support inlining of outermost call expressions
[pet.git] / scan.cc
blob2579f4cae6d4724842d39de4362c247daad5c630
1 /*
2 * Copyright 2011 Leiden University. All rights reserved.
3 * Copyright 2012-2015 Ecole Normale Superieure. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above
13 * copyright notice, this list of conditions and the following
14 * disclaimer in the documentation and/or other materials provided
15 * with the distribution.
17 * THIS SOFTWARE IS PROVIDED BY LEIDEN UNIVERSITY ''AS IS'' AND ANY
18 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
20 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL LEIDEN UNIVERSITY OR
21 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
22 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
23 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
24 * OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 * The views and conclusions contained in the software and documentation
30 * are those of the authors and should not be interpreted as
31 * representing official policies, either expressed or implied, of
32 * Leiden University.
33 */
35 #include "config.h"
37 #include <string.h>
38 #include <set>
39 #include <map>
40 #include <iostream>
41 #include <sstream>
42 #include <llvm/Support/raw_ostream.h>
43 #include <clang/AST/ASTContext.h>
44 #include <clang/AST/ASTDiagnostic.h>
45 #include <clang/AST/Attr.h>
46 #include <clang/AST/Expr.h>
47 #include <clang/AST/RecursiveASTVisitor.h>
49 #include <isl/id.h>
50 #include <isl/space.h>
51 #include <isl/aff.h>
52 #include <isl/set.h>
53 #include <isl/union_set.h>
55 #include "aff.h"
56 #include "array.h"
57 #include "clang.h"
58 #include "context.h"
59 #include "expr.h"
60 #include "id.h"
61 #include "inliner.h"
62 #include "nest.h"
63 #include "options.h"
64 #include "scan.h"
65 #include "scop.h"
66 #include "scop_plus.h"
67 #include "substituter.h"
68 #include "tree.h"
69 #include "tree2scop.h"
71 using namespace std;
72 using namespace clang;
74 static enum pet_op_type UnaryOperatorKind2pet_op_type(UnaryOperatorKind kind)
76 switch (kind) {
77 case UO_Minus:
78 return pet_op_minus;
79 case UO_Not:
80 return pet_op_not;
81 case UO_LNot:
82 return pet_op_lnot;
83 case UO_PostInc:
84 return pet_op_post_inc;
85 case UO_PostDec:
86 return pet_op_post_dec;
87 case UO_PreInc:
88 return pet_op_pre_inc;
89 case UO_PreDec:
90 return pet_op_pre_dec;
91 default:
92 return pet_op_last;
96 static enum pet_op_type BinaryOperatorKind2pet_op_type(BinaryOperatorKind kind)
98 switch (kind) {
99 case BO_AddAssign:
100 return pet_op_add_assign;
101 case BO_SubAssign:
102 return pet_op_sub_assign;
103 case BO_MulAssign:
104 return pet_op_mul_assign;
105 case BO_DivAssign:
106 return pet_op_div_assign;
107 case BO_Assign:
108 return pet_op_assign;
109 case BO_Add:
110 return pet_op_add;
111 case BO_Sub:
112 return pet_op_sub;
113 case BO_Mul:
114 return pet_op_mul;
115 case BO_Div:
116 return pet_op_div;
117 case BO_Rem:
118 return pet_op_mod;
119 case BO_Shl:
120 return pet_op_shl;
121 case BO_Shr:
122 return pet_op_shr;
123 case BO_EQ:
124 return pet_op_eq;
125 case BO_NE:
126 return pet_op_ne;
127 case BO_LE:
128 return pet_op_le;
129 case BO_GE:
130 return pet_op_ge;
131 case BO_LT:
132 return pet_op_lt;
133 case BO_GT:
134 return pet_op_gt;
135 case BO_And:
136 return pet_op_and;
137 case BO_Xor:
138 return pet_op_xor;
139 case BO_Or:
140 return pet_op_or;
141 case BO_LAnd:
142 return pet_op_land;
143 case BO_LOr:
144 return pet_op_lor;
145 default:
146 return pet_op_last;
150 #if defined(DECLREFEXPR_CREATE_REQUIRES_BOOL)
151 static DeclRefExpr *create_DeclRefExpr(VarDecl *var)
153 return DeclRefExpr::Create(var->getASTContext(), var->getQualifierLoc(),
154 SourceLocation(), var, false, var->getInnerLocStart(),
155 var->getType(), VK_LValue);
157 #elif defined(DECLREFEXPR_CREATE_REQUIRES_SOURCELOCATION)
158 static DeclRefExpr *create_DeclRefExpr(VarDecl *var)
160 return DeclRefExpr::Create(var->getASTContext(), var->getQualifierLoc(),
161 SourceLocation(), var, var->getInnerLocStart(), var->getType(),
162 VK_LValue);
164 #else
165 static DeclRefExpr *create_DeclRefExpr(VarDecl *var)
167 return DeclRefExpr::Create(var->getASTContext(), var->getQualifierLoc(),
168 var, var->getInnerLocStart(), var->getType(), VK_LValue);
170 #endif
172 #ifdef GETTYPEINFORETURNSTYPEINFO
174 static int size_in_bytes(ASTContext &context, QualType type)
176 return context.getTypeInfo(type).Width / 8;
179 #else
181 static int size_in_bytes(ASTContext &context, QualType type)
183 return context.getTypeInfo(type).first / 8;
186 #endif
188 /* Check if the element type corresponding to the given array type
189 * has a const qualifier.
191 static bool const_base(QualType qt)
193 const Type *type = qt.getTypePtr();
195 if (type->isPointerType())
196 return const_base(type->getPointeeType());
197 if (type->isArrayType()) {
198 const ArrayType *atype;
199 type = type->getCanonicalTypeInternal().getTypePtr();
200 atype = cast<ArrayType>(type);
201 return const_base(atype->getElementType());
204 return qt.isConstQualified();
207 PetScan::~PetScan()
209 std::map<const Type *, pet_expr *>::iterator it;
210 std::map<FunctionDecl *, pet_function_summary *>::iterator it_s;
212 for (it = type_size.begin(); it != type_size.end(); ++it)
213 pet_expr_free(it->second);
214 for (it_s = summary_cache.begin(); it_s != summary_cache.end(); ++it_s)
215 pet_function_summary_free(it_s->second);
217 isl_union_map_free(value_bounds);
220 /* Report a diagnostic, unless autodetect is set.
222 void PetScan::report(Stmt *stmt, unsigned id)
224 if (options->autodetect)
225 return;
227 SourceLocation loc = stmt->getLocStart();
228 DiagnosticsEngine &diag = PP.getDiagnostics();
229 DiagnosticBuilder B = diag.Report(loc, id) << stmt->getSourceRange();
232 /* Called if we found something we (currently) cannot handle.
233 * We'll provide more informative warnings later.
235 * We only actually complain if autodetect is false.
237 void PetScan::unsupported(Stmt *stmt)
239 DiagnosticsEngine &diag = PP.getDiagnostics();
240 unsigned id = diag.getCustomDiagID(DiagnosticsEngine::Warning,
241 "unsupported");
242 report(stmt, id);
245 /* Report an unsupported unary operator, unless autodetect is set.
247 void PetScan::report_unsupported_unary_operator(Stmt *stmt)
249 DiagnosticsEngine &diag = PP.getDiagnostics();
250 unsigned id = diag.getCustomDiagID(DiagnosticsEngine::Warning,
251 "this type of unary operator is not supported");
252 report(stmt, id);
255 /* Report an unsupported statement type, unless autodetect is set.
257 void PetScan::report_unsupported_statement_type(Stmt *stmt)
259 DiagnosticsEngine &diag = PP.getDiagnostics();
260 unsigned id = diag.getCustomDiagID(DiagnosticsEngine::Warning,
261 "this type of statement is not supported");
262 report(stmt, id);
265 /* Report a missing prototype, unless autodetect is set.
267 void PetScan::report_prototype_required(Stmt *stmt)
269 DiagnosticsEngine &diag = PP.getDiagnostics();
270 unsigned id = diag.getCustomDiagID(DiagnosticsEngine::Warning,
271 "prototype required");
272 report(stmt, id);
275 /* Report a missing increment, unless autodetect is set.
277 void PetScan::report_missing_increment(Stmt *stmt)
279 DiagnosticsEngine &diag = PP.getDiagnostics();
280 unsigned id = diag.getCustomDiagID(DiagnosticsEngine::Warning,
281 "missing increment");
282 report(stmt, id);
285 /* Report a missing summary function, unless autodetect is set.
287 void PetScan::report_missing_summary_function(Stmt *stmt)
289 DiagnosticsEngine &diag = PP.getDiagnostics();
290 unsigned id = diag.getCustomDiagID(DiagnosticsEngine::Warning,
291 "missing summary function");
292 report(stmt, id);
295 /* Report a missing summary function body, unless autodetect is set.
297 void PetScan::report_missing_summary_function_body(Stmt *stmt)
299 DiagnosticsEngine &diag = PP.getDiagnostics();
300 unsigned id = diag.getCustomDiagID(DiagnosticsEngine::Warning,
301 "missing summary function body");
302 report(stmt, id);
305 /* Report an unsupported argument in a call to an inlined function,
306 * unless autodetect is set.
308 void PetScan::report_unsupported_inline_function_argument(Stmt *stmt)
310 DiagnosticsEngine &diag = PP.getDiagnostics();
311 unsigned id = diag.getCustomDiagID(DiagnosticsEngine::Warning,
312 "unsupported inline function call argument");
313 report(stmt, id);
316 /* Extract an integer from "val", which is assumed to be non-negative.
318 static __isl_give isl_val *extract_unsigned(isl_ctx *ctx,
319 const llvm::APInt &val)
321 unsigned n;
322 const uint64_t *data;
324 data = val.getRawData();
325 n = val.getNumWords();
326 return isl_val_int_from_chunks(ctx, n, sizeof(uint64_t), data);
329 /* Extract an integer from "val". If "is_signed" is set, then "val"
330 * is signed. Otherwise it it unsigned.
332 static __isl_give isl_val *extract_int(isl_ctx *ctx, bool is_signed,
333 llvm::APInt val)
335 int is_negative = is_signed && val.isNegative();
336 isl_val *v;
338 if (is_negative)
339 val = -val;
341 v = extract_unsigned(ctx, val);
343 if (is_negative)
344 v = isl_val_neg(v);
345 return v;
348 /* Extract an integer from "expr".
350 __isl_give isl_val *PetScan::extract_int(isl_ctx *ctx, IntegerLiteral *expr)
352 const Type *type = expr->getType().getTypePtr();
353 bool is_signed = type->hasSignedIntegerRepresentation();
355 return ::extract_int(ctx, is_signed, expr->getValue());
358 /* Extract an integer from "expr".
359 * Return NULL if "expr" does not (obviously) represent an integer.
361 __isl_give isl_val *PetScan::extract_int(clang::ParenExpr *expr)
363 return extract_int(expr->getSubExpr());
366 /* Extract an integer from "expr".
367 * Return NULL if "expr" does not (obviously) represent an integer.
369 __isl_give isl_val *PetScan::extract_int(clang::Expr *expr)
371 if (expr->getStmtClass() == Stmt::IntegerLiteralClass)
372 return extract_int(ctx, cast<IntegerLiteral>(expr));
373 if (expr->getStmtClass() == Stmt::ParenExprClass)
374 return extract_int(cast<ParenExpr>(expr));
376 unsupported(expr);
377 return NULL;
380 /* Extract a pet_expr from the APInt "val", which is assumed
381 * to be non-negative.
383 __isl_give pet_expr *PetScan::extract_expr(const llvm::APInt &val)
385 return pet_expr_new_int(extract_unsigned(ctx, val));
388 /* Return the number of bits needed to represent the type of "decl",
389 * if it is an integer type. Otherwise return 0.
390 * If qt is signed then return the opposite of the number of bits.
392 static int get_type_size(ValueDecl *decl)
394 return pet_clang_get_type_size(decl->getType(), decl->getASTContext());
397 /* Bound parameter "pos" of "set" to the possible values of "decl".
399 static __isl_give isl_set *set_parameter_bounds(__isl_take isl_set *set,
400 unsigned pos, ValueDecl *decl)
402 int type_size;
403 isl_ctx *ctx;
404 isl_val *bound;
406 ctx = isl_set_get_ctx(set);
407 type_size = get_type_size(decl);
408 if (type_size == 0)
409 isl_die(ctx, isl_error_invalid, "not an integer type",
410 return isl_set_free(set));
411 if (type_size > 0) {
412 set = isl_set_lower_bound_si(set, isl_dim_param, pos, 0);
413 bound = isl_val_int_from_ui(ctx, type_size);
414 bound = isl_val_2exp(bound);
415 bound = isl_val_sub_ui(bound, 1);
416 set = isl_set_upper_bound_val(set, isl_dim_param, pos, bound);
417 } else {
418 bound = isl_val_int_from_ui(ctx, -type_size - 1);
419 bound = isl_val_2exp(bound);
420 bound = isl_val_sub_ui(bound, 1);
421 set = isl_set_upper_bound_val(set, isl_dim_param, pos,
422 isl_val_copy(bound));
423 bound = isl_val_neg(bound);
424 bound = isl_val_sub_ui(bound, 1);
425 set = isl_set_lower_bound_val(set, isl_dim_param, pos, bound);
428 return set;
431 __isl_give pet_expr *PetScan::extract_index_expr(ImplicitCastExpr *expr)
433 return extract_index_expr(expr->getSubExpr());
436 /* Return the depth of an array of the given type.
438 static int array_depth(const Type *type)
440 if (type->isPointerType())
441 return 1 + array_depth(type->getPointeeType().getTypePtr());
442 if (type->isArrayType()) {
443 const ArrayType *atype;
444 type = type->getCanonicalTypeInternal().getTypePtr();
445 atype = cast<ArrayType>(type);
446 return 1 + array_depth(atype->getElementType().getTypePtr());
448 return 0;
451 /* Return the depth of the array accessed by the index expression "index".
452 * If "index" is an affine expression, i.e., if it does not access
453 * any array, then return 1.
454 * If "index" represent a member access, i.e., if its range is a wrapped
455 * relation, then return the sum of the depth of the array of structures
456 * and that of the member inside the structure.
458 static int extract_depth(__isl_keep isl_multi_pw_aff *index)
460 isl_id *id;
461 ValueDecl *decl;
463 if (!index)
464 return -1;
466 if (isl_multi_pw_aff_range_is_wrapping(index)) {
467 int domain_depth, range_depth;
468 isl_multi_pw_aff *domain, *range;
470 domain = isl_multi_pw_aff_copy(index);
471 domain = isl_multi_pw_aff_range_factor_domain(domain);
472 domain_depth = extract_depth(domain);
473 isl_multi_pw_aff_free(domain);
474 range = isl_multi_pw_aff_copy(index);
475 range = isl_multi_pw_aff_range_factor_range(range);
476 range_depth = extract_depth(range);
477 isl_multi_pw_aff_free(range);
479 return domain_depth + range_depth;
482 if (!isl_multi_pw_aff_has_tuple_id(index, isl_dim_out))
483 return 1;
485 id = isl_multi_pw_aff_get_tuple_id(index, isl_dim_out);
486 if (!id)
487 return -1;
488 decl = pet_id_get_decl(id);
489 isl_id_free(id);
491 return array_depth(decl->getType().getTypePtr());
494 /* Return the depth of the array accessed by the access expression "expr".
496 static int extract_depth(__isl_keep pet_expr *expr)
498 isl_multi_pw_aff *index;
499 int depth;
501 index = pet_expr_access_get_index(expr);
502 depth = extract_depth(index);
503 isl_multi_pw_aff_free(index);
505 return depth;
508 /* Construct a pet_expr representing an index expression for an access
509 * to the variable referenced by "expr".
511 * If "expr" references an enum constant, then return an integer expression
512 * instead, representing the value of the enum constant.
514 __isl_give pet_expr *PetScan::extract_index_expr(DeclRefExpr *expr)
516 return extract_index_expr(expr->getDecl());
519 /* Construct a pet_expr representing an index expression for an access
520 * to the variable "decl".
522 * If "decl" is an enum constant, then we return an integer expression
523 * instead, representing the value of the enum constant.
525 __isl_give pet_expr *PetScan::extract_index_expr(ValueDecl *decl)
527 isl_id *id;
529 if (isa<EnumConstantDecl>(decl))
530 return extract_expr(cast<EnumConstantDecl>(decl));
532 id = pet_id_from_decl(ctx, decl);
533 return pet_id_create_index_expr(id);
536 /* Construct a pet_expr representing the index expression "expr"
537 * Return NULL on error.
539 * If "expr" is a reference to an enum constant, then return
540 * an integer expression instead, representing the value of the enum constant.
542 __isl_give pet_expr *PetScan::extract_index_expr(Expr *expr)
544 switch (expr->getStmtClass()) {
545 case Stmt::ImplicitCastExprClass:
546 return extract_index_expr(cast<ImplicitCastExpr>(expr));
547 case Stmt::DeclRefExprClass:
548 return extract_index_expr(cast<DeclRefExpr>(expr));
549 case Stmt::ArraySubscriptExprClass:
550 return extract_index_expr(cast<ArraySubscriptExpr>(expr));
551 case Stmt::IntegerLiteralClass:
552 return extract_expr(cast<IntegerLiteral>(expr));
553 case Stmt::MemberExprClass:
554 return extract_index_expr(cast<MemberExpr>(expr));
555 default:
556 unsupported(expr);
558 return NULL;
561 /* Extract an index expression from the given array subscript expression.
563 * We first extract an index expression from the base.
564 * This will result in an index expression with a range that corresponds
565 * to the earlier indices.
566 * We then extract the current index and let
567 * pet_expr_access_subscript combine the two.
569 __isl_give pet_expr *PetScan::extract_index_expr(ArraySubscriptExpr *expr)
571 Expr *base = expr->getBase();
572 Expr *idx = expr->getIdx();
573 pet_expr *index;
574 pet_expr *base_expr;
576 base_expr = extract_index_expr(base);
577 index = extract_expr(idx);
579 base_expr = pet_expr_access_subscript(base_expr, index);
581 return base_expr;
584 /* Extract an index expression from a member expression.
586 * If the base access (to the structure containing the member)
587 * is of the form
589 * A[..]
591 * and the member is called "f", then the member access is of
592 * the form
594 * A_f[A[..] -> f[]]
596 * If the member access is to an anonymous struct, then simply return
598 * A[..]
600 * If the member access in the source code is of the form
602 * A->f
604 * then it is treated as
606 * A[0].f
608 __isl_give pet_expr *PetScan::extract_index_expr(MemberExpr *expr)
610 Expr *base = expr->getBase();
611 FieldDecl *field = cast<FieldDecl>(expr->getMemberDecl());
612 pet_expr *base_index;
613 isl_id *id;
615 base_index = extract_index_expr(base);
617 if (expr->isArrow()) {
618 pet_expr *index = pet_expr_new_int(isl_val_zero(ctx));
619 base_index = pet_expr_access_subscript(base_index, index);
622 if (field->isAnonymousStructOrUnion())
623 return base_index;
625 id = pet_id_from_decl(ctx, field);
627 return pet_expr_access_member(base_index, id);
630 /* Mark the given access pet_expr as a write.
632 static __isl_give pet_expr *mark_write(__isl_take pet_expr *access)
634 access = pet_expr_access_set_write(access, 1);
635 access = pet_expr_access_set_read(access, 0);
637 return access;
640 /* Mark the given (read) access pet_expr as also possibly being written.
641 * That is, initialize the may write access relation from the may read relation
642 * and initialize the must write access relation to the empty relation.
644 static __isl_give pet_expr *mark_may_write(__isl_take pet_expr *expr)
646 isl_union_map *access;
647 isl_union_map *empty;
649 access = pet_expr_access_get_dependent_access(expr,
650 pet_expr_access_may_read);
651 empty = isl_union_map_empty(isl_union_map_get_space(access));
652 expr = pet_expr_access_set_access(expr, pet_expr_access_may_write,
653 access);
654 expr = pet_expr_access_set_access(expr, pet_expr_access_must_write,
655 empty);
657 return expr;
660 /* Construct a pet_expr representing a unary operator expression.
662 __isl_give pet_expr *PetScan::extract_expr(UnaryOperator *expr)
664 int type_size;
665 pet_expr *arg;
666 enum pet_op_type op;
668 op = UnaryOperatorKind2pet_op_type(expr->getOpcode());
669 if (op == pet_op_last) {
670 report_unsupported_unary_operator(expr);
671 return NULL;
674 arg = extract_expr(expr->getSubExpr());
676 if (expr->isIncrementDecrementOp() &&
677 pet_expr_get_type(arg) == pet_expr_access) {
678 arg = mark_write(arg);
679 arg = pet_expr_access_set_read(arg, 1);
682 type_size = pet_clang_get_type_size(expr->getType(), ast_context);
683 return pet_expr_new_unary(type_size, op, arg);
686 /* Construct a pet_expr representing a binary operator expression.
688 * If the top level operator is an assignment and the LHS is an access,
689 * then we mark that access as a write. If the operator is a compound
690 * assignment, the access is marked as both a read and a write.
692 __isl_give pet_expr *PetScan::extract_expr(BinaryOperator *expr)
694 int type_size;
695 pet_expr *lhs, *rhs;
696 enum pet_op_type op;
698 op = BinaryOperatorKind2pet_op_type(expr->getOpcode());
699 if (op == pet_op_last) {
700 unsupported(expr);
701 return NULL;
704 lhs = extract_expr(expr->getLHS());
705 rhs = extract_expr(expr->getRHS());
707 if (expr->isAssignmentOp() &&
708 pet_expr_get_type(lhs) == pet_expr_access) {
709 lhs = mark_write(lhs);
710 if (expr->isCompoundAssignmentOp())
711 lhs = pet_expr_access_set_read(lhs, 1);
714 type_size = pet_clang_get_type_size(expr->getType(), ast_context);
715 return pet_expr_new_binary(type_size, op, lhs, rhs);
718 /* Construct a pet_tree for a variable declaration and
719 * add the declaration to the list of declarations
720 * inside the current compound statement.
722 __isl_give pet_tree *PetScan::extract(Decl *decl)
724 VarDecl *vd;
725 pet_expr *lhs, *rhs;
726 pet_tree *tree;
728 vd = cast<VarDecl>(decl);
729 declarations.push_back(vd);
731 lhs = extract_access_expr(vd);
732 lhs = mark_write(lhs);
733 if (!vd->getInit())
734 tree = pet_tree_new_decl(lhs);
735 else {
736 rhs = extract_expr(vd->getInit());
737 tree = pet_tree_new_decl_init(lhs, rhs);
740 return tree;
743 /* Construct a pet_tree for a variable declaration statement.
744 * If the declaration statement declares multiple variables,
745 * then return a group of pet_trees, one for each declared variable.
747 __isl_give pet_tree *PetScan::extract(DeclStmt *stmt)
749 pet_tree *tree;
750 unsigned n;
752 if (!stmt->isSingleDecl()) {
753 const DeclGroup &group = stmt->getDeclGroup().getDeclGroup();
754 n = group.size();
755 tree = pet_tree_new_block(ctx, 0, n);
757 for (int i = 0; i < n; ++i) {
758 pet_tree *tree_i;
759 pet_loc *loc;
761 tree_i = extract(group[i]);
762 loc = construct_pet_loc(group[i]->getSourceRange(),
763 false);
764 tree_i = pet_tree_set_loc(tree_i, loc);
765 tree = pet_tree_block_add_child(tree, tree_i);
768 return tree;
771 return extract(stmt->getSingleDecl());
774 /* Construct a pet_expr representing a conditional operation.
776 __isl_give pet_expr *PetScan::extract_expr(ConditionalOperator *expr)
778 pet_expr *cond, *lhs, *rhs;
779 isl_pw_aff *pa;
781 cond = extract_expr(expr->getCond());
782 lhs = extract_expr(expr->getTrueExpr());
783 rhs = extract_expr(expr->getFalseExpr());
785 return pet_expr_new_ternary(cond, lhs, rhs);
788 __isl_give pet_expr *PetScan::extract_expr(ImplicitCastExpr *expr)
790 return extract_expr(expr->getSubExpr());
793 /* Construct a pet_expr representing a floating point value.
795 * If the floating point literal does not appear in a macro,
796 * then we use the original representation in the source code
797 * as the string representation. Otherwise, we use the pretty
798 * printer to produce a string representation.
800 __isl_give pet_expr *PetScan::extract_expr(FloatingLiteral *expr)
802 double d;
803 string s;
804 const LangOptions &LO = PP.getLangOpts();
805 SourceLocation loc = expr->getLocation();
807 if (!loc.isMacroID()) {
808 SourceManager &SM = PP.getSourceManager();
809 unsigned len = Lexer::MeasureTokenLength(loc, SM, LO);
810 s = string(SM.getCharacterData(loc), len);
811 } else {
812 llvm::raw_string_ostream S(s);
813 expr->printPretty(S, 0, PrintingPolicy(LO));
814 S.str();
816 d = expr->getValueAsApproximateDouble();
817 return pet_expr_new_double(ctx, d, s.c_str());
820 /* Convert the index expression "index" into an access pet_expr of type "qt".
822 __isl_give pet_expr *PetScan::extract_access_expr(QualType qt,
823 __isl_take pet_expr *index)
825 int depth;
826 int type_size;
828 depth = extract_depth(index);
829 type_size = pet_clang_get_type_size(qt, ast_context);
831 index = pet_expr_set_type_size(index, type_size);
832 index = pet_expr_access_set_depth(index, depth);
834 return index;
837 /* Extract an index expression from "expr" and then convert it into
838 * an access pet_expr.
840 * If "expr" is a reference to an enum constant, then return
841 * an integer expression instead, representing the value of the enum constant.
843 __isl_give pet_expr *PetScan::extract_access_expr(Expr *expr)
845 pet_expr *index;
847 index = extract_index_expr(expr);
849 if (pet_expr_get_type(index) == pet_expr_int)
850 return index;
852 return extract_access_expr(expr->getType(), index);
855 /* Extract an index expression from "decl" and then convert it into
856 * an access pet_expr.
858 __isl_give pet_expr *PetScan::extract_access_expr(ValueDecl *decl)
860 return extract_access_expr(decl->getType(), extract_index_expr(decl));
863 __isl_give pet_expr *PetScan::extract_expr(ParenExpr *expr)
865 return extract_expr(expr->getSubExpr());
868 /* Extract an assume statement from the argument "expr"
869 * of a __pencil_assume statement.
871 __isl_give pet_expr *PetScan::extract_assume(Expr *expr)
873 return pet_expr_new_unary(0, pet_op_assume, extract_expr(expr));
876 /* If "expr" is an address-of operator, then return its argument.
877 * Otherwise, return NULL.
879 static Expr *extract_addr_of_arg(Expr *expr)
881 UnaryOperator *op;
883 if (expr->getStmtClass() != Stmt::UnaryOperatorClass)
884 return NULL;
885 op = cast<UnaryOperator>(expr);
886 if (op->getOpcode() != UO_AddrOf)
887 return NULL;
888 return op->getSubExpr();
891 /* Construct a pet_expr corresponding to the function call argument "expr".
892 * The argument appears in position "pos" of a call to function "fd".
894 * If we are passing along a pointer to an array element
895 * or an entire row or even higher dimensional slice of an array,
896 * then the function being called may write into the array.
898 * We assume here that if the function is declared to take a pointer
899 * to a const type, then the function may only perform a read
900 * and that otherwise, it may either perform a read or a write (or both).
901 * We only perform this check if "detect_writes" is set.
903 __isl_give pet_expr *PetScan::extract_argument(FunctionDecl *fd, int pos,
904 Expr *expr, bool detect_writes)
906 Expr *arg;
907 pet_expr *res;
908 int is_addr = 0, is_partial = 0;
910 expr = pet_clang_strip_casts(expr);
911 arg = extract_addr_of_arg(expr);
912 if (arg) {
913 is_addr = 1;
914 expr = arg;
916 res = extract_expr(expr);
917 if (!res)
918 return NULL;
919 if (array_depth(expr->getType().getTypePtr()) > 0)
920 is_partial = 1;
921 if (detect_writes && (is_addr || is_partial) &&
922 pet_expr_get_type(res) == pet_expr_access) {
923 ParmVarDecl *parm;
924 if (!fd->hasPrototype()) {
925 report_prototype_required(expr);
926 return pet_expr_free(res);
928 parm = fd->getParamDecl(pos);
929 if (!const_base(parm->getType()))
930 res = mark_may_write(res);
933 if (is_addr)
934 res = pet_expr_new_unary(0, pet_op_address_of, res);
935 return res;
938 /* Find the first FunctionDecl with the given name.
939 * "call" is the corresponding call expression and is only used
940 * for reporting errors.
942 * Return NULL on error.
944 FunctionDecl *PetScan::find_decl_from_name(CallExpr *call, string name)
946 TranslationUnitDecl *tu = ast_context.getTranslationUnitDecl();
947 DeclContext::decl_iterator begin = tu->decls_begin();
948 DeclContext::decl_iterator end = tu->decls_end();
949 for (DeclContext::decl_iterator i = begin; i != end; ++i) {
950 FunctionDecl *fd = dyn_cast<FunctionDecl>(*i);
951 if (!fd)
952 continue;
953 if (fd->getName().str().compare(name) != 0)
954 continue;
955 if (fd->hasBody())
956 return fd;
957 report_missing_summary_function_body(call);
958 return NULL;
960 report_missing_summary_function(call);
961 return NULL;
964 /* Return the FunctionDecl for the summary function associated to the
965 * function called by "call".
967 * In particular, if the pencil option is set, then
968 * search for an annotate attribute formatted as
969 * "pencil_access(name)", where "name" is the name of the summary function.
971 * If no summary function was specified, then return the FunctionDecl
972 * that is actually being called.
974 * Return NULL on error.
976 FunctionDecl *PetScan::get_summary_function(CallExpr *call)
978 FunctionDecl *decl = call->getDirectCallee();
979 if (!decl)
980 return NULL;
982 if (!options->pencil)
983 return decl;
985 specific_attr_iterator<AnnotateAttr> begin, end, i;
986 begin = decl->specific_attr_begin<AnnotateAttr>();
987 end = decl->specific_attr_end<AnnotateAttr>();
988 for (i = begin; i != end; ++i) {
989 string attr = (*i)->getAnnotation().str();
991 const char prefix[] = "pencil_access(";
992 size_t start = attr.find(prefix);
993 if (start == string::npos)
994 continue;
995 start += strlen(prefix);
996 string name = attr.substr(start, attr.find(')') - start);
998 return find_decl_from_name(call, name);
1001 return decl;
1004 /* Construct a pet_expr representing a function call.
1006 * In the special case of a "call" to __pencil_assume,
1007 * construct an assume expression instead.
1009 * In the case of a "call" to __pencil_kill, the arguments
1010 * are neither read nor written (only killed), so there
1011 * is no need to check for writes to these arguments.
1013 * __pencil_assume and __pencil_kill are only recognized
1014 * when the pencil option is set.
1016 __isl_give pet_expr *PetScan::extract_expr(CallExpr *expr)
1018 pet_expr *res = NULL;
1019 FunctionDecl *fd;
1020 string name;
1021 unsigned n_arg;
1022 bool is_kill;
1024 fd = expr->getDirectCallee();
1025 if (!fd) {
1026 unsupported(expr);
1027 return NULL;
1030 name = fd->getDeclName().getAsString();
1031 n_arg = expr->getNumArgs();
1033 if (options->pencil && n_arg == 1 && name == "__pencil_assume")
1034 return extract_assume(expr->getArg(0));
1035 is_kill = options->pencil && name == "__pencil_kill";
1037 res = pet_expr_new_call(ctx, name.c_str(), n_arg);
1038 if (!res)
1039 return NULL;
1041 for (int i = 0; i < n_arg; ++i) {
1042 Expr *arg = expr->getArg(i);
1043 res = pet_expr_set_arg(res, i,
1044 PetScan::extract_argument(fd, i, arg, !is_kill));
1047 fd = get_summary_function(expr);
1048 if (!fd)
1049 return pet_expr_free(res);
1051 res = set_summary(res, fd);
1053 return res;
1056 /* Construct a pet_expr representing a (C style) cast.
1058 __isl_give pet_expr *PetScan::extract_expr(CStyleCastExpr *expr)
1060 pet_expr *arg;
1061 QualType type;
1063 arg = extract_expr(expr->getSubExpr());
1064 if (!arg)
1065 return NULL;
1067 type = expr->getTypeAsWritten();
1068 return pet_expr_new_cast(type.getAsString().c_str(), arg);
1071 /* Construct a pet_expr representing an integer.
1073 __isl_give pet_expr *PetScan::extract_expr(IntegerLiteral *expr)
1075 return pet_expr_new_int(extract_int(expr));
1078 /* Construct a pet_expr representing the integer enum constant "ecd".
1080 __isl_give pet_expr *PetScan::extract_expr(EnumConstantDecl *ecd)
1082 isl_val *v;
1083 const llvm::APSInt &init = ecd->getInitVal();
1084 v = ::extract_int(ctx, init.isSigned(), init);
1085 return pet_expr_new_int(v);
1088 /* Try and construct a pet_expr representing "expr".
1090 __isl_give pet_expr *PetScan::extract_expr(Expr *expr)
1092 switch (expr->getStmtClass()) {
1093 case Stmt::UnaryOperatorClass:
1094 return extract_expr(cast<UnaryOperator>(expr));
1095 case Stmt::CompoundAssignOperatorClass:
1096 case Stmt::BinaryOperatorClass:
1097 return extract_expr(cast<BinaryOperator>(expr));
1098 case Stmt::ImplicitCastExprClass:
1099 return extract_expr(cast<ImplicitCastExpr>(expr));
1100 case Stmt::ArraySubscriptExprClass:
1101 case Stmt::DeclRefExprClass:
1102 case Stmt::MemberExprClass:
1103 return extract_access_expr(expr);
1104 case Stmt::IntegerLiteralClass:
1105 return extract_expr(cast<IntegerLiteral>(expr));
1106 case Stmt::FloatingLiteralClass:
1107 return extract_expr(cast<FloatingLiteral>(expr));
1108 case Stmt::ParenExprClass:
1109 return extract_expr(cast<ParenExpr>(expr));
1110 case Stmt::ConditionalOperatorClass:
1111 return extract_expr(cast<ConditionalOperator>(expr));
1112 case Stmt::CallExprClass:
1113 return extract_expr(cast<CallExpr>(expr));
1114 case Stmt::CStyleCastExprClass:
1115 return extract_expr(cast<CStyleCastExpr>(expr));
1116 default:
1117 unsupported(expr);
1119 return NULL;
1122 /* Check if the given initialization statement is an assignment.
1123 * If so, return that assignment. Otherwise return NULL.
1125 BinaryOperator *PetScan::initialization_assignment(Stmt *init)
1127 BinaryOperator *ass;
1129 if (init->getStmtClass() != Stmt::BinaryOperatorClass)
1130 return NULL;
1132 ass = cast<BinaryOperator>(init);
1133 if (ass->getOpcode() != BO_Assign)
1134 return NULL;
1136 return ass;
1139 /* Check if the given initialization statement is a declaration
1140 * of a single variable.
1141 * If so, return that declaration. Otherwise return NULL.
1143 Decl *PetScan::initialization_declaration(Stmt *init)
1145 DeclStmt *decl;
1147 if (init->getStmtClass() != Stmt::DeclStmtClass)
1148 return NULL;
1150 decl = cast<DeclStmt>(init);
1152 if (!decl->isSingleDecl())
1153 return NULL;
1155 return decl->getSingleDecl();
1158 /* Given the assignment operator in the initialization of a for loop,
1159 * extract the induction variable, i.e., the (integer)variable being
1160 * assigned.
1162 ValueDecl *PetScan::extract_induction_variable(BinaryOperator *init)
1164 Expr *lhs;
1165 DeclRefExpr *ref;
1166 ValueDecl *decl;
1167 const Type *type;
1169 lhs = init->getLHS();
1170 if (lhs->getStmtClass() != Stmt::DeclRefExprClass) {
1171 unsupported(init);
1172 return NULL;
1175 ref = cast<DeclRefExpr>(lhs);
1176 decl = ref->getDecl();
1177 type = decl->getType().getTypePtr();
1179 if (!type->isIntegerType()) {
1180 unsupported(lhs);
1181 return NULL;
1184 return decl;
1187 /* Given the initialization statement of a for loop and the single
1188 * declaration in this initialization statement,
1189 * extract the induction variable, i.e., the (integer) variable being
1190 * declared.
1192 VarDecl *PetScan::extract_induction_variable(Stmt *init, Decl *decl)
1194 VarDecl *vd;
1196 vd = cast<VarDecl>(decl);
1198 const QualType type = vd->getType();
1199 if (!type->isIntegerType()) {
1200 unsupported(init);
1201 return NULL;
1204 if (!vd->getInit()) {
1205 unsupported(init);
1206 return NULL;
1209 return vd;
1212 /* Check that op is of the form iv++ or iv--.
1213 * Return a pet_expr representing "1" or "-1" accordingly.
1215 __isl_give pet_expr *PetScan::extract_unary_increment(
1216 clang::UnaryOperator *op, clang::ValueDecl *iv)
1218 Expr *sub;
1219 DeclRefExpr *ref;
1220 isl_val *v;
1222 if (!op->isIncrementDecrementOp()) {
1223 unsupported(op);
1224 return NULL;
1227 sub = op->getSubExpr();
1228 if (sub->getStmtClass() != Stmt::DeclRefExprClass) {
1229 unsupported(op);
1230 return NULL;
1233 ref = cast<DeclRefExpr>(sub);
1234 if (ref->getDecl() != iv) {
1235 unsupported(op);
1236 return NULL;
1239 if (op->isIncrementOp())
1240 v = isl_val_one(ctx);
1241 else
1242 v = isl_val_negone(ctx);
1244 return pet_expr_new_int(v);
1247 /* Check if op is of the form
1249 * iv = expr
1251 * and return the increment "expr - iv" as a pet_expr.
1253 __isl_give pet_expr *PetScan::extract_binary_increment(BinaryOperator *op,
1254 clang::ValueDecl *iv)
1256 int type_size;
1257 Expr *lhs;
1258 DeclRefExpr *ref;
1259 pet_expr *expr, *expr_iv;
1261 if (op->getOpcode() != BO_Assign) {
1262 unsupported(op);
1263 return NULL;
1266 lhs = op->getLHS();
1267 if (lhs->getStmtClass() != Stmt::DeclRefExprClass) {
1268 unsupported(op);
1269 return NULL;
1272 ref = cast<DeclRefExpr>(lhs);
1273 if (ref->getDecl() != iv) {
1274 unsupported(op);
1275 return NULL;
1278 expr = extract_expr(op->getRHS());
1279 expr_iv = extract_expr(lhs);
1281 type_size = pet_clang_get_type_size(iv->getType(), ast_context);
1282 return pet_expr_new_binary(type_size, pet_op_sub, expr, expr_iv);
1285 /* Check that op is of the form iv += cst or iv -= cst
1286 * and return a pet_expr corresponding to cst or -cst accordingly.
1288 __isl_give pet_expr *PetScan::extract_compound_increment(
1289 CompoundAssignOperator *op, clang::ValueDecl *iv)
1291 Expr *lhs;
1292 DeclRefExpr *ref;
1293 bool neg = false;
1294 pet_expr *expr;
1295 BinaryOperatorKind opcode;
1297 opcode = op->getOpcode();
1298 if (opcode != BO_AddAssign && opcode != BO_SubAssign) {
1299 unsupported(op);
1300 return NULL;
1302 if (opcode == BO_SubAssign)
1303 neg = true;
1305 lhs = op->getLHS();
1306 if (lhs->getStmtClass() != Stmt::DeclRefExprClass) {
1307 unsupported(op);
1308 return NULL;
1311 ref = cast<DeclRefExpr>(lhs);
1312 if (ref->getDecl() != iv) {
1313 unsupported(op);
1314 return NULL;
1317 expr = extract_expr(op->getRHS());
1318 if (neg) {
1319 int type_size;
1320 type_size = pet_clang_get_type_size(op->getType(), ast_context);
1321 expr = pet_expr_new_unary(type_size, pet_op_minus, expr);
1324 return expr;
1327 /* Check that the increment of the given for loop increments
1328 * (or decrements) the induction variable "iv" and return
1329 * the increment as a pet_expr if successful.
1331 __isl_give pet_expr *PetScan::extract_increment(clang::ForStmt *stmt,
1332 ValueDecl *iv)
1334 Stmt *inc = stmt->getInc();
1336 if (!inc) {
1337 report_missing_increment(stmt);
1338 return NULL;
1341 if (inc->getStmtClass() == Stmt::UnaryOperatorClass)
1342 return extract_unary_increment(cast<UnaryOperator>(inc), iv);
1343 if (inc->getStmtClass() == Stmt::CompoundAssignOperatorClass)
1344 return extract_compound_increment(
1345 cast<CompoundAssignOperator>(inc), iv);
1346 if (inc->getStmtClass() == Stmt::BinaryOperatorClass)
1347 return extract_binary_increment(cast<BinaryOperator>(inc), iv);
1349 unsupported(inc);
1350 return NULL;
1353 /* Construct a pet_tree for a while loop.
1355 * If we were only able to extract part of the body, then simply
1356 * return that part.
1358 __isl_give pet_tree *PetScan::extract(WhileStmt *stmt)
1360 pet_expr *pe_cond;
1361 pet_tree *tree;
1363 tree = extract(stmt->getBody());
1364 if (partial)
1365 return tree;
1366 pe_cond = extract_expr(stmt->getCond());
1367 tree = pet_tree_new_while(pe_cond, tree);
1369 return tree;
1372 /* Construct a pet_tree for a for statement.
1373 * The for loop is required to be of one of the following forms
1375 * for (i = init; condition; ++i)
1376 * for (i = init; condition; --i)
1377 * for (i = init; condition; i += constant)
1378 * for (i = init; condition; i -= constant)
1380 * We extract a pet_tree for the body and then include it in a pet_tree
1381 * of type pet_tree_for.
1383 * As a special case, we also allow a for loop of the form
1385 * for (;;)
1387 * in which case we return a pet_tree of type pet_tree_infinite_loop.
1389 * If we were only able to extract part of the body, then simply
1390 * return that part.
1392 __isl_give pet_tree *PetScan::extract_for(ForStmt *stmt)
1394 BinaryOperator *ass;
1395 Decl *decl;
1396 Stmt *init;
1397 Expr *lhs, *rhs;
1398 ValueDecl *iv;
1399 pet_tree *tree;
1400 struct pet_scop *scop;
1401 int independent;
1402 int declared;
1403 pet_expr *pe_init, *pe_inc, *pe_iv, *pe_cond;
1405 independent = is_current_stmt_marked_independent();
1407 if (!stmt->getInit() && !stmt->getCond() && !stmt->getInc()) {
1408 tree = extract(stmt->getBody());
1409 if (partial)
1410 return tree;
1411 tree = pet_tree_new_infinite_loop(tree);
1412 return tree;
1415 init = stmt->getInit();
1416 if (!init) {
1417 unsupported(stmt);
1418 return NULL;
1420 if ((ass = initialization_assignment(init)) != NULL) {
1421 iv = extract_induction_variable(ass);
1422 if (!iv)
1423 return NULL;
1424 lhs = ass->getLHS();
1425 rhs = ass->getRHS();
1426 } else if ((decl = initialization_declaration(init)) != NULL) {
1427 VarDecl *var = extract_induction_variable(init, decl);
1428 if (!var)
1429 return NULL;
1430 iv = var;
1431 rhs = var->getInit();
1432 lhs = create_DeclRefExpr(var);
1433 } else {
1434 unsupported(stmt->getInit());
1435 return NULL;
1438 declared = !initialization_assignment(stmt->getInit());
1439 tree = extract(stmt->getBody());
1440 if (partial)
1441 return tree;
1442 pe_iv = extract_access_expr(iv);
1443 pe_iv = mark_write(pe_iv);
1444 pe_init = extract_expr(rhs);
1445 if (!stmt->getCond())
1446 pe_cond = pet_expr_new_int(isl_val_one(ctx));
1447 else
1448 pe_cond = extract_expr(stmt->getCond());
1449 pe_inc = extract_increment(stmt, iv);
1450 tree = pet_tree_new_for(independent, declared, pe_iv, pe_init, pe_cond,
1451 pe_inc, tree);
1452 return tree;
1455 /* Store the names of the variables declared in decl_context
1456 * in the set declared_names. Make sure to only do this once by
1457 * setting declared_names_collected.
1459 void PetScan::collect_declared_names()
1461 DeclContext *DC = decl_context;
1462 DeclContext::decl_iterator it;
1464 if (declared_names_collected)
1465 return;
1467 for (it = DC->decls_begin(); it != DC->decls_end(); ++it) {
1468 Decl *D = *it;
1469 NamedDecl *named;
1471 if (!isa<NamedDecl>(D))
1472 continue;
1473 named = cast<NamedDecl>(D);
1474 declared_names.insert(named->getName().str());
1477 declared_names_collected = true;
1480 /* Add the names in "names" that are not also in this->declared_names
1481 * to this->used_names.
1482 * It is up to the caller to make sure that declared_names has been
1483 * populated, if needed.
1485 void PetScan::add_new_used_names(const std::set<std::string> &names)
1487 std::set<std::string>::const_iterator it;
1489 for (it = names.begin(); it != names.end(); ++it) {
1490 if (declared_names.find(*it) != declared_names.end())
1491 continue;
1492 used_names.insert(*it);
1496 /* Is the name "name" used in any declaration other than "decl"?
1498 * If the name was found to be in use before, the consider it to be in use.
1499 * Otherwise, check the DeclContext of the function containing the scop
1500 * as well as all ancestors of this DeclContext for declarations
1501 * other than "decl" that declare something called "name".
1503 bool PetScan::name_in_use(const string &name, Decl *decl)
1505 DeclContext *DC;
1506 DeclContext::decl_iterator it;
1508 if (used_names.find(name) != used_names.end())
1509 return true;
1511 for (DC = decl_context; DC; DC = DC->getParent()) {
1512 for (it = DC->decls_begin(); it != DC->decls_end(); ++it) {
1513 Decl *D = *it;
1514 NamedDecl *named;
1516 if (D == decl)
1517 continue;
1518 if (!isa<NamedDecl>(D))
1519 continue;
1520 named = cast<NamedDecl>(D);
1521 if (named->getName().str() == name)
1522 return true;
1526 return false;
1529 /* Generate a new name based on "name" that is not in use.
1530 * Do so by adding a suffix _i, with i an integer.
1532 string PetScan::generate_new_name(const string &name)
1534 string new_name;
1536 do {
1537 std::ostringstream oss;
1538 oss << name << "_" << n_rename++;
1539 new_name = oss.str();
1540 } while (name_in_use(new_name, NULL));
1542 return new_name;
1545 /* Try and construct a pet_tree corresponding to a compound statement.
1547 * "skip_declarations" is set if we should skip initial declarations
1548 * in the children of the compound statements.
1550 * Collect a new set of declarations for the current compound statement.
1551 * If any of the names in these declarations is also used by another
1552 * declaration reachable from the current function, then rename it
1553 * to a name that is not already in use.
1554 * In particular, keep track of the old and new names in a pet_substituter
1555 * and apply the substitutions to the pet_tree corresponding to the
1556 * compound statement.
1558 __isl_give pet_tree *PetScan::extract(CompoundStmt *stmt,
1559 bool skip_declarations)
1561 pet_tree *tree;
1562 std::vector<VarDecl *> saved_declarations;
1563 std::vector<VarDecl *>::iterator it;
1564 pet_substituter substituter;
1566 saved_declarations = declarations;
1567 declarations.clear();
1568 tree = extract(stmt->children(), true, skip_declarations);
1569 for (it = declarations.begin(); it != declarations.end(); ++it) {
1570 isl_id *id;
1571 pet_expr *expr;
1572 VarDecl *decl = *it;
1573 string name = decl->getName().str();
1574 bool in_use = name_in_use(name, decl);
1576 used_names.insert(name);
1577 if (!in_use)
1578 continue;
1580 name = generate_new_name(name);
1581 id = pet_id_from_name_and_decl(ctx, name.c_str(), decl);
1582 expr = pet_id_create_index_expr(id);
1583 expr = extract_access_expr(decl->getType(), expr);
1584 id = pet_id_from_decl(ctx, decl);
1585 substituter.add_sub(id, expr);
1586 used_names.insert(name);
1588 tree = substituter.substitute(tree);
1589 declarations = saved_declarations;
1591 return tree;
1594 /* Return the file offset of the expansion location of "Loc".
1596 static unsigned getExpansionOffset(SourceManager &SM, SourceLocation Loc)
1598 return SM.getFileOffset(SM.getExpansionLoc(Loc));
1601 #ifdef HAVE_FINDLOCATIONAFTERTOKEN
1603 /* Return a SourceLocation for the location after the first semicolon
1604 * after "loc". If Lexer::findLocationAfterToken is available, we simply
1605 * call it and also skip trailing spaces and newline.
1607 static SourceLocation location_after_semi(SourceLocation loc, SourceManager &SM,
1608 const LangOptions &LO)
1610 return Lexer::findLocationAfterToken(loc, tok::semi, SM, LO, true);
1613 #else
1615 /* Return a SourceLocation for the location after the first semicolon
1616 * after "loc". If Lexer::findLocationAfterToken is not available,
1617 * we look in the underlying character data for the first semicolon.
1619 static SourceLocation location_after_semi(SourceLocation loc, SourceManager &SM,
1620 const LangOptions &LO)
1622 const char *semi;
1623 const char *s = SM.getCharacterData(loc);
1625 semi = strchr(s, ';');
1626 if (!semi)
1627 return SourceLocation();
1628 return loc.getFileLocWithOffset(semi + 1 - s);
1631 #endif
1633 /* If the token at "loc" is the first token on the line, then return
1634 * a location referring to the start of the line and set *indent
1635 * to the indentation of "loc"
1636 * Otherwise, return "loc" and set *indent to "".
1638 * This function is used to extend a scop to the start of the line
1639 * if the first token of the scop is also the first token on the line.
1641 * We look for the first token on the line. If its location is equal to "loc",
1642 * then the latter is the location of the first token on the line.
1644 static SourceLocation move_to_start_of_line_if_first_token(SourceLocation loc,
1645 SourceManager &SM, const LangOptions &LO, char **indent)
1647 std::pair<FileID, unsigned> file_offset_pair;
1648 llvm::StringRef file;
1649 const char *pos;
1650 Token tok;
1651 SourceLocation token_loc, line_loc;
1652 int col;
1653 const char *s;
1655 loc = SM.getExpansionLoc(loc);
1656 col = SM.getExpansionColumnNumber(loc);
1657 line_loc = loc.getLocWithOffset(1 - col);
1658 file_offset_pair = SM.getDecomposedLoc(line_loc);
1659 file = SM.getBufferData(file_offset_pair.first, NULL);
1660 pos = file.data() + file_offset_pair.second;
1662 Lexer lexer(SM.getLocForStartOfFile(file_offset_pair.first), LO,
1663 file.begin(), pos, file.end());
1664 lexer.LexFromRawLexer(tok);
1665 token_loc = tok.getLocation();
1667 s = SM.getCharacterData(line_loc);
1668 *indent = strndup(s, token_loc == loc ? col - 1 : 0);
1670 if (token_loc == loc)
1671 return line_loc;
1672 else
1673 return loc;
1676 /* Construct a pet_loc corresponding to the region covered by "range".
1677 * If "skip_semi" is set, then we assume "range" is followed by
1678 * a semicolon and also include this semicolon.
1680 __isl_give pet_loc *PetScan::construct_pet_loc(SourceRange range,
1681 bool skip_semi)
1683 SourceLocation loc = range.getBegin();
1684 SourceManager &SM = PP.getSourceManager();
1685 const LangOptions &LO = PP.getLangOpts();
1686 int line = PP.getSourceManager().getExpansionLineNumber(loc);
1687 unsigned start, end;
1688 char *indent;
1690 loc = move_to_start_of_line_if_first_token(loc, SM, LO, &indent);
1691 start = getExpansionOffset(SM, loc);
1692 loc = range.getEnd();
1693 if (skip_semi)
1694 loc = location_after_semi(loc, SM, LO);
1695 else
1696 loc = PP.getLocForEndOfToken(loc);
1697 end = getExpansionOffset(SM, loc);
1699 return pet_loc_alloc(ctx, start, end, line, indent);
1702 /* Convert a top-level pet_expr to an expression pet_tree.
1704 __isl_give pet_tree *PetScan::extract(__isl_take pet_expr *expr,
1705 SourceRange range, bool skip_semi)
1707 pet_loc *loc;
1708 pet_tree *tree;
1710 tree = pet_tree_new_expr(expr);
1711 loc = construct_pet_loc(range, skip_semi);
1712 tree = pet_tree_set_loc(tree, loc);
1714 return tree;
1717 /* Construct a pet_tree for an if statement.
1719 __isl_give pet_tree *PetScan::extract(IfStmt *stmt)
1721 pet_expr *pe_cond;
1722 pet_tree *tree, *tree_else;
1723 struct pet_scop *scop;
1724 int int_size;
1726 pe_cond = extract_expr(stmt->getCond());
1727 tree = extract(stmt->getThen());
1728 if (stmt->getElse()) {
1729 tree_else = extract(stmt->getElse());
1730 if (options->autodetect) {
1731 if (tree && !tree_else) {
1732 partial = true;
1733 pet_expr_free(pe_cond);
1734 return tree;
1736 if (!tree && tree_else) {
1737 partial = true;
1738 pet_expr_free(pe_cond);
1739 return tree_else;
1742 tree = pet_tree_new_if_else(pe_cond, tree, tree_else);
1743 } else
1744 tree = pet_tree_new_if(pe_cond, tree);
1745 return tree;
1748 /* Try and construct a pet_tree for a label statement.
1750 __isl_give pet_tree *PetScan::extract(LabelStmt *stmt)
1752 isl_id *label;
1753 pet_tree *tree;
1755 label = isl_id_alloc(ctx, stmt->getName(), NULL);
1757 tree = extract(stmt->getSubStmt());
1758 tree = pet_tree_set_label(tree, label);
1759 return tree;
1762 /* Update the location of "tree" to include the source range of "stmt".
1764 * Actually, we create a new location based on the source range of "stmt" and
1765 * then extend this new location to include the region of the original location.
1766 * This ensures that the line number of the final location refers to "stmt".
1768 __isl_give pet_tree *PetScan::update_loc(__isl_take pet_tree *tree, Stmt *stmt)
1770 pet_loc *loc, *tree_loc;
1772 tree_loc = pet_tree_get_loc(tree);
1773 loc = construct_pet_loc(stmt->getSourceRange(), false);
1774 loc = pet_loc_update_start_end_from_loc(loc, tree_loc);
1775 pet_loc_free(tree_loc);
1777 tree = pet_tree_set_loc(tree, loc);
1778 return tree;
1781 /* Is "expr" of a type that can be converted to an access expression?
1783 static bool is_access_expr_type(Expr *expr)
1785 switch (expr->getStmtClass()) {
1786 case Stmt::ArraySubscriptExprClass:
1787 case Stmt::DeclRefExprClass:
1788 case Stmt::MemberExprClass:
1789 return true;
1790 default:
1791 return false;
1795 /* Tell the pet_inliner "inliner" about the formal arguments
1796 * in "fd" and the corresponding actual arguments in "call".
1797 * Return 0 if this was successful and -1 otherwise.
1799 * Any pointer argument is treated as an array.
1800 * The other arguments are treated as scalars.
1802 * In case of scalars, there is no restriction on the actual argument.
1803 * This actual argument is assigned to a variable with a name
1804 * that is derived from the name of the corresponding formal argument,
1805 * but made not to conflict with any variable names that are
1806 * already in use.
1808 * In case of arrays, the actual argument needs to be an expression
1809 * of a type that can be converted to an access expression or the address
1810 * of such an expression, ignoring implicit and redundant casts.
1812 int PetScan::set_inliner_arguments(pet_inliner &inliner, CallExpr *call,
1813 FunctionDecl *fd)
1815 unsigned n;
1817 n = fd->getNumParams();
1818 for (int i = 0; i < n; ++i) {
1819 ParmVarDecl *parm = fd->getParamDecl(i);
1820 QualType type = parm->getType();
1821 Expr *arg, *sub;
1822 pet_expr *expr;
1823 int is_addr = 0;
1825 arg = call->getArg(i);
1826 if (array_depth(type.getTypePtr()) == 0) {
1827 string name = parm->getName().str();
1828 if (name_in_use(name, NULL))
1829 name = generate_new_name(name);
1830 inliner.add_scalar_arg(parm, name, extract_expr(arg));
1831 continue;
1833 arg = pet_clang_strip_casts(arg);
1834 sub = extract_addr_of_arg(arg);
1835 if (sub) {
1836 is_addr = 1;
1837 arg = pet_clang_strip_casts(sub);
1839 if (!is_access_expr_type(arg)) {
1840 report_unsupported_inline_function_argument(arg);
1841 return -1;
1843 expr = extract_access_expr(arg);
1844 if (!expr)
1845 return -1;
1846 inliner.add_array_arg(parm, expr, is_addr);
1849 return 0;
1852 /* Try and construct a pet_tree from the body of "fd" using the actual
1853 * arguments in "call" in place of the formal arguments.
1854 * "fd" is assumed to point to the declaration with a function body.
1855 * In particular, construct a block that consists of assignments
1856 * of (parts of) the actual arguments to temporary variables
1857 * followed by the inlined function body with the formal arguments
1858 * replaced by (expressions containing) these temporary variables.
1860 * The actual inlining is taken care of by the pet_inliner function.
1861 * This function merely calls set_inliner_arguments to tell
1862 * the pet_inliner about the actual arguments, extracts a pet_tree
1863 * from the body of the called function and then passes this pet_tree
1864 * to the pet_inliner.
1866 * During the extraction of the function body, all variables names
1867 * that are declared in the calling function as well all variable
1868 * names that are known to be in use are considered to be in use
1869 * in the called function to ensure that there is no naming conflict.
1870 * Similarly, the additional names that are in use in the called function
1871 * are considered to be in use in the calling function as well.
1873 * The location of the pet_tree is reset to the call site to ensure
1874 * that the extent of the scop does not include the body of the called
1875 * function.
1877 __isl_give pet_tree *PetScan::extract_inlined_call(CallExpr *call,
1878 FunctionDecl *fd)
1880 int save_autodetect;
1881 pet_tree *tree;
1882 pet_loc *tree_loc;
1883 pet_inliner inliner(ctx, n_arg, ast_context);
1885 if (set_inliner_arguments(inliner, call, fd) < 0)
1886 return NULL;
1888 save_autodetect = options->autodetect;
1889 options->autodetect = 0;
1890 PetScan body_scan(PP, ast_context, fd, loc, options,
1891 isl_union_map_copy(value_bounds), independent);
1892 collect_declared_names();
1893 body_scan.add_new_used_names(declared_names);
1894 body_scan.add_new_used_names(used_names);
1895 tree = body_scan.extract(fd->getBody(), false);
1896 add_new_used_names(body_scan.used_names);
1897 options->autodetect = save_autodetect;
1899 tree_loc = construct_pet_loc(call->getSourceRange(), true);
1900 tree = pet_tree_set_loc(tree, tree_loc);
1902 return inliner.inline_tree(tree);
1905 /* Try and construct a pet_tree corresponding
1906 * to the expression statement "stmt".
1908 * If the outer expression is a function call and if the corresponding
1909 * function body is marked "inline", then return a pet_tree
1910 * corresponding to the inlined function.
1912 __isl_give pet_tree *PetScan::extract_expr_stmt(Stmt *stmt)
1914 pet_expr *expr;
1916 if (stmt->getStmtClass() == Stmt::CallExprClass) {
1917 CallExpr *call = cast<CallExpr>(stmt);
1918 FunctionDecl *fd = call->getDirectCallee();
1919 fd = pet_clang_find_function_decl_with_body(fd);
1920 if (fd && fd->isInlineSpecified())
1921 return extract_inlined_call(call, fd);
1924 expr = extract_expr(cast<Expr>(stmt));
1925 return extract(expr, stmt->getSourceRange(), true);
1928 /* Try and construct a pet_tree corresponding to "stmt".
1930 * If "stmt" is a compound statement, then "skip_declarations"
1931 * indicates whether we should skip initial declarations in the
1932 * compound statement.
1934 * If the constructed pet_tree is not a (possibly) partial representation
1935 * of "stmt", we update start and end of the pet_scop to those of "stmt".
1936 * In particular, if skip_declarations is set, then we may have skipped
1937 * declarations inside "stmt" and so the pet_scop may not represent
1938 * the entire "stmt".
1939 * Note that this function may be called with "stmt" referring to the entire
1940 * body of the function, including the outer braces. In such cases,
1941 * skip_declarations will be set and the braces will not be taken into
1942 * account in tree->loc.
1944 __isl_give pet_tree *PetScan::extract(Stmt *stmt, bool skip_declarations)
1946 pet_tree *tree;
1948 set_current_stmt(stmt);
1950 if (isa<Expr>(stmt))
1951 return extract_expr_stmt(cast<Expr>(stmt));
1953 switch (stmt->getStmtClass()) {
1954 case Stmt::WhileStmtClass:
1955 tree = extract(cast<WhileStmt>(stmt));
1956 break;
1957 case Stmt::ForStmtClass:
1958 tree = extract_for(cast<ForStmt>(stmt));
1959 break;
1960 case Stmt::IfStmtClass:
1961 tree = extract(cast<IfStmt>(stmt));
1962 break;
1963 case Stmt::CompoundStmtClass:
1964 tree = extract(cast<CompoundStmt>(stmt), skip_declarations);
1965 break;
1966 case Stmt::LabelStmtClass:
1967 tree = extract(cast<LabelStmt>(stmt));
1968 break;
1969 case Stmt::ContinueStmtClass:
1970 tree = pet_tree_new_continue(ctx);
1971 break;
1972 case Stmt::BreakStmtClass:
1973 tree = pet_tree_new_break(ctx);
1974 break;
1975 case Stmt::DeclStmtClass:
1976 tree = extract(cast<DeclStmt>(stmt));
1977 break;
1978 default:
1979 report_unsupported_statement_type(stmt);
1980 return NULL;
1983 if (partial || skip_declarations)
1984 return tree;
1986 return update_loc(tree, stmt);
1989 /* Given a sequence of statements "stmt_range" of which the first "n_decl"
1990 * are declarations and of which the remaining statements are represented
1991 * by "tree", try and extend "tree" to include the last sequence of
1992 * the initial declarations that can be completely extracted.
1994 * We start collecting the initial declarations and start over
1995 * whenever we come across a declaration that we cannot extract.
1996 * If we have been able to extract any declarations, then we
1997 * copy over the contents of "tree" at the end of the declarations.
1998 * Otherwise, we simply return the original "tree".
2000 __isl_give pet_tree *PetScan::insert_initial_declarations(
2001 __isl_take pet_tree *tree, int n_decl, StmtRange stmt_range)
2003 StmtIterator i;
2004 pet_tree *res;
2005 int n_stmt;
2006 int is_block;
2007 int j;
2009 n_stmt = pet_tree_block_n_child(tree);
2010 is_block = pet_tree_block_get_block(tree);
2011 res = pet_tree_new_block(ctx, is_block, n_decl + n_stmt);
2013 for (i = stmt_range.first; n_decl; ++i, --n_decl) {
2014 Stmt *child = *i;
2015 pet_tree *tree_i;
2017 tree_i = extract(child);
2018 if (tree_i && !partial) {
2019 res = pet_tree_block_add_child(res, tree_i);
2020 continue;
2022 pet_tree_free(tree_i);
2023 partial = false;
2024 if (pet_tree_block_n_child(res) == 0)
2025 continue;
2026 pet_tree_free(res);
2027 res = pet_tree_new_block(ctx, is_block, n_decl + n_stmt);
2030 if (pet_tree_block_n_child(res) == 0) {
2031 pet_tree_free(res);
2032 return tree;
2035 for (j = 0; j < n_stmt; ++j) {
2036 pet_tree *tree_i;
2038 tree_i = pet_tree_block_get_child(tree, j);
2039 res = pet_tree_block_add_child(res, tree_i);
2041 pet_tree_free(tree);
2043 return res;
2046 /* Try and construct a pet_tree corresponding to (part of)
2047 * a sequence of statements.
2049 * "block" is set if the sequence represents the children of
2050 * a compound statement.
2051 * "skip_declarations" is set if we should skip initial declarations
2052 * in the sequence of statements.
2054 * If autodetect is set, then we allow the extraction of only a subrange
2055 * of the sequence of statements. However, if there is at least one
2056 * kill and there is some subsequent statement for which we could not
2057 * construct a tree, then turn off the "block" property of the tree
2058 * such that no extra kill will be introduced at the end of the (partial)
2059 * block. If, on the other hand, the final range contains
2060 * no statements, then we discard the entire range.
2062 * If the entire range was extracted, apart from some initial declarations,
2063 * then we try and extend the range with the latest of those initial
2064 * declarations.
2066 __isl_give pet_tree *PetScan::extract(StmtRange stmt_range, bool block,
2067 bool skip_declarations)
2069 StmtIterator i;
2070 int j, skip;
2071 bool has_kills = false;
2072 bool partial_range = false;
2073 pet_tree *tree;
2075 for (i = stmt_range.first, j = 0; i != stmt_range.second; ++i, ++j)
2078 tree = pet_tree_new_block(ctx, block, j);
2080 skip = 0;
2081 i = stmt_range.first;
2082 if (skip_declarations)
2083 for (; i != stmt_range.second; ++i) {
2084 if ((*i)->getStmtClass() != Stmt::DeclStmtClass)
2085 break;
2086 ++skip;
2089 for (; i != stmt_range.second; ++i) {
2090 Stmt *child = *i;
2091 pet_tree *tree_i;
2093 tree_i = extract(child);
2094 if (pet_tree_block_n_child(tree) != 0 && partial) {
2095 pet_tree_free(tree_i);
2096 break;
2098 if (tree_i && child->getStmtClass() == Stmt::DeclStmtClass &&
2099 block)
2100 has_kills = true;
2101 if (options->autodetect) {
2102 if (tree_i)
2103 tree = pet_tree_block_add_child(tree, tree_i);
2104 else
2105 partial_range = true;
2106 if (pet_tree_block_n_child(tree) != 0 && !tree_i)
2107 partial = true;
2108 } else {
2109 tree = pet_tree_block_add_child(tree, tree_i);
2112 if (partial || !tree)
2113 break;
2116 if (!tree)
2117 return NULL;
2119 if (partial) {
2120 if (has_kills)
2121 tree = pet_tree_block_set_block(tree, 0);
2122 } else if (partial_range) {
2123 if (pet_tree_block_n_child(tree) == 0) {
2124 pet_tree_free(tree);
2125 return NULL;
2127 partial = true;
2128 } else if (skip > 0)
2129 tree = insert_initial_declarations(tree, skip, stmt_range);
2131 return tree;
2134 extern "C" {
2135 static __isl_give pet_expr *get_array_size(__isl_keep pet_expr *access,
2136 void *user);
2137 static struct pet_array *extract_array(__isl_keep pet_expr *access,
2138 __isl_keep pet_context *pc, void *user);
2141 /* Construct a pet_expr that holds the sizes of the array accessed
2142 * by "access".
2143 * This function is used as a callback to pet_context_add_parameters,
2144 * which is also passed a pointer to the PetScan object.
2146 static __isl_give pet_expr *get_array_size(__isl_keep pet_expr *access,
2147 void *user)
2149 PetScan *ps = (PetScan *) user;
2150 isl_id *id;
2151 const Type *type;
2153 id = pet_expr_access_get_id(access);
2154 type = pet_id_get_array_type(id).getTypePtr();
2155 isl_id_free(id);
2156 return ps->get_array_size(type);
2159 /* Construct and return a pet_array corresponding to the variable
2160 * accessed by "access".
2161 * This function is used as a callback to pet_scop_from_pet_tree,
2162 * which is also passed a pointer to the PetScan object.
2164 static struct pet_array *extract_array(__isl_keep pet_expr *access,
2165 __isl_keep pet_context *pc, void *user)
2167 PetScan *ps = (PetScan *) user;
2168 isl_ctx *ctx;
2169 isl_id *id;
2170 pet_array *array;
2172 ctx = pet_expr_get_ctx(access);
2173 id = pet_expr_access_get_id(access);
2174 array = ps->extract_array(id, NULL, pc);
2175 isl_id_free(id);
2177 return array;
2180 /* Extract a function summary from the body of "fd".
2182 * We extract a scop from the function body in a context with as
2183 * parameters the integer arguments of the function.
2184 * We turn off autodetection (in case it was set) to ensure that
2185 * the entire function body is considered.
2186 * We then collect the accessed array elements and attach them
2187 * to the corresponding array arguments, taking into account
2188 * that the function body may access members of array elements.
2190 * The reason for representing the integer arguments as parameters in
2191 * the context is that if we were to instead start with a context
2192 * with the function arguments as initial dimensions, then we would not
2193 * be able to refer to them from the array extents, without turning
2194 * array extents into maps.
2196 * The result is stored in the summary_cache cache so that we can reuse
2197 * it if this method gets called on the same function again later on.
2199 __isl_give pet_function_summary *PetScan::get_summary(FunctionDecl *fd)
2201 isl_space *space;
2202 isl_set *domain;
2203 pet_context *pc;
2204 pet_tree *tree;
2205 pet_function_summary *summary;
2206 unsigned n;
2207 ScopLoc loc;
2208 int save_autodetect;
2209 struct pet_scop *scop;
2210 int int_size;
2211 isl_union_set *may_read, *may_write, *must_write;
2212 isl_union_map *to_inner;
2214 if (summary_cache.find(fd) != summary_cache.end())
2215 return pet_function_summary_copy(summary_cache[fd]);
2217 space = isl_space_set_alloc(ctx, 0, 0);
2219 n = fd->getNumParams();
2220 summary = pet_function_summary_alloc(ctx, n);
2221 for (int i = 0; i < n; ++i) {
2222 ParmVarDecl *parm = fd->getParamDecl(i);
2223 QualType type = parm->getType();
2224 isl_id *id;
2226 if (!type->isIntegerType())
2227 continue;
2228 id = pet_id_from_decl(ctx, parm);
2229 space = isl_space_insert_dims(space, isl_dim_param, 0, 1);
2230 space = isl_space_set_dim_id(space, isl_dim_param, 0,
2231 isl_id_copy(id));
2232 summary = pet_function_summary_set_int(summary, i, id);
2235 save_autodetect = options->autodetect;
2236 options->autodetect = 0;
2237 PetScan body_scan(PP, ast_context, fd, loc, options,
2238 isl_union_map_copy(value_bounds), independent);
2240 tree = body_scan.extract(fd->getBody(), false);
2242 domain = isl_set_universe(space);
2243 pc = pet_context_alloc(domain);
2244 pc = pet_context_add_parameters(pc, tree,
2245 &::get_array_size, &body_scan);
2246 int_size = size_in_bytes(ast_context, ast_context.IntTy);
2247 scop = pet_scop_from_pet_tree(tree, int_size,
2248 &::extract_array, &body_scan, pc);
2249 scop = scan_arrays(scop, pc);
2250 may_read = isl_union_map_range(pet_scop_collect_may_reads(scop));
2251 may_write = isl_union_map_range(pet_scop_collect_may_writes(scop));
2252 must_write = isl_union_map_range(pet_scop_collect_must_writes(scop));
2253 to_inner = pet_scop_compute_outer_to_inner(scop);
2254 pet_scop_free(scop);
2256 for (int i = 0; i < n; ++i) {
2257 ParmVarDecl *parm = fd->getParamDecl(i);
2258 QualType type = parm->getType();
2259 struct pet_array *array;
2260 isl_space *space;
2261 isl_union_set *data_set;
2262 isl_union_set *may_read_i, *may_write_i, *must_write_i;
2264 if (array_depth(type.getTypePtr()) == 0)
2265 continue;
2267 array = body_scan.extract_array(parm, NULL, pc);
2268 space = array ? isl_set_get_space(array->extent) : NULL;
2269 pet_array_free(array);
2270 data_set = isl_union_set_from_set(isl_set_universe(space));
2271 data_set = isl_union_set_apply(data_set,
2272 isl_union_map_copy(to_inner));
2273 may_read_i = isl_union_set_intersect(
2274 isl_union_set_copy(may_read),
2275 isl_union_set_copy(data_set));
2276 may_write_i = isl_union_set_intersect(
2277 isl_union_set_copy(may_write),
2278 isl_union_set_copy(data_set));
2279 must_write_i = isl_union_set_intersect(
2280 isl_union_set_copy(must_write), data_set);
2281 summary = pet_function_summary_set_array(summary, i,
2282 may_read_i, may_write_i, must_write_i);
2285 isl_union_set_free(may_read);
2286 isl_union_set_free(may_write);
2287 isl_union_set_free(must_write);
2288 isl_union_map_free(to_inner);
2290 options->autodetect = save_autodetect;
2291 pet_context_free(pc);
2293 summary_cache[fd] = pet_function_summary_copy(summary);
2295 return summary;
2298 /* If "fd" has a function body, then extract a function summary from
2299 * this body and attach it to the call expression "expr".
2301 * Even if a function body is available, "fd" itself may point
2302 * to a declaration without function body. We therefore first
2303 * replace it by the declaration that comes with a body (if any).
2305 __isl_give pet_expr *PetScan::set_summary(__isl_take pet_expr *expr,
2306 FunctionDecl *fd)
2308 pet_function_summary *summary;
2310 if (!expr)
2311 return NULL;
2312 fd = pet_clang_find_function_decl_with_body(fd);
2313 if (!fd)
2314 return expr;
2316 summary = get_summary(fd);
2318 expr = pet_expr_call_set_summary(expr, summary);
2320 return expr;
2323 /* Extract a pet_scop from "tree".
2325 * We simply call pet_scop_from_pet_tree with the appropriate arguments and
2326 * then add pet_arrays for all accessed arrays.
2327 * We populate the pet_context with assignments for all parameters used
2328 * inside "tree" or any of the size expressions for the arrays accessed
2329 * by "tree" so that they can be used in affine expressions.
2331 struct pet_scop *PetScan::extract_scop(__isl_take pet_tree *tree)
2333 int int_size;
2334 isl_set *domain;
2335 pet_context *pc;
2336 pet_scop *scop;
2338 int_size = size_in_bytes(ast_context, ast_context.IntTy);
2340 domain = isl_set_universe(isl_space_set_alloc(ctx, 0, 0));
2341 pc = pet_context_alloc(domain);
2342 pc = pet_context_add_parameters(pc, tree, &::get_array_size, this);
2343 scop = pet_scop_from_pet_tree(tree, int_size,
2344 &::extract_array, this, pc);
2345 scop = scan_arrays(scop, pc);
2346 pet_context_free(pc);
2348 return scop;
2351 /* Check if the scop marked by the user is exactly this Stmt
2352 * or part of this Stmt.
2353 * If so, return a pet_scop corresponding to the marked region.
2354 * Otherwise, return NULL.
2356 struct pet_scop *PetScan::scan(Stmt *stmt)
2358 SourceManager &SM = PP.getSourceManager();
2359 unsigned start_off, end_off;
2361 start_off = getExpansionOffset(SM, stmt->getLocStart());
2362 end_off = getExpansionOffset(SM, stmt->getLocEnd());
2364 if (start_off > loc.end)
2365 return NULL;
2366 if (end_off < loc.start)
2367 return NULL;
2369 if (start_off >= loc.start && end_off <= loc.end)
2370 return extract_scop(extract(stmt));
2372 StmtIterator start;
2373 for (start = stmt->child_begin(); start != stmt->child_end(); ++start) {
2374 Stmt *child = *start;
2375 if (!child)
2376 continue;
2377 start_off = getExpansionOffset(SM, child->getLocStart());
2378 end_off = getExpansionOffset(SM, child->getLocEnd());
2379 if (start_off < loc.start && end_off >= loc.end)
2380 return scan(child);
2381 if (start_off >= loc.start)
2382 break;
2385 StmtIterator end;
2386 for (end = start; end != stmt->child_end(); ++end) {
2387 Stmt *child = *end;
2388 start_off = SM.getFileOffset(child->getLocStart());
2389 if (start_off >= loc.end)
2390 break;
2393 return extract_scop(extract(StmtRange(start, end), false, false));
2396 /* Set the size of index "pos" of "array" to "size".
2397 * In particular, add a constraint of the form
2399 * i_pos < size
2401 * to array->extent and a constraint of the form
2403 * size >= 0
2405 * to array->context.
2407 * The domain of "size" is assumed to be zero-dimensional.
2409 static struct pet_array *update_size(struct pet_array *array, int pos,
2410 __isl_take isl_pw_aff *size)
2412 isl_set *valid;
2413 isl_set *univ;
2414 isl_set *bound;
2415 isl_space *dim;
2416 isl_aff *aff;
2417 isl_pw_aff *index;
2418 isl_id *id;
2420 if (!array)
2421 goto error;
2423 valid = isl_set_params(isl_pw_aff_nonneg_set(isl_pw_aff_copy(size)));
2424 array->context = isl_set_intersect(array->context, valid);
2426 dim = isl_set_get_space(array->extent);
2427 aff = isl_aff_zero_on_domain(isl_local_space_from_space(dim));
2428 aff = isl_aff_add_coefficient_si(aff, isl_dim_in, pos, 1);
2429 univ = isl_set_universe(isl_aff_get_domain_space(aff));
2430 index = isl_pw_aff_alloc(univ, aff);
2432 size = isl_pw_aff_add_dims(size, isl_dim_in,
2433 isl_set_dim(array->extent, isl_dim_set));
2434 id = isl_set_get_tuple_id(array->extent);
2435 size = isl_pw_aff_set_tuple_id(size, isl_dim_in, id);
2436 bound = isl_pw_aff_lt_set(index, size);
2438 array->extent = isl_set_intersect(array->extent, bound);
2440 if (!array->context || !array->extent)
2441 return pet_array_free(array);
2443 return array;
2444 error:
2445 isl_pw_aff_free(size);
2446 return NULL;
2449 #ifdef HAVE_DECAYEDTYPE
2451 /* If "type" is a decayed type, then set *decayed to true and
2452 * return the original type.
2454 static const Type *undecay(const Type *type, bool *decayed)
2456 *decayed = isa<DecayedType>(type);
2457 if (*decayed)
2458 type = cast<DecayedType>(type)->getOriginalType().getTypePtr();
2459 return type;
2462 #else
2464 /* If "type" is a decayed type, then set *decayed to true and
2465 * return the original type.
2466 * Since this version of clang does not define a DecayedType,
2467 * we cannot obtain the original type even if it had been decayed and
2468 * we set *decayed to false.
2470 static const Type *undecay(const Type *type, bool *decayed)
2472 *decayed = false;
2473 return type;
2476 #endif
2478 /* Figure out the size of the array at position "pos" and all
2479 * subsequent positions from "type" and update the corresponding
2480 * argument of "expr" accordingly.
2482 * The initial type (when pos is zero) may be a pointer type decayed
2483 * from an array type, if this initial type is the type of a function
2484 * argument. This only happens if the original array type has
2485 * a constant size in the outer dimension as otherwise we get
2486 * a VariableArrayType. Try and obtain this original type (if available) and
2487 * take the outer array size into account if it was marked static.
2489 __isl_give pet_expr *PetScan::set_upper_bounds(__isl_take pet_expr *expr,
2490 const Type *type, int pos)
2492 const ArrayType *atype;
2493 pet_expr *size;
2494 bool decayed = false;
2496 if (!expr)
2497 return NULL;
2499 if (pos == 0)
2500 type = undecay(type, &decayed);
2502 if (type->isPointerType()) {
2503 type = type->getPointeeType().getTypePtr();
2504 return set_upper_bounds(expr, type, pos + 1);
2506 if (!type->isArrayType())
2507 return expr;
2509 type = type->getCanonicalTypeInternal().getTypePtr();
2510 atype = cast<ArrayType>(type);
2512 if (decayed && atype->getSizeModifier() != ArrayType::Static) {
2513 type = atype->getElementType().getTypePtr();
2514 return set_upper_bounds(expr, type, pos + 1);
2517 if (type->isConstantArrayType()) {
2518 const ConstantArrayType *ca = cast<ConstantArrayType>(atype);
2519 size = extract_expr(ca->getSize());
2520 expr = pet_expr_set_arg(expr, pos, size);
2521 } else if (type->isVariableArrayType()) {
2522 const VariableArrayType *vla = cast<VariableArrayType>(atype);
2523 size = extract_expr(vla->getSizeExpr());
2524 expr = pet_expr_set_arg(expr, pos, size);
2527 type = atype->getElementType().getTypePtr();
2529 return set_upper_bounds(expr, type, pos + 1);
2532 /* Construct a pet_expr that holds the sizes of an array of the given type.
2533 * The returned expression is a call expression with as arguments
2534 * the sizes in each dimension. If we are unable to derive the size
2535 * in a given dimension, then the corresponding argument is set to infinity.
2536 * In fact, we initialize all arguments to infinity and then update
2537 * them if we are able to figure out the size.
2539 * The result is stored in the type_size cache so that we can reuse
2540 * it if this method gets called on the same type again later on.
2542 __isl_give pet_expr *PetScan::get_array_size(const Type *type)
2544 int depth;
2545 pet_expr *expr, *inf;
2547 if (type_size.find(type) != type_size.end())
2548 return pet_expr_copy(type_size[type]);
2550 depth = array_depth(type);
2551 inf = pet_expr_new_int(isl_val_infty(ctx));
2552 expr = pet_expr_new_call(ctx, "bounds", depth);
2553 for (int i = 0; i < depth; ++i)
2554 expr = pet_expr_set_arg(expr, i, pet_expr_copy(inf));
2555 pet_expr_free(inf);
2557 expr = set_upper_bounds(expr, type, 0);
2558 type_size[type] = pet_expr_copy(expr);
2560 return expr;
2563 /* Does "expr" represent the "integer" infinity?
2565 static int is_infty(__isl_keep pet_expr *expr)
2567 isl_val *v;
2568 int res;
2570 if (pet_expr_get_type(expr) != pet_expr_int)
2571 return 0;
2572 v = pet_expr_int_get_val(expr);
2573 res = isl_val_is_infty(v);
2574 isl_val_free(v);
2576 return res;
2579 /* Figure out the dimensions of an array "array" based on its type
2580 * "type" and update "array" accordingly.
2582 * We first construct a pet_expr that holds the sizes of the array
2583 * in each dimension. The resulting expression may containing
2584 * infinity values for dimension where we are unable to derive
2585 * a size expression.
2587 * The arguments of the size expression that have a value different from
2588 * infinity are then converted to an affine expression
2589 * within the context "pc" and incorporated into the size of "array".
2590 * If we are unable to convert a size expression to an affine expression or
2591 * if the size is not a (symbolic) constant,
2592 * then we leave the corresponding size of "array" untouched.
2594 struct pet_array *PetScan::set_upper_bounds(struct pet_array *array,
2595 const Type *type, __isl_keep pet_context *pc)
2597 int n;
2598 pet_expr *expr;
2600 if (!array)
2601 return NULL;
2603 expr = get_array_size(type);
2605 n = pet_expr_get_n_arg(expr);
2606 for (int i = 0; i < n; ++i) {
2607 pet_expr *arg;
2608 isl_pw_aff *size;
2610 arg = pet_expr_get_arg(expr, i);
2611 if (!is_infty(arg)) {
2612 int dim;
2614 size = pet_expr_extract_affine(arg, pc);
2615 dim = isl_pw_aff_dim(size, isl_dim_in);
2616 if (!size)
2617 array = pet_array_free(array);
2618 else if (isl_pw_aff_involves_nan(size) ||
2619 isl_pw_aff_involves_dims(size, isl_dim_in, 0, dim))
2620 isl_pw_aff_free(size);
2621 else {
2622 size = isl_pw_aff_drop_dims(size,
2623 isl_dim_in, 0, dim);
2624 array = update_size(array, i, size);
2627 pet_expr_free(arg);
2629 pet_expr_free(expr);
2631 return array;
2634 /* Does "decl" have a definition that we can keep track of in a pet_type?
2636 static bool has_printable_definition(RecordDecl *decl)
2638 if (!decl->getDeclName())
2639 return false;
2640 return decl->getLexicalDeclContext() == decl->getDeclContext();
2643 /* Construct and return a pet_array corresponding to the variable
2644 * represented by "id".
2645 * In particular, initialize array->extent to
2647 * { name[i_1,...,i_d] : i_1,...,i_d >= 0 }
2649 * and then call set_upper_bounds to set the upper bounds on the indices
2650 * based on the type of the variable. The upper bounds are converted
2651 * to affine expressions within the context "pc".
2653 * If the base type is that of a record with a top-level definition or
2654 * of a typedef and if "types" is not null, then the RecordDecl or
2655 * TypedefType corresponding to the type
2656 * is added to "types".
2658 * If the base type is that of a record with no top-level definition,
2659 * then we replace it by "<subfield>".
2661 struct pet_array *PetScan::extract_array(__isl_keep isl_id *id,
2662 PetTypes *types, __isl_keep pet_context *pc)
2664 struct pet_array *array;
2665 QualType qt = pet_id_get_array_type(id);
2666 const Type *type = qt.getTypePtr();
2667 int depth = array_depth(type);
2668 QualType base = pet_clang_base_type(qt);
2669 string name;
2670 isl_space *space;
2672 array = isl_calloc_type(ctx, struct pet_array);
2673 if (!array)
2674 return NULL;
2676 space = isl_space_set_alloc(ctx, 0, depth);
2677 space = isl_space_set_tuple_id(space, isl_dim_set, isl_id_copy(id));
2679 array->extent = isl_set_nat_universe(space);
2681 space = isl_space_params_alloc(ctx, 0);
2682 array->context = isl_set_universe(space);
2684 array = set_upper_bounds(array, type, pc);
2685 if (!array)
2686 return NULL;
2688 name = base.getAsString();
2690 if (types) {
2691 if (isa<TypedefType>(base)) {
2692 types->insert(cast<TypedefType>(base)->getDecl());
2693 } else if (base->isRecordType()) {
2694 RecordDecl *decl = pet_clang_record_decl(base);
2695 TypedefNameDecl *typedecl;
2696 typedecl = decl->getTypedefNameForAnonDecl();
2697 if (typedecl)
2698 types->insert(typedecl);
2699 else if (has_printable_definition(decl))
2700 types->insert(decl);
2701 else
2702 name = "<subfield>";
2706 array->element_type = strdup(name.c_str());
2707 array->element_is_record = base->isRecordType();
2708 array->element_size = size_in_bytes(ast_context, base);
2710 return array;
2713 /* Construct and return a pet_array corresponding to the variable "decl".
2715 struct pet_array *PetScan::extract_array(ValueDecl *decl,
2716 PetTypes *types, __isl_keep pet_context *pc)
2718 isl_id *id;
2719 pet_array *array;
2721 id = pet_id_from_decl(ctx, decl);
2722 array = extract_array(id, types, pc);
2723 isl_id_free(id);
2725 return array;
2728 /* Construct and return a pet_array corresponding to the sequence
2729 * of declarations "decls".
2730 * The upper bounds of the array are converted to affine expressions
2731 * within the context "pc".
2732 * If the sequence contains a single declaration, then it corresponds
2733 * to a simple array access. Otherwise, it corresponds to a member access,
2734 * with the declaration for the substructure following that of the containing
2735 * structure in the sequence of declarations.
2736 * We start with the outermost substructure and then combine it with
2737 * information from the inner structures.
2739 * Additionally, keep track of all required types in "types".
2741 struct pet_array *PetScan::extract_array(isl_ctx *ctx,
2742 vector<ValueDecl *> decls, PetTypes *types, __isl_keep pet_context *pc)
2744 struct pet_array *array;
2745 vector<ValueDecl *>::iterator it;
2747 it = decls.begin();
2749 array = extract_array(*it, types, pc);
2751 for (++it; it != decls.end(); ++it) {
2752 struct pet_array *parent;
2753 const char *base_name, *field_name;
2754 char *product_name;
2756 parent = array;
2757 array = extract_array(*it, types, pc);
2758 if (!array)
2759 return pet_array_free(parent);
2761 base_name = isl_set_get_tuple_name(parent->extent);
2762 field_name = isl_set_get_tuple_name(array->extent);
2763 product_name = pet_array_member_access_name(ctx,
2764 base_name, field_name);
2766 array->extent = isl_set_product(isl_set_copy(parent->extent),
2767 array->extent);
2768 if (product_name)
2769 array->extent = isl_set_set_tuple_name(array->extent,
2770 product_name);
2771 array->context = isl_set_intersect(array->context,
2772 isl_set_copy(parent->context));
2774 pet_array_free(parent);
2775 free(product_name);
2777 if (!array->extent || !array->context || !product_name)
2778 return pet_array_free(array);
2781 return array;
2784 static struct pet_scop *add_type(isl_ctx *ctx, struct pet_scop *scop,
2785 RecordDecl *decl, Preprocessor &PP, PetTypes &types,
2786 std::set<TypeDecl *> &types_done);
2787 static struct pet_scop *add_type(isl_ctx *ctx, struct pet_scop *scop,
2788 TypedefNameDecl *decl, Preprocessor &PP, PetTypes &types,
2789 std::set<TypeDecl *> &types_done);
2791 /* For each of the fields of "decl" that is itself a record type
2792 * or a typedef, add a corresponding pet_type to "scop".
2794 static struct pet_scop *add_field_types(isl_ctx *ctx, struct pet_scop *scop,
2795 RecordDecl *decl, Preprocessor &PP, PetTypes &types,
2796 std::set<TypeDecl *> &types_done)
2798 RecordDecl::field_iterator it;
2800 for (it = decl->field_begin(); it != decl->field_end(); ++it) {
2801 QualType type = it->getType();
2803 if (isa<TypedefType>(type)) {
2804 TypedefNameDecl *typedefdecl;
2806 typedefdecl = cast<TypedefType>(type)->getDecl();
2807 scop = add_type(ctx, scop, typedefdecl,
2808 PP, types, types_done);
2809 } else if (type->isRecordType()) {
2810 RecordDecl *record;
2812 record = pet_clang_record_decl(type);
2813 scop = add_type(ctx, scop, record,
2814 PP, types, types_done);
2818 return scop;
2821 /* Add a pet_type corresponding to "decl" to "scop", provided
2822 * it is a member of types.records and it has not been added before
2823 * (i.e., it is not a member of "types_done").
2825 * Since we want the user to be able to print the types
2826 * in the order in which they appear in the scop, we need to
2827 * make sure that types of fields in a structure appear before
2828 * that structure. We therefore call ourselves recursively
2829 * through add_field_types on the types of all record subfields.
2831 static struct pet_scop *add_type(isl_ctx *ctx, struct pet_scop *scop,
2832 RecordDecl *decl, Preprocessor &PP, PetTypes &types,
2833 std::set<TypeDecl *> &types_done)
2835 string s;
2836 llvm::raw_string_ostream S(s);
2838 if (types.records.find(decl) == types.records.end())
2839 return scop;
2840 if (types_done.find(decl) != types_done.end())
2841 return scop;
2843 add_field_types(ctx, scop, decl, PP, types, types_done);
2845 if (strlen(decl->getName().str().c_str()) == 0)
2846 return scop;
2848 decl->print(S, PrintingPolicy(PP.getLangOpts()));
2849 S.str();
2851 scop->types[scop->n_type] = pet_type_alloc(ctx,
2852 decl->getName().str().c_str(), s.c_str());
2853 if (!scop->types[scop->n_type])
2854 return pet_scop_free(scop);
2856 types_done.insert(decl);
2858 scop->n_type++;
2860 return scop;
2863 /* Add a pet_type corresponding to "decl" to "scop", provided
2864 * it is a member of types.typedefs and it has not been added before
2865 * (i.e., it is not a member of "types_done").
2867 * If the underlying type is a structure, then we print the typedef
2868 * ourselves since clang does not print the definition of the structure
2869 * in the typedef. We also make sure in this case that the types of
2870 * the fields in the structure are added first.
2872 static struct pet_scop *add_type(isl_ctx *ctx, struct pet_scop *scop,
2873 TypedefNameDecl *decl, Preprocessor &PP, PetTypes &types,
2874 std::set<TypeDecl *> &types_done)
2876 string s;
2877 llvm::raw_string_ostream S(s);
2878 QualType qt = decl->getUnderlyingType();
2880 if (types.typedefs.find(decl) == types.typedefs.end())
2881 return scop;
2882 if (types_done.find(decl) != types_done.end())
2883 return scop;
2885 if (qt->isRecordType()) {
2886 RecordDecl *rec = pet_clang_record_decl(qt);
2888 add_field_types(ctx, scop, rec, PP, types, types_done);
2889 S << "typedef ";
2890 rec->print(S, PrintingPolicy(PP.getLangOpts()));
2891 S << " ";
2892 S << decl->getName();
2893 } else {
2894 decl->print(S, PrintingPolicy(PP.getLangOpts()));
2896 S.str();
2898 scop->types[scop->n_type] = pet_type_alloc(ctx,
2899 decl->getName().str().c_str(), s.c_str());
2900 if (!scop->types[scop->n_type])
2901 return pet_scop_free(scop);
2903 types_done.insert(decl);
2905 scop->n_type++;
2907 return scop;
2910 /* Construct a list of pet_arrays, one for each array (or scalar)
2911 * accessed inside "scop", add this list to "scop" and return the result.
2912 * The upper bounds of the arrays are converted to affine expressions
2913 * within the context "pc".
2915 * The context of "scop" is updated with the intersection of
2916 * the contexts of all arrays, i.e., constraints on the parameters
2917 * that ensure that the arrays have a valid (non-negative) size.
2919 * If any of the extracted arrays refers to a member access or
2920 * has a typedef'd type as base type,
2921 * then also add the required types to "scop".
2923 struct pet_scop *PetScan::scan_arrays(struct pet_scop *scop,
2924 __isl_keep pet_context *pc)
2926 int i, n;
2927 array_desc_set arrays;
2928 array_desc_set::iterator it;
2929 PetTypes types;
2930 std::set<TypeDecl *> types_done;
2931 std::set<clang::RecordDecl *, less_name>::iterator records_it;
2932 std::set<clang::TypedefNameDecl *, less_name>::iterator typedefs_it;
2933 int n_array;
2934 struct pet_array **scop_arrays;
2936 if (!scop)
2937 return NULL;
2939 pet_scop_collect_arrays(scop, arrays);
2940 if (arrays.size() == 0)
2941 return scop;
2943 n_array = scop->n_array;
2945 scop_arrays = isl_realloc_array(ctx, scop->arrays, struct pet_array *,
2946 n_array + arrays.size());
2947 if (!scop_arrays)
2948 goto error;
2949 scop->arrays = scop_arrays;
2951 for (it = arrays.begin(), i = 0; it != arrays.end(); ++it, ++i) {
2952 struct pet_array *array;
2953 array = extract_array(ctx, *it, &types, pc);
2954 scop->arrays[n_array + i] = array;
2955 if (!scop->arrays[n_array + i])
2956 goto error;
2957 scop->n_array++;
2958 scop->context = isl_set_intersect(scop->context,
2959 isl_set_copy(array->context));
2960 if (!scop->context)
2961 goto error;
2964 n = types.records.size() + types.typedefs.size();
2965 if (n == 0)
2966 return scop;
2968 scop->types = isl_alloc_array(ctx, struct pet_type *, n);
2969 if (!scop->types)
2970 goto error;
2972 for (records_it = types.records.begin();
2973 records_it != types.records.end(); ++records_it)
2974 scop = add_type(ctx, scop, *records_it, PP, types, types_done);
2976 for (typedefs_it = types.typedefs.begin();
2977 typedefs_it != types.typedefs.end(); ++typedefs_it)
2978 scop = add_type(ctx, scop, *typedefs_it, PP, types, types_done);
2980 return scop;
2981 error:
2982 pet_scop_free(scop);
2983 return NULL;
2986 /* Bound all parameters in scop->context to the possible values
2987 * of the corresponding C variable.
2989 static struct pet_scop *add_parameter_bounds(struct pet_scop *scop)
2991 int n;
2993 if (!scop)
2994 return NULL;
2996 n = isl_set_dim(scop->context, isl_dim_param);
2997 for (int i = 0; i < n; ++i) {
2998 isl_id *id;
2999 ValueDecl *decl;
3001 id = isl_set_get_dim_id(scop->context, isl_dim_param, i);
3002 if (pet_nested_in_id(id)) {
3003 isl_id_free(id);
3004 isl_die(isl_set_get_ctx(scop->context),
3005 isl_error_internal,
3006 "unresolved nested parameter", goto error);
3008 decl = pet_id_get_decl(id);
3009 isl_id_free(id);
3011 scop->context = set_parameter_bounds(scop->context, i, decl);
3013 if (!scop->context)
3014 goto error;
3017 return scop;
3018 error:
3019 pet_scop_free(scop);
3020 return NULL;
3023 /* Construct a pet_scop from the given function.
3025 * If the scop was delimited by scop and endscop pragmas, then we override
3026 * the file offsets by those derived from the pragmas.
3028 struct pet_scop *PetScan::scan(FunctionDecl *fd)
3030 pet_scop *scop;
3031 Stmt *stmt;
3033 stmt = fd->getBody();
3035 if (options->autodetect) {
3036 set_current_stmt(stmt);
3037 scop = extract_scop(extract(stmt, true));
3038 } else {
3039 current_line = loc.start_line;
3040 scop = scan(stmt);
3041 scop = pet_scop_update_start_end(scop, loc.start, loc.end);
3043 scop = add_parameter_bounds(scop);
3044 scop = pet_scop_gist(scop, value_bounds);
3046 return scop;
3049 /* Update this->last_line and this->current_line based on the fact
3050 * that we are about to consider "stmt".
3052 void PetScan::set_current_stmt(Stmt *stmt)
3054 SourceLocation loc = stmt->getLocStart();
3055 SourceManager &SM = PP.getSourceManager();
3057 last_line = current_line;
3058 current_line = SM.getExpansionLineNumber(loc);
3061 /* Is the current statement marked by an independent pragma?
3062 * That is, is there an independent pragma on a line between
3063 * the line of the current statement and the line of the previous statement.
3064 * The search is not implemented very efficiently. We currently
3065 * assume that there are only a few independent pragmas, if any.
3067 bool PetScan::is_current_stmt_marked_independent()
3069 for (int i = 0; i < independent.size(); ++i) {
3070 unsigned line = independent[i].line;
3072 if (last_line < line && line < current_line)
3073 return true;
3076 return false;