op]);
458 expr_dump(expr->args[pet_un_arg], indent + 2);
459 break;
460 case pet_expr_binary:
461 fprintf(stderr, "%s\n", op_str[expr->op]);
462 expr_dump(expr->args[pet_bin_lhs], indent + 2);
463 expr_dump(expr->args[pet_bin_rhs], indent + 2);
464 break;
465 case pet_expr_ternary:
466 fprintf(stderr, "?:\n");
467 expr_dump(expr->args[pet_ter_cond], indent + 2);
468 expr_dump(expr->args[pet_ter_true], indent + 2);
469 expr_dump(expr->args[pet_ter_false], indent + 2);
470 break;
471 case pet_expr_call:
472 fprintf(stderr, "%s/%d\n", expr->name, expr->n_arg);
473 for (i = 0; i < expr->n_arg; ++i)
474 expr_dump(expr->args[i], indent + 2);
475 break;
476 case pet_expr_cast:
477 fprintf(stderr, "(%s)\n", expr->type_name);
478 for (i = 0; i < expr->n_arg; ++i)
479 expr_dump(expr->args[i], indent + 2);
480 break;
484 void pet_expr_dump(struct pet_expr *expr)
486 expr_dump(expr, 0);
489 /* Does "expr" represent an access to an unnamed space, i.e.,
490 * does it represent an affine expression?
492 int pet_expr_is_affine(struct pet_expr *expr)
494 int has_id;
496 if (!expr)
497 return -1;
498 if (expr->type != pet_expr_access)
499 return 0;
501 has_id = isl_map_has_tuple_id(expr->acc.access, isl_dim_out);
502 if (has_id < 0)
503 return -1;
505 return !has_id;
508 /* Return the identifier of the array accessed by "expr".
510 __isl_give isl_id *pet_expr_access_get_id(struct pet_expr *expr)
512 if (!expr)
513 return NULL;
514 if (expr->type != pet_expr_access)
515 return NULL;
516 return isl_map_get_tuple_id(expr->acc.access, isl_dim_out);
519 /* Does "expr" represent an access to a scalar, i.e., zero-dimensional array?
521 int pet_expr_is_scalar_access(struct pet_expr *expr)
523 if (!expr)
524 return -1;
525 if (expr->type != pet_expr_access)
526 return 0;
528 return isl_map_dim(expr->acc.access, isl_dim_out) == 0;
531 /* Return 1 if the two pet_exprs are equivalent.
533 int pet_expr_is_equal(struct pet_expr *expr1, struct pet_expr *expr2)
535 int i;
537 if (!expr1 || !expr2)
538 return 0;
540 if (expr1->type != expr2->type)
541 return 0;
542 if (expr1->n_arg != expr2->n_arg)
543 return 0;
544 for (i = 0; i < expr1->n_arg; ++i)
545 if (!pet_expr_is_equal(expr1->args[i], expr2->args[i]))
546 return 0;
547 switch (expr1->type) {
548 case pet_expr_double:
549 if (strcmp(expr1->d.s, expr2->d.s))
550 return 0;
551 if (expr1->d.val != expr2->d.val)
552 return 0;
553 break;
554 case pet_expr_access:
555 if (expr1->acc.read != expr2->acc.read)
556 return 0;
557 if (expr1->acc.write != expr2->acc.write)
558 return 0;
559 if (expr1->acc.ref_id != expr2->acc.ref_id)
560 return 0;
561 if (!expr1->acc.access || !expr2->acc.access)
562 return 0;
563 if (!isl_map_is_equal(expr1->acc.access, expr2->acc.access))
564 return 0;
565 break;
566 case pet_expr_unary:
567 case pet_expr_binary:
568 case pet_expr_ternary:
569 if (expr1->op != expr2->op)
570 return 0;
571 break;
572 case pet_expr_call:
573 if (strcmp(expr1->name, expr2->name))
574 return 0;
575 break;
576 case pet_expr_cast:
577 if (strcmp(expr1->type_name, expr2->type_name))
578 return 0;
579 break;
582 return 1;
585 /* Add extra conditions on the parameters to all access relations in "expr".
587 struct pet_expr *pet_expr_restrict(struct pet_expr *expr,
588 __isl_take isl_set *cond)
590 int i;
592 if (!expr)
593 goto error;
595 for (i = 0; i < expr->n_arg; ++i) {
596 expr->args[i] = pet_expr_restrict(expr->args[i],
597 isl_set_copy(cond));
598 if (!expr->args[i])
599 goto error;
602 if (expr->type == pet_expr_access) {
603 expr->acc.access = isl_map_intersect_params(expr->acc.access,
604 isl_set_copy(cond));
605 if (!expr->acc.access)
606 goto error;
609 isl_set_free(cond);
610 return expr;
611 error:
612 isl_set_free(cond);
613 return pet_expr_free(expr);
616 /* Modify all expressions of type pet_expr_access in "expr"
617 * by calling "fn" on them.
619 struct pet_expr *pet_expr_map_access(struct pet_expr *expr,
620 struct pet_expr *(*fn)(struct pet_expr *expr, void *user),
621 void *user)
623 int i;
625 if (!expr)
626 return NULL;
628 for (i = 0; i < expr->n_arg; ++i) {
629 expr->args[i] = pet_expr_map_access(expr->args[i], fn, user);
630 if (!expr->args[i])
631 return pet_expr_free(expr);
634 if (expr->type == pet_expr_access)
635 expr = fn(expr, user);
637 return expr;
640 /* Call "fn" on each of the subexpressions of "expr" of type pet_expr_access.
642 * Return -1 on error (where fn return a negative value is treated as an error).
643 * Otherwise return 0.
645 int pet_expr_foreach_access_expr(struct pet_expr *expr,
646 int (*fn)(struct pet_expr *expr, void *user), void *user)
648 int i;
650 if (!expr)
651 return -1;
653 for (i = 0; i < expr->n_arg; ++i)
654 if (pet_expr_foreach_access_expr(expr->args[i], fn, user) < 0)
655 return -1;
657 if (expr->type == pet_expr_access)
658 return fn(expr, user);
660 return 0;
663 /* Modify the access relation of the given access expression
664 * based on the given iteration space transformation.
665 * If the access has any arguments then the domain of the access relation
666 * is a wrapped mapping from the iteration space to the space of
667 * argument values. We only need to change the domain of this wrapped
668 * mapping, so we extend the input transformation with an identity mapping
669 * on the space of argument values.
671 static struct pet_expr *update_domain(struct pet_expr *expr, void *user)
673 isl_map *update = user;
674 isl_space *dim;
676 update = isl_map_copy(update);
678 dim = isl_map_get_space(expr->acc.access);
679 dim = isl_space_domain(dim);
680 if (!isl_space_is_wrapping(dim))
681 isl_space_free(dim);
682 else {
683 isl_map *id;
684 dim = isl_space_unwrap(dim);
685 dim = isl_space_range(dim);
686 dim = isl_space_map_from_set(dim);
687 id = isl_map_identity(dim);
688 update = isl_map_product(update, id);
691 expr->acc.access = isl_map_apply_domain(expr->acc.access, update);
692 if (!expr->acc.access)
693 return pet_expr_free(expr);
695 return expr;
698 /* Modify all access relations in "expr" based on the given iteration space
699 * transformation.
701 static struct pet_expr *expr_update_domain(struct pet_expr *expr,
702 __isl_take isl_map *update)
704 expr = pet_expr_map_access(expr, &update_domain, update);
705 isl_map_free(update);
706 return expr;
709 /* Construct a pet_stmt with given line number and statement
710 * number from a pet_expr.
711 * The initial iteration domain is the zero-dimensional universe.
712 * The name of the domain is given by "label" if it is non-NULL.
713 * Otherwise, the name is constructed as S_<id>.
714 * The domains of all access relations are modified to refer
715 * to the statement iteration domain.
717 struct pet_stmt *pet_stmt_from_pet_expr(isl_ctx *ctx, int line,
718 __isl_take isl_id *label, int id, struct pet_expr *expr)
720 struct pet_stmt *stmt;
721 isl_space *dim;
722 isl_set *dom;
723 isl_map *sched;
724 isl_map *add_name;
725 char name[50];
727 if (!expr)
728 goto error;
730 stmt = isl_calloc_type(ctx, struct pet_stmt);
731 if (!stmt)
732 goto error;
734 dim = isl_space_set_alloc(ctx, 0, 0);
735 if (label)
736 dim = isl_space_set_tuple_id(dim, isl_dim_set, label);
737 else {
738 snprintf(name, sizeof(name), "S_%d", id);
739 dim = isl_space_set_tuple_name(dim, isl_dim_set, name);
741 dom = isl_set_universe(isl_space_copy(dim));
742 sched = isl_map_from_domain(isl_set_copy(dom));
744 dim = isl_space_from_range(dim);
745 add_name = isl_map_universe(dim);
746 expr = expr_update_domain(expr, add_name);
748 stmt->line = line;
749 stmt->domain = dom;
750 stmt->schedule = sched;
751 stmt->body = expr;
753 if (!stmt->domain || !stmt->schedule || !stmt->body)
754 return pet_stmt_free(stmt);
756 return stmt;
757 error:
758 isl_id_free(label);
759 return pet_expr_free(expr);
762 void *pet_stmt_free(struct pet_stmt *stmt)
764 int i;
766 if (!stmt)
767 return NULL;
769 isl_set_free(stmt->domain);
770 isl_map_free(stmt->schedule);
771 pet_expr_free(stmt->body);
773 for (i = 0; i < stmt->n_arg; ++i)
774 pet_expr_free(stmt->args[i]);
775 free(stmt->args);
777 free(stmt);
778 return NULL;
781 static void stmt_dump(struct pet_stmt *stmt, int indent)
783 int i;
785 if (!stmt)
786 return;
788 fprintf(stderr, "%*s%d\n", indent, "", stmt->line);
789 fprintf(stderr, "%*s", indent, "");
790 isl_set_dump(stmt->domain);
791 fprintf(stderr, "%*s", indent, "");
792 isl_map_dump(stmt->schedule);
793 expr_dump(stmt->body, indent);
794 for (i = 0; i < stmt->n_arg; ++i)
795 expr_dump(stmt->args[i], indent + 2);
798 void pet_stmt_dump(struct pet_stmt *stmt)
800 stmt_dump(stmt, 0);
803 struct pet_array *pet_array_free(struct pet_array *array)
805 if (!array)
806 return NULL;
808 isl_set_free(array->context);
809 isl_set_free(array->extent);
810 isl_set_free(array->value_bounds);
811 free(array->element_type);
813 free(array);
814 return NULL;
817 void pet_array_dump(struct pet_array *array)
819 if (!array)
820 return;
822 isl_set_dump(array->context);
823 isl_set_dump(array->extent);
824 isl_set_dump(array->value_bounds);
825 fprintf(stderr, "%s %s\n", array->element_type,
826 array->live_out ? "live-out" : "");
829 /* Alloc a pet_scop structure, with extra room for information that
830 * is only used during parsing.
832 struct pet_scop *pet_scop_alloc(isl_ctx *ctx)
834 return &isl_calloc_type(ctx, struct pet_scop_ext)->scop;
837 /* Construct a pet_scop with room for n statements.
839 static struct pet_scop *scop_alloc(isl_ctx *ctx, int n)
841 isl_space *space;
842 struct pet_scop *scop;
844 scop = pet_scop_alloc(ctx);
845 if (!scop)
846 return NULL;
848 space = isl_space_params_alloc(ctx, 0);
849 scop->context = isl_set_universe(isl_space_copy(space));
850 scop->context_value = isl_set_universe(space);
851 scop->stmts = isl_calloc_array(ctx, struct pet_stmt *, n);
852 if (!scop->context || !scop->stmts)
853 return pet_scop_free(scop);
855 scop->n_stmt = n;
857 return scop;
860 struct pet_scop *pet_scop_empty(isl_ctx *ctx)
862 return scop_alloc(ctx, 0);
865 /* Update "context" with respect to the valid parameter values for "access".
867 static __isl_give isl_set *access_extract_context(__isl_keep isl_map *access,
868 __isl_take isl_set *context)
870 context = isl_set_intersect(context,
871 isl_map_params(isl_map_copy(access)));
872 return context;
875 /* Update "context" with respect to the valid parameter values for "expr".
877 * If "expr" represents a ternary operator, then a parameter value
878 * needs to be valid for the condition and for at least one of the
879 * remaining two arguments.
880 * If the condition is an affine expression, then we can be a bit more specific.
881 * The parameter then has to be valid for the second argument for
882 * non-zero accesses and valid for the third argument for zero accesses.
884 static __isl_give isl_set *expr_extract_context(struct pet_expr *expr,
885 __isl_take isl_set *context)
887 int i;
889 if (expr->type == pet_expr_ternary) {
890 int is_aff;
891 isl_set *context1, *context2;
893 is_aff = pet_expr_is_affine(expr->args[0]);
894 if (is_aff < 0)
895 goto error;
897 context = expr_extract_context(expr->args[0], context);
898 context1 = expr_extract_context(expr->args[1],
899 isl_set_copy(context));
900 context2 = expr_extract_context(expr->args[2], context);
902 if (is_aff) {
903 isl_map *access;
904 isl_set *zero_set;
906 access = isl_map_copy(expr->args[0]->acc.access);
907 access = isl_map_fix_si(access, isl_dim_out, 0, 0);
908 zero_set = isl_map_params(access);
909 context1 = isl_set_subtract(context1,
910 isl_set_copy(zero_set));
911 context2 = isl_set_intersect(context2, zero_set);
914 context = isl_set_union(context1, context2);
915 context = isl_set_coalesce(context);
917 return context;
920 for (i = 0; i < expr->n_arg; ++i)
921 context = expr_extract_context(expr->args[i], context);
923 if (expr->type == pet_expr_access)
924 context = access_extract_context(expr->acc.access, context);
926 return context;
927 error:
928 isl_set_free(context);
929 return NULL;
932 /* Update "context" with respect to the valid parameter values for "stmt".
934 static __isl_give isl_set *stmt_extract_context(struct pet_stmt *stmt,
935 __isl_take isl_set *context)
937 int i;
939 for (i = 0; i < stmt->n_arg; ++i)
940 context = expr_extract_context(stmt->args[i], context);
942 context = expr_extract_context(stmt->body, context);
944 return context;
947 /* Construct a pet_scop that contains the given pet_stmt.
949 struct pet_scop *pet_scop_from_pet_stmt(isl_ctx *ctx, struct pet_stmt *stmt)
951 struct pet_scop *scop;
953 if (!stmt)
954 return NULL;
956 scop = scop_alloc(ctx, 1);
957 if (!scop)
958 goto error;
960 scop->context = stmt_extract_context(stmt, scop->context);
961 if (!scop->context)
962 goto error;
964 scop->stmts[0] = stmt;
966 return scop;
967 error:
968 pet_stmt_free(stmt);
969 pet_scop_free(scop);
970 return NULL;
973 /* Does "mpa" represent an access to an element of an unnamed space, i.e.,
974 * does it represent an affine expression?
976 static int multi_pw_aff_is_affine(__isl_keep isl_multi_pw_aff *mpa)
978 int has_id;
980 has_id = isl_multi_pw_aff_has_tuple_id(mpa, isl_dim_out);
981 if (has_id < 0)
982 return -1;
984 return !has_id;
987 /* Return the piecewise affine expression "set ? 1 : 0" defined on "dom".
989 static __isl_give isl_pw_aff *indicator_function(__isl_take isl_set *set,
990 __isl_take isl_set *dom)
992 isl_pw_aff *pa;
993 pa = isl_set_indicator_function(set);
994 pa = isl_pw_aff_intersect_domain(pa, dom);
995 return pa;
998 /* Return "lhs || rhs", defined on the shared definition domain.
1000 static __isl_give isl_pw_aff *pw_aff_or(__isl_take isl_pw_aff *lhs,
1001 __isl_take isl_pw_aff *rhs)
1003 isl_set *cond;
1004 isl_set *dom;
1006 dom = isl_set_intersect(isl_pw_aff_domain(isl_pw_aff_copy(lhs)),
1007 isl_pw_aff_domain(isl_pw_aff_copy(rhs)));
1008 cond = isl_set_union(isl_pw_aff_non_zero_set(lhs),
1009 isl_pw_aff_non_zero_set(rhs));
1010 cond = isl_set_coalesce(cond);
1011 return indicator_function(cond, dom);
1014 /* Combine ext1->skip[type] and ext2->skip[type] into ext->skip[type].
1015 * ext may be equal to either ext1 or ext2.
1017 * The two skips that need to be combined are assumed to be affine expressions.
1019 * We need to skip in ext if we need to skip in either ext1 or ext2.
1020 * We don't need to skip in ext if we don't need to skip in both ext1 and ext2.
1022 static struct pet_scop_ext *combine_skips(struct pet_scop_ext *ext,
1023 struct pet_scop_ext *ext1, struct pet_scop_ext *ext2,
1024 enum pet_skip type)
1026 isl_pw_aff *skip, *skip1, *skip2;
1028 if (!ext)
1029 return NULL;
1030 if (!ext1->skip[type] && !ext2->skip[type])
1031 return ext;
1032 if (!ext1->skip[type]) {
1033 if (ext == ext2)
1034 return ext;
1035 ext->skip[type] = ext2->skip[type];
1036 ext2->skip[type] = NULL;
1037 return ext;
1039 if (!ext2->skip[type]) {
1040 if (ext == ext1)
1041 return ext;
1042 ext->skip[type] = ext1->skip[type];
1043 ext1->skip[type] = NULL;
1044 return ext;
1047 if (!multi_pw_aff_is_affine(ext1->skip[type]) ||
1048 !multi_pw_aff_is_affine(ext2->skip[type]))
1049 isl_die(isl_multi_pw_aff_get_ctx(ext1->skip[type]),
1050 isl_error_internal, "can only combine affine skips",
1051 return pet_scop_free(&ext->scop));
1053 skip1 = isl_multi_pw_aff_get_pw_aff(ext1->skip[type], 0);
1054 skip2 = isl_multi_pw_aff_get_pw_aff(ext2->skip[type], 0);
1055 skip = pw_aff_or(skip1, skip2);
1056 isl_multi_pw_aff_free(ext1->skip[type]);
1057 ext1->skip[type] = NULL;
1058 isl_multi_pw_aff_free(ext2->skip[type]);
1059 ext2->skip[type] = NULL;
1060 ext->skip[type] = isl_multi_pw_aff_from_pw_aff(skip);
1061 if (!ext->skip[type])
1062 return pet_scop_free(&ext->scop);
1064 return ext;
1067 /* Combine scop1->skip[type] and scop2->skip[type] into scop->skip[type],
1068 * where type takes on the values pet_skip_now and pet_skip_later.
1069 * scop may be equal to either scop1 or scop2.
1071 static struct pet_scop *scop_combine_skips(struct pet_scop *scop,
1072 struct pet_scop *scop1, struct pet_scop *scop2)
1074 struct pet_scop_ext *ext = (struct pet_scop_ext *) scop;
1075 struct pet_scop_ext *ext1 = (struct pet_scop_ext *) scop1;
1076 struct pet_scop_ext *ext2 = (struct pet_scop_ext *) scop2;
1078 ext = combine_skips(ext, ext1, ext2, pet_skip_now);
1079 ext = combine_skips(ext, ext1, ext2, pet_skip_later);
1080 return &ext->scop;
1083 /* Update scop->start and scop->end to include the region from "start"
1084 * to "end". In particular, if scop->end == 0, then "scop" does not
1085 * have any offset information yet and we simply take the information
1086 * from "start" and "end". Otherwise, we update the fields if the
1087 * region from "start" to "end" is not already included.
1089 struct pet_scop *pet_scop_update_start_end(struct pet_scop *scop,
1090 unsigned start, unsigned end)
1092 if (!scop)
1093 return NULL;
1094 if (scop->end == 0) {
1095 scop->start = start;
1096 scop->end = end;
1097 } else {
1098 if (start < scop->start)
1099 scop->start = start;
1100 if (end > scop->end)
1101 scop->end = end;
1104 return scop;
1107 /* Does "implication" appear in the list of implications of "scop"?
1109 static int is_known_implication(struct pet_scop *scop,
1110 struct pet_implication *implication)
1112 int i;
1114 for (i = 0; i < scop->n_implication; ++i) {
1115 struct pet_implication *pi = scop->implications[i];
1116 int equal;
1118 if (pi->satisfied != implication->satisfied)
1119 continue;
1120 equal = isl_map_is_equal(pi->extension, implication->extension);
1121 if (equal < 0)
1122 return -1;
1123 if (equal)
1124 return 1;
1127 return 0;
1130 /* Store the concatenation of the impliciations of "scop1" and "scop2"
1131 * in "scop", removing duplicates (i.e., implications in "scop2" that
1132 * already appear in "scop1").
1134 static struct pet_scop *scop_collect_implications(isl_ctx *ctx,
1135 struct pet_scop *scop, struct pet_scop *scop1, struct pet_scop *scop2)
1137 int i, j;
1139 if (!scop)
1140 return NULL;
1142 if (scop2->n_implication == 0) {
1143 scop->n_implication = scop1->n_implication;
1144 scop->implications = scop1->implications;
1145 scop1->n_implication = 0;
1146 scop1->implications = NULL;
1147 return scop;
1150 if (scop1->n_implication == 0) {
1151 scop->n_implication = scop2->n_implication;
1152 scop->implications = scop2->implications;
1153 scop2->n_implication = 0;
1154 scop2->implications = NULL;
1155 return scop;
1158 scop->implications = isl_calloc_array(ctx, struct pet_implication *,
1159 scop1->n_implication + scop2->n_implication);
1160 if (!scop->implications)
1161 return pet_scop_free(scop);
1163 for (i = 0; i < scop1->n_implication; ++i) {
1164 scop->implications[i] = scop1->implications[i];
1165 scop1->implications[i] = NULL;
1168 scop->n_implication = scop1->n_implication;
1169 j = scop1->n_implication;
1170 for (i = 0; i < scop2->n_implication; ++i) {
1171 int known;
1173 known = is_known_implication(scop, scop2->implications[i]);
1174 if (known < 0)
1175 return pet_scop_free(scop);
1176 if (known)
1177 continue;
1178 scop->implications[j++] = scop2->implications[i];
1179 scop2->implications[i] = NULL;
1181 scop->n_implication = j;
1183 return scop;
1186 /* Combine the offset information of "scop1" and "scop2" into "scop".
1188 static struct pet_scop *scop_combine_start_end(struct pet_scop *scop,
1189 struct pet_scop *scop1, struct pet_scop *scop2)
1191 if (scop1->end)
1192 scop = pet_scop_update_start_end(scop,
1193 scop1->start, scop1->end);
1194 if (scop2->end)
1195 scop = pet_scop_update_start_end(scop,
1196 scop2->start, scop2->end);
1197 return scop;
1200 /* Construct a pet_scop that contains the offset information,
1201 * arrays, statements and skip information in "scop1" and "scop2".
1203 static struct pet_scop *pet_scop_add(isl_ctx *ctx, struct pet_scop *scop1,
1204 struct pet_scop *scop2)
1206 int i;
1207 struct pet_scop *scop = NULL;
1209 if (!scop1 || !scop2)
1210 goto error;
1212 if (scop1->n_stmt == 0) {
1213 scop2 = scop_combine_skips(scop2, scop1, scop2);
1214 pet_scop_free(scop1);
1215 return scop2;
1218 if (scop2->n_stmt == 0) {
1219 scop1 = scop_combine_skips(scop1, scop1, scop2);
1220 pet_scop_free(scop2);
1221 return scop1;
1224 scop = scop_alloc(ctx, scop1->n_stmt + scop2->n_stmt);
1225 if (!scop)
1226 goto error;
1228 scop->arrays = isl_calloc_array(ctx, struct pet_array *,
1229 scop1->n_array + scop2->n_array);
1230 if (!scop->arrays)
1231 goto error;
1232 scop->n_array = scop1->n_array + scop2->n_array;
1234 for (i = 0; i < scop1->n_stmt; ++i) {
1235 scop->stmts[i] = scop1->stmts[i];
1236 scop1->stmts[i] = NULL;
1239 for (i = 0; i < scop2->n_stmt; ++i) {
1240 scop->stmts[scop1->n_stmt + i] = scop2->stmts[i];
1241 scop2->stmts[i] = NULL;
1244 for (i = 0; i < scop1->n_array; ++i) {
1245 scop->arrays[i] = scop1->arrays[i];
1246 scop1->arrays[i] = NULL;
1249 for (i = 0; i < scop2->n_array; ++i) {
1250 scop->arrays[scop1->n_array + i] = scop2->arrays[i];
1251 scop2->arrays[i] = NULL;
1254 scop = scop_collect_implications(ctx, scop, scop1, scop2);
1255 scop = pet_scop_restrict_context(scop, isl_set_copy(scop1->context));
1256 scop = pet_scop_restrict_context(scop, isl_set_copy(scop2->context));
1257 scop = scop_combine_skips(scop, scop1, scop2);
1258 scop = scop_combine_start_end(scop, scop1, scop2);
1260 pet_scop_free(scop1);
1261 pet_scop_free(scop2);
1262 return scop;
1263 error:
1264 pet_scop_free(scop1);
1265 pet_scop_free(scop2);
1266 pet_scop_free(scop);
1267 return NULL;
1270 /* Apply the skip condition "skip" to "scop".
1271 * That is, make sure "scop" is not executed when the condition holds.
1273 * If "skip" is an affine expression, we add the conditions under
1274 * which the expression is zero to the iteration domains.
1275 * Otherwise, we add a filter on the variable attaining the value zero.
1277 static struct pet_scop *restrict_skip(struct pet_scop *scop,
1278 __isl_take isl_multi_pw_aff *skip)
1280 isl_set *zero;
1281 isl_pw_aff *pa;
1282 int is_aff;
1284 if (!scop || !skip)
1285 goto error;
1287 is_aff = multi_pw_aff_is_affine(skip);
1288 if (is_aff < 0)
1289 goto error;
1291 if (!is_aff) {
1292 isl_map *map;
1293 map = isl_map_from_multi_pw_aff(skip);
1294 return pet_scop_filter(scop, map, 0);
1297 pa = isl_multi_pw_aff_get_pw_aff(skip, 0);
1298 isl_multi_pw_aff_free(skip);
1299 zero = isl_set_params(isl_pw_aff_zero_set(pa));
1300 scop = pet_scop_restrict(scop, zero);
1302 return scop;
1303 error:
1304 isl_multi_pw_aff_free(skip);
1305 return pet_scop_free(scop);
1308 /* Construct a pet_scop that contains the arrays, statements and
1309 * skip information in "scop1" and "scop2", where the two scops
1310 * are executed "in sequence". That is, breaks and continues
1311 * in scop1 have an effect on scop2.
1313 struct pet_scop *pet_scop_add_seq(isl_ctx *ctx, struct pet_scop *scop1,
1314 struct pet_scop *scop2)
1316 if (scop1 && pet_scop_has_skip(scop1, pet_skip_now))
1317 scop2 = restrict_skip(scop2,
1318 pet_scop_get_skip(scop1, pet_skip_now));
1319 return pet_scop_add(ctx, scop1, scop2);
1322 /* Construct a pet_scop that contains the arrays, statements and
1323 * skip information in "scop1" and "scop2", where the two scops
1324 * are executed "in parallel". That is, any break or continue
1325 * in scop1 has no effect on scop2.
1327 struct pet_scop *pet_scop_add_par(isl_ctx *ctx, struct pet_scop *scop1,
1328 struct pet_scop *scop2)
1330 return pet_scop_add(ctx, scop1, scop2);
1333 void *pet_implication_free(struct pet_implication *implication)
1335 int i;
1337 if (!implication)
1338 return NULL;
1340 isl_map_free(implication->extension);
1342 free(implication);
1343 return NULL;
1346 void *pet_scop_free(struct pet_scop *scop)
1348 int i;
1349 struct pet_scop_ext *ext = (struct pet_scop_ext *) scop;
1351 if (!scop)
1352 return NULL;
1353 isl_set_free(scop->context);
1354 isl_set_free(scop->context_value);
1355 if (scop->arrays)
1356 for (i = 0; i < scop->n_array; ++i)
1357 pet_array_free(scop->arrays[i]);
1358 free(scop->arrays);
1359 if (scop->stmts)
1360 for (i = 0; i < scop->n_stmt; ++i)
1361 pet_stmt_free(scop->stmts[i]);
1362 free(scop->stmts);
1363 if (scop->implications)
1364 for (i = 0; i < scop->n_implication; ++i)
1365 pet_implication_free(scop->implications[i]);
1366 free(scop->implications);
1367 isl_multi_pw_aff_free(ext->skip[pet_skip_now]);
1368 isl_multi_pw_aff_free(ext->skip[pet_skip_later]);
1369 free(scop);
1370 return NULL;
1373 void pet_implication_dump(struct pet_implication *implication)
1375 if (!implication)
1376 return;
1378 fprintf(stderr, "%d\n", implication->satisfied);
1379 isl_map_dump(implication->extension);
1382 void pet_scop_dump(struct pet_scop *scop)
1384 int i;
1385 struct pet_scop_ext *ext = (struct pet_scop_ext *) scop;
1387 if (!scop)
1388 return;
1390 isl_set_dump(scop->context);
1391 isl_set_dump(scop->context_value);
1392 for (i = 0; i < scop->n_array; ++i)
1393 pet_array_dump(scop->arrays[i]);
1394 for (i = 0; i < scop->n_stmt; ++i)
1395 pet_stmt_dump(scop->stmts[i]);
1396 for (i = 0; i < scop->n_implication; ++i)
1397 pet_implication_dump(scop->implications[i]);
1399 if (ext->skip[0]) {
1400 fprintf(stderr, "skip\n");
1401 isl_multi_pw_aff_dump(ext->skip[0]);
1402 isl_multi_pw_aff_dump(ext->skip[1]);
1406 /* Return 1 if the two pet_arrays are equivalent.
1408 * We don't compare element_size as this may be target dependent.
1410 int pet_array_is_equal(struct pet_array *array1, struct pet_array *array2)
1412 if (!array1 || !array2)
1413 return 0;
1415 if (!isl_set_is_equal(array1->context, array2->context))
1416 return 0;
1417 if (!isl_set_is_equal(array1->extent, array2->extent))
1418 return 0;
1419 if (!!array1->value_bounds != !!array2->value_bounds)
1420 return 0;
1421 if (array1->value_bounds &&
1422 !isl_set_is_equal(array1->value_bounds, array2->value_bounds))
1423 return 0;
1424 if (strcmp(array1->element_type, array2->element_type))
1425 return 0;
1426 if (array1->live_out != array2->live_out)
1427 return 0;
1428 if (array1->uniquely_defined != array2->uniquely_defined)
1429 return 0;
1430 if (array1->declared != array2->declared)
1431 return 0;
1432 if (array1->exposed != array2->exposed)
1433 return 0;
1435 return 1;
1438 /* Return 1 if the two pet_stmts are equivalent.
1440 int pet_stmt_is_equal(struct pet_stmt *stmt1, struct pet_stmt *stmt2)
1442 int i;
1444 if (!stmt1 || !stmt2)
1445 return 0;
1447 if (stmt1->line != stmt2->line)
1448 return 0;
1449 if (!isl_set_is_equal(stmt1->domain, stmt2->domain))
1450 return 0;
1451 if (!isl_map_is_equal(stmt1->schedule, stmt2->schedule))
1452 return 0;
1453 if (!pet_expr_is_equal(stmt1->body, stmt2->body))
1454 return 0;
1455 if (stmt1->n_arg != stmt2->n_arg)
1456 return 0;
1457 for (i = 0; i < stmt1->n_arg; ++i) {
1458 if (!pet_expr_is_equal(stmt1->args[i], stmt2->args[i]))
1459 return 0;
1462 return 1;
1465 /* Return 1 if the two pet_implications are equivalent.
1467 int pet_implication_is_equal(struct pet_implication *implication1,
1468 struct pet_implication *implication2)
1470 if (!implication1 || !implication2)
1471 return 0;
1473 if (implication1->satisfied != implication2->satisfied)
1474 return 0;
1475 if (!isl_map_is_equal(implication1->extension, implication2->extension))
1476 return 0;
1478 return 1;
1481 /* Return 1 if the two pet_scops are equivalent.
1483 int pet_scop_is_equal(struct pet_scop *scop1, struct pet_scop *scop2)
1485 int i;
1487 if (!scop1 || !scop2)
1488 return 0;
1490 if (!isl_set_is_equal(scop1->context, scop2->context))
1491 return 0;
1492 if (!isl_set_is_equal(scop1->context_value, scop2->context_value))
1493 return 0;
1495 if (scop1->n_array != scop2->n_array)
1496 return 0;
1497 for (i = 0; i < scop1->n_array; ++i)
1498 if (!pet_array_is_equal(scop1->arrays[i], scop2->arrays[i]))
1499 return 0;
1501 if (scop1->n_stmt != scop2->n_stmt)
1502 return 0;
1503 for (i = 0; i < scop1->n_stmt; ++i)
1504 if (!pet_stmt_is_equal(scop1->stmts[i], scop2->stmts[i]))
1505 return 0;
1507 if (scop1->n_implication != scop2->n_implication)
1508 return 0;
1509 for (i = 0; i < scop1->n_implication; ++i)
1510 if (!pet_implication_is_equal(scop1->implications[i],
1511 scop2->implications[i]))
1512 return 0;
1514 return 1;
1517 /* Prefix the schedule of "stmt" with an extra dimension with constant
1518 * value "pos".
1520 struct pet_stmt *pet_stmt_prefix(struct pet_stmt *stmt, int pos)
1522 if (!stmt)
1523 return NULL;
1525 stmt->schedule = isl_map_insert_dims(stmt->schedule, isl_dim_out, 0, 1);
1526 stmt->schedule = isl_map_fix_si(stmt->schedule, isl_dim_out, 0, pos);
1527 if (!stmt->schedule)
1528 return pet_stmt_free(stmt);
1530 return stmt;
1533 /* Prefix the schedules of all statements in "scop" with an extra
1534 * dimension with constant value "pos".
1536 struct pet_scop *pet_scop_prefix(struct pet_scop *scop, int pos)
1538 int i;
1540 if (!scop)
1541 return NULL;
1543 for (i = 0; i < scop->n_stmt; ++i) {
1544 scop->stmts[i] = pet_stmt_prefix(scop->stmts[i], pos);
1545 if (!scop->stmts[i])
1546 return pet_scop_free(scop);
1549 return scop;
1552 /* Given a set with a parameter at "param_pos" that refers to the
1553 * iterator, "move" the iterator to the first set dimension.
1554 * That is, essentially equate the parameter to the first set dimension
1555 * and then project it out.
1557 * The first set dimension may however refer to a virtual iterator,
1558 * while the parameter refers to the "real" iterator.
1559 * We therefore need to take into account the affine expression "iv_map", which
1560 * expresses the real iterator in terms of the virtual iterator.
1561 * In particular, we equate the set dimension to the input of the map
1562 * and the parameter to the output of the map and then project out
1563 * everything we don't need anymore.
1565 static __isl_give isl_set *internalize_iv(__isl_take isl_set *set,
1566 int param_pos, __isl_take isl_aff *iv_map)
1568 isl_map *map, *map2;
1569 map = isl_map_from_domain(set);
1570 map = isl_map_add_dims(map, isl_dim_out, 1);
1571 map = isl_map_equate(map, isl_dim_in, 0, isl_dim_out, 0);
1572 map2 = isl_map_from_aff(iv_map);
1573 map2 = isl_map_align_params(map2, isl_map_get_space(map));
1574 map = isl_map_apply_range(map, map2);
1575 map = isl_map_equate(map, isl_dim_param, param_pos, isl_dim_out, 0);
1576 map = isl_map_project_out(map, isl_dim_param, param_pos, 1);
1577 return isl_map_domain(map);
1580 /* Data used in embed_access.
1581 * extend adds an iterator to the iteration domain
1582 * iv_map expresses the real iterator in terms of the virtual iterator
1583 * var_id represents the induction variable of the corresponding loop
1585 struct pet_embed_access {
1586 isl_map *extend;
1587 isl_aff *iv_map;
1588 isl_id *var_id;
1591 /* Given an access expression, embed the associated access relation
1592 * in an extra outer loop.
1594 * We first update the iteration domain to insert the extra dimension.
1596 * If the access refers to the induction variable, then it is
1597 * turned into an access to the set of integers with index (and value)
1598 * equal to the induction variable.
1600 * If the induction variable appears in the constraints (as a parameter),
1601 * then the parameter is equated to the newly introduced iteration
1602 * domain dimension and subsequently projected out.
1604 * Similarly, if the accessed array is a virtual array (with user
1605 * pointer equal to NULL), as created by create_test_index,
1606 * then it is extended along with the domain of the access.
1608 static struct pet_expr *embed_access(struct pet_expr *expr, void *user)
1610 struct pet_embed_access *data = user;
1611 isl_map *access;
1612 isl_id *array_id = NULL;
1613 int pos;
1615 expr = update_domain(expr, data->extend);
1616 if (!expr)
1617 return NULL;
1619 access = expr->acc.access;
1621 if (isl_map_has_tuple_id(access, isl_dim_out))
1622 array_id = isl_map_get_tuple_id(access, isl_dim_out);
1623 if (array_id == data->var_id ||
1624 (array_id && !isl_id_get_user(array_id))) {
1625 access = isl_map_insert_dims(access, isl_dim_out, 0, 1);
1626 access = isl_map_equate(access,
1627 isl_dim_in, 0, isl_dim_out, 0);
1628 if (array_id == data->var_id)
1629 access = isl_map_apply_range(access,
1630 isl_map_from_aff(isl_aff_copy(data->iv_map)));
1631 else
1632 access = isl_map_set_tuple_id(access, isl_dim_out,
1633 isl_id_copy(array_id));
1635 isl_id_free(array_id);
1637 pos = isl_map_find_dim_by_id(access, isl_dim_param, data->var_id);
1638 if (pos >= 0) {
1639 isl_set *set = isl_map_wrap(access);
1640 set = internalize_iv(set, pos, isl_aff_copy(data->iv_map));
1641 access = isl_set_unwrap(set);
1643 expr->acc.access = isl_map_set_dim_id(access, isl_dim_in, 0,
1644 isl_id_copy(data->var_id));
1645 if (!expr->acc.access)
1646 return pet_expr_free(expr);
1648 return expr;
1651 /* Embed all access subexpressions of "expr" in an extra loop.
1652 * "extend" inserts an outer loop iterator in the iteration domains.
1653 * "iv_map" expresses the real iterator in terms of the virtual iterator
1654 * "var_id" represents the induction variable.
1656 static struct pet_expr *expr_embed(struct pet_expr *expr,
1657 __isl_take isl_map *extend, __isl_take isl_aff *iv_map,
1658 __isl_keep isl_id *var_id)
1660 struct pet_embed_access data =
1661 { .extend = extend, .iv_map = iv_map, .var_id = var_id };
1663 expr = pet_expr_map_access(expr, &embed_access, &data);
1664 isl_aff_free(iv_map);
1665 isl_map_free(extend);
1666 return expr;
1669 /* Embed the given pet_stmt in an extra outer loop with iteration domain
1670 * "dom" and schedule "sched". "var_id" represents the induction variable
1671 * of the loop. "iv_map" maps a possibly virtual iterator to the real iterator.
1672 * That is, it expresses the iterator that some of the parameters in "stmt"
1673 * may refer to in terms of the iterator used in "dom" and
1674 * the domain of "sched".
1676 * The iteration domain and schedule of the statement are updated
1677 * according to the iteration domain and schedule of the new loop.
1678 * If stmt->domain is a wrapped map, then the iteration domain
1679 * is the domain of this map, so we need to be careful to adjust
1680 * this domain.
1682 * If the induction variable appears in the constraints (as a parameter)
1683 * of the current iteration domain or the schedule of the statement,
1684 * then the parameter is equated to the newly introduced iteration
1685 * domain dimension and subsequently projected out.
1687 * Finally, all access relations are updated based on the extra loop.
1689 static struct pet_stmt *pet_stmt_embed(struct pet_stmt *stmt,
1690 __isl_take isl_set *dom, __isl_take isl_map *sched,
1691 __isl_take isl_aff *iv_map, __isl_take isl_id *var_id)
1693 int i;
1694 int pos;
1695 isl_id *stmt_id;
1696 isl_space *dim;
1697 isl_map *extend;
1699 if (!stmt)
1700 goto error;
1702 if (isl_set_is_wrapping(stmt->domain)) {
1703 isl_map *map;
1704 isl_map *ext;
1705 isl_space *ran_dim;
1707 map = isl_set_unwrap(stmt->domain);
1708 stmt_id = isl_map_get_tuple_id(map, isl_dim_in);
1709 ran_dim = isl_space_range(isl_map_get_space(map));
1710 ext = isl_map_from_domain_and_range(isl_set_copy(dom),
1711 isl_set_universe(ran_dim));
1712 map = isl_map_flat_domain_product(ext, map);
1713 map = isl_map_set_tuple_id(map, isl_dim_in,
1714 isl_id_copy(stmt_id));
1715 dim = isl_space_domain(isl_map_get_space(map));
1716 stmt->domain = isl_map_wrap(map);
1717 } else {
1718 stmt_id = isl_set_get_tuple_id(stmt->domain);
1719 stmt->domain = isl_set_flat_product(isl_set_copy(dom),
1720 stmt->domain);
1721 stmt->domain = isl_set_set_tuple_id(stmt->domain,
1722 isl_id_copy(stmt_id));
1723 dim = isl_set_get_space(stmt->domain);
1726 pos = isl_set_find_dim_by_id(stmt->domain, isl_dim_param, var_id);
1727 if (pos >= 0)
1728 stmt->domain = internalize_iv(stmt->domain, pos,
1729 isl_aff_copy(iv_map));
1731 stmt->schedule = isl_map_flat_product(sched, stmt->schedule);
1732 stmt->schedule = isl_map_set_tuple_id(stmt->schedule,
1733 isl_dim_in, stmt_id);
1735 pos = isl_map_find_dim_by_id(stmt->schedule, isl_dim_param, var_id);
1736 if (pos >= 0) {
1737 isl_set *set = isl_map_wrap(stmt->schedule);
1738 set = internalize_iv(set, pos, isl_aff_copy(iv_map));
1739 stmt->schedule = isl_set_unwrap(set);
1742 dim = isl_space_map_from_set(dim);
1743 extend = isl_map_identity(dim);
1744 extend = isl_map_remove_dims(extend, isl_dim_in, 0, 1);
1745 extend = isl_map_set_tuple_id(extend, isl_dim_in,
1746 isl_map_get_tuple_id(extend, isl_dim_out));
1747 for (i = 0; i < stmt->n_arg; ++i)
1748 stmt->args[i] = expr_embed(stmt->args[i], isl_map_copy(extend),
1749 isl_aff_copy(iv_map), var_id);
1750 stmt->body = expr_embed(stmt->body, extend, iv_map, var_id);
1752 isl_set_free(dom);
1753 isl_id_free(var_id);
1755 for (i = 0; i < stmt->n_arg; ++i)
1756 if (!stmt->args[i])
1757 return pet_stmt_free(stmt);
1758 if (!stmt->domain || !stmt->schedule || !stmt->body)
1759 return pet_stmt_free(stmt);
1760 return stmt;
1761 error:
1762 isl_set_free(dom);
1763 isl_map_free(sched);
1764 isl_aff_free(iv_map);
1765 isl_id_free(var_id);
1766 return NULL;
1769 /* Embed the given pet_array in an extra outer loop with iteration domain
1770 * "dom".
1771 * This embedding only has an effect on virtual arrays (those with
1772 * user pointer equal to NULL), which need to be extended along with
1773 * the iteration domain.
1775 static struct pet_array *pet_array_embed(struct pet_array *array,
1776 __isl_take isl_set *dom)
1778 isl_id *array_id = NULL;
1780 if (!array)
1781 goto error;
1783 if (isl_set_has_tuple_id(array->extent))
1784 array_id = isl_set_get_tuple_id(array->extent);
1786 if (array_id && !isl_id_get_user(array_id)) {
1787 array->extent = isl_set_flat_product(dom, array->extent);
1788 array->extent = isl_set_set_tuple_id(array->extent, array_id);
1789 if (!array->extent)
1790 return pet_array_free(array);
1791 } else {
1792 isl_set_free(dom);
1793 isl_id_free(array_id);
1796 return array;
1797 error:
1798 isl_set_free(dom);
1799 return NULL;
1802 /* Project out all unnamed parameters from "set" and return the result.
1804 static __isl_give isl_set *set_project_out_unnamed_params(
1805 __isl_take isl_set *set)
1807 int i, n;
1809 n = isl_set_dim(set, isl_dim_param);
1810 for (i = n - 1; i >= 0; --i) {
1811 if (isl_set_has_dim_name(set, isl_dim_param, i))
1812 continue;
1813 set = isl_set_project_out(set, isl_dim_param, i, 1);
1816 return set;
1819 /* Update the context with respect to an embedding into a loop
1820 * with iteration domain "dom" and induction variable "id".
1821 * "iv_map" expresses the real iterator (parameter "id") in terms
1822 * of a possibly virtual iterator (used in "dom").
1824 * If the current context is independent of "id", we don't need
1825 * to do anything.
1826 * Otherwise, a parameter value is invalid for the embedding if
1827 * any of the corresponding iterator values is invalid.
1828 * That is, a parameter value is valid only if all the corresponding
1829 * iterator values are valid.
1830 * We therefore compute the set of parameters
1832 * forall i in dom : valid (i)
1834 * or
1836 * not exists i in dom : not valid(i)
1838 * i.e.,
1840 * not exists i in dom \ valid(i)
1842 * Before we subtract valid(i) from dom, we first need to substitute
1843 * the real iterator for the virtual iterator.
1845 * If there are any unnamed parameters in "dom", then we consider
1846 * a parameter value to be valid if it is valid for any value of those
1847 * unnamed parameters. They are therefore projected out at the end.
1849 static __isl_give isl_set *context_embed(__isl_take isl_set *context,
1850 __isl_keep isl_set *dom, __isl_keep isl_aff *iv_map,
1851 __isl_keep isl_id *id)
1853 int pos;
1854 isl_multi_aff *ma;
1856 pos = isl_set_find_dim_by_id(context, isl_dim_param, id);
1857 if (pos < 0)
1858 return context;
1860 context = isl_set_from_params(context);
1861 context = isl_set_add_dims(context, isl_dim_set, 1);
1862 context = isl_set_equate(context, isl_dim_param, pos, isl_dim_set, 0);
1863 context = isl_set_project_out(context, isl_dim_param, pos, 1);
1864 ma = isl_multi_aff_from_aff(isl_aff_copy(iv_map));
1865 context = isl_set_preimage_multi_aff(context, ma);
1866 context = isl_set_subtract(isl_set_copy(dom), context);
1867 context = isl_set_params(context);
1868 context = isl_set_complement(context);
1869 context = set_project_out_unnamed_params(context);
1870 return context;
1873 /* Update the implication with respect to an embedding into a loop
1874 * with iteration domain "dom".
1876 * Since embed_access extends virtual arrays along with the domain
1877 * of the access, we need to do the same with domain and range
1878 * of the implication. Since the original implication is only valid
1879 * within a given iteration of the loop, the extended implication
1880 * maps the extra array dimension corresponding to the extra loop
1881 * to itself.
1883 static struct pet_implication *pet_implication_embed(
1884 struct pet_implication *implication, __isl_take isl_set *dom)
1886 isl_id *id;
1887 isl_map *map;
1889 if (!implication)
1890 goto error;
1892 map = isl_set_identity(dom);
1893 id = isl_map_get_tuple_id(implication->extension, isl_dim_in);
1894 map = isl_map_flat_product(map, implication->extension);
1895 map = isl_map_set_tuple_id(map, isl_dim_in, isl_id_copy(id));
1896 map = isl_map_set_tuple_id(map, isl_dim_out, id);
1897 implication->extension = map;
1898 if (!implication->extension)
1899 return pet_implication_free(implication);
1901 return implication;
1902 error:
1903 isl_set_free(dom);
1904 return NULL;
1907 /* Embed all statements and arrays in "scop" in an extra outer loop
1908 * with iteration domain "dom" and schedule "sched".
1909 * "id" represents the induction variable of the loop.
1910 * "iv_map" maps a possibly virtual iterator to the real iterator.
1911 * That is, it expresses the iterator that some of the parameters in "scop"
1912 * may refer to in terms of the iterator used in "dom" and
1913 * the domain of "sched".
1915 * Any skip conditions within the loop have no effect outside of the loop.
1916 * The caller is responsible for making sure skip[pet_skip_later] has been
1917 * taken into account.
1919 struct pet_scop *pet_scop_embed(struct pet_scop *scop, __isl_take isl_set *dom,
1920 __isl_take isl_map *sched, __isl_take isl_aff *iv_map,
1921 __isl_take isl_id *id)
1923 int i;
1925 if (!scop)
1926 goto error;
1928 pet_scop_reset_skip(scop, pet_skip_now);
1929 pet_scop_reset_skip(scop, pet_skip_later);
1931 scop->context = context_embed(scop->context, dom, iv_map, id);
1932 if (!scop->context)
1933 goto error;
1935 for (i = 0; i < scop->n_stmt; ++i) {
1936 scop->stmts[i] = pet_stmt_embed(scop->stmts[i],
1937 isl_set_copy(dom), isl_map_copy(sched),
1938 isl_aff_copy(iv_map), isl_id_copy(id));
1939 if (!scop->stmts[i])
1940 goto error;
1943 for (i = 0; i < scop->n_array; ++i) {
1944 scop->arrays[i] = pet_array_embed(scop->arrays[i],
1945 isl_set_copy(dom));
1946 if (!scop->arrays[i])
1947 goto error;
1950 for (i = 0; i < scop->n_implication; ++i) {
1951 scop->implications[i] =
1952 pet_implication_embed(scop->implications[i],
1953 isl_set_copy(dom));
1954 if (!scop->implications[i])
1955 goto error;
1958 isl_set_free(dom);
1959 isl_map_free(sched);
1960 isl_aff_free(iv_map);
1961 isl_id_free(id);
1962 return scop;
1963 error:
1964 isl_set_free(dom);
1965 isl_map_free(sched);
1966 isl_aff_free(iv_map);
1967 isl_id_free(id);
1968 return pet_scop_free(scop);
1971 /* Add extra conditions on the parameters to iteration domain of "stmt".
1973 static struct pet_stmt *stmt_restrict(struct pet_stmt *stmt,
1974 __isl_take isl_set *cond)
1976 if (!stmt)
1977 goto error;
1979 stmt->domain = isl_set_intersect_params(stmt->domain, cond);
1981 return stmt;
1982 error:
1983 isl_set_free(cond);
1984 return pet_stmt_free(stmt);
1987 /* Add extra conditions to scop->skip[type].
1989 * The new skip condition only holds if it held before
1990 * and the condition is true. It does not hold if it did not hold
1991 * before or the condition is false.
1993 * The skip condition is assumed to be an affine expression.
1995 static struct pet_scop *pet_scop_restrict_skip(struct pet_scop *scop,
1996 enum pet_skip type, __isl_keep isl_set *cond)
1998 struct pet_scop_ext *ext = (struct pet_scop_ext *) scop;
1999 isl_pw_aff *skip;
2000 isl_set *dom;
2002 if (!scop)
2003 return NULL;
2004 if (!ext->skip[type])
2005 return scop;
2007 if (!multi_pw_aff_is_affine(ext->skip[type]))
2008 isl_die(isl_multi_pw_aff_get_ctx(ext->skip[type]),
2009 isl_error_internal, "can only resrict affine skips",
2010 return pet_scop_free(scop));
2012 skip = isl_multi_pw_aff_get_pw_aff(ext->skip[type], 0);
2013 dom = isl_pw_aff_domain(isl_pw_aff_copy(skip));
2014 cond = isl_set_copy(cond);
2015 cond = isl_set_from_params(cond);
2016 cond = isl_set_intersect(cond, isl_pw_aff_non_zero_set(skip));
2017 skip = indicator_function(cond, dom);
2018 isl_multi_pw_aff_free(ext->skip[type]);
2019 ext->skip[type] = isl_multi_pw_aff_from_pw_aff(skip);
2020 if (!ext->skip[type])
2021 return pet_scop_free(scop);
2023 return scop;
2026 /* Add extra conditions on the parameters to all iteration domains
2027 * and skip conditions.
2029 * A parameter value is valid for the result if it was valid
2030 * for the original scop and satisfies "cond" or if it does
2031 * not satisfy "cond" as in this case the scop is not executed
2032 * and the original constraints on the parameters are irrelevant.
2034 struct pet_scop *pet_scop_restrict(struct pet_scop *scop,
2035 __isl_take isl_set *cond)
2037 int i;
2039 scop = pet_scop_restrict_skip(scop, pet_skip_now, cond);
2040 scop = pet_scop_restrict_skip(scop, pet_skip_later, cond);
2042 if (!scop)
2043 goto error;
2045 scop->context = isl_set_intersect(scop->context, isl_set_copy(cond));
2046 scop->context = isl_set_union(scop->context,
2047 isl_set_complement(isl_set_copy(cond)));
2048 scop->context = isl_set_coalesce(scop->context);
2049 scop->context = set_project_out_unnamed_params(scop->context);
2050 if (!scop->context)
2051 goto error;
2053 for (i = 0; i < scop->n_stmt; ++i) {
2054 scop->stmts[i] = stmt_restrict(scop->stmts[i],
2055 isl_set_copy(cond));
2056 if (!scop->stmts[i])
2057 goto error;
2060 isl_set_free(cond);
2061 return scop;
2062 error:
2063 isl_set_free(cond);
2064 return pet_scop_free(scop);
2067 /* Construct a map that inserts a filter value with name "id" and value
2068 * "satisfied" in the list of filter values embedded in the set space "space".
2070 * If "space" does not contain any filter values yet, we first create
2071 * a map that inserts 0 filter values, i.e.,
2073 * space -> [space -> []]
2075 * We can now assume that space is of the form [dom -> [filters]]
2076 * We construct an identity mapping on dom and a mapping on filters
2077 * that inserts the new filter
2079 * dom -> dom
2080 * [filters] -> [satisfied, filters]
2082 * and then compute the cross product
2084 * [dom -> [filters]] -> [dom -> [satisfied, filters]]
2086 static __isl_give isl_map *insert_filter_map(__isl_take isl_space *space,
2087 __isl_take isl_id *id, int satisfied)
2089 isl_space *space2;
2090 isl_map *map, *map_dom, *map_ran;
2091 isl_set *dom;
2093 if (isl_space_is_wrapping(space)) {
2094 space2 = isl_space_map_from_set(isl_space_copy(space));
2095 map = isl_map_identity(space2);
2096 space = isl_space_unwrap(space);
2097 } else {
2098 space = isl_space_from_domain(space);
2099 map = isl_map_universe(isl_space_copy(space));
2100 map = isl_map_reverse(isl_map_domain_map(map));
2103 space2 = isl_space_domain(isl_space_copy(space));
2104 map_dom = isl_map_identity(isl_space_map_from_set(space2));
2105 space = isl_space_range(space);
2106 map_ran = isl_map_identity(isl_space_map_from_set(space));
2107 map_ran = isl_map_insert_dims(map_ran, isl_dim_out, 0, 1);
2108 map_ran = isl_map_set_dim_id(map_ran, isl_dim_out, 0, id);
2109 map_ran = isl_map_fix_si(map_ran, isl_dim_out, 0, satisfied);
2111 map = isl_map_apply_range(map, isl_map_product(map_dom, map_ran));
2113 return map;
2116 /* Insert an argument expression corresponding to "test" in front
2117 * of the list of arguments described by *n_arg and *args.
2119 static int args_insert_access(unsigned *n_arg, struct pet_expr ***args,
2120 __isl_keep isl_map *test)
2122 int i;
2123 isl_ctx *ctx = isl_map_get_ctx(test);
2125 if (!test)
2126 return -1;
2128 if (!*args) {
2129 *args = isl_calloc_array(ctx, struct pet_expr *, 1);
2130 if (!*args)
2131 return -1;
2132 } else {
2133 struct pet_expr **ext;
2134 ext = isl_calloc_array(ctx, struct pet_expr *, 1 + *n_arg);
2135 if (!ext)
2136 return -1;
2137 for (i = 0; i < *n_arg; ++i)
2138 ext[1 + i] = (*args)[i];
2139 free(*args);
2140 *args = ext;
2142 (*n_arg)++;
2143 (*args)[0] = pet_expr_from_access(isl_map_copy(test));
2144 if (!(*args)[0])
2145 return -1;
2147 return 0;
2150 /* Make the expression "expr" depend on the value of "test"
2151 * being equal to "satisfied".
2153 * If "test" is an affine expression, we simply add the conditions
2154 * on the expression have the value "satisfied" to all access relations.
2156 * Otherwise, we add a filter to "expr" (which is then assumed to be
2157 * an access expression) corresponding to "test" being equal to "satisfied".
2159 struct pet_expr *pet_expr_filter(struct pet_expr *expr,
2160 __isl_take isl_map *test, int satisfied)
2162 isl_id *id;
2163 isl_ctx *ctx;
2164 isl_space *space;
2165 isl_map *map;
2167 if (!expr || !test)
2168 goto error;
2170 if (!isl_map_has_tuple_id(test, isl_dim_out)) {
2171 test = isl_map_fix_si(test, isl_dim_out, 0, satisfied);
2172 return pet_expr_restrict(expr, isl_map_params(test));
2175 ctx = isl_map_get_ctx(test);
2176 if (expr->type != pet_expr_access)
2177 isl_die(ctx, isl_error_invalid,
2178 "can only filter access expressions", goto error);
2180 space = isl_space_domain(isl_map_get_space(expr->acc.access));
2181 id = isl_map_get_tuple_id(test, isl_dim_out);
2182 map = insert_filter_map(space, id, satisfied);
2184 expr->acc.access = isl_map_apply_domain(expr->acc.access, map);
2185 if (!expr->acc.access)
2186 goto error;
2188 if (args_insert_access(&expr->n_arg, &expr->args, test) < 0)
2189 goto error;
2191 isl_map_free(test);
2192 return expr;
2193 error:
2194 isl_map_free(test);
2195 return pet_expr_free(expr);
2198 /* Look through the applications in "scop" for any that can be
2199 * applied to the filter expressed by "map" and "satisified".
2200 * If there is any, then apply it to "map" and return the result.
2201 * Otherwise, return "map".
2202 * "id" is the identifier of the virtual array.
2204 * We only introduce at most one implication for any given virtual array,
2205 * so we can apply the implication and return as soon as we find one.
2207 static __isl_give isl_map *apply_implications(struct pet_scop *scop,
2208 __isl_take isl_map *map, __isl_keep isl_id *id, int satisfied)
2210 int i;
2212 for (i = 0; i < scop->n_implication; ++i) {
2213 struct pet_implication *pi = scop->implications[i];
2214 isl_id *pi_id;
2216 if (pi->satisfied != satisfied)
2217 continue;
2218 pi_id = isl_map_get_tuple_id(pi->extension, isl_dim_in);
2219 isl_id_free(pi_id);
2220 if (pi_id != id)
2221 continue;
2223 return isl_map_apply_range(map, isl_map_copy(pi->extension));
2226 return map;
2229 /* Is the filter expressed by "test" and "satisfied" implied
2230 * by filter "pos" on "domain", with filter "expr", taking into
2231 * account the implications of "scop"?
2233 * For filter on domain implying that expressed by "test" and "satisfied",
2234 * the filter needs to be an access to the same (virtual) array as "test" and
2235 * the filter value needs to be equal to "satisfied".
2236 * Moreover, the filter access relation, possibly extended by
2237 * the implications in "scop" needs to contain "test".
2239 static int implies_filter(struct pet_scop *scop,
2240 __isl_keep isl_map *domain, int pos, struct pet_expr *expr,
2241 __isl_keep isl_map *test, int satisfied)
2243 isl_id *test_id, *arg_id;
2244 isl_val *val;
2245 int is_int;
2246 int s;
2247 int is_subset;
2248 isl_map *implied;
2250 if (expr->type != pet_expr_access)
2251 return 0;
2252 test_id = isl_map_get_tuple_id(test, isl_dim_out);
2253 arg_id = pet_expr_access_get_id(expr);
2254 isl_id_free(arg_id);
2255 isl_id_free(test_id);
2256 if (test_id != arg_id)
2257 return 0;
2258 val = isl_map_plain_get_val_if_fixed(domain, isl_dim_out, pos);
2259 is_int = isl_val_is_int(val);
2260 if (is_int)
2261 s = isl_val_get_num_si(val);
2262 isl_val_free(val);
2263 if (!val)
2264 return -1;
2265 if (!is_int)
2266 return 0;
2267 if (s != satisfied)
2268 return 0;
2270 implied = isl_map_copy(expr->acc.access);
2271 implied = apply_implications(scop, implied, test_id, satisfied);
2272 is_subset = isl_map_is_subset(test, implied);
2273 isl_map_free(implied);
2275 return is_subset;
2278 /* Is the filter expressed by "test" and "satisfied" implied
2279 * by any of the filters on the domain of "stmt", taking into
2280 * account the implications of "scop"?
2282 static int filter_implied(struct pet_scop *scop,
2283 struct pet_stmt *stmt, __isl_keep isl_map *test, int satisfied)
2285 int i;
2286 int implied;
2287 isl_id *test_id;
2288 isl_map *domain;
2290 if (!scop || !stmt || !test)
2291 return -1;
2292 if (scop->n_implication == 0)
2293 return 0;
2294 if (stmt->n_arg == 0)
2295 return 0;
2297 domain = isl_set_unwrap(isl_set_copy(stmt->domain));
2299 implied = 0;
2300 for (i = 0; i < stmt->n_arg; ++i) {
2301 implied = implies_filter(scop, domain, i, stmt->args[i],
2302 test, satisfied);
2303 if (implied < 0 || implied)
2304 break;
2307 isl_map_free(domain);
2308 return implied;
2311 /* Make the statement "stmt" depend on the value of "test"
2312 * being equal to "satisfied" by adjusting stmt->domain.
2314 * The domain of "test" corresponds to the (zero or more) outer dimensions
2315 * of the iteration domain.
2317 * We first extend "test" to apply to the entire iteration domain and
2318 * then check if the filter that we are about to add is implied
2319 * by any of the current filters, possibly taking into account
2320 * the implications in "scop". If so, we leave "stmt" untouched and return.
2322 * Otherwise, we insert an argument corresponding to a read to "test"
2323 * from the iteration domain of "stmt" in front of the list of arguments.
2324 * We also insert a corresponding output dimension in the wrapped
2325 * map contained in stmt->domain, with value set to "satisfied".
2327 static struct pet_stmt *stmt_filter(struct pet_scop *scop,
2328 struct pet_stmt *stmt, __isl_take isl_map *test, int satisfied)
2330 int i;
2331 int implied;
2332 isl_id *id;
2333 isl_ctx *ctx;
2334 isl_map *map, *add_dom;
2335 isl_space *space;
2336 isl_set *dom;
2337 int n_test_dom;
2339 if (!stmt || !test)
2340 goto error;
2342 space = isl_set_get_space(stmt->domain);
2343 if (isl_space_is_wrapping(space))
2344 space = isl_space_domain(isl_space_unwrap(space));
2345 dom = isl_set_universe(space);
2346 n_test_dom = isl_map_dim(test, isl_dim_in);
2347 add_dom = isl_map_from_range(dom);
2348 add_dom = isl_map_add_dims(add_dom, isl_dim_in, n_test_dom);
2349 for (i = 0; i < n_test_dom; ++i)
2350 add_dom = isl_map_equate(add_dom, isl_dim_in, i,
2351 isl_dim_out, i);
2352 test = isl_map_apply_domain(test, add_dom);
2354 implied = filter_implied(scop, stmt, test, satisfied);
2355 if (implied < 0)
2356 goto error;
2357 if (implied) {
2358 isl_map_free(test);
2359 return stmt;
2362 id = isl_map_get_tuple_id(test, isl_dim_out);
2363 map = insert_filter_map(isl_set_get_space(stmt->domain), id, satisfied);
2364 stmt->domain = isl_set_apply(stmt->domain, map);
2366 if (args_insert_access(&stmt->n_arg, &stmt->args, test) < 0)
2367 goto error;
2369 isl_map_free(test);
2370 return stmt;
2371 error:
2372 isl_map_free(test);
2373 return pet_stmt_free(stmt);
2376 /* Does "scop" have a skip condition of the given "type"?
2378 int pet_scop_has_skip(struct pet_scop *scop, enum pet_skip type)
2380 struct pet_scop_ext *ext = (struct pet_scop_ext *) scop;
2382 if (!scop)
2383 return -1;
2384 return ext->skip[type] != NULL;
2387 /* Does "scop" have a skip condition of the given "type" that
2388 * is an affine expression?
2390 int pet_scop_has_affine_skip(struct pet_scop *scop, enum pet_skip type)
2392 struct pet_scop_ext *ext = (struct pet_scop_ext *) scop;
2394 if (!scop)
2395 return -1;
2396 if (!ext->skip[type])
2397 return 0;
2398 return multi_pw_aff_is_affine(ext->skip[type]);
2401 /* Does "scop" have a skip condition of the given "type" that
2402 * is not an affine expression?
2404 int pet_scop_has_var_skip(struct pet_scop *scop, enum pet_skip type)
2406 struct pet_scop_ext *ext = (struct pet_scop_ext *) scop;
2407 int aff;
2409 if (!scop)
2410 return -1;
2411 if (!ext->skip[type])
2412 return 0;
2413 aff = multi_pw_aff_is_affine(ext->skip[type]);
2414 if (aff < 0)
2415 return -1;
2416 return !aff;
2419 /* Does "scop" have a skip condition of the given "type" that
2420 * is affine and holds on the entire domain?
2422 int pet_scop_has_universal_skip(struct pet_scop *scop, enum pet_skip type)
2424 struct pet_scop_ext *ext = (struct pet_scop_ext *) scop;
2425 isl_pw_aff *pa;
2426 isl_set *set;
2427 int is_aff;
2428 int is_univ;
2430 is_aff = pet_scop_has_affine_skip(scop, type);
2431 if (is_aff < 0 || !is_aff)
2432 return is_aff;
2434 pa = isl_multi_pw_aff_get_pw_aff(ext->skip[type], 0);
2435 set = isl_pw_aff_non_zero_set(pa);
2436 is_univ = isl_set_plain_is_universe(set);
2437 isl_set_free(set);
2439 return is_univ;
2442 /* Replace scop->skip[type] by "skip".
2444 struct pet_scop *pet_scop_set_skip(struct pet_scop *scop,
2445 enum pet_skip type, __isl_take isl_multi_pw_aff *skip)
2447 struct pet_scop_ext *ext = (struct pet_scop_ext *) scop;
2449 if (!scop || !skip)
2450 goto error;
2452 isl_multi_pw_aff_free(ext->skip[type]);
2453 ext->skip[type] = skip;
2455 return scop;
2456 error:
2457 isl_multi_pw_aff_free(skip);
2458 return pet_scop_free(scop);
2461 /* Return a copy of scop->skip[type].
2463 __isl_give isl_multi_pw_aff *pet_scop_get_skip(struct pet_scop *scop,
2464 enum pet_skip type)
2466 struct pet_scop_ext *ext = (struct pet_scop_ext *) scop;
2468 if (!scop)
2469 return NULL;
2471 return isl_multi_pw_aff_copy(ext->skip[type]);
2474 /* Assuming scop->skip[type] is an affine expression,
2475 * return the constraints on the parameters for which the skip condition
2476 * holds.
2478 __isl_give isl_set *pet_scop_get_affine_skip_domain(struct pet_scop *scop,
2479 enum pet_skip type)
2481 isl_multi_pw_aff *skip;
2482 isl_pw_aff *pa;
2484 skip = pet_scop_get_skip(scop, type);
2485 pa = isl_multi_pw_aff_get_pw_aff(skip, 0);
2486 isl_multi_pw_aff_free(skip);
2487 return isl_set_params(isl_pw_aff_non_zero_set(pa));
2490 /* Return a map to the skip condition of the given type.
2492 __isl_give isl_map *pet_scop_get_skip_map(struct pet_scop *scop,
2493 enum pet_skip type)
2495 return isl_map_from_multi_pw_aff(pet_scop_get_skip(scop, type));
2498 /* Return the identifier of the variable that is accessed by
2499 * the skip condition of the given type.
2501 * The skip condition is assumed not to be an affine condition.
2503 __isl_give isl_id *pet_scop_get_skip_id(struct pet_scop *scop,
2504 enum pet_skip type)
2506 struct pet_scop_ext *ext = (struct pet_scop_ext *) scop;
2508 if (!scop)
2509 return NULL;
2511 return isl_multi_pw_aff_get_tuple_id(ext->skip[type], isl_dim_out);
2514 /* Return an access pet_expr corresponding to the skip condition
2515 * of the given type.
2517 struct pet_expr *pet_scop_get_skip_expr(struct pet_scop *scop,
2518 enum pet_skip type)
2520 return pet_expr_from_access(pet_scop_get_skip_map(scop, type));
2523 /* Drop the the skip condition scop->skip[type].
2525 void pet_scop_reset_skip(struct pet_scop *scop, enum pet_skip type)
2527 struct pet_scop_ext *ext = (struct pet_scop_ext *) scop;
2529 if (!scop)
2530 return;
2532 isl_multi_pw_aff_free(ext->skip[type]);
2533 ext->skip[type] = NULL;
2536 /* Make the skip condition (if any) depend on the value of "test" being
2537 * equal to "satisfied".
2539 * We only support the case where the original skip condition is universal,
2540 * i.e., where skipping is unconditional, and where satisfied == 1.
2541 * In this case, the skip condition is changed to skip only when
2542 * "test" is equal to one.
2544 static struct pet_scop *pet_scop_filter_skip(struct pet_scop *scop,
2545 enum pet_skip type, __isl_keep isl_map *test, int satisfied)
2547 int is_univ = 0;
2549 if (!scop)
2550 return NULL;
2551 if (!pet_scop_has_skip(scop, type))
2552 return scop;
2554 if (satisfied)
2555 is_univ = pet_scop_has_universal_skip(scop, type);
2556 if (is_univ < 0)
2557 return pet_scop_free(scop);
2558 if (satisfied && is_univ) {
2559 isl_space *space = isl_map_get_space(test);
2560 isl_multi_pw_aff *skip;
2561 skip = isl_multi_pw_aff_zero(space);
2562 scop = pet_scop_set_skip(scop, type, skip);
2563 if (!scop)
2564 return NULL;
2565 } else {
2566 isl_die(isl_map_get_ctx(test), isl_error_internal,
2567 "skip expression cannot be filtered",
2568 return pet_scop_free(scop));
2571 return scop;
2574 /* Make all statements in "scop" depend on the value of "test"
2575 * being equal to "satisfied" by adjusting their domains.
2577 struct pet_scop *pet_scop_filter(struct pet_scop *scop,
2578 __isl_take isl_map *test, int satisfied)
2580 int i;
2582 scop = pet_scop_filter_skip(scop, pet_skip_now, test, satisfied);
2583 scop = pet_scop_filter_skip(scop, pet_skip_later, test, satisfied);
2585 if (!scop || !test)
2586 goto error;
2588 for (i = 0; i < scop->n_stmt; ++i) {
2589 scop->stmts[i] = stmt_filter(scop, scop->stmts[i],
2590 isl_map_copy(test), satisfied);
2591 if (!scop->stmts[i])
2592 goto error;
2595 isl_map_free(test);
2596 return scop;
2597 error:
2598 isl_map_free(test);
2599 return pet_scop_free(scop);
2602 /* Add all parameters in "expr" to "dim" and return the result.
2604 static __isl_give isl_space *expr_collect_params(struct pet_expr *expr,
2605 __isl_take isl_space *dim)
2607 int i;
2609 if (!expr)
2610 goto error;
2611 for (i = 0; i < expr->n_arg; ++i)
2613 dim = expr_collect_params(expr->args[i], dim);
2615 if (expr->type == pet_expr_access)
2616 dim = isl_space_align_params(dim,
2617 isl_map_get_space(expr->acc.access));
2619 return dim;
2620 error:
2621 isl_space_free(dim);
2622 return pet_expr_free(expr);
2625 /* Add all parameters in "stmt" to "dim" and return the result.
2627 static __isl_give isl_space *stmt_collect_params(struct pet_stmt *stmt,
2628 __isl_take isl_space *dim)
2630 if (!stmt)
2631 goto error;
2633 dim = isl_space_align_params(dim, isl_set_get_space(stmt->domain));
2634 dim = isl_space_align_params(dim, isl_map_get_space(stmt->schedule));
2635 dim = expr_collect_params(stmt->body, dim);
2637 return dim;
2638 error:
2639 isl_space_free(dim);
2640 return pet_stmt_free(stmt);
2643 /* Add all parameters in "array" to "dim" and return the result.
2645 static __isl_give isl_space *array_collect_params(struct pet_array *array,
2646 __isl_take isl_space *dim)
2648 if (!array)
2649 goto error;
2651 dim = isl_space_align_params(dim, isl_set_get_space(array->context));
2652 dim = isl_space_align_params(dim, isl_set_get_space(array->extent));
2654 return dim;
2655 error:
2656 pet_array_free(array);
2657 return isl_space_free(dim);
2660 /* Add all parameters in "scop" to "dim" and return the result.
2662 static __isl_give isl_space *scop_collect_params(struct pet_scop *scop,
2663 __isl_take isl_space *dim)
2665 int i;
2667 if (!scop)
2668 goto error;
2670 for (i = 0; i < scop->n_array; ++i)
2671 dim = array_collect_params(scop->arrays[i], dim);
2673 for (i = 0; i < scop->n_stmt; ++i)
2674 dim = stmt_collect_params(scop->stmts[i], dim);
2676 return dim;
2677 error:
2678 isl_space_free(dim);
2679 return pet_scop_free(scop);
2682 /* Add all parameters in "dim" to all access relations in "expr".
2684 static struct pet_expr *expr_propagate_params(struct pet_expr *expr,
2685 __isl_take isl_space *dim)
2687 int i;
2689 if (!expr)
2690 goto error;
2692 for (i = 0; i < expr->n_arg; ++i) {
2693 expr->args[i] =
2694 expr_propagate_params(expr->args[i],
2695 isl_space_copy(dim));
2696 if (!expr->args[i])
2697 goto error;
2700 if (expr->type == pet_expr_access) {
2701 expr->acc.access = isl_map_align_params(expr->acc.access,
2702 isl_space_copy(dim));
2703 if (!expr->acc.access)
2704 goto error;
2707 isl_space_free(dim);
2708 return expr;
2709 error:
2710 isl_space_free(dim);
2711 return pet_expr_free(expr);
2714 /* Add all parameters in "dim" to the domain, schedule and
2715 * all access relations in "stmt".
2717 static struct pet_stmt *stmt_propagate_params(struct pet_stmt *stmt,
2718 __isl_take isl_space *dim)
2720 if (!stmt)
2721 goto error;
2723 stmt->domain = isl_set_align_params(stmt->domain, isl_space_copy(dim));
2724 stmt->schedule = isl_map_align_params(stmt->schedule,
2725 isl_space_copy(dim));
2726 stmt->body = expr_propagate_params(stmt->body, isl_space_copy(dim));
2728 if (!stmt->domain || !stmt->schedule || !stmt->body)
2729 goto error;
2731 isl_space_free(dim);
2732 return stmt;
2733 error:
2734 isl_space_free(dim);
2735 return pet_stmt_free(stmt);
2738 /* Add all parameters in "dim" to "array".
2740 static struct pet_array *array_propagate_params(struct pet_array *array,
2741 __isl_take isl_space *dim)
2743 if (!array)
2744 goto error;
2746 array->context = isl_set_align_params(array->context,
2747 isl_space_copy(dim));
2748 array->extent = isl_set_align_params(array->extent,
2749 isl_space_copy(dim));
2750 if (array->value_bounds) {
2751 array->value_bounds = isl_set_align_params(array->value_bounds,
2752 isl_space_copy(dim));
2753 if (!array->value_bounds)
2754 goto error;
2757 if (!array->context || !array->extent)
2758 goto error;
2760 isl_space_free(dim);
2761 return array;
2762 error:
2763 isl_space_free(dim);
2764 return pet_array_free(array);
2767 /* Add all parameters in "dim" to "scop".
2769 static struct pet_scop *scop_propagate_params(struct pet_scop *scop,
2770 __isl_take isl_space *dim)
2772 int i;
2774 if (!scop)
2775 goto error;
2777 for (i = 0; i < scop->n_array; ++i) {
2778 scop->arrays[i] = array_propagate_params(scop->arrays[i],
2779 isl_space_copy(dim));
2780 if (!scop->arrays[i])
2781 goto error;
2784 for (i = 0; i < scop->n_stmt; ++i) {
2785 scop->stmts[i] = stmt_propagate_params(scop->stmts[i],
2786 isl_space_copy(dim));
2787 if (!scop->stmts[i])
2788 goto error;
2791 isl_space_free(dim);
2792 return scop;
2793 error:
2794 isl_space_free(dim);
2795 return pet_scop_free(scop);
2798 /* Update all isl_sets and isl_maps in "scop" such that they all
2799 * have the same parameters.
2801 struct pet_scop *pet_scop_align_params(struct pet_scop *scop)
2803 isl_space *dim;
2805 if (!scop)
2806 return NULL;
2808 dim = isl_set_get_space(scop->context);
2809 dim = scop_collect_params(scop, dim);
2811 scop->context = isl_set_align_params(scop->context, isl_space_copy(dim));
2812 scop = scop_propagate_params(scop, dim);
2814 return scop;
2817 /* Check if the given access relation accesses a (0D) array that corresponds
2818 * to one of the parameters in "dim". If so, replace the array access
2819 * by an access to the set of integers with as index (and value)
2820 * that parameter.
2822 static __isl_give isl_map *access_detect_parameter(__isl_take isl_map *access,
2823 __isl_take isl_space *dim)
2825 isl_id *array_id = NULL;
2826 int pos = -1;
2828 if (isl_map_has_tuple_id(access, isl_dim_out)) {
2829 array_id = isl_map_get_tuple_id(access, isl_dim_out);
2830 pos = isl_space_find_dim_by_id(dim, isl_dim_param, array_id);
2832 isl_space_free(dim);
2834 if (pos < 0) {
2835 isl_id_free(array_id);
2836 return access;
2839 pos = isl_map_find_dim_by_id(access, isl_dim_param, array_id);
2840 if (pos < 0) {
2841 access = isl_map_insert_dims(access, isl_dim_param, 0, 1);
2842 access = isl_map_set_dim_id(access, isl_dim_param, 0, array_id);
2843 pos = 0;
2844 } else
2845 isl_id_free(array_id);
2847 access = isl_map_insert_dims(access, isl_dim_out, 0, 1);
2848 access = isl_map_equate(access, isl_dim_param, pos, isl_dim_out, 0);
2850 return access;
2853 /* Replace all accesses to (0D) arrays that correspond to one of the parameters
2854 * in "dim" by a value equal to the corresponding parameter.
2856 static struct pet_expr *expr_detect_parameter_accesses(struct pet_expr *expr,
2857 __isl_take isl_space *dim)
2859 int i;
2861 if (!expr)
2862 goto error;
2864 for (i = 0; i < expr->n_arg; ++i) {
2865 expr->args[i] =
2866 expr_detect_parameter_accesses(expr->args[i],
2867 isl_space_copy(dim));
2868 if (!expr->args[i])
2869 goto error;
2872 if (expr->type == pet_expr_access) {
2873 expr->acc.access = access_detect_parameter(expr->acc.access,
2874 isl_space_copy(dim));
2875 if (!expr->acc.access)
2876 goto error;
2879 isl_space_free(dim);
2880 return expr;
2881 error:
2882 isl_space_free(dim);
2883 return pet_expr_free(expr);
2886 /* Replace all accesses to (0D) arrays that correspond to one of the parameters
2887 * in "dim" by a value equal to the corresponding parameter.
2889 static struct pet_stmt *stmt_detect_parameter_accesses(struct pet_stmt *stmt,
2890 __isl_take isl_space *dim)
2892 if (!stmt)
2893 goto error;
2895 stmt->body = expr_detect_parameter_accesses(stmt->body,
2896 isl_space_copy(dim));
2898 if (!stmt->domain || !stmt->schedule || !stmt->body)
2899 goto error;
2901 isl_space_free(dim);
2902 return stmt;
2903 error:
2904 isl_space_free(dim);
2905 return pet_stmt_free(stmt);
2908 /* Replace all accesses to (0D) arrays that correspond to one of the parameters
2909 * in "dim" by a value equal to the corresponding parameter.
2911 static struct pet_scop *scop_detect_parameter_accesses(struct pet_scop *scop,
2912 __isl_take isl_space *dim)
2914 int i;
2916 if (!scop)
2917 goto error;
2919 for (i = 0; i < scop->n_stmt; ++i) {
2920 scop->stmts[i] = stmt_detect_parameter_accesses(scop->stmts[i],
2921 isl_space_copy(dim));
2922 if (!scop->stmts[i])
2923 goto error;
2926 isl_space_free(dim);
2927 return scop;
2928 error:
2929 isl_space_free(dim);
2930 return pet_scop_free(scop);
2933 /* Replace all accesses to (0D) arrays that correspond to any of
2934 * the parameters used in "scop" by a value equal
2935 * to the corresponding parameter.
2937 struct pet_scop *pet_scop_detect_parameter_accesses(struct pet_scop *scop)
2939 isl_space *dim;
2941 if (!scop)
2942 return NULL;
2944 dim = isl_set_get_space(scop->context);
2945 dim = scop_collect_params(scop, dim);
2947 scop = scop_detect_parameter_accesses(scop, dim);
2949 return scop;
2952 /* Add all read access relations (if "read" is set) and/or all write
2953 * access relations (if "write" is set) to "accesses" and return the result.
2955 static __isl_give isl_union_map *expr_collect_accesses(struct pet_expr *expr,
2956 int read, int write, __isl_take isl_union_map *accesses)
2958 int i;
2959 isl_id *id;
2960 isl_space *dim;
2962 if (!expr)
2963 return NULL;
2965 for (i = 0; i < expr->n_arg; ++i)
2966 accesses = expr_collect_accesses(expr->args[i],
2967 read, write, accesses);
2969 if (expr->type == pet_expr_access && !pet_expr_is_affine(expr) &&
2970 ((read && expr->acc.read) || (write && expr->acc.write)))
2971 accesses = isl_union_map_add_map(accesses,
2972 isl_map_copy(expr->acc.access));
2974 return accesses;
2977 /* Collect and return all read access relations (if "read" is set)
2978 * and/or all write access relations (if "write" is set) in "stmt".
2980 static __isl_give isl_union_map *stmt_collect_accesses(struct pet_stmt *stmt,
2981 int read, int write, __isl_take isl_space *dim)
2983 isl_union_map *accesses;
2985 if (!stmt)
2986 return NULL;
2988 accesses = isl_union_map_empty(dim);
2989 accesses = expr_collect_accesses(stmt->body, read, write, accesses);
2990 accesses = isl_union_map_intersect_domain(accesses,
2991 isl_union_set_from_set(isl_set_copy(stmt->domain)));
2993 return accesses;
2996 /* Collect and return all read access relations (if "read" is set)
2997 * and/or all write access relations (if "write" is set) in "scop".
2999 static __isl_give isl_union_map *scop_collect_accesses(struct pet_scop *scop,
3000 int read, int write)
3002 int i;
3003 isl_union_map *accesses;
3005 if (!scop)
3006 return NULL;
3008 accesses = isl_union_map_empty(isl_set_get_space(scop->context));
3010 for (i = 0; i < scop->n_stmt; ++i) {
3011 isl_union_map *accesses_i;
3012 isl_space *dim = isl_set_get_space(scop->context);
3013 accesses_i = stmt_collect_accesses(scop->stmts[i],
3014 read, write, dim);
3015 accesses = isl_union_map_union(accesses, accesses_i);
3018 return accesses;
3021 __isl_give isl_union_map *pet_scop_collect_reads(struct pet_scop *scop)
3023 return scop_collect_accesses(scop, 1, 0);
3026 __isl_give isl_union_map *pet_scop_collect_writes(struct pet_scop *scop)
3028 return scop_collect_accesses(scop, 0, 1);
3031 /* Collect and return the union of iteration domains in "scop".
3033 __isl_give isl_union_set *pet_scop_collect_domains(struct pet_scop *scop)
3035 int i;
3036 isl_set *domain_i;
3037 isl_union_set *domain;
3039 if (!scop)
3040 return NULL;
3042 domain = isl_union_set_empty(isl_set_get_space(scop->context));
3044 for (i = 0; i < scop->n_stmt; ++i) {
3045 domain_i = isl_set_copy(scop->stmts[i]->domain);
3046 domain = isl_union_set_add_set(domain, domain_i);
3049 return domain;
3052 /* Collect and return the schedules of the statements in "scop".
3053 * The range is normalized to the maximal number of scheduling
3054 * dimensions.
3056 __isl_give isl_union_map *pet_scop_collect_schedule(struct pet_scop *scop)
3058 int i, j;
3059 isl_map *schedule_i;
3060 isl_union_map *schedule;
3061 int depth, max_depth = 0;
3063 if (!scop)
3064 return NULL;
3066 schedule = isl_union_map_empty(isl_set_get_space(scop->context));
3068 for (i = 0; i < scop->n_stmt; ++i) {
3069 depth = isl_map_dim(scop->stmts[i]->schedule, isl_dim_out);
3070 if (depth > max_depth)
3071 max_depth = depth;
3074 for (i = 0; i < scop->n_stmt; ++i) {
3075 schedule_i = isl_map_copy(scop->stmts[i]->schedule);
3076 depth = isl_map_dim(schedule_i, isl_dim_out);
3077 schedule_i = isl_map_add_dims(schedule_i, isl_dim_out,
3078 max_depth - depth);
3079 for (j = depth; j < max_depth; ++j)
3080 schedule_i = isl_map_fix_si(schedule_i,
3081 isl_dim_out, j, 0);
3082 schedule = isl_union_map_add_map(schedule, schedule_i);
3085 return schedule;
3088 /* Does expression "expr" write to "id"?
3090 static int expr_writes(struct pet_expr *expr, __isl_keep isl_id *id)
3092 int i;
3093 isl_id *write_id;
3095 for (i = 0; i < expr->n_arg; ++i) {
3096 int writes = expr_writes(expr->args[i], id);
3097 if (writes < 0 || writes)
3098 return writes;
3101 if (expr->type != pet_expr_access)
3102 return 0;
3103 if (!expr->acc.write)
3104 return 0;
3105 if (pet_expr_is_affine(expr))
3106 return 0;
3108 write_id = pet_expr_access_get_id(expr);
3109 isl_id_free(write_id);
3111 if (!write_id)
3112 return -1;
3114 return write_id == id;
3117 /* Does statement "stmt" write to "id"?
3119 static int stmt_writes(struct pet_stmt *stmt, __isl_keep isl_id *id)
3121 return expr_writes(stmt->body, id);
3124 /* Is there any write access in "scop" that accesses "id"?
3126 int pet_scop_writes(struct pet_scop *scop, __isl_keep isl_id *id)
3128 int i;
3130 if (!scop)
3131 return -1;
3133 for (i = 0; i < scop->n_stmt; ++i) {
3134 int writes = stmt_writes(scop->stmts[i], id);
3135 if (writes < 0 || writes)
3136 return writes;
3139 return 0;
3142 /* Add a reference identifier to access expression "expr".
3143 * "user" points to an integer that contains the sequence number
3144 * of the next reference.
3146 static struct pet_expr *access_add_ref_id(struct pet_expr *expr, void *user)
3148 isl_ctx *ctx;
3149 char name[50];
3150 int *n_ref = user;
3152 if (!expr)
3153 return expr;
3155 ctx = isl_map_get_ctx(expr->acc.access);
3156 snprintf(name, sizeof(name), "__pet_ref_%d", (*n_ref)++);
3157 expr->acc.ref_id = isl_id_alloc(ctx, name, NULL);
3158 if (!expr->acc.ref_id)
3159 return pet_expr_free(expr);
3161 return expr;
3164 /* Add a reference identifier to all access expressions in "stmt".
3165 * "n_ref" points to an integer that contains the sequence number
3166 * of the next reference.
3168 static struct pet_stmt *stmt_add_ref_ids(struct pet_stmt *stmt, int *n_ref)
3170 int i;
3172 if (!stmt)
3173 return NULL;
3175 for (i = 0; i < stmt->n_arg; ++i) {
3176 stmt->args[i] = pet_expr_map_access(stmt->args[i],
3177 &access_add_ref_id, n_ref);
3178 if (!stmt->args[i])
3179 return pet_stmt_free(stmt);
3182 stmt->body = pet_expr_map_access(stmt->body, &access_add_ref_id, n_ref);
3183 if (!stmt->body)
3184 return pet_stmt_free(stmt);
3186 return stmt;
3189 /* Add a reference identifier to all access expressions in "scop".
3191 struct pet_scop *pet_scop_add_ref_ids(struct pet_scop *scop)
3193 int i;
3194 int n_ref;
3196 if (!scop)
3197 return NULL;
3199 n_ref = 0;
3200 for (i = 0; i < scop->n_stmt; ++i) {
3201 scop->stmts[i] = stmt_add_ref_ids(scop->stmts[i], &n_ref);
3202 if (!scop->stmts[i])
3203 return pet_scop_free(scop);
3206 return scop;
3209 /* Reset the user pointer on the tuple id and all parameter ids in "set".
3211 static __isl_give isl_set *set_anonymize(__isl_take isl_set *set)
3213 int i, n;
3215 n = isl_set_dim(set, isl_dim_param);
3216 for (i = 0; i < n; ++i) {
3217 isl_id *id = isl_set_get_dim_id(set, isl_dim_param, i);
3218 const char *name = isl_id_get_name(id);
3219 set = isl_set_set_dim_name(set, isl_dim_param, i, name);
3220 isl_id_free(id);
3223 if (!isl_set_is_params(set) && isl_set_has_tuple_id(set)) {
3224 isl_id *id = isl_set_get_tuple_id(set);
3225 const char *name = isl_id_get_name(id);
3226 set = isl_set_set_tuple_name(set, name);
3227 isl_id_free(id);
3230 return set;
3233 /* Reset the user pointer on the tuple ids and all parameter ids in "map".
3235 static __isl_give isl_map *map_anonymize(__isl_take isl_map *map)
3237 int i, n;
3239 n = isl_map_dim(map, isl_dim_param);
3240 for (i = 0; i < n; ++i) {
3241 isl_id *id = isl_map_get_dim_id(map, isl_dim_param, i);
3242 const char *name = isl_id_get_name(id);
3243 map = isl_map_set_dim_name(map, isl_dim_param, i, name);
3244 isl_id_free(id);
3247 if (isl_map_has_tuple_id(map, isl_dim_in)) {
3248 isl_id *id = isl_map_get_tuple_id(map, isl_dim_in);
3249 const char *name = isl_id_get_name(id);
3250 map = isl_map_set_tuple_name(map, isl_dim_in, name);
3251 isl_id_free(id);
3254 if (isl_map_has_tuple_id(map, isl_dim_out)) {
3255 isl_id *id = isl_map_get_tuple_id(map, isl_dim_out);
3256 const char *name = isl_id_get_name(id);
3257 map = isl_map_set_tuple_name(map, isl_dim_out, name);
3258 isl_id_free(id);
3261 return map;
3264 /* Reset the user pointer on all parameter ids in "array".
3266 static struct pet_array *array_anonymize(struct pet_array *array)
3268 if (!array)
3269 return NULL;
3271 array->context = set_anonymize(array->context);
3272 array->extent = set_anonymize(array->extent);
3273 if (!array->context || !array->extent)
3274 return pet_array_free(array);
3276 return array;
3279 /* Reset the user pointer on all parameter and tuple ids in
3280 * the access relation of the access expression "expr".
3282 static struct pet_expr *access_anonymize(struct pet_expr *expr, void *user)
3284 expr->acc.access = map_anonymize(expr->acc.access);
3285 if (!expr->acc.access)
3286 return pet_expr_free(expr);
3288 return expr;
3291 /* Reset the user pointer on all parameter and tuple ids in "stmt".
3293 static struct pet_stmt *stmt_anonymize(struct pet_stmt *stmt)
3295 int i;
3296 isl_space *space;
3297 isl_set *domain;
3299 if (!stmt)
3300 return NULL;
3302 stmt->domain = set_anonymize(stmt->domain);
3303 stmt->schedule = map_anonymize(stmt->schedule);
3304 if (!stmt->domain || !stmt->schedule)
3305 return pet_stmt_free(stmt);
3307 for (i = 0; i < stmt->n_arg; ++i) {
3308 stmt->args[i] = pet_expr_map_access(stmt->args[i],
3309 &access_anonymize, NULL);
3310 if (!stmt->args[i])
3311 return pet_stmt_free(stmt);
3314 stmt->body = pet_expr_map_access(stmt->body,
3315 &access_anonymize, NULL);
3316 if (!stmt->body)
3317 return pet_stmt_free(stmt);
3319 return stmt;
3322 /* Reset the user pointer on the tuple ids and all parameter ids
3323 * in "implication".
3325 static struct pet_implication *implication_anonymize(
3326 struct pet_implication *implication)
3328 if (!implication)
3329 return NULL;
3331 implication->extension = map_anonymize(implication->extension);
3332 if (!implication->extension)
3333 return pet_implication_free(implication);
3335 return implication;
3338 /* Reset the user pointer on all parameter and tuple ids in "scop".
3340 struct pet_scop *pet_scop_anonymize(struct pet_scop *scop)
3342 int i;
3344 if (!scop)
3345 return NULL;
3347 scop->context = set_anonymize(scop->context);
3348 scop->context_value = set_anonymize(scop->context_value);
3349 if (!scop->context || !scop->context_value)
3350 return pet_scop_free(scop);
3352 for (i = 0; i < scop->n_array; ++i) {
3353 scop->arrays[i] = array_anonymize(scop->arrays[i]);
3354 if (!scop->arrays[i])
3355 return pet_scop_free(scop);
3358 for (i = 0; i < scop->n_stmt; ++i) {
3359 scop->stmts[i] = stmt_anonymize(scop->stmts[i]);
3360 if (!scop->stmts[i])
3361 return pet_scop_free(scop);
3364 for (i = 0; i < scop->n_implication; ++i) {
3365 scop->implications[i] =
3366 implication_anonymize(scop->implications[i]);
3367 if (!scop->implications[i])
3368 return pet_scop_free(scop);
3371 return scop;
3374 /* If "value_bounds" contains any bounds on the variable accessed by "arg",
3375 * then intersect the range of "map" with the valid set of values.
3377 static __isl_give isl_map *access_apply_value_bounds(__isl_take isl_map *map,
3378 struct pet_expr *arg, __isl_keep isl_union_map *value_bounds)
3380 isl_id *id;
3381 isl_map *vb;
3382 isl_space *space;
3383 isl_ctx *ctx = isl_map_get_ctx(map);
3385 id = pet_expr_access_get_id(arg);
3386 space = isl_space_alloc(ctx, 0, 0, 1);
3387 space = isl_space_set_tuple_id(space, isl_dim_in, id);
3388 vb = isl_union_map_extract_map(value_bounds, space);
3389 if (!isl_map_plain_is_empty(vb))
3390 map = isl_map_intersect_range(map, isl_map_range(vb));
3391 else
3392 isl_map_free(vb);
3394 return map;
3397 /* Given a set "domain", return a wrapped relation with the given set
3398 * as domain and a range of dimension "n_arg", where each coordinate
3399 * is either unbounded or, if the corresponding element of args is of
3400 * type pet_expr_access, bounded by the bounds specified by "value_bounds".
3402 static __isl_give isl_set *apply_value_bounds(__isl_take isl_set *domain,
3403 unsigned n_arg, struct pet_expr **args,
3404 __isl_keep isl_union_map *value_bounds)
3406 int i;
3407 isl_map *map;
3408 isl_space *space;
3410 map = isl_map_from_domain(domain);
3411 space = isl_map_get_space(map);
3412 space = isl_space_add_dims(space, isl_dim_out, 1);
3414 for (i = 0; i < n_arg; ++i) {
3415 isl_map *map_i;
3416 struct pet_expr *arg = args[i];
3418 map_i = isl_map_universe(isl_space_copy(space));
3419 if (arg->type == pet_expr_access)
3420 map_i = access_apply_value_bounds(map_i, arg,
3421 value_bounds);
3422 map = isl_map_flat_range_product(map, map_i);
3424 isl_space_free(space);
3426 return isl_map_wrap(map);
3429 /* Data used in access_gist() callback.
3431 struct pet_access_gist_data {
3432 isl_set *domain;
3433 isl_union_map *value_bounds;
3436 /* Given an expression "expr" of type pet_expr_access, compute
3437 * the gist of the associated access relation with respect to
3438 * data->domain and the bounds on the values of the arguments
3439 * of the expression.
3441 static struct pet_expr *access_gist(struct pet_expr *expr, void *user)
3443 struct pet_access_gist_data *data = user;
3444 isl_set *domain;
3446 domain = isl_set_copy(data->domain);
3447 if (expr->n_arg > 0)
3448 domain = apply_value_bounds(domain, expr->n_arg, expr->args,
3449 data->value_bounds);
3451 expr->acc.access = isl_map_gist_domain(expr->acc.access, domain);
3452 if (!expr->acc.access)
3453 return pet_expr_free(expr);
3455 return expr;
3458 /* Compute the gist of the iteration domain and all access relations
3459 * of "stmt" based on the constraints on the parameters specified by "context"
3460 * and the constraints on the values of nested accesses specified
3461 * by "value_bounds".
3463 static struct pet_stmt *stmt_gist(struct pet_stmt *stmt,
3464 __isl_keep isl_set *context, __isl_keep isl_union_map *value_bounds)
3466 int i;
3467 isl_space *space;
3468 isl_set *domain;
3469 struct pet_access_gist_data data;
3471 if (!stmt)
3472 return NULL;
3474 data.domain = isl_set_copy(stmt->domain);
3475 data.value_bounds = value_bounds;
3476 if (stmt->n_arg > 0)
3477 data.domain = isl_map_domain(isl_set_unwrap(data.domain));
3479 data.domain = isl_set_intersect_params(data.domain,
3480 isl_set_copy(context));
3482 for (i = 0; i < stmt->n_arg; ++i) {
3483 stmt->args[i] = pet_expr_map_access(stmt->args[i],
3484 &access_gist, &data);
3485 if (!stmt->args[i])
3486 goto error;
3489 stmt->body = pet_expr_map_access(stmt->body, &access_gist, &data);
3490 if (!stmt->body)
3491 goto error;
3493 isl_set_free(data.domain);
3495 space = isl_set_get_space(stmt->domain);
3496 if (isl_space_is_wrapping(space))
3497 space = isl_space_domain(isl_space_unwrap(space));
3498 domain = isl_set_universe(space);
3499 domain = isl_set_intersect_params(domain, isl_set_copy(context));
3500 if (stmt->n_arg > 0)
3501 domain = apply_value_bounds(domain, stmt->n_arg, stmt->args,
3502 value_bounds);
3503 stmt->domain = isl_set_gist(stmt->domain, domain);
3504 if (!stmt->domain)
3505 return pet_stmt_free(stmt);
3507 return stmt;
3508 error:
3509 isl_set_free(data.domain);
3510 return pet_stmt_free(stmt);
3513 /* Compute the gist of the extent of the array
3514 * based on the constraints on the parameters specified by "context".
3516 static struct pet_array *array_gist(struct pet_array *array,
3517 __isl_keep isl_set *context)
3519 if (!array)
3520 return NULL;
3522 array->extent = isl_set_gist_params(array->extent,
3523 isl_set_copy(context));
3524 if (!array->extent)
3525 return pet_array_free(array);
3527 return array;
3530 /* Compute the gist of all sets and relations in "scop"
3531 * based on the constraints on the parameters specified by "scop->context"
3532 * and the constraints on the values of nested accesses specified
3533 * by "value_bounds".
3535 struct pet_scop *pet_scop_gist(struct pet_scop *scop,
3536 __isl_keep isl_union_map *value_bounds)
3538 int i;
3540 if (!scop)
3541 return NULL;
3543 scop->context = isl_set_coalesce(scop->context);
3544 if (!scop->context)
3545 return pet_scop_free(scop);
3547 for (i = 0; i < scop->n_array; ++i) {
3548 scop->arrays[i] = array_gist(scop->arrays[i], scop->context);
3549 if (!scop->arrays[i])
3550 return pet_scop_free(scop);
3553 for (i = 0; i < scop->n_stmt; ++i) {
3554 scop->stmts[i] = stmt_gist(scop->stmts[i], scop->context,
3555 value_bounds);
3556 if (!scop->stmts[i])
3557 return pet_scop_free(scop);
3560 return scop;
3563 /* Intersect the context of "scop" with "context".
3564 * To ensure that we don't introduce any unnamed parameters in
3565 * the context of "scop", we first remove the unnamed parameters
3566 * from "context".
3568 struct pet_scop *pet_scop_restrict_context(struct pet_scop *scop,
3569 __isl_take isl_set *context)
3571 if (!scop)
3572 goto error;
3574 context = set_project_out_unnamed_params(context);
3575 scop->context = isl_set_intersect(scop->context, context);
3576 if (!scop->context)
3577 return pet_scop_free(scop);
3579 return scop;
3580 error:
3581 isl_set_free(context);
3582 return pet_scop_free(scop);
3585 /* Drop the current context of "scop". That is, replace the context
3586 * by a universal set.
3588 struct pet_scop *pet_scop_reset_context(struct pet_scop *scop)
3590 isl_space *space;
3592 if (!scop)
3593 return NULL;
3595 space = isl_set_get_space(scop->context);
3596 isl_set_free(scop->context);
3597 scop->context = isl_set_universe(space);
3598 if (!scop->context)
3599 return pet_scop_free(scop);
3601 return scop;
3604 /* Append "array" to the arrays of "scop".
3606 struct pet_scop *pet_scop_add_array(struct pet_scop *scop,
3607 struct pet_array *array)
3609 isl_ctx *ctx;
3610 struct pet_array **arrays;
3612 if (!array || !scop)
3613 goto error;
3615 ctx = isl_set_get_ctx(scop->context);
3616 arrays = isl_realloc_array(ctx, scop->arrays, struct pet_array *,
3617 scop->n_array + 1);
3618 if (!arrays)
3619 goto error;
3620 scop->arrays = arrays;
3621 scop->arrays[scop->n_array] = array;
3622 scop->n_array++;
3624 return scop;
3625 error:
3626 pet_array_free(array);
3627 return pet_scop_free(scop);
3630 /* Create and return an implication on filter values equal to "satisfied"
3631 * with extension "map".
3633 static struct pet_implication *new_implication(__isl_take isl_map *map,
3634 int satisfied)
3636 isl_ctx *ctx;
3637 struct pet_implication *implication;
3639 if (!map)
3640 return NULL;
3641 ctx = isl_map_get_ctx(map);
3642 implication = isl_alloc_type(ctx, struct pet_implication);
3643 if (!implication)
3644 goto error;
3646 implication->extension = map;
3647 implication->satisfied = satisfied;
3649 return implication;
3650 error:
3651 isl_map_free(map);
3652 return NULL;
3655 /* Add an implication on filter values equal to "satisfied"
3656 * with extension "map" to "scop".
3658 struct pet_scop *pet_scop_add_implication(struct pet_scop *scop,
3659 __isl_take isl_map *map, int satisfied)
3661 isl_ctx *ctx;
3662 struct pet_implication *implication;
3663 struct pet_implication **implications;
3665 implication = new_implication(map, satisfied);
3666 if (!scop || !implication)
3667 goto error;
3669 ctx = isl_set_get_ctx(scop->context);
3670 implications = isl_realloc_array(ctx, scop->implications,
3671 struct pet_implication *,
3672 scop->n_implication + 1);
3673 if (!implications)
3674 goto error;
3675 scop->implications = implications;
3676 scop->implications[scop->n_implication] = implication;
3677 scop->n_implication++;
3679 return scop;
3680 error:
3681 pet_implication_free(implication);
3682 return pet_scop_free(scop);