PetScan::resolve_nested: use function to embed arguments in statement domain
[pet.git] / scan.cc
blobca9477bd5a2f0f53892dc5938db257d2f0d1c84a
1 /*
2 * Copyright 2011 Leiden University. All rights reserved.
3 * Copyright 2012 Ecole Normale Superieure. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above
13 * copyright notice, this list of conditions and the following
14 * disclaimer in the documentation and/or other materials provided
15 * with the distribution.
17 * THIS SOFTWARE IS PROVIDED BY LEIDEN UNIVERSITY ''AS IS'' AND ANY
18 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
20 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL LEIDEN UNIVERSITY OR
21 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
22 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
23 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
24 * OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 * The views and conclusions contained in the software and documentation
30 * are those of the authors and should not be interpreted as
31 * representing official policies, either expressed or implied, of
32 * Leiden University.
33 */
35 #include <string.h>
36 #include <set>
37 #include <map>
38 #include <iostream>
39 #include <llvm/Support/raw_ostream.h>
40 #include <clang/AST/ASTContext.h>
41 #include <clang/AST/ASTDiagnostic.h>
42 #include <clang/AST/Expr.h>
43 #include <clang/AST/RecursiveASTVisitor.h>
45 #include <isl/id.h>
46 #include <isl/space.h>
47 #include <isl/aff.h>
48 #include <isl/set.h>
50 #include "options.h"
51 #include "scan.h"
52 #include "scop.h"
53 #include "scop_plus.h"
55 #include "config.h"
57 using namespace std;
58 using namespace clang;
60 #if defined(DECLREFEXPR_CREATE_REQUIRES_BOOL)
61 static DeclRefExpr *create_DeclRefExpr(VarDecl *var)
63 return DeclRefExpr::Create(var->getASTContext(), var->getQualifierLoc(),
64 SourceLocation(), var, false, var->getInnerLocStart(),
65 var->getType(), VK_LValue);
67 #elif defined(DECLREFEXPR_CREATE_REQUIRES_SOURCELOCATION)
68 static DeclRefExpr *create_DeclRefExpr(VarDecl *var)
70 return DeclRefExpr::Create(var->getASTContext(), var->getQualifierLoc(),
71 SourceLocation(), var, var->getInnerLocStart(), var->getType(),
72 VK_LValue);
74 #else
75 static DeclRefExpr *create_DeclRefExpr(VarDecl *var)
77 return DeclRefExpr::Create(var->getASTContext(), var->getQualifierLoc(),
78 var, var->getInnerLocStart(), var->getType(), VK_LValue);
80 #endif
82 /* Check if the element type corresponding to the given array type
83 * has a const qualifier.
85 static bool const_base(QualType qt)
87 const Type *type = qt.getTypePtr();
89 if (type->isPointerType())
90 return const_base(type->getPointeeType());
91 if (type->isArrayType()) {
92 const ArrayType *atype;
93 type = type->getCanonicalTypeInternal().getTypePtr();
94 atype = cast<ArrayType>(type);
95 return const_base(atype->getElementType());
98 return qt.isConstQualified();
101 /* Mark "decl" as having an unknown value in "assigned_value".
103 * If no (known or unknown) value was assigned to "decl" before,
104 * then it may have been treated as a parameter before and may
105 * therefore appear in a value assigned to another variable.
106 * If so, this assignment needs to be turned into an unknown value too.
108 static void clear_assignment(map<ValueDecl *, isl_pw_aff *> &assigned_value,
109 ValueDecl *decl)
111 map<ValueDecl *, isl_pw_aff *>::iterator it;
113 it = assigned_value.find(decl);
115 assigned_value[decl] = NULL;
117 if (it == assigned_value.end())
118 return;
120 for (it = assigned_value.begin(); it != assigned_value.end(); ++it) {
121 isl_pw_aff *pa = it->second;
122 int nparam = isl_pw_aff_dim(pa, isl_dim_param);
124 for (int i = 0; i < nparam; ++i) {
125 isl_id *id;
127 if (!isl_pw_aff_has_dim_id(pa, isl_dim_param, i))
128 continue;
129 id = isl_pw_aff_get_dim_id(pa, isl_dim_param, i);
130 if (isl_id_get_user(id) == decl)
131 it->second = NULL;
132 isl_id_free(id);
137 /* Look for any assignments to scalar variables in part of the parse
138 * tree and set assigned_value to NULL for each of them.
139 * Also reset assigned_value if the address of a scalar variable
140 * is being taken. As an exception, if the address is passed to a function
141 * that is declared to receive a const pointer, then assigned_value is
142 * not reset.
144 * This ensures that we won't use any previously stored value
145 * in the current subtree and its parents.
147 struct clear_assignments : RecursiveASTVisitor<clear_assignments> {
148 map<ValueDecl *, isl_pw_aff *> &assigned_value;
149 set<UnaryOperator *> skip;
151 clear_assignments(map<ValueDecl *, isl_pw_aff *> &assigned_value) :
152 assigned_value(assigned_value) {}
154 /* Check for "address of" operators whose value is passed
155 * to a const pointer argument and add them to "skip", so that
156 * we can skip them in VisitUnaryOperator.
158 bool VisitCallExpr(CallExpr *expr) {
159 FunctionDecl *fd;
160 fd = expr->getDirectCallee();
161 if (!fd)
162 return true;
163 for (int i = 0; i < expr->getNumArgs(); ++i) {
164 Expr *arg = expr->getArg(i);
165 UnaryOperator *op;
166 if (arg->getStmtClass() == Stmt::ImplicitCastExprClass) {
167 ImplicitCastExpr *ice;
168 ice = cast<ImplicitCastExpr>(arg);
169 arg = ice->getSubExpr();
171 if (arg->getStmtClass() != Stmt::UnaryOperatorClass)
172 continue;
173 op = cast<UnaryOperator>(arg);
174 if (op->getOpcode() != UO_AddrOf)
175 continue;
176 if (const_base(fd->getParamDecl(i)->getType()))
177 skip.insert(op);
179 return true;
182 bool VisitUnaryOperator(UnaryOperator *expr) {
183 Expr *arg;
184 DeclRefExpr *ref;
185 ValueDecl *decl;
187 switch (expr->getOpcode()) {
188 case UO_AddrOf:
189 case UO_PostInc:
190 case UO_PostDec:
191 case UO_PreInc:
192 case UO_PreDec:
193 break;
194 default:
195 return true;
197 if (skip.find(expr) != skip.end())
198 return true;
200 arg = expr->getSubExpr();
201 if (arg->getStmtClass() != Stmt::DeclRefExprClass)
202 return true;
203 ref = cast<DeclRefExpr>(arg);
204 decl = ref->getDecl();
205 clear_assignment(assigned_value, decl);
206 return true;
209 bool VisitBinaryOperator(BinaryOperator *expr) {
210 Expr *lhs;
211 DeclRefExpr *ref;
212 ValueDecl *decl;
214 if (!expr->isAssignmentOp())
215 return true;
216 lhs = expr->getLHS();
217 if (lhs->getStmtClass() != Stmt::DeclRefExprClass)
218 return true;
219 ref = cast<DeclRefExpr>(lhs);
220 decl = ref->getDecl();
221 clear_assignment(assigned_value, decl);
222 return true;
226 /* Keep a copy of the currently assigned values.
228 * Any variable that is assigned a value inside the current scope
229 * is removed again when we leave the scope (either because it wasn't
230 * stored in the cache or because it has a different value in the cache).
232 struct assigned_value_cache {
233 map<ValueDecl *, isl_pw_aff *> &assigned_value;
234 map<ValueDecl *, isl_pw_aff *> cache;
236 assigned_value_cache(map<ValueDecl *, isl_pw_aff *> &assigned_value) :
237 assigned_value(assigned_value), cache(assigned_value) {}
238 ~assigned_value_cache() {
239 map<ValueDecl *, isl_pw_aff *>::iterator it = cache.begin();
240 for (it = assigned_value.begin(); it != assigned_value.end();
241 ++it) {
242 if (!it->second ||
243 (cache.find(it->first) != cache.end() &&
244 cache[it->first] != it->second))
245 cache[it->first] = NULL;
247 assigned_value = cache;
251 /* Insert an expression into the collection of expressions,
252 * provided it is not already in there.
253 * The isl_pw_affs are freed in the destructor.
255 void PetScan::insert_expression(__isl_take isl_pw_aff *expr)
257 std::set<isl_pw_aff *>::iterator it;
259 if (expressions.find(expr) == expressions.end())
260 expressions.insert(expr);
261 else
262 isl_pw_aff_free(expr);
265 PetScan::~PetScan()
267 std::set<isl_pw_aff *>::iterator it;
269 for (it = expressions.begin(); it != expressions.end(); ++it)
270 isl_pw_aff_free(*it);
272 isl_union_map_free(value_bounds);
275 /* Called if we found something we (currently) cannot handle.
276 * We'll provide more informative warnings later.
278 * We only actually complain if autodetect is false.
280 void PetScan::unsupported(Stmt *stmt, const char *msg)
282 if (options->autodetect)
283 return;
285 SourceLocation loc = stmt->getLocStart();
286 DiagnosticsEngine &diag = PP.getDiagnostics();
287 unsigned id = diag.getCustomDiagID(DiagnosticsEngine::Warning,
288 msg ? msg : "unsupported");
289 DiagnosticBuilder B = diag.Report(loc, id) << stmt->getSourceRange();
292 /* Extract an integer from "expr".
294 __isl_give isl_val *PetScan::extract_int(isl_ctx *ctx, IntegerLiteral *expr)
296 const Type *type = expr->getType().getTypePtr();
297 int is_signed = type->hasSignedIntegerRepresentation();
298 llvm::APInt val = expr->getValue();
299 int is_negative = is_signed && val.isNegative();
300 isl_val *v;
302 if (is_negative)
303 val = -val;
305 v = extract_unsigned(ctx, val);
307 if (is_negative)
308 v = isl_val_neg(v);
309 return v;
312 /* Extract an integer from "val", which assumed to be non-negative.
314 __isl_give isl_val *PetScan::extract_unsigned(isl_ctx *ctx,
315 const llvm::APInt &val)
317 unsigned n;
318 const uint64_t *data;
320 data = val.getRawData();
321 n = val.getNumWords();
322 return isl_val_int_from_chunks(ctx, n, sizeof(uint64_t), data);
325 /* Extract an integer from "expr".
326 * Return NULL if "expr" does not (obviously) represent an integer.
328 __isl_give isl_val *PetScan::extract_int(clang::ParenExpr *expr)
330 return extract_int(expr->getSubExpr());
333 /* Extract an integer from "expr".
334 * Return NULL if "expr" does not (obviously) represent an integer.
336 __isl_give isl_val *PetScan::extract_int(clang::Expr *expr)
338 if (expr->getStmtClass() == Stmt::IntegerLiteralClass)
339 return extract_int(ctx, cast<IntegerLiteral>(expr));
340 if (expr->getStmtClass() == Stmt::ParenExprClass)
341 return extract_int(cast<ParenExpr>(expr));
343 unsupported(expr);
344 return NULL;
347 /* Extract an affine expression from the IntegerLiteral "expr".
349 __isl_give isl_pw_aff *PetScan::extract_affine(IntegerLiteral *expr)
351 isl_space *dim = isl_space_params_alloc(ctx, 0);
352 isl_local_space *ls = isl_local_space_from_space(isl_space_copy(dim));
353 isl_aff *aff = isl_aff_zero_on_domain(ls);
354 isl_set *dom = isl_set_universe(dim);
355 isl_val *v;
357 v = extract_int(expr);
358 aff = isl_aff_add_constant_val(aff, v);
360 return isl_pw_aff_alloc(dom, aff);
363 /* Extract an affine expression from the APInt "val", which is assumed
364 * to be non-negative.
366 __isl_give isl_pw_aff *PetScan::extract_affine(const llvm::APInt &val)
368 isl_space *dim = isl_space_params_alloc(ctx, 0);
369 isl_local_space *ls = isl_local_space_from_space(isl_space_copy(dim));
370 isl_aff *aff = isl_aff_zero_on_domain(ls);
371 isl_set *dom = isl_set_universe(dim);
372 isl_val *v;
374 v = extract_unsigned(ctx, val);
375 aff = isl_aff_add_constant_val(aff, v);
377 return isl_pw_aff_alloc(dom, aff);
380 __isl_give isl_pw_aff *PetScan::extract_affine(ImplicitCastExpr *expr)
382 return extract_affine(expr->getSubExpr());
385 static unsigned get_type_size(ValueDecl *decl)
387 return decl->getASTContext().getIntWidth(decl->getType());
390 /* Bound parameter "pos" of "set" to the possible values of "decl".
392 static __isl_give isl_set *set_parameter_bounds(__isl_take isl_set *set,
393 unsigned pos, ValueDecl *decl)
395 unsigned width;
396 isl_ctx *ctx;
397 isl_val *bound;
399 ctx = isl_set_get_ctx(set);
400 width = get_type_size(decl);
401 if (decl->getType()->isUnsignedIntegerType()) {
402 set = isl_set_lower_bound_si(set, isl_dim_param, pos, 0);
403 bound = isl_val_int_from_ui(ctx, width);
404 bound = isl_val_2exp(bound);
405 bound = isl_val_sub_ui(bound, 1);
406 set = isl_set_upper_bound_val(set, isl_dim_param, pos, bound);
407 } else {
408 bound = isl_val_int_from_ui(ctx, width - 1);
409 bound = isl_val_2exp(bound);
410 bound = isl_val_sub_ui(bound, 1);
411 set = isl_set_upper_bound_val(set, isl_dim_param, pos,
412 isl_val_copy(bound));
413 bound = isl_val_neg(bound);
414 bound = isl_val_sub_ui(bound, 1);
415 set = isl_set_lower_bound_val(set, isl_dim_param, pos, bound);
418 return set;
421 /* Extract an affine expression from the DeclRefExpr "expr".
423 * If the variable has been assigned a value, then we check whether
424 * we know what (affine) value was assigned.
425 * If so, we return this value. Otherwise we convert "expr"
426 * to an extra parameter (provided nesting_enabled is set).
428 * Otherwise, we simply return an expression that is equal
429 * to a parameter corresponding to the referenced variable.
431 __isl_give isl_pw_aff *PetScan::extract_affine(DeclRefExpr *expr)
433 ValueDecl *decl = expr->getDecl();
434 const Type *type = decl->getType().getTypePtr();
435 isl_id *id;
436 isl_space *dim;
437 isl_aff *aff;
438 isl_set *dom;
440 if (!type->isIntegerType()) {
441 unsupported(expr);
442 return NULL;
445 if (assigned_value.find(decl) != assigned_value.end()) {
446 if (assigned_value[decl])
447 return isl_pw_aff_copy(assigned_value[decl]);
448 else
449 return nested_access(expr);
452 id = isl_id_alloc(ctx, decl->getName().str().c_str(), decl);
453 dim = isl_space_params_alloc(ctx, 1);
455 dim = isl_space_set_dim_id(dim, isl_dim_param, 0, id);
457 dom = isl_set_universe(isl_space_copy(dim));
458 aff = isl_aff_zero_on_domain(isl_local_space_from_space(dim));
459 aff = isl_aff_add_coefficient_si(aff, isl_dim_param, 0, 1);
461 return isl_pw_aff_alloc(dom, aff);
464 /* Extract an affine expression from an integer division operation.
465 * In particular, if "expr" is lhs/rhs, then return
467 * lhs >= 0 ? floor(lhs/rhs) : ceil(lhs/rhs)
469 * The second argument (rhs) is required to be a (positive) integer constant.
471 __isl_give isl_pw_aff *PetScan::extract_affine_div(BinaryOperator *expr)
473 int is_cst;
474 isl_pw_aff *rhs, *lhs;
476 rhs = extract_affine(expr->getRHS());
477 is_cst = isl_pw_aff_is_cst(rhs);
478 if (is_cst < 0 || !is_cst) {
479 isl_pw_aff_free(rhs);
480 if (!is_cst)
481 unsupported(expr);
482 return NULL;
485 lhs = extract_affine(expr->getLHS());
487 return isl_pw_aff_tdiv_q(lhs, rhs);
490 /* Extract an affine expression from a modulo operation.
491 * In particular, if "expr" is lhs/rhs, then return
493 * lhs - rhs * (lhs >= 0 ? floor(lhs/rhs) : ceil(lhs/rhs))
495 * The second argument (rhs) is required to be a (positive) integer constant.
497 __isl_give isl_pw_aff *PetScan::extract_affine_mod(BinaryOperator *expr)
499 int is_cst;
500 isl_pw_aff *rhs, *lhs;
502 rhs = extract_affine(expr->getRHS());
503 is_cst = isl_pw_aff_is_cst(rhs);
504 if (is_cst < 0 || !is_cst) {
505 isl_pw_aff_free(rhs);
506 if (!is_cst)
507 unsupported(expr);
508 return NULL;
511 lhs = extract_affine(expr->getLHS());
513 return isl_pw_aff_tdiv_r(lhs, rhs);
516 /* Extract an affine expression from a multiplication operation.
517 * This is only allowed if at least one of the two arguments
518 * is a (piecewise) constant.
520 __isl_give isl_pw_aff *PetScan::extract_affine_mul(BinaryOperator *expr)
522 isl_pw_aff *lhs;
523 isl_pw_aff *rhs;
525 lhs = extract_affine(expr->getLHS());
526 rhs = extract_affine(expr->getRHS());
528 if (!isl_pw_aff_is_cst(lhs) && !isl_pw_aff_is_cst(rhs)) {
529 isl_pw_aff_free(lhs);
530 isl_pw_aff_free(rhs);
531 unsupported(expr);
532 return NULL;
535 return isl_pw_aff_mul(lhs, rhs);
538 /* Extract an affine expression from an addition or subtraction operation.
540 __isl_give isl_pw_aff *PetScan::extract_affine_add(BinaryOperator *expr)
542 isl_pw_aff *lhs;
543 isl_pw_aff *rhs;
545 lhs = extract_affine(expr->getLHS());
546 rhs = extract_affine(expr->getRHS());
548 switch (expr->getOpcode()) {
549 case BO_Add:
550 return isl_pw_aff_add(lhs, rhs);
551 case BO_Sub:
552 return isl_pw_aff_sub(lhs, rhs);
553 default:
554 isl_pw_aff_free(lhs);
555 isl_pw_aff_free(rhs);
556 return NULL;
561 /* Compute
563 * pwaff mod 2^width
565 static __isl_give isl_pw_aff *wrap(__isl_take isl_pw_aff *pwaff,
566 unsigned width)
568 isl_ctx *ctx;
569 isl_val *mod;
571 ctx = isl_pw_aff_get_ctx(pwaff);
572 mod = isl_val_int_from_ui(ctx, width);
573 mod = isl_val_2exp(mod);
575 pwaff = isl_pw_aff_mod_val(pwaff, mod);
577 return pwaff;
580 /* Limit the domain of "pwaff" to those elements where the function
581 * value satisfies
583 * 2^{width-1} <= pwaff < 2^{width-1}
585 static __isl_give isl_pw_aff *avoid_overflow(__isl_take isl_pw_aff *pwaff,
586 unsigned width)
588 isl_ctx *ctx;
589 isl_val *v;
590 isl_space *space = isl_pw_aff_get_domain_space(pwaff);
591 isl_local_space *ls = isl_local_space_from_space(space);
592 isl_aff *bound;
593 isl_set *dom;
594 isl_pw_aff *b;
596 ctx = isl_pw_aff_get_ctx(pwaff);
597 v = isl_val_int_from_ui(ctx, width - 1);
598 v = isl_val_2exp(v);
600 bound = isl_aff_zero_on_domain(ls);
601 bound = isl_aff_add_constant_val(bound, v);
602 b = isl_pw_aff_from_aff(bound);
604 dom = isl_pw_aff_lt_set(isl_pw_aff_copy(pwaff), isl_pw_aff_copy(b));
605 pwaff = isl_pw_aff_intersect_domain(pwaff, dom);
607 b = isl_pw_aff_neg(b);
608 dom = isl_pw_aff_ge_set(isl_pw_aff_copy(pwaff), b);
609 pwaff = isl_pw_aff_intersect_domain(pwaff, dom);
611 return pwaff;
614 /* Handle potential overflows on signed computations.
616 * If options->signed_overflow is set to PET_OVERFLOW_AVOID,
617 * the we adjust the domain of "pa" to avoid overflows.
619 __isl_give isl_pw_aff *PetScan::signed_overflow(__isl_take isl_pw_aff *pa,
620 unsigned width)
622 if (options->signed_overflow == PET_OVERFLOW_AVOID)
623 pa = avoid_overflow(pa, width);
625 return pa;
628 /* Return the piecewise affine expression "set ? 1 : 0" defined on "dom".
630 static __isl_give isl_pw_aff *indicator_function(__isl_take isl_set *set,
631 __isl_take isl_set *dom)
633 isl_pw_aff *pa;
634 pa = isl_set_indicator_function(set);
635 pa = isl_pw_aff_intersect_domain(pa, dom);
636 return pa;
639 /* Extract an affine expression from some binary operations.
640 * If the result of the expression is unsigned, then we wrap it
641 * based on the size of the type. Otherwise, we ensure that
642 * no overflow occurs.
644 __isl_give isl_pw_aff *PetScan::extract_affine(BinaryOperator *expr)
646 isl_pw_aff *res;
647 unsigned width;
649 switch (expr->getOpcode()) {
650 case BO_Add:
651 case BO_Sub:
652 res = extract_affine_add(expr);
653 break;
654 case BO_Div:
655 res = extract_affine_div(expr);
656 break;
657 case BO_Rem:
658 res = extract_affine_mod(expr);
659 break;
660 case BO_Mul:
661 res = extract_affine_mul(expr);
662 break;
663 case BO_LT:
664 case BO_LE:
665 case BO_GT:
666 case BO_GE:
667 case BO_EQ:
668 case BO_NE:
669 case BO_LAnd:
670 case BO_LOr:
671 return extract_condition(expr);
672 default:
673 unsupported(expr);
674 return NULL;
677 width = ast_context.getIntWidth(expr->getType());
678 if (expr->getType()->isUnsignedIntegerType())
679 res = wrap(res, width);
680 else
681 res = signed_overflow(res, width);
683 return res;
686 /* Extract an affine expression from a negation operation.
688 __isl_give isl_pw_aff *PetScan::extract_affine(UnaryOperator *expr)
690 if (expr->getOpcode() == UO_Minus)
691 return isl_pw_aff_neg(extract_affine(expr->getSubExpr()));
692 if (expr->getOpcode() == UO_LNot)
693 return extract_condition(expr);
695 unsupported(expr);
696 return NULL;
699 __isl_give isl_pw_aff *PetScan::extract_affine(ParenExpr *expr)
701 return extract_affine(expr->getSubExpr());
704 /* Extract an affine expression from some special function calls.
705 * In particular, we handle "min", "max", "ceild" and "floord".
706 * In case of the latter two, the second argument needs to be
707 * a (positive) integer constant.
709 __isl_give isl_pw_aff *PetScan::extract_affine(CallExpr *expr)
711 FunctionDecl *fd;
712 string name;
713 isl_pw_aff *aff1, *aff2;
715 fd = expr->getDirectCallee();
716 if (!fd) {
717 unsupported(expr);
718 return NULL;
721 name = fd->getDeclName().getAsString();
722 if (!(expr->getNumArgs() == 2 && name == "min") &&
723 !(expr->getNumArgs() == 2 && name == "max") &&
724 !(expr->getNumArgs() == 2 && name == "floord") &&
725 !(expr->getNumArgs() == 2 && name == "ceild")) {
726 unsupported(expr);
727 return NULL;
730 if (name == "min" || name == "max") {
731 aff1 = extract_affine(expr->getArg(0));
732 aff2 = extract_affine(expr->getArg(1));
734 if (name == "min")
735 aff1 = isl_pw_aff_min(aff1, aff2);
736 else
737 aff1 = isl_pw_aff_max(aff1, aff2);
738 } else if (name == "floord" || name == "ceild") {
739 isl_val *v;
740 Expr *arg2 = expr->getArg(1);
742 if (arg2->getStmtClass() != Stmt::IntegerLiteralClass) {
743 unsupported(expr);
744 return NULL;
746 aff1 = extract_affine(expr->getArg(0));
747 v = extract_int(cast<IntegerLiteral>(arg2));
748 aff1 = isl_pw_aff_scale_down_val(aff1, v);
749 if (name == "floord")
750 aff1 = isl_pw_aff_floor(aff1);
751 else
752 aff1 = isl_pw_aff_ceil(aff1);
753 } else {
754 unsupported(expr);
755 return NULL;
758 return aff1;
761 /* This method is called when we come across an access that is
762 * nested in what is supposed to be an affine expression.
763 * If nesting is allowed, we return a new parameter that corresponds
764 * to this nested access. Otherwise, we simply complain.
766 * Note that we currently don't allow nested accesses themselves
767 * to contain any nested accesses, so we check if we can extract
768 * the access without any nesting and complain if we can't.
770 * The new parameter is resolved in resolve_nested.
772 isl_pw_aff *PetScan::nested_access(Expr *expr)
774 isl_id *id;
775 isl_space *dim;
776 isl_aff *aff;
777 isl_set *dom;
778 isl_multi_pw_aff *index;
780 if (!nesting_enabled) {
781 unsupported(expr);
782 return NULL;
785 allow_nested = false;
786 index = extract_index(expr);
787 allow_nested = true;
788 if (!index) {
789 unsupported(expr);
790 return NULL;
792 isl_multi_pw_aff_free(index);
794 id = isl_id_alloc(ctx, NULL, expr);
795 dim = isl_space_params_alloc(ctx, 1);
797 dim = isl_space_set_dim_id(dim, isl_dim_param, 0, id);
799 dom = isl_set_universe(isl_space_copy(dim));
800 aff = isl_aff_zero_on_domain(isl_local_space_from_space(dim));
801 aff = isl_aff_add_coefficient_si(aff, isl_dim_param, 0, 1);
803 return isl_pw_aff_alloc(dom, aff);
806 /* Affine expressions are not supposed to contain array accesses,
807 * but if nesting is allowed, we return a parameter corresponding
808 * to the array access.
810 __isl_give isl_pw_aff *PetScan::extract_affine(ArraySubscriptExpr *expr)
812 return nested_access(expr);
815 /* Extract an affine expression from a conditional operation.
817 __isl_give isl_pw_aff *PetScan::extract_affine(ConditionalOperator *expr)
819 isl_pw_aff *cond, *lhs, *rhs, *res;
821 cond = extract_condition(expr->getCond());
822 lhs = extract_affine(expr->getTrueExpr());
823 rhs = extract_affine(expr->getFalseExpr());
825 return isl_pw_aff_cond(cond, lhs, rhs);
828 /* Extract an affine expression, if possible, from "expr".
829 * Otherwise return NULL.
831 __isl_give isl_pw_aff *PetScan::extract_affine(Expr *expr)
833 switch (expr->getStmtClass()) {
834 case Stmt::ImplicitCastExprClass:
835 return extract_affine(cast<ImplicitCastExpr>(expr));
836 case Stmt::IntegerLiteralClass:
837 return extract_affine(cast<IntegerLiteral>(expr));
838 case Stmt::DeclRefExprClass:
839 return extract_affine(cast<DeclRefExpr>(expr));
840 case Stmt::BinaryOperatorClass:
841 return extract_affine(cast<BinaryOperator>(expr));
842 case Stmt::UnaryOperatorClass:
843 return extract_affine(cast<UnaryOperator>(expr));
844 case Stmt::ParenExprClass:
845 return extract_affine(cast<ParenExpr>(expr));
846 case Stmt::CallExprClass:
847 return extract_affine(cast<CallExpr>(expr));
848 case Stmt::ArraySubscriptExprClass:
849 return extract_affine(cast<ArraySubscriptExpr>(expr));
850 case Stmt::ConditionalOperatorClass:
851 return extract_affine(cast<ConditionalOperator>(expr));
852 default:
853 unsupported(expr);
855 return NULL;
858 __isl_give isl_multi_pw_aff *PetScan::extract_index(ImplicitCastExpr *expr)
860 return extract_index(expr->getSubExpr());
863 /* Return the depth of an array of the given type.
865 static int array_depth(const Type *type)
867 if (type->isPointerType())
868 return 1 + array_depth(type->getPointeeType().getTypePtr());
869 if (type->isArrayType()) {
870 const ArrayType *atype;
871 type = type->getCanonicalTypeInternal().getTypePtr();
872 atype = cast<ArrayType>(type);
873 return 1 + array_depth(atype->getElementType().getTypePtr());
875 return 0;
878 /* Return the depth of the array accessed by the index expression "index".
879 * If "index" is an affine expression, i.e., if it does not access
880 * any array, then return 1.
882 static int extract_depth(__isl_keep isl_multi_pw_aff *index)
884 isl_id *id;
885 ValueDecl *decl;
887 if (!index)
888 return -1;
890 if (!isl_multi_pw_aff_has_tuple_id(index, isl_dim_set))
891 return 1;
893 id = isl_multi_pw_aff_get_tuple_id(index, isl_dim_set);
894 if (!id)
895 return -1;
896 decl = (ValueDecl *) isl_id_get_user(id);
897 isl_id_free(id);
899 return array_depth(decl->getType().getTypePtr());
902 /* Return the element type of the given array type.
904 static QualType base_type(QualType qt)
906 const Type *type = qt.getTypePtr();
908 if (type->isPointerType())
909 return base_type(type->getPointeeType());
910 if (type->isArrayType()) {
911 const ArrayType *atype;
912 type = type->getCanonicalTypeInternal().getTypePtr();
913 atype = cast<ArrayType>(type);
914 return base_type(atype->getElementType());
916 return qt;
919 /* Extract an index expression from a reference to a variable.
920 * If the variable has name "A", then the returned index expression
921 * is of the form
923 * { [] -> A[] }
925 __isl_give isl_multi_pw_aff *PetScan::extract_index(DeclRefExpr *expr)
927 return extract_index(expr->getDecl());
930 /* Extract an index expression from a variable.
931 * If the variable has name "A", then the returned index expression
932 * is of the form
934 * { [] -> A[] }
936 __isl_give isl_multi_pw_aff *PetScan::extract_index(ValueDecl *decl)
938 isl_id *id = isl_id_alloc(ctx, decl->getName().str().c_str(), decl);
939 isl_space *space = isl_space_alloc(ctx, 0, 0, 0);
941 space = isl_space_set_tuple_id(space, isl_dim_out, id);
943 return isl_multi_pw_aff_zero(space);
946 /* Extract an index expression from an integer contant.
947 * If the value of the constant is "v", then the returned access relation
948 * is
950 * { [] -> [v] }
952 __isl_give isl_multi_pw_aff *PetScan::extract_index(IntegerLiteral *expr)
954 isl_multi_pw_aff *mpa;
956 mpa = isl_multi_pw_aff_from_pw_aff(extract_affine(expr));
957 mpa = isl_multi_pw_aff_from_range(mpa);
958 return mpa;
961 /* Try and extract an index expression from the given Expr.
962 * Return NULL if it doesn't work out.
964 __isl_give isl_multi_pw_aff *PetScan::extract_index(Expr *expr)
966 switch (expr->getStmtClass()) {
967 case Stmt::ImplicitCastExprClass:
968 return extract_index(cast<ImplicitCastExpr>(expr));
969 case Stmt::DeclRefExprClass:
970 return extract_index(cast<DeclRefExpr>(expr));
971 case Stmt::ArraySubscriptExprClass:
972 return extract_index(cast<ArraySubscriptExpr>(expr));
973 case Stmt::IntegerLiteralClass:
974 return extract_index(cast<IntegerLiteral>(expr));
975 default:
976 unsupported(expr);
978 return NULL;
981 /* Extract an index expression from the given array subscript expression.
982 * If nesting is allowed in general, then we turn it on while
983 * examining the index expression.
985 * We first extract an index expression from the base.
986 * This will result in an index expression with a range that corresponds
987 * to the earlier indices.
988 * We then extract the current index, restrict its domain
989 * to those values that result in a non-negative index and
990 * append the index to the base index expression.
992 __isl_give isl_multi_pw_aff *PetScan::extract_index(ArraySubscriptExpr *expr)
994 Expr *base = expr->getBase();
995 Expr *idx = expr->getIdx();
996 isl_pw_aff *index;
997 isl_set *domain;
998 isl_multi_pw_aff *base_access;
999 isl_multi_pw_aff *access;
1000 isl_id *id;
1001 bool save_nesting = nesting_enabled;
1003 nesting_enabled = allow_nested;
1005 base_access = extract_index(base);
1006 index = extract_affine(idx);
1008 nesting_enabled = save_nesting;
1010 id = isl_multi_pw_aff_get_tuple_id(base_access, isl_dim_set);
1011 index = isl_pw_aff_from_range(index);
1012 domain = isl_pw_aff_nonneg_set(isl_pw_aff_copy(index));
1013 index = isl_pw_aff_intersect_domain(index, domain);
1014 access = isl_multi_pw_aff_from_pw_aff(index);
1015 access = isl_multi_pw_aff_flat_range_product(base_access, access);
1016 access = isl_multi_pw_aff_set_tuple_id(access, isl_dim_set, id);
1018 return access;
1021 /* Check if "expr" calls function "minmax" with two arguments and if so
1022 * make lhs and rhs refer to these two arguments.
1024 static bool is_minmax(Expr *expr, const char *minmax, Expr *&lhs, Expr *&rhs)
1026 CallExpr *call;
1027 FunctionDecl *fd;
1028 string name;
1030 if (expr->getStmtClass() != Stmt::CallExprClass)
1031 return false;
1033 call = cast<CallExpr>(expr);
1034 fd = call->getDirectCallee();
1035 if (!fd)
1036 return false;
1038 if (call->getNumArgs() != 2)
1039 return false;
1041 name = fd->getDeclName().getAsString();
1042 if (name != minmax)
1043 return false;
1045 lhs = call->getArg(0);
1046 rhs = call->getArg(1);
1048 return true;
1051 /* Check if "expr" is of the form min(lhs, rhs) and if so make
1052 * lhs and rhs refer to the two arguments.
1054 static bool is_min(Expr *expr, Expr *&lhs, Expr *&rhs)
1056 return is_minmax(expr, "min", lhs, rhs);
1059 /* Check if "expr" is of the form max(lhs, rhs) and if so make
1060 * lhs and rhs refer to the two arguments.
1062 static bool is_max(Expr *expr, Expr *&lhs, Expr *&rhs)
1064 return is_minmax(expr, "max", lhs, rhs);
1067 /* Return "lhs && rhs", defined on the shared definition domain.
1069 static __isl_give isl_pw_aff *pw_aff_and(__isl_take isl_pw_aff *lhs,
1070 __isl_take isl_pw_aff *rhs)
1072 isl_set *cond;
1073 isl_set *dom;
1075 dom = isl_set_intersect(isl_pw_aff_domain(isl_pw_aff_copy(lhs)),
1076 isl_pw_aff_domain(isl_pw_aff_copy(rhs)));
1077 cond = isl_set_intersect(isl_pw_aff_non_zero_set(lhs),
1078 isl_pw_aff_non_zero_set(rhs));
1079 return indicator_function(cond, dom);
1082 /* Return "lhs && rhs", with shortcut semantics.
1083 * That is, if lhs is false, then the result is defined even if rhs is not.
1084 * In practice, we compute lhs ? rhs : lhs.
1086 static __isl_give isl_pw_aff *pw_aff_and_then(__isl_take isl_pw_aff *lhs,
1087 __isl_take isl_pw_aff *rhs)
1089 return isl_pw_aff_cond(isl_pw_aff_copy(lhs), rhs, lhs);
1092 /* Return "lhs || rhs", with shortcut semantics.
1093 * That is, if lhs is true, then the result is defined even if rhs is not.
1094 * In practice, we compute lhs ? lhs : rhs.
1096 static __isl_give isl_pw_aff *pw_aff_or_else(__isl_take isl_pw_aff *lhs,
1097 __isl_take isl_pw_aff *rhs)
1099 return isl_pw_aff_cond(isl_pw_aff_copy(lhs), lhs, rhs);
1102 /* Extract an affine expressions representing the comparison "LHS op RHS"
1103 * "comp" is the original statement that "LHS op RHS" is derived from
1104 * and is used for diagnostics.
1106 * If the comparison is of the form
1108 * a <= min(b,c)
1110 * then the expression is constructed as the conjunction of
1111 * the comparisons
1113 * a <= b and a <= c
1115 * A similar optimization is performed for max(a,b) <= c.
1116 * We do this because that will lead to simpler representations
1117 * of the expression.
1118 * If isl is ever enhanced to explicitly deal with min and max expressions,
1119 * this optimization can be removed.
1121 __isl_give isl_pw_aff *PetScan::extract_comparison(BinaryOperatorKind op,
1122 Expr *LHS, Expr *RHS, Stmt *comp)
1124 isl_pw_aff *lhs;
1125 isl_pw_aff *rhs;
1126 isl_pw_aff *res;
1127 isl_set *cond;
1128 isl_set *dom;
1130 if (op == BO_GT)
1131 return extract_comparison(BO_LT, RHS, LHS, comp);
1132 if (op == BO_GE)
1133 return extract_comparison(BO_LE, RHS, LHS, comp);
1135 if (op == BO_LT || op == BO_LE) {
1136 Expr *expr1, *expr2;
1137 if (is_min(RHS, expr1, expr2)) {
1138 lhs = extract_comparison(op, LHS, expr1, comp);
1139 rhs = extract_comparison(op, LHS, expr2, comp);
1140 return pw_aff_and(lhs, rhs);
1142 if (is_max(LHS, expr1, expr2)) {
1143 lhs = extract_comparison(op, expr1, RHS, comp);
1144 rhs = extract_comparison(op, expr2, RHS, comp);
1145 return pw_aff_and(lhs, rhs);
1149 lhs = extract_affine(LHS);
1150 rhs = extract_affine(RHS);
1152 dom = isl_pw_aff_domain(isl_pw_aff_copy(lhs));
1153 dom = isl_set_intersect(dom, isl_pw_aff_domain(isl_pw_aff_copy(rhs)));
1155 switch (op) {
1156 case BO_LT:
1157 cond = isl_pw_aff_lt_set(lhs, rhs);
1158 break;
1159 case BO_LE:
1160 cond = isl_pw_aff_le_set(lhs, rhs);
1161 break;
1162 case BO_EQ:
1163 cond = isl_pw_aff_eq_set(lhs, rhs);
1164 break;
1165 case BO_NE:
1166 cond = isl_pw_aff_ne_set(lhs, rhs);
1167 break;
1168 default:
1169 isl_pw_aff_free(lhs);
1170 isl_pw_aff_free(rhs);
1171 isl_set_free(dom);
1172 unsupported(comp);
1173 return NULL;
1176 cond = isl_set_coalesce(cond);
1177 res = indicator_function(cond, dom);
1179 return res;
1182 __isl_give isl_pw_aff *PetScan::extract_comparison(BinaryOperator *comp)
1184 return extract_comparison(comp->getOpcode(), comp->getLHS(),
1185 comp->getRHS(), comp);
1188 /* Extract an affine expression representing the negation (logical not)
1189 * of a subexpression.
1191 __isl_give isl_pw_aff *PetScan::extract_boolean(UnaryOperator *op)
1193 isl_set *set_cond, *dom;
1194 isl_pw_aff *cond, *res;
1196 cond = extract_condition(op->getSubExpr());
1198 dom = isl_pw_aff_domain(isl_pw_aff_copy(cond));
1200 set_cond = isl_pw_aff_zero_set(cond);
1202 res = indicator_function(set_cond, dom);
1204 return res;
1207 /* Extract an affine expression representing the disjunction (logical or)
1208 * or conjunction (logical and) of two subexpressions.
1210 __isl_give isl_pw_aff *PetScan::extract_boolean(BinaryOperator *comp)
1212 isl_pw_aff *lhs, *rhs;
1214 lhs = extract_condition(comp->getLHS());
1215 rhs = extract_condition(comp->getRHS());
1217 switch (comp->getOpcode()) {
1218 case BO_LAnd:
1219 return pw_aff_and_then(lhs, rhs);
1220 case BO_LOr:
1221 return pw_aff_or_else(lhs, rhs);
1222 default:
1223 isl_pw_aff_free(lhs);
1224 isl_pw_aff_free(rhs);
1227 unsupported(comp);
1228 return NULL;
1231 __isl_give isl_pw_aff *PetScan::extract_condition(UnaryOperator *expr)
1233 switch (expr->getOpcode()) {
1234 case UO_LNot:
1235 return extract_boolean(expr);
1236 default:
1237 unsupported(expr);
1238 return NULL;
1242 /* Extract the affine expression "expr != 0 ? 1 : 0".
1244 __isl_give isl_pw_aff *PetScan::extract_implicit_condition(Expr *expr)
1246 isl_pw_aff *res;
1247 isl_set *set, *dom;
1249 res = extract_affine(expr);
1251 dom = isl_pw_aff_domain(isl_pw_aff_copy(res));
1252 set = isl_pw_aff_non_zero_set(res);
1254 res = indicator_function(set, dom);
1256 return res;
1259 /* Extract an affine expression from a boolean expression.
1260 * In particular, return the expression "expr ? 1 : 0".
1262 * If the expression doesn't look like a condition, we assume it
1263 * is an affine expression and return the condition "expr != 0 ? 1 : 0".
1265 __isl_give isl_pw_aff *PetScan::extract_condition(Expr *expr)
1267 BinaryOperator *comp;
1269 if (!expr) {
1270 isl_set *u = isl_set_universe(isl_space_params_alloc(ctx, 0));
1271 return indicator_function(u, isl_set_copy(u));
1274 if (expr->getStmtClass() == Stmt::ParenExprClass)
1275 return extract_condition(cast<ParenExpr>(expr)->getSubExpr());
1277 if (expr->getStmtClass() == Stmt::UnaryOperatorClass)
1278 return extract_condition(cast<UnaryOperator>(expr));
1280 if (expr->getStmtClass() != Stmt::BinaryOperatorClass)
1281 return extract_implicit_condition(expr);
1283 comp = cast<BinaryOperator>(expr);
1284 switch (comp->getOpcode()) {
1285 case BO_LT:
1286 case BO_LE:
1287 case BO_GT:
1288 case BO_GE:
1289 case BO_EQ:
1290 case BO_NE:
1291 return extract_comparison(comp);
1292 case BO_LAnd:
1293 case BO_LOr:
1294 return extract_boolean(comp);
1295 default:
1296 return extract_implicit_condition(expr);
1300 static enum pet_op_type UnaryOperatorKind2pet_op_type(UnaryOperatorKind kind)
1302 switch (kind) {
1303 case UO_Minus:
1304 return pet_op_minus;
1305 case UO_PostInc:
1306 return pet_op_post_inc;
1307 case UO_PostDec:
1308 return pet_op_post_dec;
1309 case UO_PreInc:
1310 return pet_op_pre_inc;
1311 case UO_PreDec:
1312 return pet_op_pre_dec;
1313 default:
1314 return pet_op_last;
1318 static enum pet_op_type BinaryOperatorKind2pet_op_type(BinaryOperatorKind kind)
1320 switch (kind) {
1321 case BO_AddAssign:
1322 return pet_op_add_assign;
1323 case BO_SubAssign:
1324 return pet_op_sub_assign;
1325 case BO_MulAssign:
1326 return pet_op_mul_assign;
1327 case BO_DivAssign:
1328 return pet_op_div_assign;
1329 case BO_Assign:
1330 return pet_op_assign;
1331 case BO_Add:
1332 return pet_op_add;
1333 case BO_Sub:
1334 return pet_op_sub;
1335 case BO_Mul:
1336 return pet_op_mul;
1337 case BO_Div:
1338 return pet_op_div;
1339 case BO_Rem:
1340 return pet_op_mod;
1341 case BO_EQ:
1342 return pet_op_eq;
1343 case BO_LE:
1344 return pet_op_le;
1345 case BO_LT:
1346 return pet_op_lt;
1347 case BO_GT:
1348 return pet_op_gt;
1349 default:
1350 return pet_op_last;
1354 /* Construct a pet_expr representing a unary operator expression.
1356 struct pet_expr *PetScan::extract_expr(UnaryOperator *expr)
1358 struct pet_expr *arg;
1359 enum pet_op_type op;
1361 op = UnaryOperatorKind2pet_op_type(expr->getOpcode());
1362 if (op == pet_op_last) {
1363 unsupported(expr);
1364 return NULL;
1367 arg = extract_expr(expr->getSubExpr());
1369 if (expr->isIncrementDecrementOp() &&
1370 arg && arg->type == pet_expr_access) {
1371 mark_write(arg);
1372 arg->acc.read = 1;
1375 return pet_expr_new_unary(ctx, op, arg);
1378 /* Mark the given access pet_expr as a write.
1379 * If a scalar is being accessed, then mark its value
1380 * as unknown in assigned_value.
1382 void PetScan::mark_write(struct pet_expr *access)
1384 isl_id *id;
1385 ValueDecl *decl;
1387 if (!access)
1388 return;
1390 access->acc.write = 1;
1391 access->acc.read = 0;
1393 if (!pet_expr_is_scalar_access(access))
1394 return;
1396 id = pet_expr_access_get_id(access);
1397 decl = (ValueDecl *) isl_id_get_user(id);
1398 clear_assignment(assigned_value, decl);
1399 isl_id_free(id);
1402 /* Assign "rhs" to "lhs".
1404 * In particular, if "lhs" is a scalar variable, then mark
1405 * the variable as having been assigned. If, furthermore, "rhs"
1406 * is an affine expression, then keep track of this value in assigned_value
1407 * so that we can plug it in when we later come across the same variable.
1409 void PetScan::assign(struct pet_expr *lhs, Expr *rhs)
1411 isl_id *id;
1412 ValueDecl *decl;
1413 isl_pw_aff *pa;
1415 if (!lhs)
1416 return;
1417 if (!pet_expr_is_scalar_access(lhs))
1418 return;
1420 id = pet_expr_access_get_id(lhs);
1421 decl = (ValueDecl *) isl_id_get_user(id);
1422 isl_id_free(id);
1424 pa = try_extract_affine(rhs);
1425 clear_assignment(assigned_value, decl);
1426 if (!pa)
1427 return;
1428 assigned_value[decl] = pa;
1429 insert_expression(pa);
1432 /* Construct a pet_expr representing a binary operator expression.
1434 * If the top level operator is an assignment and the LHS is an access,
1435 * then we mark that access as a write. If the operator is a compound
1436 * assignment, the access is marked as both a read and a write.
1438 * If "expr" assigns something to a scalar variable, then we mark
1439 * the variable as having been assigned. If, furthermore, the expression
1440 * is affine, then keep track of this value in assigned_value
1441 * so that we can plug it in when we later come across the same variable.
1443 struct pet_expr *PetScan::extract_expr(BinaryOperator *expr)
1445 struct pet_expr *lhs, *rhs;
1446 enum pet_op_type op;
1448 op = BinaryOperatorKind2pet_op_type(expr->getOpcode());
1449 if (op == pet_op_last) {
1450 unsupported(expr);
1451 return NULL;
1454 lhs = extract_expr(expr->getLHS());
1455 rhs = extract_expr(expr->getRHS());
1457 if (expr->isAssignmentOp() && lhs && lhs->type == pet_expr_access) {
1458 mark_write(lhs);
1459 if (expr->isCompoundAssignmentOp())
1460 lhs->acc.read = 1;
1463 if (expr->getOpcode() == BO_Assign)
1464 assign(lhs, expr->getRHS());
1466 return pet_expr_new_binary(ctx, op, lhs, rhs);
1469 /* Construct a pet_scop with a single statement killing the entire
1470 * array "array".
1472 struct pet_scop *PetScan::kill(Stmt *stmt, struct pet_array *array)
1474 isl_id *id;
1475 isl_space *space;
1476 isl_multi_pw_aff *index;
1477 isl_map *access;
1478 struct pet_expr *expr;
1480 if (!array)
1481 return NULL;
1482 access = isl_map_from_range(isl_set_copy(array->extent));
1483 id = isl_set_get_tuple_id(array->extent);
1484 space = isl_space_alloc(ctx, 0, 0, 0);
1485 space = isl_space_set_tuple_id(space, isl_dim_out, id);
1486 index = isl_multi_pw_aff_zero(space);
1487 expr = pet_expr_kill_from_access_and_index(access, index);
1488 return extract(stmt, expr);
1491 /* Construct a pet_scop for a (single) variable declaration.
1493 * The scop contains the variable being declared (as an array)
1494 * and a statement killing the array.
1496 * If the variable is initialized in the AST, then the scop
1497 * also contains an assignment to the variable.
1499 struct pet_scop *PetScan::extract(DeclStmt *stmt)
1501 Decl *decl;
1502 VarDecl *vd;
1503 struct pet_expr *lhs, *rhs, *pe;
1504 struct pet_scop *scop_decl, *scop;
1505 struct pet_array *array;
1507 if (!stmt->isSingleDecl()) {
1508 unsupported(stmt);
1509 return NULL;
1512 decl = stmt->getSingleDecl();
1513 vd = cast<VarDecl>(decl);
1515 array = extract_array(ctx, vd);
1516 if (array)
1517 array->declared = 1;
1518 scop_decl = kill(stmt, array);
1519 scop_decl = pet_scop_add_array(scop_decl, array);
1521 if (!vd->getInit())
1522 return scop_decl;
1524 lhs = extract_access_expr(vd);
1525 rhs = extract_expr(vd->getInit());
1527 mark_write(lhs);
1528 assign(lhs, vd->getInit());
1530 pe = pet_expr_new_binary(ctx, pet_op_assign, lhs, rhs);
1531 scop = extract(stmt, pe);
1533 scop_decl = pet_scop_prefix(scop_decl, 0);
1534 scop = pet_scop_prefix(scop, 1);
1536 scop = pet_scop_add_seq(ctx, scop_decl, scop);
1538 return scop;
1541 /* Construct a pet_expr representing a conditional operation.
1543 * We first try to extract the condition as an affine expression.
1544 * If that fails, we construct a pet_expr tree representing the condition.
1546 struct pet_expr *PetScan::extract_expr(ConditionalOperator *expr)
1548 struct pet_expr *cond, *lhs, *rhs;
1549 isl_pw_aff *pa;
1551 pa = try_extract_affine(expr->getCond());
1552 if (pa) {
1553 isl_multi_pw_aff *test = isl_multi_pw_aff_from_pw_aff(pa);
1554 test = isl_multi_pw_aff_from_range(test);
1555 cond = pet_expr_from_index(test);
1556 } else
1557 cond = extract_expr(expr->getCond());
1558 lhs = extract_expr(expr->getTrueExpr());
1559 rhs = extract_expr(expr->getFalseExpr());
1561 return pet_expr_new_ternary(ctx, cond, lhs, rhs);
1564 struct pet_expr *PetScan::extract_expr(ImplicitCastExpr *expr)
1566 return extract_expr(expr->getSubExpr());
1569 /* Construct a pet_expr representing a floating point value.
1571 * If the floating point literal does not appear in a macro,
1572 * then we use the original representation in the source code
1573 * as the string representation. Otherwise, we use the pretty
1574 * printer to produce a string representation.
1576 struct pet_expr *PetScan::extract_expr(FloatingLiteral *expr)
1578 double d;
1579 string s;
1580 const LangOptions &LO = PP.getLangOpts();
1581 SourceLocation loc = expr->getLocation();
1583 if (!loc.isMacroID()) {
1584 SourceManager &SM = PP.getSourceManager();
1585 unsigned len = Lexer::MeasureTokenLength(loc, SM, LO);
1586 s = string(SM.getCharacterData(loc), len);
1587 } else {
1588 llvm::raw_string_ostream S(s);
1589 expr->printPretty(S, 0, PrintingPolicy(LO));
1590 S.str();
1592 d = expr->getValueAsApproximateDouble();
1593 return pet_expr_new_double(ctx, d, s.c_str());
1596 /* Extract an index expression from "expr" and then convert it into
1597 * an access pet_expr.
1599 struct pet_expr *PetScan::extract_access_expr(Expr *expr)
1601 isl_multi_pw_aff *index;
1602 struct pet_expr *pe;
1603 int depth;
1605 index = extract_index(expr);
1606 depth = extract_depth(index);
1608 pe = pet_expr_from_index_and_depth(index, depth);
1610 return pe;
1613 /* Extract an index expression from "decl" and then convert it into
1614 * an access pet_expr.
1616 struct pet_expr *PetScan::extract_access_expr(ValueDecl *decl)
1618 isl_multi_pw_aff *index;
1619 struct pet_expr *pe;
1620 int depth;
1622 index = extract_index(decl);
1623 depth = extract_depth(index);
1625 pe = pet_expr_from_index_and_depth(index, depth);
1627 return pe;
1630 struct pet_expr *PetScan::extract_expr(ParenExpr *expr)
1632 return extract_expr(expr->getSubExpr());
1635 /* Construct a pet_expr representing a function call.
1637 * If we are passing along a pointer to an array element
1638 * or an entire row or even higher dimensional slice of an array,
1639 * then the function being called may write into the array.
1641 * We assume here that if the function is declared to take a pointer
1642 * to a const type, then the function will perform a read
1643 * and that otherwise, it will perform a write.
1645 struct pet_expr *PetScan::extract_expr(CallExpr *expr)
1647 struct pet_expr *res = NULL;
1648 FunctionDecl *fd;
1649 string name;
1651 fd = expr->getDirectCallee();
1652 if (!fd) {
1653 unsupported(expr);
1654 return NULL;
1657 name = fd->getDeclName().getAsString();
1658 res = pet_expr_new_call(ctx, name.c_str(), expr->getNumArgs());
1659 if (!res)
1660 return NULL;
1662 for (int i = 0; i < expr->getNumArgs(); ++i) {
1663 Expr *arg = expr->getArg(i);
1664 int is_addr = 0;
1665 pet_expr *main_arg;
1667 if (arg->getStmtClass() == Stmt::ImplicitCastExprClass) {
1668 ImplicitCastExpr *ice = cast<ImplicitCastExpr>(arg);
1669 arg = ice->getSubExpr();
1671 if (arg->getStmtClass() == Stmt::UnaryOperatorClass) {
1672 UnaryOperator *op = cast<UnaryOperator>(arg);
1673 if (op->getOpcode() == UO_AddrOf) {
1674 is_addr = 1;
1675 arg = op->getSubExpr();
1678 res->args[i] = PetScan::extract_expr(arg);
1679 main_arg = res->args[i];
1680 if (is_addr)
1681 res->args[i] = pet_expr_new_unary(ctx,
1682 pet_op_address_of, res->args[i]);
1683 if (!res->args[i])
1684 goto error;
1685 if (arg->getStmtClass() == Stmt::ArraySubscriptExprClass &&
1686 array_depth(arg->getType().getTypePtr()) > 0)
1687 is_addr = 1;
1688 if (is_addr && main_arg->type == pet_expr_access) {
1689 ParmVarDecl *parm;
1690 if (!fd->hasPrototype()) {
1691 unsupported(expr, "prototype required");
1692 goto error;
1694 parm = fd->getParamDecl(i);
1695 if (!const_base(parm->getType()))
1696 mark_write(main_arg);
1700 return res;
1701 error:
1702 pet_expr_free(res);
1703 return NULL;
1706 /* Construct a pet_expr representing a (C style) cast.
1708 struct pet_expr *PetScan::extract_expr(CStyleCastExpr *expr)
1710 struct pet_expr *arg;
1711 QualType type;
1713 arg = extract_expr(expr->getSubExpr());
1714 if (!arg)
1715 return NULL;
1717 type = expr->getTypeAsWritten();
1718 return pet_expr_new_cast(ctx, type.getAsString().c_str(), arg);
1721 /* Try and onstruct a pet_expr representing "expr".
1723 struct pet_expr *PetScan::extract_expr(Expr *expr)
1725 switch (expr->getStmtClass()) {
1726 case Stmt::UnaryOperatorClass:
1727 return extract_expr(cast<UnaryOperator>(expr));
1728 case Stmt::CompoundAssignOperatorClass:
1729 case Stmt::BinaryOperatorClass:
1730 return extract_expr(cast<BinaryOperator>(expr));
1731 case Stmt::ImplicitCastExprClass:
1732 return extract_expr(cast<ImplicitCastExpr>(expr));
1733 case Stmt::ArraySubscriptExprClass:
1734 case Stmt::DeclRefExprClass:
1735 case Stmt::IntegerLiteralClass:
1736 return extract_access_expr(expr);
1737 case Stmt::FloatingLiteralClass:
1738 return extract_expr(cast<FloatingLiteral>(expr));
1739 case Stmt::ParenExprClass:
1740 return extract_expr(cast<ParenExpr>(expr));
1741 case Stmt::ConditionalOperatorClass:
1742 return extract_expr(cast<ConditionalOperator>(expr));
1743 case Stmt::CallExprClass:
1744 return extract_expr(cast<CallExpr>(expr));
1745 case Stmt::CStyleCastExprClass:
1746 return extract_expr(cast<CStyleCastExpr>(expr));
1747 default:
1748 unsupported(expr);
1750 return NULL;
1753 /* Check if the given initialization statement is an assignment.
1754 * If so, return that assignment. Otherwise return NULL.
1756 BinaryOperator *PetScan::initialization_assignment(Stmt *init)
1758 BinaryOperator *ass;
1760 if (init->getStmtClass() != Stmt::BinaryOperatorClass)
1761 return NULL;
1763 ass = cast<BinaryOperator>(init);
1764 if (ass->getOpcode() != BO_Assign)
1765 return NULL;
1767 return ass;
1770 /* Check if the given initialization statement is a declaration
1771 * of a single variable.
1772 * If so, return that declaration. Otherwise return NULL.
1774 Decl *PetScan::initialization_declaration(Stmt *init)
1776 DeclStmt *decl;
1778 if (init->getStmtClass() != Stmt::DeclStmtClass)
1779 return NULL;
1781 decl = cast<DeclStmt>(init);
1783 if (!decl->isSingleDecl())
1784 return NULL;
1786 return decl->getSingleDecl();
1789 /* Given the assignment operator in the initialization of a for loop,
1790 * extract the induction variable, i.e., the (integer)variable being
1791 * assigned.
1793 ValueDecl *PetScan::extract_induction_variable(BinaryOperator *init)
1795 Expr *lhs;
1796 DeclRefExpr *ref;
1797 ValueDecl *decl;
1798 const Type *type;
1800 lhs = init->getLHS();
1801 if (lhs->getStmtClass() != Stmt::DeclRefExprClass) {
1802 unsupported(init);
1803 return NULL;
1806 ref = cast<DeclRefExpr>(lhs);
1807 decl = ref->getDecl();
1808 type = decl->getType().getTypePtr();
1810 if (!type->isIntegerType()) {
1811 unsupported(lhs);
1812 return NULL;
1815 return decl;
1818 /* Given the initialization statement of a for loop and the single
1819 * declaration in this initialization statement,
1820 * extract the induction variable, i.e., the (integer) variable being
1821 * declared.
1823 VarDecl *PetScan::extract_induction_variable(Stmt *init, Decl *decl)
1825 VarDecl *vd;
1827 vd = cast<VarDecl>(decl);
1829 const QualType type = vd->getType();
1830 if (!type->isIntegerType()) {
1831 unsupported(init);
1832 return NULL;
1835 if (!vd->getInit()) {
1836 unsupported(init);
1837 return NULL;
1840 return vd;
1843 /* Check that op is of the form iv++ or iv--.
1844 * Return an affine expression "1" or "-1" accordingly.
1846 __isl_give isl_pw_aff *PetScan::extract_unary_increment(
1847 clang::UnaryOperator *op, clang::ValueDecl *iv)
1849 Expr *sub;
1850 DeclRefExpr *ref;
1851 isl_space *space;
1852 isl_aff *aff;
1854 if (!op->isIncrementDecrementOp()) {
1855 unsupported(op);
1856 return NULL;
1859 sub = op->getSubExpr();
1860 if (sub->getStmtClass() != Stmt::DeclRefExprClass) {
1861 unsupported(op);
1862 return NULL;
1865 ref = cast<DeclRefExpr>(sub);
1866 if (ref->getDecl() != iv) {
1867 unsupported(op);
1868 return NULL;
1871 space = isl_space_params_alloc(ctx, 0);
1872 aff = isl_aff_zero_on_domain(isl_local_space_from_space(space));
1874 if (op->isIncrementOp())
1875 aff = isl_aff_add_constant_si(aff, 1);
1876 else
1877 aff = isl_aff_add_constant_si(aff, -1);
1879 return isl_pw_aff_from_aff(aff);
1882 /* If the isl_pw_aff on which isl_pw_aff_foreach_piece is called
1883 * has a single constant expression, then put this constant in *user.
1884 * The caller is assumed to have checked that this function will
1885 * be called exactly once.
1887 static int extract_cst(__isl_take isl_set *set, __isl_take isl_aff *aff,
1888 void *user)
1890 isl_val **inc = (isl_val **)user;
1891 int res = 0;
1893 if (isl_aff_is_cst(aff))
1894 *inc = isl_aff_get_constant_val(aff);
1895 else
1896 res = -1;
1898 isl_set_free(set);
1899 isl_aff_free(aff);
1901 return res;
1904 /* Check if op is of the form
1906 * iv = iv + inc
1908 * and return inc as an affine expression.
1910 * We extract an affine expression from the RHS, subtract iv and return
1911 * the result.
1913 __isl_give isl_pw_aff *PetScan::extract_binary_increment(BinaryOperator *op,
1914 clang::ValueDecl *iv)
1916 Expr *lhs;
1917 DeclRefExpr *ref;
1918 isl_id *id;
1919 isl_space *dim;
1920 isl_aff *aff;
1921 isl_pw_aff *val;
1923 if (op->getOpcode() != BO_Assign) {
1924 unsupported(op);
1925 return NULL;
1928 lhs = op->getLHS();
1929 if (lhs->getStmtClass() != Stmt::DeclRefExprClass) {
1930 unsupported(op);
1931 return NULL;
1934 ref = cast<DeclRefExpr>(lhs);
1935 if (ref->getDecl() != iv) {
1936 unsupported(op);
1937 return NULL;
1940 val = extract_affine(op->getRHS());
1942 id = isl_id_alloc(ctx, iv->getName().str().c_str(), iv);
1944 dim = isl_space_params_alloc(ctx, 1);
1945 dim = isl_space_set_dim_id(dim, isl_dim_param, 0, id);
1946 aff = isl_aff_zero_on_domain(isl_local_space_from_space(dim));
1947 aff = isl_aff_add_coefficient_si(aff, isl_dim_param, 0, 1);
1949 val = isl_pw_aff_sub(val, isl_pw_aff_from_aff(aff));
1951 return val;
1954 /* Check that op is of the form iv += cst or iv -= cst
1955 * and return an affine expression corresponding oto cst or -cst accordingly.
1957 __isl_give isl_pw_aff *PetScan::extract_compound_increment(
1958 CompoundAssignOperator *op, clang::ValueDecl *iv)
1960 Expr *lhs;
1961 DeclRefExpr *ref;
1962 bool neg = false;
1963 isl_pw_aff *val;
1964 BinaryOperatorKind opcode;
1966 opcode = op->getOpcode();
1967 if (opcode != BO_AddAssign && opcode != BO_SubAssign) {
1968 unsupported(op);
1969 return NULL;
1971 if (opcode == BO_SubAssign)
1972 neg = true;
1974 lhs = op->getLHS();
1975 if (lhs->getStmtClass() != Stmt::DeclRefExprClass) {
1976 unsupported(op);
1977 return NULL;
1980 ref = cast<DeclRefExpr>(lhs);
1981 if (ref->getDecl() != iv) {
1982 unsupported(op);
1983 return NULL;
1986 val = extract_affine(op->getRHS());
1987 if (neg)
1988 val = isl_pw_aff_neg(val);
1990 return val;
1993 /* Check that the increment of the given for loop increments
1994 * (or decrements) the induction variable "iv" and return
1995 * the increment as an affine expression if successful.
1997 __isl_give isl_pw_aff *PetScan::extract_increment(clang::ForStmt *stmt,
1998 ValueDecl *iv)
2000 Stmt *inc = stmt->getInc();
2002 if (!inc) {
2003 unsupported(stmt);
2004 return NULL;
2007 if (inc->getStmtClass() == Stmt::UnaryOperatorClass)
2008 return extract_unary_increment(cast<UnaryOperator>(inc), iv);
2009 if (inc->getStmtClass() == Stmt::CompoundAssignOperatorClass)
2010 return extract_compound_increment(
2011 cast<CompoundAssignOperator>(inc), iv);
2012 if (inc->getStmtClass() == Stmt::BinaryOperatorClass)
2013 return extract_binary_increment(cast<BinaryOperator>(inc), iv);
2015 unsupported(inc);
2016 return NULL;
2019 /* Embed the given iteration domain in an extra outer loop
2020 * with induction variable "var".
2021 * If this variable appeared as a parameter in the constraints,
2022 * it is replaced by the new outermost dimension.
2024 static __isl_give isl_set *embed(__isl_take isl_set *set,
2025 __isl_take isl_id *var)
2027 int pos;
2029 set = isl_set_insert_dims(set, isl_dim_set, 0, 1);
2030 pos = isl_set_find_dim_by_id(set, isl_dim_param, var);
2031 if (pos >= 0) {
2032 set = isl_set_equate(set, isl_dim_param, pos, isl_dim_set, 0);
2033 set = isl_set_project_out(set, isl_dim_param, pos, 1);
2036 isl_id_free(var);
2037 return set;
2040 /* Return those elements in the space of "cond" that come after
2041 * (based on "sign") an element in "cond".
2043 static __isl_give isl_set *after(__isl_take isl_set *cond, int sign)
2045 isl_map *previous_to_this;
2047 if (sign > 0)
2048 previous_to_this = isl_map_lex_lt(isl_set_get_space(cond));
2049 else
2050 previous_to_this = isl_map_lex_gt(isl_set_get_space(cond));
2052 cond = isl_set_apply(cond, previous_to_this);
2054 return cond;
2057 /* Create the infinite iteration domain
2059 * { [id] : id >= 0 }
2061 * If "scop" has an affine skip of type pet_skip_later,
2062 * then remove those iterations i that have an earlier iteration
2063 * where the skip condition is satisfied, meaning that iteration i
2064 * is not executed.
2065 * Since we are dealing with a loop without loop iterator,
2066 * the skip condition cannot refer to the current loop iterator and
2067 * so effectively, the returned set is of the form
2069 * { [0]; [id] : id >= 1 and not skip }
2071 static __isl_give isl_set *infinite_domain(__isl_take isl_id *id,
2072 struct pet_scop *scop)
2074 isl_ctx *ctx = isl_id_get_ctx(id);
2075 isl_set *domain;
2076 isl_set *skip;
2078 domain = isl_set_nat_universe(isl_space_set_alloc(ctx, 0, 1));
2079 domain = isl_set_set_dim_id(domain, isl_dim_set, 0, id);
2081 if (!pet_scop_has_affine_skip(scop, pet_skip_later))
2082 return domain;
2084 skip = pet_scop_get_affine_skip_domain(scop, pet_skip_later);
2085 skip = embed(skip, isl_id_copy(id));
2086 skip = isl_set_intersect(skip , isl_set_copy(domain));
2087 domain = isl_set_subtract(domain, after(skip, 1));
2089 return domain;
2092 /* Create an identity affine expression on the space containing "domain",
2093 * which is assumed to be one-dimensional.
2095 static __isl_give isl_aff *identity_aff(__isl_keep isl_set *domain)
2097 isl_local_space *ls;
2099 ls = isl_local_space_from_space(isl_set_get_space(domain));
2100 return isl_aff_var_on_domain(ls, isl_dim_set, 0);
2103 /* Create an affine expression that maps elements
2104 * of a single-dimensional array "id_test" to the previous element
2105 * (according to "inc"), provided this element belongs to "domain".
2106 * That is, create the affine expression
2108 * { id[x] -> id[x - inc] : x - inc in domain }
2110 static __isl_give isl_multi_pw_aff *map_to_previous(__isl_take isl_id *id_test,
2111 __isl_take isl_set *domain, __isl_take isl_val *inc)
2113 isl_space *space;
2114 isl_local_space *ls;
2115 isl_aff *aff;
2116 isl_multi_pw_aff *prev;
2118 space = isl_set_get_space(domain);
2119 ls = isl_local_space_from_space(space);
2120 aff = isl_aff_var_on_domain(ls, isl_dim_set, 0);
2121 aff = isl_aff_add_constant_val(aff, isl_val_neg(inc));
2122 prev = isl_multi_pw_aff_from_pw_aff(isl_pw_aff_from_aff(aff));
2123 domain = isl_set_preimage_multi_pw_aff(domain,
2124 isl_multi_pw_aff_copy(prev));
2125 prev = isl_multi_pw_aff_intersect_domain(prev, domain);
2126 prev = isl_multi_pw_aff_set_tuple_id(prev, isl_dim_out, id_test);
2128 return prev;
2131 /* Add an implication to "scop" expressing that if an element of
2132 * virtual array "id_test" has value "satisfied" then all previous elements
2133 * of this array also have that value. The set of previous elements
2134 * is bounded by "domain". If "sign" is negative then iterator
2135 * is decreasing and we express that all subsequent array elements
2136 * (but still defined previously) have the same value.
2138 static struct pet_scop *add_implication(struct pet_scop *scop,
2139 __isl_take isl_id *id_test, __isl_take isl_set *domain, int sign,
2140 int satisfied)
2142 isl_space *space;
2143 isl_map *map;
2145 domain = isl_set_set_tuple_id(domain, id_test);
2146 space = isl_set_get_space(domain);
2147 if (sign > 0)
2148 map = isl_map_lex_ge(space);
2149 else
2150 map = isl_map_lex_le(space);
2151 map = isl_map_intersect_range(map, domain);
2152 scop = pet_scop_add_implication(scop, map, satisfied);
2154 return scop;
2157 /* Add a filter to "scop" that imposes that it is only executed
2158 * when the variable identified by "id_test" has a zero value
2159 * for all previous iterations of "domain".
2161 * In particular, add a filter that imposes that the array
2162 * has a zero value at the previous iteration of domain and
2163 * add an implication that implies that it then has that
2164 * value for all previous iterations.
2166 static struct pet_scop *scop_add_break(struct pet_scop *scop,
2167 __isl_take isl_id *id_test, __isl_take isl_set *domain,
2168 __isl_take isl_val *inc)
2170 isl_multi_pw_aff *prev;
2171 int sign = isl_val_sgn(inc);
2173 prev = map_to_previous(isl_id_copy(id_test), isl_set_copy(domain), inc);
2174 scop = add_implication(scop, id_test, domain, sign, 0);
2175 scop = pet_scop_filter(scop, prev, 0);
2177 return scop;
2180 /* Construct a pet_scop for an infinite loop around the given body.
2182 * We extract a pet_scop for the body and then embed it in a loop with
2183 * iteration domain
2185 * { [t] : t >= 0 }
2187 * and schedule
2189 * { [t] -> [t] }
2191 * If the body contains any break, then it is taken into
2192 * account in infinite_domain (if the skip condition is affine)
2193 * or in scop_add_break (if the skip condition is not affine).
2195 struct pet_scop *PetScan::extract_infinite_loop(Stmt *body)
2197 isl_id *id, *id_test;
2198 isl_set *domain;
2199 isl_aff *ident;
2200 struct pet_scop *scop;
2201 bool has_var_break;
2203 scop = extract(body);
2204 if (!scop)
2205 return NULL;
2207 id = isl_id_alloc(ctx, "t", NULL);
2208 domain = infinite_domain(isl_id_copy(id), scop);
2209 ident = identity_aff(domain);
2211 has_var_break = pet_scop_has_var_skip(scop, pet_skip_later);
2212 if (has_var_break)
2213 id_test = pet_scop_get_skip_id(scop, pet_skip_later);
2215 scop = pet_scop_embed(scop, isl_set_copy(domain),
2216 isl_map_from_aff(isl_aff_copy(ident)), ident, id);
2217 if (has_var_break)
2218 scop = scop_add_break(scop, id_test, domain, isl_val_one(ctx));
2219 else
2220 isl_set_free(domain);
2222 return scop;
2225 /* Construct a pet_scop for an infinite loop, i.e., a loop of the form
2227 * for (;;)
2228 * body
2231 struct pet_scop *PetScan::extract_infinite_for(ForStmt *stmt)
2233 return extract_infinite_loop(stmt->getBody());
2236 /* Create an index expression for an access to a virtual array
2237 * representing the result of a condition.
2238 * Unlike other accessed data, the id of the array is NULL as
2239 * there is no ValueDecl in the program corresponding to the virtual
2240 * array.
2241 * The array starts out as a scalar, but grows along with the
2242 * statement writing to the array in pet_scop_embed.
2244 static __isl_give isl_multi_pw_aff *create_test_index(isl_ctx *ctx, int test_nr)
2246 isl_space *dim = isl_space_alloc(ctx, 0, 0, 0);
2247 isl_id *id;
2248 char name[50];
2250 snprintf(name, sizeof(name), "__pet_test_%d", test_nr);
2251 id = isl_id_alloc(ctx, name, NULL);
2252 dim = isl_space_set_tuple_id(dim, isl_dim_out, id);
2253 return isl_multi_pw_aff_zero(dim);
2256 /* Add an array with the given extent (range of "index") to the list
2257 * of arrays in "scop" and return the extended pet_scop.
2258 * The array is marked as attaining values 0 and 1 only and
2259 * as each element being assigned at most once.
2261 static struct pet_scop *scop_add_array(struct pet_scop *scop,
2262 __isl_keep isl_multi_pw_aff *index, clang::ASTContext &ast_ctx)
2264 isl_ctx *ctx = isl_multi_pw_aff_get_ctx(index);
2265 isl_space *dim;
2266 struct pet_array *array;
2267 isl_map *access;
2269 if (!scop)
2270 return NULL;
2271 if (!ctx)
2272 goto error;
2274 array = isl_calloc_type(ctx, struct pet_array);
2275 if (!array)
2276 goto error;
2278 access = isl_map_from_multi_pw_aff(isl_multi_pw_aff_copy(index));
2279 array->extent = isl_map_range(access);
2280 dim = isl_space_params_alloc(ctx, 0);
2281 array->context = isl_set_universe(dim);
2282 dim = isl_space_set_alloc(ctx, 0, 1);
2283 array->value_bounds = isl_set_universe(dim);
2284 array->value_bounds = isl_set_lower_bound_si(array->value_bounds,
2285 isl_dim_set, 0, 0);
2286 array->value_bounds = isl_set_upper_bound_si(array->value_bounds,
2287 isl_dim_set, 0, 1);
2288 array->element_type = strdup("int");
2289 array->element_size = ast_ctx.getTypeInfo(ast_ctx.IntTy).first / 8;
2290 array->uniquely_defined = 1;
2292 if (!array->extent || !array->context)
2293 array = pet_array_free(array);
2295 scop = pet_scop_add_array(scop, array);
2297 return scop;
2298 error:
2299 pet_scop_free(scop);
2300 return NULL;
2303 /* Construct a pet_scop for a while loop of the form
2305 * while (pa)
2306 * body
2308 * In particular, construct a scop for an infinite loop around body and
2309 * intersect the domain with the affine expression.
2310 * Note that this intersection may result in an empty loop.
2312 struct pet_scop *PetScan::extract_affine_while(__isl_take isl_pw_aff *pa,
2313 Stmt *body)
2315 struct pet_scop *scop;
2316 isl_set *dom;
2317 isl_set *valid;
2319 valid = isl_pw_aff_domain(isl_pw_aff_copy(pa));
2320 dom = isl_pw_aff_non_zero_set(pa);
2321 scop = extract_infinite_loop(body);
2322 scop = pet_scop_restrict(scop, dom);
2323 scop = pet_scop_restrict_context(scop, valid);
2325 return scop;
2328 /* Construct a scop for a while, given the scops for the condition
2329 * and the body, the filter identifier and the iteration domain of
2330 * the while loop.
2332 * In particular, the scop for the condition is filtered to depend
2333 * on "id_test" evaluating to true for all previous iterations
2334 * of the loop, while the scop for the body is filtered to depend
2335 * on "id_test" evaluating to true for all iterations up to the
2336 * current iteration.
2337 * The actual filter only imposes that this virtual array has
2338 * value one on the previous or the current iteration.
2339 * The fact that this condition also applies to the previous
2340 * iterations is enforced by an implication.
2342 * These filtered scops are then combined into a single scop.
2344 * "sign" is positive if the iterator increases and negative
2345 * if it decreases.
2347 static struct pet_scop *scop_add_while(struct pet_scop *scop_cond,
2348 struct pet_scop *scop_body, __isl_take isl_id *id_test,
2349 __isl_take isl_set *domain, __isl_take isl_val *inc)
2351 isl_ctx *ctx = isl_set_get_ctx(domain);
2352 isl_space *space;
2353 isl_multi_pw_aff *test_index;
2354 isl_multi_pw_aff *prev;
2355 int sign = isl_val_sgn(inc);
2356 struct pet_scop *scop;
2358 prev = map_to_previous(isl_id_copy(id_test), isl_set_copy(domain), inc);
2359 scop_cond = pet_scop_filter(scop_cond, prev, 1);
2361 space = isl_space_map_from_set(isl_set_get_space(domain));
2362 test_index = isl_multi_pw_aff_identity(space);
2363 test_index = isl_multi_pw_aff_set_tuple_id(test_index, isl_dim_out,
2364 isl_id_copy(id_test));
2365 scop_body = pet_scop_filter(scop_body, test_index, 1);
2367 scop = pet_scop_add_seq(ctx, scop_cond, scop_body);
2368 scop = add_implication(scop, id_test, domain, sign, 1);
2370 return scop;
2373 /* Check if the while loop is of the form
2375 * while (affine expression)
2376 * body
2378 * If so, call extract_affine_while to construct a scop.
2380 * Otherwise, construct a generic while scop, with iteration domain
2381 * { [t] : t >= 0 }. The scop consists of two parts, one for
2382 * evaluating the condition and one for the body.
2383 * The schedule is adjusted to reflect that the condition is evaluated
2384 * before the body is executed and the body is filtered to depend
2385 * on the result of the condition evaluating to true on all iterations
2386 * up to the current iteration, while the evaluation the condition itself
2387 * is filtered to depend on the result of the condition evaluating to true
2388 * on all previous iterations.
2389 * The context of the scop representing the body is dropped
2390 * because we don't know how many times the body will be executed,
2391 * if at all.
2393 * If the body contains any break, then it is taken into
2394 * account in infinite_domain (if the skip condition is affine)
2395 * or in scop_add_break (if the skip condition is not affine).
2397 struct pet_scop *PetScan::extract(WhileStmt *stmt)
2399 Expr *cond;
2400 isl_id *id, *id_test, *id_break_test;
2401 isl_multi_pw_aff *test_index;
2402 isl_set *domain;
2403 isl_aff *ident;
2404 isl_pw_aff *pa;
2405 struct pet_scop *scop, *scop_body;
2406 bool has_var_break;
2408 cond = stmt->getCond();
2409 if (!cond) {
2410 unsupported(stmt);
2411 return NULL;
2414 clear_assignments clear(assigned_value);
2415 clear.TraverseStmt(stmt->getBody());
2417 pa = try_extract_affine_condition(cond);
2418 if (pa)
2419 return extract_affine_while(pa, stmt->getBody());
2421 if (!allow_nested) {
2422 unsupported(stmt);
2423 return NULL;
2426 test_index = create_test_index(ctx, n_test++);
2427 scop = extract_non_affine_condition(cond,
2428 isl_multi_pw_aff_copy(test_index));
2429 scop = scop_add_array(scop, test_index, ast_context);
2430 id_test = isl_multi_pw_aff_get_tuple_id(test_index, isl_dim_out);
2431 isl_multi_pw_aff_free(test_index);
2432 scop_body = extract(stmt->getBody());
2434 id = isl_id_alloc(ctx, "t", NULL);
2435 domain = infinite_domain(isl_id_copy(id), scop_body);
2436 ident = identity_aff(domain);
2438 has_var_break = pet_scop_has_var_skip(scop_body, pet_skip_later);
2439 if (has_var_break)
2440 id_break_test = pet_scop_get_skip_id(scop_body, pet_skip_later);
2442 scop = pet_scop_prefix(scop, 0);
2443 scop = pet_scop_embed(scop, isl_set_copy(domain),
2444 isl_map_from_aff(isl_aff_copy(ident)),
2445 isl_aff_copy(ident), isl_id_copy(id));
2446 scop_body = pet_scop_reset_context(scop_body);
2447 scop_body = pet_scop_prefix(scop_body, 1);
2448 scop_body = pet_scop_embed(scop_body, isl_set_copy(domain),
2449 isl_map_from_aff(isl_aff_copy(ident)), ident, id);
2451 if (has_var_break) {
2452 scop = scop_add_break(scop, isl_id_copy(id_break_test),
2453 isl_set_copy(domain), isl_val_one(ctx));
2454 scop_body = scop_add_break(scop_body, id_break_test,
2455 isl_set_copy(domain), isl_val_one(ctx));
2457 scop = scop_add_while(scop, scop_body, id_test, domain,
2458 isl_val_one(ctx));
2460 return scop;
2463 /* Check whether "cond" expresses a simple loop bound
2464 * on the only set dimension.
2465 * In particular, if "up" is set then "cond" should contain only
2466 * upper bounds on the set dimension.
2467 * Otherwise, it should contain only lower bounds.
2469 static bool is_simple_bound(__isl_keep isl_set *cond, __isl_keep isl_val *inc)
2471 if (isl_val_is_pos(inc))
2472 return !isl_set_dim_has_any_lower_bound(cond, isl_dim_set, 0);
2473 else
2474 return !isl_set_dim_has_any_upper_bound(cond, isl_dim_set, 0);
2477 /* Extend a condition on a given iteration of a loop to one that
2478 * imposes the same condition on all previous iterations.
2479 * "domain" expresses the lower [upper] bound on the iterations
2480 * when inc is positive [negative].
2482 * In particular, we construct the condition (when inc is positive)
2484 * forall i' : (domain(i') and i' <= i) => cond(i')
2486 * which is equivalent to
2488 * not exists i' : domain(i') and i' <= i and not cond(i')
2490 * We construct this set by negating cond, applying a map
2492 * { [i'] -> [i] : domain(i') and i' <= i }
2494 * and then negating the result again.
2496 static __isl_give isl_set *valid_for_each_iteration(__isl_take isl_set *cond,
2497 __isl_take isl_set *domain, __isl_take isl_val *inc)
2499 isl_map *previous_to_this;
2501 if (isl_val_is_pos(inc))
2502 previous_to_this = isl_map_lex_le(isl_set_get_space(domain));
2503 else
2504 previous_to_this = isl_map_lex_ge(isl_set_get_space(domain));
2506 previous_to_this = isl_map_intersect_domain(previous_to_this, domain);
2508 cond = isl_set_complement(cond);
2509 cond = isl_set_apply(cond, previous_to_this);
2510 cond = isl_set_complement(cond);
2512 isl_val_free(inc);
2514 return cond;
2517 /* Construct a domain of the form
2519 * [id] -> { : exists a: id = init + a * inc and a >= 0 }
2521 static __isl_give isl_set *strided_domain(__isl_take isl_id *id,
2522 __isl_take isl_pw_aff *init, __isl_take isl_val *inc)
2524 isl_aff *aff;
2525 isl_space *dim;
2526 isl_set *set;
2528 init = isl_pw_aff_insert_dims(init, isl_dim_in, 0, 1);
2529 dim = isl_pw_aff_get_domain_space(init);
2530 aff = isl_aff_zero_on_domain(isl_local_space_from_space(dim));
2531 aff = isl_aff_add_coefficient_val(aff, isl_dim_in, 0, inc);
2532 init = isl_pw_aff_add(init, isl_pw_aff_from_aff(aff));
2534 dim = isl_space_set_alloc(isl_pw_aff_get_ctx(init), 1, 1);
2535 dim = isl_space_set_dim_id(dim, isl_dim_param, 0, id);
2536 aff = isl_aff_zero_on_domain(isl_local_space_from_space(dim));
2537 aff = isl_aff_add_coefficient_si(aff, isl_dim_param, 0, 1);
2539 set = isl_pw_aff_eq_set(isl_pw_aff_from_aff(aff), init);
2541 set = isl_set_lower_bound_si(set, isl_dim_set, 0, 0);
2543 return isl_set_params(set);
2546 /* Assuming "cond" represents a bound on a loop where the loop
2547 * iterator "iv" is incremented (or decremented) by one, check if wrapping
2548 * is possible.
2550 * Under the given assumptions, wrapping is only possible if "cond" allows
2551 * for the last value before wrapping, i.e., 2^width - 1 in case of an
2552 * increasing iterator and 0 in case of a decreasing iterator.
2554 static bool can_wrap(__isl_keep isl_set *cond, ValueDecl *iv,
2555 __isl_keep isl_val *inc)
2557 bool cw;
2558 isl_ctx *ctx;
2559 isl_val *limit;
2560 isl_set *test;
2562 test = isl_set_copy(cond);
2564 ctx = isl_set_get_ctx(test);
2565 if (isl_val_is_neg(inc))
2566 limit = isl_val_zero(ctx);
2567 else {
2568 limit = isl_val_int_from_ui(ctx, get_type_size(iv));
2569 limit = isl_val_2exp(limit);
2570 limit = isl_val_sub_ui(limit, 1);
2573 test = isl_set_fix_val(cond, isl_dim_set, 0, limit);
2574 cw = !isl_set_is_empty(test);
2575 isl_set_free(test);
2577 return cw;
2580 /* Given a one-dimensional space, construct the following affine expression
2581 * on this space
2583 * { [v] -> [v mod 2^width] }
2585 * where width is the number of bits used to represent the values
2586 * of the unsigned variable "iv".
2588 static __isl_give isl_aff *compute_wrapping(__isl_take isl_space *dim,
2589 ValueDecl *iv)
2591 isl_ctx *ctx;
2592 isl_val *mod;
2593 isl_aff *aff;
2594 isl_map *map;
2596 ctx = isl_space_get_ctx(dim);
2597 mod = isl_val_int_from_ui(ctx, get_type_size(iv));
2598 mod = isl_val_2exp(mod);
2600 aff = isl_aff_zero_on_domain(isl_local_space_from_space(dim));
2601 aff = isl_aff_add_coefficient_si(aff, isl_dim_in, 0, 1);
2602 aff = isl_aff_mod_val(aff, mod);
2604 return aff;
2607 /* Project out the parameter "id" from "set".
2609 static __isl_give isl_set *set_project_out_by_id(__isl_take isl_set *set,
2610 __isl_keep isl_id *id)
2612 int pos;
2614 pos = isl_set_find_dim_by_id(set, isl_dim_param, id);
2615 if (pos >= 0)
2616 set = isl_set_project_out(set, isl_dim_param, pos, 1);
2618 return set;
2621 /* Compute the set of parameters for which "set1" is a subset of "set2".
2623 * set1 is a subset of set2 if
2625 * forall i in set1 : i in set2
2627 * or
2629 * not exists i in set1 and i not in set2
2631 * i.e.,
2633 * not exists i in set1 \ set2
2635 static __isl_give isl_set *enforce_subset(__isl_take isl_set *set1,
2636 __isl_take isl_set *set2)
2638 return isl_set_complement(isl_set_params(isl_set_subtract(set1, set2)));
2641 /* Compute the set of parameter values for which "cond" holds
2642 * on the next iteration for each element of "dom".
2644 * We first construct mapping { [i] -> [i + inc] }, apply that to "dom"
2645 * and then compute the set of parameters for which the result is a subset
2646 * of "cond".
2648 static __isl_give isl_set *valid_on_next(__isl_take isl_set *cond,
2649 __isl_take isl_set *dom, __isl_take isl_val *inc)
2651 isl_space *space;
2652 isl_aff *aff;
2653 isl_map *next;
2655 space = isl_set_get_space(dom);
2656 aff = isl_aff_zero_on_domain(isl_local_space_from_space(space));
2657 aff = isl_aff_add_coefficient_si(aff, isl_dim_in, 0, 1);
2658 aff = isl_aff_add_constant_val(aff, inc);
2659 next = isl_map_from_basic_map(isl_basic_map_from_aff(aff));
2661 dom = isl_set_apply(dom, next);
2663 return enforce_subset(dom, cond);
2666 /* Does "id" refer to a nested access?
2668 static bool is_nested_parameter(__isl_keep isl_id *id)
2670 return id && isl_id_get_user(id) && !isl_id_get_name(id);
2673 /* Does parameter "pos" of "space" refer to a nested access?
2675 static bool is_nested_parameter(__isl_keep isl_space *space, int pos)
2677 bool nested;
2678 isl_id *id;
2680 id = isl_space_get_dim_id(space, isl_dim_param, pos);
2681 nested = is_nested_parameter(id);
2682 isl_id_free(id);
2684 return nested;
2687 /* Does "space" involve any parameters that refer to nested
2688 * accesses, i.e., parameters with no name?
2690 static bool has_nested(__isl_keep isl_space *space)
2692 int nparam;
2694 nparam = isl_space_dim(space, isl_dim_param);
2695 for (int i = 0; i < nparam; ++i)
2696 if (is_nested_parameter(space, i))
2697 return true;
2699 return false;
2702 /* Does "pa" involve any parameters that refer to nested
2703 * accesses, i.e., parameters with no name?
2705 static bool has_nested(__isl_keep isl_pw_aff *pa)
2707 isl_space *space;
2708 bool nested;
2710 space = isl_pw_aff_get_space(pa);
2711 nested = has_nested(space);
2712 isl_space_free(space);
2714 return nested;
2717 /* Construct a pet_scop for a for statement.
2718 * The for loop is required to be of the form
2720 * for (i = init; condition; ++i)
2722 * or
2724 * for (i = init; condition; --i)
2726 * The initialization of the for loop should either be an assignment
2727 * to an integer variable, or a declaration of such a variable with
2728 * initialization.
2730 * The condition is allowed to contain nested accesses, provided
2731 * they are not being written to inside the body of the loop.
2732 * Otherwise, or if the condition is otherwise non-affine, the for loop is
2733 * essentially treated as a while loop, with iteration domain
2734 * { [i] : i >= init }.
2736 * We extract a pet_scop for the body and then embed it in a loop with
2737 * iteration domain and schedule
2739 * { [i] : i >= init and condition' }
2740 * { [i] -> [i] }
2742 * or
2744 * { [i] : i <= init and condition' }
2745 * { [i] -> [-i] }
2747 * Where condition' is equal to condition if the latter is
2748 * a simple upper [lower] bound and a condition that is extended
2749 * to apply to all previous iterations otherwise.
2751 * If the condition is non-affine, then we drop the condition from the
2752 * iteration domain and instead create a separate statement
2753 * for evaluating the condition. The body is then filtered to depend
2754 * on the result of the condition evaluating to true on all iterations
2755 * up to the current iteration, while the evaluation the condition itself
2756 * is filtered to depend on the result of the condition evaluating to true
2757 * on all previous iterations.
2758 * The context of the scop representing the body is dropped
2759 * because we don't know how many times the body will be executed,
2760 * if at all.
2762 * If the stride of the loop is not 1, then "i >= init" is replaced by
2764 * (exists a: i = init + stride * a and a >= 0)
2766 * If the loop iterator i is unsigned, then wrapping may occur.
2767 * During the computation, we work with a virtual iterator that
2768 * does not wrap. However, the condition in the code applies
2769 * to the wrapped value, so we need to change condition(i)
2770 * into condition([i % 2^width]).
2771 * After computing the virtual domain and schedule, we apply
2772 * the function { [v] -> [v % 2^width] } to the domain and the domain
2773 * of the schedule. In order not to lose any information, we also
2774 * need to intersect the domain of the schedule with the virtual domain
2775 * first, since some iterations in the wrapped domain may be scheduled
2776 * several times, typically an infinite number of times.
2777 * Note that there may be no need to perform this final wrapping
2778 * if the loop condition (after wrapping) satisfies certain conditions.
2779 * However, the is_simple_bound condition is not enough since it doesn't
2780 * check if there even is an upper bound.
2782 * If the loop condition is non-affine, then we keep the virtual
2783 * iterator in the iteration domain and instead replace all accesses
2784 * to the original iterator by the wrapping of the virtual iterator.
2786 * Wrapping on unsigned iterators can be avoided entirely if
2787 * loop condition is simple, the loop iterator is incremented
2788 * [decremented] by one and the last value before wrapping cannot
2789 * possibly satisfy the loop condition.
2791 * Before extracting a pet_scop from the body we remove all
2792 * assignments in assigned_value to variables that are assigned
2793 * somewhere in the body of the loop.
2795 * Valid parameters for a for loop are those for which the initial
2796 * value itself, the increment on each domain iteration and
2797 * the condition on both the initial value and
2798 * the result of incrementing the iterator for each iteration of the domain
2799 * can be evaluated.
2800 * If the loop condition is non-affine, then we only consider validity
2801 * of the initial value.
2803 * If the body contains any break, then we keep track of it in "skip"
2804 * (if the skip condition is affine) or it is handled in scop_add_break
2805 * (if the skip condition is not affine).
2806 * Note that the affine break condition needs to be considered with
2807 * respect to previous iterations in the virtual domain (if any)
2808 * and that the domain needs to be kept virtual if there is a non-affine
2809 * break condition.
2811 struct pet_scop *PetScan::extract_for(ForStmt *stmt)
2813 BinaryOperator *ass;
2814 Decl *decl;
2815 Stmt *init;
2816 Expr *lhs, *rhs;
2817 ValueDecl *iv;
2818 isl_space *space;
2819 isl_set *domain;
2820 isl_map *sched;
2821 isl_set *cond = NULL;
2822 isl_set *skip = NULL;
2823 isl_id *id, *id_test = NULL, *id_break_test;
2824 struct pet_scop *scop, *scop_cond = NULL;
2825 assigned_value_cache cache(assigned_value);
2826 isl_val *inc;
2827 bool is_one;
2828 bool is_unsigned;
2829 bool is_simple;
2830 bool is_virtual;
2831 bool keep_virtual = false;
2832 bool has_affine_break;
2833 bool has_var_break;
2834 isl_aff *wrap = NULL;
2835 isl_pw_aff *pa, *pa_inc, *init_val;
2836 isl_set *valid_init;
2837 isl_set *valid_cond;
2838 isl_set *valid_cond_init;
2839 isl_set *valid_cond_next;
2840 isl_set *valid_inc;
2841 int stmt_id;
2843 if (!stmt->getInit() && !stmt->getCond() && !stmt->getInc())
2844 return extract_infinite_for(stmt);
2846 init = stmt->getInit();
2847 if (!init) {
2848 unsupported(stmt);
2849 return NULL;
2851 if ((ass = initialization_assignment(init)) != NULL) {
2852 iv = extract_induction_variable(ass);
2853 if (!iv)
2854 return NULL;
2855 lhs = ass->getLHS();
2856 rhs = ass->getRHS();
2857 } else if ((decl = initialization_declaration(init)) != NULL) {
2858 VarDecl *var = extract_induction_variable(init, decl);
2859 if (!var)
2860 return NULL;
2861 iv = var;
2862 rhs = var->getInit();
2863 lhs = create_DeclRefExpr(var);
2864 } else {
2865 unsupported(stmt->getInit());
2866 return NULL;
2869 pa_inc = extract_increment(stmt, iv);
2870 if (!pa_inc)
2871 return NULL;
2873 inc = NULL;
2874 if (isl_pw_aff_n_piece(pa_inc) != 1 ||
2875 isl_pw_aff_foreach_piece(pa_inc, &extract_cst, &inc) < 0) {
2876 isl_pw_aff_free(pa_inc);
2877 unsupported(stmt->getInc());
2878 isl_val_free(inc);
2879 return NULL;
2881 valid_inc = isl_pw_aff_domain(pa_inc);
2883 is_unsigned = iv->getType()->isUnsignedIntegerType();
2885 assigned_value.erase(iv);
2886 clear_assignments clear(assigned_value);
2887 clear.TraverseStmt(stmt->getBody());
2889 id = isl_id_alloc(ctx, iv->getName().str().c_str(), iv);
2891 pa = try_extract_nested_condition(stmt->getCond());
2892 if (allow_nested && (!pa || has_nested(pa)))
2893 stmt_id = n_stmt++;
2895 scop = extract(stmt->getBody());
2897 has_affine_break = scop &&
2898 pet_scop_has_affine_skip(scop, pet_skip_later);
2899 if (has_affine_break)
2900 skip = pet_scop_get_affine_skip_domain(scop, pet_skip_later);
2901 has_var_break = scop && pet_scop_has_var_skip(scop, pet_skip_later);
2902 if (has_var_break) {
2903 id_break_test = pet_scop_get_skip_id(scop, pet_skip_later);
2904 keep_virtual = true;
2907 if (pa && !is_nested_allowed(pa, scop)) {
2908 isl_pw_aff_free(pa);
2909 pa = NULL;
2912 if (!allow_nested && !pa)
2913 pa = try_extract_affine_condition(stmt->getCond());
2914 valid_cond = isl_pw_aff_domain(isl_pw_aff_copy(pa));
2915 cond = isl_pw_aff_non_zero_set(pa);
2916 if (allow_nested && !cond) {
2917 isl_multi_pw_aff *test_index;
2918 int save_n_stmt = n_stmt;
2919 test_index = create_test_index(ctx, n_test++);
2920 n_stmt = stmt_id;
2921 scop_cond = extract_non_affine_condition(stmt->getCond(),
2922 isl_multi_pw_aff_copy(test_index));
2923 n_stmt = save_n_stmt;
2924 scop_cond = scop_add_array(scop_cond, test_index, ast_context);
2925 id_test = isl_multi_pw_aff_get_tuple_id(test_index,
2926 isl_dim_out);
2927 isl_multi_pw_aff_free(test_index);
2928 scop_cond = pet_scop_prefix(scop_cond, 0);
2929 scop = pet_scop_reset_context(scop);
2930 scop = pet_scop_prefix(scop, 1);
2931 keep_virtual = true;
2932 cond = isl_set_universe(isl_space_set_alloc(ctx, 0, 0));
2935 cond = embed(cond, isl_id_copy(id));
2936 skip = embed(skip, isl_id_copy(id));
2937 valid_cond = isl_set_coalesce(valid_cond);
2938 valid_cond = embed(valid_cond, isl_id_copy(id));
2939 valid_inc = embed(valid_inc, isl_id_copy(id));
2940 is_one = isl_val_is_one(inc) || isl_val_is_negone(inc);
2941 is_virtual = is_unsigned && (!is_one || can_wrap(cond, iv, inc));
2943 init_val = extract_affine(rhs);
2944 valid_cond_init = enforce_subset(
2945 isl_set_from_pw_aff(isl_pw_aff_copy(init_val)),
2946 isl_set_copy(valid_cond));
2947 if (is_one && !is_virtual) {
2948 isl_pw_aff_free(init_val);
2949 pa = extract_comparison(isl_val_is_pos(inc) ? BO_GE : BO_LE,
2950 lhs, rhs, init);
2951 valid_init = isl_pw_aff_domain(isl_pw_aff_copy(pa));
2952 valid_init = set_project_out_by_id(valid_init, id);
2953 domain = isl_pw_aff_non_zero_set(pa);
2954 } else {
2955 valid_init = isl_pw_aff_domain(isl_pw_aff_copy(init_val));
2956 domain = strided_domain(isl_id_copy(id), init_val,
2957 isl_val_copy(inc));
2960 domain = embed(domain, isl_id_copy(id));
2961 if (is_virtual) {
2962 isl_map *rev_wrap;
2963 wrap = compute_wrapping(isl_set_get_space(cond), iv);
2964 rev_wrap = isl_map_from_aff(isl_aff_copy(wrap));
2965 rev_wrap = isl_map_reverse(rev_wrap);
2966 cond = isl_set_apply(cond, isl_map_copy(rev_wrap));
2967 skip = isl_set_apply(skip, isl_map_copy(rev_wrap));
2968 valid_cond = isl_set_apply(valid_cond, isl_map_copy(rev_wrap));
2969 valid_inc = isl_set_apply(valid_inc, rev_wrap);
2971 is_simple = is_simple_bound(cond, inc);
2972 if (!is_simple) {
2973 cond = isl_set_gist(cond, isl_set_copy(domain));
2974 is_simple = is_simple_bound(cond, inc);
2976 if (!is_simple)
2977 cond = valid_for_each_iteration(cond,
2978 isl_set_copy(domain), isl_val_copy(inc));
2979 domain = isl_set_intersect(domain, cond);
2980 if (has_affine_break) {
2981 skip = isl_set_intersect(skip , isl_set_copy(domain));
2982 skip = after(skip, isl_val_sgn(inc));
2983 domain = isl_set_subtract(domain, skip);
2985 domain = isl_set_set_dim_id(domain, isl_dim_set, 0, isl_id_copy(id));
2986 space = isl_space_from_domain(isl_set_get_space(domain));
2987 space = isl_space_add_dims(space, isl_dim_out, 1);
2988 sched = isl_map_universe(space);
2989 if (isl_val_is_pos(inc))
2990 sched = isl_map_equate(sched, isl_dim_in, 0, isl_dim_out, 0);
2991 else
2992 sched = isl_map_oppose(sched, isl_dim_in, 0, isl_dim_out, 0);
2994 valid_cond_next = valid_on_next(valid_cond, isl_set_copy(domain),
2995 isl_val_copy(inc));
2996 valid_inc = enforce_subset(isl_set_copy(domain), valid_inc);
2998 if (is_virtual && !keep_virtual) {
2999 isl_map *wrap_map = isl_map_from_aff(wrap);
3000 wrap_map = isl_map_set_dim_id(wrap_map,
3001 isl_dim_out, 0, isl_id_copy(id));
3002 sched = isl_map_intersect_domain(sched, isl_set_copy(domain));
3003 domain = isl_set_apply(domain, isl_map_copy(wrap_map));
3004 sched = isl_map_apply_domain(sched, wrap_map);
3006 if (!(is_virtual && keep_virtual))
3007 wrap = identity_aff(domain);
3009 scop_cond = pet_scop_embed(scop_cond, isl_set_copy(domain),
3010 isl_map_copy(sched), isl_aff_copy(wrap), isl_id_copy(id));
3011 scop = pet_scop_embed(scop, isl_set_copy(domain), sched, wrap, id);
3012 scop = resolve_nested(scop);
3013 if (has_var_break)
3014 scop = scop_add_break(scop, id_break_test, isl_set_copy(domain),
3015 isl_val_copy(inc));
3016 if (id_test) {
3017 scop = scop_add_while(scop_cond, scop, id_test, domain,
3018 isl_val_copy(inc));
3019 isl_set_free(valid_inc);
3020 } else {
3021 scop = pet_scop_restrict_context(scop, valid_inc);
3022 scop = pet_scop_restrict_context(scop, valid_cond_next);
3023 scop = pet_scop_restrict_context(scop, valid_cond_init);
3024 isl_set_free(domain);
3026 clear_assignment(assigned_value, iv);
3028 isl_val_free(inc);
3030 scop = pet_scop_restrict_context(scop, valid_init);
3032 return scop;
3035 struct pet_scop *PetScan::extract(CompoundStmt *stmt, bool skip_declarations)
3037 return extract(stmt->children(), true, skip_declarations);
3040 /* Does parameter "pos" of "map" refer to a nested access?
3042 static bool is_nested_parameter(__isl_keep isl_map *map, int pos)
3044 bool nested;
3045 isl_id *id;
3047 id = isl_map_get_dim_id(map, isl_dim_param, pos);
3048 nested = is_nested_parameter(id);
3049 isl_id_free(id);
3051 return nested;
3054 /* How many parameters of "space" refer to nested accesses, i.e., have no name?
3056 static int n_nested_parameter(__isl_keep isl_space *space)
3058 int n = 0;
3059 int nparam;
3061 nparam = isl_space_dim(space, isl_dim_param);
3062 for (int i = 0; i < nparam; ++i)
3063 if (is_nested_parameter(space, i))
3064 ++n;
3066 return n;
3069 /* How many parameters of "map" refer to nested accesses, i.e., have no name?
3071 static int n_nested_parameter(__isl_keep isl_map *map)
3073 isl_space *space;
3074 int n;
3076 space = isl_map_get_space(map);
3077 n = n_nested_parameter(space);
3078 isl_space_free(space);
3080 return n;
3083 /* For each nested access parameter in "space",
3084 * construct a corresponding pet_expr, place it in args and
3085 * record its position in "param2pos".
3086 * "n_arg" is the number of elements that are already in args.
3087 * The position recorded in "param2pos" takes this number into account.
3088 * If the pet_expr corresponding to a parameter is identical to
3089 * the pet_expr corresponding to an earlier parameter, then these two
3090 * parameters are made to refer to the same element in args.
3092 * Return the final number of elements in args or -1 if an error has occurred.
3094 int PetScan::extract_nested(__isl_keep isl_space *space,
3095 int n_arg, struct pet_expr **args, std::map<int,int> &param2pos)
3097 int nparam;
3099 nparam = isl_space_dim(space, isl_dim_param);
3100 for (int i = 0; i < nparam; ++i) {
3101 int j;
3102 isl_id *id = isl_space_get_dim_id(space, isl_dim_param, i);
3103 Expr *nested;
3105 if (!is_nested_parameter(id)) {
3106 isl_id_free(id);
3107 continue;
3110 nested = (Expr *) isl_id_get_user(id);
3111 args[n_arg] = extract_expr(nested);
3112 if (!args[n_arg])
3113 return -1;
3115 for (j = 0; j < n_arg; ++j)
3116 if (pet_expr_is_equal(args[j], args[n_arg]))
3117 break;
3119 if (j < n_arg) {
3120 pet_expr_free(args[n_arg]);
3121 args[n_arg] = NULL;
3122 param2pos[i] = j;
3123 } else
3124 param2pos[i] = n_arg++;
3126 isl_id_free(id);
3129 return n_arg;
3132 /* For each nested access parameter in the access relations in "expr",
3133 * construct a corresponding pet_expr, place it in expr->args and
3134 * record its position in "param2pos".
3135 * n is the number of nested access parameters.
3137 struct pet_expr *PetScan::extract_nested(struct pet_expr *expr, int n,
3138 std::map<int,int> &param2pos)
3140 isl_space *space;
3142 expr->args = isl_calloc_array(ctx, struct pet_expr *, n);
3143 expr->n_arg = n;
3144 if (!expr->args)
3145 goto error;
3147 space = isl_map_get_space(expr->acc.access);
3148 n = extract_nested(space, 0, expr->args, param2pos);
3149 isl_space_free(space);
3151 if (n < 0)
3152 goto error;
3154 expr->n_arg = n;
3155 return expr;
3156 error:
3157 pet_expr_free(expr);
3158 return NULL;
3161 /* Look for parameters in any access relation in "expr" that
3162 * refer to nested accesses. In particular, these are
3163 * parameters with no name.
3165 * If there are any such parameters, then the domain of the access
3166 * relation, which is still [] at this point, is replaced by
3167 * [[] -> [t_1,...,t_n]], with n the number of these parameters
3168 * (after identifying identical nested accesses).
3169 * The parameters are then equated to the corresponding t dimensions
3170 * and subsequently projected out.
3171 * param2pos maps the position of the parameter to the position
3172 * of the corresponding t dimension.
3174 struct pet_expr *PetScan::resolve_nested(struct pet_expr *expr)
3176 int n;
3177 int nparam;
3178 int n_in;
3179 isl_space *dim;
3180 isl_map *map;
3181 std::map<int,int> param2pos;
3183 if (!expr)
3184 return expr;
3186 for (int i = 0; i < expr->n_arg; ++i) {
3187 expr->args[i] = resolve_nested(expr->args[i]);
3188 if (!expr->args[i]) {
3189 pet_expr_free(expr);
3190 return NULL;
3194 if (expr->type != pet_expr_access)
3195 return expr;
3197 n = n_nested_parameter(expr->acc.access);
3198 if (n == 0)
3199 return expr;
3201 expr = extract_nested(expr, n, param2pos);
3202 if (!expr)
3203 return NULL;
3205 n = expr->n_arg;
3206 nparam = isl_map_dim(expr->acc.access, isl_dim_param);
3207 n_in = isl_map_dim(expr->acc.access, isl_dim_in);
3208 dim = isl_map_get_space(expr->acc.access);
3209 dim = isl_space_domain(dim);
3210 dim = isl_space_from_domain(dim);
3211 dim = isl_space_add_dims(dim, isl_dim_out, n);
3212 map = isl_map_universe(dim);
3213 map = isl_map_domain_map(map);
3214 map = isl_map_reverse(map);
3215 expr->acc.access = isl_map_apply_domain(expr->acc.access, map);
3217 for (int i = nparam - 1; i >= 0; --i) {
3218 isl_id *id = isl_map_get_dim_id(expr->acc.access,
3219 isl_dim_param, i);
3220 if (!is_nested_parameter(id)) {
3221 isl_id_free(id);
3222 continue;
3225 expr->acc.access = isl_map_equate(expr->acc.access,
3226 isl_dim_param, i, isl_dim_in,
3227 n_in + param2pos[i]);
3228 expr->acc.access = isl_map_project_out(expr->acc.access,
3229 isl_dim_param, i, 1);
3231 isl_id_free(id);
3234 return expr;
3235 error:
3236 pet_expr_free(expr);
3237 return NULL;
3240 /* Return the file offset of the expansion location of "Loc".
3242 static unsigned getExpansionOffset(SourceManager &SM, SourceLocation Loc)
3244 return SM.getFileOffset(SM.getExpansionLoc(Loc));
3247 #ifdef HAVE_FINDLOCATIONAFTERTOKEN
3249 /* Return a SourceLocation for the location after the first semicolon
3250 * after "loc". If Lexer::findLocationAfterToken is available, we simply
3251 * call it and also skip trailing spaces and newline.
3253 static SourceLocation location_after_semi(SourceLocation loc, SourceManager &SM,
3254 const LangOptions &LO)
3256 return Lexer::findLocationAfterToken(loc, tok::semi, SM, LO, true);
3259 #else
3261 /* Return a SourceLocation for the location after the first semicolon
3262 * after "loc". If Lexer::findLocationAfterToken is not available,
3263 * we look in the underlying character data for the first semicolon.
3265 static SourceLocation location_after_semi(SourceLocation loc, SourceManager &SM,
3266 const LangOptions &LO)
3268 const char *semi;
3269 const char *s = SM.getCharacterData(loc);
3271 semi = strchr(s, ';');
3272 if (!semi)
3273 return SourceLocation();
3274 return loc.getFileLocWithOffset(semi + 1 - s);
3277 #endif
3279 /* If the token at "loc" is the first token on the line, then return
3280 * a location referring to the start of the line.
3281 * Otherwise, return "loc".
3283 * This function is used to extend a scop to the start of the line
3284 * if the first token of the scop is also the first token on the line.
3286 * We look for the first token on the line. If its location is equal to "loc",
3287 * then the latter is the location of the first token on the line.
3289 static SourceLocation move_to_start_of_line_if_first_token(SourceLocation loc,
3290 SourceManager &SM, const LangOptions &LO)
3292 std::pair<FileID, unsigned> file_offset_pair;
3293 llvm::StringRef file;
3294 const char *pos;
3295 Token tok;
3296 SourceLocation token_loc, line_loc;
3297 int col;
3299 loc = SM.getExpansionLoc(loc);
3300 col = SM.getExpansionColumnNumber(loc);
3301 line_loc = loc.getLocWithOffset(1 - col);
3302 file_offset_pair = SM.getDecomposedLoc(line_loc);
3303 file = SM.getBufferData(file_offset_pair.first, NULL);
3304 pos = file.data() + file_offset_pair.second;
3306 Lexer lexer(SM.getLocForStartOfFile(file_offset_pair.first), LO,
3307 file.begin(), pos, file.end());
3308 lexer.LexFromRawLexer(tok);
3309 token_loc = tok.getLocation();
3311 if (token_loc == loc)
3312 return line_loc;
3313 else
3314 return loc;
3317 /* Convert a top-level pet_expr to a pet_scop with one statement.
3318 * This mainly involves resolving nested expression parameters
3319 * and setting the name of the iteration space.
3320 * The name is given by "label" if it is non-NULL. Otherwise,
3321 * it is of the form S_<n_stmt>.
3322 * start and end of the pet_scop are derived from those of "stmt".
3324 struct pet_scop *PetScan::extract(Stmt *stmt, struct pet_expr *expr,
3325 __isl_take isl_id *label)
3327 struct pet_stmt *ps;
3328 struct pet_scop *scop;
3329 SourceLocation loc = stmt->getLocStart();
3330 SourceManager &SM = PP.getSourceManager();
3331 const LangOptions &LO = PP.getLangOpts();
3332 int line = PP.getSourceManager().getExpansionLineNumber(loc);
3333 unsigned start, end;
3335 expr = resolve_nested(expr);
3336 ps = pet_stmt_from_pet_expr(ctx, line, label, n_stmt++, expr);
3337 scop = pet_scop_from_pet_stmt(ctx, ps);
3339 loc = move_to_start_of_line_if_first_token(loc, SM, LO);
3340 start = getExpansionOffset(SM, loc);
3341 loc = stmt->getLocEnd();
3342 loc = location_after_semi(loc, SM, LO);
3343 end = getExpansionOffset(SM, loc);
3345 scop = pet_scop_update_start_end(scop, start, end);
3346 return scop;
3349 /* Check if we can extract an affine expression from "expr".
3350 * Return the expressions as an isl_pw_aff if we can and NULL otherwise.
3351 * We turn on autodetection so that we won't generate any warnings
3352 * and turn off nesting, so that we won't accept any non-affine constructs.
3354 __isl_give isl_pw_aff *PetScan::try_extract_affine(Expr *expr)
3356 isl_pw_aff *pwaff;
3357 int save_autodetect = options->autodetect;
3358 bool save_nesting = nesting_enabled;
3360 options->autodetect = 1;
3361 nesting_enabled = false;
3363 pwaff = extract_affine(expr);
3365 options->autodetect = save_autodetect;
3366 nesting_enabled = save_nesting;
3368 return pwaff;
3371 /* Check whether "expr" is an affine expression.
3373 bool PetScan::is_affine(Expr *expr)
3375 isl_pw_aff *pwaff;
3377 pwaff = try_extract_affine(expr);
3378 isl_pw_aff_free(pwaff);
3380 return pwaff != NULL;
3383 /* Check if we can extract an affine constraint from "expr".
3384 * Return the constraint as an isl_set if we can and NULL otherwise.
3385 * We turn on autodetection so that we won't generate any warnings
3386 * and turn off nesting, so that we won't accept any non-affine constructs.
3388 __isl_give isl_pw_aff *PetScan::try_extract_affine_condition(Expr *expr)
3390 isl_pw_aff *cond;
3391 int save_autodetect = options->autodetect;
3392 bool save_nesting = nesting_enabled;
3394 options->autodetect = 1;
3395 nesting_enabled = false;
3397 cond = extract_condition(expr);
3399 options->autodetect = save_autodetect;
3400 nesting_enabled = save_nesting;
3402 return cond;
3405 /* Check whether "expr" is an affine constraint.
3407 bool PetScan::is_affine_condition(Expr *expr)
3409 isl_pw_aff *cond;
3411 cond = try_extract_affine_condition(expr);
3412 isl_pw_aff_free(cond);
3414 return cond != NULL;
3417 /* Check if we can extract a condition from "expr".
3418 * Return the condition as an isl_pw_aff if we can and NULL otherwise.
3419 * If allow_nested is set, then the condition may involve parameters
3420 * corresponding to nested accesses.
3421 * We turn on autodetection so that we won't generate any warnings.
3423 __isl_give isl_pw_aff *PetScan::try_extract_nested_condition(Expr *expr)
3425 isl_pw_aff *cond;
3426 int save_autodetect = options->autodetect;
3427 bool save_nesting = nesting_enabled;
3429 options->autodetect = 1;
3430 nesting_enabled = allow_nested;
3431 cond = extract_condition(expr);
3433 options->autodetect = save_autodetect;
3434 nesting_enabled = save_nesting;
3436 return cond;
3439 /* If the top-level expression of "stmt" is an assignment, then
3440 * return that assignment as a BinaryOperator.
3441 * Otherwise return NULL.
3443 static BinaryOperator *top_assignment_or_null(Stmt *stmt)
3445 BinaryOperator *ass;
3447 if (!stmt)
3448 return NULL;
3449 if (stmt->getStmtClass() != Stmt::BinaryOperatorClass)
3450 return NULL;
3452 ass = cast<BinaryOperator>(stmt);
3453 if(ass->getOpcode() != BO_Assign)
3454 return NULL;
3456 return ass;
3459 /* Check if the given if statement is a conditional assignement
3460 * with a non-affine condition. If so, construct a pet_scop
3461 * corresponding to this conditional assignment. Otherwise return NULL.
3463 * In particular we check if "stmt" is of the form
3465 * if (condition)
3466 * a = f(...);
3467 * else
3468 * a = g(...);
3470 * where a is some array or scalar access.
3471 * The constructed pet_scop then corresponds to the expression
3473 * a = condition ? f(...) : g(...)
3475 * All access relations in f(...) are intersected with condition
3476 * while all access relation in g(...) are intersected with the complement.
3478 struct pet_scop *PetScan::extract_conditional_assignment(IfStmt *stmt)
3480 BinaryOperator *ass_then, *ass_else;
3481 isl_multi_pw_aff *write_then, *write_else;
3482 isl_set *cond, *comp;
3483 isl_multi_pw_aff *index;
3484 isl_pw_aff *pa;
3485 int equal;
3486 struct pet_expr *pe_cond, *pe_then, *pe_else, *pe, *pe_write;
3487 bool save_nesting = nesting_enabled;
3489 if (!options->detect_conditional_assignment)
3490 return NULL;
3492 ass_then = top_assignment_or_null(stmt->getThen());
3493 ass_else = top_assignment_or_null(stmt->getElse());
3495 if (!ass_then || !ass_else)
3496 return NULL;
3498 if (is_affine_condition(stmt->getCond()))
3499 return NULL;
3501 write_then = extract_index(ass_then->getLHS());
3502 write_else = extract_index(ass_else->getLHS());
3504 equal = isl_multi_pw_aff_plain_is_equal(write_then, write_else);
3505 isl_multi_pw_aff_free(write_else);
3506 if (equal < 0 || !equal) {
3507 isl_multi_pw_aff_free(write_then);
3508 return NULL;
3511 nesting_enabled = allow_nested;
3512 pa = extract_condition(stmt->getCond());
3513 nesting_enabled = save_nesting;
3514 cond = isl_pw_aff_non_zero_set(isl_pw_aff_copy(pa));
3515 comp = isl_pw_aff_zero_set(isl_pw_aff_copy(pa));
3516 index = isl_multi_pw_aff_from_range(isl_multi_pw_aff_from_pw_aff(pa));
3518 pe_cond = pet_expr_from_index(index);
3520 pe_then = extract_expr(ass_then->getRHS());
3521 pe_then = pet_expr_restrict(pe_then, cond);
3522 pe_else = extract_expr(ass_else->getRHS());
3523 pe_else = pet_expr_restrict(pe_else, comp);
3525 pe = pet_expr_new_ternary(ctx, pe_cond, pe_then, pe_else);
3526 pe_write = pet_expr_from_index_and_depth(write_then,
3527 extract_depth(write_then));
3528 if (pe_write) {
3529 pe_write->acc.write = 1;
3530 pe_write->acc.read = 0;
3532 pe = pet_expr_new_binary(ctx, pet_op_assign, pe_write, pe);
3533 return extract(stmt, pe);
3536 /* Create a pet_scop with a single statement evaluating "cond"
3537 * and writing the result to a virtual scalar, as expressed by
3538 * "index".
3540 struct pet_scop *PetScan::extract_non_affine_condition(Expr *cond,
3541 __isl_take isl_multi_pw_aff *index)
3543 struct pet_expr *expr, *write;
3544 struct pet_stmt *ps;
3545 struct pet_scop *scop;
3546 SourceLocation loc = cond->getLocStart();
3547 int line = PP.getSourceManager().getExpansionLineNumber(loc);
3549 write = pet_expr_from_index(index);
3550 if (write) {
3551 write->acc.write = 1;
3552 write->acc.read = 0;
3554 expr = extract_expr(cond);
3555 expr = resolve_nested(expr);
3556 expr = pet_expr_new_binary(ctx, pet_op_assign, write, expr);
3557 ps = pet_stmt_from_pet_expr(ctx, line, NULL, n_stmt++, expr);
3558 scop = pet_scop_from_pet_stmt(ctx, ps);
3559 scop = resolve_nested(scop);
3561 return scop;
3564 extern "C" {
3565 static struct pet_expr *embed_access(struct pet_expr *expr, void *user);
3568 /* Precompose the access relation associated to "expr" with the function
3569 * pointed to by "user", thereby embedding the access relation in the domain
3570 * of this function.
3571 * The initial domain of the access relation is the zero-dimensional domain.
3573 static struct pet_expr *embed_access(struct pet_expr *expr, void *user)
3575 isl_multi_aff *ma = (isl_multi_aff *) user;
3577 expr->acc.access = isl_map_preimage_domain_multi_aff(expr->acc.access,
3578 isl_multi_aff_copy(ma));
3579 if (!expr->acc.access)
3580 goto error;
3582 return expr;
3583 error:
3584 pet_expr_free(expr);
3585 return NULL;
3588 /* Precompose all access relations in "expr" with "ma", thereby
3589 * embedding them in the domain of "ma".
3591 static struct pet_expr *embed(struct pet_expr *expr,
3592 __isl_keep isl_multi_aff *ma)
3594 return pet_expr_map_access(expr, &embed_access, ma);
3597 /* How many parameters of "set" refer to nested accesses, i.e., have no name?
3599 static int n_nested_parameter(__isl_keep isl_set *set)
3601 isl_space *space;
3602 int n;
3604 space = isl_set_get_space(set);
3605 n = n_nested_parameter(space);
3606 isl_space_free(space);
3608 return n;
3611 /* Remove all parameters from "map" that refer to nested accesses.
3613 static __isl_give isl_map *remove_nested_parameters(__isl_take isl_map *map)
3615 int nparam;
3616 isl_space *space;
3618 space = isl_map_get_space(map);
3619 nparam = isl_space_dim(space, isl_dim_param);
3620 for (int i = nparam - 1; i >= 0; --i)
3621 if (is_nested_parameter(space, i))
3622 map = isl_map_project_out(map, isl_dim_param, i, 1);
3623 isl_space_free(space);
3625 return map;
3628 /* Remove all parameters from the access relation of "expr"
3629 * that refer to nested accesses.
3631 static struct pet_expr *remove_nested_parameters(struct pet_expr *expr)
3633 expr->acc.access = remove_nested_parameters(expr->acc.access);
3634 if (!expr->acc.access)
3635 goto error;
3637 return expr;
3638 error:
3639 pet_expr_free(expr);
3640 return NULL;
3643 extern "C" {
3644 static struct pet_expr *expr_remove_nested_parameters(
3645 struct pet_expr *expr, void *user);
3648 static struct pet_expr *expr_remove_nested_parameters(
3649 struct pet_expr *expr, void *user)
3651 return remove_nested_parameters(expr);
3654 /* Remove all nested access parameters from the schedule and all
3655 * accesses of "stmt".
3656 * There is no need to remove them from the domain as these parameters
3657 * have already been removed from the domain when this function is called.
3659 static struct pet_stmt *remove_nested_parameters(struct pet_stmt *stmt)
3661 if (!stmt)
3662 return NULL;
3663 stmt->schedule = remove_nested_parameters(stmt->schedule);
3664 stmt->body = pet_expr_map_access(stmt->body,
3665 &expr_remove_nested_parameters, NULL);
3666 if (!stmt->schedule || !stmt->body)
3667 goto error;
3668 for (int i = 0; i < stmt->n_arg; ++i) {
3669 stmt->args[i] = pet_expr_map_access(stmt->args[i],
3670 &expr_remove_nested_parameters, NULL);
3671 if (!stmt->args[i])
3672 goto error;
3675 return stmt;
3676 error:
3677 pet_stmt_free(stmt);
3678 return NULL;
3681 /* For each nested access parameter in the domain of "stmt",
3682 * construct a corresponding pet_expr, place it before the original
3683 * elements in stmt->args and record its position in "param2pos".
3684 * n is the number of nested access parameters.
3686 struct pet_stmt *PetScan::extract_nested(struct pet_stmt *stmt, int n,
3687 std::map<int,int> &param2pos)
3689 int i;
3690 isl_space *space;
3691 int n_arg;
3692 struct pet_expr **args;
3694 n_arg = stmt->n_arg;
3695 args = isl_calloc_array(ctx, struct pet_expr *, n + n_arg);
3696 if (!args)
3697 goto error;
3699 space = isl_set_get_space(stmt->domain);
3700 n_arg = extract_nested(space, 0, args, param2pos);
3701 isl_space_free(space);
3703 if (n_arg < 0)
3704 goto error;
3706 for (i = 0; i < stmt->n_arg; ++i)
3707 args[n_arg + i] = stmt->args[i];
3708 free(stmt->args);
3709 stmt->args = args;
3710 stmt->n_arg += n_arg;
3712 return stmt;
3713 error:
3714 if (args) {
3715 for (i = 0; i < n; ++i)
3716 pet_expr_free(args[i]);
3717 free(args);
3719 pet_stmt_free(stmt);
3720 return NULL;
3723 /* Check whether any of the arguments i of "stmt" starting at position "n"
3724 * is equal to one of the first "n" arguments j.
3725 * If so, combine the constraints on arguments i and j and remove
3726 * argument i.
3728 static struct pet_stmt *remove_duplicate_arguments(struct pet_stmt *stmt, int n)
3730 int i, j;
3731 isl_map *map;
3733 if (!stmt)
3734 return NULL;
3735 if (n == 0)
3736 return stmt;
3737 if (n == stmt->n_arg)
3738 return stmt;
3740 map = isl_set_unwrap(stmt->domain);
3742 for (i = stmt->n_arg - 1; i >= n; --i) {
3743 for (j = 0; j < n; ++j)
3744 if (pet_expr_is_equal(stmt->args[i], stmt->args[j]))
3745 break;
3746 if (j >= n)
3747 continue;
3749 map = isl_map_equate(map, isl_dim_out, i, isl_dim_out, j);
3750 map = isl_map_project_out(map, isl_dim_out, i, 1);
3752 pet_expr_free(stmt->args[i]);
3753 for (j = i; j + 1 < stmt->n_arg; ++j)
3754 stmt->args[j] = stmt->args[j + 1];
3755 stmt->n_arg--;
3758 stmt->domain = isl_map_wrap(map);
3759 if (!stmt->domain)
3760 goto error;
3761 return stmt;
3762 error:
3763 pet_stmt_free(stmt);
3764 return NULL;
3767 /* Look for parameters in the iteration domain of "stmt" that
3768 * refer to nested accesses. In particular, these are
3769 * parameters with no name.
3771 * If there are any such parameters, then as many extra variables
3772 * (after identifying identical nested accesses) are inserted in the
3773 * range of the map wrapped inside the domain, before the original variables.
3774 * If the original domain is not a wrapped map, then a new wrapped
3775 * map is created with zero output dimensions.
3776 * The parameters are then equated to the corresponding output dimensions
3777 * and subsequently projected out, from the iteration domain,
3778 * the schedule and the access relations.
3779 * For each of the output dimensions, a corresponding argument
3780 * expression is inserted. Initially they are created with
3781 * a zero-dimensional domain, so they have to be embedded
3782 * in the current iteration domain.
3783 * param2pos maps the position of the parameter to the position
3784 * of the corresponding output dimension in the wrapped map.
3786 struct pet_stmt *PetScan::resolve_nested(struct pet_stmt *stmt)
3788 int n;
3789 int nparam;
3790 unsigned n_arg;
3791 isl_map *map;
3792 isl_space *space;
3793 isl_multi_aff *ma;
3794 std::map<int,int> param2pos;
3796 if (!stmt)
3797 return NULL;
3799 n = n_nested_parameter(stmt->domain);
3800 if (n == 0)
3801 return stmt;
3803 n_arg = stmt->n_arg;
3804 stmt = extract_nested(stmt, n, param2pos);
3805 if (!stmt)
3806 return NULL;
3808 n = stmt->n_arg - n_arg;
3809 nparam = isl_set_dim(stmt->domain, isl_dim_param);
3810 if (isl_set_is_wrapping(stmt->domain))
3811 map = isl_set_unwrap(stmt->domain);
3812 else
3813 map = isl_map_from_domain(stmt->domain);
3814 map = isl_map_insert_dims(map, isl_dim_out, 0, n);
3816 for (int i = nparam - 1; i >= 0; --i) {
3817 isl_id *id;
3819 if (!is_nested_parameter(map, i))
3820 continue;
3822 id = pet_expr_access_get_id(stmt->args[param2pos[i]]);
3823 map = isl_map_set_dim_id(map, isl_dim_out, param2pos[i], id);
3824 map = isl_map_equate(map, isl_dim_param, i, isl_dim_out,
3825 param2pos[i]);
3826 map = isl_map_project_out(map, isl_dim_param, i, 1);
3829 stmt->domain = isl_map_wrap(map);
3831 space = isl_space_unwrap(isl_set_get_space(stmt->domain));
3832 space = isl_space_from_domain(isl_space_domain(space));
3833 ma = isl_multi_aff_zero(space);
3834 for (int pos = 0; pos < n; ++pos)
3835 stmt->args[pos] = embed(stmt->args[pos], ma);
3836 isl_multi_aff_free(ma);
3838 stmt = remove_nested_parameters(stmt);
3839 stmt = remove_duplicate_arguments(stmt, n);
3841 return stmt;
3842 error:
3843 pet_stmt_free(stmt);
3844 return NULL;
3847 /* For each statement in "scop", move the parameters that correspond
3848 * to nested access into the ranges of the domains and create
3849 * corresponding argument expressions.
3851 struct pet_scop *PetScan::resolve_nested(struct pet_scop *scop)
3853 if (!scop)
3854 return NULL;
3856 for (int i = 0; i < scop->n_stmt; ++i) {
3857 scop->stmts[i] = resolve_nested(scop->stmts[i]);
3858 if (!scop->stmts[i])
3859 goto error;
3862 return scop;
3863 error:
3864 pet_scop_free(scop);
3865 return NULL;
3868 /* Given an access expression "expr", is the variable accessed by
3869 * "expr" assigned anywhere inside "scop"?
3871 static bool is_assigned(pet_expr *expr, pet_scop *scop)
3873 bool assigned = false;
3874 isl_id *id;
3876 id = pet_expr_access_get_id(expr);
3877 assigned = pet_scop_writes(scop, id);
3878 isl_id_free(id);
3880 return assigned;
3883 /* Are all nested access parameters in "pa" allowed given "scop".
3884 * In particular, is none of them written by anywhere inside "scop".
3886 * If "scop" has any skip conditions, then no nested access parameters
3887 * are allowed. In particular, if there is any nested access in a guard
3888 * for a piece of code containing a "continue", then we want to introduce
3889 * a separate statement for evaluating this guard so that we can express
3890 * that the result is false for all previous iterations.
3892 bool PetScan::is_nested_allowed(__isl_keep isl_pw_aff *pa, pet_scop *scop)
3894 int nparam;
3896 if (!scop)
3897 return true;
3899 nparam = isl_pw_aff_dim(pa, isl_dim_param);
3900 for (int i = 0; i < nparam; ++i) {
3901 Expr *nested;
3902 isl_id *id = isl_pw_aff_get_dim_id(pa, isl_dim_param, i);
3903 pet_expr *expr;
3904 bool allowed;
3906 if (!is_nested_parameter(id)) {
3907 isl_id_free(id);
3908 continue;
3911 if (pet_scop_has_skip(scop, pet_skip_now)) {
3912 isl_id_free(id);
3913 return false;
3916 nested = (Expr *) isl_id_get_user(id);
3917 expr = extract_expr(nested);
3918 allowed = expr && expr->type == pet_expr_access &&
3919 !is_assigned(expr, scop);
3921 pet_expr_free(expr);
3922 isl_id_free(id);
3924 if (!allowed)
3925 return false;
3928 return true;
3931 /* Do we need to construct a skip condition of the given type
3932 * on an if statement, given that the if condition is non-affine?
3934 * pet_scop_filter_skip can only handle the case where the if condition
3935 * holds (the then branch) and the skip condition is universal.
3936 * In any other case, we need to construct a new skip condition.
3938 static bool need_skip(struct pet_scop *scop_then, struct pet_scop *scop_else,
3939 bool have_else, enum pet_skip type)
3941 if (have_else && scop_else && pet_scop_has_skip(scop_else, type))
3942 return true;
3943 if (scop_then && pet_scop_has_skip(scop_then, type) &&
3944 !pet_scop_has_universal_skip(scop_then, type))
3945 return true;
3946 return false;
3949 /* Do we need to construct a skip condition of the given type
3950 * on an if statement, given that the if condition is affine?
3952 * There is no need to construct a new skip condition if all
3953 * the skip conditions are affine.
3955 static bool need_skip_aff(struct pet_scop *scop_then,
3956 struct pet_scop *scop_else, bool have_else, enum pet_skip type)
3958 if (scop_then && pet_scop_has_var_skip(scop_then, type))
3959 return true;
3960 if (have_else && scop_else && pet_scop_has_var_skip(scop_else, type))
3961 return true;
3962 return false;
3965 /* Do we need to construct a skip condition of the given type
3966 * on an if statement?
3968 static bool need_skip(struct pet_scop *scop_then, struct pet_scop *scop_else,
3969 bool have_else, enum pet_skip type, bool affine)
3971 if (affine)
3972 return need_skip_aff(scop_then, scop_else, have_else, type);
3973 else
3974 return need_skip(scop_then, scop_else, have_else, type);
3977 /* Construct an affine expression pet_expr that evaluates
3978 * to the constant "val".
3980 static struct pet_expr *universally(isl_ctx *ctx, int val)
3982 isl_local_space *ls;
3983 isl_val *v;
3984 isl_aff *aff;
3985 isl_multi_pw_aff *mpa;
3987 ls = isl_local_space_from_space(isl_space_set_alloc(ctx, 0, 0));
3988 aff = isl_aff_val_on_domain(ls, isl_val_int_from_si(ctx, val));
3989 mpa = isl_multi_pw_aff_from_pw_aff(isl_pw_aff_from_aff(aff));
3991 return pet_expr_from_index(mpa);
3994 /* Construct an affine expression pet_expr that evaluates
3995 * to the constant 1.
3997 static struct pet_expr *universally_true(isl_ctx *ctx)
3999 return universally(ctx, 1);
4002 /* Construct an affine expression pet_expr that evaluates
4003 * to the constant 0.
4005 static struct pet_expr *universally_false(isl_ctx *ctx)
4007 return universally(ctx, 0);
4010 /* Given an index expression "test_index" for the if condition,
4011 * an index expression "skip_index" for the skip condition and
4012 * scops for the then and else branches, construct a scop for
4013 * computing "skip_index".
4015 * The computed scop contains a single statement that essentially does
4017 * skip_index = test_cond ? skip_cond_then : skip_cond_else
4019 * If the skip conditions of the then and/or else branch are not affine,
4020 * then they need to be filtered by test_index.
4021 * If they are missing, then this means the skip condition is false.
4023 * Since we are constructing a skip condition for the if statement,
4024 * the skip conditions on the then and else branches are removed.
4026 static struct pet_scop *extract_skip(PetScan *scan,
4027 __isl_take isl_multi_pw_aff *test_index,
4028 __isl_take isl_multi_pw_aff *skip_index,
4029 struct pet_scop *scop_then, struct pet_scop *scop_else, bool have_else,
4030 enum pet_skip type)
4032 struct pet_expr *expr_then, *expr_else, *expr, *expr_skip;
4033 struct pet_stmt *stmt;
4034 struct pet_scop *scop;
4035 isl_ctx *ctx = scan->ctx;
4036 isl_map *test_access;
4038 if (!scop_then)
4039 goto error;
4040 if (have_else && !scop_else)
4041 goto error;
4043 test_access = isl_map_from_multi_pw_aff(
4044 isl_multi_pw_aff_copy(test_index));
4045 if (pet_scop_has_skip(scop_then, type)) {
4046 expr_then = pet_scop_get_skip_expr(scop_then, type);
4047 pet_scop_reset_skip(scop_then, type);
4048 if (!pet_expr_is_affine(expr_then))
4049 expr_then = pet_expr_filter(expr_then,
4050 isl_map_copy(test_access), 1);
4051 } else
4052 expr_then = universally_false(ctx);
4054 if (have_else && pet_scop_has_skip(scop_else, type)) {
4055 expr_else = pet_scop_get_skip_expr(scop_else, type);
4056 pet_scop_reset_skip(scop_else, type);
4057 if (!pet_expr_is_affine(expr_else))
4058 expr_else = pet_expr_filter(expr_else,
4059 isl_map_copy(test_access), 0);
4060 } else
4061 expr_else = universally_false(ctx);
4062 isl_map_free(test_access);
4064 expr = pet_expr_from_index(test_index);
4065 expr = pet_expr_new_ternary(ctx, expr, expr_then, expr_else);
4066 expr_skip = pet_expr_from_index(isl_multi_pw_aff_copy(skip_index));
4067 if (expr_skip) {
4068 expr_skip->acc.write = 1;
4069 expr_skip->acc.read = 0;
4071 expr = pet_expr_new_binary(ctx, pet_op_assign, expr_skip, expr);
4072 stmt = pet_stmt_from_pet_expr(ctx, -1, NULL, scan->n_stmt++, expr);
4074 scop = pet_scop_from_pet_stmt(ctx, stmt);
4075 scop = scop_add_array(scop, skip_index, scan->ast_context);
4076 isl_multi_pw_aff_free(skip_index);
4078 return scop;
4079 error:
4080 isl_multi_pw_aff_free(test_index);
4081 isl_multi_pw_aff_free(skip_index);
4082 return NULL;
4085 /* Is scop's skip_now condition equal to its skip_later condition?
4086 * In particular, this means that it either has no skip_now condition
4087 * or both a skip_now and a skip_later condition (that are equal to each other).
4089 static bool skip_equals_skip_later(struct pet_scop *scop)
4091 int has_skip_now, has_skip_later;
4092 int equal;
4093 isl_multi_pw_aff *skip_now, *skip_later;
4095 if (!scop)
4096 return false;
4097 has_skip_now = pet_scop_has_skip(scop, pet_skip_now);
4098 has_skip_later = pet_scop_has_skip(scop, pet_skip_later);
4099 if (has_skip_now != has_skip_later)
4100 return false;
4101 if (!has_skip_now)
4102 return true;
4104 skip_now = pet_scop_get_skip(scop, pet_skip_now);
4105 skip_later = pet_scop_get_skip(scop, pet_skip_later);
4106 equal = isl_multi_pw_aff_is_equal(skip_now, skip_later);
4107 isl_multi_pw_aff_free(skip_now);
4108 isl_multi_pw_aff_free(skip_later);
4110 return equal;
4113 /* Drop the skip conditions of type pet_skip_later from scop1 and scop2.
4115 static void drop_skip_later(struct pet_scop *scop1, struct pet_scop *scop2)
4117 pet_scop_reset_skip(scop1, pet_skip_later);
4118 pet_scop_reset_skip(scop2, pet_skip_later);
4121 /* Structure that handles the construction of skip conditions.
4123 * scop_then and scop_else represent the then and else branches
4124 * of the if statement
4126 * skip[type] is true if we need to construct a skip condition of that type
4127 * equal is set if the skip conditions of types pet_skip_now and pet_skip_later
4128 * are equal to each other
4129 * index[type] is an index expression from a zero-dimension domain
4130 * to the virtual array representing the skip condition
4131 * scop[type] is a scop for computing the skip condition
4133 struct pet_skip_info {
4134 isl_ctx *ctx;
4136 bool skip[2];
4137 bool equal;
4138 isl_multi_pw_aff *index[2];
4139 struct pet_scop *scop[2];
4141 pet_skip_info(isl_ctx *ctx) : ctx(ctx) {}
4143 operator bool() { return skip[pet_skip_now] || skip[pet_skip_later]; }
4146 /* Structure that handles the construction of skip conditions on if statements.
4148 * scop_then and scop_else represent the then and else branches
4149 * of the if statement
4151 struct pet_skip_info_if : public pet_skip_info {
4152 struct pet_scop *scop_then, *scop_else;
4153 bool have_else;
4155 pet_skip_info_if(isl_ctx *ctx, struct pet_scop *scop_then,
4156 struct pet_scop *scop_else, bool have_else, bool affine);
4157 void extract(PetScan *scan, __isl_keep isl_multi_pw_aff *index,
4158 enum pet_skip type);
4159 void extract(PetScan *scan, __isl_keep isl_multi_pw_aff *index);
4160 void extract(PetScan *scan, __isl_keep isl_pw_aff *cond);
4161 struct pet_scop *add(struct pet_scop *scop, enum pet_skip type,
4162 int offset);
4163 struct pet_scop *add(struct pet_scop *scop, int offset);
4166 /* Initialize a pet_skip_info_if structure based on the then and else branches
4167 * and based on whether the if condition is affine or not.
4169 pet_skip_info_if::pet_skip_info_if(isl_ctx *ctx, struct pet_scop *scop_then,
4170 struct pet_scop *scop_else, bool have_else, bool affine) :
4171 pet_skip_info(ctx), scop_then(scop_then), scop_else(scop_else),
4172 have_else(have_else)
4174 skip[pet_skip_now] =
4175 need_skip(scop_then, scop_else, have_else, pet_skip_now, affine);
4176 equal = skip[pet_skip_now] && skip_equals_skip_later(scop_then) &&
4177 (!have_else || skip_equals_skip_later(scop_else));
4178 skip[pet_skip_later] = skip[pet_skip_now] && !equal &&
4179 need_skip(scop_then, scop_else, have_else, pet_skip_later, affine);
4182 /* If we need to construct a skip condition of the given type,
4183 * then do so now.
4185 * "mpa" represents the if condition.
4187 void pet_skip_info_if::extract(PetScan *scan,
4188 __isl_keep isl_multi_pw_aff *mpa, enum pet_skip type)
4190 isl_ctx *ctx;
4192 if (!skip[type])
4193 return;
4195 ctx = isl_multi_pw_aff_get_ctx(mpa);
4196 index[type] = create_test_index(ctx, scan->n_test++);
4197 scop[type] = extract_skip(scan, isl_multi_pw_aff_copy(mpa),
4198 isl_multi_pw_aff_copy(index[type]),
4199 scop_then, scop_else, have_else, type);
4202 /* Construct the required skip conditions, given the if condition "index".
4204 void pet_skip_info_if::extract(PetScan *scan,
4205 __isl_keep isl_multi_pw_aff *index)
4207 extract(scan, index, pet_skip_now);
4208 extract(scan, index, pet_skip_later);
4209 if (equal)
4210 drop_skip_later(scop_then, scop_else);
4213 /* Construct the required skip conditions, given the if condition "cond".
4215 void pet_skip_info_if::extract(PetScan *scan, __isl_keep isl_pw_aff *cond)
4217 isl_multi_pw_aff *test;
4219 if (!skip[pet_skip_now] && !skip[pet_skip_later])
4220 return;
4222 test = isl_multi_pw_aff_from_pw_aff(isl_pw_aff_copy(cond));
4223 test = isl_multi_pw_aff_from_range(test);
4224 extract(scan, test);
4225 isl_multi_pw_aff_free(test);
4228 /* Add the computed skip condition of the give type to "main" and
4229 * add the scop for computing the condition at the given offset.
4231 * If equal is set, then we only computed a skip condition for pet_skip_now,
4232 * but we also need to set it as main's pet_skip_later.
4234 struct pet_scop *pet_skip_info_if::add(struct pet_scop *main,
4235 enum pet_skip type, int offset)
4237 if (!skip[type])
4238 return main;
4240 scop[type] = pet_scop_prefix(scop[type], offset);
4241 main = pet_scop_add_par(ctx, main, scop[type]);
4242 scop[type] = NULL;
4244 if (equal)
4245 main = pet_scop_set_skip(main, pet_skip_later,
4246 isl_multi_pw_aff_copy(index[type]));
4248 main = pet_scop_set_skip(main, type, index[type]);
4249 index[type] = NULL;
4251 return main;
4254 /* Add the computed skip conditions to "main" and
4255 * add the scops for computing the conditions at the given offset.
4257 struct pet_scop *pet_skip_info_if::add(struct pet_scop *scop, int offset)
4259 scop = add(scop, pet_skip_now, offset);
4260 scop = add(scop, pet_skip_later, offset);
4262 return scop;
4265 /* Construct a pet_scop for a non-affine if statement.
4267 * We create a separate statement that writes the result
4268 * of the non-affine condition to a virtual scalar.
4269 * A constraint requiring the value of this virtual scalar to be one
4270 * is added to the iteration domains of the then branch.
4271 * Similarly, a constraint requiring the value of this virtual scalar
4272 * to be zero is added to the iteration domains of the else branch, if any.
4273 * We adjust the schedules to ensure that the virtual scalar is written
4274 * before it is read.
4276 * If there are any breaks or continues in the then and/or else
4277 * branches, then we may have to compute a new skip condition.
4278 * This is handled using a pet_skip_info_if object.
4279 * On initialization, the object checks if skip conditions need
4280 * to be computed. If so, it does so in "extract" and adds them in "add".
4282 struct pet_scop *PetScan::extract_non_affine_if(Expr *cond,
4283 struct pet_scop *scop_then, struct pet_scop *scop_else,
4284 bool have_else, int stmt_id)
4286 struct pet_scop *scop;
4287 isl_multi_pw_aff *test_index;
4288 int save_n_stmt = n_stmt;
4290 test_index = create_test_index(ctx, n_test++);
4291 n_stmt = stmt_id;
4292 scop = extract_non_affine_condition(cond,
4293 isl_multi_pw_aff_copy(test_index));
4294 n_stmt = save_n_stmt;
4295 scop = scop_add_array(scop, test_index, ast_context);
4297 pet_skip_info_if skip(ctx, scop_then, scop_else, have_else, false);
4298 skip.extract(this, test_index);
4300 scop = pet_scop_prefix(scop, 0);
4301 scop_then = pet_scop_prefix(scop_then, 1);
4302 scop_then = pet_scop_filter(scop_then,
4303 isl_multi_pw_aff_copy(test_index), 1);
4304 if (have_else) {
4305 scop_else = pet_scop_prefix(scop_else, 1);
4306 scop_else = pet_scop_filter(scop_else, test_index, 0);
4307 scop_then = pet_scop_add_par(ctx, scop_then, scop_else);
4308 } else
4309 isl_multi_pw_aff_free(test_index);
4311 scop = pet_scop_add_seq(ctx, scop, scop_then);
4313 scop = skip.add(scop, 2);
4315 return scop;
4318 /* Construct a pet_scop for an if statement.
4320 * If the condition fits the pattern of a conditional assignment,
4321 * then it is handled by extract_conditional_assignment.
4322 * Otherwise, we do the following.
4324 * If the condition is affine, then the condition is added
4325 * to the iteration domains of the then branch, while the
4326 * opposite of the condition in added to the iteration domains
4327 * of the else branch, if any.
4328 * We allow the condition to be dynamic, i.e., to refer to
4329 * scalars or array elements that may be written to outside
4330 * of the given if statement. These nested accesses are then represented
4331 * as output dimensions in the wrapping iteration domain.
4332 * If it also written _inside_ the then or else branch, then
4333 * we treat the condition as non-affine.
4334 * As explained in extract_non_affine_if, this will introduce
4335 * an extra statement.
4336 * For aesthetic reasons, we want this statement to have a statement
4337 * number that is lower than those of the then and else branches.
4338 * In order to evaluate if will need such a statement, however, we
4339 * first construct scops for the then and else branches.
4340 * We therefore reserve a statement number if we might have to
4341 * introduce such an extra statement.
4343 * If the condition is not affine, then the scop is created in
4344 * extract_non_affine_if.
4346 * If there are any breaks or continues in the then and/or else
4347 * branches, then we may have to compute a new skip condition.
4348 * This is handled using a pet_skip_info_if object.
4349 * On initialization, the object checks if skip conditions need
4350 * to be computed. If so, it does so in "extract" and adds them in "add".
4352 struct pet_scop *PetScan::extract(IfStmt *stmt)
4354 struct pet_scop *scop_then, *scop_else = NULL, *scop;
4355 isl_pw_aff *cond;
4356 int stmt_id;
4357 isl_set *set;
4358 isl_set *valid;
4360 scop = extract_conditional_assignment(stmt);
4361 if (scop)
4362 return scop;
4364 cond = try_extract_nested_condition(stmt->getCond());
4365 if (allow_nested && (!cond || has_nested(cond)))
4366 stmt_id = n_stmt++;
4369 assigned_value_cache cache(assigned_value);
4370 scop_then = extract(stmt->getThen());
4373 if (stmt->getElse()) {
4374 assigned_value_cache cache(assigned_value);
4375 scop_else = extract(stmt->getElse());
4376 if (options->autodetect) {
4377 if (scop_then && !scop_else) {
4378 partial = true;
4379 isl_pw_aff_free(cond);
4380 return scop_then;
4382 if (!scop_then && scop_else) {
4383 partial = true;
4384 isl_pw_aff_free(cond);
4385 return scop_else;
4390 if (cond &&
4391 (!is_nested_allowed(cond, scop_then) ||
4392 (stmt->getElse() && !is_nested_allowed(cond, scop_else)))) {
4393 isl_pw_aff_free(cond);
4394 cond = NULL;
4396 if (allow_nested && !cond)
4397 return extract_non_affine_if(stmt->getCond(), scop_then,
4398 scop_else, stmt->getElse(), stmt_id);
4400 if (!cond)
4401 cond = extract_condition(stmt->getCond());
4403 pet_skip_info_if skip(ctx, scop_then, scop_else, stmt->getElse(), true);
4404 skip.extract(this, cond);
4406 valid = isl_pw_aff_domain(isl_pw_aff_copy(cond));
4407 set = isl_pw_aff_non_zero_set(cond);
4408 scop = pet_scop_restrict(scop_then, isl_set_copy(set));
4410 if (stmt->getElse()) {
4411 set = isl_set_subtract(isl_set_copy(valid), set);
4412 scop_else = pet_scop_restrict(scop_else, set);
4413 scop = pet_scop_add_par(ctx, scop, scop_else);
4414 } else
4415 isl_set_free(set);
4416 scop = resolve_nested(scop);
4417 scop = pet_scop_restrict_context(scop, valid);
4419 if (skip)
4420 scop = pet_scop_prefix(scop, 0);
4421 scop = skip.add(scop, 1);
4423 return scop;
4426 /* Try and construct a pet_scop for a label statement.
4427 * We currently only allow labels on expression statements.
4429 struct pet_scop *PetScan::extract(LabelStmt *stmt)
4431 isl_id *label;
4432 Stmt *sub;
4434 sub = stmt->getSubStmt();
4435 if (!isa<Expr>(sub)) {
4436 unsupported(stmt);
4437 return NULL;
4440 label = isl_id_alloc(ctx, stmt->getName(), NULL);
4442 return extract(sub, extract_expr(cast<Expr>(sub)), label);
4445 /* Return a one-dimensional multi piecewise affine expression that is equal
4446 * to the constant 1 and is defined over a zero-dimensional domain.
4448 static __isl_give isl_multi_pw_aff *one_mpa(isl_ctx *ctx)
4450 isl_space *space;
4451 isl_local_space *ls;
4452 isl_aff *aff;
4454 space = isl_space_set_alloc(ctx, 0, 0);
4455 ls = isl_local_space_from_space(space);
4456 aff = isl_aff_zero_on_domain(ls);
4457 aff = isl_aff_set_constant_si(aff, 1);
4459 return isl_multi_pw_aff_from_pw_aff(isl_pw_aff_from_aff(aff));
4462 /* Construct a pet_scop for a continue statement.
4464 * We simply create an empty scop with a universal pet_skip_now
4465 * skip condition. This skip condition will then be taken into
4466 * account by the enclosing loop construct, possibly after
4467 * being incorporated into outer skip conditions.
4469 struct pet_scop *PetScan::extract(ContinueStmt *stmt)
4471 pet_scop *scop;
4473 scop = pet_scop_empty(ctx);
4474 if (!scop)
4475 return NULL;
4477 scop = pet_scop_set_skip(scop, pet_skip_now, one_mpa(ctx));
4479 return scop;
4482 /* Construct a pet_scop for a break statement.
4484 * We simply create an empty scop with both a universal pet_skip_now
4485 * skip condition and a universal pet_skip_later skip condition.
4486 * These skip conditions will then be taken into
4487 * account by the enclosing loop construct, possibly after
4488 * being incorporated into outer skip conditions.
4490 struct pet_scop *PetScan::extract(BreakStmt *stmt)
4492 pet_scop *scop;
4493 isl_multi_pw_aff *skip;
4495 scop = pet_scop_empty(ctx);
4496 if (!scop)
4497 return NULL;
4499 skip = one_mpa(ctx);
4500 scop = pet_scop_set_skip(scop, pet_skip_now,
4501 isl_multi_pw_aff_copy(skip));
4502 scop = pet_scop_set_skip(scop, pet_skip_later, skip);
4504 return scop;
4507 /* Try and construct a pet_scop corresponding to "stmt".
4509 * If "stmt" is a compound statement, then "skip_declarations"
4510 * indicates whether we should skip initial declarations in the
4511 * compound statement.
4513 * If the constructed pet_scop is not a (possibly) partial representation
4514 * of "stmt", we update start and end of the pet_scop to those of "stmt".
4515 * In particular, if skip_declarations, then we may have skipped declarations
4516 * inside "stmt" and so the pet_scop may not represent the entire "stmt".
4517 * Note that this function may be called with "stmt" referring to the entire
4518 * body of the function, including the outer braces. In such cases,
4519 * skip_declarations will be set and the braces will not be taken into
4520 * account in scop->start and scop->end.
4522 struct pet_scop *PetScan::extract(Stmt *stmt, bool skip_declarations)
4524 struct pet_scop *scop;
4525 unsigned start, end;
4526 SourceLocation loc;
4527 SourceManager &SM = PP.getSourceManager();
4528 const LangOptions &LO = PP.getLangOpts();
4530 if (isa<Expr>(stmt))
4531 return extract(stmt, extract_expr(cast<Expr>(stmt)));
4533 switch (stmt->getStmtClass()) {
4534 case Stmt::WhileStmtClass:
4535 scop = extract(cast<WhileStmt>(stmt));
4536 break;
4537 case Stmt::ForStmtClass:
4538 scop = extract_for(cast<ForStmt>(stmt));
4539 break;
4540 case Stmt::IfStmtClass:
4541 scop = extract(cast<IfStmt>(stmt));
4542 break;
4543 case Stmt::CompoundStmtClass:
4544 scop = extract(cast<CompoundStmt>(stmt), skip_declarations);
4545 break;
4546 case Stmt::LabelStmtClass:
4547 scop = extract(cast<LabelStmt>(stmt));
4548 break;
4549 case Stmt::ContinueStmtClass:
4550 scop = extract(cast<ContinueStmt>(stmt));
4551 break;
4552 case Stmt::BreakStmtClass:
4553 scop = extract(cast<BreakStmt>(stmt));
4554 break;
4555 case Stmt::DeclStmtClass:
4556 scop = extract(cast<DeclStmt>(stmt));
4557 break;
4558 default:
4559 unsupported(stmt);
4560 return NULL;
4563 if (partial || skip_declarations)
4564 return scop;
4566 loc = stmt->getLocStart();
4567 loc = move_to_start_of_line_if_first_token(loc, SM, LO);
4568 start = getExpansionOffset(SM, loc);
4569 loc = PP.getLocForEndOfToken(stmt->getLocEnd());
4570 end = getExpansionOffset(SM, loc);
4571 scop = pet_scop_update_start_end(scop, start, end);
4573 return scop;
4576 /* Do we need to construct a skip condition of the given type
4577 * on a sequence of statements?
4579 * There is no need to construct a new skip condition if only
4580 * only of the two statements has a skip condition or if both
4581 * of their skip conditions are affine.
4583 * In principle we also don't need a new continuation variable if
4584 * the continuation of scop2 is affine, but then we would need
4585 * to allow more complicated forms of continuations.
4587 static bool need_skip_seq(struct pet_scop *scop1, struct pet_scop *scop2,
4588 enum pet_skip type)
4590 if (!scop1 || !pet_scop_has_skip(scop1, type))
4591 return false;
4592 if (!scop2 || !pet_scop_has_skip(scop2, type))
4593 return false;
4594 if (pet_scop_has_affine_skip(scop1, type) &&
4595 pet_scop_has_affine_skip(scop2, type))
4596 return false;
4597 return true;
4600 /* Construct a scop for computing the skip condition of the given type and
4601 * with index expression "skip_index" for a sequence of two scops "scop1"
4602 * and "scop2".
4604 * The computed scop contains a single statement that essentially does
4606 * skip_index = skip_cond_1 ? 1 : skip_cond_2
4608 * or, in other words, skip_cond1 || skip_cond2.
4609 * In this expression, skip_cond_2 is filtered to reflect that it is
4610 * only evaluated when skip_cond_1 is false.
4612 * The skip condition on scop1 is not removed because it still needs
4613 * to be applied to scop2 when these two scops are combined.
4615 static struct pet_scop *extract_skip_seq(PetScan *ps,
4616 __isl_take isl_multi_pw_aff *skip_index,
4617 struct pet_scop *scop1, struct pet_scop *scop2, enum pet_skip type)
4619 isl_map *access;
4620 struct pet_expr *expr1, *expr2, *expr, *expr_skip;
4621 struct pet_stmt *stmt;
4622 struct pet_scop *scop;
4623 isl_ctx *ctx = ps->ctx;
4625 if (!scop1 || !scop2)
4626 goto error;
4628 expr1 = pet_scop_get_skip_expr(scop1, type);
4629 expr2 = pet_scop_get_skip_expr(scop2, type);
4630 pet_scop_reset_skip(scop2, type);
4632 expr2 = pet_expr_filter(expr2, isl_map_copy(expr1->acc.access), 0);
4634 expr = universally_true(ctx);
4635 expr = pet_expr_new_ternary(ctx, expr1, expr, expr2);
4636 expr_skip = pet_expr_from_index(isl_multi_pw_aff_copy(skip_index));
4637 if (expr_skip) {
4638 expr_skip->acc.write = 1;
4639 expr_skip->acc.read = 0;
4641 expr = pet_expr_new_binary(ctx, pet_op_assign, expr_skip, expr);
4642 stmt = pet_stmt_from_pet_expr(ctx, -1, NULL, ps->n_stmt++, expr);
4644 scop = pet_scop_from_pet_stmt(ctx, stmt);
4645 scop = scop_add_array(scop, skip_index, ps->ast_context);
4646 isl_multi_pw_aff_free(skip_index);
4648 return scop;
4649 error:
4650 isl_multi_pw_aff_free(skip_index);
4651 return NULL;
4654 /* Structure that handles the construction of skip conditions
4655 * on sequences of statements.
4657 * scop1 and scop2 represent the two statements that are combined
4659 struct pet_skip_info_seq : public pet_skip_info {
4660 struct pet_scop *scop1, *scop2;
4662 pet_skip_info_seq(isl_ctx *ctx, struct pet_scop *scop1,
4663 struct pet_scop *scop2);
4664 void extract(PetScan *scan, enum pet_skip type);
4665 void extract(PetScan *scan);
4666 struct pet_scop *add(struct pet_scop *scop, enum pet_skip type,
4667 int offset);
4668 struct pet_scop *add(struct pet_scop *scop, int offset);
4671 /* Initialize a pet_skip_info_seq structure based on
4672 * on the two statements that are going to be combined.
4674 pet_skip_info_seq::pet_skip_info_seq(isl_ctx *ctx, struct pet_scop *scop1,
4675 struct pet_scop *scop2) : pet_skip_info(ctx), scop1(scop1), scop2(scop2)
4677 skip[pet_skip_now] = need_skip_seq(scop1, scop2, pet_skip_now);
4678 equal = skip[pet_skip_now] && skip_equals_skip_later(scop1) &&
4679 skip_equals_skip_later(scop2);
4680 skip[pet_skip_later] = skip[pet_skip_now] && !equal &&
4681 need_skip_seq(scop1, scop2, pet_skip_later);
4684 /* If we need to construct a skip condition of the given type,
4685 * then do so now.
4687 void pet_skip_info_seq::extract(PetScan *scan, enum pet_skip type)
4689 if (!skip[type])
4690 return;
4692 index[type] = create_test_index(ctx, scan->n_test++);
4693 scop[type] = extract_skip_seq(scan, isl_multi_pw_aff_copy(index[type]),
4694 scop1, scop2, type);
4697 /* Construct the required skip conditions.
4699 void pet_skip_info_seq::extract(PetScan *scan)
4701 extract(scan, pet_skip_now);
4702 extract(scan, pet_skip_later);
4703 if (equal)
4704 drop_skip_later(scop1, scop2);
4707 /* Add the computed skip condition of the given type to "main" and
4708 * add the scop for computing the condition at the given offset (the statement
4709 * number). Within this offset, the condition is computed at position 1
4710 * to ensure that it is computed after the corresponding statement.
4712 * If equal is set, then we only computed a skip condition for pet_skip_now,
4713 * but we also need to set it as main's pet_skip_later.
4715 struct pet_scop *pet_skip_info_seq::add(struct pet_scop *main,
4716 enum pet_skip type, int offset)
4718 if (!skip[type])
4719 return main;
4721 scop[type] = pet_scop_prefix(scop[type], 1);
4722 scop[type] = pet_scop_prefix(scop[type], offset);
4723 main = pet_scop_add_par(ctx, main, scop[type]);
4724 scop[type] = NULL;
4726 if (equal)
4727 main = pet_scop_set_skip(main, pet_skip_later,
4728 isl_multi_pw_aff_copy(index[type]));
4730 main = pet_scop_set_skip(main, type, index[type]);
4731 index[type] = NULL;
4733 return main;
4736 /* Add the computed skip conditions to "main" and
4737 * add the scops for computing the conditions at the given offset.
4739 struct pet_scop *pet_skip_info_seq::add(struct pet_scop *scop, int offset)
4741 scop = add(scop, pet_skip_now, offset);
4742 scop = add(scop, pet_skip_later, offset);
4744 return scop;
4747 /* Extract a clone of the kill statement in "scop".
4748 * "scop" is expected to have been created from a DeclStmt
4749 * and should have the kill as its first statement.
4751 struct pet_stmt *PetScan::extract_kill(struct pet_scop *scop)
4753 struct pet_expr *kill;
4754 struct pet_stmt *stmt;
4755 isl_map *access;
4757 if (!scop)
4758 return NULL;
4759 if (scop->n_stmt < 1)
4760 isl_die(ctx, isl_error_internal,
4761 "expecting at least one statement", return NULL);
4762 stmt = scop->stmts[0];
4763 if (stmt->body->type != pet_expr_unary ||
4764 stmt->body->op != pet_op_kill)
4765 isl_die(ctx, isl_error_internal,
4766 "expecting kill statement", return NULL);
4768 access = isl_map_copy(stmt->body->args[0]->acc.access);
4769 access = isl_map_reset_tuple_id(access, isl_dim_in);
4770 kill = pet_expr_kill_from_access(access);
4771 return pet_stmt_from_pet_expr(ctx, stmt->line, NULL, n_stmt++, kill);
4774 /* Mark all arrays in "scop" as being exposed.
4776 static struct pet_scop *mark_exposed(struct pet_scop *scop)
4778 if (!scop)
4779 return NULL;
4780 for (int i = 0; i < scop->n_array; ++i)
4781 scop->arrays[i]->exposed = 1;
4782 return scop;
4785 /* Try and construct a pet_scop corresponding to (part of)
4786 * a sequence of statements.
4788 * "block" is set if the sequence respresents the children of
4789 * a compound statement.
4790 * "skip_declarations" is set if we should skip initial declarations
4791 * in the sequence of statements.
4793 * If there are any breaks or continues in the individual statements,
4794 * then we may have to compute a new skip condition.
4795 * This is handled using a pet_skip_info_seq object.
4796 * On initialization, the object checks if skip conditions need
4797 * to be computed. If so, it does so in "extract" and adds them in "add".
4799 * If "block" is set, then we need to insert kill statements at
4800 * the end of the block for any array that has been declared by
4801 * one of the statements in the sequence. Each of these declarations
4802 * results in the construction of a kill statement at the place
4803 * of the declaration, so we simply collect duplicates of
4804 * those kill statements and append these duplicates to the constructed scop.
4806 * If "block" is not set, then any array declared by one of the statements
4807 * in the sequence is marked as being exposed.
4809 struct pet_scop *PetScan::extract(StmtRange stmt_range, bool block,
4810 bool skip_declarations)
4812 pet_scop *scop;
4813 StmtIterator i;
4814 int j;
4815 bool partial_range = false;
4816 set<struct pet_stmt *> kills;
4817 set<struct pet_stmt *>::iterator it;
4819 scop = pet_scop_empty(ctx);
4820 for (i = stmt_range.first, j = 0; i != stmt_range.second; ++i, ++j) {
4821 Stmt *child = *i;
4822 struct pet_scop *scop_i;
4824 if (skip_declarations &&
4825 child->getStmtClass() == Stmt::DeclStmtClass)
4826 continue;
4828 scop_i = extract(child);
4829 if (scop && partial) {
4830 pet_scop_free(scop_i);
4831 break;
4833 pet_skip_info_seq skip(ctx, scop, scop_i);
4834 skip.extract(this);
4835 if (skip)
4836 scop_i = pet_scop_prefix(scop_i, 0);
4837 if (scop_i && child->getStmtClass() == Stmt::DeclStmtClass) {
4838 if (block)
4839 kills.insert(extract_kill(scop_i));
4840 else
4841 scop_i = mark_exposed(scop_i);
4843 scop_i = pet_scop_prefix(scop_i, j);
4844 if (options->autodetect) {
4845 if (scop_i)
4846 scop = pet_scop_add_seq(ctx, scop, scop_i);
4847 else
4848 partial_range = true;
4849 if (scop->n_stmt != 0 && !scop_i)
4850 partial = true;
4851 } else {
4852 scop = pet_scop_add_seq(ctx, scop, scop_i);
4855 scop = skip.add(scop, j);
4857 if (partial)
4858 break;
4861 for (it = kills.begin(); it != kills.end(); ++it) {
4862 pet_scop *scop_j;
4863 scop_j = pet_scop_from_pet_stmt(ctx, *it);
4864 scop_j = pet_scop_prefix(scop_j, j);
4865 scop = pet_scop_add_seq(ctx, scop, scop_j);
4868 if (scop && partial_range) {
4869 if (scop->n_stmt == 0) {
4870 pet_scop_free(scop);
4871 return NULL;
4873 partial = true;
4876 return scop;
4879 /* Check if the scop marked by the user is exactly this Stmt
4880 * or part of this Stmt.
4881 * If so, return a pet_scop corresponding to the marked region.
4882 * Otherwise, return NULL.
4884 struct pet_scop *PetScan::scan(Stmt *stmt)
4886 SourceManager &SM = PP.getSourceManager();
4887 unsigned start_off, end_off;
4889 start_off = getExpansionOffset(SM, stmt->getLocStart());
4890 end_off = getExpansionOffset(SM, stmt->getLocEnd());
4892 if (start_off > loc.end)
4893 return NULL;
4894 if (end_off < loc.start)
4895 return NULL;
4896 if (start_off >= loc.start && end_off <= loc.end) {
4897 return extract(stmt);
4900 StmtIterator start;
4901 for (start = stmt->child_begin(); start != stmt->child_end(); ++start) {
4902 Stmt *child = *start;
4903 if (!child)
4904 continue;
4905 start_off = getExpansionOffset(SM, child->getLocStart());
4906 end_off = getExpansionOffset(SM, child->getLocEnd());
4907 if (start_off < loc.start && end_off >= loc.end)
4908 return scan(child);
4909 if (start_off >= loc.start)
4910 break;
4913 StmtIterator end;
4914 for (end = start; end != stmt->child_end(); ++end) {
4915 Stmt *child = *end;
4916 start_off = SM.getFileOffset(child->getLocStart());
4917 if (start_off >= loc.end)
4918 break;
4921 return extract(StmtRange(start, end), false, false);
4924 /* Set the size of index "pos" of "array" to "size".
4925 * In particular, add a constraint of the form
4927 * i_pos < size
4929 * to array->extent and a constraint of the form
4931 * size >= 0
4933 * to array->context.
4935 static struct pet_array *update_size(struct pet_array *array, int pos,
4936 __isl_take isl_pw_aff *size)
4938 isl_set *valid;
4939 isl_set *univ;
4940 isl_set *bound;
4941 isl_space *dim;
4942 isl_aff *aff;
4943 isl_pw_aff *index;
4944 isl_id *id;
4946 valid = isl_pw_aff_nonneg_set(isl_pw_aff_copy(size));
4947 array->context = isl_set_intersect(array->context, valid);
4949 dim = isl_set_get_space(array->extent);
4950 aff = isl_aff_zero_on_domain(isl_local_space_from_space(dim));
4951 aff = isl_aff_add_coefficient_si(aff, isl_dim_in, pos, 1);
4952 univ = isl_set_universe(isl_aff_get_domain_space(aff));
4953 index = isl_pw_aff_alloc(univ, aff);
4955 size = isl_pw_aff_add_dims(size, isl_dim_in,
4956 isl_set_dim(array->extent, isl_dim_set));
4957 id = isl_set_get_tuple_id(array->extent);
4958 size = isl_pw_aff_set_tuple_id(size, isl_dim_in, id);
4959 bound = isl_pw_aff_lt_set(index, size);
4961 array->extent = isl_set_intersect(array->extent, bound);
4963 if (!array->context || !array->extent)
4964 goto error;
4966 return array;
4967 error:
4968 pet_array_free(array);
4969 return NULL;
4972 /* Figure out the size of the array at position "pos" and all
4973 * subsequent positions from "type" and update "array" accordingly.
4975 struct pet_array *PetScan::set_upper_bounds(struct pet_array *array,
4976 const Type *type, int pos)
4978 const ArrayType *atype;
4979 isl_pw_aff *size;
4981 if (!array)
4982 return NULL;
4984 if (type->isPointerType()) {
4985 type = type->getPointeeType().getTypePtr();
4986 return set_upper_bounds(array, type, pos + 1);
4988 if (!type->isArrayType())
4989 return array;
4991 type = type->getCanonicalTypeInternal().getTypePtr();
4992 atype = cast<ArrayType>(type);
4994 if (type->isConstantArrayType()) {
4995 const ConstantArrayType *ca = cast<ConstantArrayType>(atype);
4996 size = extract_affine(ca->getSize());
4997 array = update_size(array, pos, size);
4998 } else if (type->isVariableArrayType()) {
4999 const VariableArrayType *vla = cast<VariableArrayType>(atype);
5000 size = extract_affine(vla->getSizeExpr());
5001 array = update_size(array, pos, size);
5004 type = atype->getElementType().getTypePtr();
5006 return set_upper_bounds(array, type, pos + 1);
5009 /* Is "T" the type of a variable length array with static size?
5011 static bool is_vla_with_static_size(QualType T)
5013 const VariableArrayType *vlatype;
5015 if (!T->isVariableArrayType())
5016 return false;
5017 vlatype = cast<VariableArrayType>(T);
5018 return vlatype->getSizeModifier() == VariableArrayType::Static;
5021 /* Return the type of "decl" as an array.
5023 * In particular, if "decl" is a parameter declaration that
5024 * is a variable length array with a static size, then
5025 * return the original type (i.e., the variable length array).
5026 * Otherwise, return the type of decl.
5028 static QualType get_array_type(ValueDecl *decl)
5030 ParmVarDecl *parm;
5031 QualType T;
5033 parm = dyn_cast<ParmVarDecl>(decl);
5034 if (!parm)
5035 return decl->getType();
5037 T = parm->getOriginalType();
5038 if (!is_vla_with_static_size(T))
5039 return decl->getType();
5040 return T;
5043 /* Construct and return a pet_array corresponding to the variable "decl".
5044 * In particular, initialize array->extent to
5046 * { name[i_1,...,i_d] : i_1,...,i_d >= 0 }
5048 * and then call set_upper_bounds to set the upper bounds on the indices
5049 * based on the type of the variable.
5051 struct pet_array *PetScan::extract_array(isl_ctx *ctx, ValueDecl *decl)
5053 struct pet_array *array;
5054 QualType qt = get_array_type(decl);
5055 const Type *type = qt.getTypePtr();
5056 int depth = array_depth(type);
5057 QualType base = base_type(qt);
5058 string name;
5059 isl_id *id;
5060 isl_space *dim;
5062 array = isl_calloc_type(ctx, struct pet_array);
5063 if (!array)
5064 return NULL;
5066 id = isl_id_alloc(ctx, decl->getName().str().c_str(), decl);
5067 dim = isl_space_set_alloc(ctx, 0, depth);
5068 dim = isl_space_set_tuple_id(dim, isl_dim_set, id);
5070 array->extent = isl_set_nat_universe(dim);
5072 dim = isl_space_params_alloc(ctx, 0);
5073 array->context = isl_set_universe(dim);
5075 array = set_upper_bounds(array, type, 0);
5076 if (!array)
5077 return NULL;
5079 name = base.getAsString();
5080 array->element_type = strdup(name.c_str());
5081 array->element_size = decl->getASTContext().getTypeInfo(base).first / 8;
5083 return array;
5086 /* Construct a list of pet_arrays, one for each array (or scalar)
5087 * accessed inside "scop", add this list to "scop" and return the result.
5089 * The context of "scop" is updated with the intersection of
5090 * the contexts of all arrays, i.e., constraints on the parameters
5091 * that ensure that the arrays have a valid (non-negative) size.
5093 struct pet_scop *PetScan::scan_arrays(struct pet_scop *scop)
5095 int i;
5096 set<ValueDecl *> arrays;
5097 set<ValueDecl *>::iterator it;
5098 int n_array;
5099 struct pet_array **scop_arrays;
5101 if (!scop)
5102 return NULL;
5104 pet_scop_collect_arrays(scop, arrays);
5105 if (arrays.size() == 0)
5106 return scop;
5108 n_array = scop->n_array;
5110 scop_arrays = isl_realloc_array(ctx, scop->arrays, struct pet_array *,
5111 n_array + arrays.size());
5112 if (!scop_arrays)
5113 goto error;
5114 scop->arrays = scop_arrays;
5116 for (it = arrays.begin(), i = 0; it != arrays.end(); ++it, ++i) {
5117 struct pet_array *array;
5118 scop->arrays[n_array + i] = array = extract_array(ctx, *it);
5119 if (!scop->arrays[n_array + i])
5120 goto error;
5121 scop->n_array++;
5122 scop->context = isl_set_intersect(scop->context,
5123 isl_set_copy(array->context));
5124 if (!scop->context)
5125 goto error;
5128 return scop;
5129 error:
5130 pet_scop_free(scop);
5131 return NULL;
5134 /* Bound all parameters in scop->context to the possible values
5135 * of the corresponding C variable.
5137 static struct pet_scop *add_parameter_bounds(struct pet_scop *scop)
5139 int n;
5141 if (!scop)
5142 return NULL;
5144 n = isl_set_dim(scop->context, isl_dim_param);
5145 for (int i = 0; i < n; ++i) {
5146 isl_id *id;
5147 ValueDecl *decl;
5149 id = isl_set_get_dim_id(scop->context, isl_dim_param, i);
5150 if (is_nested_parameter(id)) {
5151 isl_id_free(id);
5152 isl_die(isl_set_get_ctx(scop->context),
5153 isl_error_internal,
5154 "unresolved nested parameter", goto error);
5156 decl = (ValueDecl *) isl_id_get_user(id);
5157 isl_id_free(id);
5159 scop->context = set_parameter_bounds(scop->context, i, decl);
5161 if (!scop->context)
5162 goto error;
5165 return scop;
5166 error:
5167 pet_scop_free(scop);
5168 return NULL;
5171 /* Construct a pet_scop from the given function.
5173 * If the scop was delimited by scop and endscop pragmas, then we override
5174 * the file offsets by those derived from the pragmas.
5176 struct pet_scop *PetScan::scan(FunctionDecl *fd)
5178 pet_scop *scop;
5179 Stmt *stmt;
5181 stmt = fd->getBody();
5183 if (options->autodetect)
5184 scop = extract(stmt, true);
5185 else {
5186 scop = scan(stmt);
5187 scop = pet_scop_update_start_end(scop, loc.start, loc.end);
5189 scop = pet_scop_detect_parameter_accesses(scop);
5190 scop = scan_arrays(scop);
5191 scop = add_parameter_bounds(scop);
5192 scop = pet_scop_gist(scop, value_bounds);
5194 return scop;