Implement Rosin formula - preliminary version
[pachi.git] / uct / policy / ucb1amaf.c
blob05e21035b6b0ef516b9bdffc9f152c1ea3153485
1 #include <assert.h>
2 #include <limits.h>
3 #include <math.h>
4 #include <stdio.h>
5 #include <stdlib.h>
6 #include <string.h>
8 #include "board.h"
9 #include "debug.h"
10 #include "move.h"
11 #include "random.h"
12 #include "tactics/util.h"
13 #include "uct/internal.h"
14 #include "uct/tree.h"
15 #include "uct/policy/generic.h"
17 /* This implements the UCB1 policy with an extra AMAF heuristics. */
19 struct ucb1_policy_amaf {
20 /* This is what the Modification of UCT with Patterns in Monte Carlo Go
21 * paper calls 'p'. Original UCB has this on 2, but this seems to
22 * produce way too wide searches; reduce this to get deeper and
23 * narrower readouts - try 0.2. */
24 floating_t explore_p;
25 /* In distributed mode, encourage different slaves to work on different
26 * parts of the tree by adding virtual wins to different nodes. */
27 int virtual_win;
28 int root_virtual_win;
29 int vwin_min_playouts;
30 /* First Play Urgency - if set to less than infinity (the MoGo paper
31 * above reports 1.0 as the best), new branches are explored only
32 * if none of the existing ones has higher urgency than fpu. */
33 floating_t fpu;
34 unsigned int equiv_rave;
35 bool sylvain_rave;
36 /* Give more weight to moves played earlier. */
37 int distance_rave;
38 /* Coefficient of local tree values embedded in RAVE. */
39 floating_t ltree_rave;
40 /* Coefficient of criticality embedded in RAVE. */
41 floating_t crit_rave;
42 int crit_min_playouts;
43 floating_t crit_plthres_coef;
44 bool crit_negative;
45 bool crit_negflip;
46 bool crit_amaf;
47 bool crit_lvalue;
48 /* Rosin-based bias with pattern information. */
49 bool rosin;
50 floating_t rosin_p, rosin_rp;
51 bool rosin_shift; /* t'=t+2 for monotonous sqrt() */
55 static inline floating_t fast_sqrt(unsigned int x)
57 static const floating_t table[] = {
58 0, 1, 1.41421356237309504880, 1.73205080756887729352,
59 2.00000000000000000000, 2.23606797749978969640,
60 2.44948974278317809819, 2.64575131106459059050,
61 2.82842712474619009760, 3.00000000000000000000,
62 3.16227766016837933199, 3.31662479035539984911,
63 3.46410161513775458705, 3.60555127546398929311,
64 3.74165738677394138558, 3.87298334620741688517,
65 4.00000000000000000000, 4.12310562561766054982,
66 4.24264068711928514640, 4.35889894354067355223,
67 4.47213595499957939281, 4.58257569495584000658,
68 4.69041575982342955456, 4.79583152331271954159,
69 4.89897948556635619639, 5.00000000000000000000,
70 5.09901951359278483002, 5.19615242270663188058,
71 5.29150262212918118100, 5.38516480713450403125,
72 5.47722557505166113456, 5.56776436283002192211,
73 5.65685424949238019520, 5.74456264653802865985,
74 5.83095189484530047087, 5.91607978309961604256,
75 6.00000000000000000000, 6.08276253029821968899,
76 6.16441400296897645025, 6.24499799839839820584,
77 6.32455532033675866399, 6.40312423743284868648,
78 6.48074069840786023096, 6.55743852430200065234,
79 6.63324958071079969822, 6.70820393249936908922,
80 6.78232998312526813906, 6.85565460040104412493,
81 6.92820323027550917410, 7.00000000000000000000,
82 7.07106781186547524400, 7.14142842854284999799,
83 7.21110255092797858623, 7.28010988928051827109,
84 7.34846922834953429459, 7.41619848709566294871,
85 7.48331477354788277116, 7.54983443527074969723,
86 7.61577310586390828566, 7.68114574786860817576,
87 7.74596669241483377035, 7.81024967590665439412,
88 7.87400787401181101968, 7.93725393319377177150,
90 if (x < sizeof(table) / sizeof(*table)) {
91 return table[x];
92 } else {
93 return sqrt(x);
97 #define URAVE_DEBUG if (0)
98 static floating_t inline
99 ucb1rave_evaluate(struct uct_policy *p, struct tree *tree, struct uct_descent *descent, int parity)
101 struct ucb1_policy_amaf *b = p->data;
102 struct tree_node *node = descent->node;
103 struct tree_node *lnode = descent->lnode;
105 struct move_stats n = node->u, r = node->amaf;
106 if (p->uct->amaf_prior) {
107 stats_merge(&r, &node->prior);
108 } else {
109 stats_merge(&n, &node->prior);
112 /* Local tree heuristics. */
113 assert(!lnode || lnode->parent);
114 if (p->uct->local_tree && b->ltree_rave > 0 && lnode
115 && (p->uct->local_tree_rootchoose || lnode->parent->parent)) {
116 struct move_stats l = lnode->u;
117 l.playouts = ((floating_t) l.playouts) * b->ltree_rave / LTREE_PLAYOUTS_MULTIPLIER;
118 URAVE_DEBUG fprintf(stderr, "[ltree] adding [%s] %f%%%d to [%s] RAVE %f%%%d\n",
119 coord2sstr(node_coord(lnode), tree->board), l.value, l.playouts,
120 coord2sstr(node_coord(node), tree->board), r.value, r.playouts);
121 stats_merge(&r, &l);
124 /* Criticality heuristics. */
125 if (b->crit_rave > 0 && (b->crit_plthres_coef > 0
126 ? node->u.playouts > tree->root->u.playouts * b->crit_plthres_coef
127 : node->u.playouts > b->crit_min_playouts)) {
128 floating_t crit = tree_node_criticality(tree, node);
129 if (b->crit_negative || crit > 0) {
130 floating_t val = 1.0f;
131 if (b->crit_negflip && crit < 0) {
132 val = 0;
133 crit = -crit;
135 struct move_stats c = {
136 .value = tree_node_get_value(tree, parity, val),
137 .playouts = crit * r.playouts * b->crit_rave
139 URAVE_DEBUG fprintf(stderr, "[crit] adding %f%%%d to [%s] RAVE %f%%%d\n",
140 c.value, c.playouts,
141 coord2sstr(node_coord(node), tree->board), r.value, r.playouts);
142 stats_merge(&r, &c);
147 floating_t value = 0;
148 if (n.playouts) {
149 if (r.playouts) {
150 /* At the beginning, beta is at 1 and RAVE is used.
151 * At b->equiv_rate, beta is at 1/3 and gets steeper on. */
152 floating_t beta;
153 if (b->sylvain_rave) {
154 beta = (floating_t) r.playouts / (r.playouts + n.playouts
155 + (floating_t) n.playouts * r.playouts / b->equiv_rave);
156 } else {
157 /* XXX: This can be cached in descend; but we don't use this by default. */
158 beta = sqrt(b->equiv_rave / (3 * node->parent->u.playouts + b->equiv_rave));
161 value = beta * r.value + (1.f - beta) * n.value;
162 URAVE_DEBUG fprintf(stderr, "\t%s value = %f * %f + (1 - %f) * %f (prior %f)\n",
163 coord2sstr(node_coord(node), tree->board), beta, r.value, beta, n.value, node->prior.value);
164 } else {
165 value = n.value;
166 URAVE_DEBUG fprintf(stderr, "\t%s value = %f (prior %f)\n",
167 coord2sstr(node_coord(node), tree->board), n.value, node->prior.value);
169 } else if (r.playouts) {
170 value = r.value;
171 URAVE_DEBUG fprintf(stderr, "\t%s value = rave %f (prior %f)\n",
172 coord2sstr(node_coord(node), tree->board), r.value, node->prior.value);
175 descent->value.playouts = r.playouts + n.playouts;
176 descent->value.value = value;
177 return tree_node_get_value(tree, parity, value);
180 void
181 ucb1rave_descend(struct uct_policy *p, struct tree *tree, struct uct_descent *descent, int parity, bool allow_pass)
183 struct ucb1_policy_amaf *b = p->data;
184 floating_t nconf = 1.f, rconf = 1.f;
185 if (b->explore_p > 0)
186 nconf = sqrt(log(descent->node->u.playouts + descent->node->prior.playouts));
187 if (b->rosin) {
188 unsigned int rplayouts = descent->node->u.playouts;
189 if (b->rosin_shift) rplayouts += 2;
190 rconf = b->rosin_p * (rplayouts > 1 ? sqrt(log(b->rosin_rp * rplayouts)/rplayouts) : 1.f);
192 struct uct *u = p->uct;
193 int vwin = 0;
194 if (u->max_slaves > 0 && u->slave_index >= 0)
195 vwin = descent->node == tree->root ? b->root_virtual_win : b->virtual_win;
196 int child = 0;
198 uctd_try_node_children(tree, descent, allow_pass, parity, u->tenuki_d, di, urgency) {
199 struct tree_node *ni = di.node;
200 urgency = ucb1rave_evaluate(p, tree, &di, parity);
202 /* In distributed mode, encourage different slaves to work on different
203 * parts of the tree. We rely on the fact that children (if they exist)
204 * are the same and in the same order in all slaves. */
205 if (vwin > 0 && ni->u.playouts > b->vwin_min_playouts && (child - u->slave_index) % u->max_slaves == 0)
206 urgency += vwin / (ni->u.playouts + vwin);
208 if (b->rosin) {
209 floating_t rosinval = ni->rosinval * rconf;
210 // fprintf(stderr, "\t\t%s (%.3f) - Rosin %.5f (i %.5f)\n", coord2sstr(ni->coord, tree->board), urgency, rosinval, ni->rosinval);
211 urgency -= rosinval;
214 if (ni->u.playouts > 0 && b->explore_p > 0) {
215 urgency += b->explore_p * nconf / fast_sqrt(ni->u.playouts);
217 } else if (ni->u.playouts + ni->amaf.playouts + ni->prior.playouts == 0) {
218 /* assert(!u->even_eqex); */
219 urgency = b->fpu;
221 } uctd_set_best_child(di, urgency);
223 uctd_get_best_child(descent);
227 void
228 ucb1amaf_update(struct uct_policy *p, struct tree *tree, struct tree_node *node,
229 enum stone node_color, enum stone player_color,
230 struct playout_amafmap *map, struct board *final_board,
231 floating_t result)
233 struct ucb1_policy_amaf *b = p->data;
234 enum stone winner_color = result > 0.5 ? S_BLACK : S_WHITE;
236 /* Record of the random playout - for each intersection coord,
237 * first_move[coord] is the index map->game of the first move
238 * at this coordinate, or INT_MAX if the move was not played.
239 * The parity gives the color of this move.
241 int first_map[board_size2(final_board)+1];
242 int *first_move = &first_map[1]; // +1 for pass
244 #if 0
245 struct board bb; bb.size = 9+2;
246 for (struct tree_node *ni = node; ni; ni = ni->parent)
247 fprintf(stderr, "%s ", coord2sstr(node_coord(ni), &bb));
248 fprintf(stderr, "[color %d] update result %d (color %d)\n",
249 node_color, result, player_color);
250 #endif
252 /* Initialize first_move */
253 for (int i = pass; i < board_size2(final_board); i++) first_move[i] = INT_MAX;
254 int move;
255 assert(map->gamelen > 0);
256 for (move = map->gamelen - 1; move >= map->game_baselen; move--)
257 first_move[map->game[move]] = move;
259 while (node) {
260 if (!b->crit_amaf && !is_pass(node_coord(node))) {
261 stats_add_result(&node->winner_owner, board_local_value(b->crit_lvalue, final_board, node_coord(node), winner_color), 1);
262 stats_add_result(&node->black_owner, board_local_value(b->crit_lvalue, final_board, node_coord(node), S_BLACK), 1);
264 stats_add_result(&node->u, result, 1);
266 /* This loop ignores symmetry considerations, but they should
267 * matter only at a point when AMAF doesn't help much. */
268 assert(map->game_baselen >= 0);
269 for (struct tree_node *ni = node->children; ni; ni = ni->sibling) {
270 if (is_pass(node_coord(ni))) continue;
272 /* Use the child move only if it was first played by the same color. */
273 int first = first_move[node_coord(ni)];
274 if (first == INT_MAX) continue;
275 assert(first > move && first < map->gamelen);
276 int distance = first - (move + 1);
277 if (distance & 1) continue;
279 /* Give more weight to moves played earlier */
280 int weight = 1;
281 if (b->distance_rave != 0) {
282 weight += b->distance_rave * (map->gamelen - first) / (map->gamelen - move);
284 stats_add_result(&ni->amaf, result, weight);
286 if (b->crit_amaf) {
287 stats_add_result(&ni->winner_owner, board_local_value(b->crit_lvalue, final_board, node_coord(ni), winner_color), 1);
288 stats_add_result(&ni->black_owner, board_local_value(b->crit_lvalue, final_board, node_coord(ni), S_BLACK), 1);
290 #if 0
291 struct board bb; bb.size = 9+2;
292 fprintf(stderr, "* %s<%"PRIhash"> -> %s<%"PRIhash"> [%d/%f => %d/%f]\n",
293 coord2sstr(node_coord(node), &bb), node->hash,
294 coord2sstr(node_coord(ni), &bb), ni->hash,
295 player_color, result, move, res);
296 #endif
298 if (node->parent) {
299 assert(move >= 0 && map->game[move] == node_coord(node) && first_move[node_coord(node)] > move);
300 first_move[node_coord(node)] = move;
301 move--;
303 node = node->parent;
308 struct uct_policy *
309 policy_ucb1amaf_init(struct uct *u, char *arg, struct board *board)
311 struct uct_policy *p = calloc2(1, sizeof(*p));
312 struct ucb1_policy_amaf *b = calloc2(1, sizeof(*b));
313 p->uct = u;
314 p->data = b;
315 p->choose = uctp_generic_choose;
316 p->winner = uctp_generic_winner;
317 p->evaluate = ucb1rave_evaluate;
318 p->descend = ucb1rave_descend;
319 p->update = ucb1amaf_update;
320 p->wants_amaf = true;
322 b->explore_p = 0;
323 b->equiv_rave = board_large(board) ? 4000 : 3000;
324 b->fpu = INFINITY;
325 b->sylvain_rave = true;
326 b->distance_rave = 3;
327 b->ltree_rave = 0.75f;
329 b->crit_rave = 1.1f;
330 b->crit_min_playouts = 2000;
331 b->crit_negative = 1;
332 b->crit_amaf = 0;
334 b->root_virtual_win = -1;
335 b->vwin_min_playouts = 1000;
337 b->rosin_p = 20;
338 b->rosin_rp = 1;
340 if (arg) {
341 char *optspec, *next = arg;
342 while (*next) {
343 optspec = next;
344 next += strcspn(next, ":");
345 if (*next) { *next++ = 0; } else { *next = 0; }
347 char *optname = optspec;
348 char *optval = strchr(optspec, '=');
349 if (optval) *optval++ = 0;
351 if (!strcasecmp(optname, "explore_p")) {
352 b->explore_p = atof(optval);
353 } else if (!strcasecmp(optname, "fpu") && optval) {
354 b->fpu = atof(optval);
355 } else if (!strcasecmp(optname, "equiv_rave") && optval) {
356 b->equiv_rave = atof(optval);
357 } else if (!strcasecmp(optname, "sylvain_rave")) {
358 b->sylvain_rave = !optval || *optval == '1';
359 } else if (!strcasecmp(optname, "distance_rave") && optval) {
360 b->distance_rave = atoi(optval);
361 } else if (!strcasecmp(optname, "ltree_rave") && optval) {
362 b->ltree_rave = atof(optval);
363 } else if (!strcasecmp(optname, "crit_rave") && optval) {
364 b->crit_rave = atof(optval);
365 } else if (!strcasecmp(optname, "crit_min_playouts") && optval) {
366 b->crit_min_playouts = atoi(optval);
367 } else if (!strcasecmp(optname, "crit_plthres_coef") && optval) {
368 b->crit_plthres_coef = atof(optval);
369 } else if (!strcasecmp(optname, "crit_negative")) {
370 b->crit_negative = !optval || *optval == '1';
371 } else if (!strcasecmp(optname, "crit_negflip")) {
372 b->crit_negflip = !optval || *optval == '1';
373 } else if (!strcasecmp(optname, "crit_amaf")) {
374 b->crit_amaf = !optval || *optval == '1';
375 } else if (!strcasecmp(optname, "crit_lvalue")) {
376 b->crit_lvalue = !optval || *optval == '1';
377 } else if (!strcasecmp(optname, "virtual_win") && optval) {
378 b->virtual_win = atoi(optval);
379 } else if (!strcasecmp(optname, "root_virtual_win") && optval) {
380 b->root_virtual_win = atoi(optval);
381 } else if (!strcasecmp(optname, "vwin_min_playouts") && optval) {
382 b->vwin_min_playouts = atoi(optval);
383 } else if (!strcasecmp(optname, "rosin")) {
384 b->rosin = !optval || *optval == '1';
385 u->want_pat = true;
386 u->want_rosinval = true;
387 } else if (!strcasecmp(optname, "rosin_p") && optval) {
388 b->rosin_p = atof(optval);
389 } else if (!strcasecmp(optname, "rosin_shift")) {
390 b->rosin_shift = !optval || *optval == '1';
391 } else {
392 fprintf(stderr, "ucb1amaf: Invalid policy argument %s or missing value\n",
393 optname);
394 exit(1);
398 if (b->root_virtual_win < 0)
399 b->root_virtual_win = b->virtual_win;
401 return p;