scan.cc: PetScan::extract_for: use identity_map instead of open-coded version
[pet.git] / scan.cc
blob98094ea2a0698ab20911e1997ca47732bee90b8f
1 /*
2 * Copyright 2011 Leiden University. All rights reserved.
3 * Copyright 2012 Ecole Normale Superieure. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above
13 * copyright notice, this list of conditions and the following
14 * disclaimer in the documentation and/or other materials provided
15 * with the distribution.
17 * THIS SOFTWARE IS PROVIDED BY LEIDEN UNIVERSITY ''AS IS'' AND ANY
18 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
20 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL LEIDEN UNIVERSITY OR
21 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
22 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
23 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
24 * OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 * The views and conclusions contained in the software and documentation
30 * are those of the authors and should not be interpreted as
31 * representing official policies, either expressed or implied, of
32 * Leiden University.
33 */
35 #include <string.h>
36 #include <set>
37 #include <map>
38 #include <iostream>
39 #include <llvm/Support/raw_ostream.h>
40 #include <clang/AST/ASTContext.h>
41 #include <clang/AST/ASTDiagnostic.h>
42 #include <clang/AST/Expr.h>
43 #include <clang/AST/RecursiveASTVisitor.h>
45 #include <isl/id.h>
46 #include <isl/space.h>
47 #include <isl/aff.h>
48 #include <isl/set.h>
50 #include "options.h"
51 #include "scan.h"
52 #include "scop.h"
53 #include "scop_plus.h"
55 #include "config.h"
57 using namespace std;
58 using namespace clang;
60 #if defined(DECLREFEXPR_CREATE_REQUIRES_BOOL)
61 static DeclRefExpr *create_DeclRefExpr(VarDecl *var)
63 return DeclRefExpr::Create(var->getASTContext(), var->getQualifierLoc(),
64 SourceLocation(), var, false, var->getInnerLocStart(),
65 var->getType(), VK_LValue);
67 #elif defined(DECLREFEXPR_CREATE_REQUIRES_SOURCELOCATION)
68 static DeclRefExpr *create_DeclRefExpr(VarDecl *var)
70 return DeclRefExpr::Create(var->getASTContext(), var->getQualifierLoc(),
71 SourceLocation(), var, var->getInnerLocStart(), var->getType(),
72 VK_LValue);
74 #else
75 static DeclRefExpr *create_DeclRefExpr(VarDecl *var)
77 return DeclRefExpr::Create(var->getASTContext(), var->getQualifierLoc(),
78 var, var->getInnerLocStart(), var->getType(), VK_LValue);
80 #endif
82 /* Check if the element type corresponding to the given array type
83 * has a const qualifier.
85 static bool const_base(QualType qt)
87 const Type *type = qt.getTypePtr();
89 if (type->isPointerType())
90 return const_base(type->getPointeeType());
91 if (type->isArrayType()) {
92 const ArrayType *atype;
93 type = type->getCanonicalTypeInternal().getTypePtr();
94 atype = cast<ArrayType>(type);
95 return const_base(atype->getElementType());
98 return qt.isConstQualified();
101 /* Mark "decl" as having an unknown value in "assigned_value".
103 * If no (known or unknown) value was assigned to "decl" before,
104 * then it may have been treated as a parameter before and may
105 * therefore appear in a value assigned to another variable.
106 * If so, this assignment needs to be turned into an unknown value too.
108 static void clear_assignment(map<ValueDecl *, isl_pw_aff *> &assigned_value,
109 ValueDecl *decl)
111 map<ValueDecl *, isl_pw_aff *>::iterator it;
113 it = assigned_value.find(decl);
115 assigned_value[decl] = NULL;
117 if (it == assigned_value.end())
118 return;
120 for (it = assigned_value.begin(); it != assigned_value.end(); ++it) {
121 isl_pw_aff *pa = it->second;
122 int nparam = isl_pw_aff_dim(pa, isl_dim_param);
124 for (int i = 0; i < nparam; ++i) {
125 isl_id *id;
127 if (!isl_pw_aff_has_dim_id(pa, isl_dim_param, i))
128 continue;
129 id = isl_pw_aff_get_dim_id(pa, isl_dim_param, i);
130 if (isl_id_get_user(id) == decl)
131 it->second = NULL;
132 isl_id_free(id);
137 /* Look for any assignments to scalar variables in part of the parse
138 * tree and set assigned_value to NULL for each of them.
139 * Also reset assigned_value if the address of a scalar variable
140 * is being taken. As an exception, if the address is passed to a function
141 * that is declared to receive a const pointer, then assigned_value is
142 * not reset.
144 * This ensures that we won't use any previously stored value
145 * in the current subtree and its parents.
147 struct clear_assignments : RecursiveASTVisitor<clear_assignments> {
148 map<ValueDecl *, isl_pw_aff *> &assigned_value;
149 set<UnaryOperator *> skip;
151 clear_assignments(map<ValueDecl *, isl_pw_aff *> &assigned_value) :
152 assigned_value(assigned_value) {}
154 /* Check for "address of" operators whose value is passed
155 * to a const pointer argument and add them to "skip", so that
156 * we can skip them in VisitUnaryOperator.
158 bool VisitCallExpr(CallExpr *expr) {
159 FunctionDecl *fd;
160 fd = expr->getDirectCallee();
161 if (!fd)
162 return true;
163 for (int i = 0; i < expr->getNumArgs(); ++i) {
164 Expr *arg = expr->getArg(i);
165 UnaryOperator *op;
166 if (arg->getStmtClass() == Stmt::ImplicitCastExprClass) {
167 ImplicitCastExpr *ice;
168 ice = cast<ImplicitCastExpr>(arg);
169 arg = ice->getSubExpr();
171 if (arg->getStmtClass() != Stmt::UnaryOperatorClass)
172 continue;
173 op = cast<UnaryOperator>(arg);
174 if (op->getOpcode() != UO_AddrOf)
175 continue;
176 if (const_base(fd->getParamDecl(i)->getType()))
177 skip.insert(op);
179 return true;
182 bool VisitUnaryOperator(UnaryOperator *expr) {
183 Expr *arg;
184 DeclRefExpr *ref;
185 ValueDecl *decl;
187 switch (expr->getOpcode()) {
188 case UO_AddrOf:
189 case UO_PostInc:
190 case UO_PostDec:
191 case UO_PreInc:
192 case UO_PreDec:
193 break;
194 default:
195 return true;
197 if (skip.find(expr) != skip.end())
198 return true;
200 arg = expr->getSubExpr();
201 if (arg->getStmtClass() != Stmt::DeclRefExprClass)
202 return true;
203 ref = cast<DeclRefExpr>(arg);
204 decl = ref->getDecl();
205 clear_assignment(assigned_value, decl);
206 return true;
209 bool VisitBinaryOperator(BinaryOperator *expr) {
210 Expr *lhs;
211 DeclRefExpr *ref;
212 ValueDecl *decl;
214 if (!expr->isAssignmentOp())
215 return true;
216 lhs = expr->getLHS();
217 if (lhs->getStmtClass() != Stmt::DeclRefExprClass)
218 return true;
219 ref = cast<DeclRefExpr>(lhs);
220 decl = ref->getDecl();
221 clear_assignment(assigned_value, decl);
222 return true;
226 /* Keep a copy of the currently assigned values.
228 * Any variable that is assigned a value inside the current scope
229 * is removed again when we leave the scope (either because it wasn't
230 * stored in the cache or because it has a different value in the cache).
232 struct assigned_value_cache {
233 map<ValueDecl *, isl_pw_aff *> &assigned_value;
234 map<ValueDecl *, isl_pw_aff *> cache;
236 assigned_value_cache(map<ValueDecl *, isl_pw_aff *> &assigned_value) :
237 assigned_value(assigned_value), cache(assigned_value) {}
238 ~assigned_value_cache() {
239 map<ValueDecl *, isl_pw_aff *>::iterator it = cache.begin();
240 for (it = assigned_value.begin(); it != assigned_value.end();
241 ++it) {
242 if (!it->second ||
243 (cache.find(it->first) != cache.end() &&
244 cache[it->first] != it->second))
245 cache[it->first] = NULL;
247 assigned_value = cache;
251 /* Insert an expression into the collection of expressions,
252 * provided it is not already in there.
253 * The isl_pw_affs are freed in the destructor.
255 void PetScan::insert_expression(__isl_take isl_pw_aff *expr)
257 std::set<isl_pw_aff *>::iterator it;
259 if (expressions.find(expr) == expressions.end())
260 expressions.insert(expr);
261 else
262 isl_pw_aff_free(expr);
265 PetScan::~PetScan()
267 std::set<isl_pw_aff *>::iterator it;
269 for (it = expressions.begin(); it != expressions.end(); ++it)
270 isl_pw_aff_free(*it);
272 isl_union_map_free(value_bounds);
275 /* Called if we found something we (currently) cannot handle.
276 * We'll provide more informative warnings later.
278 * We only actually complain if autodetect is false.
280 void PetScan::unsupported(Stmt *stmt, const char *msg)
282 if (options->autodetect)
283 return;
285 SourceLocation loc = stmt->getLocStart();
286 DiagnosticsEngine &diag = PP.getDiagnostics();
287 unsigned id = diag.getCustomDiagID(DiagnosticsEngine::Warning,
288 msg ? msg : "unsupported");
289 DiagnosticBuilder B = diag.Report(loc, id) << stmt->getSourceRange();
292 /* Extract an integer from "expr".
294 __isl_give isl_val *PetScan::extract_int(isl_ctx *ctx, IntegerLiteral *expr)
296 const Type *type = expr->getType().getTypePtr();
297 int is_signed = type->hasSignedIntegerRepresentation();
298 llvm::APInt val = expr->getValue();
299 int is_negative = is_signed && val.isNegative();
300 isl_val *v;
302 if (is_negative)
303 val = -val;
305 v = extract_unsigned(ctx, val);
307 if (is_negative)
308 v = isl_val_neg(v);
309 return v;
312 /* Extract an integer from "val", which assumed to be non-negative.
314 __isl_give isl_val *PetScan::extract_unsigned(isl_ctx *ctx,
315 const llvm::APInt &val)
317 unsigned n;
318 const uint64_t *data;
320 data = val.getRawData();
321 n = val.getNumWords();
322 return isl_val_int_from_chunks(ctx, n, sizeof(uint64_t), data);
325 /* Extract an integer from "expr".
326 * Return NULL if "expr" does not (obviously) represent an integer.
328 __isl_give isl_val *PetScan::extract_int(clang::ParenExpr *expr)
330 return extract_int(expr->getSubExpr());
333 /* Extract an integer from "expr".
334 * Return NULL if "expr" does not (obviously) represent an integer.
336 __isl_give isl_val *PetScan::extract_int(clang::Expr *expr)
338 if (expr->getStmtClass() == Stmt::IntegerLiteralClass)
339 return extract_int(ctx, cast<IntegerLiteral>(expr));
340 if (expr->getStmtClass() == Stmt::ParenExprClass)
341 return extract_int(cast<ParenExpr>(expr));
343 unsupported(expr);
344 return NULL;
347 /* Extract an affine expression from the IntegerLiteral "expr".
349 __isl_give isl_pw_aff *PetScan::extract_affine(IntegerLiteral *expr)
351 isl_space *dim = isl_space_params_alloc(ctx, 0);
352 isl_local_space *ls = isl_local_space_from_space(isl_space_copy(dim));
353 isl_aff *aff = isl_aff_zero_on_domain(ls);
354 isl_set *dom = isl_set_universe(dim);
355 isl_val *v;
357 v = extract_int(expr);
358 aff = isl_aff_add_constant_val(aff, v);
360 return isl_pw_aff_alloc(dom, aff);
363 /* Extract an affine expression from the APInt "val", which is assumed
364 * to be non-negative.
366 __isl_give isl_pw_aff *PetScan::extract_affine(const llvm::APInt &val)
368 isl_space *dim = isl_space_params_alloc(ctx, 0);
369 isl_local_space *ls = isl_local_space_from_space(isl_space_copy(dim));
370 isl_aff *aff = isl_aff_zero_on_domain(ls);
371 isl_set *dom = isl_set_universe(dim);
372 isl_val *v;
374 v = extract_unsigned(ctx, val);
375 aff = isl_aff_add_constant_val(aff, v);
377 return isl_pw_aff_alloc(dom, aff);
380 __isl_give isl_pw_aff *PetScan::extract_affine(ImplicitCastExpr *expr)
382 return extract_affine(expr->getSubExpr());
385 static unsigned get_type_size(ValueDecl *decl)
387 return decl->getASTContext().getIntWidth(decl->getType());
390 /* Bound parameter "pos" of "set" to the possible values of "decl".
392 static __isl_give isl_set *set_parameter_bounds(__isl_take isl_set *set,
393 unsigned pos, ValueDecl *decl)
395 unsigned width;
396 isl_ctx *ctx;
397 isl_val *bound;
399 ctx = isl_set_get_ctx(set);
400 width = get_type_size(decl);
401 if (decl->getType()->isUnsignedIntegerType()) {
402 set = isl_set_lower_bound_si(set, isl_dim_param, pos, 0);
403 bound = isl_val_int_from_ui(ctx, width);
404 bound = isl_val_2exp(bound);
405 bound = isl_val_sub_ui(bound, 1);
406 set = isl_set_upper_bound_val(set, isl_dim_param, pos, bound);
407 } else {
408 bound = isl_val_int_from_ui(ctx, width - 1);
409 bound = isl_val_2exp(bound);
410 bound = isl_val_sub_ui(bound, 1);
411 set = isl_set_upper_bound_val(set, isl_dim_param, pos,
412 isl_val_copy(bound));
413 bound = isl_val_neg(bound);
414 bound = isl_val_sub_ui(bound, 1);
415 set = isl_set_lower_bound_val(set, isl_dim_param, pos, bound);
418 return set;
421 /* Extract an affine expression from the DeclRefExpr "expr".
423 * If the variable has been assigned a value, then we check whether
424 * we know what (affine) value was assigned.
425 * If so, we return this value. Otherwise we convert "expr"
426 * to an extra parameter (provided nesting_enabled is set).
428 * Otherwise, we simply return an expression that is equal
429 * to a parameter corresponding to the referenced variable.
431 __isl_give isl_pw_aff *PetScan::extract_affine(DeclRefExpr *expr)
433 ValueDecl *decl = expr->getDecl();
434 const Type *type = decl->getType().getTypePtr();
435 isl_id *id;
436 isl_space *dim;
437 isl_aff *aff;
438 isl_set *dom;
440 if (!type->isIntegerType()) {
441 unsupported(expr);
442 return NULL;
445 if (assigned_value.find(decl) != assigned_value.end()) {
446 if (assigned_value[decl])
447 return isl_pw_aff_copy(assigned_value[decl]);
448 else
449 return nested_access(expr);
452 id = isl_id_alloc(ctx, decl->getName().str().c_str(), decl);
453 dim = isl_space_params_alloc(ctx, 1);
455 dim = isl_space_set_dim_id(dim, isl_dim_param, 0, id);
457 dom = isl_set_universe(isl_space_copy(dim));
458 aff = isl_aff_zero_on_domain(isl_local_space_from_space(dim));
459 aff = isl_aff_add_coefficient_si(aff, isl_dim_param, 0, 1);
461 return isl_pw_aff_alloc(dom, aff);
464 /* Extract an affine expression from an integer division operation.
465 * In particular, if "expr" is lhs/rhs, then return
467 * lhs >= 0 ? floor(lhs/rhs) : ceil(lhs/rhs)
469 * The second argument (rhs) is required to be a (positive) integer constant.
471 __isl_give isl_pw_aff *PetScan::extract_affine_div(BinaryOperator *expr)
473 int is_cst;
474 isl_pw_aff *rhs, *lhs;
476 rhs = extract_affine(expr->getRHS());
477 is_cst = isl_pw_aff_is_cst(rhs);
478 if (is_cst < 0 || !is_cst) {
479 isl_pw_aff_free(rhs);
480 if (!is_cst)
481 unsupported(expr);
482 return NULL;
485 lhs = extract_affine(expr->getLHS());
487 return isl_pw_aff_tdiv_q(lhs, rhs);
490 /* Extract an affine expression from a modulo operation.
491 * In particular, if "expr" is lhs/rhs, then return
493 * lhs - rhs * (lhs >= 0 ? floor(lhs/rhs) : ceil(lhs/rhs))
495 * The second argument (rhs) is required to be a (positive) integer constant.
497 __isl_give isl_pw_aff *PetScan::extract_affine_mod(BinaryOperator *expr)
499 int is_cst;
500 isl_pw_aff *rhs, *lhs;
502 rhs = extract_affine(expr->getRHS());
503 is_cst = isl_pw_aff_is_cst(rhs);
504 if (is_cst < 0 || !is_cst) {
505 isl_pw_aff_free(rhs);
506 if (!is_cst)
507 unsupported(expr);
508 return NULL;
511 lhs = extract_affine(expr->getLHS());
513 return isl_pw_aff_tdiv_r(lhs, rhs);
516 /* Extract an affine expression from a multiplication operation.
517 * This is only allowed if at least one of the two arguments
518 * is a (piecewise) constant.
520 __isl_give isl_pw_aff *PetScan::extract_affine_mul(BinaryOperator *expr)
522 isl_pw_aff *lhs;
523 isl_pw_aff *rhs;
525 lhs = extract_affine(expr->getLHS());
526 rhs = extract_affine(expr->getRHS());
528 if (!isl_pw_aff_is_cst(lhs) && !isl_pw_aff_is_cst(rhs)) {
529 isl_pw_aff_free(lhs);
530 isl_pw_aff_free(rhs);
531 unsupported(expr);
532 return NULL;
535 return isl_pw_aff_mul(lhs, rhs);
538 /* Extract an affine expression from an addition or subtraction operation.
540 __isl_give isl_pw_aff *PetScan::extract_affine_add(BinaryOperator *expr)
542 isl_pw_aff *lhs;
543 isl_pw_aff *rhs;
545 lhs = extract_affine(expr->getLHS());
546 rhs = extract_affine(expr->getRHS());
548 switch (expr->getOpcode()) {
549 case BO_Add:
550 return isl_pw_aff_add(lhs, rhs);
551 case BO_Sub:
552 return isl_pw_aff_sub(lhs, rhs);
553 default:
554 isl_pw_aff_free(lhs);
555 isl_pw_aff_free(rhs);
556 return NULL;
561 /* Compute
563 * pwaff mod 2^width
565 static __isl_give isl_pw_aff *wrap(__isl_take isl_pw_aff *pwaff,
566 unsigned width)
568 isl_ctx *ctx;
569 isl_val *mod;
571 ctx = isl_pw_aff_get_ctx(pwaff);
572 mod = isl_val_int_from_ui(ctx, width);
573 mod = isl_val_2exp(mod);
575 pwaff = isl_pw_aff_mod_val(pwaff, mod);
577 return pwaff;
580 /* Limit the domain of "pwaff" to those elements where the function
581 * value satisfies
583 * 2^{width-1} <= pwaff < 2^{width-1}
585 static __isl_give isl_pw_aff *avoid_overflow(__isl_take isl_pw_aff *pwaff,
586 unsigned width)
588 isl_ctx *ctx;
589 isl_val *v;
590 isl_space *space = isl_pw_aff_get_domain_space(pwaff);
591 isl_local_space *ls = isl_local_space_from_space(space);
592 isl_aff *bound;
593 isl_set *dom;
594 isl_pw_aff *b;
596 ctx = isl_pw_aff_get_ctx(pwaff);
597 v = isl_val_int_from_ui(ctx, width - 1);
598 v = isl_val_2exp(v);
600 bound = isl_aff_zero_on_domain(ls);
601 bound = isl_aff_add_constant_val(bound, v);
602 b = isl_pw_aff_from_aff(bound);
604 dom = isl_pw_aff_lt_set(isl_pw_aff_copy(pwaff), isl_pw_aff_copy(b));
605 pwaff = isl_pw_aff_intersect_domain(pwaff, dom);
607 b = isl_pw_aff_neg(b);
608 dom = isl_pw_aff_ge_set(isl_pw_aff_copy(pwaff), b);
609 pwaff = isl_pw_aff_intersect_domain(pwaff, dom);
611 return pwaff;
614 /* Handle potential overflows on signed computations.
616 * If options->signed_overflow is set to PET_OVERFLOW_AVOID,
617 * the we adjust the domain of "pa" to avoid overflows.
619 __isl_give isl_pw_aff *PetScan::signed_overflow(__isl_take isl_pw_aff *pa,
620 unsigned width)
622 if (options->signed_overflow == PET_OVERFLOW_AVOID)
623 pa = avoid_overflow(pa, width);
625 return pa;
628 /* Return the piecewise affine expression "set ? 1 : 0" defined on "dom".
630 static __isl_give isl_pw_aff *indicator_function(__isl_take isl_set *set,
631 __isl_take isl_set *dom)
633 isl_pw_aff *pa;
634 pa = isl_set_indicator_function(set);
635 pa = isl_pw_aff_intersect_domain(pa, dom);
636 return pa;
639 /* Extract an affine expression from some binary operations.
640 * If the result of the expression is unsigned, then we wrap it
641 * based on the size of the type. Otherwise, we ensure that
642 * no overflow occurs.
644 __isl_give isl_pw_aff *PetScan::extract_affine(BinaryOperator *expr)
646 isl_pw_aff *res;
647 unsigned width;
649 switch (expr->getOpcode()) {
650 case BO_Add:
651 case BO_Sub:
652 res = extract_affine_add(expr);
653 break;
654 case BO_Div:
655 res = extract_affine_div(expr);
656 break;
657 case BO_Rem:
658 res = extract_affine_mod(expr);
659 break;
660 case BO_Mul:
661 res = extract_affine_mul(expr);
662 break;
663 case BO_LT:
664 case BO_LE:
665 case BO_GT:
666 case BO_GE:
667 case BO_EQ:
668 case BO_NE:
669 case BO_LAnd:
670 case BO_LOr:
671 return extract_condition(expr);
672 default:
673 unsupported(expr);
674 return NULL;
677 width = ast_context.getIntWidth(expr->getType());
678 if (expr->getType()->isUnsignedIntegerType())
679 res = wrap(res, width);
680 else
681 res = signed_overflow(res, width);
683 return res;
686 /* Extract an affine expression from a negation operation.
688 __isl_give isl_pw_aff *PetScan::extract_affine(UnaryOperator *expr)
690 if (expr->getOpcode() == UO_Minus)
691 return isl_pw_aff_neg(extract_affine(expr->getSubExpr()));
692 if (expr->getOpcode() == UO_LNot)
693 return extract_condition(expr);
695 unsupported(expr);
696 return NULL;
699 __isl_give isl_pw_aff *PetScan::extract_affine(ParenExpr *expr)
701 return extract_affine(expr->getSubExpr());
704 /* Extract an affine expression from some special function calls.
705 * In particular, we handle "min", "max", "ceild" and "floord".
706 * In case of the latter two, the second argument needs to be
707 * a (positive) integer constant.
709 __isl_give isl_pw_aff *PetScan::extract_affine(CallExpr *expr)
711 FunctionDecl *fd;
712 string name;
713 isl_pw_aff *aff1, *aff2;
715 fd = expr->getDirectCallee();
716 if (!fd) {
717 unsupported(expr);
718 return NULL;
721 name = fd->getDeclName().getAsString();
722 if (!(expr->getNumArgs() == 2 && name == "min") &&
723 !(expr->getNumArgs() == 2 && name == "max") &&
724 !(expr->getNumArgs() == 2 && name == "floord") &&
725 !(expr->getNumArgs() == 2 && name == "ceild")) {
726 unsupported(expr);
727 return NULL;
730 if (name == "min" || name == "max") {
731 aff1 = extract_affine(expr->getArg(0));
732 aff2 = extract_affine(expr->getArg(1));
734 if (name == "min")
735 aff1 = isl_pw_aff_min(aff1, aff2);
736 else
737 aff1 = isl_pw_aff_max(aff1, aff2);
738 } else if (name == "floord" || name == "ceild") {
739 isl_val *v;
740 Expr *arg2 = expr->getArg(1);
742 if (arg2->getStmtClass() != Stmt::IntegerLiteralClass) {
743 unsupported(expr);
744 return NULL;
746 aff1 = extract_affine(expr->getArg(0));
747 v = extract_int(cast<IntegerLiteral>(arg2));
748 aff1 = isl_pw_aff_scale_down_val(aff1, v);
749 if (name == "floord")
750 aff1 = isl_pw_aff_floor(aff1);
751 else
752 aff1 = isl_pw_aff_ceil(aff1);
753 } else {
754 unsupported(expr);
755 return NULL;
758 return aff1;
761 /* This method is called when we come across an access that is
762 * nested in what is supposed to be an affine expression.
763 * If nesting is allowed, we return a new parameter that corresponds
764 * to this nested access. Otherwise, we simply complain.
766 * Note that we currently don't allow nested accesses themselves
767 * to contain any nested accesses, so we check if we can extract
768 * the access without any nesting and complain if we can't.
770 * The new parameter is resolved in resolve_nested.
772 isl_pw_aff *PetScan::nested_access(Expr *expr)
774 isl_id *id;
775 isl_space *dim;
776 isl_aff *aff;
777 isl_set *dom;
778 isl_map *access;
780 if (!nesting_enabled) {
781 unsupported(expr);
782 return NULL;
785 allow_nested = false;
786 access = extract_access(expr);
787 allow_nested = true;
788 if (!access) {
789 unsupported(expr);
790 return NULL;
792 isl_map_free(access);
794 id = isl_id_alloc(ctx, NULL, expr);
795 dim = isl_space_params_alloc(ctx, 1);
797 dim = isl_space_set_dim_id(dim, isl_dim_param, 0, id);
799 dom = isl_set_universe(isl_space_copy(dim));
800 aff = isl_aff_zero_on_domain(isl_local_space_from_space(dim));
801 aff = isl_aff_add_coefficient_si(aff, isl_dim_param, 0, 1);
803 return isl_pw_aff_alloc(dom, aff);
806 /* Affine expressions are not supposed to contain array accesses,
807 * but if nesting is allowed, we return a parameter corresponding
808 * to the array access.
810 __isl_give isl_pw_aff *PetScan::extract_affine(ArraySubscriptExpr *expr)
812 return nested_access(expr);
815 /* Extract an affine expression from a conditional operation.
817 __isl_give isl_pw_aff *PetScan::extract_affine(ConditionalOperator *expr)
819 isl_pw_aff *cond, *lhs, *rhs, *res;
821 cond = extract_condition(expr->getCond());
822 lhs = extract_affine(expr->getTrueExpr());
823 rhs = extract_affine(expr->getFalseExpr());
825 return isl_pw_aff_cond(cond, lhs, rhs);
828 /* Extract an affine expression, if possible, from "expr".
829 * Otherwise return NULL.
831 __isl_give isl_pw_aff *PetScan::extract_affine(Expr *expr)
833 switch (expr->getStmtClass()) {
834 case Stmt::ImplicitCastExprClass:
835 return extract_affine(cast<ImplicitCastExpr>(expr));
836 case Stmt::IntegerLiteralClass:
837 return extract_affine(cast<IntegerLiteral>(expr));
838 case Stmt::DeclRefExprClass:
839 return extract_affine(cast<DeclRefExpr>(expr));
840 case Stmt::BinaryOperatorClass:
841 return extract_affine(cast<BinaryOperator>(expr));
842 case Stmt::UnaryOperatorClass:
843 return extract_affine(cast<UnaryOperator>(expr));
844 case Stmt::ParenExprClass:
845 return extract_affine(cast<ParenExpr>(expr));
846 case Stmt::CallExprClass:
847 return extract_affine(cast<CallExpr>(expr));
848 case Stmt::ArraySubscriptExprClass:
849 return extract_affine(cast<ArraySubscriptExpr>(expr));
850 case Stmt::ConditionalOperatorClass:
851 return extract_affine(cast<ConditionalOperator>(expr));
852 default:
853 unsupported(expr);
855 return NULL;
858 __isl_give isl_map *PetScan::extract_access(ImplicitCastExpr *expr)
860 return extract_access(expr->getSubExpr());
863 /* Return the depth of an array of the given type.
865 static int array_depth(const Type *type)
867 if (type->isPointerType())
868 return 1 + array_depth(type->getPointeeType().getTypePtr());
869 if (type->isArrayType()) {
870 const ArrayType *atype;
871 type = type->getCanonicalTypeInternal().getTypePtr();
872 atype = cast<ArrayType>(type);
873 return 1 + array_depth(atype->getElementType().getTypePtr());
875 return 0;
878 /* Return the element type of the given array type.
880 static QualType base_type(QualType qt)
882 const Type *type = qt.getTypePtr();
884 if (type->isPointerType())
885 return base_type(type->getPointeeType());
886 if (type->isArrayType()) {
887 const ArrayType *atype;
888 type = type->getCanonicalTypeInternal().getTypePtr();
889 atype = cast<ArrayType>(type);
890 return base_type(atype->getElementType());
892 return qt;
895 /* Extract an access relation from a reference to a variable.
896 * If the variable has name "A" and its type corresponds to an
897 * array of depth d, then the returned access relation is of the
898 * form
900 * { [] -> A[i_1,...,i_d] }
902 __isl_give isl_map *PetScan::extract_access(DeclRefExpr *expr)
904 return extract_access(expr->getDecl());
907 /* Extract an access relation from a variable.
908 * If the variable has name "A" and its type corresponds to an
909 * array of depth d, then the returned access relation is of the
910 * form
912 * { [] -> A[i_1,...,i_d] }
914 __isl_give isl_map *PetScan::extract_access(ValueDecl *decl)
916 int depth = array_depth(decl->getType().getTypePtr());
917 isl_id *id = isl_id_alloc(ctx, decl->getName().str().c_str(), decl);
918 isl_space *dim = isl_space_alloc(ctx, 0, 0, depth);
919 isl_map *access_rel;
921 dim = isl_space_set_tuple_id(dim, isl_dim_out, id);
923 access_rel = isl_map_universe(dim);
925 return access_rel;
928 /* Extract an access relation from an integer contant.
929 * If the value of the constant is "v", then the returned access relation
930 * is
932 * { [] -> [v] }
934 __isl_give isl_map *PetScan::extract_access(IntegerLiteral *expr)
936 return isl_map_from_range(isl_set_from_pw_aff(extract_affine(expr)));
939 /* Try and extract an access relation from the given Expr.
940 * Return NULL if it doesn't work out.
942 __isl_give isl_map *PetScan::extract_access(Expr *expr)
944 switch (expr->getStmtClass()) {
945 case Stmt::ImplicitCastExprClass:
946 return extract_access(cast<ImplicitCastExpr>(expr));
947 case Stmt::DeclRefExprClass:
948 return extract_access(cast<DeclRefExpr>(expr));
949 case Stmt::ArraySubscriptExprClass:
950 return extract_access(cast<ArraySubscriptExpr>(expr));
951 case Stmt::IntegerLiteralClass:
952 return extract_access(cast<IntegerLiteral>(expr));
953 default:
954 unsupported(expr);
956 return NULL;
959 /* Assign the affine expression "index" to the output dimension "pos" of "map",
960 * restrict the domain to those values that result in a non-negative index
961 * and return the result.
963 __isl_give isl_map *set_index(__isl_take isl_map *map, int pos,
964 __isl_take isl_pw_aff *index)
966 isl_map *index_map;
967 int len = isl_map_dim(map, isl_dim_out);
968 isl_id *id;
969 isl_set *domain;
971 domain = isl_pw_aff_nonneg_set(isl_pw_aff_copy(index));
972 index = isl_pw_aff_intersect_domain(index, domain);
973 index_map = isl_map_from_range(isl_set_from_pw_aff(index));
974 index_map = isl_map_insert_dims(index_map, isl_dim_out, 0, pos);
975 index_map = isl_map_add_dims(index_map, isl_dim_out, len - pos - 1);
976 id = isl_map_get_tuple_id(map, isl_dim_out);
977 index_map = isl_map_set_tuple_id(index_map, isl_dim_out, id);
979 map = isl_map_intersect(map, index_map);
981 return map;
984 /* Extract an access relation from the given array subscript expression.
985 * If nesting is allowed in general, then we turn it on while
986 * examining the index expression.
988 * We first extract an access relation from the base.
989 * This will result in an access relation with a range that corresponds
990 * to the array being accessed and with earlier indices filled in already.
991 * We then extract the current index and fill that in as well.
992 * The position of the current index is based on the type of base.
993 * If base is the actual array variable, then the depth of this type
994 * will be the same as the depth of the array and we will fill in
995 * the first array index.
996 * Otherwise, the depth of the base type will be smaller and we will fill
997 * in a later index.
999 __isl_give isl_map *PetScan::extract_access(ArraySubscriptExpr *expr)
1001 Expr *base = expr->getBase();
1002 Expr *idx = expr->getIdx();
1003 isl_pw_aff *index;
1004 isl_map *base_access;
1005 isl_map *access;
1006 int depth = array_depth(base->getType().getTypePtr());
1007 int pos;
1008 bool save_nesting = nesting_enabled;
1010 nesting_enabled = allow_nested;
1012 base_access = extract_access(base);
1013 index = extract_affine(idx);
1015 nesting_enabled = save_nesting;
1017 pos = isl_map_dim(base_access, isl_dim_out) - depth;
1018 access = set_index(base_access, pos, index);
1020 return access;
1023 /* Check if "expr" calls function "minmax" with two arguments and if so
1024 * make lhs and rhs refer to these two arguments.
1026 static bool is_minmax(Expr *expr, const char *minmax, Expr *&lhs, Expr *&rhs)
1028 CallExpr *call;
1029 FunctionDecl *fd;
1030 string name;
1032 if (expr->getStmtClass() != Stmt::CallExprClass)
1033 return false;
1035 call = cast<CallExpr>(expr);
1036 fd = call->getDirectCallee();
1037 if (!fd)
1038 return false;
1040 if (call->getNumArgs() != 2)
1041 return false;
1043 name = fd->getDeclName().getAsString();
1044 if (name != minmax)
1045 return false;
1047 lhs = call->getArg(0);
1048 rhs = call->getArg(1);
1050 return true;
1053 /* Check if "expr" is of the form min(lhs, rhs) and if so make
1054 * lhs and rhs refer to the two arguments.
1056 static bool is_min(Expr *expr, Expr *&lhs, Expr *&rhs)
1058 return is_minmax(expr, "min", lhs, rhs);
1061 /* Check if "expr" is of the form max(lhs, rhs) and if so make
1062 * lhs and rhs refer to the two arguments.
1064 static bool is_max(Expr *expr, Expr *&lhs, Expr *&rhs)
1066 return is_minmax(expr, "max", lhs, rhs);
1069 /* Return "lhs && rhs", defined on the shared definition domain.
1071 static __isl_give isl_pw_aff *pw_aff_and(__isl_take isl_pw_aff *lhs,
1072 __isl_take isl_pw_aff *rhs)
1074 isl_set *cond;
1075 isl_set *dom;
1077 dom = isl_set_intersect(isl_pw_aff_domain(isl_pw_aff_copy(lhs)),
1078 isl_pw_aff_domain(isl_pw_aff_copy(rhs)));
1079 cond = isl_set_intersect(isl_pw_aff_non_zero_set(lhs),
1080 isl_pw_aff_non_zero_set(rhs));
1081 return indicator_function(cond, dom);
1084 /* Return "lhs && rhs", with shortcut semantics.
1085 * That is, if lhs is false, then the result is defined even if rhs is not.
1086 * In practice, we compute lhs ? rhs : lhs.
1088 static __isl_give isl_pw_aff *pw_aff_and_then(__isl_take isl_pw_aff *lhs,
1089 __isl_take isl_pw_aff *rhs)
1091 return isl_pw_aff_cond(isl_pw_aff_copy(lhs), rhs, lhs);
1094 /* Return "lhs || rhs", with shortcut semantics.
1095 * That is, if lhs is true, then the result is defined even if rhs is not.
1096 * In practice, we compute lhs ? lhs : rhs.
1098 static __isl_give isl_pw_aff *pw_aff_or_else(__isl_take isl_pw_aff *lhs,
1099 __isl_take isl_pw_aff *rhs)
1101 return isl_pw_aff_cond(isl_pw_aff_copy(lhs), lhs, rhs);
1104 /* Extract an affine expressions representing the comparison "LHS op RHS"
1105 * "comp" is the original statement that "LHS op RHS" is derived from
1106 * and is used for diagnostics.
1108 * If the comparison is of the form
1110 * a <= min(b,c)
1112 * then the expression is constructed as the conjunction of
1113 * the comparisons
1115 * a <= b and a <= c
1117 * A similar optimization is performed for max(a,b) <= c.
1118 * We do this because that will lead to simpler representations
1119 * of the expression.
1120 * If isl is ever enhanced to explicitly deal with min and max expressions,
1121 * this optimization can be removed.
1123 __isl_give isl_pw_aff *PetScan::extract_comparison(BinaryOperatorKind op,
1124 Expr *LHS, Expr *RHS, Stmt *comp)
1126 isl_pw_aff *lhs;
1127 isl_pw_aff *rhs;
1128 isl_pw_aff *res;
1129 isl_set *cond;
1130 isl_set *dom;
1132 if (op == BO_GT)
1133 return extract_comparison(BO_LT, RHS, LHS, comp);
1134 if (op == BO_GE)
1135 return extract_comparison(BO_LE, RHS, LHS, comp);
1137 if (op == BO_LT || op == BO_LE) {
1138 Expr *expr1, *expr2;
1139 if (is_min(RHS, expr1, expr2)) {
1140 lhs = extract_comparison(op, LHS, expr1, comp);
1141 rhs = extract_comparison(op, LHS, expr2, comp);
1142 return pw_aff_and(lhs, rhs);
1144 if (is_max(LHS, expr1, expr2)) {
1145 lhs = extract_comparison(op, expr1, RHS, comp);
1146 rhs = extract_comparison(op, expr2, RHS, comp);
1147 return pw_aff_and(lhs, rhs);
1151 lhs = extract_affine(LHS);
1152 rhs = extract_affine(RHS);
1154 dom = isl_pw_aff_domain(isl_pw_aff_copy(lhs));
1155 dom = isl_set_intersect(dom, isl_pw_aff_domain(isl_pw_aff_copy(rhs)));
1157 switch (op) {
1158 case BO_LT:
1159 cond = isl_pw_aff_lt_set(lhs, rhs);
1160 break;
1161 case BO_LE:
1162 cond = isl_pw_aff_le_set(lhs, rhs);
1163 break;
1164 case BO_EQ:
1165 cond = isl_pw_aff_eq_set(lhs, rhs);
1166 break;
1167 case BO_NE:
1168 cond = isl_pw_aff_ne_set(lhs, rhs);
1169 break;
1170 default:
1171 isl_pw_aff_free(lhs);
1172 isl_pw_aff_free(rhs);
1173 isl_set_free(dom);
1174 unsupported(comp);
1175 return NULL;
1178 cond = isl_set_coalesce(cond);
1179 res = indicator_function(cond, dom);
1181 return res;
1184 __isl_give isl_pw_aff *PetScan::extract_comparison(BinaryOperator *comp)
1186 return extract_comparison(comp->getOpcode(), comp->getLHS(),
1187 comp->getRHS(), comp);
1190 /* Extract an affine expression representing the negation (logical not)
1191 * of a subexpression.
1193 __isl_give isl_pw_aff *PetScan::extract_boolean(UnaryOperator *op)
1195 isl_set *set_cond, *dom;
1196 isl_pw_aff *cond, *res;
1198 cond = extract_condition(op->getSubExpr());
1200 dom = isl_pw_aff_domain(isl_pw_aff_copy(cond));
1202 set_cond = isl_pw_aff_zero_set(cond);
1204 res = indicator_function(set_cond, dom);
1206 return res;
1209 /* Extract an affine expression representing the disjunction (logical or)
1210 * or conjunction (logical and) of two subexpressions.
1212 __isl_give isl_pw_aff *PetScan::extract_boolean(BinaryOperator *comp)
1214 isl_pw_aff *lhs, *rhs;
1216 lhs = extract_condition(comp->getLHS());
1217 rhs = extract_condition(comp->getRHS());
1219 switch (comp->getOpcode()) {
1220 case BO_LAnd:
1221 return pw_aff_and_then(lhs, rhs);
1222 case BO_LOr:
1223 return pw_aff_or_else(lhs, rhs);
1224 default:
1225 isl_pw_aff_free(lhs);
1226 isl_pw_aff_free(rhs);
1229 unsupported(comp);
1230 return NULL;
1233 __isl_give isl_pw_aff *PetScan::extract_condition(UnaryOperator *expr)
1235 switch (expr->getOpcode()) {
1236 case UO_LNot:
1237 return extract_boolean(expr);
1238 default:
1239 unsupported(expr);
1240 return NULL;
1244 /* Extract the affine expression "expr != 0 ? 1 : 0".
1246 __isl_give isl_pw_aff *PetScan::extract_implicit_condition(Expr *expr)
1248 isl_pw_aff *res;
1249 isl_set *set, *dom;
1251 res = extract_affine(expr);
1253 dom = isl_pw_aff_domain(isl_pw_aff_copy(res));
1254 set = isl_pw_aff_non_zero_set(res);
1256 res = indicator_function(set, dom);
1258 return res;
1261 /* Extract an affine expression from a boolean expression.
1262 * In particular, return the expression "expr ? 1 : 0".
1264 * If the expression doesn't look like a condition, we assume it
1265 * is an affine expression and return the condition "expr != 0 ? 1 : 0".
1267 __isl_give isl_pw_aff *PetScan::extract_condition(Expr *expr)
1269 BinaryOperator *comp;
1271 if (!expr) {
1272 isl_set *u = isl_set_universe(isl_space_params_alloc(ctx, 0));
1273 return indicator_function(u, isl_set_copy(u));
1276 if (expr->getStmtClass() == Stmt::ParenExprClass)
1277 return extract_condition(cast<ParenExpr>(expr)->getSubExpr());
1279 if (expr->getStmtClass() == Stmt::UnaryOperatorClass)
1280 return extract_condition(cast<UnaryOperator>(expr));
1282 if (expr->getStmtClass() != Stmt::BinaryOperatorClass)
1283 return extract_implicit_condition(expr);
1285 comp = cast<BinaryOperator>(expr);
1286 switch (comp->getOpcode()) {
1287 case BO_LT:
1288 case BO_LE:
1289 case BO_GT:
1290 case BO_GE:
1291 case BO_EQ:
1292 case BO_NE:
1293 return extract_comparison(comp);
1294 case BO_LAnd:
1295 case BO_LOr:
1296 return extract_boolean(comp);
1297 default:
1298 return extract_implicit_condition(expr);
1302 static enum pet_op_type UnaryOperatorKind2pet_op_type(UnaryOperatorKind kind)
1304 switch (kind) {
1305 case UO_Minus:
1306 return pet_op_minus;
1307 case UO_PostInc:
1308 return pet_op_post_inc;
1309 case UO_PostDec:
1310 return pet_op_post_dec;
1311 case UO_PreInc:
1312 return pet_op_pre_inc;
1313 case UO_PreDec:
1314 return pet_op_pre_dec;
1315 default:
1316 return pet_op_last;
1320 static enum pet_op_type BinaryOperatorKind2pet_op_type(BinaryOperatorKind kind)
1322 switch (kind) {
1323 case BO_AddAssign:
1324 return pet_op_add_assign;
1325 case BO_SubAssign:
1326 return pet_op_sub_assign;
1327 case BO_MulAssign:
1328 return pet_op_mul_assign;
1329 case BO_DivAssign:
1330 return pet_op_div_assign;
1331 case BO_Assign:
1332 return pet_op_assign;
1333 case BO_Add:
1334 return pet_op_add;
1335 case BO_Sub:
1336 return pet_op_sub;
1337 case BO_Mul:
1338 return pet_op_mul;
1339 case BO_Div:
1340 return pet_op_div;
1341 case BO_Rem:
1342 return pet_op_mod;
1343 case BO_EQ:
1344 return pet_op_eq;
1345 case BO_LE:
1346 return pet_op_le;
1347 case BO_LT:
1348 return pet_op_lt;
1349 case BO_GT:
1350 return pet_op_gt;
1351 default:
1352 return pet_op_last;
1356 /* Construct a pet_expr representing a unary operator expression.
1358 struct pet_expr *PetScan::extract_expr(UnaryOperator *expr)
1360 struct pet_expr *arg;
1361 enum pet_op_type op;
1363 op = UnaryOperatorKind2pet_op_type(expr->getOpcode());
1364 if (op == pet_op_last) {
1365 unsupported(expr);
1366 return NULL;
1369 arg = extract_expr(expr->getSubExpr());
1371 if (expr->isIncrementDecrementOp() &&
1372 arg && arg->type == pet_expr_access) {
1373 mark_write(arg);
1374 arg->acc.read = 1;
1377 return pet_expr_new_unary(ctx, op, arg);
1380 /* Mark the given access pet_expr as a write.
1381 * If a scalar is being accessed, then mark its value
1382 * as unknown in assigned_value.
1384 void PetScan::mark_write(struct pet_expr *access)
1386 isl_id *id;
1387 ValueDecl *decl;
1389 if (!access)
1390 return;
1392 access->acc.write = 1;
1393 access->acc.read = 0;
1395 if (!pet_expr_is_scalar_access(access))
1396 return;
1398 id = pet_expr_access_get_id(access);
1399 decl = (ValueDecl *) isl_id_get_user(id);
1400 clear_assignment(assigned_value, decl);
1401 isl_id_free(id);
1404 /* Assign "rhs" to "lhs".
1406 * In particular, if "lhs" is a scalar variable, then mark
1407 * the variable as having been assigned. If, furthermore, "rhs"
1408 * is an affine expression, then keep track of this value in assigned_value
1409 * so that we can plug it in when we later come across the same variable.
1411 void PetScan::assign(struct pet_expr *lhs, Expr *rhs)
1413 isl_id *id;
1414 ValueDecl *decl;
1415 isl_pw_aff *pa;
1417 if (!lhs)
1418 return;
1419 if (!pet_expr_is_scalar_access(lhs))
1420 return;
1422 id = pet_expr_access_get_id(lhs);
1423 decl = (ValueDecl *) isl_id_get_user(id);
1424 isl_id_free(id);
1426 pa = try_extract_affine(rhs);
1427 clear_assignment(assigned_value, decl);
1428 if (!pa)
1429 return;
1430 assigned_value[decl] = pa;
1431 insert_expression(pa);
1434 /* Construct a pet_expr representing a binary operator expression.
1436 * If the top level operator is an assignment and the LHS is an access,
1437 * then we mark that access as a write. If the operator is a compound
1438 * assignment, the access is marked as both a read and a write.
1440 * If "expr" assigns something to a scalar variable, then we mark
1441 * the variable as having been assigned. If, furthermore, the expression
1442 * is affine, then keep track of this value in assigned_value
1443 * so that we can plug it in when we later come across the same variable.
1445 struct pet_expr *PetScan::extract_expr(BinaryOperator *expr)
1447 struct pet_expr *lhs, *rhs;
1448 enum pet_op_type op;
1450 op = BinaryOperatorKind2pet_op_type(expr->getOpcode());
1451 if (op == pet_op_last) {
1452 unsupported(expr);
1453 return NULL;
1456 lhs = extract_expr(expr->getLHS());
1457 rhs = extract_expr(expr->getRHS());
1459 if (expr->isAssignmentOp() && lhs && lhs->type == pet_expr_access) {
1460 mark_write(lhs);
1461 if (expr->isCompoundAssignmentOp())
1462 lhs->acc.read = 1;
1465 if (expr->getOpcode() == BO_Assign)
1466 assign(lhs, expr->getRHS());
1468 return pet_expr_new_binary(ctx, op, lhs, rhs);
1471 /* Construct a pet_scop with a single statement killing the entire
1472 * array "array".
1474 struct pet_scop *PetScan::kill(Stmt *stmt, struct pet_array *array)
1476 isl_map *access;
1477 struct pet_expr *expr;
1479 if (!array)
1480 return NULL;
1481 access = isl_map_from_range(isl_set_copy(array->extent));
1482 expr = pet_expr_kill_from_access(access);
1483 return extract(stmt, expr);
1486 /* Construct a pet_scop for a (single) variable declaration.
1488 * The scop contains the variable being declared (as an array)
1489 * and a statement killing the array.
1491 * If the variable is initialized in the AST, then the scop
1492 * also contains an assignment to the variable.
1494 struct pet_scop *PetScan::extract(DeclStmt *stmt)
1496 Decl *decl;
1497 VarDecl *vd;
1498 struct pet_expr *lhs, *rhs, *pe;
1499 struct pet_scop *scop_decl, *scop;
1500 struct pet_array *array;
1502 if (!stmt->isSingleDecl()) {
1503 unsupported(stmt);
1504 return NULL;
1507 decl = stmt->getSingleDecl();
1508 vd = cast<VarDecl>(decl);
1510 array = extract_array(ctx, vd);
1511 if (array)
1512 array->declared = 1;
1513 scop_decl = kill(stmt, array);
1514 scop_decl = pet_scop_add_array(scop_decl, array);
1516 if (!vd->getInit())
1517 return scop_decl;
1519 lhs = pet_expr_from_access(extract_access(vd));
1520 rhs = extract_expr(vd->getInit());
1522 mark_write(lhs);
1523 assign(lhs, vd->getInit());
1525 pe = pet_expr_new_binary(ctx, pet_op_assign, lhs, rhs);
1526 scop = extract(stmt, pe);
1528 scop_decl = pet_scop_prefix(scop_decl, 0);
1529 scop = pet_scop_prefix(scop, 1);
1531 scop = pet_scop_add_seq(ctx, scop_decl, scop);
1533 return scop;
1536 /* Construct a pet_expr representing a conditional operation.
1538 * We first try to extract the condition as an affine expression.
1539 * If that fails, we construct a pet_expr tree representing the condition.
1541 struct pet_expr *PetScan::extract_expr(ConditionalOperator *expr)
1543 struct pet_expr *cond, *lhs, *rhs;
1544 isl_pw_aff *pa;
1546 pa = try_extract_affine(expr->getCond());
1547 if (pa) {
1548 isl_set *test = isl_set_from_pw_aff(pa);
1549 cond = pet_expr_from_access(isl_map_from_range(test));
1550 } else
1551 cond = extract_expr(expr->getCond());
1552 lhs = extract_expr(expr->getTrueExpr());
1553 rhs = extract_expr(expr->getFalseExpr());
1555 return pet_expr_new_ternary(ctx, cond, lhs, rhs);
1558 struct pet_expr *PetScan::extract_expr(ImplicitCastExpr *expr)
1560 return extract_expr(expr->getSubExpr());
1563 /* Construct a pet_expr representing a floating point value.
1565 * If the floating point literal does not appear in a macro,
1566 * then we use the original representation in the source code
1567 * as the string representation. Otherwise, we use the pretty
1568 * printer to produce a string representation.
1570 struct pet_expr *PetScan::extract_expr(FloatingLiteral *expr)
1572 double d;
1573 string s;
1574 const LangOptions &LO = PP.getLangOpts();
1575 SourceLocation loc = expr->getLocation();
1577 if (!loc.isMacroID()) {
1578 SourceManager &SM = PP.getSourceManager();
1579 unsigned len = Lexer::MeasureTokenLength(loc, SM, LO);
1580 s = string(SM.getCharacterData(loc), len);
1581 } else {
1582 llvm::raw_string_ostream S(s);
1583 expr->printPretty(S, 0, PrintingPolicy(LO));
1584 S.str();
1586 d = expr->getValueAsApproximateDouble();
1587 return pet_expr_new_double(ctx, d, s.c_str());
1590 /* Extract an access relation from "expr" and then convert it into
1591 * a pet_expr.
1593 struct pet_expr *PetScan::extract_access_expr(Expr *expr)
1595 isl_map *access;
1596 struct pet_expr *pe;
1598 access = extract_access(expr);
1600 pe = pet_expr_from_access(access);
1602 return pe;
1605 struct pet_expr *PetScan::extract_expr(ParenExpr *expr)
1607 return extract_expr(expr->getSubExpr());
1610 /* Construct a pet_expr representing a function call.
1612 * If we are passing along a pointer to an array element
1613 * or an entire row or even higher dimensional slice of an array,
1614 * then the function being called may write into the array.
1616 * We assume here that if the function is declared to take a pointer
1617 * to a const type, then the function will perform a read
1618 * and that otherwise, it will perform a write.
1620 struct pet_expr *PetScan::extract_expr(CallExpr *expr)
1622 struct pet_expr *res = NULL;
1623 FunctionDecl *fd;
1624 string name;
1626 fd = expr->getDirectCallee();
1627 if (!fd) {
1628 unsupported(expr);
1629 return NULL;
1632 name = fd->getDeclName().getAsString();
1633 res = pet_expr_new_call(ctx, name.c_str(), expr->getNumArgs());
1634 if (!res)
1635 return NULL;
1637 for (int i = 0; i < expr->getNumArgs(); ++i) {
1638 Expr *arg = expr->getArg(i);
1639 int is_addr = 0;
1640 pet_expr *main_arg;
1642 if (arg->getStmtClass() == Stmt::ImplicitCastExprClass) {
1643 ImplicitCastExpr *ice = cast<ImplicitCastExpr>(arg);
1644 arg = ice->getSubExpr();
1646 if (arg->getStmtClass() == Stmt::UnaryOperatorClass) {
1647 UnaryOperator *op = cast<UnaryOperator>(arg);
1648 if (op->getOpcode() == UO_AddrOf) {
1649 is_addr = 1;
1650 arg = op->getSubExpr();
1653 res->args[i] = PetScan::extract_expr(arg);
1654 main_arg = res->args[i];
1655 if (is_addr)
1656 res->args[i] = pet_expr_new_unary(ctx,
1657 pet_op_address_of, res->args[i]);
1658 if (!res->args[i])
1659 goto error;
1660 if (arg->getStmtClass() == Stmt::ArraySubscriptExprClass &&
1661 array_depth(arg->getType().getTypePtr()) > 0)
1662 is_addr = 1;
1663 if (is_addr && main_arg->type == pet_expr_access) {
1664 ParmVarDecl *parm;
1665 if (!fd->hasPrototype()) {
1666 unsupported(expr, "prototype required");
1667 goto error;
1669 parm = fd->getParamDecl(i);
1670 if (!const_base(parm->getType()))
1671 mark_write(main_arg);
1675 return res;
1676 error:
1677 pet_expr_free(res);
1678 return NULL;
1681 /* Construct a pet_expr representing a (C style) cast.
1683 struct pet_expr *PetScan::extract_expr(CStyleCastExpr *expr)
1685 struct pet_expr *arg;
1686 QualType type;
1688 arg = extract_expr(expr->getSubExpr());
1689 if (!arg)
1690 return NULL;
1692 type = expr->getTypeAsWritten();
1693 return pet_expr_new_cast(ctx, type.getAsString().c_str(), arg);
1696 /* Try and onstruct a pet_expr representing "expr".
1698 struct pet_expr *PetScan::extract_expr(Expr *expr)
1700 switch (expr->getStmtClass()) {
1701 case Stmt::UnaryOperatorClass:
1702 return extract_expr(cast<UnaryOperator>(expr));
1703 case Stmt::CompoundAssignOperatorClass:
1704 case Stmt::BinaryOperatorClass:
1705 return extract_expr(cast<BinaryOperator>(expr));
1706 case Stmt::ImplicitCastExprClass:
1707 return extract_expr(cast<ImplicitCastExpr>(expr));
1708 case Stmt::ArraySubscriptExprClass:
1709 case Stmt::DeclRefExprClass:
1710 case Stmt::IntegerLiteralClass:
1711 return extract_access_expr(expr);
1712 case Stmt::FloatingLiteralClass:
1713 return extract_expr(cast<FloatingLiteral>(expr));
1714 case Stmt::ParenExprClass:
1715 return extract_expr(cast<ParenExpr>(expr));
1716 case Stmt::ConditionalOperatorClass:
1717 return extract_expr(cast<ConditionalOperator>(expr));
1718 case Stmt::CallExprClass:
1719 return extract_expr(cast<CallExpr>(expr));
1720 case Stmt::CStyleCastExprClass:
1721 return extract_expr(cast<CStyleCastExpr>(expr));
1722 default:
1723 unsupported(expr);
1725 return NULL;
1728 /* Check if the given initialization statement is an assignment.
1729 * If so, return that assignment. Otherwise return NULL.
1731 BinaryOperator *PetScan::initialization_assignment(Stmt *init)
1733 BinaryOperator *ass;
1735 if (init->getStmtClass() != Stmt::BinaryOperatorClass)
1736 return NULL;
1738 ass = cast<BinaryOperator>(init);
1739 if (ass->getOpcode() != BO_Assign)
1740 return NULL;
1742 return ass;
1745 /* Check if the given initialization statement is a declaration
1746 * of a single variable.
1747 * If so, return that declaration. Otherwise return NULL.
1749 Decl *PetScan::initialization_declaration(Stmt *init)
1751 DeclStmt *decl;
1753 if (init->getStmtClass() != Stmt::DeclStmtClass)
1754 return NULL;
1756 decl = cast<DeclStmt>(init);
1758 if (!decl->isSingleDecl())
1759 return NULL;
1761 return decl->getSingleDecl();
1764 /* Given the assignment operator in the initialization of a for loop,
1765 * extract the induction variable, i.e., the (integer)variable being
1766 * assigned.
1768 ValueDecl *PetScan::extract_induction_variable(BinaryOperator *init)
1770 Expr *lhs;
1771 DeclRefExpr *ref;
1772 ValueDecl *decl;
1773 const Type *type;
1775 lhs = init->getLHS();
1776 if (lhs->getStmtClass() != Stmt::DeclRefExprClass) {
1777 unsupported(init);
1778 return NULL;
1781 ref = cast<DeclRefExpr>(lhs);
1782 decl = ref->getDecl();
1783 type = decl->getType().getTypePtr();
1785 if (!type->isIntegerType()) {
1786 unsupported(lhs);
1787 return NULL;
1790 return decl;
1793 /* Given the initialization statement of a for loop and the single
1794 * declaration in this initialization statement,
1795 * extract the induction variable, i.e., the (integer) variable being
1796 * declared.
1798 VarDecl *PetScan::extract_induction_variable(Stmt *init, Decl *decl)
1800 VarDecl *vd;
1802 vd = cast<VarDecl>(decl);
1804 const QualType type = vd->getType();
1805 if (!type->isIntegerType()) {
1806 unsupported(init);
1807 return NULL;
1810 if (!vd->getInit()) {
1811 unsupported(init);
1812 return NULL;
1815 return vd;
1818 /* Check that op is of the form iv++ or iv--.
1819 * Return an affine expression "1" or "-1" accordingly.
1821 __isl_give isl_pw_aff *PetScan::extract_unary_increment(
1822 clang::UnaryOperator *op, clang::ValueDecl *iv)
1824 Expr *sub;
1825 DeclRefExpr *ref;
1826 isl_space *space;
1827 isl_aff *aff;
1829 if (!op->isIncrementDecrementOp()) {
1830 unsupported(op);
1831 return NULL;
1834 sub = op->getSubExpr();
1835 if (sub->getStmtClass() != Stmt::DeclRefExprClass) {
1836 unsupported(op);
1837 return NULL;
1840 ref = cast<DeclRefExpr>(sub);
1841 if (ref->getDecl() != iv) {
1842 unsupported(op);
1843 return NULL;
1846 space = isl_space_params_alloc(ctx, 0);
1847 aff = isl_aff_zero_on_domain(isl_local_space_from_space(space));
1849 if (op->isIncrementOp())
1850 aff = isl_aff_add_constant_si(aff, 1);
1851 else
1852 aff = isl_aff_add_constant_si(aff, -1);
1854 return isl_pw_aff_from_aff(aff);
1857 /* If the isl_pw_aff on which isl_pw_aff_foreach_piece is called
1858 * has a single constant expression, then put this constant in *user.
1859 * The caller is assumed to have checked that this function will
1860 * be called exactly once.
1862 static int extract_cst(__isl_take isl_set *set, __isl_take isl_aff *aff,
1863 void *user)
1865 isl_val **inc = (isl_val **)user;
1866 int res = 0;
1868 if (isl_aff_is_cst(aff))
1869 *inc = isl_aff_get_constant_val(aff);
1870 else
1871 res = -1;
1873 isl_set_free(set);
1874 isl_aff_free(aff);
1876 return res;
1879 /* Check if op is of the form
1881 * iv = iv + inc
1883 * and return inc as an affine expression.
1885 * We extract an affine expression from the RHS, subtract iv and return
1886 * the result.
1888 __isl_give isl_pw_aff *PetScan::extract_binary_increment(BinaryOperator *op,
1889 clang::ValueDecl *iv)
1891 Expr *lhs;
1892 DeclRefExpr *ref;
1893 isl_id *id;
1894 isl_space *dim;
1895 isl_aff *aff;
1896 isl_pw_aff *val;
1898 if (op->getOpcode() != BO_Assign) {
1899 unsupported(op);
1900 return NULL;
1903 lhs = op->getLHS();
1904 if (lhs->getStmtClass() != Stmt::DeclRefExprClass) {
1905 unsupported(op);
1906 return NULL;
1909 ref = cast<DeclRefExpr>(lhs);
1910 if (ref->getDecl() != iv) {
1911 unsupported(op);
1912 return NULL;
1915 val = extract_affine(op->getRHS());
1917 id = isl_id_alloc(ctx, iv->getName().str().c_str(), iv);
1919 dim = isl_space_params_alloc(ctx, 1);
1920 dim = isl_space_set_dim_id(dim, isl_dim_param, 0, id);
1921 aff = isl_aff_zero_on_domain(isl_local_space_from_space(dim));
1922 aff = isl_aff_add_coefficient_si(aff, isl_dim_param, 0, 1);
1924 val = isl_pw_aff_sub(val, isl_pw_aff_from_aff(aff));
1926 return val;
1929 /* Check that op is of the form iv += cst or iv -= cst
1930 * and return an affine expression corresponding oto cst or -cst accordingly.
1932 __isl_give isl_pw_aff *PetScan::extract_compound_increment(
1933 CompoundAssignOperator *op, clang::ValueDecl *iv)
1935 Expr *lhs;
1936 DeclRefExpr *ref;
1937 bool neg = false;
1938 isl_pw_aff *val;
1939 BinaryOperatorKind opcode;
1941 opcode = op->getOpcode();
1942 if (opcode != BO_AddAssign && opcode != BO_SubAssign) {
1943 unsupported(op);
1944 return NULL;
1946 if (opcode == BO_SubAssign)
1947 neg = true;
1949 lhs = op->getLHS();
1950 if (lhs->getStmtClass() != Stmt::DeclRefExprClass) {
1951 unsupported(op);
1952 return NULL;
1955 ref = cast<DeclRefExpr>(lhs);
1956 if (ref->getDecl() != iv) {
1957 unsupported(op);
1958 return NULL;
1961 val = extract_affine(op->getRHS());
1962 if (neg)
1963 val = isl_pw_aff_neg(val);
1965 return val;
1968 /* Check that the increment of the given for loop increments
1969 * (or decrements) the induction variable "iv" and return
1970 * the increment as an affine expression if successful.
1972 __isl_give isl_pw_aff *PetScan::extract_increment(clang::ForStmt *stmt,
1973 ValueDecl *iv)
1975 Stmt *inc = stmt->getInc();
1977 if (!inc) {
1978 unsupported(stmt);
1979 return NULL;
1982 if (inc->getStmtClass() == Stmt::UnaryOperatorClass)
1983 return extract_unary_increment(cast<UnaryOperator>(inc), iv);
1984 if (inc->getStmtClass() == Stmt::CompoundAssignOperatorClass)
1985 return extract_compound_increment(
1986 cast<CompoundAssignOperator>(inc), iv);
1987 if (inc->getStmtClass() == Stmt::BinaryOperatorClass)
1988 return extract_binary_increment(cast<BinaryOperator>(inc), iv);
1990 unsupported(inc);
1991 return NULL;
1994 /* Embed the given iteration domain in an extra outer loop
1995 * with induction variable "var".
1996 * If this variable appeared as a parameter in the constraints,
1997 * it is replaced by the new outermost dimension.
1999 static __isl_give isl_set *embed(__isl_take isl_set *set,
2000 __isl_take isl_id *var)
2002 int pos;
2004 set = isl_set_insert_dims(set, isl_dim_set, 0, 1);
2005 pos = isl_set_find_dim_by_id(set, isl_dim_param, var);
2006 if (pos >= 0) {
2007 set = isl_set_equate(set, isl_dim_param, pos, isl_dim_set, 0);
2008 set = isl_set_project_out(set, isl_dim_param, pos, 1);
2011 isl_id_free(var);
2012 return set;
2015 /* Return those elements in the space of "cond" that come after
2016 * (based on "sign") an element in "cond".
2018 static __isl_give isl_set *after(__isl_take isl_set *cond, int sign)
2020 isl_map *previous_to_this;
2022 if (sign > 0)
2023 previous_to_this = isl_map_lex_lt(isl_set_get_space(cond));
2024 else
2025 previous_to_this = isl_map_lex_gt(isl_set_get_space(cond));
2027 cond = isl_set_apply(cond, previous_to_this);
2029 return cond;
2032 /* Create the infinite iteration domain
2034 * { [id] : id >= 0 }
2036 * If "scop" has an affine skip of type pet_skip_later,
2037 * then remove those iterations i that have an earlier iteration
2038 * where the skip condition is satisfied, meaning that iteration i
2039 * is not executed.
2040 * Since we are dealing with a loop without loop iterator,
2041 * the skip condition cannot refer to the current loop iterator and
2042 * so effectively, the returned set is of the form
2044 * { [0]; [id] : id >= 1 and not skip }
2046 static __isl_give isl_set *infinite_domain(__isl_take isl_id *id,
2047 struct pet_scop *scop)
2049 isl_ctx *ctx = isl_id_get_ctx(id);
2050 isl_set *domain;
2051 isl_set *skip;
2053 domain = isl_set_nat_universe(isl_space_set_alloc(ctx, 0, 1));
2054 domain = isl_set_set_dim_id(domain, isl_dim_set, 0, id);
2056 if (!pet_scop_has_affine_skip(scop, pet_skip_later))
2057 return domain;
2059 skip = pet_scop_get_affine_skip_domain(scop, pet_skip_later);
2060 skip = embed(skip, isl_id_copy(id));
2061 skip = isl_set_intersect(skip , isl_set_copy(domain));
2062 domain = isl_set_subtract(domain, after(skip, 1));
2064 return domain;
2067 /* Create an identity mapping on the space containing "domain".
2069 static __isl_give isl_map *identity_map(__isl_keep isl_set *domain)
2071 isl_space *space;
2072 isl_map *id;
2074 space = isl_space_map_from_set(isl_set_get_space(domain));
2075 id = isl_map_identity(space);
2077 return id;
2080 /* Create a map that maps elements of a single-dimensional array "id_test"
2081 * to the previous element (according to "inc"), provided this element
2082 * belongs to "domain". That is, create the map
2084 * { id[x] -> id[x - inc] : x - inc in domain }
2086 static __isl_give isl_map *map_to_previous(__isl_take isl_id *id_test,
2087 __isl_take isl_set *domain, __isl_take isl_val *inc)
2089 isl_space *space;
2090 isl_local_space *ls;
2091 isl_aff *aff;
2092 isl_map *prev;
2094 space = isl_set_get_space(domain);
2095 ls = isl_local_space_from_space(space);
2096 aff = isl_aff_var_on_domain(ls, isl_dim_set, 0);
2097 aff = isl_aff_add_constant_val(aff, isl_val_neg(inc));
2098 prev = isl_map_from_aff(aff);
2099 prev = isl_map_intersect_range(prev, domain);
2100 prev = isl_map_set_tuple_id(prev, isl_dim_out, id_test);
2102 return prev;
2105 /* Add an implication to "scop" expressing that if an element of
2106 * virtual array "id_test" has value "satisfied" then all previous elements
2107 * of this array also have that value. The set of previous elements
2108 * is bounded by "domain". If "sign" is negative then iterator
2109 * is decreasing and we express that all subsequent array elements
2110 * (but still defined previously) have the same value.
2112 static struct pet_scop *add_implication(struct pet_scop *scop,
2113 __isl_take isl_id *id_test, __isl_take isl_set *domain, int sign,
2114 int satisfied)
2116 isl_space *space;
2117 isl_map *map;
2119 domain = isl_set_set_tuple_id(domain, id_test);
2120 space = isl_set_get_space(domain);
2121 if (sign > 0)
2122 map = isl_map_lex_ge(space);
2123 else
2124 map = isl_map_lex_le(space);
2125 map = isl_map_intersect_range(map, domain);
2126 scop = pet_scop_add_implication(scop, map, satisfied);
2128 return scop;
2131 /* Add a filter to "scop" that imposes that it is only executed
2132 * when the variable identified by "id_test" has a zero value
2133 * for all previous iterations of "domain".
2135 * In particular, add a filter that imposes that the array
2136 * has a zero value at the previous iteration of domain and
2137 * add an implication that implies that it then has that
2138 * value for all previous iterations.
2140 static struct pet_scop *scop_add_break(struct pet_scop *scop,
2141 __isl_take isl_id *id_test, __isl_take isl_set *domain,
2142 __isl_take isl_val *inc)
2144 isl_map *prev;
2145 int sign = isl_val_sgn(inc);
2147 prev = map_to_previous(isl_id_copy(id_test), isl_set_copy(domain), inc);
2148 scop = add_implication(scop, id_test, domain, sign, 0);
2149 scop = pet_scop_filter(scop, prev, 0);
2151 return scop;
2154 /* Construct a pet_scop for an infinite loop around the given body.
2156 * We extract a pet_scop for the body and then embed it in a loop with
2157 * iteration domain
2159 * { [t] : t >= 0 }
2161 * and schedule
2163 * { [t] -> [t] }
2165 * If the body contains any break, then it is taken into
2166 * account in infinite_domain (if the skip condition is affine)
2167 * or in scop_add_break (if the skip condition is not affine).
2169 struct pet_scop *PetScan::extract_infinite_loop(Stmt *body)
2171 isl_id *id, *id_test;
2172 isl_set *domain;
2173 isl_map *ident;
2174 struct pet_scop *scop;
2175 bool has_var_break;
2177 scop = extract(body);
2178 if (!scop)
2179 return NULL;
2181 id = isl_id_alloc(ctx, "t", NULL);
2182 domain = infinite_domain(isl_id_copy(id), scop);
2183 ident = identity_map(domain);
2185 has_var_break = pet_scop_has_var_skip(scop, pet_skip_later);
2186 if (has_var_break)
2187 id_test = pet_scop_get_skip_id(scop, pet_skip_later);
2189 scop = pet_scop_embed(scop, isl_set_copy(domain),
2190 isl_map_copy(ident), ident, id);
2191 if (has_var_break)
2192 scop = scop_add_break(scop, id_test, domain, isl_val_one(ctx));
2193 else
2194 isl_set_free(domain);
2196 return scop;
2199 /* Construct a pet_scop for an infinite loop, i.e., a loop of the form
2201 * for (;;)
2202 * body
2205 struct pet_scop *PetScan::extract_infinite_for(ForStmt *stmt)
2207 return extract_infinite_loop(stmt->getBody());
2210 /* Create an access to a virtual array representing the result
2211 * of a condition.
2212 * Unlike other accessed data, the id of the array is NULL as
2213 * there is no ValueDecl in the program corresponding to the virtual
2214 * array.
2215 * The array starts out as a scalar, but grows along with the
2216 * statement writing to the array in pet_scop_embed.
2218 static __isl_give isl_map *create_test_access(isl_ctx *ctx, int test_nr)
2220 isl_space *dim = isl_space_alloc(ctx, 0, 0, 0);
2221 isl_id *id;
2222 char name[50];
2224 snprintf(name, sizeof(name), "__pet_test_%d", test_nr);
2225 id = isl_id_alloc(ctx, name, NULL);
2226 dim = isl_space_set_tuple_id(dim, isl_dim_out, id);
2227 return isl_map_universe(dim);
2230 /* Add an array with the given extent ("access") to the list
2231 * of arrays in "scop" and return the extended pet_scop.
2232 * The array is marked as attaining values 0 and 1 only and
2233 * as each element being assigned at most once.
2235 static struct pet_scop *scop_add_array(struct pet_scop *scop,
2236 __isl_keep isl_map *access, clang::ASTContext &ast_ctx)
2238 isl_ctx *ctx = isl_map_get_ctx(access);
2239 isl_space *dim;
2240 struct pet_array *array;
2242 if (!scop)
2243 return NULL;
2244 if (!ctx)
2245 goto error;
2247 array = isl_calloc_type(ctx, struct pet_array);
2248 if (!array)
2249 goto error;
2251 array->extent = isl_map_range(isl_map_copy(access));
2252 dim = isl_space_params_alloc(ctx, 0);
2253 array->context = isl_set_universe(dim);
2254 dim = isl_space_set_alloc(ctx, 0, 1);
2255 array->value_bounds = isl_set_universe(dim);
2256 array->value_bounds = isl_set_lower_bound_si(array->value_bounds,
2257 isl_dim_set, 0, 0);
2258 array->value_bounds = isl_set_upper_bound_si(array->value_bounds,
2259 isl_dim_set, 0, 1);
2260 array->element_type = strdup("int");
2261 array->element_size = ast_ctx.getTypeInfo(ast_ctx.IntTy).first / 8;
2262 array->uniquely_defined = 1;
2264 if (!array->extent || !array->context)
2265 array = pet_array_free(array);
2267 scop = pet_scop_add_array(scop, array);
2269 return scop;
2270 error:
2271 pet_scop_free(scop);
2272 return NULL;
2275 /* Construct a pet_scop for a while loop of the form
2277 * while (pa)
2278 * body
2280 * In particular, construct a scop for an infinite loop around body and
2281 * intersect the domain with the affine expression.
2282 * Note that this intersection may result in an empty loop.
2284 struct pet_scop *PetScan::extract_affine_while(__isl_take isl_pw_aff *pa,
2285 Stmt *body)
2287 struct pet_scop *scop;
2288 isl_set *dom;
2289 isl_set *valid;
2291 valid = isl_pw_aff_domain(isl_pw_aff_copy(pa));
2292 dom = isl_pw_aff_non_zero_set(pa);
2293 scop = extract_infinite_loop(body);
2294 scop = pet_scop_restrict(scop, dom);
2295 scop = pet_scop_restrict_context(scop, valid);
2297 return scop;
2300 /* Construct a scop for a while, given the scops for the condition
2301 * and the body, the filter identifier and the iteration domain of
2302 * the while loop.
2304 * In particular, the scop for the condition is filtered to depend
2305 * on "id_test" evaluating to true for all previous iterations
2306 * of the loop, while the scop for the body is filtered to depend
2307 * on "id_test" evaluating to true for all iterations up to the
2308 * current iteration.
2309 * The actual filter only imposes that this virtual array has
2310 * value one on the previous or the current iteration.
2311 * The fact that this condition also applies to the previous
2312 * iterations is enforced by an implication.
2314 * These filtered scops are then combined into a single scop.
2316 * "sign" is positive if the iterator increases and negative
2317 * if it decreases.
2319 static struct pet_scop *scop_add_while(struct pet_scop *scop_cond,
2320 struct pet_scop *scop_body, __isl_take isl_id *id_test,
2321 __isl_take isl_set *domain, __isl_take isl_val *inc)
2323 isl_ctx *ctx = isl_set_get_ctx(domain);
2324 isl_space *space;
2325 isl_map *test_access;
2326 isl_map *prev;
2327 int sign = isl_val_sgn(inc);
2328 struct pet_scop *scop;
2330 prev = map_to_previous(isl_id_copy(id_test), isl_set_copy(domain), inc);
2331 scop_cond = pet_scop_filter(scop_cond, prev, 1);
2333 space = isl_space_map_from_set(isl_set_get_space(domain));
2334 test_access = isl_map_identity(space);
2335 test_access = isl_map_set_tuple_id(test_access, isl_dim_out,
2336 isl_id_copy(id_test));
2337 scop_body = pet_scop_filter(scop_body, test_access, 1);
2339 scop = pet_scop_add_seq(ctx, scop_cond, scop_body);
2340 scop = add_implication(scop, id_test, domain, sign, 1);
2342 return scop;
2345 /* Check if the while loop is of the form
2347 * while (affine expression)
2348 * body
2350 * If so, call extract_affine_while to construct a scop.
2352 * Otherwise, construct a generic while scop, with iteration domain
2353 * { [t] : t >= 0 }. The scop consists of two parts, one for
2354 * evaluating the condition and one for the body.
2355 * The schedule is adjusted to reflect that the condition is evaluated
2356 * before the body is executed and the body is filtered to depend
2357 * on the result of the condition evaluating to true on all iterations
2358 * up to the current iteration, while the evaluation the condition itself
2359 * is filtered to depend on the result of the condition evaluating to true
2360 * on all previous iterations.
2361 * The context of the scop representing the body is dropped
2362 * because we don't know how many times the body will be executed,
2363 * if at all.
2365 * If the body contains any break, then it is taken into
2366 * account in infinite_domain (if the skip condition is affine)
2367 * or in scop_add_break (if the skip condition is not affine).
2369 struct pet_scop *PetScan::extract(WhileStmt *stmt)
2371 Expr *cond;
2372 isl_id *id, *id_test, *id_break_test;
2373 isl_map *test_access;
2374 isl_set *domain;
2375 isl_map *ident;
2376 isl_pw_aff *pa;
2377 struct pet_scop *scop, *scop_body;
2378 bool has_var_break;
2380 cond = stmt->getCond();
2381 if (!cond) {
2382 unsupported(stmt);
2383 return NULL;
2386 clear_assignments clear(assigned_value);
2387 clear.TraverseStmt(stmt->getBody());
2389 pa = try_extract_affine_condition(cond);
2390 if (pa)
2391 return extract_affine_while(pa, stmt->getBody());
2393 if (!allow_nested) {
2394 unsupported(stmt);
2395 return NULL;
2398 test_access = create_test_access(ctx, n_test++);
2399 scop = extract_non_affine_condition(cond, isl_map_copy(test_access));
2400 scop = scop_add_array(scop, test_access, ast_context);
2401 id_test = isl_map_get_tuple_id(test_access, isl_dim_out);
2402 isl_map_free(test_access);
2403 scop_body = extract(stmt->getBody());
2405 id = isl_id_alloc(ctx, "t", NULL);
2406 domain = infinite_domain(isl_id_copy(id), scop_body);
2407 ident = identity_map(domain);
2409 has_var_break = pet_scop_has_var_skip(scop_body, pet_skip_later);
2410 if (has_var_break)
2411 id_break_test = pet_scop_get_skip_id(scop_body, pet_skip_later);
2413 scop = pet_scop_prefix(scop, 0);
2414 scop = pet_scop_embed(scop, isl_set_copy(domain), isl_map_copy(ident),
2415 isl_map_copy(ident), isl_id_copy(id));
2416 scop_body = pet_scop_reset_context(scop_body);
2417 scop_body = pet_scop_prefix(scop_body, 1);
2418 scop_body = pet_scop_embed(scop_body, isl_set_copy(domain),
2419 isl_map_copy(ident), ident, id);
2421 if (has_var_break) {
2422 scop = scop_add_break(scop, isl_id_copy(id_break_test),
2423 isl_set_copy(domain), isl_val_one(ctx));
2424 scop_body = scop_add_break(scop_body, id_break_test,
2425 isl_set_copy(domain), isl_val_one(ctx));
2427 scop = scop_add_while(scop, scop_body, id_test, domain,
2428 isl_val_one(ctx));
2430 return scop;
2433 /* Check whether "cond" expresses a simple loop bound
2434 * on the only set dimension.
2435 * In particular, if "up" is set then "cond" should contain only
2436 * upper bounds on the set dimension.
2437 * Otherwise, it should contain only lower bounds.
2439 static bool is_simple_bound(__isl_keep isl_set *cond, __isl_keep isl_val *inc)
2441 if (isl_val_is_pos(inc))
2442 return !isl_set_dim_has_any_lower_bound(cond, isl_dim_set, 0);
2443 else
2444 return !isl_set_dim_has_any_upper_bound(cond, isl_dim_set, 0);
2447 /* Extend a condition on a given iteration of a loop to one that
2448 * imposes the same condition on all previous iterations.
2449 * "domain" expresses the lower [upper] bound on the iterations
2450 * when inc is positive [negative].
2452 * In particular, we construct the condition (when inc is positive)
2454 * forall i' : (domain(i') and i' <= i) => cond(i')
2456 * which is equivalent to
2458 * not exists i' : domain(i') and i' <= i and not cond(i')
2460 * We construct this set by negating cond, applying a map
2462 * { [i'] -> [i] : domain(i') and i' <= i }
2464 * and then negating the result again.
2466 static __isl_give isl_set *valid_for_each_iteration(__isl_take isl_set *cond,
2467 __isl_take isl_set *domain, __isl_take isl_val *inc)
2469 isl_map *previous_to_this;
2471 if (isl_val_is_pos(inc))
2472 previous_to_this = isl_map_lex_le(isl_set_get_space(domain));
2473 else
2474 previous_to_this = isl_map_lex_ge(isl_set_get_space(domain));
2476 previous_to_this = isl_map_intersect_domain(previous_to_this, domain);
2478 cond = isl_set_complement(cond);
2479 cond = isl_set_apply(cond, previous_to_this);
2480 cond = isl_set_complement(cond);
2482 isl_val_free(inc);
2484 return cond;
2487 /* Construct a domain of the form
2489 * [id] -> { : exists a: id = init + a * inc and a >= 0 }
2491 static __isl_give isl_set *strided_domain(__isl_take isl_id *id,
2492 __isl_take isl_pw_aff *init, __isl_take isl_val *inc)
2494 isl_aff *aff;
2495 isl_space *dim;
2496 isl_set *set;
2498 init = isl_pw_aff_insert_dims(init, isl_dim_in, 0, 1);
2499 dim = isl_pw_aff_get_domain_space(init);
2500 aff = isl_aff_zero_on_domain(isl_local_space_from_space(dim));
2501 aff = isl_aff_add_coefficient_val(aff, isl_dim_in, 0, inc);
2502 init = isl_pw_aff_add(init, isl_pw_aff_from_aff(aff));
2504 dim = isl_space_set_alloc(isl_pw_aff_get_ctx(init), 1, 1);
2505 dim = isl_space_set_dim_id(dim, isl_dim_param, 0, id);
2506 aff = isl_aff_zero_on_domain(isl_local_space_from_space(dim));
2507 aff = isl_aff_add_coefficient_si(aff, isl_dim_param, 0, 1);
2509 set = isl_pw_aff_eq_set(isl_pw_aff_from_aff(aff), init);
2511 set = isl_set_lower_bound_si(set, isl_dim_set, 0, 0);
2513 return isl_set_params(set);
2516 /* Assuming "cond" represents a bound on a loop where the loop
2517 * iterator "iv" is incremented (or decremented) by one, check if wrapping
2518 * is possible.
2520 * Under the given assumptions, wrapping is only possible if "cond" allows
2521 * for the last value before wrapping, i.e., 2^width - 1 in case of an
2522 * increasing iterator and 0 in case of a decreasing iterator.
2524 static bool can_wrap(__isl_keep isl_set *cond, ValueDecl *iv,
2525 __isl_keep isl_val *inc)
2527 bool cw;
2528 isl_ctx *ctx;
2529 isl_val *limit;
2530 isl_set *test;
2532 test = isl_set_copy(cond);
2534 ctx = isl_set_get_ctx(test);
2535 if (isl_val_is_neg(inc))
2536 limit = isl_val_zero(ctx);
2537 else {
2538 limit = isl_val_int_from_ui(ctx, get_type_size(iv));
2539 limit = isl_val_2exp(limit);
2540 limit = isl_val_sub_ui(limit, 1);
2543 test = isl_set_fix_val(cond, isl_dim_set, 0, limit);
2544 cw = !isl_set_is_empty(test);
2545 isl_set_free(test);
2547 return cw;
2550 /* Given a one-dimensional space, construct the following mapping on this
2551 * space
2553 * { [v] -> [v mod 2^width] }
2555 * where width is the number of bits used to represent the values
2556 * of the unsigned variable "iv".
2558 static __isl_give isl_map *compute_wrapping(__isl_take isl_space *dim,
2559 ValueDecl *iv)
2561 isl_ctx *ctx;
2562 isl_val *mod;
2563 isl_aff *aff;
2564 isl_map *map;
2566 ctx = isl_space_get_ctx(dim);
2567 mod = isl_val_int_from_ui(ctx, get_type_size(iv));
2568 mod = isl_val_2exp(mod);
2570 aff = isl_aff_zero_on_domain(isl_local_space_from_space(dim));
2571 aff = isl_aff_add_coefficient_si(aff, isl_dim_in, 0, 1);
2572 aff = isl_aff_mod_val(aff, mod);
2574 return isl_map_from_basic_map(isl_basic_map_from_aff(aff));
2575 map = isl_map_reverse(map);
2578 /* Project out the parameter "id" from "set".
2580 static __isl_give isl_set *set_project_out_by_id(__isl_take isl_set *set,
2581 __isl_keep isl_id *id)
2583 int pos;
2585 pos = isl_set_find_dim_by_id(set, isl_dim_param, id);
2586 if (pos >= 0)
2587 set = isl_set_project_out(set, isl_dim_param, pos, 1);
2589 return set;
2592 /* Compute the set of parameters for which "set1" is a subset of "set2".
2594 * set1 is a subset of set2 if
2596 * forall i in set1 : i in set2
2598 * or
2600 * not exists i in set1 and i not in set2
2602 * i.e.,
2604 * not exists i in set1 \ set2
2606 static __isl_give isl_set *enforce_subset(__isl_take isl_set *set1,
2607 __isl_take isl_set *set2)
2609 return isl_set_complement(isl_set_params(isl_set_subtract(set1, set2)));
2612 /* Compute the set of parameter values for which "cond" holds
2613 * on the next iteration for each element of "dom".
2615 * We first construct mapping { [i] -> [i + inc] }, apply that to "dom"
2616 * and then compute the set of parameters for which the result is a subset
2617 * of "cond".
2619 static __isl_give isl_set *valid_on_next(__isl_take isl_set *cond,
2620 __isl_take isl_set *dom, __isl_take isl_val *inc)
2622 isl_space *space;
2623 isl_aff *aff;
2624 isl_map *next;
2626 space = isl_set_get_space(dom);
2627 aff = isl_aff_zero_on_domain(isl_local_space_from_space(space));
2628 aff = isl_aff_add_coefficient_si(aff, isl_dim_in, 0, 1);
2629 aff = isl_aff_add_constant_val(aff, inc);
2630 next = isl_map_from_basic_map(isl_basic_map_from_aff(aff));
2632 dom = isl_set_apply(dom, next);
2634 return enforce_subset(dom, cond);
2637 /* Does "id" refer to a nested access?
2639 static bool is_nested_parameter(__isl_keep isl_id *id)
2641 return id && isl_id_get_user(id) && !isl_id_get_name(id);
2644 /* Does parameter "pos" of "space" refer to a nested access?
2646 static bool is_nested_parameter(__isl_keep isl_space *space, int pos)
2648 bool nested;
2649 isl_id *id;
2651 id = isl_space_get_dim_id(space, isl_dim_param, pos);
2652 nested = is_nested_parameter(id);
2653 isl_id_free(id);
2655 return nested;
2658 /* Does "space" involve any parameters that refer to nested
2659 * accesses, i.e., parameters with no name?
2661 static bool has_nested(__isl_keep isl_space *space)
2663 int nparam;
2665 nparam = isl_space_dim(space, isl_dim_param);
2666 for (int i = 0; i < nparam; ++i)
2667 if (is_nested_parameter(space, i))
2668 return true;
2670 return false;
2673 /* Does "pa" involve any parameters that refer to nested
2674 * accesses, i.e., parameters with no name?
2676 static bool has_nested(__isl_keep isl_pw_aff *pa)
2678 isl_space *space;
2679 bool nested;
2681 space = isl_pw_aff_get_space(pa);
2682 nested = has_nested(space);
2683 isl_space_free(space);
2685 return nested;
2688 /* Construct a pet_scop for a for statement.
2689 * The for loop is required to be of the form
2691 * for (i = init; condition; ++i)
2693 * or
2695 * for (i = init; condition; --i)
2697 * The initialization of the for loop should either be an assignment
2698 * to an integer variable, or a declaration of such a variable with
2699 * initialization.
2701 * The condition is allowed to contain nested accesses, provided
2702 * they are not being written to inside the body of the loop.
2703 * Otherwise, or if the condition is otherwise non-affine, the for loop is
2704 * essentially treated as a while loop, with iteration domain
2705 * { [i] : i >= init }.
2707 * We extract a pet_scop for the body and then embed it in a loop with
2708 * iteration domain and schedule
2710 * { [i] : i >= init and condition' }
2711 * { [i] -> [i] }
2713 * or
2715 * { [i] : i <= init and condition' }
2716 * { [i] -> [-i] }
2718 * Where condition' is equal to condition if the latter is
2719 * a simple upper [lower] bound and a condition that is extended
2720 * to apply to all previous iterations otherwise.
2722 * If the condition is non-affine, then we drop the condition from the
2723 * iteration domain and instead create a separate statement
2724 * for evaluating the condition. The body is then filtered to depend
2725 * on the result of the condition evaluating to true on all iterations
2726 * up to the current iteration, while the evaluation the condition itself
2727 * is filtered to depend on the result of the condition evaluating to true
2728 * on all previous iterations.
2729 * The context of the scop representing the body is dropped
2730 * because we don't know how many times the body will be executed,
2731 * if at all.
2733 * If the stride of the loop is not 1, then "i >= init" is replaced by
2735 * (exists a: i = init + stride * a and a >= 0)
2737 * If the loop iterator i is unsigned, then wrapping may occur.
2738 * During the computation, we work with a virtual iterator that
2739 * does not wrap. However, the condition in the code applies
2740 * to the wrapped value, so we need to change condition(i)
2741 * into condition([i % 2^width]).
2742 * After computing the virtual domain and schedule, we apply
2743 * the function { [v] -> [v % 2^width] } to the domain and the domain
2744 * of the schedule. In order not to lose any information, we also
2745 * need to intersect the domain of the schedule with the virtual domain
2746 * first, since some iterations in the wrapped domain may be scheduled
2747 * several times, typically an infinite number of times.
2748 * Note that there may be no need to perform this final wrapping
2749 * if the loop condition (after wrapping) satisfies certain conditions.
2750 * However, the is_simple_bound condition is not enough since it doesn't
2751 * check if there even is an upper bound.
2753 * If the loop condition is non-affine, then we keep the virtual
2754 * iterator in the iteration domain and instead replace all accesses
2755 * to the original iterator by the wrapping of the virtual iterator.
2757 * Wrapping on unsigned iterators can be avoided entirely if
2758 * loop condition is simple, the loop iterator is incremented
2759 * [decremented] by one and the last value before wrapping cannot
2760 * possibly satisfy the loop condition.
2762 * Before extracting a pet_scop from the body we remove all
2763 * assignments in assigned_value to variables that are assigned
2764 * somewhere in the body of the loop.
2766 * Valid parameters for a for loop are those for which the initial
2767 * value itself, the increment on each domain iteration and
2768 * the condition on both the initial value and
2769 * the result of incrementing the iterator for each iteration of the domain
2770 * can be evaluated.
2771 * If the loop condition is non-affine, then we only consider validity
2772 * of the initial value.
2774 * If the body contains any break, then we keep track of it in "skip"
2775 * (if the skip condition is affine) or it is handled in scop_add_break
2776 * (if the skip condition is not affine).
2777 * Note that the affine break condition needs to be considered with
2778 * respect to previous iterations in the virtual domain (if any)
2779 * and that the domain needs to be kept virtual if there is a non-affine
2780 * break condition.
2782 struct pet_scop *PetScan::extract_for(ForStmt *stmt)
2784 BinaryOperator *ass;
2785 Decl *decl;
2786 Stmt *init;
2787 Expr *lhs, *rhs;
2788 ValueDecl *iv;
2789 isl_space *space;
2790 isl_set *domain;
2791 isl_map *sched;
2792 isl_set *cond = NULL;
2793 isl_set *skip = NULL;
2794 isl_id *id, *id_test = NULL, *id_break_test;
2795 struct pet_scop *scop, *scop_cond = NULL;
2796 assigned_value_cache cache(assigned_value);
2797 isl_val *inc;
2798 bool is_one;
2799 bool is_unsigned;
2800 bool is_simple;
2801 bool is_virtual;
2802 bool keep_virtual = false;
2803 bool has_affine_break;
2804 bool has_var_break;
2805 isl_map *wrap = NULL;
2806 isl_pw_aff *pa, *pa_inc, *init_val;
2807 isl_set *valid_init;
2808 isl_set *valid_cond;
2809 isl_set *valid_cond_init;
2810 isl_set *valid_cond_next;
2811 isl_set *valid_inc;
2812 int stmt_id;
2814 if (!stmt->getInit() && !stmt->getCond() && !stmt->getInc())
2815 return extract_infinite_for(stmt);
2817 init = stmt->getInit();
2818 if (!init) {
2819 unsupported(stmt);
2820 return NULL;
2822 if ((ass = initialization_assignment(init)) != NULL) {
2823 iv = extract_induction_variable(ass);
2824 if (!iv)
2825 return NULL;
2826 lhs = ass->getLHS();
2827 rhs = ass->getRHS();
2828 } else if ((decl = initialization_declaration(init)) != NULL) {
2829 VarDecl *var = extract_induction_variable(init, decl);
2830 if (!var)
2831 return NULL;
2832 iv = var;
2833 rhs = var->getInit();
2834 lhs = create_DeclRefExpr(var);
2835 } else {
2836 unsupported(stmt->getInit());
2837 return NULL;
2840 pa_inc = extract_increment(stmt, iv);
2841 if (!pa_inc)
2842 return NULL;
2844 inc = NULL;
2845 if (isl_pw_aff_n_piece(pa_inc) != 1 ||
2846 isl_pw_aff_foreach_piece(pa_inc, &extract_cst, &inc) < 0) {
2847 isl_pw_aff_free(pa_inc);
2848 unsupported(stmt->getInc());
2849 isl_val_free(inc);
2850 return NULL;
2852 valid_inc = isl_pw_aff_domain(pa_inc);
2854 is_unsigned = iv->getType()->isUnsignedIntegerType();
2856 assigned_value.erase(iv);
2857 clear_assignments clear(assigned_value);
2858 clear.TraverseStmt(stmt->getBody());
2860 id = isl_id_alloc(ctx, iv->getName().str().c_str(), iv);
2862 pa = try_extract_nested_condition(stmt->getCond());
2863 if (allow_nested && (!pa || has_nested(pa)))
2864 stmt_id = n_stmt++;
2866 scop = extract(stmt->getBody());
2868 has_affine_break = scop &&
2869 pet_scop_has_affine_skip(scop, pet_skip_later);
2870 if (has_affine_break)
2871 skip = pet_scop_get_affine_skip_domain(scop, pet_skip_later);
2872 has_var_break = scop && pet_scop_has_var_skip(scop, pet_skip_later);
2873 if (has_var_break) {
2874 id_break_test = pet_scop_get_skip_id(scop, pet_skip_later);
2875 keep_virtual = true;
2878 if (pa && !is_nested_allowed(pa, scop)) {
2879 isl_pw_aff_free(pa);
2880 pa = NULL;
2883 if (!allow_nested && !pa)
2884 pa = try_extract_affine_condition(stmt->getCond());
2885 valid_cond = isl_pw_aff_domain(isl_pw_aff_copy(pa));
2886 cond = isl_pw_aff_non_zero_set(pa);
2887 if (allow_nested && !cond) {
2888 isl_map *test_access;
2889 int save_n_stmt = n_stmt;
2890 test_access = create_test_access(ctx, n_test++);
2891 n_stmt = stmt_id;
2892 scop_cond = extract_non_affine_condition(stmt->getCond(),
2893 isl_map_copy(test_access));
2894 n_stmt = save_n_stmt;
2895 scop_cond = scop_add_array(scop_cond, test_access, ast_context);
2896 id_test = isl_map_get_tuple_id(test_access, isl_dim_out);
2897 isl_map_free(test_access);
2898 scop_cond = pet_scop_prefix(scop_cond, 0);
2899 scop = pet_scop_reset_context(scop);
2900 scop = pet_scop_prefix(scop, 1);
2901 keep_virtual = true;
2902 cond = isl_set_universe(isl_space_set_alloc(ctx, 0, 0));
2905 cond = embed(cond, isl_id_copy(id));
2906 skip = embed(skip, isl_id_copy(id));
2907 valid_cond = isl_set_coalesce(valid_cond);
2908 valid_cond = embed(valid_cond, isl_id_copy(id));
2909 valid_inc = embed(valid_inc, isl_id_copy(id));
2910 is_one = isl_val_is_one(inc) || isl_val_is_negone(inc);
2911 is_virtual = is_unsigned && (!is_one || can_wrap(cond, iv, inc));
2913 init_val = extract_affine(rhs);
2914 valid_cond_init = enforce_subset(
2915 isl_set_from_pw_aff(isl_pw_aff_copy(init_val)),
2916 isl_set_copy(valid_cond));
2917 if (is_one && !is_virtual) {
2918 isl_pw_aff_free(init_val);
2919 pa = extract_comparison(isl_val_is_pos(inc) ? BO_GE : BO_LE,
2920 lhs, rhs, init);
2921 valid_init = isl_pw_aff_domain(isl_pw_aff_copy(pa));
2922 valid_init = set_project_out_by_id(valid_init, id);
2923 domain = isl_pw_aff_non_zero_set(pa);
2924 } else {
2925 valid_init = isl_pw_aff_domain(isl_pw_aff_copy(init_val));
2926 domain = strided_domain(isl_id_copy(id), init_val,
2927 isl_val_copy(inc));
2930 domain = embed(domain, isl_id_copy(id));
2931 if (is_virtual) {
2932 isl_map *rev_wrap;
2933 wrap = compute_wrapping(isl_set_get_space(cond), iv);
2934 rev_wrap = isl_map_reverse(isl_map_copy(wrap));
2935 cond = isl_set_apply(cond, isl_map_copy(rev_wrap));
2936 skip = isl_set_apply(skip, isl_map_copy(rev_wrap));
2937 valid_cond = isl_set_apply(valid_cond, isl_map_copy(rev_wrap));
2938 valid_inc = isl_set_apply(valid_inc, rev_wrap);
2940 is_simple = is_simple_bound(cond, inc);
2941 if (!is_simple) {
2942 cond = isl_set_gist(cond, isl_set_copy(domain));
2943 is_simple = is_simple_bound(cond, inc);
2945 if (!is_simple)
2946 cond = valid_for_each_iteration(cond,
2947 isl_set_copy(domain), isl_val_copy(inc));
2948 domain = isl_set_intersect(domain, cond);
2949 if (has_affine_break) {
2950 skip = isl_set_intersect(skip , isl_set_copy(domain));
2951 skip = after(skip, isl_val_sgn(inc));
2952 domain = isl_set_subtract(domain, skip);
2954 domain = isl_set_set_dim_id(domain, isl_dim_set, 0, isl_id_copy(id));
2955 space = isl_space_from_domain(isl_set_get_space(domain));
2956 space = isl_space_add_dims(space, isl_dim_out, 1);
2957 sched = isl_map_universe(space);
2958 if (isl_val_is_pos(inc))
2959 sched = isl_map_equate(sched, isl_dim_in, 0, isl_dim_out, 0);
2960 else
2961 sched = isl_map_oppose(sched, isl_dim_in, 0, isl_dim_out, 0);
2963 valid_cond_next = valid_on_next(valid_cond, isl_set_copy(domain),
2964 isl_val_copy(inc));
2965 valid_inc = enforce_subset(isl_set_copy(domain), valid_inc);
2967 if (is_virtual && !keep_virtual) {
2968 wrap = isl_map_set_dim_id(wrap,
2969 isl_dim_out, 0, isl_id_copy(id));
2970 sched = isl_map_intersect_domain(sched, isl_set_copy(domain));
2971 domain = isl_set_apply(domain, isl_map_copy(wrap));
2972 sched = isl_map_apply_domain(sched, wrap);
2974 if (!(is_virtual && keep_virtual))
2975 wrap = identity_map(domain);
2977 scop_cond = pet_scop_embed(scop_cond, isl_set_copy(domain),
2978 isl_map_copy(sched), isl_map_copy(wrap), isl_id_copy(id));
2979 scop = pet_scop_embed(scop, isl_set_copy(domain), sched, wrap, id);
2980 scop = resolve_nested(scop);
2981 if (has_var_break)
2982 scop = scop_add_break(scop, id_break_test, isl_set_copy(domain),
2983 isl_val_copy(inc));
2984 if (id_test) {
2985 scop = scop_add_while(scop_cond, scop, id_test, domain,
2986 isl_val_copy(inc));
2987 isl_set_free(valid_inc);
2988 } else {
2989 scop = pet_scop_restrict_context(scop, valid_inc);
2990 scop = pet_scop_restrict_context(scop, valid_cond_next);
2991 scop = pet_scop_restrict_context(scop, valid_cond_init);
2992 isl_set_free(domain);
2994 clear_assignment(assigned_value, iv);
2996 isl_val_free(inc);
2998 scop = pet_scop_restrict_context(scop, valid_init);
3000 return scop;
3003 struct pet_scop *PetScan::extract(CompoundStmt *stmt, bool skip_declarations)
3005 return extract(stmt->children(), true, skip_declarations);
3008 /* Does parameter "pos" of "map" refer to a nested access?
3010 static bool is_nested_parameter(__isl_keep isl_map *map, int pos)
3012 bool nested;
3013 isl_id *id;
3015 id = isl_map_get_dim_id(map, isl_dim_param, pos);
3016 nested = is_nested_parameter(id);
3017 isl_id_free(id);
3019 return nested;
3022 /* How many parameters of "space" refer to nested accesses, i.e., have no name?
3024 static int n_nested_parameter(__isl_keep isl_space *space)
3026 int n = 0;
3027 int nparam;
3029 nparam = isl_space_dim(space, isl_dim_param);
3030 for (int i = 0; i < nparam; ++i)
3031 if (is_nested_parameter(space, i))
3032 ++n;
3034 return n;
3037 /* How many parameters of "map" refer to nested accesses, i.e., have no name?
3039 static int n_nested_parameter(__isl_keep isl_map *map)
3041 isl_space *space;
3042 int n;
3044 space = isl_map_get_space(map);
3045 n = n_nested_parameter(space);
3046 isl_space_free(space);
3048 return n;
3051 /* For each nested access parameter in "space",
3052 * construct a corresponding pet_expr, place it in args and
3053 * record its position in "param2pos".
3054 * "n_arg" is the number of elements that are already in args.
3055 * The position recorded in "param2pos" takes this number into account.
3056 * If the pet_expr corresponding to a parameter is identical to
3057 * the pet_expr corresponding to an earlier parameter, then these two
3058 * parameters are made to refer to the same element in args.
3060 * Return the final number of elements in args or -1 if an error has occurred.
3062 int PetScan::extract_nested(__isl_keep isl_space *space,
3063 int n_arg, struct pet_expr **args, std::map<int,int> &param2pos)
3065 int nparam;
3067 nparam = isl_space_dim(space, isl_dim_param);
3068 for (int i = 0; i < nparam; ++i) {
3069 int j;
3070 isl_id *id = isl_space_get_dim_id(space, isl_dim_param, i);
3071 Expr *nested;
3073 if (!is_nested_parameter(id)) {
3074 isl_id_free(id);
3075 continue;
3078 nested = (Expr *) isl_id_get_user(id);
3079 args[n_arg] = extract_expr(nested);
3080 if (!args[n_arg])
3081 return -1;
3083 for (j = 0; j < n_arg; ++j)
3084 if (pet_expr_is_equal(args[j], args[n_arg]))
3085 break;
3087 if (j < n_arg) {
3088 pet_expr_free(args[n_arg]);
3089 args[n_arg] = NULL;
3090 param2pos[i] = j;
3091 } else
3092 param2pos[i] = n_arg++;
3094 isl_id_free(id);
3097 return n_arg;
3100 /* For each nested access parameter in the access relations in "expr",
3101 * construct a corresponding pet_expr, place it in expr->args and
3102 * record its position in "param2pos".
3103 * n is the number of nested access parameters.
3105 struct pet_expr *PetScan::extract_nested(struct pet_expr *expr, int n,
3106 std::map<int,int> &param2pos)
3108 isl_space *space;
3110 expr->args = isl_calloc_array(ctx, struct pet_expr *, n);
3111 expr->n_arg = n;
3112 if (!expr->args)
3113 goto error;
3115 space = isl_map_get_space(expr->acc.access);
3116 n = extract_nested(space, 0, expr->args, param2pos);
3117 isl_space_free(space);
3119 if (n < 0)
3120 goto error;
3122 expr->n_arg = n;
3123 return expr;
3124 error:
3125 pet_expr_free(expr);
3126 return NULL;
3129 /* Look for parameters in any access relation in "expr" that
3130 * refer to nested accesses. In particular, these are
3131 * parameters with no name.
3133 * If there are any such parameters, then the domain of the access
3134 * relation, which is still [] at this point, is replaced by
3135 * [[] -> [t_1,...,t_n]], with n the number of these parameters
3136 * (after identifying identical nested accesses).
3137 * The parameters are then equated to the corresponding t dimensions
3138 * and subsequently projected out.
3139 * param2pos maps the position of the parameter to the position
3140 * of the corresponding t dimension.
3142 struct pet_expr *PetScan::resolve_nested(struct pet_expr *expr)
3144 int n;
3145 int nparam;
3146 int n_in;
3147 isl_space *dim;
3148 isl_map *map;
3149 std::map<int,int> param2pos;
3151 if (!expr)
3152 return expr;
3154 for (int i = 0; i < expr->n_arg; ++i) {
3155 expr->args[i] = resolve_nested(expr->args[i]);
3156 if (!expr->args[i]) {
3157 pet_expr_free(expr);
3158 return NULL;
3162 if (expr->type != pet_expr_access)
3163 return expr;
3165 n = n_nested_parameter(expr->acc.access);
3166 if (n == 0)
3167 return expr;
3169 expr = extract_nested(expr, n, param2pos);
3170 if (!expr)
3171 return NULL;
3173 n = expr->n_arg;
3174 nparam = isl_map_dim(expr->acc.access, isl_dim_param);
3175 n_in = isl_map_dim(expr->acc.access, isl_dim_in);
3176 dim = isl_map_get_space(expr->acc.access);
3177 dim = isl_space_domain(dim);
3178 dim = isl_space_from_domain(dim);
3179 dim = isl_space_add_dims(dim, isl_dim_out, n);
3180 map = isl_map_universe(dim);
3181 map = isl_map_domain_map(map);
3182 map = isl_map_reverse(map);
3183 expr->acc.access = isl_map_apply_domain(expr->acc.access, map);
3185 for (int i = nparam - 1; i >= 0; --i) {
3186 isl_id *id = isl_map_get_dim_id(expr->acc.access,
3187 isl_dim_param, i);
3188 if (!is_nested_parameter(id)) {
3189 isl_id_free(id);
3190 continue;
3193 expr->acc.access = isl_map_equate(expr->acc.access,
3194 isl_dim_param, i, isl_dim_in,
3195 n_in + param2pos[i]);
3196 expr->acc.access = isl_map_project_out(expr->acc.access,
3197 isl_dim_param, i, 1);
3199 isl_id_free(id);
3202 return expr;
3203 error:
3204 pet_expr_free(expr);
3205 return NULL;
3208 /* Return the file offset of the expansion location of "Loc".
3210 static unsigned getExpansionOffset(SourceManager &SM, SourceLocation Loc)
3212 return SM.getFileOffset(SM.getExpansionLoc(Loc));
3215 #ifdef HAVE_FINDLOCATIONAFTERTOKEN
3217 /* Return a SourceLocation for the location after the first semicolon
3218 * after "loc". If Lexer::findLocationAfterToken is available, we simply
3219 * call it and also skip trailing spaces and newline.
3221 static SourceLocation location_after_semi(SourceLocation loc, SourceManager &SM,
3222 const LangOptions &LO)
3224 return Lexer::findLocationAfterToken(loc, tok::semi, SM, LO, true);
3227 #else
3229 /* Return a SourceLocation for the location after the first semicolon
3230 * after "loc". If Lexer::findLocationAfterToken is not available,
3231 * we look in the underlying character data for the first semicolon.
3233 static SourceLocation location_after_semi(SourceLocation loc, SourceManager &SM,
3234 const LangOptions &LO)
3236 const char *semi;
3237 const char *s = SM.getCharacterData(loc);
3239 semi = strchr(s, ';');
3240 if (!semi)
3241 return SourceLocation();
3242 return loc.getFileLocWithOffset(semi + 1 - s);
3245 #endif
3247 /* If the token at "loc" is the first token on the line, then return
3248 * a location referring to the start of the line.
3249 * Otherwise, return "loc".
3251 * This function is used to extend a scop to the start of the line
3252 * if the first token of the scop is also the first token on the line.
3254 * We look for the first token on the line. If its location is equal to "loc",
3255 * then the latter is the location of the first token on the line.
3257 static SourceLocation move_to_start_of_line_if_first_token(SourceLocation loc,
3258 SourceManager &SM, const LangOptions &LO)
3260 std::pair<FileID, unsigned> file_offset_pair;
3261 llvm::StringRef file;
3262 const char *pos;
3263 Token tok;
3264 SourceLocation token_loc, line_loc;
3265 int col;
3267 loc = SM.getExpansionLoc(loc);
3268 col = SM.getExpansionColumnNumber(loc);
3269 line_loc = loc.getLocWithOffset(1 - col);
3270 file_offset_pair = SM.getDecomposedLoc(line_loc);
3271 file = SM.getBufferData(file_offset_pair.first, NULL);
3272 pos = file.data() + file_offset_pair.second;
3274 Lexer lexer(SM.getLocForStartOfFile(file_offset_pair.first), LO,
3275 file.begin(), pos, file.end());
3276 lexer.LexFromRawLexer(tok);
3277 token_loc = tok.getLocation();
3279 if (token_loc == loc)
3280 return line_loc;
3281 else
3282 return loc;
3285 /* Convert a top-level pet_expr to a pet_scop with one statement.
3286 * This mainly involves resolving nested expression parameters
3287 * and setting the name of the iteration space.
3288 * The name is given by "label" if it is non-NULL. Otherwise,
3289 * it is of the form S_<n_stmt>.
3290 * start and end of the pet_scop are derived from those of "stmt".
3292 struct pet_scop *PetScan::extract(Stmt *stmt, struct pet_expr *expr,
3293 __isl_take isl_id *label)
3295 struct pet_stmt *ps;
3296 struct pet_scop *scop;
3297 SourceLocation loc = stmt->getLocStart();
3298 SourceManager &SM = PP.getSourceManager();
3299 const LangOptions &LO = PP.getLangOpts();
3300 int line = PP.getSourceManager().getExpansionLineNumber(loc);
3301 unsigned start, end;
3303 expr = resolve_nested(expr);
3304 ps = pet_stmt_from_pet_expr(ctx, line, label, n_stmt++, expr);
3305 scop = pet_scop_from_pet_stmt(ctx, ps);
3307 loc = move_to_start_of_line_if_first_token(loc, SM, LO);
3308 start = getExpansionOffset(SM, loc);
3309 loc = stmt->getLocEnd();
3310 loc = location_after_semi(loc, SM, LO);
3311 end = getExpansionOffset(SM, loc);
3313 scop = pet_scop_update_start_end(scop, start, end);
3314 return scop;
3317 /* Check if we can extract an affine expression from "expr".
3318 * Return the expressions as an isl_pw_aff if we can and NULL otherwise.
3319 * We turn on autodetection so that we won't generate any warnings
3320 * and turn off nesting, so that we won't accept any non-affine constructs.
3322 __isl_give isl_pw_aff *PetScan::try_extract_affine(Expr *expr)
3324 isl_pw_aff *pwaff;
3325 int save_autodetect = options->autodetect;
3326 bool save_nesting = nesting_enabled;
3328 options->autodetect = 1;
3329 nesting_enabled = false;
3331 pwaff = extract_affine(expr);
3333 options->autodetect = save_autodetect;
3334 nesting_enabled = save_nesting;
3336 return pwaff;
3339 /* Check whether "expr" is an affine expression.
3341 bool PetScan::is_affine(Expr *expr)
3343 isl_pw_aff *pwaff;
3345 pwaff = try_extract_affine(expr);
3346 isl_pw_aff_free(pwaff);
3348 return pwaff != NULL;
3351 /* Check if we can extract an affine constraint from "expr".
3352 * Return the constraint as an isl_set if we can and NULL otherwise.
3353 * We turn on autodetection so that we won't generate any warnings
3354 * and turn off nesting, so that we won't accept any non-affine constructs.
3356 __isl_give isl_pw_aff *PetScan::try_extract_affine_condition(Expr *expr)
3358 isl_pw_aff *cond;
3359 int save_autodetect = options->autodetect;
3360 bool save_nesting = nesting_enabled;
3362 options->autodetect = 1;
3363 nesting_enabled = false;
3365 cond = extract_condition(expr);
3367 options->autodetect = save_autodetect;
3368 nesting_enabled = save_nesting;
3370 return cond;
3373 /* Check whether "expr" is an affine constraint.
3375 bool PetScan::is_affine_condition(Expr *expr)
3377 isl_pw_aff *cond;
3379 cond = try_extract_affine_condition(expr);
3380 isl_pw_aff_free(cond);
3382 return cond != NULL;
3385 /* Check if we can extract a condition from "expr".
3386 * Return the condition as an isl_pw_aff if we can and NULL otherwise.
3387 * If allow_nested is set, then the condition may involve parameters
3388 * corresponding to nested accesses.
3389 * We turn on autodetection so that we won't generate any warnings.
3391 __isl_give isl_pw_aff *PetScan::try_extract_nested_condition(Expr *expr)
3393 isl_pw_aff *cond;
3394 int save_autodetect = options->autodetect;
3395 bool save_nesting = nesting_enabled;
3397 options->autodetect = 1;
3398 nesting_enabled = allow_nested;
3399 cond = extract_condition(expr);
3401 options->autodetect = save_autodetect;
3402 nesting_enabled = save_nesting;
3404 return cond;
3407 /* If the top-level expression of "stmt" is an assignment, then
3408 * return that assignment as a BinaryOperator.
3409 * Otherwise return NULL.
3411 static BinaryOperator *top_assignment_or_null(Stmt *stmt)
3413 BinaryOperator *ass;
3415 if (!stmt)
3416 return NULL;
3417 if (stmt->getStmtClass() != Stmt::BinaryOperatorClass)
3418 return NULL;
3420 ass = cast<BinaryOperator>(stmt);
3421 if(ass->getOpcode() != BO_Assign)
3422 return NULL;
3424 return ass;
3427 /* Check if the given if statement is a conditional assignement
3428 * with a non-affine condition. If so, construct a pet_scop
3429 * corresponding to this conditional assignment. Otherwise return NULL.
3431 * In particular we check if "stmt" is of the form
3433 * if (condition)
3434 * a = f(...);
3435 * else
3436 * a = g(...);
3438 * where a is some array or scalar access.
3439 * The constructed pet_scop then corresponds to the expression
3441 * a = condition ? f(...) : g(...)
3443 * All access relations in f(...) are intersected with condition
3444 * while all access relation in g(...) are intersected with the complement.
3446 struct pet_scop *PetScan::extract_conditional_assignment(IfStmt *stmt)
3448 BinaryOperator *ass_then, *ass_else;
3449 isl_map *write_then, *write_else;
3450 isl_set *cond, *comp;
3451 isl_map *map;
3452 isl_pw_aff *pa;
3453 int equal;
3454 struct pet_expr *pe_cond, *pe_then, *pe_else, *pe, *pe_write;
3455 bool save_nesting = nesting_enabled;
3457 if (!options->detect_conditional_assignment)
3458 return NULL;
3460 ass_then = top_assignment_or_null(stmt->getThen());
3461 ass_else = top_assignment_or_null(stmt->getElse());
3463 if (!ass_then || !ass_else)
3464 return NULL;
3466 if (is_affine_condition(stmt->getCond()))
3467 return NULL;
3469 write_then = extract_access(ass_then->getLHS());
3470 write_else = extract_access(ass_else->getLHS());
3472 equal = isl_map_is_equal(write_then, write_else);
3473 isl_map_free(write_else);
3474 if (equal < 0 || !equal) {
3475 isl_map_free(write_then);
3476 return NULL;
3479 nesting_enabled = allow_nested;
3480 pa = extract_condition(stmt->getCond());
3481 nesting_enabled = save_nesting;
3482 cond = isl_pw_aff_non_zero_set(isl_pw_aff_copy(pa));
3483 comp = isl_pw_aff_zero_set(isl_pw_aff_copy(pa));
3484 map = isl_map_from_range(isl_set_from_pw_aff(pa));
3486 pe_cond = pet_expr_from_access(map);
3488 pe_then = extract_expr(ass_then->getRHS());
3489 pe_then = pet_expr_restrict(pe_then, cond);
3490 pe_else = extract_expr(ass_else->getRHS());
3491 pe_else = pet_expr_restrict(pe_else, comp);
3493 pe = pet_expr_new_ternary(ctx, pe_cond, pe_then, pe_else);
3494 pe_write = pet_expr_from_access(write_then);
3495 if (pe_write) {
3496 pe_write->acc.write = 1;
3497 pe_write->acc.read = 0;
3499 pe = pet_expr_new_binary(ctx, pet_op_assign, pe_write, pe);
3500 return extract(stmt, pe);
3503 /* Create a pet_scop with a single statement evaluating "cond"
3504 * and writing the result to a virtual scalar, as expressed by
3505 * "access".
3507 struct pet_scop *PetScan::extract_non_affine_condition(Expr *cond,
3508 __isl_take isl_map *access)
3510 struct pet_expr *expr, *write;
3511 struct pet_stmt *ps;
3512 struct pet_scop *scop;
3513 SourceLocation loc = cond->getLocStart();
3514 int line = PP.getSourceManager().getExpansionLineNumber(loc);
3516 write = pet_expr_from_access(access);
3517 if (write) {
3518 write->acc.write = 1;
3519 write->acc.read = 0;
3521 expr = extract_expr(cond);
3522 expr = resolve_nested(expr);
3523 expr = pet_expr_new_binary(ctx, pet_op_assign, write, expr);
3524 ps = pet_stmt_from_pet_expr(ctx, line, NULL, n_stmt++, expr);
3525 scop = pet_scop_from_pet_stmt(ctx, ps);
3526 scop = resolve_nested(scop);
3528 return scop;
3531 extern "C" {
3532 static struct pet_expr *embed_access(struct pet_expr *expr, void *user);
3535 /* Apply the map pointed to by "user" to the domain of the access
3536 * relation associated to "expr", thereby embedding it in the range of the map.
3537 * The domain of both relations is the zero-dimensional domain.
3539 static struct pet_expr *embed_access(struct pet_expr *expr, void *user)
3541 isl_map *map = (isl_map *) user;
3543 expr->acc.access = isl_map_apply_domain(expr->acc.access,
3544 isl_map_copy(map));
3545 if (!expr->acc.access)
3546 goto error;
3548 return expr;
3549 error:
3550 pet_expr_free(expr);
3551 return NULL;
3554 /* Apply "map" to all access relations in "expr".
3556 static struct pet_expr *embed(struct pet_expr *expr, __isl_keep isl_map *map)
3558 return pet_expr_map_access(expr, &embed_access, map);
3561 /* How many parameters of "set" refer to nested accesses, i.e., have no name?
3563 static int n_nested_parameter(__isl_keep isl_set *set)
3565 isl_space *space;
3566 int n;
3568 space = isl_set_get_space(set);
3569 n = n_nested_parameter(space);
3570 isl_space_free(space);
3572 return n;
3575 /* Remove all parameters from "map" that refer to nested accesses.
3577 static __isl_give isl_map *remove_nested_parameters(__isl_take isl_map *map)
3579 int nparam;
3580 isl_space *space;
3582 space = isl_map_get_space(map);
3583 nparam = isl_space_dim(space, isl_dim_param);
3584 for (int i = nparam - 1; i >= 0; --i)
3585 if (is_nested_parameter(space, i))
3586 map = isl_map_project_out(map, isl_dim_param, i, 1);
3587 isl_space_free(space);
3589 return map;
3592 /* Remove all parameters from the access relation of "expr"
3593 * that refer to nested accesses.
3595 static struct pet_expr *remove_nested_parameters(struct pet_expr *expr)
3597 expr->acc.access = remove_nested_parameters(expr->acc.access);
3598 if (!expr->acc.access)
3599 goto error;
3601 return expr;
3602 error:
3603 pet_expr_free(expr);
3604 return NULL;
3607 extern "C" {
3608 static struct pet_expr *expr_remove_nested_parameters(
3609 struct pet_expr *expr, void *user);
3612 static struct pet_expr *expr_remove_nested_parameters(
3613 struct pet_expr *expr, void *user)
3615 return remove_nested_parameters(expr);
3618 /* Remove all nested access parameters from the schedule and all
3619 * accesses of "stmt".
3620 * There is no need to remove them from the domain as these parameters
3621 * have already been removed from the domain when this function is called.
3623 static struct pet_stmt *remove_nested_parameters(struct pet_stmt *stmt)
3625 if (!stmt)
3626 return NULL;
3627 stmt->schedule = remove_nested_parameters(stmt->schedule);
3628 stmt->body = pet_expr_map_access(stmt->body,
3629 &expr_remove_nested_parameters, NULL);
3630 if (!stmt->schedule || !stmt->body)
3631 goto error;
3632 for (int i = 0; i < stmt->n_arg; ++i) {
3633 stmt->args[i] = pet_expr_map_access(stmt->args[i],
3634 &expr_remove_nested_parameters, NULL);
3635 if (!stmt->args[i])
3636 goto error;
3639 return stmt;
3640 error:
3641 pet_stmt_free(stmt);
3642 return NULL;
3645 /* For each nested access parameter in the domain of "stmt",
3646 * construct a corresponding pet_expr, place it before the original
3647 * elements in stmt->args and record its position in "param2pos".
3648 * n is the number of nested access parameters.
3650 struct pet_stmt *PetScan::extract_nested(struct pet_stmt *stmt, int n,
3651 std::map<int,int> &param2pos)
3653 int i;
3654 isl_space *space;
3655 int n_arg;
3656 struct pet_expr **args;
3658 n_arg = stmt->n_arg;
3659 args = isl_calloc_array(ctx, struct pet_expr *, n + n_arg);
3660 if (!args)
3661 goto error;
3663 space = isl_set_get_space(stmt->domain);
3664 n_arg = extract_nested(space, 0, args, param2pos);
3665 isl_space_free(space);
3667 if (n_arg < 0)
3668 goto error;
3670 for (i = 0; i < stmt->n_arg; ++i)
3671 args[n_arg + i] = stmt->args[i];
3672 free(stmt->args);
3673 stmt->args = args;
3674 stmt->n_arg += n_arg;
3676 return stmt;
3677 error:
3678 if (args) {
3679 for (i = 0; i < n; ++i)
3680 pet_expr_free(args[i]);
3681 free(args);
3683 pet_stmt_free(stmt);
3684 return NULL;
3687 /* Check whether any of the arguments i of "stmt" starting at position "n"
3688 * is equal to one of the first "n" arguments j.
3689 * If so, combine the constraints on arguments i and j and remove
3690 * argument i.
3692 static struct pet_stmt *remove_duplicate_arguments(struct pet_stmt *stmt, int n)
3694 int i, j;
3695 isl_map *map;
3697 if (!stmt)
3698 return NULL;
3699 if (n == 0)
3700 return stmt;
3701 if (n == stmt->n_arg)
3702 return stmt;
3704 map = isl_set_unwrap(stmt->domain);
3706 for (i = stmt->n_arg - 1; i >= n; --i) {
3707 for (j = 0; j < n; ++j)
3708 if (pet_expr_is_equal(stmt->args[i], stmt->args[j]))
3709 break;
3710 if (j >= n)
3711 continue;
3713 map = isl_map_equate(map, isl_dim_out, i, isl_dim_out, j);
3714 map = isl_map_project_out(map, isl_dim_out, i, 1);
3716 pet_expr_free(stmt->args[i]);
3717 for (j = i; j + 1 < stmt->n_arg; ++j)
3718 stmt->args[j] = stmt->args[j + 1];
3719 stmt->n_arg--;
3722 stmt->domain = isl_map_wrap(map);
3723 if (!stmt->domain)
3724 goto error;
3725 return stmt;
3726 error:
3727 pet_stmt_free(stmt);
3728 return NULL;
3731 /* Look for parameters in the iteration domain of "stmt" that
3732 * refer to nested accesses. In particular, these are
3733 * parameters with no name.
3735 * If there are any such parameters, then as many extra variables
3736 * (after identifying identical nested accesses) are inserted in the
3737 * range of the map wrapped inside the domain, before the original variables.
3738 * If the original domain is not a wrapped map, then a new wrapped
3739 * map is created with zero output dimensions.
3740 * The parameters are then equated to the corresponding output dimensions
3741 * and subsequently projected out, from the iteration domain,
3742 * the schedule and the access relations.
3743 * For each of the output dimensions, a corresponding argument
3744 * expression is inserted. Initially they are created with
3745 * a zero-dimensional domain, so they have to be embedded
3746 * in the current iteration domain.
3747 * param2pos maps the position of the parameter to the position
3748 * of the corresponding output dimension in the wrapped map.
3750 struct pet_stmt *PetScan::resolve_nested(struct pet_stmt *stmt)
3752 int n;
3753 int nparam;
3754 unsigned n_arg;
3755 isl_map *map;
3756 std::map<int,int> param2pos;
3758 if (!stmt)
3759 return NULL;
3761 n = n_nested_parameter(stmt->domain);
3762 if (n == 0)
3763 return stmt;
3765 n_arg = stmt->n_arg;
3766 stmt = extract_nested(stmt, n, param2pos);
3767 if (!stmt)
3768 return NULL;
3770 n = stmt->n_arg - n_arg;
3771 nparam = isl_set_dim(stmt->domain, isl_dim_param);
3772 if (isl_set_is_wrapping(stmt->domain))
3773 map = isl_set_unwrap(stmt->domain);
3774 else
3775 map = isl_map_from_domain(stmt->domain);
3776 map = isl_map_insert_dims(map, isl_dim_out, 0, n);
3778 for (int i = nparam - 1; i >= 0; --i) {
3779 isl_id *id;
3781 if (!is_nested_parameter(map, i))
3782 continue;
3784 id = pet_expr_access_get_id(stmt->args[param2pos[i]]);
3785 map = isl_map_set_dim_id(map, isl_dim_out, param2pos[i], id);
3786 map = isl_map_equate(map, isl_dim_param, i, isl_dim_out,
3787 param2pos[i]);
3788 map = isl_map_project_out(map, isl_dim_param, i, 1);
3791 stmt->domain = isl_map_wrap(map);
3793 map = isl_set_unwrap(isl_set_copy(stmt->domain));
3794 map = isl_map_from_range(isl_map_domain(map));
3795 for (int pos = 0; pos < n; ++pos)
3796 stmt->args[pos] = embed(stmt->args[pos], map);
3797 isl_map_free(map);
3799 stmt = remove_nested_parameters(stmt);
3800 stmt = remove_duplicate_arguments(stmt, n);
3802 return stmt;
3803 error:
3804 pet_stmt_free(stmt);
3805 return NULL;
3808 /* For each statement in "scop", move the parameters that correspond
3809 * to nested access into the ranges of the domains and create
3810 * corresponding argument expressions.
3812 struct pet_scop *PetScan::resolve_nested(struct pet_scop *scop)
3814 if (!scop)
3815 return NULL;
3817 for (int i = 0; i < scop->n_stmt; ++i) {
3818 scop->stmts[i] = resolve_nested(scop->stmts[i]);
3819 if (!scop->stmts[i])
3820 goto error;
3823 return scop;
3824 error:
3825 pet_scop_free(scop);
3826 return NULL;
3829 /* Given an access expression "expr", is the variable accessed by
3830 * "expr" assigned anywhere inside "scop"?
3832 static bool is_assigned(pet_expr *expr, pet_scop *scop)
3834 bool assigned = false;
3835 isl_id *id;
3837 id = pet_expr_access_get_id(expr);
3838 assigned = pet_scop_writes(scop, id);
3839 isl_id_free(id);
3841 return assigned;
3844 /* Are all nested access parameters in "pa" allowed given "scop".
3845 * In particular, is none of them written by anywhere inside "scop".
3847 * If "scop" has any skip conditions, then no nested access parameters
3848 * are allowed. In particular, if there is any nested access in a guard
3849 * for a piece of code containing a "continue", then we want to introduce
3850 * a separate statement for evaluating this guard so that we can express
3851 * that the result is false for all previous iterations.
3853 bool PetScan::is_nested_allowed(__isl_keep isl_pw_aff *pa, pet_scop *scop)
3855 int nparam;
3857 if (!scop)
3858 return true;
3860 nparam = isl_pw_aff_dim(pa, isl_dim_param);
3861 for (int i = 0; i < nparam; ++i) {
3862 Expr *nested;
3863 isl_id *id = isl_pw_aff_get_dim_id(pa, isl_dim_param, i);
3864 pet_expr *expr;
3865 bool allowed;
3867 if (!is_nested_parameter(id)) {
3868 isl_id_free(id);
3869 continue;
3872 if (pet_scop_has_skip(scop, pet_skip_now)) {
3873 isl_id_free(id);
3874 return false;
3877 nested = (Expr *) isl_id_get_user(id);
3878 expr = extract_expr(nested);
3879 allowed = expr && expr->type == pet_expr_access &&
3880 !is_assigned(expr, scop);
3882 pet_expr_free(expr);
3883 isl_id_free(id);
3885 if (!allowed)
3886 return false;
3889 return true;
3892 /* Do we need to construct a skip condition of the given type
3893 * on an if statement, given that the if condition is non-affine?
3895 * pet_scop_filter_skip can only handle the case where the if condition
3896 * holds (the then branch) and the skip condition is universal.
3897 * In any other case, we need to construct a new skip condition.
3899 static bool need_skip(struct pet_scop *scop_then, struct pet_scop *scop_else,
3900 bool have_else, enum pet_skip type)
3902 if (have_else && scop_else && pet_scop_has_skip(scop_else, type))
3903 return true;
3904 if (scop_then && pet_scop_has_skip(scop_then, type) &&
3905 !pet_scop_has_universal_skip(scop_then, type))
3906 return true;
3907 return false;
3910 /* Do we need to construct a skip condition of the given type
3911 * on an if statement, given that the if condition is affine?
3913 * There is no need to construct a new skip condition if all
3914 * the skip conditions are affine.
3916 static bool need_skip_aff(struct pet_scop *scop_then,
3917 struct pet_scop *scop_else, bool have_else, enum pet_skip type)
3919 if (scop_then && pet_scop_has_var_skip(scop_then, type))
3920 return true;
3921 if (have_else && scop_else && pet_scop_has_var_skip(scop_else, type))
3922 return true;
3923 return false;
3926 /* Do we need to construct a skip condition of the given type
3927 * on an if statement?
3929 static bool need_skip(struct pet_scop *scop_then, struct pet_scop *scop_else,
3930 bool have_else, enum pet_skip type, bool affine)
3932 if (affine)
3933 return need_skip_aff(scop_then, scop_else, have_else, type);
3934 else
3935 return need_skip(scop_then, scop_else, have_else, type);
3938 /* Construct an affine expression pet_expr that evaluates
3939 * to the constant "val".
3941 static struct pet_expr *universally(isl_ctx *ctx, int val)
3943 isl_space *space;
3944 isl_map *map;
3946 space = isl_space_alloc(ctx, 0, 0, 1);
3947 map = isl_map_universe(space);
3948 map = isl_map_fix_si(map, isl_dim_out, 0, val);
3950 return pet_expr_from_access(map);
3953 /* Construct an affine expression pet_expr that evaluates
3954 * to the constant 1.
3956 static struct pet_expr *universally_true(isl_ctx *ctx)
3958 return universally(ctx, 1);
3961 /* Construct an affine expression pet_expr that evaluates
3962 * to the constant 0.
3964 static struct pet_expr *universally_false(isl_ctx *ctx)
3966 return universally(ctx, 0);
3969 /* Given an access relation "test_access" for the if condition,
3970 * an access relation "skip_access" for the skip condition and
3971 * scops for the then and else branches, construct a scop for
3972 * computing "skip_access".
3974 * The computed scop contains a single statement that essentially does
3976 * skip_cond = test_cond ? skip_cond_then : skip_cond_else
3978 * If the skip conditions of the then and/or else branch are not affine,
3979 * then they need to be filtered by test_access.
3980 * If they are missing, then this means the skip condition is false.
3982 * Since we are constructing a skip condition for the if statement,
3983 * the skip conditions on the then and else branches are removed.
3985 static struct pet_scop *extract_skip(PetScan *scan,
3986 __isl_take isl_map *test_access, __isl_take isl_map *skip_access,
3987 struct pet_scop *scop_then, struct pet_scop *scop_else, bool have_else,
3988 enum pet_skip type)
3990 struct pet_expr *expr_then, *expr_else, *expr, *expr_skip;
3991 struct pet_stmt *stmt;
3992 struct pet_scop *scop;
3993 isl_ctx *ctx = scan->ctx;
3995 if (!scop_then)
3996 goto error;
3997 if (have_else && !scop_else)
3998 goto error;
4000 if (pet_scop_has_skip(scop_then, type)) {
4001 expr_then = pet_scop_get_skip_expr(scop_then, type);
4002 pet_scop_reset_skip(scop_then, type);
4003 if (!pet_expr_is_affine(expr_then))
4004 expr_then = pet_expr_filter(expr_then,
4005 isl_map_copy(test_access), 1);
4006 } else
4007 expr_then = universally_false(ctx);
4009 if (have_else && pet_scop_has_skip(scop_else, type)) {
4010 expr_else = pet_scop_get_skip_expr(scop_else, type);
4011 pet_scop_reset_skip(scop_else, type);
4012 if (!pet_expr_is_affine(expr_else))
4013 expr_else = pet_expr_filter(expr_else,
4014 isl_map_copy(test_access), 0);
4015 } else
4016 expr_else = universally_false(ctx);
4018 expr = pet_expr_from_access(test_access);
4019 expr = pet_expr_new_ternary(ctx, expr, expr_then, expr_else);
4020 expr_skip = pet_expr_from_access(isl_map_copy(skip_access));
4021 if (expr_skip) {
4022 expr_skip->acc.write = 1;
4023 expr_skip->acc.read = 0;
4025 expr = pet_expr_new_binary(ctx, pet_op_assign, expr_skip, expr);
4026 stmt = pet_stmt_from_pet_expr(ctx, -1, NULL, scan->n_stmt++, expr);
4028 scop = pet_scop_from_pet_stmt(ctx, stmt);
4029 scop = scop_add_array(scop, skip_access, scan->ast_context);
4030 isl_map_free(skip_access);
4032 return scop;
4033 error:
4034 isl_map_free(test_access);
4035 isl_map_free(skip_access);
4036 return NULL;
4039 /* Is scop's skip_now condition equal to its skip_later condition?
4040 * In particular, this means that it either has no skip_now condition
4041 * or both a skip_now and a skip_later condition (that are equal to each other).
4043 static bool skip_equals_skip_later(struct pet_scop *scop)
4045 int has_skip_now, has_skip_later;
4046 int equal;
4047 isl_set *skip_now, *skip_later;
4049 if (!scop)
4050 return false;
4051 has_skip_now = pet_scop_has_skip(scop, pet_skip_now);
4052 has_skip_later = pet_scop_has_skip(scop, pet_skip_later);
4053 if (has_skip_now != has_skip_later)
4054 return false;
4055 if (!has_skip_now)
4056 return true;
4058 skip_now = pet_scop_get_skip(scop, pet_skip_now);
4059 skip_later = pet_scop_get_skip(scop, pet_skip_later);
4060 equal = isl_set_is_equal(skip_now, skip_later);
4061 isl_set_free(skip_now);
4062 isl_set_free(skip_later);
4064 return equal;
4067 /* Drop the skip conditions of type pet_skip_later from scop1 and scop2.
4069 static void drop_skip_later(struct pet_scop *scop1, struct pet_scop *scop2)
4071 pet_scop_reset_skip(scop1, pet_skip_later);
4072 pet_scop_reset_skip(scop2, pet_skip_later);
4075 /* Structure that handles the construction of skip conditions.
4077 * scop_then and scop_else represent the then and else branches
4078 * of the if statement
4080 * skip[type] is true if we need to construct a skip condition of that type
4081 * equal is set if the skip conditions of types pet_skip_now and pet_skip_later
4082 * are equal to each other
4083 * access[type] is the virtual array representing the skip condition
4084 * scop[type] is a scop for computing the skip condition
4086 struct pet_skip_info {
4087 isl_ctx *ctx;
4089 bool skip[2];
4090 bool equal;
4091 isl_map *access[2];
4092 struct pet_scop *scop[2];
4094 pet_skip_info(isl_ctx *ctx) : ctx(ctx) {}
4096 operator bool() { return skip[pet_skip_now] || skip[pet_skip_later]; }
4099 /* Structure that handles the construction of skip conditions on if statements.
4101 * scop_then and scop_else represent the then and else branches
4102 * of the if statement
4104 struct pet_skip_info_if : public pet_skip_info {
4105 struct pet_scop *scop_then, *scop_else;
4106 bool have_else;
4108 pet_skip_info_if(isl_ctx *ctx, struct pet_scop *scop_then,
4109 struct pet_scop *scop_else, bool have_else, bool affine);
4110 void extract(PetScan *scan, __isl_keep isl_map *access,
4111 enum pet_skip type);
4112 void extract(PetScan *scan, __isl_keep isl_map *access);
4113 void extract(PetScan *scan, __isl_keep isl_pw_aff *cond);
4114 struct pet_scop *add(struct pet_scop *scop, enum pet_skip type,
4115 int offset);
4116 struct pet_scop *add(struct pet_scop *scop, int offset);
4119 /* Initialize a pet_skip_info_if structure based on the then and else branches
4120 * and based on whether the if condition is affine or not.
4122 pet_skip_info_if::pet_skip_info_if(isl_ctx *ctx, struct pet_scop *scop_then,
4123 struct pet_scop *scop_else, bool have_else, bool affine) :
4124 pet_skip_info(ctx), scop_then(scop_then), scop_else(scop_else),
4125 have_else(have_else)
4127 skip[pet_skip_now] =
4128 need_skip(scop_then, scop_else, have_else, pet_skip_now, affine);
4129 equal = skip[pet_skip_now] && skip_equals_skip_later(scop_then) &&
4130 (!have_else || skip_equals_skip_later(scop_else));
4131 skip[pet_skip_later] = skip[pet_skip_now] && !equal &&
4132 need_skip(scop_then, scop_else, have_else, pet_skip_later, affine);
4135 /* If we need to construct a skip condition of the given type,
4136 * then do so now.
4138 * "map" represents the if condition.
4140 void pet_skip_info_if::extract(PetScan *scan, __isl_keep isl_map *map,
4141 enum pet_skip type)
4143 if (!skip[type])
4144 return;
4146 access[type] = create_test_access(isl_map_get_ctx(map), scan->n_test++);
4147 scop[type] = extract_skip(scan, isl_map_copy(map),
4148 isl_map_copy(access[type]),
4149 scop_then, scop_else, have_else, type);
4152 /* Construct the required skip conditions, given the if condition "map".
4154 void pet_skip_info_if::extract(PetScan *scan, __isl_keep isl_map *map)
4156 extract(scan, map, pet_skip_now);
4157 extract(scan, map, pet_skip_later);
4158 if (equal)
4159 drop_skip_later(scop_then, scop_else);
4162 /* Construct the required skip conditions, given the if condition "cond".
4164 void pet_skip_info_if::extract(PetScan *scan, __isl_keep isl_pw_aff *cond)
4166 isl_set *test_set;
4167 isl_map *test;
4169 if (!skip[pet_skip_now] && !skip[pet_skip_later])
4170 return;
4172 test_set = isl_set_from_pw_aff(isl_pw_aff_copy(cond));
4173 test = isl_map_from_range(test_set);
4174 extract(scan, test);
4175 isl_map_free(test);
4178 /* Add the computed skip condition of the give type to "main" and
4179 * add the scop for computing the condition at the given offset.
4181 * If equal is set, then we only computed a skip condition for pet_skip_now,
4182 * but we also need to set it as main's pet_skip_later.
4184 struct pet_scop *pet_skip_info_if::add(struct pet_scop *main,
4185 enum pet_skip type, int offset)
4187 isl_set *skip_set;
4189 if (!skip[type])
4190 return main;
4192 skip_set = isl_map_range(access[type]);
4193 access[type] = NULL;
4194 scop[type] = pet_scop_prefix(scop[type], offset);
4195 main = pet_scop_add_par(ctx, main, scop[type]);
4196 scop[type] = NULL;
4198 if (equal)
4199 main = pet_scop_set_skip(main, pet_skip_later,
4200 isl_set_copy(skip_set));
4202 main = pet_scop_set_skip(main, type, skip_set);
4204 return main;
4207 /* Add the computed skip conditions to "main" and
4208 * add the scops for computing the conditions at the given offset.
4210 struct pet_scop *pet_skip_info_if::add(struct pet_scop *scop, int offset)
4212 scop = add(scop, pet_skip_now, offset);
4213 scop = add(scop, pet_skip_later, offset);
4215 return scop;
4218 /* Construct a pet_scop for a non-affine if statement.
4220 * We create a separate statement that writes the result
4221 * of the non-affine condition to a virtual scalar.
4222 * A constraint requiring the value of this virtual scalar to be one
4223 * is added to the iteration domains of the then branch.
4224 * Similarly, a constraint requiring the value of this virtual scalar
4225 * to be zero is added to the iteration domains of the else branch, if any.
4226 * We adjust the schedules to ensure that the virtual scalar is written
4227 * before it is read.
4229 * If there are any breaks or continues in the then and/or else
4230 * branches, then we may have to compute a new skip condition.
4231 * This is handled using a pet_skip_info_if object.
4232 * On initialization, the object checks if skip conditions need
4233 * to be computed. If so, it does so in "extract" and adds them in "add".
4235 struct pet_scop *PetScan::extract_non_affine_if(Expr *cond,
4236 struct pet_scop *scop_then, struct pet_scop *scop_else,
4237 bool have_else, int stmt_id)
4239 struct pet_scop *scop;
4240 isl_map *test_access;
4241 int save_n_stmt = n_stmt;
4243 test_access = create_test_access(ctx, n_test++);
4244 n_stmt = stmt_id;
4245 scop = extract_non_affine_condition(cond, isl_map_copy(test_access));
4246 n_stmt = save_n_stmt;
4247 scop = scop_add_array(scop, test_access, ast_context);
4249 pet_skip_info_if skip(ctx, scop_then, scop_else, have_else, false);
4250 skip.extract(this, test_access);
4252 scop = pet_scop_prefix(scop, 0);
4253 scop_then = pet_scop_prefix(scop_then, 1);
4254 scop_then = pet_scop_filter(scop_then, isl_map_copy(test_access), 1);
4255 if (have_else) {
4256 scop_else = pet_scop_prefix(scop_else, 1);
4257 scop_else = pet_scop_filter(scop_else, test_access, 0);
4258 scop_then = pet_scop_add_par(ctx, scop_then, scop_else);
4259 } else
4260 isl_map_free(test_access);
4262 scop = pet_scop_add_seq(ctx, scop, scop_then);
4264 scop = skip.add(scop, 2);
4266 return scop;
4269 /* Construct a pet_scop for an if statement.
4271 * If the condition fits the pattern of a conditional assignment,
4272 * then it is handled by extract_conditional_assignment.
4273 * Otherwise, we do the following.
4275 * If the condition is affine, then the condition is added
4276 * to the iteration domains of the then branch, while the
4277 * opposite of the condition in added to the iteration domains
4278 * of the else branch, if any.
4279 * We allow the condition to be dynamic, i.e., to refer to
4280 * scalars or array elements that may be written to outside
4281 * of the given if statement. These nested accesses are then represented
4282 * as output dimensions in the wrapping iteration domain.
4283 * If it also written _inside_ the then or else branch, then
4284 * we treat the condition as non-affine.
4285 * As explained in extract_non_affine_if, this will introduce
4286 * an extra statement.
4287 * For aesthetic reasons, we want this statement to have a statement
4288 * number that is lower than those of the then and else branches.
4289 * In order to evaluate if will need such a statement, however, we
4290 * first construct scops for the then and else branches.
4291 * We therefore reserve a statement number if we might have to
4292 * introduce such an extra statement.
4294 * If the condition is not affine, then the scop is created in
4295 * extract_non_affine_if.
4297 * If there are any breaks or continues in the then and/or else
4298 * branches, then we may have to compute a new skip condition.
4299 * This is handled using a pet_skip_info_if object.
4300 * On initialization, the object checks if skip conditions need
4301 * to be computed. If so, it does so in "extract" and adds them in "add".
4303 struct pet_scop *PetScan::extract(IfStmt *stmt)
4305 struct pet_scop *scop_then, *scop_else = NULL, *scop;
4306 isl_pw_aff *cond;
4307 int stmt_id;
4308 isl_set *set;
4309 isl_set *valid;
4311 scop = extract_conditional_assignment(stmt);
4312 if (scop)
4313 return scop;
4315 cond = try_extract_nested_condition(stmt->getCond());
4316 if (allow_nested && (!cond || has_nested(cond)))
4317 stmt_id = n_stmt++;
4320 assigned_value_cache cache(assigned_value);
4321 scop_then = extract(stmt->getThen());
4324 if (stmt->getElse()) {
4325 assigned_value_cache cache(assigned_value);
4326 scop_else = extract(stmt->getElse());
4327 if (options->autodetect) {
4328 if (scop_then && !scop_else) {
4329 partial = true;
4330 isl_pw_aff_free(cond);
4331 return scop_then;
4333 if (!scop_then && scop_else) {
4334 partial = true;
4335 isl_pw_aff_free(cond);
4336 return scop_else;
4341 if (cond &&
4342 (!is_nested_allowed(cond, scop_then) ||
4343 (stmt->getElse() && !is_nested_allowed(cond, scop_else)))) {
4344 isl_pw_aff_free(cond);
4345 cond = NULL;
4347 if (allow_nested && !cond)
4348 return extract_non_affine_if(stmt->getCond(), scop_then,
4349 scop_else, stmt->getElse(), stmt_id);
4351 if (!cond)
4352 cond = extract_condition(stmt->getCond());
4354 pet_skip_info_if skip(ctx, scop_then, scop_else, stmt->getElse(), true);
4355 skip.extract(this, cond);
4357 valid = isl_pw_aff_domain(isl_pw_aff_copy(cond));
4358 set = isl_pw_aff_non_zero_set(cond);
4359 scop = pet_scop_restrict(scop_then, isl_set_copy(set));
4361 if (stmt->getElse()) {
4362 set = isl_set_subtract(isl_set_copy(valid), set);
4363 scop_else = pet_scop_restrict(scop_else, set);
4364 scop = pet_scop_add_par(ctx, scop, scop_else);
4365 } else
4366 isl_set_free(set);
4367 scop = resolve_nested(scop);
4368 scop = pet_scop_restrict_context(scop, valid);
4370 if (skip)
4371 scop = pet_scop_prefix(scop, 0);
4372 scop = skip.add(scop, 1);
4374 return scop;
4377 /* Try and construct a pet_scop for a label statement.
4378 * We currently only allow labels on expression statements.
4380 struct pet_scop *PetScan::extract(LabelStmt *stmt)
4382 isl_id *label;
4383 Stmt *sub;
4385 sub = stmt->getSubStmt();
4386 if (!isa<Expr>(sub)) {
4387 unsupported(stmt);
4388 return NULL;
4391 label = isl_id_alloc(ctx, stmt->getName(), NULL);
4393 return extract(sub, extract_expr(cast<Expr>(sub)), label);
4396 /* Construct a pet_scop for a continue statement.
4398 * We simply create an empty scop with a universal pet_skip_now
4399 * skip condition. This skip condition will then be taken into
4400 * account by the enclosing loop construct, possibly after
4401 * being incorporated into outer skip conditions.
4403 struct pet_scop *PetScan::extract(ContinueStmt *stmt)
4405 pet_scop *scop;
4406 isl_space *space;
4407 isl_set *set;
4409 scop = pet_scop_empty(ctx);
4410 if (!scop)
4411 return NULL;
4413 space = isl_space_set_alloc(ctx, 0, 1);
4414 set = isl_set_universe(space);
4415 set = isl_set_fix_si(set, isl_dim_set, 0, 1);
4416 scop = pet_scop_set_skip(scop, pet_skip_now, set);
4418 return scop;
4421 /* Construct a pet_scop for a break statement.
4423 * We simply create an empty scop with both a universal pet_skip_now
4424 * skip condition and a universal pet_skip_later skip condition.
4425 * These skip conditions will then be taken into
4426 * account by the enclosing loop construct, possibly after
4427 * being incorporated into outer skip conditions.
4429 struct pet_scop *PetScan::extract(BreakStmt *stmt)
4431 pet_scop *scop;
4432 isl_space *space;
4433 isl_set *set;
4435 scop = pet_scop_empty(ctx);
4436 if (!scop)
4437 return NULL;
4439 space = isl_space_set_alloc(ctx, 0, 1);
4440 set = isl_set_universe(space);
4441 set = isl_set_fix_si(set, isl_dim_set, 0, 1);
4442 scop = pet_scop_set_skip(scop, pet_skip_now, isl_set_copy(set));
4443 scop = pet_scop_set_skip(scop, pet_skip_later, set);
4445 return scop;
4448 /* Try and construct a pet_scop corresponding to "stmt".
4450 * If "stmt" is a compound statement, then "skip_declarations"
4451 * indicates whether we should skip initial declarations in the
4452 * compound statement.
4454 * If the constructed pet_scop is not a (possibly) partial representation
4455 * of "stmt", we update start and end of the pet_scop to those of "stmt".
4456 * In particular, if skip_declarations, then we may have skipped declarations
4457 * inside "stmt" and so the pet_scop may not represent the entire "stmt".
4458 * Note that this function may be called with "stmt" referring to the entire
4459 * body of the function, including the outer braces. In such cases,
4460 * skip_declarations will be set and the braces will not be taken into
4461 * account in scop->start and scop->end.
4463 struct pet_scop *PetScan::extract(Stmt *stmt, bool skip_declarations)
4465 struct pet_scop *scop;
4466 unsigned start, end;
4467 SourceLocation loc;
4468 SourceManager &SM = PP.getSourceManager();
4469 const LangOptions &LO = PP.getLangOpts();
4471 if (isa<Expr>(stmt))
4472 return extract(stmt, extract_expr(cast<Expr>(stmt)));
4474 switch (stmt->getStmtClass()) {
4475 case Stmt::WhileStmtClass:
4476 scop = extract(cast<WhileStmt>(stmt));
4477 break;
4478 case Stmt::ForStmtClass:
4479 scop = extract_for(cast<ForStmt>(stmt));
4480 break;
4481 case Stmt::IfStmtClass:
4482 scop = extract(cast<IfStmt>(stmt));
4483 break;
4484 case Stmt::CompoundStmtClass:
4485 scop = extract(cast<CompoundStmt>(stmt), skip_declarations);
4486 break;
4487 case Stmt::LabelStmtClass:
4488 scop = extract(cast<LabelStmt>(stmt));
4489 break;
4490 case Stmt::ContinueStmtClass:
4491 scop = extract(cast<ContinueStmt>(stmt));
4492 break;
4493 case Stmt::BreakStmtClass:
4494 scop = extract(cast<BreakStmt>(stmt));
4495 break;
4496 case Stmt::DeclStmtClass:
4497 scop = extract(cast<DeclStmt>(stmt));
4498 break;
4499 default:
4500 unsupported(stmt);
4501 return NULL;
4504 if (partial || skip_declarations)
4505 return scop;
4507 loc = stmt->getLocStart();
4508 loc = move_to_start_of_line_if_first_token(loc, SM, LO);
4509 start = getExpansionOffset(SM, loc);
4510 loc = PP.getLocForEndOfToken(stmt->getLocEnd());
4511 end = getExpansionOffset(SM, loc);
4512 scop = pet_scop_update_start_end(scop, start, end);
4514 return scop;
4517 /* Do we need to construct a skip condition of the given type
4518 * on a sequence of statements?
4520 * There is no need to construct a new skip condition if only
4521 * only of the two statements has a skip condition or if both
4522 * of their skip conditions are affine.
4524 * In principle we also don't need a new continuation variable if
4525 * the continuation of scop2 is affine, but then we would need
4526 * to allow more complicated forms of continuations.
4528 static bool need_skip_seq(struct pet_scop *scop1, struct pet_scop *scop2,
4529 enum pet_skip type)
4531 if (!scop1 || !pet_scop_has_skip(scop1, type))
4532 return false;
4533 if (!scop2 || !pet_scop_has_skip(scop2, type))
4534 return false;
4535 if (pet_scop_has_affine_skip(scop1, type) &&
4536 pet_scop_has_affine_skip(scop2, type))
4537 return false;
4538 return true;
4541 /* Construct a scop for computing the skip condition of the given type and
4542 * with access relation "skip_access" for a sequence of two scops "scop1"
4543 * and "scop2".
4545 * The computed scop contains a single statement that essentially does
4547 * skip_cond = skip_cond_1 ? 1 : skip_cond_2
4549 * or, in other words, skip_cond1 || skip_cond2.
4550 * In this expression, skip_cond_2 is filtered to reflect that it is
4551 * only evaluated when skip_cond_1 is false.
4553 * The skip condition on scop1 is not removed because it still needs
4554 * to be applied to scop2 when these two scops are combined.
4556 static struct pet_scop *extract_skip_seq(PetScan *ps,
4557 __isl_take isl_map *skip_access,
4558 struct pet_scop *scop1, struct pet_scop *scop2, enum pet_skip type)
4560 isl_map *access;
4561 struct pet_expr *expr1, *expr2, *expr, *expr_skip;
4562 struct pet_stmt *stmt;
4563 struct pet_scop *scop;
4564 isl_ctx *ctx = ps->ctx;
4566 if (!scop1 || !scop2)
4567 goto error;
4569 expr1 = pet_scop_get_skip_expr(scop1, type);
4570 expr2 = pet_scop_get_skip_expr(scop2, type);
4571 pet_scop_reset_skip(scop2, type);
4573 expr2 = pet_expr_filter(expr2, isl_map_copy(expr1->acc.access), 0);
4575 expr = universally_true(ctx);
4576 expr = pet_expr_new_ternary(ctx, expr1, expr, expr2);
4577 expr_skip = pet_expr_from_access(isl_map_copy(skip_access));
4578 if (expr_skip) {
4579 expr_skip->acc.write = 1;
4580 expr_skip->acc.read = 0;
4582 expr = pet_expr_new_binary(ctx, pet_op_assign, expr_skip, expr);
4583 stmt = pet_stmt_from_pet_expr(ctx, -1, NULL, ps->n_stmt++, expr);
4585 scop = pet_scop_from_pet_stmt(ctx, stmt);
4586 scop = scop_add_array(scop, skip_access, ps->ast_context);
4587 isl_map_free(skip_access);
4589 return scop;
4590 error:
4591 isl_map_free(skip_access);
4592 return NULL;
4595 /* Structure that handles the construction of skip conditions
4596 * on sequences of statements.
4598 * scop1 and scop2 represent the two statements that are combined
4600 struct pet_skip_info_seq : public pet_skip_info {
4601 struct pet_scop *scop1, *scop2;
4603 pet_skip_info_seq(isl_ctx *ctx, struct pet_scop *scop1,
4604 struct pet_scop *scop2);
4605 void extract(PetScan *scan, enum pet_skip type);
4606 void extract(PetScan *scan);
4607 struct pet_scop *add(struct pet_scop *scop, enum pet_skip type,
4608 int offset);
4609 struct pet_scop *add(struct pet_scop *scop, int offset);
4612 /* Initialize a pet_skip_info_seq structure based on
4613 * on the two statements that are going to be combined.
4615 pet_skip_info_seq::pet_skip_info_seq(isl_ctx *ctx, struct pet_scop *scop1,
4616 struct pet_scop *scop2) : pet_skip_info(ctx), scop1(scop1), scop2(scop2)
4618 skip[pet_skip_now] = need_skip_seq(scop1, scop2, pet_skip_now);
4619 equal = skip[pet_skip_now] && skip_equals_skip_later(scop1) &&
4620 skip_equals_skip_later(scop2);
4621 skip[pet_skip_later] = skip[pet_skip_now] && !equal &&
4622 need_skip_seq(scop1, scop2, pet_skip_later);
4625 /* If we need to construct a skip condition of the given type,
4626 * then do so now.
4628 void pet_skip_info_seq::extract(PetScan *scan, enum pet_skip type)
4630 if (!skip[type])
4631 return;
4633 access[type] = create_test_access(ctx, scan->n_test++);
4634 scop[type] = extract_skip_seq(scan, isl_map_copy(access[type]),
4635 scop1, scop2, type);
4638 /* Construct the required skip conditions.
4640 void pet_skip_info_seq::extract(PetScan *scan)
4642 extract(scan, pet_skip_now);
4643 extract(scan, pet_skip_later);
4644 if (equal)
4645 drop_skip_later(scop1, scop2);
4648 /* Add the computed skip condition of the given type to "main" and
4649 * add the scop for computing the condition at the given offset (the statement
4650 * number). Within this offset, the condition is computed at position 1
4651 * to ensure that it is computed after the corresponding statement.
4653 * If equal is set, then we only computed a skip condition for pet_skip_now,
4654 * but we also need to set it as main's pet_skip_later.
4656 struct pet_scop *pet_skip_info_seq::add(struct pet_scop *main,
4657 enum pet_skip type, int offset)
4659 isl_set *skip_set;
4661 if (!skip[type])
4662 return main;
4664 skip_set = isl_map_range(access[type]);
4665 access[type] = NULL;
4666 scop[type] = pet_scop_prefix(scop[type], 1);
4667 scop[type] = pet_scop_prefix(scop[type], offset);
4668 main = pet_scop_add_par(ctx, main, scop[type]);
4669 scop[type] = NULL;
4671 if (equal)
4672 main = pet_scop_set_skip(main, pet_skip_later,
4673 isl_set_copy(skip_set));
4675 main = pet_scop_set_skip(main, type, skip_set);
4677 return main;
4680 /* Add the computed skip conditions to "main" and
4681 * add the scops for computing the conditions at the given offset.
4683 struct pet_scop *pet_skip_info_seq::add(struct pet_scop *scop, int offset)
4685 scop = add(scop, pet_skip_now, offset);
4686 scop = add(scop, pet_skip_later, offset);
4688 return scop;
4691 /* Extract a clone of the kill statement in "scop".
4692 * "scop" is expected to have been created from a DeclStmt
4693 * and should have the kill as its first statement.
4695 struct pet_stmt *PetScan::extract_kill(struct pet_scop *scop)
4697 struct pet_expr *kill;
4698 struct pet_stmt *stmt;
4699 isl_map *access;
4701 if (!scop)
4702 return NULL;
4703 if (scop->n_stmt < 1)
4704 isl_die(ctx, isl_error_internal,
4705 "expecting at least one statement", return NULL);
4706 stmt = scop->stmts[0];
4707 if (stmt->body->type != pet_expr_unary ||
4708 stmt->body->op != pet_op_kill)
4709 isl_die(ctx, isl_error_internal,
4710 "expecting kill statement", return NULL);
4712 access = isl_map_copy(stmt->body->args[0]->acc.access);
4713 access = isl_map_reset_tuple_id(access, isl_dim_in);
4714 kill = pet_expr_kill_from_access(access);
4715 return pet_stmt_from_pet_expr(ctx, stmt->line, NULL, n_stmt++, kill);
4718 /* Mark all arrays in "scop" as being exposed.
4720 static struct pet_scop *mark_exposed(struct pet_scop *scop)
4722 if (!scop)
4723 return NULL;
4724 for (int i = 0; i < scop->n_array; ++i)
4725 scop->arrays[i]->exposed = 1;
4726 return scop;
4729 /* Try and construct a pet_scop corresponding to (part of)
4730 * a sequence of statements.
4732 * "block" is set if the sequence respresents the children of
4733 * a compound statement.
4734 * "skip_declarations" is set if we should skip initial declarations
4735 * in the sequence of statements.
4737 * If there are any breaks or continues in the individual statements,
4738 * then we may have to compute a new skip condition.
4739 * This is handled using a pet_skip_info_seq object.
4740 * On initialization, the object checks if skip conditions need
4741 * to be computed. If so, it does so in "extract" and adds them in "add".
4743 * If "block" is set, then we need to insert kill statements at
4744 * the end of the block for any array that has been declared by
4745 * one of the statements in the sequence. Each of these declarations
4746 * results in the construction of a kill statement at the place
4747 * of the declaration, so we simply collect duplicates of
4748 * those kill statements and append these duplicates to the constructed scop.
4750 * If "block" is not set, then any array declared by one of the statements
4751 * in the sequence is marked as being exposed.
4753 struct pet_scop *PetScan::extract(StmtRange stmt_range, bool block,
4754 bool skip_declarations)
4756 pet_scop *scop;
4757 StmtIterator i;
4758 int j;
4759 bool partial_range = false;
4760 set<struct pet_stmt *> kills;
4761 set<struct pet_stmt *>::iterator it;
4763 scop = pet_scop_empty(ctx);
4764 for (i = stmt_range.first, j = 0; i != stmt_range.second; ++i, ++j) {
4765 Stmt *child = *i;
4766 struct pet_scop *scop_i;
4768 if (skip_declarations &&
4769 child->getStmtClass() == Stmt::DeclStmtClass)
4770 continue;
4772 scop_i = extract(child);
4773 if (scop && partial) {
4774 pet_scop_free(scop_i);
4775 break;
4777 pet_skip_info_seq skip(ctx, scop, scop_i);
4778 skip.extract(this);
4779 if (skip)
4780 scop_i = pet_scop_prefix(scop_i, 0);
4781 if (scop_i && child->getStmtClass() == Stmt::DeclStmtClass) {
4782 if (block)
4783 kills.insert(extract_kill(scop_i));
4784 else
4785 scop_i = mark_exposed(scop_i);
4787 scop_i = pet_scop_prefix(scop_i, j);
4788 if (options->autodetect) {
4789 if (scop_i)
4790 scop = pet_scop_add_seq(ctx, scop, scop_i);
4791 else
4792 partial_range = true;
4793 if (scop->n_stmt != 0 && !scop_i)
4794 partial = true;
4795 } else {
4796 scop = pet_scop_add_seq(ctx, scop, scop_i);
4799 scop = skip.add(scop, j);
4801 if (partial)
4802 break;
4805 for (it = kills.begin(); it != kills.end(); ++it) {
4806 pet_scop *scop_j;
4807 scop_j = pet_scop_from_pet_stmt(ctx, *it);
4808 scop_j = pet_scop_prefix(scop_j, j);
4809 scop = pet_scop_add_seq(ctx, scop, scop_j);
4812 if (scop && partial_range) {
4813 if (scop->n_stmt == 0) {
4814 pet_scop_free(scop);
4815 return NULL;
4817 partial = true;
4820 return scop;
4823 /* Check if the scop marked by the user is exactly this Stmt
4824 * or part of this Stmt.
4825 * If so, return a pet_scop corresponding to the marked region.
4826 * Otherwise, return NULL.
4828 struct pet_scop *PetScan::scan(Stmt *stmt)
4830 SourceManager &SM = PP.getSourceManager();
4831 unsigned start_off, end_off;
4833 start_off = getExpansionOffset(SM, stmt->getLocStart());
4834 end_off = getExpansionOffset(SM, stmt->getLocEnd());
4836 if (start_off > loc.end)
4837 return NULL;
4838 if (end_off < loc.start)
4839 return NULL;
4840 if (start_off >= loc.start && end_off <= loc.end) {
4841 return extract(stmt);
4844 StmtIterator start;
4845 for (start = stmt->child_begin(); start != stmt->child_end(); ++start) {
4846 Stmt *child = *start;
4847 if (!child)
4848 continue;
4849 start_off = getExpansionOffset(SM, child->getLocStart());
4850 end_off = getExpansionOffset(SM, child->getLocEnd());
4851 if (start_off < loc.start && end_off >= loc.end)
4852 return scan(child);
4853 if (start_off >= loc.start)
4854 break;
4857 StmtIterator end;
4858 for (end = start; end != stmt->child_end(); ++end) {
4859 Stmt *child = *end;
4860 start_off = SM.getFileOffset(child->getLocStart());
4861 if (start_off >= loc.end)
4862 break;
4865 return extract(StmtRange(start, end), false, false);
4868 /* Set the size of index "pos" of "array" to "size".
4869 * In particular, add a constraint of the form
4871 * i_pos < size
4873 * to array->extent and a constraint of the form
4875 * size >= 0
4877 * to array->context.
4879 static struct pet_array *update_size(struct pet_array *array, int pos,
4880 __isl_take isl_pw_aff *size)
4882 isl_set *valid;
4883 isl_set *univ;
4884 isl_set *bound;
4885 isl_space *dim;
4886 isl_aff *aff;
4887 isl_pw_aff *index;
4888 isl_id *id;
4890 valid = isl_pw_aff_nonneg_set(isl_pw_aff_copy(size));
4891 array->context = isl_set_intersect(array->context, valid);
4893 dim = isl_set_get_space(array->extent);
4894 aff = isl_aff_zero_on_domain(isl_local_space_from_space(dim));
4895 aff = isl_aff_add_coefficient_si(aff, isl_dim_in, pos, 1);
4896 univ = isl_set_universe(isl_aff_get_domain_space(aff));
4897 index = isl_pw_aff_alloc(univ, aff);
4899 size = isl_pw_aff_add_dims(size, isl_dim_in,
4900 isl_set_dim(array->extent, isl_dim_set));
4901 id = isl_set_get_tuple_id(array->extent);
4902 size = isl_pw_aff_set_tuple_id(size, isl_dim_in, id);
4903 bound = isl_pw_aff_lt_set(index, size);
4905 array->extent = isl_set_intersect(array->extent, bound);
4907 if (!array->context || !array->extent)
4908 goto error;
4910 return array;
4911 error:
4912 pet_array_free(array);
4913 return NULL;
4916 /* Figure out the size of the array at position "pos" and all
4917 * subsequent positions from "type" and update "array" accordingly.
4919 struct pet_array *PetScan::set_upper_bounds(struct pet_array *array,
4920 const Type *type, int pos)
4922 const ArrayType *atype;
4923 isl_pw_aff *size;
4925 if (!array)
4926 return NULL;
4928 if (type->isPointerType()) {
4929 type = type->getPointeeType().getTypePtr();
4930 return set_upper_bounds(array, type, pos + 1);
4932 if (!type->isArrayType())
4933 return array;
4935 type = type->getCanonicalTypeInternal().getTypePtr();
4936 atype = cast<ArrayType>(type);
4938 if (type->isConstantArrayType()) {
4939 const ConstantArrayType *ca = cast<ConstantArrayType>(atype);
4940 size = extract_affine(ca->getSize());
4941 array = update_size(array, pos, size);
4942 } else if (type->isVariableArrayType()) {
4943 const VariableArrayType *vla = cast<VariableArrayType>(atype);
4944 size = extract_affine(vla->getSizeExpr());
4945 array = update_size(array, pos, size);
4948 type = atype->getElementType().getTypePtr();
4950 return set_upper_bounds(array, type, pos + 1);
4953 /* Is "T" the type of a variable length array with static size?
4955 static bool is_vla_with_static_size(QualType T)
4957 const VariableArrayType *vlatype;
4959 if (!T->isVariableArrayType())
4960 return false;
4961 vlatype = cast<VariableArrayType>(T);
4962 return vlatype->getSizeModifier() == VariableArrayType::Static;
4965 /* Return the type of "decl" as an array.
4967 * In particular, if "decl" is a parameter declaration that
4968 * is a variable length array with a static size, then
4969 * return the original type (i.e., the variable length array).
4970 * Otherwise, return the type of decl.
4972 static QualType get_array_type(ValueDecl *decl)
4974 ParmVarDecl *parm;
4975 QualType T;
4977 parm = dyn_cast<ParmVarDecl>(decl);
4978 if (!parm)
4979 return decl->getType();
4981 T = parm->getOriginalType();
4982 if (!is_vla_with_static_size(T))
4983 return decl->getType();
4984 return T;
4987 /* Construct and return a pet_array corresponding to the variable "decl".
4988 * In particular, initialize array->extent to
4990 * { name[i_1,...,i_d] : i_1,...,i_d >= 0 }
4992 * and then call set_upper_bounds to set the upper bounds on the indices
4993 * based on the type of the variable.
4995 struct pet_array *PetScan::extract_array(isl_ctx *ctx, ValueDecl *decl)
4997 struct pet_array *array;
4998 QualType qt = get_array_type(decl);
4999 const Type *type = qt.getTypePtr();
5000 int depth = array_depth(type);
5001 QualType base = base_type(qt);
5002 string name;
5003 isl_id *id;
5004 isl_space *dim;
5006 array = isl_calloc_type(ctx, struct pet_array);
5007 if (!array)
5008 return NULL;
5010 id = isl_id_alloc(ctx, decl->getName().str().c_str(), decl);
5011 dim = isl_space_set_alloc(ctx, 0, depth);
5012 dim = isl_space_set_tuple_id(dim, isl_dim_set, id);
5014 array->extent = isl_set_nat_universe(dim);
5016 dim = isl_space_params_alloc(ctx, 0);
5017 array->context = isl_set_universe(dim);
5019 array = set_upper_bounds(array, type, 0);
5020 if (!array)
5021 return NULL;
5023 name = base.getAsString();
5024 array->element_type = strdup(name.c_str());
5025 array->element_size = decl->getASTContext().getTypeInfo(base).first / 8;
5027 return array;
5030 /* Construct a list of pet_arrays, one for each array (or scalar)
5031 * accessed inside "scop", add this list to "scop" and return the result.
5033 * The context of "scop" is updated with the intersection of
5034 * the contexts of all arrays, i.e., constraints on the parameters
5035 * that ensure that the arrays have a valid (non-negative) size.
5037 struct pet_scop *PetScan::scan_arrays(struct pet_scop *scop)
5039 int i;
5040 set<ValueDecl *> arrays;
5041 set<ValueDecl *>::iterator it;
5042 int n_array;
5043 struct pet_array **scop_arrays;
5045 if (!scop)
5046 return NULL;
5048 pet_scop_collect_arrays(scop, arrays);
5049 if (arrays.size() == 0)
5050 return scop;
5052 n_array = scop->n_array;
5054 scop_arrays = isl_realloc_array(ctx, scop->arrays, struct pet_array *,
5055 n_array + arrays.size());
5056 if (!scop_arrays)
5057 goto error;
5058 scop->arrays = scop_arrays;
5060 for (it = arrays.begin(), i = 0; it != arrays.end(); ++it, ++i) {
5061 struct pet_array *array;
5062 scop->arrays[n_array + i] = array = extract_array(ctx, *it);
5063 if (!scop->arrays[n_array + i])
5064 goto error;
5065 scop->n_array++;
5066 scop->context = isl_set_intersect(scop->context,
5067 isl_set_copy(array->context));
5068 if (!scop->context)
5069 goto error;
5072 return scop;
5073 error:
5074 pet_scop_free(scop);
5075 return NULL;
5078 /* Bound all parameters in scop->context to the possible values
5079 * of the corresponding C variable.
5081 static struct pet_scop *add_parameter_bounds(struct pet_scop *scop)
5083 int n;
5085 if (!scop)
5086 return NULL;
5088 n = isl_set_dim(scop->context, isl_dim_param);
5089 for (int i = 0; i < n; ++i) {
5090 isl_id *id;
5091 ValueDecl *decl;
5093 id = isl_set_get_dim_id(scop->context, isl_dim_param, i);
5094 if (is_nested_parameter(id)) {
5095 isl_id_free(id);
5096 isl_die(isl_set_get_ctx(scop->context),
5097 isl_error_internal,
5098 "unresolved nested parameter", goto error);
5100 decl = (ValueDecl *) isl_id_get_user(id);
5101 isl_id_free(id);
5103 scop->context = set_parameter_bounds(scop->context, i, decl);
5105 if (!scop->context)
5106 goto error;
5109 return scop;
5110 error:
5111 pet_scop_free(scop);
5112 return NULL;
5115 /* Construct a pet_scop from the given function.
5117 * If the scop was delimited by scop and endscop pragmas, then we override
5118 * the file offsets by those derived from the pragmas.
5120 struct pet_scop *PetScan::scan(FunctionDecl *fd)
5122 pet_scop *scop;
5123 Stmt *stmt;
5125 stmt = fd->getBody();
5127 if (options->autodetect)
5128 scop = extract(stmt, true);
5129 else {
5130 scop = scan(stmt);
5131 scop = pet_scop_update_start_end(scop, loc.start, loc.end);
5133 scop = pet_scop_detect_parameter_accesses(scop);
5134 scop = scan_arrays(scop);
5135 scop = add_parameter_bounds(scop);
5136 scop = pet_scop_gist(scop, value_bounds);
5138 return scop;