UCT rave: simplify the rave udpate and nakade handling
[pachi.git] / uct / policy / ucb1amaf.c
blobfa8cd5e24ec43d7149fefef0e8551d5236bb6ddb
1 #include <assert.h>
2 #include <limits.h>
3 #include <math.h>
4 #include <stdio.h>
5 #include <stdlib.h>
6 #include <string.h>
8 #include "board.h"
9 #include "debug.h"
10 #include "move.h"
11 #include "random.h"
12 #include "tactics/util.h"
13 #include "uct/internal.h"
14 #include "uct/tree.h"
15 #include "uct/policy/generic.h"
17 /* This implements the UCB1 policy with an extra AMAF heuristics. */
19 struct ucb1_policy_amaf {
20 /* This is what the Modification of UCT with Patterns in Monte Carlo Go
21 * paper calls 'p'. Original UCB has this on 2, but this seems to
22 * produce way too wide searches; reduce this to get deeper and
23 * narrower readouts - try 0.2. */
24 floating_t explore_p;
25 /* First Play Urgency - if set to less than infinity (the MoGo paper
26 * above reports 1.0 as the best), new branches are explored only
27 * if none of the existing ones has higher urgency than fpu. */
28 floating_t fpu;
29 unsigned int equiv_rave;
30 bool check_nakade;
31 bool sylvain_rave;
32 /* Coefficient of local tree values embedded in RAVE. */
33 floating_t ltree_rave;
34 /* Coefficient of criticality embedded in RAVE. */
35 floating_t crit_rave;
36 int crit_min_playouts;
37 bool crit_negative;
38 bool crit_negflip;
39 bool crit_amaf;
40 bool crit_lvalue;
44 static inline floating_t fast_sqrt(unsigned int x)
46 static const floating_t table[] = {
47 0, 1, 1.41421356237309504880, 1.73205080756887729352,
48 2.00000000000000000000, 2.23606797749978969640,
49 2.44948974278317809819, 2.64575131106459059050,
50 2.82842712474619009760, 3.00000000000000000000,
51 3.16227766016837933199, 3.31662479035539984911,
52 3.46410161513775458705, 3.60555127546398929311,
53 3.74165738677394138558, 3.87298334620741688517,
54 4.00000000000000000000, 4.12310562561766054982,
55 4.24264068711928514640, 4.35889894354067355223,
56 4.47213595499957939281, 4.58257569495584000658,
57 4.69041575982342955456, 4.79583152331271954159,
58 4.89897948556635619639, 5.00000000000000000000,
59 5.09901951359278483002, 5.19615242270663188058,
60 5.29150262212918118100, 5.38516480713450403125,
61 5.47722557505166113456, 5.56776436283002192211,
62 5.65685424949238019520, 5.74456264653802865985,
63 5.83095189484530047087, 5.91607978309961604256,
64 6.00000000000000000000, 6.08276253029821968899,
65 6.16441400296897645025, 6.24499799839839820584,
66 6.32455532033675866399, 6.40312423743284868648,
67 6.48074069840786023096, 6.55743852430200065234,
68 6.63324958071079969822, 6.70820393249936908922,
69 6.78232998312526813906, 6.85565460040104412493,
70 6.92820323027550917410, 7.00000000000000000000,
71 7.07106781186547524400, 7.14142842854284999799,
72 7.21110255092797858623, 7.28010988928051827109,
73 7.34846922834953429459, 7.41619848709566294871,
74 7.48331477354788277116, 7.54983443527074969723,
75 7.61577310586390828566, 7.68114574786860817576,
76 7.74596669241483377035, 7.81024967590665439412,
77 7.87400787401181101968, 7.93725393319377177150,
79 if (x < sizeof(table) / sizeof(*table)) {
80 return table[x];
81 } else {
82 return sqrt(x);
86 #define URAVE_DEBUG if (0)
87 static floating_t inline
88 ucb1rave_evaluate(struct uct_policy *p, struct tree *tree, struct uct_descent *descent, int parity)
90 struct ucb1_policy_amaf *b = p->data;
91 struct tree_node *node = descent->node;
92 struct tree_node *lnode = descent->lnode;
94 struct move_stats n = node->u, r = node->amaf;
95 if (p->uct->amaf_prior) {
96 stats_merge(&r, &node->prior);
97 } else {
98 stats_merge(&n, &node->prior);
101 /* Local tree heuristics. */
102 assert(!lnode || lnode->parent);
103 if (p->uct->local_tree && b->ltree_rave > 0 && lnode
104 && (p->uct->local_tree_rootchoose || lnode->parent->parent)) {
105 struct move_stats l = lnode->u;
106 l.playouts = ((floating_t) l.playouts) * b->ltree_rave / LTREE_PLAYOUTS_MULTIPLIER;
107 URAVE_DEBUG fprintf(stderr, "[ltree] adding [%s] %f%%%d to [%s] RAVE %f%%%d\n",
108 coord2sstr(node_coord(lnode), tree->board), l.value, l.playouts,
109 coord2sstr(node_coord(node), tree->board), r.value, r.playouts);
110 stats_merge(&r, &l);
113 /* Criticality heuristics. */
114 if (b->crit_rave > 0 && node->u.playouts > b->crit_min_playouts) {
115 floating_t crit = tree_node_criticality(tree, node);
116 if (b->crit_negative || crit > 0) {
117 floating_t val = 1.0f;
118 if (b->crit_negflip && crit < 0) {
119 val = 0;
120 crit = -crit;
122 struct move_stats c = {
123 .value = tree_node_get_value(tree, parity, val),
124 .playouts = crit * r.playouts * b->crit_rave
126 URAVE_DEBUG fprintf(stderr, "[crit] adding %f%%%d to [%s] RAVE %f%%%d\n",
127 c.value, c.playouts,
128 coord2sstr(node_coord(node), tree->board), r.value, r.playouts);
129 stats_merge(&r, &c);
134 floating_t value = 0;
135 if (n.playouts) {
136 if (r.playouts) {
137 /* At the beginning, beta is at 1 and RAVE is used.
138 * At b->equiv_rate, beta is at 1/3 and gets steeper on. */
139 floating_t beta;
140 if (b->sylvain_rave) {
141 beta = (floating_t) r.playouts / (r.playouts + n.playouts
142 + (floating_t) n.playouts * r.playouts / b->equiv_rave);
143 } else {
144 /* XXX: This can be cached in descend; but we don't use this by default. */
145 beta = sqrt(b->equiv_rave / (3 * node->parent->u.playouts + b->equiv_rave));
148 value = beta * r.value + (1.f - beta) * n.value;
149 URAVE_DEBUG fprintf(stderr, "\t%s value = %f * %f + (1 - %f) * %f (prior %f)\n",
150 coord2sstr(node_coord(node), tree->board), beta, r.value, beta, n.value, node->prior.value);
151 } else {
152 value = n.value;
153 URAVE_DEBUG fprintf(stderr, "\t%s value = %f (prior %f)\n",
154 coord2sstr(node_coord(node), tree->board), n.value, node->prior.value);
156 } else if (r.playouts) {
157 value = r.value;
158 URAVE_DEBUG fprintf(stderr, "\t%s value = rave %f (prior %f)\n",
159 coord2sstr(node_coord(node), tree->board), r.value, node->prior.value);
161 descent->value.playouts = r.playouts + n.playouts;
162 descent->value.value = value;
163 return tree_node_get_value(tree, parity, value);
166 void
167 ucb1rave_descend(struct uct_policy *p, struct tree *tree, struct uct_descent *descent, int parity, bool allow_pass)
169 struct ucb1_policy_amaf *b = p->data;
170 floating_t nconf = 1.f;
171 if (b->explore_p > 0)
172 nconf = sqrt(log(descent->node->u.playouts + descent->node->prior.playouts));
174 uctd_try_node_children(tree, descent, allow_pass, parity, p->uct->tenuki_d, di, urgency) {
175 struct tree_node *ni = di.node;
176 urgency = ucb1rave_evaluate(p, tree, &di, parity);
178 if (ni->u.playouts > 0 && b->explore_p > 0) {
179 urgency += b->explore_p * nconf / fast_sqrt(ni->u.playouts);
181 } else if (ni->u.playouts + ni->amaf.playouts + ni->prior.playouts == 0) {
182 /* assert(!u->even_eqex); */
183 urgency = b->fpu;
185 } uctd_set_best_child(di, urgency);
187 uctd_get_best_child(descent);
191 void
192 ucb1amaf_update(struct uct_policy *p, struct tree *tree, struct tree_node *node,
193 enum stone node_color, enum stone player_color,
194 struct playout_amafmap *map, struct board *final_board,
195 floating_t result)
197 struct ucb1_policy_amaf *b = p->data;
198 enum stone winner_color = result > 0.5 ? S_BLACK : S_WHITE;
200 /* Record of the random playout - for each intersection coord,
201 * first_move[coord] is the index map->game of the first move
202 * at this coordinate, or INT_MAX if the move was not played.
203 * The parity gives the color of this move.
205 int first_map[board_size2(final_board)+1];
206 int *first_move = &first_map[1]; // +1 for pass
208 #if 0
209 struct board bb; bb.size = 9+2;
210 for (struct tree_node *ni = node; ni; ni = ni->parent)
211 fprintf(stderr, "%s ", coord2sstr(node_coord(ni), &bb));
212 fprintf(stderr, "[color %d] update result %d (color %d)\n",
213 node_color, result, player_color);
214 #endif
216 /* Initialize first_move */
217 for (int i = pass; i < board_size2(final_board); i++) first_move[i] = INT_MAX;
218 int move;
219 assert(map->gamelen > 0);
220 for (move = map->gamelen - 1; move >= map->game_baselen; move--)
221 first_move[map->game[move]] = move;
223 while (node) {
224 if (!b->crit_amaf && !is_pass(node_coord(node))) {
225 stats_add_result(&node->winner_owner, board_local_value(b->crit_lvalue, final_board, node_coord(node), winner_color), 1);
226 stats_add_result(&node->black_owner, board_local_value(b->crit_lvalue, final_board, node_coord(node), S_BLACK), 1);
228 stats_add_result(&node->u, result, 1);
230 /* This loop ignores symmetry considerations, but they should
231 * matter only at a point when AMAF doesn't help much. */
232 assert(map->game_baselen >= 0);
233 for (struct tree_node *ni = node->children; ni; ni = ni->sibling) {
234 /* Use the child move only if it was first played by the same color. */
235 int first = first_move[node_coord(ni)];
236 if (first == INT_MAX || (first & 1) == (move & 1))
237 continue;
239 if (b->crit_amaf && !is_pass(node_coord(node))) {
240 stats_add_result(&ni->winner_owner, board_local_value(b->crit_lvalue, final_board, node_coord(ni), winner_color), 1);
241 stats_add_result(&ni->black_owner, board_local_value(b->crit_lvalue, final_board, node_coord(ni), S_BLACK), 1);
243 stats_add_result(&ni->amaf, result, 1);
244 #if 0
245 struct board bb; bb.size = 9+2;
246 fprintf(stderr, "* %s<%"PRIhash"> -> %s<%"PRIhash"> [%d/%f => %d/%f]\n",
247 coord2sstr(node_coord(node), &bb), node->hash,
248 coord2sstr(node_coord(ni), &bb), ni->hash,
249 player_color, result, move, result);
250 #endif
252 if (node->parent) {
253 assert(move >= 0 && map->game[move] == node_coord(node));
254 first_move[node_coord(node)] = move;
255 move--;
257 node = node->parent;
262 struct uct_policy *
263 policy_ucb1amaf_init(struct uct *u, char *arg)
265 struct uct_policy *p = calloc2(1, sizeof(*p));
266 struct ucb1_policy_amaf *b = calloc2(1, sizeof(*b));
267 p->uct = u;
268 p->data = b;
269 p->choose = uctp_generic_choose;
270 p->winner = uctp_generic_winner;
271 p->evaluate = ucb1rave_evaluate;
272 p->descend = ucb1rave_descend;
273 p->update = ucb1amaf_update;
274 p->wants_amaf = true;
276 b->explore_p = 0; // 0.02 can be also good on 19x19 with prior=eqex=40
277 b->equiv_rave = 3000;
278 b->fpu = INFINITY;
279 b->check_nakade = true;
280 b->sylvain_rave = true;
281 b->ltree_rave = 0.75f;
283 b->crit_rave = 1.0f;
284 b->crit_min_playouts = 2000;
285 b->crit_negative = 1;
286 b->crit_amaf = 0;
288 if (arg) {
289 char *optspec, *next = arg;
290 while (*next) {
291 optspec = next;
292 next += strcspn(next, ":");
293 if (*next) { *next++ = 0; } else { *next = 0; }
295 char *optname = optspec;
296 char *optval = strchr(optspec, '=');
297 if (optval) *optval++ = 0;
299 if (!strcasecmp(optname, "explore_p")) {
300 b->explore_p = atof(optval);
301 } else if (!strcasecmp(optname, "fpu") && optval) {
302 b->fpu = atof(optval);
303 } else if (!strcasecmp(optname, "equiv_rave") && optval) {
304 b->equiv_rave = atof(optval);
305 } else if (!strcasecmp(optname, "sylvain_rave")) {
306 b->sylvain_rave = !optval || *optval == '1';
307 } else if (!strcasecmp(optname, "check_nakade")) {
308 b->check_nakade = !optval || *optval == '1';
309 } else if (!strcasecmp(optname, "ltree_rave") && optval) {
310 b->ltree_rave = atof(optval);
311 } else if (!strcasecmp(optname, "crit_rave") && optval) {
312 b->crit_rave = atof(optval);
313 } else if (!strcasecmp(optname, "crit_min_playouts") && optval) {
314 b->crit_min_playouts = atoi(optval);
315 } else if (!strcasecmp(optname, "crit_negative")) {
316 b->crit_negative = !optval || *optval == '1';
317 } else if (!strcasecmp(optname, "crit_negflip")) {
318 b->crit_negflip = !optval || *optval == '1';
319 } else if (!strcasecmp(optname, "crit_amaf")) {
320 b->crit_amaf = !optval || *optval == '1';
321 } else if (!strcasecmp(optname, "crit_lvalue")) {
322 b->crit_lvalue = !optval || *optval == '1';
323 } else {
324 fprintf(stderr, "ucb1amaf: Invalid policy argument %s or missing value\n",
325 optname);
326 exit(1);
331 return p;