UCT pondering: Enable by default
[pachi.git] / uct / dynkomi.c
blobb7d5fa0b59a02ee6a74c5f56e6d740591e6314f3
1 #define DEBUG
2 #include <assert.h>
3 #include <math.h>
4 #include <stdio.h>
5 #include <stdlib.h>
6 #include <string.h>
8 #include "board.h"
9 #include "debug.h"
10 #include "tactics/util.h"
11 #include "uct/dynkomi.h"
12 #include "uct/internal.h"
13 #include "uct/tree.h"
16 static void
17 generic_done(struct uct_dynkomi *d)
19 if (d->data) free(d->data);
20 free(d);
24 /* NONE dynkomi strategy - never fiddle with komi values. */
26 struct uct_dynkomi *
27 uct_dynkomi_init_none(struct uct *u, char *arg, struct board *b)
29 struct uct_dynkomi *d = calloc2(1, sizeof(*d));
30 d->uct = u;
31 d->permove = NULL;
32 d->persim = NULL;
33 d->done = generic_done;
34 d->data = NULL;
36 if (arg) {
37 fprintf(stderr, "uct: Dynkomi method none accepts no arguments\n");
38 exit(1);
41 return d;
45 /* LINEAR dynkomi strategy - Linearly Decreasing Handicap Compensation. */
46 /* At move 0, we impose extra komi of handicap_count*handicap_value, then
47 * we linearly decrease this extra komi throughout the game down to 0
48 * at @moves moves. Towards the end of the game the linear compensation
49 * becomes zero but we increase the extra komi when winning big. This reduces
50 * the number of point-wasting moves and makes the game more enjoyable for humans. */
52 struct dynkomi_linear {
53 int handicap_value[S_MAX];
54 int moves[S_MAX];
55 bool rootbased;
56 /* Increase the extra komi if my win ratio > green_zone but always
57 * keep extra_komi <= komi_ratchet. komi_ratchet starts infinite but decreases
58 * when we give too much extra komi and this puts us back < orange_zone.
59 * This is meant only to increase the territory margin when playing against
60 * weaker opponents. We never take negative komi when losing. The ratchet helps
61 * avoiding oscillations and keeping us above orange_zone.
62 * To disable the adaptive phase, set green_zone=2. */
63 floating_t komi_ratchet;
64 floating_t green_zone;
65 floating_t orange_zone;
66 floating_t drop_step;
69 static floating_t
70 linear_permove(struct uct_dynkomi *d, struct board *b, struct tree *tree)
72 struct dynkomi_linear *l = d->data;
73 enum stone color = d->uct->pondering ? tree->root_color : stone_other(tree->root_color);
74 int lmoves = l->moves[color];
75 floating_t extra_komi;
77 if (b->moves < lmoves) {
78 floating_t base_komi = board_effective_handicap(b, l->handicap_value[color]);
79 extra_komi = base_komi * (lmoves - b->moves) / lmoves;
80 return extra_komi;
81 } else {
82 extra_komi = floor(tree->extra_komi);
85 /* Do not take decisions on unstable value. */
86 if (tree->root->u.playouts < GJ_MINGAMES) return extra_komi;
88 floating_t my_value = tree_node_get_value(tree, 1, tree->root->u.value);
89 /* We normalize komi as in komi_by_value(), > 0 when winning. */
90 extra_komi = komi_by_color(extra_komi, color);
91 if (extra_komi < 0 && DEBUGL(3))
92 fprintf(stderr, "XXX: extra_komi %.3f < 0 (color %s tree ek %.3f)\n", extra_komi, stone2str(color), tree->extra_komi);
93 // assert(extra_komi >= 0);
94 floating_t orig_komi = extra_komi;
96 if (my_value < 0.5 && l->komi_ratchet > 0 && l->komi_ratchet != INFINITY) {
97 if (DEBUGL(0))
98 fprintf(stderr, "losing %f extra komi %.1f ratchet %.1f -> 0\n",
99 my_value, extra_komi, l->komi_ratchet);
100 /* Disable dynkomi completely, too dangerous in this game. */
101 extra_komi = l->komi_ratchet = 0;
103 } else if (my_value < l->orange_zone && extra_komi > 0) {
104 extra_komi = l->komi_ratchet = fmax(extra_komi - l->drop_step, 0.0);
105 if (extra_komi != orig_komi && DEBUGL(3))
106 fprintf(stderr, "dropping to %f, extra komi %.1f -> ratchet %.1f\n",
107 my_value, orig_komi, extra_komi);
109 } else if (my_value > l->green_zone && extra_komi + 1 <= l->komi_ratchet) {
110 extra_komi += 1;
111 if (extra_komi != orig_komi && DEBUGL(3))
112 fprintf(stderr, "winning %f extra_komi %.1f -> %.1f, ratchet %.1f\n",
113 my_value, orig_komi, extra_komi, l->komi_ratchet);
115 return komi_by_color(extra_komi, color);
118 static floating_t
119 linear_persim(struct uct_dynkomi *d, struct board *b, struct tree *tree, struct tree_node *node)
121 struct dynkomi_linear *l = d->data;
122 if (l->rootbased)
123 return tree->extra_komi;
124 /* We don't reuse computed value from tree->extra_komi,
125 * since we want to use value correct for this node depth.
126 * This also means the values will stay correct after
127 * node promotion. */
128 return linear_permove(d, b, tree);
131 struct uct_dynkomi *
132 uct_dynkomi_init_linear(struct uct *u, char *arg, struct board *b)
134 struct uct_dynkomi *d = calloc2(1, sizeof(*d));
135 d->uct = u;
136 d->permove = linear_permove;
137 d->persim = linear_persim;
138 d->done = generic_done;
140 struct dynkomi_linear *l = calloc2(1, sizeof(*l));
141 d->data = l;
143 /* Force white to feel behind and try harder, but not to the
144 * point of resigning immediately in high handicap games.
145 * By move 100 white should still be behind but should have
146 * caught up enough to avoid resigning. */
147 int moves = board_large(b) ? 100 : 50;
148 if (!board_small(b)) {
149 l->moves[S_BLACK] = moves;
150 l->moves[S_WHITE] = moves;
153 /* The real value of one stone is twice the komi so about 15 points.
154 * But use a lower value to avoid being too pessimistic as black
155 * or too optimistic as white. */
156 l->handicap_value[S_BLACK] = 8;
157 l->handicap_value[S_WHITE] = 1;
159 l->komi_ratchet = INFINITY;
160 l->green_zone = 0.85;
161 l->orange_zone = 0.8;
162 l->drop_step = 4.0;
164 if (arg) {
165 char *optspec, *next = arg;
166 while (*next) {
167 optspec = next;
168 next += strcspn(next, ":");
169 if (*next) { *next++ = 0; } else { *next = 0; }
171 char *optname = optspec;
172 char *optval = strchr(optspec, '=');
173 if (optval) *optval++ = 0;
175 if (!strcasecmp(optname, "moves") && optval) {
176 /* Dynamic komi in handicap game; linearly
177 * decreases to basic settings until move
178 * #optval. moves=blackmoves%whitemoves */
179 for (int i = S_BLACK; *optval && i <= S_WHITE; i++) {
180 l->moves[i] = atoi(optval);
181 optval += strcspn(optval, "%");
182 if (*optval) optval++;
184 } else if (!strcasecmp(optname, "handicap_value") && optval) {
185 /* Point value of single handicap stone,
186 * for dynkomi computation. */
187 for (int i = S_BLACK; *optval && i <= S_WHITE; i++) {
188 l->handicap_value[i] = atoi(optval);
189 optval += strcspn(optval, "%");
190 if (*optval) optval++;
192 } else if (!strcasecmp(optname, "rootbased")) {
193 /* If set, the extra komi applied will be
194 * the same for all simulations within a move,
195 * instead of being same for all simulations
196 * within the tree node. */
197 l->rootbased = !optval || atoi(optval);
198 } else if (!strcasecmp(optname, "green_zone") && optval) {
199 /* Increase komi when win ratio is above green_zone */
200 l->green_zone = atof(optval);
201 } else if (!strcasecmp(optname, "orange_zone") && optval) {
202 /* Decrease komi when > 0 and win ratio is below orange_zone */
203 l->orange_zone = atof(optval);
204 } else if (!strcasecmp(optname, "drop_step") && optval) {
205 /* Decrease komi by drop_step points */
206 l->drop_step = atof(optval);
207 } else {
208 fprintf(stderr, "uct: Invalid dynkomi argument %s or missing value\n", optname);
209 exit(1);
214 return d;
218 /* ADAPTIVE dynkomi strategy - Adaptive Situational Compensation */
219 /* We adapt the komi based on current situation:
220 * (i) score-based: We maintain the average score outcome of our
221 * games and adjust the komi by a fractional step towards the expected
222 * score;
223 * (ii) value-based: While winrate is above given threshold, adjust
224 * the komi by a fixed step in the appropriate direction.
225 * These adjustments can be
226 * (a) Move-stepped, new extra komi value is always set only at the
227 * beginning of the tree search for next move;
228 * (b) Continuous, new extra komi value is periodically re-determined
229 * and adjusted throughout a single tree search. */
231 struct dynkomi_adaptive {
232 /* Do not take measured average score into regard for
233 * first @lead_moves - the variance is just too much.
234 * (Instead, we consider the handicap-based komi provided
235 * by linear dynkomi.) */
236 int lead_moves;
237 /* Maximum komi to pretend the opponent to give. */
238 floating_t max_losing_komi;
239 /* Game portion at which losing komi is not allowed anymore. */
240 floating_t losing_komi_stop;
241 /* Turn off dynkomi at the (perceived) closing of the game
242 * (last few moves). */
243 bool no_komi_at_game_end;
244 /* Alternative game portion determination. */
245 bool adapt_aport;
246 floating_t (*indicator)(struct uct_dynkomi *d, struct board *b, struct tree *tree, enum stone color);
248 /* Value-based adaptation. */
249 floating_t zone_red, zone_green;
250 int score_step;
251 floating_t score_step_byavg; // use portion of average score as increment
252 bool use_komi_ratchet;
253 bool losing_komi_ratchet; // ratchet even losing komi
254 int komi_ratchet_maxage;
255 // runtime, not configuration:
256 int komi_ratchet_age;
257 floating_t komi_ratchet;
259 /* Score-based adaptation. */
260 floating_t (*adapter)(struct uct_dynkomi *d, struct board *b);
261 floating_t adapt_base; // [0,1)
262 /* Sigmoid adaptation rate parameter; see below for details. */
263 floating_t adapt_phase; // [0,1]
264 floating_t adapt_rate; // [1,infty)
265 /* Linear adaptation rate parameter. */
266 int adapt_moves;
267 floating_t adapt_dir; // [-1,1]
269 #define TRUSTWORTHY_KOMI_PLAYOUTS 200
271 static floating_t
272 board_game_portion(struct dynkomi_adaptive *a, struct board *b)
274 if (!a->adapt_aport) {
275 int total_moves = b->moves + 2 * board_estimated_moves_left(b);
276 return (floating_t) b->moves / total_moves;
277 } else {
278 int brsize = board_size(b) - 2;
279 return 1.0 - (floating_t) b->flen / (brsize * brsize);
283 static floating_t
284 adapter_sigmoid(struct uct_dynkomi *d, struct board *b)
286 struct dynkomi_adaptive *a = d->data;
287 /* Figure out how much to adjust the komi based on the game
288 * stage. The adaptation rate is 0 at the beginning,
289 * at game stage a->adapt_phase crosses though 0.5 and
290 * approaches 1 at the game end; the slope is controlled
291 * by a->adapt_rate. */
292 floating_t game_portion = board_game_portion(a, b);
293 floating_t l = game_portion - a->adapt_phase;
294 return 1.0 / (1.0 + exp(-a->adapt_rate * l));
297 static floating_t
298 adapter_linear(struct uct_dynkomi *d, struct board *b)
300 struct dynkomi_adaptive *a = d->data;
301 /* Figure out how much to adjust the komi based on the game
302 * stage. We just linearly increase/decrease the adaptation
303 * rate for first N moves. */
304 if (b->moves > a->adapt_moves)
305 return 0;
306 if (a->adapt_dir < 0)
307 return 1 - (- a->adapt_dir) * b->moves / a->adapt_moves;
308 else
309 return a->adapt_dir * b->moves / a->adapt_moves;
312 static floating_t
313 komi_by_score(struct uct_dynkomi *d, struct board *b, struct tree *tree, enum stone color)
315 struct dynkomi_adaptive *a = d->data;
316 if (d->score.playouts < TRUSTWORTHY_KOMI_PLAYOUTS)
317 return tree->extra_komi;
319 struct move_stats score = d->score;
320 /* Almost-reset tree->score to gather fresh stats. */
321 d->score.playouts = 1;
323 /* Look at average score and push extra_komi in that direction. */
324 floating_t p = a->adapter(d, b);
325 p = a->adapt_base + p * (1 - a->adapt_base);
326 if (p > 0.9) p = 0.9; // don't get too eager!
327 floating_t extra_komi = tree->extra_komi + p * score.value;
328 if (DEBUGL(3))
329 fprintf(stderr, "mC += %f * %f\n", p, score.value);
330 return extra_komi;
333 static floating_t
334 komi_by_value(struct uct_dynkomi *d, struct board *b, struct tree *tree, enum stone color)
336 struct dynkomi_adaptive *a = d->data;
337 if (d->value.playouts < TRUSTWORTHY_KOMI_PLAYOUTS)
338 return tree->extra_komi;
340 struct move_stats value = d->value;
341 /* Almost-reset tree->value to gather fresh stats. */
342 d->value.playouts = 1;
343 /* Correct color POV. */
344 if (color == S_WHITE)
345 value.value = 1 - value.value;
347 /* We have three "value zones":
348 * red zone | yellow zone | green zone
349 * ~45% ~60%
350 * red zone: reduce komi
351 * yellow zone: do not touch komi
352 * green zone: enlage komi.
354 * Also, at some point komi will be tuned in such way
355 * that it will be in green zone but increasing it will
356 * be unfeasible. Thus, we have a _ratchet_ - we will
357 * remember the last komi that has put us into the
358 * red zone, and not use it or go over it. We use the
359 * ratchet only when giving extra komi, we always want
360 * to try to reduce extra komi we take.
362 * TODO: Make the ratchet expire after a while. */
364 /* We use komi_by_color() first to normalize komi
365 * additions/subtractions, then apply it again on
366 * return value to restore original komi parity. */
367 /* Positive extra_komi means that we are _giving_
368 * komi (winning), negative extra_komi is _taking_
369 * komi (losing). */
370 floating_t extra_komi = komi_by_color(tree->extra_komi, color);
371 int score_step_red = -a->score_step;
372 int score_step_green = a->score_step;
374 if (a->score_step_byavg != 0) {
375 struct move_stats score = d->score;
376 /* Almost-reset tree->score to gather fresh stats. */
377 d->score.playouts = 1;
378 /* Correct color POV. */
379 if (color == S_WHITE)
380 score.value = - score.value;
381 if (score.value > 0)
382 score_step_green = round(score.value * a->score_step_byavg);
383 else
384 score_step_red = round(-score.value * a->score_step_byavg);
385 if (score_step_green < 0 || score_step_red > 0) {
386 /* The steps are in bad direction - keep still. */
387 return komi_by_color(extra_komi, color);
391 /* Wear out the ratchet. */
392 if (a->use_komi_ratchet && a->komi_ratchet_maxage > 0) {
393 a->komi_ratchet_age += value.playouts;
394 if (a->komi_ratchet_age > a->komi_ratchet_maxage) {
395 a->komi_ratchet = 1000;
396 a->komi_ratchet_age = 0;
400 if (value.value < a->zone_red) {
401 /* Red zone. Take extra komi. */
402 if (DEBUGL(3))
403 fprintf(stderr, "[red] %f, step %d | komi ratchet %f age %d/%d -> %f\n",
404 value.value, score_step_red, a->komi_ratchet, a->komi_ratchet_age, a->komi_ratchet_maxage, extra_komi);
405 if (a->losing_komi_ratchet || extra_komi > 0) {
406 a->komi_ratchet = extra_komi;
407 a->komi_ratchet_age = 0;
409 extra_komi += score_step_red;
410 return komi_by_color(extra_komi, color);
412 } else if (value.value < a->zone_green) {
413 /* Yellow zone, do nothing. */
414 return komi_by_color(extra_komi, color);
416 } else {
417 /* Green zone. Give extra komi. */
418 if (DEBUGL(3))
419 fprintf(stderr, "[green] %f, step %d | komi ratchet %f age %d/%d\n",
420 value.value, score_step_green, a->komi_ratchet, a->komi_ratchet_age, a->komi_ratchet_maxage);
421 extra_komi += score_step_green;
422 if (a->use_komi_ratchet && extra_komi >= a->komi_ratchet)
423 extra_komi = a->komi_ratchet - 1;
424 return komi_by_color(extra_komi, color);
428 static floating_t
429 bounded_komi(struct dynkomi_adaptive *a, struct board *b,
430 enum stone color, floating_t komi, floating_t max_losing_komi)
432 /* At the end of game, disallow losing komi. */
433 if (komi_by_color(komi, color) < 0
434 && board_game_portion(a, b) > a->losing_komi_stop)
435 return 0;
437 /* Get lower bound on komi we take so that we don't underperform
438 * too much. */
439 floating_t min_komi = komi_by_color(- max_losing_komi, color);
441 if (komi_by_color(komi - min_komi, color) > 0)
442 return komi;
443 else
444 return min_komi;
447 static floating_t
448 adaptive_permove(struct uct_dynkomi *d, struct board *b, struct tree *tree)
450 struct dynkomi_adaptive *a = d->data;
451 enum stone color = stone_other(tree->root_color);
453 /* We do not use extra komi at the game end - we are not
454 * to fool ourselves at this point. */
455 if (a->no_komi_at_game_end && board_estimated_moves_left(b) <= MIN_MOVES_LEFT) {
456 tree->use_extra_komi = false;
457 return 0;
460 if (DEBUGL(4))
461 fprintf(stderr, "m %d/%d ekomi %f permove %f/%d\n",
462 b->moves, a->lead_moves, tree->extra_komi,
463 d->score.value, d->score.playouts);
465 if (b->moves <= a->lead_moves)
466 return bounded_komi(a, b, color,
467 board_effective_handicap(b, 7 /* XXX */),
468 a->max_losing_komi);
470 floating_t komi = a->indicator(d, b, tree, color);
471 if (DEBUGL(4))
472 fprintf(stderr, "dynkomi: %f -> %f\n", tree->extra_komi, komi);
473 return bounded_komi(a, b, color, komi, a->max_losing_komi);
476 static floating_t
477 adaptive_persim(struct uct_dynkomi *d, struct board *b, struct tree *tree, struct tree_node *node)
479 return tree->extra_komi;
482 struct uct_dynkomi *
483 uct_dynkomi_init_adaptive(struct uct *u, char *arg, struct board *b)
485 struct uct_dynkomi *d = calloc2(1, sizeof(*d));
486 d->uct = u;
487 d->permove = adaptive_permove;
488 d->persim = adaptive_persim;
489 d->done = generic_done;
491 struct dynkomi_adaptive *a = calloc2(1, sizeof(*a));
492 d->data = a;
494 a->lead_moves = board_large(b) ? 20 : 4; // XXX
495 a->max_losing_komi = 30;
496 a->losing_komi_stop = 1.0f;
497 a->no_komi_at_game_end = true;
498 a->indicator = komi_by_value;
500 a->adapter = adapter_sigmoid;
501 a->adapt_rate = -18;
502 a->adapt_phase = 0.65;
503 a->adapt_moves = 200;
504 a->adapt_dir = -0.5;
506 a->zone_red = 0.45;
507 a->zone_green = 0.50;
508 a->score_step = 1;
509 a->use_komi_ratchet = true;
510 a->komi_ratchet_maxage = 0;
511 a->komi_ratchet = 1000;
513 if (arg) {
514 char *optspec, *next = arg;
515 while (*next) {
516 optspec = next;
517 next += strcspn(next, ":");
518 if (*next) { *next++ = 0; } else { *next = 0; }
520 char *optname = optspec;
521 char *optval = strchr(optspec, '=');
522 if (optval) *optval++ = 0;
524 if (!strcasecmp(optname, "lead_moves") && optval) {
525 /* Do not adjust komi adaptively for first
526 * N moves. */
527 a->lead_moves = atoi(optval);
528 } else if (!strcasecmp(optname, "max_losing_komi") && optval) {
529 a->max_losing_komi = atof(optval);
530 } else if (!strcasecmp(optname, "losing_komi_stop") && optval) {
531 a->losing_komi_stop = atof(optval);
532 } else if (!strcasecmp(optname, "no_komi_at_game_end")) {
533 a->no_komi_at_game_end = !optval || atoi(optval);
534 } else if (!strcasecmp(optname, "indicator")) {
535 /* Adaptatation indicator - how to decide
536 * the adaptation rate and direction. */
537 if (!strcasecmp(optval, "value")) {
538 /* Winrate w/ komi so far. */
539 a->indicator = komi_by_value;
540 } else if (!strcasecmp(optval, "score")) {
541 /* Expected score w/ current komi. */
542 a->indicator = komi_by_score;
543 } else {
544 fprintf(stderr, "UCT: Invalid indicator %s\n", optval);
545 exit(1);
548 /* value indicator settings */
549 } else if (!strcasecmp(optname, "zone_red") && optval) {
550 a->zone_red = atof(optval);
551 } else if (!strcasecmp(optname, "zone_green") && optval) {
552 a->zone_green = atof(optval);
553 } else if (!strcasecmp(optname, "score_step") && optval) {
554 a->score_step = atoi(optval);
555 } else if (!strcasecmp(optname, "score_step_byavg") && optval) {
556 a->score_step_byavg = atof(optval);
557 } else if (!strcasecmp(optname, "use_komi_ratchet")) {
558 a->use_komi_ratchet = !optval || atoi(optval);
559 } else if (!strcasecmp(optname, "losing_komi_ratchet")) {
560 a->losing_komi_ratchet = !optval || atoi(optval);
561 } else if (!strcasecmp(optname, "komi_ratchet_age") && optval) {
562 a->komi_ratchet_maxage = atoi(optval);
564 /* score indicator settings */
565 } else if (!strcasecmp(optname, "adapter") && optval) {
566 /* Adaptatation method. */
567 if (!strcasecmp(optval, "sigmoid")) {
568 a->adapter = adapter_sigmoid;
569 } else if (!strcasecmp(optval, "linear")) {
570 a->adapter = adapter_linear;
571 } else {
572 fprintf(stderr, "UCT: Invalid adapter %s\n", optval);
573 exit(1);
575 } else if (!strcasecmp(optname, "adapt_base") && optval) {
576 /* Adaptation base rate; see above. */
577 a->adapt_base = atof(optval);
578 } else if (!strcasecmp(optname, "adapt_rate") && optval) {
579 /* Adaptation slope; see above. */
580 a->adapt_rate = atof(optval);
581 } else if (!strcasecmp(optname, "adapt_phase") && optval) {
582 /* Adaptation phase shift; see above. */
583 a->adapt_phase = atof(optval);
584 } else if (!strcasecmp(optname, "adapt_moves") && optval) {
585 /* Adaptation move amount; see above. */
586 a->adapt_moves = atoi(optval);
587 } else if (!strcasecmp(optname, "adapt_aport")) {
588 a->adapt_aport = !optval || atoi(optval);
589 } else if (!strcasecmp(optname, "adapt_dir") && optval) {
590 /* Adaptation direction vector; see above. */
591 a->adapt_dir = atof(optval);
593 } else {
594 fprintf(stderr, "uct: Invalid dynkomi argument %s or missing value\n", optname);
595 exit(1);
600 return d;