represent conditions using isl_pw_affs
[pet.git] / scan.cc
bloba03e590e101103856304a1612fcaa805a0c6ea87
1 /*
2 * Copyright 2011 Leiden University. All rights reserved.
3 * Copyright 2012 Ecole Normale Superieure. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above
13 * copyright notice, this list of conditions and the following
14 * disclaimer in the documentation and/or other materials provided
15 * with the distribution.
17 * THIS SOFTWARE IS PROVIDED BY LEIDEN UNIVERSITY ''AS IS'' AND ANY
18 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
20 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL LEIDEN UNIVERSITY OR
21 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
22 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
23 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
24 * OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 * The views and conclusions contained in the software and documentation
30 * are those of the authors and should not be interpreted as
31 * representing official policies, either expressed or implied, of
32 * Leiden University.
33 */
35 #include <set>
36 #include <map>
37 #include <iostream>
38 #include <clang/AST/ASTDiagnostic.h>
39 #include <clang/AST/Expr.h>
40 #include <clang/AST/RecursiveASTVisitor.h>
42 #include <isl/id.h>
43 #include <isl/space.h>
44 #include <isl/aff.h>
45 #include <isl/set.h>
47 #include "scan.h"
48 #include "scop.h"
49 #include "scop_plus.h"
51 #include "config.h"
53 using namespace std;
54 using namespace clang;
56 #ifdef DECLREFEXPR_CREATE_REQUIRES_SOURCELOCATION
57 static DeclRefExpr *create_DeclRefExpr(VarDecl *var)
59 return DeclRefExpr::Create(var->getASTContext(), var->getQualifierLoc(),
60 SourceLocation(), var, var->getInnerLocStart(), var->getType(),
61 VK_LValue);
63 #else
64 static DeclRefExpr *create_DeclRefExpr(VarDecl *var)
66 return DeclRefExpr::Create(var->getASTContext(), var->getQualifierLoc(),
67 var, var->getInnerLocStart(), var->getType(), VK_LValue);
69 #endif
71 /* Check if the element type corresponding to the given array type
72 * has a const qualifier.
74 static bool const_base(QualType qt)
76 const Type *type = qt.getTypePtr();
78 if (type->isPointerType())
79 return const_base(type->getPointeeType());
80 if (type->isArrayType()) {
81 const ArrayType *atype;
82 type = type->getCanonicalTypeInternal().getTypePtr();
83 atype = cast<ArrayType>(type);
84 return const_base(atype->getElementType());
87 return qt.isConstQualified();
90 /* Mark "decl" as having an unknown value in "assigned_value".
92 * If no (known or unknown) value was assigned to "decl" before,
93 * then it may have been treated as a parameter before and may
94 * therefore appear in a value assigned to another variable.
95 * If so, this assignment needs to be turned into an unknown value too.
97 static void clear_assignment(map<ValueDecl *, isl_pw_aff *> &assigned_value,
98 ValueDecl *decl)
100 map<ValueDecl *, isl_pw_aff *>::iterator it;
102 it = assigned_value.find(decl);
104 assigned_value[decl] = NULL;
106 if (it == assigned_value.end())
107 return;
109 for (it = assigned_value.begin(); it != assigned_value.end(); ++it) {
110 isl_pw_aff *pa = it->second;
111 int nparam = isl_pw_aff_dim(pa, isl_dim_param);
113 for (int i = 0; i < nparam; ++i) {
114 isl_id *id;
116 if (!isl_pw_aff_has_dim_id(pa, isl_dim_param, i))
117 continue;
118 id = isl_pw_aff_get_dim_id(pa, isl_dim_param, i);
119 if (isl_id_get_user(id) == decl)
120 it->second = NULL;
121 isl_id_free(id);
126 /* Look for any assignments to scalar variables in part of the parse
127 * tree and set assigned_value to NULL for each of them.
128 * Also reset assigned_value if the address of a scalar variable
129 * is being taken. As an exception, if the address is passed to a function
130 * that is declared to receive a const pointer, then assigned_value is
131 * not reset.
133 * This ensures that we won't use any previously stored value
134 * in the current subtree and its parents.
136 struct clear_assignments : RecursiveASTVisitor<clear_assignments> {
137 map<ValueDecl *, isl_pw_aff *> &assigned_value;
138 set<UnaryOperator *> skip;
140 clear_assignments(map<ValueDecl *, isl_pw_aff *> &assigned_value) :
141 assigned_value(assigned_value) {}
143 /* Check for "address of" operators whose value is passed
144 * to a const pointer argument and add them to "skip", so that
145 * we can skip them in VisitUnaryOperator.
147 bool VisitCallExpr(CallExpr *expr) {
148 FunctionDecl *fd;
149 fd = expr->getDirectCallee();
150 if (!fd)
151 return true;
152 for (int i = 0; i < expr->getNumArgs(); ++i) {
153 Expr *arg = expr->getArg(i);
154 UnaryOperator *op;
155 if (arg->getStmtClass() == Stmt::ImplicitCastExprClass) {
156 ImplicitCastExpr *ice;
157 ice = cast<ImplicitCastExpr>(arg);
158 arg = ice->getSubExpr();
160 if (arg->getStmtClass() != Stmt::UnaryOperatorClass)
161 continue;
162 op = cast<UnaryOperator>(arg);
163 if (op->getOpcode() != UO_AddrOf)
164 continue;
165 if (const_base(fd->getParamDecl(i)->getType()))
166 skip.insert(op);
168 return true;
171 bool VisitUnaryOperator(UnaryOperator *expr) {
172 Expr *arg;
173 DeclRefExpr *ref;
174 ValueDecl *decl;
176 if (expr->getOpcode() != UO_AddrOf)
177 return true;
178 if (skip.find(expr) != skip.end())
179 return true;
181 arg = expr->getSubExpr();
182 if (arg->getStmtClass() != Stmt::DeclRefExprClass)
183 return true;
184 ref = cast<DeclRefExpr>(arg);
185 decl = ref->getDecl();
186 clear_assignment(assigned_value, decl);
187 return true;
190 bool VisitBinaryOperator(BinaryOperator *expr) {
191 Expr *lhs;
192 DeclRefExpr *ref;
193 ValueDecl *decl;
195 if (!expr->isAssignmentOp())
196 return true;
197 lhs = expr->getLHS();
198 if (lhs->getStmtClass() != Stmt::DeclRefExprClass)
199 return true;
200 ref = cast<DeclRefExpr>(lhs);
201 decl = ref->getDecl();
202 clear_assignment(assigned_value, decl);
203 return true;
207 /* Keep a copy of the currently assigned values.
209 * Any variable that is assigned a value inside the current scope
210 * is removed again when we leave the scope (either because it wasn't
211 * stored in the cache or because it has a different value in the cache).
213 struct assigned_value_cache {
214 map<ValueDecl *, isl_pw_aff *> &assigned_value;
215 map<ValueDecl *, isl_pw_aff *> cache;
217 assigned_value_cache(map<ValueDecl *, isl_pw_aff *> &assigned_value) :
218 assigned_value(assigned_value), cache(assigned_value) {}
219 ~assigned_value_cache() {
220 map<ValueDecl *, isl_pw_aff *>::iterator it = cache.begin();
221 for (it = assigned_value.begin(); it != assigned_value.end();
222 ++it) {
223 if (!it->second ||
224 (cache.find(it->first) != cache.end() &&
225 cache[it->first] != it->second))
226 cache[it->first] = NULL;
228 assigned_value = cache;
232 /* Insert an expression into the collection of expressions,
233 * provided it is not already in there.
234 * The isl_pw_affs are freed in the destructor.
236 void PetScan::insert_expression(__isl_take isl_pw_aff *expr)
238 std::set<isl_pw_aff *>::iterator it;
240 if (expressions.find(expr) == expressions.end())
241 expressions.insert(expr);
242 else
243 isl_pw_aff_free(expr);
246 PetScan::~PetScan()
248 std::set<isl_pw_aff *>::iterator it;
250 for (it = expressions.begin(); it != expressions.end(); ++it)
251 isl_pw_aff_free(*it);
253 isl_union_map_free(value_bounds);
256 /* Called if we found something we (currently) cannot handle.
257 * We'll provide more informative warnings later.
259 * We only actually complain if autodetect is false.
261 void PetScan::unsupported(Stmt *stmt, const char *msg)
263 if (autodetect)
264 return;
266 SourceLocation loc = stmt->getLocStart();
267 DiagnosticsEngine &diag = PP.getDiagnostics();
268 unsigned id = diag.getCustomDiagID(DiagnosticsEngine::Warning,
269 msg ? msg : "unsupported");
270 DiagnosticBuilder B = diag.Report(loc, id) << stmt->getSourceRange();
273 /* Extract an integer from "expr" and store it in "v".
275 int PetScan::extract_int(IntegerLiteral *expr, isl_int *v)
277 const Type *type = expr->getType().getTypePtr();
278 int is_signed = type->hasSignedIntegerRepresentation();
280 if (is_signed) {
281 int64_t i = expr->getValue().getSExtValue();
282 isl_int_set_si(*v, i);
283 } else {
284 uint64_t i = expr->getValue().getZExtValue();
285 isl_int_set_ui(*v, i);
288 return 0;
291 /* Extract an integer from "expr" and store it in "v".
292 * Return -1 if "expr" does not (obviously) represent an integer.
294 int PetScan::extract_int(clang::ParenExpr *expr, isl_int *v)
296 return extract_int(expr->getSubExpr(), v);
299 /* Extract an integer from "expr" and store it in "v".
300 * Return -1 if "expr" does not (obviously) represent an integer.
302 int PetScan::extract_int(clang::Expr *expr, isl_int *v)
304 if (expr->getStmtClass() == Stmt::IntegerLiteralClass)
305 return extract_int(cast<IntegerLiteral>(expr), v);
306 if (expr->getStmtClass() == Stmt::ParenExprClass)
307 return extract_int(cast<ParenExpr>(expr), v);
309 unsupported(expr);
310 return -1;
313 /* Extract an affine expression from the IntegerLiteral "expr".
315 __isl_give isl_pw_aff *PetScan::extract_affine(IntegerLiteral *expr)
317 isl_space *dim = isl_space_params_alloc(ctx, 0);
318 isl_local_space *ls = isl_local_space_from_space(isl_space_copy(dim));
319 isl_aff *aff = isl_aff_zero_on_domain(ls);
320 isl_set *dom = isl_set_universe(dim);
321 isl_int v;
323 isl_int_init(v);
324 extract_int(expr, &v);
325 aff = isl_aff_add_constant(aff, v);
326 isl_int_clear(v);
328 return isl_pw_aff_alloc(dom, aff);
331 /* Extract an affine expression from the APInt "val".
333 __isl_give isl_pw_aff *PetScan::extract_affine(const llvm::APInt &val)
335 isl_space *dim = isl_space_params_alloc(ctx, 0);
336 isl_local_space *ls = isl_local_space_from_space(isl_space_copy(dim));
337 isl_aff *aff = isl_aff_zero_on_domain(ls);
338 isl_set *dom = isl_set_universe(dim);
339 isl_int v;
341 isl_int_init(v);
342 isl_int_set_ui(v, val.getZExtValue());
343 aff = isl_aff_add_constant(aff, v);
344 isl_int_clear(v);
346 return isl_pw_aff_alloc(dom, aff);
349 __isl_give isl_pw_aff *PetScan::extract_affine(ImplicitCastExpr *expr)
351 return extract_affine(expr->getSubExpr());
354 static unsigned get_type_size(ValueDecl *decl)
356 return decl->getASTContext().getIntWidth(decl->getType());
359 /* Bound parameter "pos" of "set" to the possible values of "decl".
361 static __isl_give isl_set *set_parameter_bounds(__isl_take isl_set *set,
362 unsigned pos, ValueDecl *decl)
364 unsigned width;
365 isl_int v;
367 isl_int_init(v);
369 width = get_type_size(decl);
370 if (decl->getType()->isUnsignedIntegerType()) {
371 set = isl_set_lower_bound_si(set, isl_dim_param, pos, 0);
372 isl_int_set_si(v, 1);
373 isl_int_mul_2exp(v, v, width);
374 isl_int_sub_ui(v, v, 1);
375 set = isl_set_upper_bound(set, isl_dim_param, pos, v);
376 } else {
377 isl_int_set_si(v, 1);
378 isl_int_mul_2exp(v, v, width - 1);
379 isl_int_sub_ui(v, v, 1);
380 set = isl_set_upper_bound(set, isl_dim_param, pos, v);
381 isl_int_neg(v, v);
382 isl_int_sub_ui(v, v, 1);
383 set = isl_set_lower_bound(set, isl_dim_param, pos, v);
386 isl_int_clear(v);
388 return set;
391 /* Extract an affine expression from the DeclRefExpr "expr".
393 * If the variable has been assigned a value, then we check whether
394 * we know what (affine) value was assigned.
395 * If so, we return this value. Otherwise we convert "expr"
396 * to an extra parameter (provided nesting_enabled is set).
398 * Otherwise, we simply return an expression that is equal
399 * to a parameter corresponding to the referenced variable.
401 __isl_give isl_pw_aff *PetScan::extract_affine(DeclRefExpr *expr)
403 ValueDecl *decl = expr->getDecl();
404 const Type *type = decl->getType().getTypePtr();
405 isl_id *id;
406 isl_space *dim;
407 isl_aff *aff;
408 isl_set *dom;
410 if (!type->isIntegerType()) {
411 unsupported(expr);
412 return NULL;
415 if (assigned_value.find(decl) != assigned_value.end()) {
416 if (assigned_value[decl])
417 return isl_pw_aff_copy(assigned_value[decl]);
418 else
419 return nested_access(expr);
422 id = isl_id_alloc(ctx, decl->getName().str().c_str(), decl);
423 dim = isl_space_params_alloc(ctx, 1);
425 dim = isl_space_set_dim_id(dim, isl_dim_param, 0, id);
427 dom = isl_set_universe(isl_space_copy(dim));
428 aff = isl_aff_zero_on_domain(isl_local_space_from_space(dim));
429 aff = isl_aff_add_coefficient_si(aff, isl_dim_param, 0, 1);
431 return isl_pw_aff_alloc(dom, aff);
434 /* Extract an affine expression from an integer division operation.
435 * In particular, if "expr" is lhs/rhs, then return
437 * lhs >= 0 ? floor(lhs/rhs) : ceil(lhs/rhs)
439 * The second argument (rhs) is required to be a (positive) integer constant.
441 __isl_give isl_pw_aff *PetScan::extract_affine_div(BinaryOperator *expr)
443 Expr *rhs_expr;
444 isl_pw_aff *lhs, *lhs_f, *lhs_c;
445 isl_pw_aff *res;
446 isl_int v;
447 isl_set *cond;
449 rhs_expr = expr->getRHS();
450 isl_int_init(v);
451 if (extract_int(rhs_expr, &v) < 0) {
452 isl_int_clear(v);
453 return NULL;
456 lhs = extract_affine(expr->getLHS());
457 cond = isl_pw_aff_nonneg_set(isl_pw_aff_copy(lhs));
459 lhs = isl_pw_aff_scale_down(lhs, v);
460 isl_int_clear(v);
462 lhs_f = isl_pw_aff_floor(isl_pw_aff_copy(lhs));
463 lhs_c = isl_pw_aff_ceil(lhs);
464 res = isl_pw_aff_cond(isl_set_indicator_function(cond), lhs_f, lhs_c);
466 return res;
469 /* Extract an affine expression from a modulo operation.
470 * In particular, if "expr" is lhs/rhs, then return
472 * lhs - rhs * (lhs >= 0 ? floor(lhs/rhs) : ceil(lhs/rhs))
474 * The second argument (rhs) is required to be a (positive) integer constant.
476 __isl_give isl_pw_aff *PetScan::extract_affine_mod(BinaryOperator *expr)
478 Expr *rhs_expr;
479 isl_pw_aff *lhs, *lhs_f, *lhs_c;
480 isl_pw_aff *res;
481 isl_int v;
482 isl_set *cond;
484 rhs_expr = expr->getRHS();
485 if (rhs_expr->getStmtClass() != Stmt::IntegerLiteralClass) {
486 unsupported(expr);
487 return NULL;
490 lhs = extract_affine(expr->getLHS());
491 cond = isl_pw_aff_nonneg_set(isl_pw_aff_copy(lhs));
493 isl_int_init(v);
494 extract_int(cast<IntegerLiteral>(rhs_expr), &v);
495 res = isl_pw_aff_scale_down(isl_pw_aff_copy(lhs), v);
497 lhs_f = isl_pw_aff_floor(isl_pw_aff_copy(res));
498 lhs_c = isl_pw_aff_ceil(res);
499 res = isl_pw_aff_cond(isl_set_indicator_function(cond), lhs_f, lhs_c);
501 res = isl_pw_aff_scale(res, v);
502 isl_int_clear(v);
504 res = isl_pw_aff_sub(lhs, res);
506 return res;
509 /* Extract an affine expression from a multiplication operation.
510 * This is only allowed if at least one of the two arguments
511 * is a (piecewise) constant.
513 __isl_give isl_pw_aff *PetScan::extract_affine_mul(BinaryOperator *expr)
515 isl_pw_aff *lhs;
516 isl_pw_aff *rhs;
518 lhs = extract_affine(expr->getLHS());
519 rhs = extract_affine(expr->getRHS());
521 if (!isl_pw_aff_is_cst(lhs) && !isl_pw_aff_is_cst(rhs)) {
522 isl_pw_aff_free(lhs);
523 isl_pw_aff_free(rhs);
524 unsupported(expr);
525 return NULL;
528 return isl_pw_aff_mul(lhs, rhs);
531 /* Extract an affine expression from an addition or subtraction operation.
533 __isl_give isl_pw_aff *PetScan::extract_affine_add(BinaryOperator *expr)
535 isl_pw_aff *lhs;
536 isl_pw_aff *rhs;
538 lhs = extract_affine(expr->getLHS());
539 rhs = extract_affine(expr->getRHS());
541 switch (expr->getOpcode()) {
542 case BO_Add:
543 return isl_pw_aff_add(lhs, rhs);
544 case BO_Sub:
545 return isl_pw_aff_sub(lhs, rhs);
546 default:
547 isl_pw_aff_free(lhs);
548 isl_pw_aff_free(rhs);
549 return NULL;
554 /* Compute
556 * pwaff mod 2^width
558 static __isl_give isl_pw_aff *wrap(__isl_take isl_pw_aff *pwaff,
559 unsigned width)
561 isl_int mod;
563 isl_int_init(mod);
564 isl_int_set_si(mod, 1);
565 isl_int_mul_2exp(mod, mod, width);
567 pwaff = isl_pw_aff_mod(pwaff, mod);
569 isl_int_clear(mod);
571 return pwaff;
574 /* Return the piecewise affine expression "set ? 1 : 0" defined on "dom".
576 static __isl_give isl_pw_aff *indicator_function(__isl_take isl_set *set,
577 __isl_take isl_set *dom)
579 isl_pw_aff *pa;
580 pa = isl_set_indicator_function(set);
581 pa = isl_pw_aff_intersect_domain(pa, dom);
582 return pa;
585 /* Extract an affine expression from some binary operations.
586 * If the result of the expression is unsigned, then we wrap it
587 * based on the size of the type.
589 __isl_give isl_pw_aff *PetScan::extract_affine(BinaryOperator *expr)
591 isl_pw_aff *res;
593 switch (expr->getOpcode()) {
594 case BO_Add:
595 case BO_Sub:
596 res = extract_affine_add(expr);
597 break;
598 case BO_Div:
599 res = extract_affine_div(expr);
600 break;
601 case BO_Rem:
602 res = extract_affine_mod(expr);
603 break;
604 case BO_Mul:
605 res = extract_affine_mul(expr);
606 break;
607 case BO_LT:
608 case BO_LE:
609 case BO_GT:
610 case BO_GE:
611 case BO_EQ:
612 case BO_NE:
613 case BO_LAnd:
614 case BO_LOr:
615 res = extract_condition(expr);
616 break;
617 default:
618 unsupported(expr);
619 return NULL;
622 if (expr->getType()->isUnsignedIntegerType())
623 res = wrap(res, ast_context.getIntWidth(expr->getType()));
625 return res;
628 /* Extract an affine expression from a negation operation.
630 __isl_give isl_pw_aff *PetScan::extract_affine(UnaryOperator *expr)
632 if (expr->getOpcode() == UO_Minus)
633 return isl_pw_aff_neg(extract_affine(expr->getSubExpr()));
634 if (expr->getOpcode() == UO_LNot)
635 return extract_condition(expr);
637 unsupported(expr);
638 return NULL;
641 __isl_give isl_pw_aff *PetScan::extract_affine(ParenExpr *expr)
643 return extract_affine(expr->getSubExpr());
646 /* Extract an affine expression from some special function calls.
647 * In particular, we handle "min", "max", "ceild" and "floord".
648 * In case of the latter two, the second argument needs to be
649 * a (positive) integer constant.
651 __isl_give isl_pw_aff *PetScan::extract_affine(CallExpr *expr)
653 FunctionDecl *fd;
654 string name;
655 isl_pw_aff *aff1, *aff2;
657 fd = expr->getDirectCallee();
658 if (!fd) {
659 unsupported(expr);
660 return NULL;
663 name = fd->getDeclName().getAsString();
664 if (!(expr->getNumArgs() == 2 && name == "min") &&
665 !(expr->getNumArgs() == 2 && name == "max") &&
666 !(expr->getNumArgs() == 2 && name == "floord") &&
667 !(expr->getNumArgs() == 2 && name == "ceild")) {
668 unsupported(expr);
669 return NULL;
672 if (name == "min" || name == "max") {
673 aff1 = extract_affine(expr->getArg(0));
674 aff2 = extract_affine(expr->getArg(1));
676 if (name == "min")
677 aff1 = isl_pw_aff_min(aff1, aff2);
678 else
679 aff1 = isl_pw_aff_max(aff1, aff2);
680 } else if (name == "floord" || name == "ceild") {
681 isl_int v;
682 Expr *arg2 = expr->getArg(1);
684 if (arg2->getStmtClass() != Stmt::IntegerLiteralClass) {
685 unsupported(expr);
686 return NULL;
688 aff1 = extract_affine(expr->getArg(0));
689 isl_int_init(v);
690 extract_int(cast<IntegerLiteral>(arg2), &v);
691 aff1 = isl_pw_aff_scale_down(aff1, v);
692 isl_int_clear(v);
693 if (name == "floord")
694 aff1 = isl_pw_aff_floor(aff1);
695 else
696 aff1 = isl_pw_aff_ceil(aff1);
697 } else {
698 unsupported(expr);
699 return NULL;
702 return aff1;
706 /* This method is called when we come across an access that is
707 * nested in what is supposed to be an affine expression.
708 * If nesting is allowed, we return a new parameter that corresponds
709 * to this nested access. Otherwise, we simply complain.
711 * The new parameter is resolved in resolve_nested.
713 isl_pw_aff *PetScan::nested_access(Expr *expr)
715 isl_id *id;
716 isl_space *dim;
717 isl_aff *aff;
718 isl_set *dom;
720 if (!nesting_enabled) {
721 unsupported(expr);
722 return NULL;
725 id = isl_id_alloc(ctx, NULL, expr);
726 dim = isl_space_params_alloc(ctx, 1);
728 dim = isl_space_set_dim_id(dim, isl_dim_param, 0, id);
730 dom = isl_set_universe(isl_space_copy(dim));
731 aff = isl_aff_zero_on_domain(isl_local_space_from_space(dim));
732 aff = isl_aff_add_coefficient_si(aff, isl_dim_param, 0, 1);
734 return isl_pw_aff_alloc(dom, aff);
737 /* Affine expressions are not supposed to contain array accesses,
738 * but if nesting is allowed, we return a parameter corresponding
739 * to the array access.
741 __isl_give isl_pw_aff *PetScan::extract_affine(ArraySubscriptExpr *expr)
743 return nested_access(expr);
746 /* Extract an affine expression from a conditional operation.
748 __isl_give isl_pw_aff *PetScan::extract_affine(ConditionalOperator *expr)
750 isl_pw_aff *cond, *lhs, *rhs, *res;
752 cond = extract_condition(expr->getCond());
753 lhs = extract_affine(expr->getTrueExpr());
754 rhs = extract_affine(expr->getFalseExpr());
756 return isl_pw_aff_cond(cond, lhs, rhs);
759 /* Extract an affine expression, if possible, from "expr".
760 * Otherwise return NULL.
762 __isl_give isl_pw_aff *PetScan::extract_affine(Expr *expr)
764 switch (expr->getStmtClass()) {
765 case Stmt::ImplicitCastExprClass:
766 return extract_affine(cast<ImplicitCastExpr>(expr));
767 case Stmt::IntegerLiteralClass:
768 return extract_affine(cast<IntegerLiteral>(expr));
769 case Stmt::DeclRefExprClass:
770 return extract_affine(cast<DeclRefExpr>(expr));
771 case Stmt::BinaryOperatorClass:
772 return extract_affine(cast<BinaryOperator>(expr));
773 case Stmt::UnaryOperatorClass:
774 return extract_affine(cast<UnaryOperator>(expr));
775 case Stmt::ParenExprClass:
776 return extract_affine(cast<ParenExpr>(expr));
777 case Stmt::CallExprClass:
778 return extract_affine(cast<CallExpr>(expr));
779 case Stmt::ArraySubscriptExprClass:
780 return extract_affine(cast<ArraySubscriptExpr>(expr));
781 case Stmt::ConditionalOperatorClass:
782 return extract_affine(cast<ConditionalOperator>(expr));
783 default:
784 unsupported(expr);
786 return NULL;
789 __isl_give isl_map *PetScan::extract_access(ImplicitCastExpr *expr)
791 return extract_access(expr->getSubExpr());
794 /* Return the depth of an array of the given type.
796 static int array_depth(const Type *type)
798 if (type->isPointerType())
799 return 1 + array_depth(type->getPointeeType().getTypePtr());
800 if (type->isArrayType()) {
801 const ArrayType *atype;
802 type = type->getCanonicalTypeInternal().getTypePtr();
803 atype = cast<ArrayType>(type);
804 return 1 + array_depth(atype->getElementType().getTypePtr());
806 return 0;
809 /* Return the element type of the given array type.
811 static QualType base_type(QualType qt)
813 const Type *type = qt.getTypePtr();
815 if (type->isPointerType())
816 return base_type(type->getPointeeType());
817 if (type->isArrayType()) {
818 const ArrayType *atype;
819 type = type->getCanonicalTypeInternal().getTypePtr();
820 atype = cast<ArrayType>(type);
821 return base_type(atype->getElementType());
823 return qt;
826 /* Extract an access relation from a reference to a variable.
827 * If the variable has name "A" and its type corresponds to an
828 * array of depth d, then the returned access relation is of the
829 * form
831 * { [] -> A[i_1,...,i_d] }
833 __isl_give isl_map *PetScan::extract_access(DeclRefExpr *expr)
835 ValueDecl *decl = expr->getDecl();
836 int depth = array_depth(decl->getType().getTypePtr());
837 isl_id *id = isl_id_alloc(ctx, decl->getName().str().c_str(), decl);
838 isl_space *dim = isl_space_alloc(ctx, 0, 0, depth);
839 isl_map *access_rel;
841 dim = isl_space_set_tuple_id(dim, isl_dim_out, id);
843 access_rel = isl_map_universe(dim);
845 return access_rel;
848 /* Extract an access relation from an integer contant.
849 * If the value of the constant is "v", then the returned access relation
850 * is
852 * { [] -> [v] }
854 __isl_give isl_map *PetScan::extract_access(IntegerLiteral *expr)
856 return isl_map_from_range(isl_set_from_pw_aff(extract_affine(expr)));
859 /* Try and extract an access relation from the given Expr.
860 * Return NULL if it doesn't work out.
862 __isl_give isl_map *PetScan::extract_access(Expr *expr)
864 switch (expr->getStmtClass()) {
865 case Stmt::ImplicitCastExprClass:
866 return extract_access(cast<ImplicitCastExpr>(expr));
867 case Stmt::DeclRefExprClass:
868 return extract_access(cast<DeclRefExpr>(expr));
869 case Stmt::ArraySubscriptExprClass:
870 return extract_access(cast<ArraySubscriptExpr>(expr));
871 default:
872 unsupported(expr);
874 return NULL;
877 /* Assign the affine expression "index" to the output dimension "pos" of "map"
878 * and return the result.
880 __isl_give isl_map *set_index(__isl_take isl_map *map, int pos,
881 __isl_take isl_pw_aff *index)
883 isl_map *index_map;
884 int len = isl_map_dim(map, isl_dim_out);
885 isl_id *id;
887 index_map = isl_map_from_range(isl_set_from_pw_aff(index));
888 index_map = isl_map_insert_dims(index_map, isl_dim_out, 0, pos);
889 index_map = isl_map_add_dims(index_map, isl_dim_out, len - pos - 1);
890 id = isl_map_get_tuple_id(map, isl_dim_out);
891 index_map = isl_map_set_tuple_id(index_map, isl_dim_out, id);
893 map = isl_map_intersect(map, index_map);
895 return map;
898 /* Extract an access relation from the given array subscript expression.
899 * If nesting is allowed in general, then we turn it on while
900 * examining the index expression.
902 * We first extract an access relation from the base.
903 * This will result in an access relation with a range that corresponds
904 * to the array being accessed and with earlier indices filled in already.
905 * We then extract the current index and fill that in as well.
906 * The position of the current index is based on the type of base.
907 * If base is the actual array variable, then the depth of this type
908 * will be the same as the depth of the array and we will fill in
909 * the first array index.
910 * Otherwise, the depth of the base type will be smaller and we will fill
911 * in a later index.
913 __isl_give isl_map *PetScan::extract_access(ArraySubscriptExpr *expr)
915 Expr *base = expr->getBase();
916 Expr *idx = expr->getIdx();
917 isl_pw_aff *index;
918 isl_map *base_access;
919 isl_map *access;
920 int depth = array_depth(base->getType().getTypePtr());
921 int pos;
922 bool save_nesting = nesting_enabled;
924 nesting_enabled = allow_nested;
926 base_access = extract_access(base);
927 index = extract_affine(idx);
929 nesting_enabled = save_nesting;
931 pos = isl_map_dim(base_access, isl_dim_out) - depth;
932 access = set_index(base_access, pos, index);
934 return access;
937 /* Check if "expr" calls function "minmax" with two arguments and if so
938 * make lhs and rhs refer to these two arguments.
940 static bool is_minmax(Expr *expr, const char *minmax, Expr *&lhs, Expr *&rhs)
942 CallExpr *call;
943 FunctionDecl *fd;
944 string name;
946 if (expr->getStmtClass() != Stmt::CallExprClass)
947 return false;
949 call = cast<CallExpr>(expr);
950 fd = call->getDirectCallee();
951 if (!fd)
952 return false;
954 if (call->getNumArgs() != 2)
955 return false;
957 name = fd->getDeclName().getAsString();
958 if (name != minmax)
959 return false;
961 lhs = call->getArg(0);
962 rhs = call->getArg(1);
964 return true;
967 /* Check if "expr" is of the form min(lhs, rhs) and if so make
968 * lhs and rhs refer to the two arguments.
970 static bool is_min(Expr *expr, Expr *&lhs, Expr *&rhs)
972 return is_minmax(expr, "min", lhs, rhs);
975 /* Check if "expr" is of the form max(lhs, rhs) and if so make
976 * lhs and rhs refer to the two arguments.
978 static bool is_max(Expr *expr, Expr *&lhs, Expr *&rhs)
980 return is_minmax(expr, "max", lhs, rhs);
983 /* Return "lhs && rhs", defined on the shared definition domain.
985 static __isl_give isl_pw_aff *pw_aff_and(__isl_take isl_pw_aff *lhs,
986 __isl_take isl_pw_aff *rhs)
988 isl_set *cond;
989 isl_set *dom;
991 dom = isl_set_intersect(isl_pw_aff_domain(isl_pw_aff_copy(lhs)),
992 isl_pw_aff_domain(isl_pw_aff_copy(rhs)));
993 cond = isl_set_intersect(isl_pw_aff_non_zero_set(lhs),
994 isl_pw_aff_non_zero_set(rhs));
995 return indicator_function(cond, dom);
998 /* Return "lhs && rhs", with shortcut semantics.
999 * That is, if lhs is false, then the result is defined even if rhs is not.
1000 * In practice, we compute lhs ? rhs : lhs.
1002 static __isl_give isl_pw_aff *pw_aff_and_then(__isl_take isl_pw_aff *lhs,
1003 __isl_take isl_pw_aff *rhs)
1005 return isl_pw_aff_cond(isl_pw_aff_copy(lhs), rhs, lhs);
1008 /* Return "lhs || rhs", with shortcut semantics.
1009 * That is, if lhs is true, then the result is defined even if rhs is not.
1010 * In practice, we compute lhs ? lhs : rhs.
1012 static __isl_give isl_pw_aff *pw_aff_or_else(__isl_take isl_pw_aff *lhs,
1013 __isl_take isl_pw_aff *rhs)
1015 return isl_pw_aff_cond(isl_pw_aff_copy(lhs), lhs, rhs);
1018 /* Extract an affine expressions representing the comparison "LHS op RHS"
1019 * "comp" is the original statement that "LHS op RHS" is derived from
1020 * and is used for diagnostics.
1022 * If the comparison is of the form
1024 * a <= min(b,c)
1026 * then the expression is constructed as the conjunction of
1027 * the comparisons
1029 * a <= b and a <= c
1031 * A similar optimization is performed for max(a,b) <= c.
1032 * We do this because that will lead to simpler representations
1033 * of the expression.
1034 * If isl is ever enhanced to explicitly deal with min and max expressions,
1035 * this optimization can be removed.
1037 __isl_give isl_pw_aff *PetScan::extract_comparison(BinaryOperatorKind op,
1038 Expr *LHS, Expr *RHS, Stmt *comp)
1040 isl_pw_aff *lhs;
1041 isl_pw_aff *rhs;
1042 isl_pw_aff *res;
1043 isl_set *cond;
1044 isl_set *dom;
1046 if (op == BO_GT)
1047 return extract_comparison(BO_LT, RHS, LHS, comp);
1048 if (op == BO_GE)
1049 return extract_comparison(BO_LE, RHS, LHS, comp);
1051 if (op == BO_LT || op == BO_LE) {
1052 Expr *expr1, *expr2;
1053 if (is_min(RHS, expr1, expr2)) {
1054 lhs = extract_comparison(op, LHS, expr1, comp);
1055 rhs = extract_comparison(op, LHS, expr2, comp);
1056 return pw_aff_and(lhs, rhs);
1058 if (is_max(LHS, expr1, expr2)) {
1059 lhs = extract_comparison(op, expr1, RHS, comp);
1060 rhs = extract_comparison(op, expr2, RHS, comp);
1061 return pw_aff_and(lhs, rhs);
1065 lhs = extract_affine(LHS);
1066 rhs = extract_affine(RHS);
1068 dom = isl_pw_aff_domain(isl_pw_aff_copy(lhs));
1069 dom = isl_set_intersect(dom, isl_pw_aff_domain(isl_pw_aff_copy(rhs)));
1071 switch (op) {
1072 case BO_LT:
1073 cond = isl_pw_aff_lt_set(lhs, rhs);
1074 break;
1075 case BO_LE:
1076 cond = isl_pw_aff_le_set(lhs, rhs);
1077 break;
1078 case BO_EQ:
1079 cond = isl_pw_aff_eq_set(lhs, rhs);
1080 break;
1081 case BO_NE:
1082 cond = isl_pw_aff_ne_set(lhs, rhs);
1083 break;
1084 default:
1085 isl_pw_aff_free(lhs);
1086 isl_pw_aff_free(rhs);
1087 isl_set_free(dom);
1088 unsupported(comp);
1089 return NULL;
1092 cond = isl_set_coalesce(cond);
1093 res = indicator_function(cond, dom);
1095 return res;
1098 __isl_give isl_pw_aff *PetScan::extract_comparison(BinaryOperator *comp)
1100 return extract_comparison(comp->getOpcode(), comp->getLHS(),
1101 comp->getRHS(), comp);
1104 /* Extract an affine expression representing the negation (logical not)
1105 * of a subexpression.
1107 __isl_give isl_pw_aff *PetScan::extract_boolean(UnaryOperator *op)
1109 isl_set *set_cond, *dom;
1110 isl_pw_aff *cond, *res;
1112 cond = extract_condition(op->getSubExpr());
1114 dom = isl_pw_aff_domain(isl_pw_aff_copy(cond));
1116 set_cond = isl_pw_aff_zero_set(cond);
1118 res = indicator_function(set_cond, dom);
1120 return res;
1123 /* Extract an affine expression representing the disjunction (logical or)
1124 * or conjunction (logical and) of two subexpressions.
1126 __isl_give isl_pw_aff *PetScan::extract_boolean(BinaryOperator *comp)
1128 isl_pw_aff *lhs, *rhs;
1130 lhs = extract_condition(comp->getLHS());
1131 rhs = extract_condition(comp->getRHS());
1133 switch (comp->getOpcode()) {
1134 case BO_LAnd:
1135 return pw_aff_and_then(lhs, rhs);
1136 case BO_LOr:
1137 return pw_aff_or_else(lhs, rhs);
1138 default:
1139 isl_pw_aff_free(lhs);
1140 isl_pw_aff_free(rhs);
1143 unsupported(comp);
1144 return NULL;
1147 __isl_give isl_pw_aff *PetScan::extract_condition(UnaryOperator *expr)
1149 switch (expr->getOpcode()) {
1150 case UO_LNot:
1151 return extract_boolean(expr);
1152 default:
1153 unsupported(expr);
1154 return NULL;
1158 /* Extract the affine expression "expr != 0 ? 1 : 0".
1160 __isl_give isl_pw_aff *PetScan::extract_implicit_condition(Expr *expr)
1162 isl_pw_aff *res;
1163 isl_set *set, *dom;
1165 res = extract_affine(expr);
1167 dom = isl_pw_aff_domain(isl_pw_aff_copy(res));
1168 set = isl_pw_aff_non_zero_set(res);
1170 res = indicator_function(set, dom);
1172 return res;
1175 /* Extract an affine expression from a boolean expression.
1176 * In particular, return the expression "expr ? 1 : 0".
1178 * If the expression doesn't look like a condition, we assume it
1179 * is an affine expression and return the condition "expr != 0 ? 1 : 0".
1181 __isl_give isl_pw_aff *PetScan::extract_condition(Expr *expr)
1183 BinaryOperator *comp;
1185 if (!expr) {
1186 isl_set *u = isl_set_universe(isl_space_params_alloc(ctx, 0));
1187 return indicator_function(u, isl_set_copy(u));
1190 if (expr->getStmtClass() == Stmt::ParenExprClass)
1191 return extract_condition(cast<ParenExpr>(expr)->getSubExpr());
1193 if (expr->getStmtClass() == Stmt::UnaryOperatorClass)
1194 return extract_condition(cast<UnaryOperator>(expr));
1196 if (expr->getStmtClass() != Stmt::BinaryOperatorClass)
1197 return extract_implicit_condition(expr);
1199 comp = cast<BinaryOperator>(expr);
1200 switch (comp->getOpcode()) {
1201 case BO_LT:
1202 case BO_LE:
1203 case BO_GT:
1204 case BO_GE:
1205 case BO_EQ:
1206 case BO_NE:
1207 return extract_comparison(comp);
1208 case BO_LAnd:
1209 case BO_LOr:
1210 return extract_boolean(comp);
1211 default:
1212 return extract_implicit_condition(expr);
1216 static enum pet_op_type UnaryOperatorKind2pet_op_type(UnaryOperatorKind kind)
1218 switch (kind) {
1219 case UO_Minus:
1220 return pet_op_minus;
1221 default:
1222 return pet_op_last;
1226 static enum pet_op_type BinaryOperatorKind2pet_op_type(BinaryOperatorKind kind)
1228 switch (kind) {
1229 case BO_AddAssign:
1230 return pet_op_add_assign;
1231 case BO_SubAssign:
1232 return pet_op_sub_assign;
1233 case BO_MulAssign:
1234 return pet_op_mul_assign;
1235 case BO_DivAssign:
1236 return pet_op_div_assign;
1237 case BO_Assign:
1238 return pet_op_assign;
1239 case BO_Add:
1240 return pet_op_add;
1241 case BO_Sub:
1242 return pet_op_sub;
1243 case BO_Mul:
1244 return pet_op_mul;
1245 case BO_Div:
1246 return pet_op_div;
1247 case BO_EQ:
1248 return pet_op_eq;
1249 case BO_LE:
1250 return pet_op_le;
1251 case BO_LT:
1252 return pet_op_lt;
1253 case BO_GT:
1254 return pet_op_gt;
1255 default:
1256 return pet_op_last;
1260 /* Construct a pet_expr representing a unary operator expression.
1262 struct pet_expr *PetScan::extract_expr(UnaryOperator *expr)
1264 struct pet_expr *arg;
1265 enum pet_op_type op;
1267 op = UnaryOperatorKind2pet_op_type(expr->getOpcode());
1268 if (op == pet_op_last) {
1269 unsupported(expr);
1270 return NULL;
1273 arg = extract_expr(expr->getSubExpr());
1275 return pet_expr_new_unary(ctx, op, arg);
1278 /* Mark the given access pet_expr as a write.
1279 * If a scalar is being accessed, then mark its value
1280 * as unknown in assigned_value.
1282 void PetScan::mark_write(struct pet_expr *access)
1284 isl_id *id;
1285 ValueDecl *decl;
1287 access->acc.write = 1;
1288 access->acc.read = 0;
1290 if (isl_map_dim(access->acc.access, isl_dim_out) != 0)
1291 return;
1293 id = isl_map_get_tuple_id(access->acc.access, isl_dim_out);
1294 decl = (ValueDecl *) isl_id_get_user(id);
1295 clear_assignment(assigned_value, decl);
1296 isl_id_free(id);
1299 /* Construct a pet_expr representing a binary operator expression.
1301 * If the top level operator is an assignment and the LHS is an access,
1302 * then we mark that access as a write. If the operator is a compound
1303 * assignment, the access is marked as both a read and a write.
1305 * If "expr" assigns something to a scalar variable, then we mark
1306 * the variable as having been assigned. If, furthermore, the expression
1307 * is affine, then keep track of this value in assigned_value
1308 * so that we can plug it in when we later come across the same variable.
1310 struct pet_expr *PetScan::extract_expr(BinaryOperator *expr)
1312 struct pet_expr *lhs, *rhs;
1313 enum pet_op_type op;
1315 op = BinaryOperatorKind2pet_op_type(expr->getOpcode());
1316 if (op == pet_op_last) {
1317 unsupported(expr);
1318 return NULL;
1321 lhs = extract_expr(expr->getLHS());
1322 rhs = extract_expr(expr->getRHS());
1324 if (expr->isAssignmentOp() && lhs && lhs->type == pet_expr_access) {
1325 mark_write(lhs);
1326 if (expr->isCompoundAssignmentOp())
1327 lhs->acc.read = 1;
1330 if (expr->getOpcode() == BO_Assign &&
1331 lhs && lhs->type == pet_expr_access &&
1332 isl_map_dim(lhs->acc.access, isl_dim_out) == 0) {
1333 isl_id *id = isl_map_get_tuple_id(lhs->acc.access, isl_dim_out);
1334 ValueDecl *decl = (ValueDecl *) isl_id_get_user(id);
1335 Expr *rhs = expr->getRHS();
1336 isl_pw_aff *pa = try_extract_affine(rhs);
1337 clear_assignment(assigned_value, decl);
1338 if (pa) {
1339 assigned_value[decl] = pa;
1340 insert_expression(pa);
1342 isl_id_free(id);
1345 return pet_expr_new_binary(ctx, op, lhs, rhs);
1348 /* Construct a pet_expr representing a conditional operation.
1350 struct pet_expr *PetScan::extract_expr(ConditionalOperator *expr)
1352 struct pet_expr *cond, *lhs, *rhs;
1354 cond = extract_expr(expr->getCond());
1355 lhs = extract_expr(expr->getTrueExpr());
1356 rhs = extract_expr(expr->getFalseExpr());
1358 return pet_expr_new_ternary(ctx, cond, lhs, rhs);
1361 struct pet_expr *PetScan::extract_expr(ImplicitCastExpr *expr)
1363 return extract_expr(expr->getSubExpr());
1366 /* Construct a pet_expr representing a floating point value.
1368 struct pet_expr *PetScan::extract_expr(FloatingLiteral *expr)
1370 return pet_expr_new_double(ctx, expr->getValueAsApproximateDouble());
1373 /* Extract an access relation from "expr" and then convert it into
1374 * a pet_expr.
1376 struct pet_expr *PetScan::extract_access_expr(Expr *expr)
1378 isl_map *access;
1379 struct pet_expr *pe;
1381 switch (expr->getStmtClass()) {
1382 case Stmt::ArraySubscriptExprClass:
1383 access = extract_access(cast<ArraySubscriptExpr>(expr));
1384 break;
1385 case Stmt::DeclRefExprClass:
1386 access = extract_access(cast<DeclRefExpr>(expr));
1387 break;
1388 case Stmt::IntegerLiteralClass:
1389 access = extract_access(cast<IntegerLiteral>(expr));
1390 break;
1391 default:
1392 unsupported(expr);
1393 return NULL;
1396 pe = pet_expr_from_access(access);
1398 return pe;
1401 struct pet_expr *PetScan::extract_expr(ParenExpr *expr)
1403 return extract_expr(expr->getSubExpr());
1406 /* Construct a pet_expr representing a function call.
1408 * If we are passing along a pointer to an array element
1409 * or an entire row or even higher dimensional slice of an array,
1410 * then the function being called may write into the array.
1412 * We assume here that if the function is declared to take a pointer
1413 * to a const type, then the function will perform a read
1414 * and that otherwise, it will perform a write.
1416 struct pet_expr *PetScan::extract_expr(CallExpr *expr)
1418 struct pet_expr *res = NULL;
1419 FunctionDecl *fd;
1420 string name;
1422 fd = expr->getDirectCallee();
1423 if (!fd) {
1424 unsupported(expr);
1425 return NULL;
1428 name = fd->getDeclName().getAsString();
1429 res = pet_expr_new_call(ctx, name.c_str(), expr->getNumArgs());
1430 if (!res)
1431 return NULL;
1433 for (int i = 0; i < expr->getNumArgs(); ++i) {
1434 Expr *arg = expr->getArg(i);
1435 int is_addr = 0;
1436 pet_expr *main_arg;
1438 if (arg->getStmtClass() == Stmt::ImplicitCastExprClass) {
1439 ImplicitCastExpr *ice = cast<ImplicitCastExpr>(arg);
1440 arg = ice->getSubExpr();
1442 if (arg->getStmtClass() == Stmt::UnaryOperatorClass) {
1443 UnaryOperator *op = cast<UnaryOperator>(arg);
1444 if (op->getOpcode() == UO_AddrOf) {
1445 is_addr = 1;
1446 arg = op->getSubExpr();
1449 res->args[i] = PetScan::extract_expr(arg);
1450 main_arg = res->args[i];
1451 if (is_addr)
1452 res->args[i] = pet_expr_new_unary(ctx,
1453 pet_op_address_of, res->args[i]);
1454 if (!res->args[i])
1455 goto error;
1456 if (arg->getStmtClass() == Stmt::ArraySubscriptExprClass &&
1457 array_depth(arg->getType().getTypePtr()) > 0)
1458 is_addr = 1;
1459 if (is_addr && main_arg->type == pet_expr_access) {
1460 ParmVarDecl *parm;
1461 if (!fd->hasPrototype()) {
1462 unsupported(expr, "prototype required");
1463 goto error;
1465 parm = fd->getParamDecl(i);
1466 if (!const_base(parm->getType()))
1467 mark_write(main_arg);
1471 return res;
1472 error:
1473 pet_expr_free(res);
1474 return NULL;
1477 /* Try and onstruct a pet_expr representing "expr".
1479 struct pet_expr *PetScan::extract_expr(Expr *expr)
1481 switch (expr->getStmtClass()) {
1482 case Stmt::UnaryOperatorClass:
1483 return extract_expr(cast<UnaryOperator>(expr));
1484 case Stmt::CompoundAssignOperatorClass:
1485 case Stmt::BinaryOperatorClass:
1486 return extract_expr(cast<BinaryOperator>(expr));
1487 case Stmt::ImplicitCastExprClass:
1488 return extract_expr(cast<ImplicitCastExpr>(expr));
1489 case Stmt::ArraySubscriptExprClass:
1490 case Stmt::DeclRefExprClass:
1491 case Stmt::IntegerLiteralClass:
1492 return extract_access_expr(expr);
1493 case Stmt::FloatingLiteralClass:
1494 return extract_expr(cast<FloatingLiteral>(expr));
1495 case Stmt::ParenExprClass:
1496 return extract_expr(cast<ParenExpr>(expr));
1497 case Stmt::ConditionalOperatorClass:
1498 return extract_expr(cast<ConditionalOperator>(expr));
1499 case Stmt::CallExprClass:
1500 return extract_expr(cast<CallExpr>(expr));
1501 default:
1502 unsupported(expr);
1504 return NULL;
1507 /* Check if the given initialization statement is an assignment.
1508 * If so, return that assignment. Otherwise return NULL.
1510 BinaryOperator *PetScan::initialization_assignment(Stmt *init)
1512 BinaryOperator *ass;
1514 if (init->getStmtClass() != Stmt::BinaryOperatorClass)
1515 return NULL;
1517 ass = cast<BinaryOperator>(init);
1518 if (ass->getOpcode() != BO_Assign)
1519 return NULL;
1521 return ass;
1524 /* Check if the given initialization statement is a declaration
1525 * of a single variable.
1526 * If so, return that declaration. Otherwise return NULL.
1528 Decl *PetScan::initialization_declaration(Stmt *init)
1530 DeclStmt *decl;
1532 if (init->getStmtClass() != Stmt::DeclStmtClass)
1533 return NULL;
1535 decl = cast<DeclStmt>(init);
1537 if (!decl->isSingleDecl())
1538 return NULL;
1540 return decl->getSingleDecl();
1543 /* Given the assignment operator in the initialization of a for loop,
1544 * extract the induction variable, i.e., the (integer)variable being
1545 * assigned.
1547 ValueDecl *PetScan::extract_induction_variable(BinaryOperator *init)
1549 Expr *lhs;
1550 DeclRefExpr *ref;
1551 ValueDecl *decl;
1552 const Type *type;
1554 lhs = init->getLHS();
1555 if (lhs->getStmtClass() != Stmt::DeclRefExprClass) {
1556 unsupported(init);
1557 return NULL;
1560 ref = cast<DeclRefExpr>(lhs);
1561 decl = ref->getDecl();
1562 type = decl->getType().getTypePtr();
1564 if (!type->isIntegerType()) {
1565 unsupported(lhs);
1566 return NULL;
1569 return decl;
1572 /* Given the initialization statement of a for loop and the single
1573 * declaration in this initialization statement,
1574 * extract the induction variable, i.e., the (integer) variable being
1575 * declared.
1577 VarDecl *PetScan::extract_induction_variable(Stmt *init, Decl *decl)
1579 VarDecl *vd;
1581 vd = cast<VarDecl>(decl);
1583 const QualType type = vd->getType();
1584 if (!type->isIntegerType()) {
1585 unsupported(init);
1586 return NULL;
1589 if (!vd->getInit()) {
1590 unsupported(init);
1591 return NULL;
1594 return vd;
1597 /* Check that op is of the form iv++ or iv--.
1598 * "inc" is accordingly set to 1 or -1.
1600 bool PetScan::check_unary_increment(UnaryOperator *op, clang::ValueDecl *iv,
1601 isl_int &inc)
1603 Expr *sub;
1604 DeclRefExpr *ref;
1606 if (!op->isIncrementDecrementOp()) {
1607 unsupported(op);
1608 return false;
1611 if (op->isIncrementOp())
1612 isl_int_set_si(inc, 1);
1613 else
1614 isl_int_set_si(inc, -1);
1616 sub = op->getSubExpr();
1617 if (sub->getStmtClass() != Stmt::DeclRefExprClass) {
1618 unsupported(op);
1619 return false;
1622 ref = cast<DeclRefExpr>(sub);
1623 if (ref->getDecl() != iv) {
1624 unsupported(op);
1625 return false;
1628 return true;
1631 /* If the isl_pw_aff on which isl_pw_aff_foreach_piece is called
1632 * has a single constant expression on a universe domain, then
1633 * put this constant in *user.
1635 static int extract_cst(__isl_take isl_set *set, __isl_take isl_aff *aff,
1636 void *user)
1638 isl_int *inc = (isl_int *)user;
1639 int res = 0;
1641 if (!isl_set_plain_is_universe(set) || !isl_aff_is_cst(aff))
1642 res = -1;
1643 else
1644 isl_aff_get_constant(aff, inc);
1646 isl_set_free(set);
1647 isl_aff_free(aff);
1649 return res;
1652 /* Check if op is of the form
1654 * iv = iv + inc
1656 * with inc a constant and set "inc" accordingly.
1658 * We extract an affine expression from the RHS and the subtract iv.
1659 * The result should be a constant.
1661 bool PetScan::check_binary_increment(BinaryOperator *op, clang::ValueDecl *iv,
1662 isl_int &inc)
1664 Expr *lhs;
1665 DeclRefExpr *ref;
1666 isl_id *id;
1667 isl_space *dim;
1668 isl_aff *aff;
1669 isl_pw_aff *val;
1671 if (op->getOpcode() != BO_Assign) {
1672 unsupported(op);
1673 return false;
1676 lhs = op->getLHS();
1677 if (lhs->getStmtClass() != Stmt::DeclRefExprClass) {
1678 unsupported(op);
1679 return false;
1682 ref = cast<DeclRefExpr>(lhs);
1683 if (ref->getDecl() != iv) {
1684 unsupported(op);
1685 return false;
1688 val = extract_affine(op->getRHS());
1690 id = isl_id_alloc(ctx, iv->getName().str().c_str(), iv);
1692 dim = isl_space_params_alloc(ctx, 1);
1693 dim = isl_space_set_dim_id(dim, isl_dim_param, 0, id);
1694 aff = isl_aff_zero_on_domain(isl_local_space_from_space(dim));
1695 aff = isl_aff_add_coefficient_si(aff, isl_dim_param, 0, 1);
1697 val = isl_pw_aff_sub(val, isl_pw_aff_from_aff(aff));
1699 if (isl_pw_aff_foreach_piece(val, &extract_cst, &inc) < 0) {
1700 isl_pw_aff_free(val);
1701 unsupported(op);
1702 return false;
1705 isl_pw_aff_free(val);
1707 return true;
1710 /* Check that op is of the form iv += cst or iv -= cst.
1711 * "inc" is set to cst or -cst accordingly.
1713 bool PetScan::check_compound_increment(CompoundAssignOperator *op,
1714 clang::ValueDecl *iv, isl_int &inc)
1716 Expr *lhs, *rhs;
1717 DeclRefExpr *ref;
1718 bool neg = false;
1720 BinaryOperatorKind opcode;
1722 opcode = op->getOpcode();
1723 if (opcode != BO_AddAssign && opcode != BO_SubAssign) {
1724 unsupported(op);
1725 return false;
1727 if (opcode == BO_SubAssign)
1728 neg = true;
1730 lhs = op->getLHS();
1731 if (lhs->getStmtClass() != Stmt::DeclRefExprClass) {
1732 unsupported(op);
1733 return false;
1736 ref = cast<DeclRefExpr>(lhs);
1737 if (ref->getDecl() != iv) {
1738 unsupported(op);
1739 return false;
1742 rhs = op->getRHS();
1744 if (rhs->getStmtClass() == Stmt::UnaryOperatorClass) {
1745 UnaryOperator *op = cast<UnaryOperator>(rhs);
1746 if (op->getOpcode() != UO_Minus) {
1747 unsupported(op);
1748 return false;
1751 neg = !neg;
1753 rhs = op->getSubExpr();
1756 if (rhs->getStmtClass() != Stmt::IntegerLiteralClass) {
1757 unsupported(op);
1758 return false;
1761 extract_int(cast<IntegerLiteral>(rhs), &inc);
1762 if (neg)
1763 isl_int_neg(inc, inc);
1765 return true;
1768 /* Check that the increment of the given for loop increments
1769 * (or decrements) the induction variable "iv".
1770 * "up" is set to true if the induction variable is incremented.
1772 bool PetScan::check_increment(ForStmt *stmt, ValueDecl *iv, isl_int &v)
1774 Stmt *inc = stmt->getInc();
1776 if (!inc) {
1777 unsupported(stmt);
1778 return false;
1781 if (inc->getStmtClass() == Stmt::UnaryOperatorClass)
1782 return check_unary_increment(cast<UnaryOperator>(inc), iv, v);
1783 if (inc->getStmtClass() == Stmt::CompoundAssignOperatorClass)
1784 return check_compound_increment(
1785 cast<CompoundAssignOperator>(inc), iv, v);
1786 if (inc->getStmtClass() == Stmt::BinaryOperatorClass)
1787 return check_binary_increment(cast<BinaryOperator>(inc), iv, v);
1789 unsupported(inc);
1790 return false;
1793 /* Embed the given iteration domain in an extra outer loop
1794 * with induction variable "var".
1795 * If this variable appeared as a parameter in the constraints,
1796 * it is replaced by the new outermost dimension.
1798 static __isl_give isl_set *embed(__isl_take isl_set *set,
1799 __isl_take isl_id *var)
1801 int pos;
1803 set = isl_set_insert_dims(set, isl_dim_set, 0, 1);
1804 pos = isl_set_find_dim_by_id(set, isl_dim_param, var);
1805 if (pos >= 0) {
1806 set = isl_set_equate(set, isl_dim_param, pos, isl_dim_set, 0);
1807 set = isl_set_project_out(set, isl_dim_param, pos, 1);
1810 isl_id_free(var);
1811 return set;
1814 /* Construct a pet_scop for an infinite loop around the given body.
1816 * We extract a pet_scop for the body and then embed it in a loop with
1817 * iteration domain
1819 * { [t] : t >= 0 }
1821 * and schedule
1823 * { [t] -> [t] }
1825 struct pet_scop *PetScan::extract_infinite_loop(Stmt *body)
1827 isl_id *id;
1828 isl_space *dim;
1829 isl_set *domain;
1830 isl_map *sched;
1831 struct pet_scop *scop;
1833 scop = extract(body);
1834 if (!scop)
1835 return NULL;
1837 id = isl_id_alloc(ctx, "t", NULL);
1838 domain = isl_set_nat_universe(isl_space_set_alloc(ctx, 0, 1));
1839 domain = isl_set_set_dim_id(domain, isl_dim_set, 0, isl_id_copy(id));
1840 dim = isl_space_from_domain(isl_set_get_space(domain));
1841 dim = isl_space_add_dims(dim, isl_dim_out, 1);
1842 sched = isl_map_universe(dim);
1843 sched = isl_map_equate(sched, isl_dim_in, 0, isl_dim_out, 0);
1844 scop = pet_scop_embed(scop, domain, sched, id);
1846 return scop;
1849 /* Construct a pet_scop for an infinite loop, i.e., a loop of the form
1851 * for (;;)
1852 * body
1855 struct pet_scop *PetScan::extract_infinite_for(ForStmt *stmt)
1857 return extract_infinite_loop(stmt->getBody());
1860 /* Check if the while loop is of the form
1862 * while (1)
1863 * body
1865 * If so, construct a scop for an infinite loop around body.
1866 * Otherwise, fail.
1868 struct pet_scop *PetScan::extract(WhileStmt *stmt)
1870 Expr *cond;
1871 isl_set *set;
1872 int is_universe;
1874 cond = stmt->getCond();
1875 if (!cond) {
1876 unsupported(stmt);
1877 return NULL;
1880 set = isl_pw_aff_non_zero_set(extract_condition(cond));
1881 is_universe = isl_set_plain_is_universe(set);
1882 isl_set_free(set);
1884 if (!is_universe) {
1885 unsupported(stmt);
1886 return NULL;
1889 return extract_infinite_loop(stmt->getBody());
1892 /* Check whether "cond" expresses a simple loop bound
1893 * on the only set dimension.
1894 * In particular, if "up" is set then "cond" should contain only
1895 * upper bounds on the set dimension.
1896 * Otherwise, it should contain only lower bounds.
1898 static bool is_simple_bound(__isl_keep isl_set *cond, isl_int inc)
1900 if (isl_int_is_pos(inc))
1901 return !isl_set_dim_has_lower_bound(cond, isl_dim_set, 0);
1902 else
1903 return !isl_set_dim_has_upper_bound(cond, isl_dim_set, 0);
1906 /* Extend a condition on a given iteration of a loop to one that
1907 * imposes the same condition on all previous iterations.
1908 * "domain" expresses the lower [upper] bound on the iterations
1909 * when inc is positive [negative].
1911 * In particular, we construct the condition (when inc is positive)
1913 * forall i' : (domain(i') and i' <= i) => cond(i')
1915 * which is equivalent to
1917 * not exists i' : domain(i') and i' <= i and not cond(i')
1919 * We construct this set by negating cond, applying a map
1921 * { [i'] -> [i] : domain(i') and i' <= i }
1923 * and then negating the result again.
1925 static __isl_give isl_set *valid_for_each_iteration(__isl_take isl_set *cond,
1926 __isl_take isl_set *domain, isl_int inc)
1928 isl_map *previous_to_this;
1930 if (isl_int_is_pos(inc))
1931 previous_to_this = isl_map_lex_le(isl_set_get_space(domain));
1932 else
1933 previous_to_this = isl_map_lex_ge(isl_set_get_space(domain));
1935 previous_to_this = isl_map_intersect_domain(previous_to_this, domain);
1937 cond = isl_set_complement(cond);
1938 cond = isl_set_apply(cond, previous_to_this);
1939 cond = isl_set_complement(cond);
1941 return cond;
1944 /* Construct a domain of the form
1946 * [id] -> { : exists a: id = init + a * inc and a >= 0 }
1948 static __isl_give isl_set *strided_domain(__isl_take isl_id *id,
1949 __isl_take isl_pw_aff *init, isl_int inc)
1951 isl_aff *aff;
1952 isl_space *dim;
1953 isl_set *set;
1955 init = isl_pw_aff_insert_dims(init, isl_dim_in, 0, 1);
1956 dim = isl_pw_aff_get_domain_space(init);
1957 aff = isl_aff_zero_on_domain(isl_local_space_from_space(dim));
1958 aff = isl_aff_add_coefficient(aff, isl_dim_in, 0, inc);
1959 init = isl_pw_aff_add(init, isl_pw_aff_from_aff(aff));
1961 dim = isl_space_set_alloc(isl_pw_aff_get_ctx(init), 1, 1);
1962 dim = isl_space_set_dim_id(dim, isl_dim_param, 0, id);
1963 aff = isl_aff_zero_on_domain(isl_local_space_from_space(dim));
1964 aff = isl_aff_add_coefficient_si(aff, isl_dim_param, 0, 1);
1966 set = isl_pw_aff_eq_set(isl_pw_aff_from_aff(aff), init);
1968 set = isl_set_lower_bound_si(set, isl_dim_set, 0, 0);
1970 return isl_set_params(set);
1973 /* Assuming "cond" represents a bound on a loop where the loop
1974 * iterator "iv" is incremented (or decremented) by one, check if wrapping
1975 * is possible.
1977 * Under the given assumptions, wrapping is only possible if "cond" allows
1978 * for the last value before wrapping, i.e., 2^width - 1 in case of an
1979 * increasing iterator and 0 in case of a decreasing iterator.
1981 static bool can_wrap(__isl_keep isl_set *cond, ValueDecl *iv, isl_int inc)
1983 bool cw;
1984 isl_int limit;
1985 isl_set *test;
1987 test = isl_set_copy(cond);
1989 isl_int_init(limit);
1990 if (isl_int_is_neg(inc))
1991 isl_int_set_si(limit, 0);
1992 else {
1993 isl_int_set_si(limit, 1);
1994 isl_int_mul_2exp(limit, limit, get_type_size(iv));
1995 isl_int_sub_ui(limit, limit, 1);
1998 test = isl_set_fix(cond, isl_dim_set, 0, limit);
1999 cw = !isl_set_is_empty(test);
2000 isl_set_free(test);
2002 isl_int_clear(limit);
2004 return cw;
2007 /* Given a one-dimensional space, construct the following mapping on this
2008 * space
2010 * { [v] -> [v mod 2^width] }
2012 * where width is the number of bits used to represent the values
2013 * of the unsigned variable "iv".
2015 static __isl_give isl_map *compute_wrapping(__isl_take isl_space *dim,
2016 ValueDecl *iv)
2018 isl_int mod;
2019 isl_aff *aff;
2020 isl_map *map;
2022 isl_int_init(mod);
2023 isl_int_set_si(mod, 1);
2024 isl_int_mul_2exp(mod, mod, get_type_size(iv));
2026 aff = isl_aff_zero_on_domain(isl_local_space_from_space(dim));
2027 aff = isl_aff_add_coefficient_si(aff, isl_dim_in, 0, 1);
2028 aff = isl_aff_mod(aff, mod);
2030 isl_int_clear(mod);
2032 return isl_map_from_basic_map(isl_basic_map_from_aff(aff));
2033 map = isl_map_reverse(map);
2036 /* Construct a pet_scop for a for statement.
2037 * The for loop is required to be of the form
2039 * for (i = init; condition; ++i)
2041 * or
2043 * for (i = init; condition; --i)
2045 * The initialization of the for loop should either be an assignment
2046 * to an integer variable, or a declaration of such a variable with
2047 * initialization.
2049 * The condition is allowed to contain nested accesses, provided
2050 * they are not being written to inside the body of the loop.
2052 * We extract a pet_scop for the body and then embed it in a loop with
2053 * iteration domain and schedule
2055 * { [i] : i >= init and condition' }
2056 * { [i] -> [i] }
2058 * or
2060 * { [i] : i <= init and condition' }
2061 * { [i] -> [-i] }
2063 * Where condition' is equal to condition if the latter is
2064 * a simple upper [lower] bound and a condition that is extended
2065 * to apply to all previous iterations otherwise.
2067 * If the stride of the loop is not 1, then "i >= init" is replaced by
2069 * (exists a: i = init + stride * a and a >= 0)
2071 * If the loop iterator i is unsigned, then wrapping may occur.
2072 * During the computation, we work with a virtual iterator that
2073 * does not wrap. However, the condition in the code applies
2074 * to the wrapped value, so we need to change condition(i)
2075 * into condition([i % 2^width]).
2076 * After computing the virtual domain and schedule, we apply
2077 * the function { [v] -> [v % 2^width] } to the domain and the domain
2078 * of the schedule. In order not to lose any information, we also
2079 * need to intersect the domain of the schedule with the virtual domain
2080 * first, since some iterations in the wrapped domain may be scheduled
2081 * several times, typically an infinite number of times.
2082 * Note that there is no need to perform this final wrapping
2083 * if the loop condition (after wrapping) is simple.
2085 * Wrapping on unsigned iterators can be avoided entirely if
2086 * loop condition is simple, the loop iterator is incremented
2087 * [decremented] by one and the last value before wrapping cannot
2088 * possibly satisfy the loop condition.
2090 * Before extracting a pet_scop from the body we remove all
2091 * assignments in assigned_value to variables that are assigned
2092 * somewhere in the body of the loop.
2094 struct pet_scop *PetScan::extract_for(ForStmt *stmt)
2096 BinaryOperator *ass;
2097 Decl *decl;
2098 Stmt *init;
2099 Expr *lhs, *rhs;
2100 ValueDecl *iv;
2101 isl_space *dim;
2102 isl_set *domain;
2103 isl_map *sched;
2104 isl_set *cond = NULL;
2105 isl_id *id;
2106 struct pet_scop *scop;
2107 assigned_value_cache cache(assigned_value);
2108 isl_int inc;
2109 bool is_one;
2110 bool is_unsigned;
2111 bool is_simple;
2112 bool is_virtual;
2113 isl_map *wrap = NULL;
2114 isl_pw_aff *pa;
2116 if (!stmt->getInit() && !stmt->getCond() && !stmt->getInc())
2117 return extract_infinite_for(stmt);
2119 init = stmt->getInit();
2120 if (!init) {
2121 unsupported(stmt);
2122 return NULL;
2124 if ((ass = initialization_assignment(init)) != NULL) {
2125 iv = extract_induction_variable(ass);
2126 if (!iv)
2127 return NULL;
2128 lhs = ass->getLHS();
2129 rhs = ass->getRHS();
2130 } else if ((decl = initialization_declaration(init)) != NULL) {
2131 VarDecl *var = extract_induction_variable(init, decl);
2132 if (!var)
2133 return NULL;
2134 iv = var;
2135 rhs = var->getInit();
2136 lhs = create_DeclRefExpr(var);
2137 } else {
2138 unsupported(stmt->getInit());
2139 return NULL;
2142 isl_int_init(inc);
2143 if (!check_increment(stmt, iv, inc)) {
2144 isl_int_clear(inc);
2145 return NULL;
2148 is_unsigned = iv->getType()->isUnsignedIntegerType();
2150 assigned_value.erase(iv);
2151 clear_assignments clear(assigned_value);
2152 clear.TraverseStmt(stmt->getBody());
2154 id = isl_id_alloc(ctx, iv->getName().str().c_str(), iv);
2156 scop = extract(stmt->getBody());
2158 pa = try_extract_nested_condition(stmt->getCond());
2159 if (pa && !is_nested_allowed(pa, scop)) {
2160 isl_pw_aff_free(pa);
2161 pa = NULL;
2164 if (!pa)
2165 pa = extract_condition(stmt->getCond());
2166 cond = isl_pw_aff_non_zero_set(pa);
2167 cond = embed(cond, isl_id_copy(id));
2168 is_one = isl_int_is_one(inc) || isl_int_is_negone(inc);
2169 is_virtual = is_unsigned && (!is_one || can_wrap(cond, iv, inc));
2171 if (is_one && !is_virtual) {
2172 pa = extract_comparison(isl_int_is_pos(inc) ? BO_GE : BO_LE,
2173 lhs, rhs, init);
2174 domain = isl_pw_aff_non_zero_set(pa);
2175 } else {
2176 isl_pw_aff *lb = extract_affine(rhs);
2177 domain = strided_domain(isl_id_copy(id), lb, inc);
2180 domain = embed(domain, isl_id_copy(id));
2181 if (is_virtual) {
2182 wrap = compute_wrapping(isl_set_get_space(cond), iv);
2183 cond = isl_set_apply(cond, isl_map_reverse(isl_map_copy(wrap)));
2185 cond = isl_set_gist(cond, isl_set_copy(domain));
2186 is_simple = is_simple_bound(cond, inc);
2187 if (!is_simple)
2188 cond = valid_for_each_iteration(cond,
2189 isl_set_copy(domain), inc);
2190 domain = isl_set_intersect(domain, cond);
2191 domain = isl_set_set_dim_id(domain, isl_dim_set, 0, isl_id_copy(id));
2192 dim = isl_space_from_domain(isl_set_get_space(domain));
2193 dim = isl_space_add_dims(dim, isl_dim_out, 1);
2194 sched = isl_map_universe(dim);
2195 if (isl_int_is_pos(inc))
2196 sched = isl_map_equate(sched, isl_dim_in, 0, isl_dim_out, 0);
2197 else
2198 sched = isl_map_oppose(sched, isl_dim_in, 0, isl_dim_out, 0);
2200 if (is_virtual && !is_simple) {
2201 wrap = isl_map_set_dim_id(wrap,
2202 isl_dim_out, 0, isl_id_copy(id));
2203 sched = isl_map_intersect_domain(sched, isl_set_copy(domain));
2204 domain = isl_set_apply(domain, isl_map_copy(wrap));
2205 sched = isl_map_apply_domain(sched, wrap);
2206 } else
2207 isl_map_free(wrap);
2209 scop = pet_scop_embed(scop, domain, sched, id);
2210 scop = resolve_nested(scop);
2211 clear_assignment(assigned_value, iv);
2213 isl_int_clear(inc);
2214 return scop;
2217 struct pet_scop *PetScan::extract(CompoundStmt *stmt)
2219 return extract(stmt->children());
2222 /* Does "id" refer to a nested access?
2224 static bool is_nested_parameter(__isl_keep isl_id *id)
2226 return id && isl_id_get_user(id) && !isl_id_get_name(id);
2229 /* Does parameter "pos" of "space" refer to a nested access?
2231 static bool is_nested_parameter(__isl_keep isl_space *space, int pos)
2233 bool nested;
2234 isl_id *id;
2236 id = isl_space_get_dim_id(space, isl_dim_param, pos);
2237 nested = is_nested_parameter(id);
2238 isl_id_free(id);
2240 return nested;
2243 /* Does parameter "pos" of "map" refer to a nested access?
2245 static bool is_nested_parameter(__isl_keep isl_map *map, int pos)
2247 bool nested;
2248 isl_id *id;
2250 id = isl_map_get_dim_id(map, isl_dim_param, pos);
2251 nested = is_nested_parameter(id);
2252 isl_id_free(id);
2254 return nested;
2257 /* How many parameters of "space" refer to nested accesses, i.e., have no name?
2259 static int n_nested_parameter(__isl_keep isl_space *space)
2261 int n = 0;
2262 int nparam;
2264 nparam = isl_space_dim(space, isl_dim_param);
2265 for (int i = 0; i < nparam; ++i)
2266 if (is_nested_parameter(space, i))
2267 ++n;
2269 return n;
2272 /* How many parameters of "map" refer to nested accesses, i.e., have no name?
2274 static int n_nested_parameter(__isl_keep isl_map *map)
2276 isl_space *space;
2277 int n;
2279 space = isl_map_get_space(map);
2280 n = n_nested_parameter(space);
2281 isl_space_free(space);
2283 return n;
2286 /* For each nested access parameter in "space",
2287 * construct a corresponding pet_expr, place it in args and
2288 * record its position in "param2pos".
2289 * "n_arg" is the number of elements that are already in args.
2290 * The position recorded in "param2pos" takes this number into account.
2291 * If the pet_expr corresponding to a parameter is identical to
2292 * the pet_expr corresponding to an earlier parameter, then these two
2293 * parameters are made to refer to the same element in args.
2295 * Return the final number of elements in args or -1 if an error has occurred.
2297 int PetScan::extract_nested(__isl_keep isl_space *space,
2298 int n_arg, struct pet_expr **args, std::map<int,int> &param2pos)
2300 int nparam;
2302 nparam = isl_space_dim(space, isl_dim_param);
2303 for (int i = 0; i < nparam; ++i) {
2304 int j;
2305 isl_id *id = isl_space_get_dim_id(space, isl_dim_param, i);
2306 Expr *nested;
2308 if (!is_nested_parameter(id)) {
2309 isl_id_free(id);
2310 continue;
2313 nested = (Expr *) isl_id_get_user(id);
2314 args[n_arg] = extract_expr(nested);
2315 if (!args[n_arg])
2316 return -1;
2318 for (j = 0; j < n_arg; ++j)
2319 if (pet_expr_is_equal(args[j], args[n_arg]))
2320 break;
2322 if (j < n_arg) {
2323 pet_expr_free(args[n_arg]);
2324 args[n_arg] = NULL;
2325 param2pos[i] = j;
2326 } else
2327 param2pos[i] = n_arg++;
2329 isl_id_free(id);
2332 return n_arg;
2335 /* For each nested access parameter in the access relations in "expr",
2336 * construct a corresponding pet_expr, place it in expr->args and
2337 * record its position in "param2pos".
2338 * n is the number of nested access parameters.
2340 struct pet_expr *PetScan::extract_nested(struct pet_expr *expr, int n,
2341 std::map<int,int> &param2pos)
2343 isl_space *space;
2345 expr->args = isl_calloc_array(ctx, struct pet_expr *, n);
2346 expr->n_arg = n;
2347 if (!expr->args)
2348 goto error;
2350 space = isl_map_get_space(expr->acc.access);
2351 n = extract_nested(space, 0, expr->args, param2pos);
2352 isl_space_free(space);
2354 if (n < 0)
2355 goto error;
2357 expr->n_arg = n;
2358 return expr;
2359 error:
2360 pet_expr_free(expr);
2361 return NULL;
2364 /* Look for parameters in any access relation in "expr" that
2365 * refer to nested accesses. In particular, these are
2366 * parameters with no name.
2368 * If there are any such parameters, then the domain of the access
2369 * relation, which is still [] at this point, is replaced by
2370 * [[] -> [t_1,...,t_n]], with n the number of these parameters
2371 * (after identifying identical nested accesses).
2372 * The parameters are then equated to the corresponding t dimensions
2373 * and subsequently projected out.
2374 * param2pos maps the position of the parameter to the position
2375 * of the corresponding t dimension.
2377 struct pet_expr *PetScan::resolve_nested(struct pet_expr *expr)
2379 int n;
2380 int nparam;
2381 int n_in;
2382 isl_space *dim;
2383 isl_map *map;
2384 std::map<int,int> param2pos;
2386 if (!expr)
2387 return expr;
2389 for (int i = 0; i < expr->n_arg; ++i) {
2390 expr->args[i] = resolve_nested(expr->args[i]);
2391 if (!expr->args[i]) {
2392 pet_expr_free(expr);
2393 return NULL;
2397 if (expr->type != pet_expr_access)
2398 return expr;
2400 n = n_nested_parameter(expr->acc.access);
2401 if (n == 0)
2402 return expr;
2404 expr = extract_nested(expr, n, param2pos);
2405 if (!expr)
2406 return NULL;
2408 n = expr->n_arg;
2409 nparam = isl_map_dim(expr->acc.access, isl_dim_param);
2410 n_in = isl_map_dim(expr->acc.access, isl_dim_in);
2411 dim = isl_map_get_space(expr->acc.access);
2412 dim = isl_space_domain(dim);
2413 dim = isl_space_from_domain(dim);
2414 dim = isl_space_add_dims(dim, isl_dim_out, n);
2415 map = isl_map_universe(dim);
2416 map = isl_map_domain_map(map);
2417 map = isl_map_reverse(map);
2418 expr->acc.access = isl_map_apply_domain(expr->acc.access, map);
2420 for (int i = nparam - 1; i >= 0; --i) {
2421 isl_id *id = isl_map_get_dim_id(expr->acc.access,
2422 isl_dim_param, i);
2423 if (!is_nested_parameter(id)) {
2424 isl_id_free(id);
2425 continue;
2428 expr->acc.access = isl_map_equate(expr->acc.access,
2429 isl_dim_param, i, isl_dim_in,
2430 n_in + param2pos[i]);
2431 expr->acc.access = isl_map_project_out(expr->acc.access,
2432 isl_dim_param, i, 1);
2434 isl_id_free(id);
2437 return expr;
2438 error:
2439 pet_expr_free(expr);
2440 return NULL;
2443 /* Convert a top-level pet_expr to a pet_scop with one statement.
2444 * This mainly involves resolving nested expression parameters
2445 * and setting the name of the iteration space.
2446 * The name is given by "label" if it is non-NULL. Otherwise,
2447 * it is of the form S_<n_stmt>.
2449 struct pet_scop *PetScan::extract(Stmt *stmt, struct pet_expr *expr,
2450 __isl_take isl_id *label)
2452 struct pet_stmt *ps;
2453 SourceLocation loc = stmt->getLocStart();
2454 int line = PP.getSourceManager().getExpansionLineNumber(loc);
2456 expr = resolve_nested(expr);
2457 ps = pet_stmt_from_pet_expr(ctx, line, label, n_stmt++, expr);
2458 return pet_scop_from_pet_stmt(ctx, ps);
2461 /* Check if we can extract an affine expression from "expr".
2462 * Return the expressions as an isl_pw_aff if we can and NULL otherwise.
2463 * We turn on autodetection so that we won't generate any warnings
2464 * and turn off nesting, so that we won't accept any non-affine constructs.
2466 __isl_give isl_pw_aff *PetScan::try_extract_affine(Expr *expr)
2468 isl_pw_aff *pwaff;
2469 int save_autodetect = autodetect;
2470 bool save_nesting = nesting_enabled;
2472 autodetect = 1;
2473 nesting_enabled = false;
2475 pwaff = extract_affine(expr);
2477 autodetect = save_autodetect;
2478 nesting_enabled = save_nesting;
2480 return pwaff;
2483 /* Check whether "expr" is an affine expression.
2485 bool PetScan::is_affine(Expr *expr)
2487 isl_pw_aff *pwaff;
2489 pwaff = try_extract_affine(expr);
2490 isl_pw_aff_free(pwaff);
2492 return pwaff != NULL;
2495 /* Check whether "expr" is an affine constraint.
2496 * We turn on autodetection so that we won't generate any warnings
2497 * and turn off nesting, so that we won't accept any non-affine constructs.
2499 bool PetScan::is_affine_condition(Expr *expr)
2501 isl_pw_aff *cond;
2502 int save_autodetect = autodetect;
2503 bool save_nesting = nesting_enabled;
2505 autodetect = 1;
2506 nesting_enabled = false;
2508 cond = extract_condition(expr);
2509 isl_pw_aff_free(cond);
2511 autodetect = save_autodetect;
2512 nesting_enabled = save_nesting;
2514 return cond != NULL;
2517 /* Check if we can extract a condition from "expr".
2518 * Return the condition as an isl_pw_aff if we can and NULL otherwise.
2519 * If allow_nested is set, then the condition may involve parameters
2520 * corresponding to nested accesses.
2521 * We turn on autodetection so that we won't generate any warnings.
2523 __isl_give isl_pw_aff *PetScan::try_extract_nested_condition(Expr *expr)
2525 isl_pw_aff *cond;
2526 int save_autodetect = autodetect;
2527 bool save_nesting = nesting_enabled;
2529 autodetect = 1;
2530 nesting_enabled = allow_nested;
2531 cond = extract_condition(expr);
2533 autodetect = save_autodetect;
2534 nesting_enabled = save_nesting;
2536 return cond;
2539 /* If the top-level expression of "stmt" is an assignment, then
2540 * return that assignment as a BinaryOperator.
2541 * Otherwise return NULL.
2543 static BinaryOperator *top_assignment_or_null(Stmt *stmt)
2545 BinaryOperator *ass;
2547 if (!stmt)
2548 return NULL;
2549 if (stmt->getStmtClass() != Stmt::BinaryOperatorClass)
2550 return NULL;
2552 ass = cast<BinaryOperator>(stmt);
2553 if(ass->getOpcode() != BO_Assign)
2554 return NULL;
2556 return ass;
2559 /* Check if the given if statement is a conditional assignement
2560 * with a non-affine condition. If so, construct a pet_scop
2561 * corresponding to this conditional assignment. Otherwise return NULL.
2563 * In particular we check if "stmt" is of the form
2565 * if (condition)
2566 * a = f(...);
2567 * else
2568 * a = g(...);
2570 * where a is some array or scalar access.
2571 * The constructed pet_scop then corresponds to the expression
2573 * a = condition ? f(...) : g(...)
2575 * All access relations in f(...) are intersected with condition
2576 * while all access relation in g(...) are intersected with the complement.
2578 struct pet_scop *PetScan::extract_conditional_assignment(IfStmt *stmt)
2580 BinaryOperator *ass_then, *ass_else;
2581 isl_map *write_then, *write_else;
2582 isl_set *cond, *comp;
2583 isl_map *map, *map_true, *map_false;
2584 int equal;
2585 struct pet_expr *pe_cond, *pe_then, *pe_else, *pe, *pe_write;
2586 bool save_nesting = nesting_enabled;
2588 ass_then = top_assignment_or_null(stmt->getThen());
2589 ass_else = top_assignment_or_null(stmt->getElse());
2591 if (!ass_then || !ass_else)
2592 return NULL;
2594 if (is_affine_condition(stmt->getCond()))
2595 return NULL;
2597 write_then = extract_access(ass_then->getLHS());
2598 write_else = extract_access(ass_else->getLHS());
2600 equal = isl_map_is_equal(write_then, write_else);
2601 isl_map_free(write_else);
2602 if (equal < 0 || !equal) {
2603 isl_map_free(write_then);
2604 return NULL;
2607 nesting_enabled = allow_nested;
2608 cond = isl_pw_aff_non_zero_set(extract_condition(stmt->getCond()));
2609 nesting_enabled = save_nesting;
2610 comp = isl_set_complement(isl_set_copy(cond));
2611 map_true = isl_map_from_domain(isl_set_from_params(isl_set_copy(cond)));
2612 map_true = isl_map_add_dims(map_true, isl_dim_out, 1);
2613 map_true = isl_map_fix_si(map_true, isl_dim_out, 0, 1);
2614 map_false = isl_map_from_domain(isl_set_from_params(isl_set_copy(comp)));
2615 map_false = isl_map_add_dims(map_false, isl_dim_out, 1);
2616 map_false = isl_map_fix_si(map_false, isl_dim_out, 0, 0);
2617 map = isl_map_union_disjoint(map_true, map_false);
2619 pe_cond = pet_expr_from_access(map);
2621 pe_then = extract_expr(ass_then->getRHS());
2622 pe_then = pet_expr_restrict(pe_then, cond);
2623 pe_else = extract_expr(ass_else->getRHS());
2624 pe_else = pet_expr_restrict(pe_else, comp);
2626 pe = pet_expr_new_ternary(ctx, pe_cond, pe_then, pe_else);
2627 pe_write = pet_expr_from_access(write_then);
2628 if (pe_write) {
2629 pe_write->acc.write = 1;
2630 pe_write->acc.read = 0;
2632 pe = pet_expr_new_binary(ctx, pet_op_assign, pe_write, pe);
2633 return extract(stmt, pe);
2636 /* Create an access to a virtual array representing the result
2637 * of a condition.
2638 * Unlike other accessed data, the id of the array is NULL as
2639 * there is no ValueDecl in the program corresponding to the virtual
2640 * array.
2641 * The array starts out as a scalar, but grows along with the
2642 * statement writing to the array in pet_scop_embed.
2644 static __isl_give isl_map *create_test_access(isl_ctx *ctx, int test_nr)
2646 isl_space *dim = isl_space_alloc(ctx, 0, 0, 0);
2647 isl_id *id;
2648 char name[50];
2650 snprintf(name, sizeof(name), "__pet_test_%d", test_nr);
2651 id = isl_id_alloc(ctx, name, NULL);
2652 dim = isl_space_set_tuple_id(dim, isl_dim_out, id);
2653 return isl_map_universe(dim);
2656 /* Create a pet_scop with a single statement evaluating "cond"
2657 * and writing the result to a virtual scalar, as expressed by
2658 * "access".
2660 struct pet_scop *PetScan::extract_non_affine_condition(Expr *cond,
2661 __isl_take isl_map *access)
2663 struct pet_expr *expr, *write;
2664 struct pet_stmt *ps;
2665 SourceLocation loc = cond->getLocStart();
2666 int line = PP.getSourceManager().getExpansionLineNumber(loc);
2668 write = pet_expr_from_access(access);
2669 if (write) {
2670 write->acc.write = 1;
2671 write->acc.read = 0;
2673 expr = extract_expr(cond);
2674 expr = pet_expr_new_binary(ctx, pet_op_assign, write, expr);
2675 ps = pet_stmt_from_pet_expr(ctx, line, NULL, n_stmt++, expr);
2676 return pet_scop_from_pet_stmt(ctx, ps);
2679 /* Add an array with the given extent ("access") to the list
2680 * of arrays in "scop" and return the extended pet_scop.
2681 * The array is marked as attaining values 0 and 1 only.
2683 static struct pet_scop *scop_add_array(struct pet_scop *scop,
2684 __isl_keep isl_map *access, clang::ASTContext &ast_ctx)
2686 isl_ctx *ctx = isl_map_get_ctx(access);
2687 isl_space *dim;
2688 struct pet_array **arrays;
2689 struct pet_array *array;
2691 if (!scop)
2692 return NULL;
2693 if (!ctx)
2694 goto error;
2696 arrays = isl_realloc_array(ctx, scop->arrays, struct pet_array *,
2697 scop->n_array + 1);
2698 if (!arrays)
2699 goto error;
2700 scop->arrays = arrays;
2702 array = isl_calloc_type(ctx, struct pet_array);
2703 if (!array)
2704 goto error;
2706 array->extent = isl_map_range(isl_map_copy(access));
2707 dim = isl_space_params_alloc(ctx, 0);
2708 array->context = isl_set_universe(dim);
2709 dim = isl_space_set_alloc(ctx, 0, 1);
2710 array->value_bounds = isl_set_universe(dim);
2711 array->value_bounds = isl_set_lower_bound_si(array->value_bounds,
2712 isl_dim_set, 0, 0);
2713 array->value_bounds = isl_set_upper_bound_si(array->value_bounds,
2714 isl_dim_set, 0, 1);
2715 array->element_type = strdup("int");
2716 array->element_size = ast_ctx.getTypeInfo(ast_ctx.IntTy).first / 8;
2718 scop->arrays[scop->n_array] = array;
2719 scop->n_array++;
2721 if (!array->extent || !array->context)
2722 goto error;
2724 return scop;
2725 error:
2726 pet_scop_free(scop);
2727 return NULL;
2730 extern "C" {
2731 static __isl_give isl_map *embed_access(__isl_take isl_map *access,
2732 void *user);
2735 /* Apply the map pointed to by "user" to the domain of the access
2736 * relation, thereby embedding it in the range of the map.
2737 * The domain of both relations is the zero-dimensional domain.
2739 static __isl_give isl_map *embed_access(__isl_take isl_map *access, void *user)
2741 isl_map *map = (isl_map *) user;
2743 return isl_map_apply_domain(access, isl_map_copy(map));
2746 /* Apply "map" to all access relations in "expr".
2748 static struct pet_expr *embed(struct pet_expr *expr, __isl_keep isl_map *map)
2750 return pet_expr_foreach_access(expr, &embed_access, map);
2753 /* How many parameters of "set" refer to nested accesses, i.e., have no name?
2755 static int n_nested_parameter(__isl_keep isl_set *set)
2757 isl_space *space;
2758 int n;
2760 space = isl_set_get_space(set);
2761 n = n_nested_parameter(space);
2762 isl_space_free(space);
2764 return n;
2767 /* Remove all parameters from "map" that refer to nested accesses.
2769 static __isl_give isl_map *remove_nested_parameters(__isl_take isl_map *map)
2771 int nparam;
2772 isl_space *space;
2774 space = isl_map_get_space(map);
2775 nparam = isl_space_dim(space, isl_dim_param);
2776 for (int i = nparam - 1; i >= 0; --i)
2777 if (is_nested_parameter(space, i))
2778 map = isl_map_project_out(map, isl_dim_param, i, 1);
2779 isl_space_free(space);
2781 return map;
2784 extern "C" {
2785 static __isl_give isl_map *access_remove_nested_parameters(
2786 __isl_take isl_map *access, void *user);
2789 static __isl_give isl_map *access_remove_nested_parameters(
2790 __isl_take isl_map *access, void *user)
2792 return remove_nested_parameters(access);
2795 /* Remove all nested access parameters from the schedule and all
2796 * accesses of "stmt".
2797 * There is no need to remove them from the domain as these parameters
2798 * have already been removed from the domain when this function is called.
2800 static struct pet_stmt *remove_nested_parameters(struct pet_stmt *stmt)
2802 if (!stmt)
2803 return NULL;
2804 stmt->schedule = remove_nested_parameters(stmt->schedule);
2805 stmt->body = pet_expr_foreach_access(stmt->body,
2806 &access_remove_nested_parameters, NULL);
2807 if (!stmt->schedule || !stmt->body)
2808 goto error;
2809 for (int i = 0; i < stmt->n_arg; ++i) {
2810 stmt->args[i] = pet_expr_foreach_access(stmt->args[i],
2811 &access_remove_nested_parameters, NULL);
2812 if (!stmt->args[i])
2813 goto error;
2816 return stmt;
2817 error:
2818 pet_stmt_free(stmt);
2819 return NULL;
2822 /* For each nested access parameter in the domain of "stmt",
2823 * construct a corresponding pet_expr, place it in stmt->args and
2824 * record its position in "param2pos".
2825 * n is the number of nested access parameters.
2827 struct pet_stmt *PetScan::extract_nested(struct pet_stmt *stmt, int n,
2828 std::map<int,int> &param2pos)
2830 isl_space *space;
2831 unsigned n_arg;
2832 struct pet_expr **args;
2834 n_arg = stmt->n_arg;
2835 args = isl_realloc_array(ctx, stmt->args, struct pet_expr *, n_arg + n);
2836 if (!args)
2837 goto error;
2838 stmt->args = args;
2839 stmt->n_arg += n;
2841 space = isl_set_get_space(stmt->domain);
2842 n = extract_nested(space, n_arg, stmt->args, param2pos);
2843 isl_space_free(space);
2845 if (n < 0)
2846 goto error;
2848 stmt->n_arg = n;
2849 return stmt;
2850 error:
2851 pet_stmt_free(stmt);
2852 return NULL;
2855 /* Look for parameters in the iteration domain of "stmt" that
2856 * refer to nested accesses. In particular, these are
2857 * parameters with no name.
2859 * If there are any such parameters, then as many extra variables
2860 * (after identifying identical nested accesses) are added to the
2861 * range of the map wrapped inside the domain.
2862 * If the original domain is not a wrapped map, then a new wrapped
2863 * map is created with zero output dimensions.
2864 * The parameters are then equated to the corresponding output dimensions
2865 * and subsequently projected out, from the iteration domain,
2866 * the schedule and the access relations.
2867 * For each of the output dimensions, a corresponding argument
2868 * expression is added. Initially they are created with
2869 * a zero-dimensional domain, so they have to be embedded
2870 * in the current iteration domain.
2871 * param2pos maps the position of the parameter to the position
2872 * of the corresponding output dimension in the wrapped map.
2874 struct pet_stmt *PetScan::resolve_nested(struct pet_stmt *stmt)
2876 int n;
2877 int nparam;
2878 unsigned n_arg;
2879 isl_map *map;
2880 std::map<int,int> param2pos;
2882 if (!stmt)
2883 return NULL;
2885 n = n_nested_parameter(stmt->domain);
2886 if (n == 0)
2887 return stmt;
2889 n_arg = stmt->n_arg;
2890 stmt = extract_nested(stmt, n, param2pos);
2891 if (!stmt)
2892 return NULL;
2894 n = stmt->n_arg - n_arg;
2895 nparam = isl_set_dim(stmt->domain, isl_dim_param);
2896 if (isl_set_is_wrapping(stmt->domain))
2897 map = isl_set_unwrap(stmt->domain);
2898 else
2899 map = isl_map_from_domain(stmt->domain);
2900 map = isl_map_add_dims(map, isl_dim_out, n);
2902 for (int i = nparam - 1; i >= 0; --i) {
2903 isl_id *id;
2905 if (!is_nested_parameter(map, i))
2906 continue;
2908 id = isl_map_get_tuple_id(stmt->args[param2pos[i]]->acc.access,
2909 isl_dim_out);
2910 map = isl_map_set_dim_id(map, isl_dim_out, param2pos[i], id);
2911 map = isl_map_equate(map, isl_dim_param, i, isl_dim_out,
2912 param2pos[i]);
2913 map = isl_map_project_out(map, isl_dim_param, i, 1);
2916 stmt->domain = isl_map_wrap(map);
2918 map = isl_set_unwrap(isl_set_copy(stmt->domain));
2919 map = isl_map_from_range(isl_map_domain(map));
2920 for (int pos = n_arg; pos < stmt->n_arg; ++pos)
2921 stmt->args[pos] = embed(stmt->args[pos], map);
2922 isl_map_free(map);
2924 stmt = remove_nested_parameters(stmt);
2926 return stmt;
2927 error:
2928 pet_stmt_free(stmt);
2929 return NULL;
2932 /* For each statement in "scop", move the parameters that correspond
2933 * to nested access into the ranges of the domains and create
2934 * corresponding argument expressions.
2936 struct pet_scop *PetScan::resolve_nested(struct pet_scop *scop)
2938 if (!scop)
2939 return NULL;
2941 for (int i = 0; i < scop->n_stmt; ++i) {
2942 scop->stmts[i] = resolve_nested(scop->stmts[i]);
2943 if (!scop->stmts[i])
2944 goto error;
2947 return scop;
2948 error:
2949 pet_scop_free(scop);
2950 return NULL;
2953 /* Does "space" involve any parameters that refer to nested
2954 * accesses, i.e., parameters with no name?
2956 static bool has_nested(__isl_keep isl_space *space)
2958 int nparam;
2960 nparam = isl_space_dim(space, isl_dim_param);
2961 for (int i = 0; i < nparam; ++i)
2962 if (is_nested_parameter(space, i))
2963 return true;
2965 return false;
2968 /* Does "pa" involve any parameters that refer to nested
2969 * accesses, i.e., parameters with no name?
2971 static bool has_nested(__isl_keep isl_pw_aff *pa)
2973 isl_space *space;
2974 bool nested;
2976 space = isl_pw_aff_get_space(pa);
2977 nested = has_nested(space);
2978 isl_space_free(space);
2980 return nested;
2983 /* Given an access expression "expr", is the variable accessed by
2984 * "expr" assigned anywhere inside "scop"?
2986 static bool is_assigned(pet_expr *expr, pet_scop *scop)
2988 bool assigned = false;
2989 isl_id *id;
2991 id = isl_map_get_tuple_id(expr->acc.access, isl_dim_out);
2992 assigned = pet_scop_writes(scop, id);
2993 isl_id_free(id);
2995 return assigned;
2998 /* Are all nested access parameters in "pa" allowed given "scop".
2999 * In particular, is none of them written by anywhere inside "scop".
3001 bool PetScan::is_nested_allowed(__isl_keep isl_pw_aff *pa, pet_scop *scop)
3003 int nparam;
3005 nparam = isl_pw_aff_dim(pa, isl_dim_param);
3006 for (int i = 0; i < nparam; ++i) {
3007 Expr *nested;
3008 isl_id *id = isl_pw_aff_get_dim_id(pa, isl_dim_param, i);
3009 pet_expr *expr;
3010 bool allowed;
3012 if (!is_nested_parameter(id)) {
3013 isl_id_free(id);
3014 continue;
3017 nested = (Expr *) isl_id_get_user(id);
3018 expr = extract_expr(nested);
3019 allowed = expr && expr->type == pet_expr_access &&
3020 !is_assigned(expr, scop);
3022 pet_expr_free(expr);
3023 isl_id_free(id);
3025 if (!allowed)
3026 return false;
3029 return true;
3032 /* Construct a pet_scop for an if statement.
3034 * If the condition fits the pattern of a conditional assignment,
3035 * then it is handled by extract_conditional_assignment.
3036 * Otherwise, we do the following.
3038 * If the condition is affine, then the condition is added
3039 * to the iteration domains of the then branch, while the
3040 * opposite of the condition in added to the iteration domains
3041 * of the else branch, if any.
3042 * We allow the condition to be dynamic, i.e., to refer to
3043 * scalars or array elements that may be written to outside
3044 * of the given if statement. These nested accesses are then represented
3045 * as output dimensions in the wrapping iteration domain.
3046 * If it also written _inside_ the then or else branch, then
3047 * we treat the condition as non-affine.
3048 * As explained below, this will introduce an extra statement.
3049 * For aesthetic reasons, we want this statement to have a statement
3050 * number that is lower than those of the then and else branches.
3051 * In order to evaluate if will need such a statement, however, we
3052 * first construct scops for the then and else branches.
3053 * We therefore reserve a statement number if we might have to
3054 * introduce such an extra statement.
3056 * If the condition is not affine, then we create a separate
3057 * statement that writes the result of the condition to a virtual scalar.
3058 * A constraint requiring the value of this virtual scalar to be one
3059 * is added to the iteration domains of the then branch.
3060 * Similarly, a constraint requiring the value of this virtual scalar
3061 * to be zero is added to the iteration domains of the else branch, if any.
3062 * We adjust the schedules to ensure that the virtual scalar is written
3063 * before it is read.
3065 struct pet_scop *PetScan::extract(IfStmt *stmt)
3067 struct pet_scop *scop_then, *scop_else, *scop;
3068 assigned_value_cache cache(assigned_value);
3069 isl_map *test_access = NULL;
3070 isl_pw_aff *cond;
3071 int stmt_id;
3073 scop = extract_conditional_assignment(stmt);
3074 if (scop)
3075 return scop;
3077 cond = try_extract_nested_condition(stmt->getCond());
3078 if (allow_nested && (!cond || has_nested(cond)))
3079 stmt_id = n_stmt++;
3081 scop_then = extract(stmt->getThen());
3083 if (stmt->getElse()) {
3084 scop_else = extract(stmt->getElse());
3085 if (autodetect) {
3086 if (scop_then && !scop_else) {
3087 partial = true;
3088 isl_pw_aff_free(cond);
3089 return scop_then;
3091 if (!scop_then && scop_else) {
3092 partial = true;
3093 isl_pw_aff_free(cond);
3094 return scop_else;
3099 if (cond &&
3100 (!is_nested_allowed(cond, scop_then) ||
3101 (stmt->getElse() && !is_nested_allowed(cond, scop_else)))) {
3102 isl_pw_aff_free(cond);
3103 cond = NULL;
3105 if (allow_nested && !cond) {
3106 int save_n_stmt = n_stmt;
3107 test_access = create_test_access(ctx, n_test++);
3108 n_stmt = stmt_id;
3109 scop = extract_non_affine_condition(stmt->getCond(),
3110 isl_map_copy(test_access));
3111 n_stmt = save_n_stmt;
3112 scop = scop_add_array(scop, test_access, ast_context);
3113 if (!scop) {
3114 pet_scop_free(scop_then);
3115 pet_scop_free(scop_else);
3116 isl_map_free(test_access);
3117 return NULL;
3121 if (!scop) {
3122 isl_set *set;
3124 if (!cond)
3125 cond = extract_condition(stmt->getCond());
3126 set = isl_pw_aff_non_zero_set(cond);
3127 scop = pet_scop_restrict(scop_then, isl_set_copy(set));
3129 if (stmt->getElse()) {
3130 set = isl_set_complement(set);
3131 scop_else = pet_scop_restrict(scop_else, set);
3132 scop = pet_scop_add(ctx, scop, scop_else);
3133 } else
3134 isl_set_free(set);
3135 scop = resolve_nested(scop);
3136 } else {
3137 scop = pet_scop_prefix(scop, 0);
3138 scop_then = pet_scop_prefix(scop_then, 1);
3139 scop_then = pet_scop_filter(scop_then,
3140 isl_map_copy(test_access), 1);
3141 scop = pet_scop_add(ctx, scop, scop_then);
3142 if (stmt->getElse()) {
3143 scop_else = pet_scop_prefix(scop_else, 1);
3144 scop_else = pet_scop_filter(scop_else, test_access, 0);
3145 scop = pet_scop_add(ctx, scop, scop_else);
3146 } else
3147 isl_map_free(test_access);
3150 return scop;
3153 /* Try and construct a pet_scop for a label statement.
3154 * We currently only allow labels on expression statements.
3156 struct pet_scop *PetScan::extract(LabelStmt *stmt)
3158 isl_id *label;
3159 Stmt *sub;
3161 sub = stmt->getSubStmt();
3162 if (!isa<Expr>(sub)) {
3163 unsupported(stmt);
3164 return NULL;
3167 label = isl_id_alloc(ctx, stmt->getName(), NULL);
3169 return extract(sub, extract_expr(cast<Expr>(sub)), label);
3172 /* Try and construct a pet_scop corresponding to "stmt".
3174 struct pet_scop *PetScan::extract(Stmt *stmt)
3176 if (isa<Expr>(stmt))
3177 return extract(stmt, extract_expr(cast<Expr>(stmt)));
3179 switch (stmt->getStmtClass()) {
3180 case Stmt::WhileStmtClass:
3181 return extract(cast<WhileStmt>(stmt));
3182 case Stmt::ForStmtClass:
3183 return extract_for(cast<ForStmt>(stmt));
3184 case Stmt::IfStmtClass:
3185 return extract(cast<IfStmt>(stmt));
3186 case Stmt::CompoundStmtClass:
3187 return extract(cast<CompoundStmt>(stmt));
3188 case Stmt::LabelStmtClass:
3189 return extract(cast<LabelStmt>(stmt));
3190 default:
3191 unsupported(stmt);
3194 return NULL;
3197 /* Try and construct a pet_scop corresponding to (part of)
3198 * a sequence of statements.
3200 struct pet_scop *PetScan::extract(StmtRange stmt_range)
3202 pet_scop *scop;
3203 StmtIterator i;
3204 int j;
3205 bool partial_range = false;
3207 scop = pet_scop_empty(ctx);
3208 for (i = stmt_range.first, j = 0; i != stmt_range.second; ++i, ++j) {
3209 Stmt *child = *i;
3210 struct pet_scop *scop_i;
3211 scop_i = extract(child);
3212 if (scop && partial) {
3213 pet_scop_free(scop_i);
3214 break;
3216 scop_i = pet_scop_prefix(scop_i, j);
3217 if (autodetect) {
3218 if (scop_i)
3219 scop = pet_scop_add(ctx, scop, scop_i);
3220 else
3221 partial_range = true;
3222 if (scop->n_stmt != 0 && !scop_i)
3223 partial = true;
3224 } else {
3225 scop = pet_scop_add(ctx, scop, scop_i);
3227 if (partial)
3228 break;
3231 if (scop && partial_range)
3232 partial = true;
3234 return scop;
3237 /* Check if the scop marked by the user is exactly this Stmt
3238 * or part of this Stmt.
3239 * If so, return a pet_scop corresponding to the marked region.
3240 * Otherwise, return NULL.
3242 struct pet_scop *PetScan::scan(Stmt *stmt)
3244 SourceManager &SM = PP.getSourceManager();
3245 unsigned start_off, end_off;
3247 start_off = SM.getFileOffset(stmt->getLocStart());
3248 end_off = SM.getFileOffset(stmt->getLocEnd());
3250 if (start_off > loc.end)
3251 return NULL;
3252 if (end_off < loc.start)
3253 return NULL;
3254 if (start_off >= loc.start && end_off <= loc.end) {
3255 return extract(stmt);
3258 StmtIterator start;
3259 for (start = stmt->child_begin(); start != stmt->child_end(); ++start) {
3260 Stmt *child = *start;
3261 if (!child)
3262 continue;
3263 start_off = SM.getFileOffset(child->getLocStart());
3264 end_off = SM.getFileOffset(child->getLocEnd());
3265 if (start_off < loc.start && end_off > loc.end)
3266 return scan(child);
3267 if (start_off >= loc.start)
3268 break;
3271 StmtIterator end;
3272 for (end = start; end != stmt->child_end(); ++end) {
3273 Stmt *child = *end;
3274 start_off = SM.getFileOffset(child->getLocStart());
3275 if (start_off >= loc.end)
3276 break;
3279 return extract(StmtRange(start, end));
3282 /* Set the size of index "pos" of "array" to "size".
3283 * In particular, add a constraint of the form
3285 * i_pos < size
3287 * to array->extent and a constraint of the form
3289 * size >= 0
3291 * to array->context.
3293 static struct pet_array *update_size(struct pet_array *array, int pos,
3294 __isl_take isl_pw_aff *size)
3296 isl_set *valid;
3297 isl_set *univ;
3298 isl_set *bound;
3299 isl_space *dim;
3300 isl_aff *aff;
3301 isl_pw_aff *index;
3302 isl_id *id;
3304 valid = isl_pw_aff_nonneg_set(isl_pw_aff_copy(size));
3305 array->context = isl_set_intersect(array->context, valid);
3307 dim = isl_set_get_space(array->extent);
3308 aff = isl_aff_zero_on_domain(isl_local_space_from_space(dim));
3309 aff = isl_aff_add_coefficient_si(aff, isl_dim_in, pos, 1);
3310 univ = isl_set_universe(isl_aff_get_domain_space(aff));
3311 index = isl_pw_aff_alloc(univ, aff);
3313 size = isl_pw_aff_add_dims(size, isl_dim_in,
3314 isl_set_dim(array->extent, isl_dim_set));
3315 id = isl_set_get_tuple_id(array->extent);
3316 size = isl_pw_aff_set_tuple_id(size, isl_dim_in, id);
3317 bound = isl_pw_aff_lt_set(index, size);
3319 array->extent = isl_set_intersect(array->extent, bound);
3321 if (!array->context || !array->extent)
3322 goto error;
3324 return array;
3325 error:
3326 pet_array_free(array);
3327 return NULL;
3330 /* Figure out the size of the array at position "pos" and all
3331 * subsequent positions from "type" and update "array" accordingly.
3333 struct pet_array *PetScan::set_upper_bounds(struct pet_array *array,
3334 const Type *type, int pos)
3336 const ArrayType *atype;
3337 isl_pw_aff *size;
3339 if (!array)
3340 return NULL;
3342 if (type->isPointerType()) {
3343 type = type->getPointeeType().getTypePtr();
3344 return set_upper_bounds(array, type, pos + 1);
3346 if (!type->isArrayType())
3347 return array;
3349 type = type->getCanonicalTypeInternal().getTypePtr();
3350 atype = cast<ArrayType>(type);
3352 if (type->isConstantArrayType()) {
3353 const ConstantArrayType *ca = cast<ConstantArrayType>(atype);
3354 size = extract_affine(ca->getSize());
3355 array = update_size(array, pos, size);
3356 } else if (type->isVariableArrayType()) {
3357 const VariableArrayType *vla = cast<VariableArrayType>(atype);
3358 size = extract_affine(vla->getSizeExpr());
3359 array = update_size(array, pos, size);
3362 type = atype->getElementType().getTypePtr();
3364 return set_upper_bounds(array, type, pos + 1);
3367 /* Construct and return a pet_array corresponding to the variable "decl".
3368 * In particular, initialize array->extent to
3370 * { name[i_1,...,i_d] : i_1,...,i_d >= 0 }
3372 * and then call set_upper_bounds to set the upper bounds on the indices
3373 * based on the type of the variable.
3375 struct pet_array *PetScan::extract_array(isl_ctx *ctx, ValueDecl *decl)
3377 struct pet_array *array;
3378 QualType qt = decl->getType();
3379 const Type *type = qt.getTypePtr();
3380 int depth = array_depth(type);
3381 QualType base = base_type(qt);
3382 string name;
3383 isl_id *id;
3384 isl_space *dim;
3386 array = isl_calloc_type(ctx, struct pet_array);
3387 if (!array)
3388 return NULL;
3390 id = isl_id_alloc(ctx, decl->getName().str().c_str(), decl);
3391 dim = isl_space_set_alloc(ctx, 0, depth);
3392 dim = isl_space_set_tuple_id(dim, isl_dim_set, id);
3394 array->extent = isl_set_nat_universe(dim);
3396 dim = isl_space_params_alloc(ctx, 0);
3397 array->context = isl_set_universe(dim);
3399 array = set_upper_bounds(array, type, 0);
3400 if (!array)
3401 return NULL;
3403 name = base.getAsString();
3404 array->element_type = strdup(name.c_str());
3405 array->element_size = decl->getASTContext().getTypeInfo(base).first / 8;
3407 return array;
3410 /* Construct a list of pet_arrays, one for each array (or scalar)
3411 * accessed inside "scop" add this list to "scop" and return the result.
3413 * The context of "scop" is updated with the intesection of
3414 * the contexts of all arrays, i.e., constraints on the parameters
3415 * that ensure that the arrays have a valid (non-negative) size.
3417 struct pet_scop *PetScan::scan_arrays(struct pet_scop *scop)
3419 int i;
3420 set<ValueDecl *> arrays;
3421 set<ValueDecl *>::iterator it;
3422 int n_array;
3423 struct pet_array **scop_arrays;
3425 if (!scop)
3426 return NULL;
3428 pet_scop_collect_arrays(scop, arrays);
3429 if (arrays.size() == 0)
3430 return scop;
3432 n_array = scop->n_array;
3434 scop_arrays = isl_realloc_array(ctx, scop->arrays, struct pet_array *,
3435 n_array + arrays.size());
3436 if (!scop_arrays)
3437 goto error;
3438 scop->arrays = scop_arrays;
3440 for (it = arrays.begin(), i = 0; it != arrays.end(); ++it, ++i) {
3441 struct pet_array *array;
3442 scop->arrays[n_array + i] = array = extract_array(ctx, *it);
3443 if (!scop->arrays[n_array + i])
3444 goto error;
3445 scop->n_array++;
3446 scop->context = isl_set_intersect(scop->context,
3447 isl_set_copy(array->context));
3448 if (!scop->context)
3449 goto error;
3452 return scop;
3453 error:
3454 pet_scop_free(scop);
3455 return NULL;
3458 /* Bound all parameters in scop->context to the possible values
3459 * of the corresponding C variable.
3461 static struct pet_scop *add_parameter_bounds(struct pet_scop *scop)
3463 int n;
3465 if (!scop)
3466 return NULL;
3468 n = isl_set_dim(scop->context, isl_dim_param);
3469 for (int i = 0; i < n; ++i) {
3470 isl_id *id;
3471 ValueDecl *decl;
3473 id = isl_set_get_dim_id(scop->context, isl_dim_param, i);
3474 decl = (ValueDecl *) isl_id_get_user(id);
3475 isl_id_free(id);
3477 scop->context = set_parameter_bounds(scop->context, i, decl);
3479 if (!scop->context)
3480 goto error;
3483 return scop;
3484 error:
3485 pet_scop_free(scop);
3486 return NULL;
3489 /* Construct a pet_scop from the given function.
3491 struct pet_scop *PetScan::scan(FunctionDecl *fd)
3493 pet_scop *scop;
3494 Stmt *stmt;
3496 stmt = fd->getBody();
3498 if (autodetect)
3499 scop = extract(stmt);
3500 else
3501 scop = scan(stmt);
3502 scop = pet_scop_detect_parameter_accesses(scop);
3503 scop = scan_arrays(scop);
3504 scop = add_parameter_bounds(scop);
3505 scop = pet_scop_gist(scop, value_bounds);
3507 return scop;