split jim_target into multiple handlers
[openocd/ztw.git] / src / target / target.c
blobd9552a58a0448eb76b472dee6fac5463aecb745c
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2007-2009 Øyvind Harboe *
6 * oyvind.harboe@zylin.com *
7 * *
8 * Copyright (C) 2008, Duane Ellis *
9 * openocd@duaneeellis.com *
10 * *
11 * Copyright (C) 2008 by Spencer Oliver *
12 * spen@spen-soft.co.uk *
13 * *
14 * Copyright (C) 2008 by Rick Altherr *
15 * kc8apf@kc8apf.net> *
16 * *
17 * This program is free software; you can redistribute it and/or modify *
18 * it under the terms of the GNU General Public License as published by *
19 * the Free Software Foundation; either version 2 of the License, or *
20 * (at your option) any later version. *
21 * *
22 * This program is distributed in the hope that it will be useful, *
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
25 * GNU General Public License for more details. *
26 * *
27 * You should have received a copy of the GNU General Public License *
28 * along with this program; if not, write to the *
29 * Free Software Foundation, Inc., *
30 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
31 ***************************************************************************/
32 #ifdef HAVE_CONFIG_H
33 #include "config.h"
34 #endif
36 #include "target.h"
37 #include "target_type.h"
38 #include "target_request.h"
39 #include "breakpoints.h"
40 #include "time_support.h"
41 #include "register.h"
42 #include "trace.h"
43 #include "image.h"
44 #include "jtag.h"
47 static int jim_mcrmrc(Jim_Interp *interp, int argc, Jim_Obj *const *argv);
49 static int target_array2mem(Jim_Interp *interp, struct target *target, int argc, Jim_Obj *const *argv);
50 static int target_mem2array(Jim_Interp *interp, struct target *target, int argc, Jim_Obj *const *argv);
52 /* targets */
53 extern struct target_type arm7tdmi_target;
54 extern struct target_type arm720t_target;
55 extern struct target_type arm9tdmi_target;
56 extern struct target_type arm920t_target;
57 extern struct target_type arm966e_target;
58 extern struct target_type arm926ejs_target;
59 extern struct target_type fa526_target;
60 extern struct target_type feroceon_target;
61 extern struct target_type dragonite_target;
62 extern struct target_type xscale_target;
63 extern struct target_type cortexm3_target;
64 extern struct target_type cortexa8_target;
65 extern struct target_type arm11_target;
66 extern struct target_type mips_m4k_target;
67 extern struct target_type avr_target;
68 extern struct target_type testee_target;
70 struct target_type *target_types[] =
72 &arm7tdmi_target,
73 &arm9tdmi_target,
74 &arm920t_target,
75 &arm720t_target,
76 &arm966e_target,
77 &arm926ejs_target,
78 &fa526_target,
79 &feroceon_target,
80 &dragonite_target,
81 &xscale_target,
82 &cortexm3_target,
83 &cortexa8_target,
84 &arm11_target,
85 &mips_m4k_target,
86 &avr_target,
87 &testee_target,
88 NULL,
91 struct target *all_targets = NULL;
92 struct target_event_callback *target_event_callbacks = NULL;
93 struct target_timer_callback *target_timer_callbacks = NULL;
95 const Jim_Nvp nvp_assert[] = {
96 { .name = "assert", NVP_ASSERT },
97 { .name = "deassert", NVP_DEASSERT },
98 { .name = "T", NVP_ASSERT },
99 { .name = "F", NVP_DEASSERT },
100 { .name = "t", NVP_ASSERT },
101 { .name = "f", NVP_DEASSERT },
102 { .name = NULL, .value = -1 }
105 const Jim_Nvp nvp_error_target[] = {
106 { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
107 { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
108 { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
109 { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
110 { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
111 { .value = ERROR_TARGET_UNALIGNED_ACCESS , .name = "err-unaligned-access" },
112 { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
113 { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
114 { .value = ERROR_TARGET_TRANSLATION_FAULT , .name = "err-translation-fault" },
115 { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
116 { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
117 { .value = -1, .name = NULL }
120 const char *target_strerror_safe(int err)
122 const Jim_Nvp *n;
124 n = Jim_Nvp_value2name_simple(nvp_error_target, err);
125 if (n->name == NULL) {
126 return "unknown";
127 } else {
128 return n->name;
132 static const Jim_Nvp nvp_target_event[] = {
133 { .value = TARGET_EVENT_OLD_gdb_program_config , .name = "old-gdb_program_config" },
134 { .value = TARGET_EVENT_OLD_pre_resume , .name = "old-pre_resume" },
136 { .value = TARGET_EVENT_GDB_HALT, .name = "gdb-halt" },
137 { .value = TARGET_EVENT_HALTED, .name = "halted" },
138 { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
139 { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
140 { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
142 { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
143 { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
145 /* historical name */
147 { .value = TARGET_EVENT_RESET_START, .name = "reset-start" },
149 { .value = TARGET_EVENT_RESET_ASSERT_PRE, .name = "reset-assert-pre" },
150 { .value = TARGET_EVENT_RESET_ASSERT, .name = "reset-assert" },
151 { .value = TARGET_EVENT_RESET_ASSERT_POST, .name = "reset-assert-post" },
152 { .value = TARGET_EVENT_RESET_DEASSERT_PRE, .name = "reset-deassert-pre" },
153 { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
154 { .value = TARGET_EVENT_RESET_HALT_PRE, .name = "reset-halt-pre" },
155 { .value = TARGET_EVENT_RESET_HALT_POST, .name = "reset-halt-post" },
156 { .value = TARGET_EVENT_RESET_WAIT_PRE, .name = "reset-wait-pre" },
157 { .value = TARGET_EVENT_RESET_WAIT_POST, .name = "reset-wait-post" },
158 { .value = TARGET_EVENT_RESET_INIT, .name = "reset-init" },
159 { .value = TARGET_EVENT_RESET_END, .name = "reset-end" },
161 { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
162 { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
164 { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
165 { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
167 { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
168 { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
170 { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
171 { .value = TARGET_EVENT_GDB_FLASH_WRITE_END , .name = "gdb-flash-write-end" },
173 { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
174 { .value = TARGET_EVENT_GDB_FLASH_ERASE_END , .name = "gdb-flash-erase-end" },
176 { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
177 { .value = TARGET_EVENT_RESUMED , .name = "resume-ok" },
178 { .value = TARGET_EVENT_RESUME_END , .name = "resume-end" },
180 { .name = NULL, .value = -1 }
183 const Jim_Nvp nvp_target_state[] = {
184 { .name = "unknown", .value = TARGET_UNKNOWN },
185 { .name = "running", .value = TARGET_RUNNING },
186 { .name = "halted", .value = TARGET_HALTED },
187 { .name = "reset", .value = TARGET_RESET },
188 { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
189 { .name = NULL, .value = -1 },
192 const Jim_Nvp nvp_target_debug_reason [] = {
193 { .name = "debug-request" , .value = DBG_REASON_DBGRQ },
194 { .name = "breakpoint" , .value = DBG_REASON_BREAKPOINT },
195 { .name = "watchpoint" , .value = DBG_REASON_WATCHPOINT },
196 { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
197 { .name = "single-step" , .value = DBG_REASON_SINGLESTEP },
198 { .name = "target-not-halted" , .value = DBG_REASON_NOTHALTED },
199 { .name = "undefined" , .value = DBG_REASON_UNDEFINED },
200 { .name = NULL, .value = -1 },
203 const Jim_Nvp nvp_target_endian[] = {
204 { .name = "big", .value = TARGET_BIG_ENDIAN },
205 { .name = "little", .value = TARGET_LITTLE_ENDIAN },
206 { .name = "be", .value = TARGET_BIG_ENDIAN },
207 { .name = "le", .value = TARGET_LITTLE_ENDIAN },
208 { .name = NULL, .value = -1 },
211 const Jim_Nvp nvp_reset_modes[] = {
212 { .name = "unknown", .value = RESET_UNKNOWN },
213 { .name = "run" , .value = RESET_RUN },
214 { .name = "halt" , .value = RESET_HALT },
215 { .name = "init" , .value = RESET_INIT },
216 { .name = NULL , .value = -1 },
219 const char *
220 target_state_name( struct target *t )
222 const char *cp;
223 cp = Jim_Nvp_value2name_simple(nvp_target_state, t->state)->name;
224 if( !cp ){
225 LOG_ERROR("Invalid target state: %d", (int)(t->state));
226 cp = "(*BUG*unknown*BUG*)";
228 return cp;
231 /* determine the number of the new target */
232 static int new_target_number(void)
234 struct target *t;
235 int x;
237 /* number is 0 based */
238 x = -1;
239 t = all_targets;
240 while (t) {
241 if (x < t->target_number) {
242 x = t->target_number;
244 t = t->next;
246 return x + 1;
249 /* read a uint32_t from a buffer in target memory endianness */
250 uint32_t target_buffer_get_u32(struct target *target, const uint8_t *buffer)
252 if (target->endianness == TARGET_LITTLE_ENDIAN)
253 return le_to_h_u32(buffer);
254 else
255 return be_to_h_u32(buffer);
258 /* read a uint16_t from a buffer in target memory endianness */
259 uint16_t target_buffer_get_u16(struct target *target, const uint8_t *buffer)
261 if (target->endianness == TARGET_LITTLE_ENDIAN)
262 return le_to_h_u16(buffer);
263 else
264 return be_to_h_u16(buffer);
267 /* read a uint8_t from a buffer in target memory endianness */
268 uint8_t target_buffer_get_u8(struct target *target, const uint8_t *buffer)
270 return *buffer & 0x0ff;
273 /* write a uint32_t to a buffer in target memory endianness */
274 void target_buffer_set_u32(struct target *target, uint8_t *buffer, uint32_t value)
276 if (target->endianness == TARGET_LITTLE_ENDIAN)
277 h_u32_to_le(buffer, value);
278 else
279 h_u32_to_be(buffer, value);
282 /* write a uint16_t to a buffer in target memory endianness */
283 void target_buffer_set_u16(struct target *target, uint8_t *buffer, uint16_t value)
285 if (target->endianness == TARGET_LITTLE_ENDIAN)
286 h_u16_to_le(buffer, value);
287 else
288 h_u16_to_be(buffer, value);
291 /* write a uint8_t to a buffer in target memory endianness */
292 void target_buffer_set_u8(struct target *target, uint8_t *buffer, uint8_t value)
294 *buffer = value;
297 /* return a pointer to a configured target; id is name or number */
298 struct target *get_target(const char *id)
300 struct target *target;
302 /* try as tcltarget name */
303 for (target = all_targets; target; target = target->next) {
304 if (target->cmd_name == NULL)
305 continue;
306 if (strcmp(id, target->cmd_name) == 0)
307 return target;
310 /* It's OK to remove this fallback sometime after August 2010 or so */
312 /* no match, try as number */
313 unsigned num;
314 if (parse_uint(id, &num) != ERROR_OK)
315 return NULL;
317 for (target = all_targets; target; target = target->next) {
318 if (target->target_number == (int)num) {
319 LOG_WARNING("use '%s' as target identifier, not '%u'",
320 target->cmd_name, num);
321 return target;
325 return NULL;
328 /* returns a pointer to the n-th configured target */
329 static struct target *get_target_by_num(int num)
331 struct target *target = all_targets;
333 while (target) {
334 if (target->target_number == num) {
335 return target;
337 target = target->next;
340 return NULL;
343 struct target* get_current_target(struct command_context *cmd_ctx)
345 struct target *target = get_target_by_num(cmd_ctx->current_target);
347 if (target == NULL)
349 LOG_ERROR("BUG: current_target out of bounds");
350 exit(-1);
353 return target;
356 int target_poll(struct target *target)
358 int retval;
360 /* We can't poll until after examine */
361 if (!target_was_examined(target))
363 /* Fail silently lest we pollute the log */
364 return ERROR_FAIL;
367 retval = target->type->poll(target);
368 if (retval != ERROR_OK)
369 return retval;
371 if (target->halt_issued)
373 if (target->state == TARGET_HALTED)
375 target->halt_issued = false;
376 } else
378 long long t = timeval_ms() - target->halt_issued_time;
379 if (t>1000)
381 target->halt_issued = false;
382 LOG_INFO("Halt timed out, wake up GDB.");
383 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
388 return ERROR_OK;
391 int target_halt(struct target *target)
393 int retval;
394 /* We can't poll until after examine */
395 if (!target_was_examined(target))
397 LOG_ERROR("Target not examined yet");
398 return ERROR_FAIL;
401 retval = target->type->halt(target);
402 if (retval != ERROR_OK)
403 return retval;
405 target->halt_issued = true;
406 target->halt_issued_time = timeval_ms();
408 return ERROR_OK;
411 int target_resume(struct target *target, int current, uint32_t address, int handle_breakpoints, int debug_execution)
413 int retval;
415 /* We can't poll until after examine */
416 if (!target_was_examined(target))
418 LOG_ERROR("Target not examined yet");
419 return ERROR_FAIL;
422 /* note that resume *must* be asynchronous. The CPU can halt before we poll. The CPU can
423 * even halt at the current PC as a result of a software breakpoint being inserted by (a bug?)
424 * the application.
426 if ((retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution)) != ERROR_OK)
427 return retval;
429 return retval;
432 int target_process_reset(struct command_context *cmd_ctx, enum target_reset_mode reset_mode)
434 char buf[100];
435 int retval;
436 Jim_Nvp *n;
437 n = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode);
438 if (n->name == NULL) {
439 LOG_ERROR("invalid reset mode");
440 return ERROR_FAIL;
443 /* disable polling during reset to make reset event scripts
444 * more predictable, i.e. dr/irscan & pathmove in events will
445 * not have JTAG operations injected into the middle of a sequence.
447 bool save_poll = jtag_poll_get_enabled();
449 jtag_poll_set_enabled(false);
451 sprintf(buf, "ocd_process_reset %s", n->name);
452 retval = Jim_Eval(interp, buf);
454 jtag_poll_set_enabled(save_poll);
456 if (retval != JIM_OK) {
457 Jim_PrintErrorMessage(interp);
458 return ERROR_FAIL;
461 /* We want any events to be processed before the prompt */
462 retval = target_call_timer_callbacks_now();
464 return retval;
467 static int identity_virt2phys(struct target *target,
468 uint32_t virtual, uint32_t *physical)
470 *physical = virtual;
471 return ERROR_OK;
474 static int no_mmu(struct target *target, int *enabled)
476 *enabled = 0;
477 return ERROR_OK;
480 static int default_examine(struct target *target)
482 target_set_examined(target);
483 return ERROR_OK;
486 int target_examine_one(struct target *target)
488 return target->type->examine(target);
491 static int jtag_enable_callback(enum jtag_event event, void *priv)
493 struct target *target = priv;
495 if (event != JTAG_TAP_EVENT_ENABLE || !target->tap->enabled)
496 return ERROR_OK;
498 jtag_unregister_event_callback(jtag_enable_callback, target);
499 return target_examine_one(target);
503 /* Targets that correctly implement init + examine, i.e.
504 * no communication with target during init:
506 * XScale
508 int target_examine(void)
510 int retval = ERROR_OK;
511 struct target *target;
513 for (target = all_targets; target; target = target->next)
515 /* defer examination, but don't skip it */
516 if (!target->tap->enabled) {
517 jtag_register_event_callback(jtag_enable_callback,
518 target);
519 continue;
521 if ((retval = target_examine_one(target)) != ERROR_OK)
522 return retval;
524 return retval;
526 const char *target_type_name(struct target *target)
528 return target->type->name;
531 static int target_write_memory_imp(struct target *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
533 if (!target_was_examined(target))
535 LOG_ERROR("Target not examined yet");
536 return ERROR_FAIL;
538 return target->type->write_memory_imp(target, address, size, count, buffer);
541 static int target_read_memory_imp(struct target *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
543 if (!target_was_examined(target))
545 LOG_ERROR("Target not examined yet");
546 return ERROR_FAIL;
548 return target->type->read_memory_imp(target, address, size, count, buffer);
551 static int target_soft_reset_halt_imp(struct target *target)
553 if (!target_was_examined(target))
555 LOG_ERROR("Target not examined yet");
556 return ERROR_FAIL;
558 if (!target->type->soft_reset_halt_imp) {
559 LOG_ERROR("Target %s does not support soft_reset_halt",
560 target_name(target));
561 return ERROR_FAIL;
563 return target->type->soft_reset_halt_imp(target);
566 static int target_run_algorithm_imp(struct target *target, int num_mem_params, struct mem_param *mem_params, int num_reg_params, struct reg_param *reg_param, uint32_t entry_point, uint32_t exit_point, int timeout_ms, void *arch_info)
568 if (!target_was_examined(target))
570 LOG_ERROR("Target not examined yet");
571 return ERROR_FAIL;
573 return target->type->run_algorithm_imp(target, num_mem_params, mem_params, num_reg_params, reg_param, entry_point, exit_point, timeout_ms, arch_info);
576 int target_read_memory(struct target *target,
577 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
579 return target->type->read_memory(target, address, size, count, buffer);
582 int target_read_phys_memory(struct target *target,
583 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
585 return target->type->read_phys_memory(target, address, size, count, buffer);
588 int target_write_memory(struct target *target,
589 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
591 return target->type->write_memory(target, address, size, count, buffer);
594 int target_write_phys_memory(struct target *target,
595 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
597 return target->type->write_phys_memory(target, address, size, count, buffer);
600 int target_bulk_write_memory(struct target *target,
601 uint32_t address, uint32_t count, uint8_t *buffer)
603 return target->type->bulk_write_memory(target, address, count, buffer);
606 int target_add_breakpoint(struct target *target,
607 struct breakpoint *breakpoint)
609 if (target->state != TARGET_HALTED) {
610 LOG_WARNING("target %s is not halted", target->cmd_name);
611 return ERROR_TARGET_NOT_HALTED;
613 return target->type->add_breakpoint(target, breakpoint);
615 int target_remove_breakpoint(struct target *target,
616 struct breakpoint *breakpoint)
618 return target->type->remove_breakpoint(target, breakpoint);
621 int target_add_watchpoint(struct target *target,
622 struct watchpoint *watchpoint)
624 if (target->state != TARGET_HALTED) {
625 LOG_WARNING("target %s is not halted", target->cmd_name);
626 return ERROR_TARGET_NOT_HALTED;
628 return target->type->add_watchpoint(target, watchpoint);
630 int target_remove_watchpoint(struct target *target,
631 struct watchpoint *watchpoint)
633 return target->type->remove_watchpoint(target, watchpoint);
636 int target_get_gdb_reg_list(struct target *target,
637 struct reg **reg_list[], int *reg_list_size)
639 return target->type->get_gdb_reg_list(target, reg_list, reg_list_size);
641 int target_step(struct target *target,
642 int current, uint32_t address, int handle_breakpoints)
644 return target->type->step(target, current, address, handle_breakpoints);
648 int target_run_algorithm(struct target *target,
649 int num_mem_params, struct mem_param *mem_params,
650 int num_reg_params, struct reg_param *reg_param,
651 uint32_t entry_point, uint32_t exit_point,
652 int timeout_ms, void *arch_info)
654 return target->type->run_algorithm(target,
655 num_mem_params, mem_params, num_reg_params, reg_param,
656 entry_point, exit_point, timeout_ms, arch_info);
660 * Reset the @c examined flag for the given target.
661 * Pure paranoia -- targets are zeroed on allocation.
663 static void target_reset_examined(struct target *target)
665 target->examined = false;
670 static int default_mrc(struct target *target, int cpnum, uint32_t op1, uint32_t op2, uint32_t CRn, uint32_t CRm, uint32_t *value)
672 LOG_ERROR("Not implemented: %s", __func__);
673 return ERROR_FAIL;
676 static int default_mcr(struct target *target, int cpnum, uint32_t op1, uint32_t op2, uint32_t CRn, uint32_t CRm, uint32_t value)
678 LOG_ERROR("Not implemented: %s", __func__);
679 return ERROR_FAIL;
682 static int arm_cp_check(struct target *target, int cpnum, uint32_t op1, uint32_t op2, uint32_t CRn, uint32_t CRm)
684 /* basic check */
685 if (!target_was_examined(target))
687 LOG_ERROR("Target not examined yet");
688 return ERROR_FAIL;
691 if ((cpnum <0) || (cpnum > 15))
693 LOG_ERROR("Illegal co-processor %d", cpnum);
694 return ERROR_FAIL;
697 if (op1 > 7)
699 LOG_ERROR("Illegal op1");
700 return ERROR_FAIL;
703 if (op2 > 7)
705 LOG_ERROR("Illegal op2");
706 return ERROR_FAIL;
709 if (CRn > 15)
711 LOG_ERROR("Illegal CRn");
712 return ERROR_FAIL;
715 if (CRm > 15)
717 LOG_ERROR("Illegal CRm");
718 return ERROR_FAIL;
721 return ERROR_OK;
724 int target_mrc(struct target *target, int cpnum, uint32_t op1, uint32_t op2, uint32_t CRn, uint32_t CRm, uint32_t *value)
726 int retval;
728 retval = arm_cp_check(target, cpnum, op1, op2, CRn, CRm);
729 if (retval != ERROR_OK)
730 return retval;
732 return target->type->mrc(target, cpnum, op1, op2, CRn, CRm, value);
735 int target_mcr(struct target *target, int cpnum, uint32_t op1, uint32_t op2, uint32_t CRn, uint32_t CRm, uint32_t value)
737 int retval;
739 retval = arm_cp_check(target, cpnum, op1, op2, CRn, CRm);
740 if (retval != ERROR_OK)
741 return retval;
743 return target->type->mcr(target, cpnum, op1, op2, CRn, CRm, value);
746 static int
747 err_read_phys_memory(struct target *target, uint32_t address,
748 uint32_t size, uint32_t count, uint8_t *buffer)
750 LOG_ERROR("Not implemented: %s", __func__);
751 return ERROR_FAIL;
754 static int
755 err_write_phys_memory(struct target *target, uint32_t address,
756 uint32_t size, uint32_t count, uint8_t *buffer)
758 LOG_ERROR("Not implemented: %s", __func__);
759 return ERROR_FAIL;
762 int target_init(struct command_context *cmd_ctx)
764 struct target *target;
765 int retval;
767 for (target = all_targets; target; target = target->next) {
768 struct target_type *type = target->type;
770 target_reset_examined(target);
771 if (target->type->examine == NULL)
773 target->type->examine = default_examine;
776 if ((retval = target->type->init_target(cmd_ctx, target)) != ERROR_OK)
778 LOG_ERROR("target '%s' init failed", target_name(target));
779 return retval;
783 * @todo MCR/MRC are ARM-specific; don't require them in
784 * all targets, or for ARMs without coprocessors.
786 if (target->type->mcr == NULL)
788 target->type->mcr = default_mcr;
789 } else
791 const struct command_registration mcr_cmd = {
792 .name = "mcr",
793 .mode = COMMAND_EXEC,
794 .jim_handler = &jim_mcrmrc,
795 .help = "write coprocessor",
796 .usage = "<cpnum> <op1> <op2> <CRn> <CRm> <value>",
798 register_command(cmd_ctx, NULL, &mcr_cmd);
801 if (target->type->mrc == NULL)
803 target->type->mrc = default_mrc;
804 } else
806 const struct command_registration mrc_cmd = {
807 .name = "mrc",
808 .jim_handler = &jim_mcrmrc,
809 .help = "read coprocessor",
810 .usage = "<cpnum> <op1> <op2> <CRn> <CRm>",
812 register_command(cmd_ctx, NULL, &mrc_cmd);
817 * @todo get rid of those *memory_imp() methods, now that all
818 * callers are using target_*_memory() accessors ... and make
819 * sure the "physical" paths handle the same issues.
822 /* a non-invasive way(in terms of patches) to add some code that
823 * runs before the type->write/read_memory implementation
825 target->type->write_memory_imp = target->type->write_memory;
826 target->type->write_memory = target_write_memory_imp;
827 target->type->read_memory_imp = target->type->read_memory;
828 target->type->read_memory = target_read_memory_imp;
829 target->type->soft_reset_halt_imp = target->type->soft_reset_halt;
830 target->type->soft_reset_halt = target_soft_reset_halt_imp;
831 target->type->run_algorithm_imp = target->type->run_algorithm;
832 target->type->run_algorithm = target_run_algorithm_imp;
834 /* Sanity-check MMU support ... stub in what we must, to help
835 * implement it in stages, but warn if we need to do so.
837 if (type->mmu) {
838 if (type->write_phys_memory == NULL) {
839 LOG_ERROR("type '%s' is missing %s",
840 type->name,
841 "write_phys_memory");
842 type->write_phys_memory = err_write_phys_memory;
844 if (type->read_phys_memory == NULL) {
845 LOG_ERROR("type '%s' is missing %s",
846 type->name,
847 "read_phys_memory");
848 type->read_phys_memory = err_read_phys_memory;
850 if (type->virt2phys == NULL) {
851 LOG_ERROR("type '%s' is missing %s",
852 type->name,
853 "virt2phys");
854 type->virt2phys = identity_virt2phys;
857 /* Make sure no-MMU targets all behave the same: make no
858 * distinction between physical and virtual addresses, and
859 * ensure that virt2phys() is always an identity mapping.
861 } else {
862 if (type->write_phys_memory
863 || type->read_phys_memory
864 || type->virt2phys)
865 LOG_WARNING("type '%s' has broken MMU hooks",
866 type->name);
868 type->mmu = no_mmu;
869 type->write_phys_memory = type->write_memory;
870 type->read_phys_memory = type->read_memory;
871 type->virt2phys = identity_virt2phys;
875 if (all_targets)
877 if ((retval = target_register_user_commands(cmd_ctx)) != ERROR_OK)
878 return retval;
879 if ((retval = target_register_timer_callback(handle_target, 100, 1, NULL)) != ERROR_OK)
880 return retval;
883 return ERROR_OK;
886 int target_register_event_callback(int (*callback)(struct target *target, enum target_event event, void *priv), void *priv)
888 struct target_event_callback **callbacks_p = &target_event_callbacks;
890 if (callback == NULL)
892 return ERROR_INVALID_ARGUMENTS;
895 if (*callbacks_p)
897 while ((*callbacks_p)->next)
898 callbacks_p = &((*callbacks_p)->next);
899 callbacks_p = &((*callbacks_p)->next);
902 (*callbacks_p) = malloc(sizeof(struct target_event_callback));
903 (*callbacks_p)->callback = callback;
904 (*callbacks_p)->priv = priv;
905 (*callbacks_p)->next = NULL;
907 return ERROR_OK;
910 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
912 struct target_timer_callback **callbacks_p = &target_timer_callbacks;
913 struct timeval now;
915 if (callback == NULL)
917 return ERROR_INVALID_ARGUMENTS;
920 if (*callbacks_p)
922 while ((*callbacks_p)->next)
923 callbacks_p = &((*callbacks_p)->next);
924 callbacks_p = &((*callbacks_p)->next);
927 (*callbacks_p) = malloc(sizeof(struct target_timer_callback));
928 (*callbacks_p)->callback = callback;
929 (*callbacks_p)->periodic = periodic;
930 (*callbacks_p)->time_ms = time_ms;
932 gettimeofday(&now, NULL);
933 (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
934 time_ms -= (time_ms % 1000);
935 (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
936 if ((*callbacks_p)->when.tv_usec > 1000000)
938 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
939 (*callbacks_p)->when.tv_sec += 1;
942 (*callbacks_p)->priv = priv;
943 (*callbacks_p)->next = NULL;
945 return ERROR_OK;
948 int target_unregister_event_callback(int (*callback)(struct target *target, enum target_event event, void *priv), void *priv)
950 struct target_event_callback **p = &target_event_callbacks;
951 struct target_event_callback *c = target_event_callbacks;
953 if (callback == NULL)
955 return ERROR_INVALID_ARGUMENTS;
958 while (c)
960 struct target_event_callback *next = c->next;
961 if ((c->callback == callback) && (c->priv == priv))
963 *p = next;
964 free(c);
965 return ERROR_OK;
967 else
968 p = &(c->next);
969 c = next;
972 return ERROR_OK;
975 int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
977 struct target_timer_callback **p = &target_timer_callbacks;
978 struct target_timer_callback *c = target_timer_callbacks;
980 if (callback == NULL)
982 return ERROR_INVALID_ARGUMENTS;
985 while (c)
987 struct target_timer_callback *next = c->next;
988 if ((c->callback == callback) && (c->priv == priv))
990 *p = next;
991 free(c);
992 return ERROR_OK;
994 else
995 p = &(c->next);
996 c = next;
999 return ERROR_OK;
1002 int target_call_event_callbacks(struct target *target, enum target_event event)
1004 struct target_event_callback *callback = target_event_callbacks;
1005 struct target_event_callback *next_callback;
1007 if (event == TARGET_EVENT_HALTED)
1009 /* execute early halted first */
1010 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
1013 LOG_DEBUG("target event %i (%s)",
1014 event,
1015 Jim_Nvp_value2name_simple(nvp_target_event, event)->name);
1017 target_handle_event(target, event);
1019 while (callback)
1021 next_callback = callback->next;
1022 callback->callback(target, event, callback->priv);
1023 callback = next_callback;
1026 return ERROR_OK;
1029 static int target_timer_callback_periodic_restart(
1030 struct target_timer_callback *cb, struct timeval *now)
1032 int time_ms = cb->time_ms;
1033 cb->when.tv_usec = now->tv_usec + (time_ms % 1000) * 1000;
1034 time_ms -= (time_ms % 1000);
1035 cb->when.tv_sec = now->tv_sec + time_ms / 1000;
1036 if (cb->when.tv_usec > 1000000)
1038 cb->when.tv_usec = cb->when.tv_usec - 1000000;
1039 cb->when.tv_sec += 1;
1041 return ERROR_OK;
1044 static int target_call_timer_callback(struct target_timer_callback *cb,
1045 struct timeval *now)
1047 cb->callback(cb->priv);
1049 if (cb->periodic)
1050 return target_timer_callback_periodic_restart(cb, now);
1052 return target_unregister_timer_callback(cb->callback, cb->priv);
1055 static int target_call_timer_callbacks_check_time(int checktime)
1057 keep_alive();
1059 struct timeval now;
1060 gettimeofday(&now, NULL);
1062 struct target_timer_callback *callback = target_timer_callbacks;
1063 while (callback)
1065 // cleaning up may unregister and free this callback
1066 struct target_timer_callback *next_callback = callback->next;
1068 bool call_it = callback->callback &&
1069 ((!checktime && callback->periodic) ||
1070 now.tv_sec > callback->when.tv_sec ||
1071 (now.tv_sec == callback->when.tv_sec &&
1072 now.tv_usec >= callback->when.tv_usec));
1074 if (call_it)
1076 int retval = target_call_timer_callback(callback, &now);
1077 if (retval != ERROR_OK)
1078 return retval;
1081 callback = next_callback;
1084 return ERROR_OK;
1087 int target_call_timer_callbacks(void)
1089 return target_call_timer_callbacks_check_time(1);
1092 /* invoke periodic callbacks immediately */
1093 int target_call_timer_callbacks_now(void)
1095 return target_call_timer_callbacks_check_time(0);
1098 int target_alloc_working_area(struct target *target, uint32_t size, struct working_area **area)
1100 struct working_area *c = target->working_areas;
1101 struct working_area *new_wa = NULL;
1103 /* Reevaluate working area address based on MMU state*/
1104 if (target->working_areas == NULL)
1106 int retval;
1107 int enabled;
1109 retval = target->type->mmu(target, &enabled);
1110 if (retval != ERROR_OK)
1112 return retval;
1115 if (!enabled) {
1116 if (target->working_area_phys_spec) {
1117 LOG_DEBUG("MMU disabled, using physical "
1118 "address for working memory 0x%08x",
1119 (unsigned)target->working_area_phys);
1120 target->working_area = target->working_area_phys;
1121 } else {
1122 LOG_ERROR("No working memory available. "
1123 "Specify -work-area-phys to target.");
1124 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1126 } else {
1127 if (target->working_area_virt_spec) {
1128 LOG_DEBUG("MMU enabled, using virtual "
1129 "address for working memory 0x%08x",
1130 (unsigned)target->working_area_virt);
1131 target->working_area = target->working_area_virt;
1132 } else {
1133 LOG_ERROR("No working memory available. "
1134 "Specify -work-area-virt to target.");
1135 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1140 /* only allocate multiples of 4 byte */
1141 if (size % 4)
1143 LOG_ERROR("BUG: code tried to allocate unaligned number of bytes (0x%08x), padding", ((unsigned)(size)));
1144 size = (size + 3) & (~3);
1147 /* see if there's already a matching working area */
1148 while (c)
1150 if ((c->free) && (c->size == size))
1152 new_wa = c;
1153 break;
1155 c = c->next;
1158 /* if not, allocate a new one */
1159 if (!new_wa)
1161 struct working_area **p = &target->working_areas;
1162 uint32_t first_free = target->working_area;
1163 uint32_t free_size = target->working_area_size;
1165 c = target->working_areas;
1166 while (c)
1168 first_free += c->size;
1169 free_size -= c->size;
1170 p = &c->next;
1171 c = c->next;
1174 if (free_size < size)
1176 LOG_WARNING("not enough working area available(requested %u, free %u)",
1177 (unsigned)(size), (unsigned)(free_size));
1178 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1181 LOG_DEBUG("allocated new working area at address 0x%08x", (unsigned)first_free);
1183 new_wa = malloc(sizeof(struct working_area));
1184 new_wa->next = NULL;
1185 new_wa->size = size;
1186 new_wa->address = first_free;
1188 if (target->backup_working_area)
1190 int retval;
1191 new_wa->backup = malloc(new_wa->size);
1192 if ((retval = target_read_memory(target, new_wa->address, 4, new_wa->size / 4, new_wa->backup)) != ERROR_OK)
1194 free(new_wa->backup);
1195 free(new_wa);
1196 return retval;
1199 else
1201 new_wa->backup = NULL;
1204 /* put new entry in list */
1205 *p = new_wa;
1208 /* mark as used, and return the new (reused) area */
1209 new_wa->free = 0;
1210 *area = new_wa;
1212 /* user pointer */
1213 new_wa->user = area;
1215 return ERROR_OK;
1218 int target_free_working_area_restore(struct target *target, struct working_area *area, int restore)
1220 if (area->free)
1221 return ERROR_OK;
1223 if (restore && target->backup_working_area)
1225 int retval;
1226 if ((retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup)) != ERROR_OK)
1227 return retval;
1230 area->free = 1;
1232 /* mark user pointer invalid */
1233 *area->user = NULL;
1234 area->user = NULL;
1236 return ERROR_OK;
1239 int target_free_working_area(struct target *target, struct working_area *area)
1241 return target_free_working_area_restore(target, area, 1);
1244 /* free resources and restore memory, if restoring memory fails,
1245 * free up resources anyway
1247 void target_free_all_working_areas_restore(struct target *target, int restore)
1249 struct working_area *c = target->working_areas;
1251 while (c)
1253 struct working_area *next = c->next;
1254 target_free_working_area_restore(target, c, restore);
1256 if (c->backup)
1257 free(c->backup);
1259 free(c);
1261 c = next;
1264 target->working_areas = NULL;
1267 void target_free_all_working_areas(struct target *target)
1269 target_free_all_working_areas_restore(target, 1);
1272 int target_arch_state(struct target *target)
1274 int retval;
1275 if (target == NULL)
1277 LOG_USER("No target has been configured");
1278 return ERROR_OK;
1281 LOG_USER("target state: %s", target_state_name( target ));
1283 if (target->state != TARGET_HALTED)
1284 return ERROR_OK;
1286 retval = target->type->arch_state(target);
1287 return retval;
1290 /* Single aligned words are guaranteed to use 16 or 32 bit access
1291 * mode respectively, otherwise data is handled as quickly as
1292 * possible
1294 int target_write_buffer(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
1296 int retval;
1297 LOG_DEBUG("writing buffer of %i byte at 0x%8.8x",
1298 (int)size, (unsigned)address);
1300 if (!target_was_examined(target))
1302 LOG_ERROR("Target not examined yet");
1303 return ERROR_FAIL;
1306 if (size == 0) {
1307 return ERROR_OK;
1310 if ((address + size - 1) < address)
1312 /* GDB can request this when e.g. PC is 0xfffffffc*/
1313 LOG_ERROR("address + size wrapped(0x%08x, 0x%08x)",
1314 (unsigned)address,
1315 (unsigned)size);
1316 return ERROR_FAIL;
1319 if (((address % 2) == 0) && (size == 2))
1321 return target_write_memory(target, address, 2, 1, buffer);
1324 /* handle unaligned head bytes */
1325 if (address % 4)
1327 uint32_t unaligned = 4 - (address % 4);
1329 if (unaligned > size)
1330 unaligned = size;
1332 if ((retval = target_write_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1333 return retval;
1335 buffer += unaligned;
1336 address += unaligned;
1337 size -= unaligned;
1340 /* handle aligned words */
1341 if (size >= 4)
1343 int aligned = size - (size % 4);
1345 /* use bulk writes above a certain limit. This may have to be changed */
1346 if (aligned > 128)
1348 if ((retval = target->type->bulk_write_memory(target, address, aligned / 4, buffer)) != ERROR_OK)
1349 return retval;
1351 else
1353 if ((retval = target_write_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1354 return retval;
1357 buffer += aligned;
1358 address += aligned;
1359 size -= aligned;
1362 /* handle tail writes of less than 4 bytes */
1363 if (size > 0)
1365 if ((retval = target_write_memory(target, address, 1, size, buffer)) != ERROR_OK)
1366 return retval;
1369 return ERROR_OK;
1372 /* Single aligned words are guaranteed to use 16 or 32 bit access
1373 * mode respectively, otherwise data is handled as quickly as
1374 * possible
1376 int target_read_buffer(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
1378 int retval;
1379 LOG_DEBUG("reading buffer of %i byte at 0x%8.8x",
1380 (int)size, (unsigned)address);
1382 if (!target_was_examined(target))
1384 LOG_ERROR("Target not examined yet");
1385 return ERROR_FAIL;
1388 if (size == 0) {
1389 return ERROR_OK;
1392 if ((address + size - 1) < address)
1394 /* GDB can request this when e.g. PC is 0xfffffffc*/
1395 LOG_ERROR("address + size wrapped(0x%08" PRIx32 ", 0x%08" PRIx32 ")",
1396 address,
1397 size);
1398 return ERROR_FAIL;
1401 if (((address % 2) == 0) && (size == 2))
1403 return target_read_memory(target, address, 2, 1, buffer);
1406 /* handle unaligned head bytes */
1407 if (address % 4)
1409 uint32_t unaligned = 4 - (address % 4);
1411 if (unaligned > size)
1412 unaligned = size;
1414 if ((retval = target_read_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1415 return retval;
1417 buffer += unaligned;
1418 address += unaligned;
1419 size -= unaligned;
1422 /* handle aligned words */
1423 if (size >= 4)
1425 int aligned = size - (size % 4);
1427 if ((retval = target_read_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1428 return retval;
1430 buffer += aligned;
1431 address += aligned;
1432 size -= aligned;
1435 /*prevent byte access when possible (avoid AHB access limitations in some cases)*/
1436 if(size >=2)
1438 int aligned = size - (size%2);
1439 retval = target_read_memory(target, address, 2, aligned / 2, buffer);
1440 if (retval != ERROR_OK)
1441 return retval;
1443 buffer += aligned;
1444 address += aligned;
1445 size -= aligned;
1447 /* handle tail writes of less than 4 bytes */
1448 if (size > 0)
1450 if ((retval = target_read_memory(target, address, 1, size, buffer)) != ERROR_OK)
1451 return retval;
1454 return ERROR_OK;
1457 int target_checksum_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* crc)
1459 uint8_t *buffer;
1460 int retval;
1461 uint32_t i;
1462 uint32_t checksum = 0;
1463 if (!target_was_examined(target))
1465 LOG_ERROR("Target not examined yet");
1466 return ERROR_FAIL;
1469 if ((retval = target->type->checksum_memory(target, address,
1470 size, &checksum)) != ERROR_OK)
1472 buffer = malloc(size);
1473 if (buffer == NULL)
1475 LOG_ERROR("error allocating buffer for section (%d bytes)", (int)size);
1476 return ERROR_INVALID_ARGUMENTS;
1478 retval = target_read_buffer(target, address, size, buffer);
1479 if (retval != ERROR_OK)
1481 free(buffer);
1482 return retval;
1485 /* convert to target endianess */
1486 for (i = 0; i < (size/sizeof(uint32_t)); i++)
1488 uint32_t target_data;
1489 target_data = target_buffer_get_u32(target, &buffer[i*sizeof(uint32_t)]);
1490 target_buffer_set_u32(target, &buffer[i*sizeof(uint32_t)], target_data);
1493 retval = image_calculate_checksum(buffer, size, &checksum);
1494 free(buffer);
1497 *crc = checksum;
1499 return retval;
1502 int target_blank_check_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* blank)
1504 int retval;
1505 if (!target_was_examined(target))
1507 LOG_ERROR("Target not examined yet");
1508 return ERROR_FAIL;
1511 if (target->type->blank_check_memory == 0)
1512 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1514 retval = target->type->blank_check_memory(target, address, size, blank);
1516 return retval;
1519 int target_read_u32(struct target *target, uint32_t address, uint32_t *value)
1521 uint8_t value_buf[4];
1522 if (!target_was_examined(target))
1524 LOG_ERROR("Target not examined yet");
1525 return ERROR_FAIL;
1528 int retval = target_read_memory(target, address, 4, 1, value_buf);
1530 if (retval == ERROR_OK)
1532 *value = target_buffer_get_u32(target, value_buf);
1533 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
1534 address,
1535 *value);
1537 else
1539 *value = 0x0;
1540 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1541 address);
1544 return retval;
1547 int target_read_u16(struct target *target, uint32_t address, uint16_t *value)
1549 uint8_t value_buf[2];
1550 if (!target_was_examined(target))
1552 LOG_ERROR("Target not examined yet");
1553 return ERROR_FAIL;
1556 int retval = target_read_memory(target, address, 2, 1, value_buf);
1558 if (retval == ERROR_OK)
1560 *value = target_buffer_get_u16(target, value_buf);
1561 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%4.4x",
1562 address,
1563 *value);
1565 else
1567 *value = 0x0;
1568 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1569 address);
1572 return retval;
1575 int target_read_u8(struct target *target, uint32_t address, uint8_t *value)
1577 int retval = target_read_memory(target, address, 1, 1, value);
1578 if (!target_was_examined(target))
1580 LOG_ERROR("Target not examined yet");
1581 return ERROR_FAIL;
1584 if (retval == ERROR_OK)
1586 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
1587 address,
1588 *value);
1590 else
1592 *value = 0x0;
1593 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1594 address);
1597 return retval;
1600 int target_write_u32(struct target *target, uint32_t address, uint32_t value)
1602 int retval;
1603 uint8_t value_buf[4];
1604 if (!target_was_examined(target))
1606 LOG_ERROR("Target not examined yet");
1607 return ERROR_FAIL;
1610 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
1611 address,
1612 value);
1614 target_buffer_set_u32(target, value_buf, value);
1615 if ((retval = target_write_memory(target, address, 4, 1, value_buf)) != ERROR_OK)
1617 LOG_DEBUG("failed: %i", retval);
1620 return retval;
1623 int target_write_u16(struct target *target, uint32_t address, uint16_t value)
1625 int retval;
1626 uint8_t value_buf[2];
1627 if (!target_was_examined(target))
1629 LOG_ERROR("Target not examined yet");
1630 return ERROR_FAIL;
1633 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8x",
1634 address,
1635 value);
1637 target_buffer_set_u16(target, value_buf, value);
1638 if ((retval = target_write_memory(target, address, 2, 1, value_buf)) != ERROR_OK)
1640 LOG_DEBUG("failed: %i", retval);
1643 return retval;
1646 int target_write_u8(struct target *target, uint32_t address, uint8_t value)
1648 int retval;
1649 if (!target_was_examined(target))
1651 LOG_ERROR("Target not examined yet");
1652 return ERROR_FAIL;
1655 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
1656 address, value);
1658 if ((retval = target_write_memory(target, address, 1, 1, &value)) != ERROR_OK)
1660 LOG_DEBUG("failed: %i", retval);
1663 return retval;
1666 COMMAND_HANDLER(handle_targets_command)
1668 struct target *target = all_targets;
1670 if (CMD_ARGC == 1)
1672 target = get_target(CMD_ARGV[0]);
1673 if (target == NULL) {
1674 command_print(CMD_CTX,"Target: %s is unknown, try one of:\n", CMD_ARGV[0]);
1675 goto DumpTargets;
1677 if (!target->tap->enabled) {
1678 command_print(CMD_CTX,"Target: TAP %s is disabled, "
1679 "can't be the current target\n",
1680 target->tap->dotted_name);
1681 return ERROR_FAIL;
1684 CMD_CTX->current_target = target->target_number;
1685 return ERROR_OK;
1687 DumpTargets:
1689 target = all_targets;
1690 command_print(CMD_CTX, " TargetName Type Endian TapName State ");
1691 command_print(CMD_CTX, "-- ------------------ ---------- ------ ------------------ ------------");
1692 while (target)
1694 const char *state;
1695 char marker = ' ';
1697 if (target->tap->enabled)
1698 state = target_state_name( target );
1699 else
1700 state = "tap-disabled";
1702 if (CMD_CTX->current_target == target->target_number)
1703 marker = '*';
1705 /* keep columns lined up to match the headers above */
1706 command_print(CMD_CTX, "%2d%c %-18s %-10s %-6s %-18s %s",
1707 target->target_number,
1708 marker,
1709 target_name(target),
1710 target_type_name(target),
1711 Jim_Nvp_value2name_simple(nvp_target_endian,
1712 target->endianness)->name,
1713 target->tap->dotted_name,
1714 state);
1715 target = target->next;
1718 return ERROR_OK;
1721 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
1723 static int powerDropout;
1724 static int srstAsserted;
1726 static int runPowerRestore;
1727 static int runPowerDropout;
1728 static int runSrstAsserted;
1729 static int runSrstDeasserted;
1731 static int sense_handler(void)
1733 static int prevSrstAsserted = 0;
1734 static int prevPowerdropout = 0;
1736 int retval;
1737 if ((retval = jtag_power_dropout(&powerDropout)) != ERROR_OK)
1738 return retval;
1740 int powerRestored;
1741 powerRestored = prevPowerdropout && !powerDropout;
1742 if (powerRestored)
1744 runPowerRestore = 1;
1747 long long current = timeval_ms();
1748 static long long lastPower = 0;
1749 int waitMore = lastPower + 2000 > current;
1750 if (powerDropout && !waitMore)
1752 runPowerDropout = 1;
1753 lastPower = current;
1756 if ((retval = jtag_srst_asserted(&srstAsserted)) != ERROR_OK)
1757 return retval;
1759 int srstDeasserted;
1760 srstDeasserted = prevSrstAsserted && !srstAsserted;
1762 static long long lastSrst = 0;
1763 waitMore = lastSrst + 2000 > current;
1764 if (srstDeasserted && !waitMore)
1766 runSrstDeasserted = 1;
1767 lastSrst = current;
1770 if (!prevSrstAsserted && srstAsserted)
1772 runSrstAsserted = 1;
1775 prevSrstAsserted = srstAsserted;
1776 prevPowerdropout = powerDropout;
1778 if (srstDeasserted || powerRestored)
1780 /* Other than logging the event we can't do anything here.
1781 * Issuing a reset is a particularly bad idea as we might
1782 * be inside a reset already.
1786 return ERROR_OK;
1789 static void target_call_event_callbacks_all(enum target_event e) {
1790 struct target *target;
1791 target = all_targets;
1792 while (target) {
1793 target_call_event_callbacks(target, e);
1794 target = target->next;
1798 /* process target state changes */
1799 int handle_target(void *priv)
1801 int retval = ERROR_OK;
1803 /* we do not want to recurse here... */
1804 static int recursive = 0;
1805 if (! recursive)
1807 recursive = 1;
1808 sense_handler();
1809 /* danger! running these procedures can trigger srst assertions and power dropouts.
1810 * We need to avoid an infinite loop/recursion here and we do that by
1811 * clearing the flags after running these events.
1813 int did_something = 0;
1814 if (runSrstAsserted)
1816 target_call_event_callbacks_all(TARGET_EVENT_GDB_HALT);
1817 Jim_Eval(interp, "srst_asserted");
1818 did_something = 1;
1820 if (runSrstDeasserted)
1822 Jim_Eval(interp, "srst_deasserted");
1823 did_something = 1;
1825 if (runPowerDropout)
1827 target_call_event_callbacks_all(TARGET_EVENT_GDB_HALT);
1828 Jim_Eval(interp, "power_dropout");
1829 did_something = 1;
1831 if (runPowerRestore)
1833 Jim_Eval(interp, "power_restore");
1834 did_something = 1;
1837 if (did_something)
1839 /* clear detect flags */
1840 sense_handler();
1843 /* clear action flags */
1845 runSrstAsserted = 0;
1846 runSrstDeasserted = 0;
1847 runPowerRestore = 0;
1848 runPowerDropout = 0;
1850 recursive = 0;
1853 /* Poll targets for state changes unless that's globally disabled.
1854 * Skip targets that are currently disabled.
1856 for (struct target *target = all_targets;
1857 is_jtag_poll_safe() && target;
1858 target = target->next)
1860 if (!target->tap->enabled)
1861 continue;
1863 /* only poll target if we've got power and srst isn't asserted */
1864 if (!powerDropout && !srstAsserted)
1866 /* polling may fail silently until the target has been examined */
1867 if ((retval = target_poll(target)) != ERROR_OK)
1869 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
1870 return retval;
1875 return retval;
1878 COMMAND_HANDLER(handle_reg_command)
1880 struct target *target;
1881 struct reg *reg = NULL;
1882 unsigned count = 0;
1883 char *value;
1885 LOG_DEBUG("-");
1887 target = get_current_target(CMD_CTX);
1889 /* list all available registers for the current target */
1890 if (CMD_ARGC == 0)
1892 struct reg_cache *cache = target->reg_cache;
1894 count = 0;
1895 while (cache)
1897 unsigned i;
1899 command_print(CMD_CTX, "===== %s", cache->name);
1901 for (i = 0, reg = cache->reg_list;
1902 i < cache->num_regs;
1903 i++, reg++, count++)
1905 /* only print cached values if they are valid */
1906 if (reg->valid) {
1907 value = buf_to_str(reg->value,
1908 reg->size, 16);
1909 command_print(CMD_CTX,
1910 "(%i) %s (/%" PRIu32 "): 0x%s%s",
1911 count, reg->name,
1912 reg->size, value,
1913 reg->dirty
1914 ? " (dirty)"
1915 : "");
1916 free(value);
1917 } else {
1918 command_print(CMD_CTX, "(%i) %s (/%" PRIu32 ")",
1919 count, reg->name,
1920 reg->size) ;
1923 cache = cache->next;
1926 return ERROR_OK;
1929 /* access a single register by its ordinal number */
1930 if ((CMD_ARGV[0][0] >= '0') && (CMD_ARGV[0][0] <= '9'))
1932 unsigned num;
1933 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], num);
1935 struct reg_cache *cache = target->reg_cache;
1936 count = 0;
1937 while (cache)
1939 unsigned i;
1940 for (i = 0; i < cache->num_regs; i++)
1942 if (count++ == num)
1944 reg = &cache->reg_list[i];
1945 break;
1948 if (reg)
1949 break;
1950 cache = cache->next;
1953 if (!reg)
1955 command_print(CMD_CTX, "%i is out of bounds, the current target has only %i registers (0 - %i)", num, count, count - 1);
1956 return ERROR_OK;
1958 } else /* access a single register by its name */
1960 reg = register_get_by_name(target->reg_cache, CMD_ARGV[0], 1);
1962 if (!reg)
1964 command_print(CMD_CTX, "register %s not found in current target", CMD_ARGV[0]);
1965 return ERROR_OK;
1969 /* display a register */
1970 if ((CMD_ARGC == 1) || ((CMD_ARGC == 2) && !((CMD_ARGV[1][0] >= '0') && (CMD_ARGV[1][0] <= '9'))))
1972 if ((CMD_ARGC == 2) && (strcmp(CMD_ARGV[1], "force") == 0))
1973 reg->valid = 0;
1975 if (reg->valid == 0)
1977 reg->type->get(reg);
1979 value = buf_to_str(reg->value, reg->size, 16);
1980 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
1981 free(value);
1982 return ERROR_OK;
1985 /* set register value */
1986 if (CMD_ARGC == 2)
1988 uint8_t *buf = malloc(DIV_ROUND_UP(reg->size, 8));
1989 str_to_buf(CMD_ARGV[1], strlen(CMD_ARGV[1]), buf, reg->size, 0);
1991 reg->type->set(reg, buf);
1993 value = buf_to_str(reg->value, reg->size, 16);
1994 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
1995 free(value);
1997 free(buf);
1999 return ERROR_OK;
2002 command_print(CMD_CTX, "usage: reg <#|name> [value]");
2004 return ERROR_OK;
2007 COMMAND_HANDLER(handle_poll_command)
2009 int retval = ERROR_OK;
2010 struct target *target = get_current_target(CMD_CTX);
2012 if (CMD_ARGC == 0)
2014 command_print(CMD_CTX, "background polling: %s",
2015 jtag_poll_get_enabled() ? "on" : "off");
2016 command_print(CMD_CTX, "TAP: %s (%s)",
2017 target->tap->dotted_name,
2018 target->tap->enabled ? "enabled" : "disabled");
2019 if (!target->tap->enabled)
2020 return ERROR_OK;
2021 if ((retval = target_poll(target)) != ERROR_OK)
2022 return retval;
2023 if ((retval = target_arch_state(target)) != ERROR_OK)
2024 return retval;
2026 else if (CMD_ARGC == 1)
2028 bool enable;
2029 COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
2030 jtag_poll_set_enabled(enable);
2032 else
2034 return ERROR_COMMAND_SYNTAX_ERROR;
2037 return retval;
2040 COMMAND_HANDLER(handle_wait_halt_command)
2042 if (CMD_ARGC > 1)
2043 return ERROR_COMMAND_SYNTAX_ERROR;
2045 unsigned ms = 5000;
2046 if (1 == CMD_ARGC)
2048 int retval = parse_uint(CMD_ARGV[0], &ms);
2049 if (ERROR_OK != retval)
2051 command_print(CMD_CTX, "usage: %s [seconds]", CMD_NAME);
2052 return ERROR_COMMAND_SYNTAX_ERROR;
2054 // convert seconds (given) to milliseconds (needed)
2055 ms *= 1000;
2058 struct target *target = get_current_target(CMD_CTX);
2059 return target_wait_state(target, TARGET_HALTED, ms);
2062 /* wait for target state to change. The trick here is to have a low
2063 * latency for short waits and not to suck up all the CPU time
2064 * on longer waits.
2066 * After 500ms, keep_alive() is invoked
2068 int target_wait_state(struct target *target, enum target_state state, int ms)
2070 int retval;
2071 long long then = 0, cur;
2072 int once = 1;
2074 for (;;)
2076 if ((retval = target_poll(target)) != ERROR_OK)
2077 return retval;
2078 if (target->state == state)
2080 break;
2082 cur = timeval_ms();
2083 if (once)
2085 once = 0;
2086 then = timeval_ms();
2087 LOG_DEBUG("waiting for target %s...",
2088 Jim_Nvp_value2name_simple(nvp_target_state,state)->name);
2091 if (cur-then > 500)
2093 keep_alive();
2096 if ((cur-then) > ms)
2098 LOG_ERROR("timed out while waiting for target %s",
2099 Jim_Nvp_value2name_simple(nvp_target_state,state)->name);
2100 return ERROR_FAIL;
2104 return ERROR_OK;
2107 COMMAND_HANDLER(handle_halt_command)
2109 LOG_DEBUG("-");
2111 struct target *target = get_current_target(CMD_CTX);
2112 int retval = target_halt(target);
2113 if (ERROR_OK != retval)
2114 return retval;
2116 if (CMD_ARGC == 1)
2118 unsigned wait;
2119 retval = parse_uint(CMD_ARGV[0], &wait);
2120 if (ERROR_OK != retval)
2121 return ERROR_COMMAND_SYNTAX_ERROR;
2122 if (!wait)
2123 return ERROR_OK;
2126 return CALL_COMMAND_HANDLER(handle_wait_halt_command);
2129 COMMAND_HANDLER(handle_soft_reset_halt_command)
2131 struct target *target = get_current_target(CMD_CTX);
2133 LOG_USER("requesting target halt and executing a soft reset");
2135 target->type->soft_reset_halt(target);
2137 return ERROR_OK;
2140 COMMAND_HANDLER(handle_reset_command)
2142 if (CMD_ARGC > 1)
2143 return ERROR_COMMAND_SYNTAX_ERROR;
2145 enum target_reset_mode reset_mode = RESET_RUN;
2146 if (CMD_ARGC == 1)
2148 const Jim_Nvp *n;
2149 n = Jim_Nvp_name2value_simple(nvp_reset_modes, CMD_ARGV[0]);
2150 if ((n->name == NULL) || (n->value == RESET_UNKNOWN)) {
2151 return ERROR_COMMAND_SYNTAX_ERROR;
2153 reset_mode = n->value;
2156 /* reset *all* targets */
2157 return target_process_reset(CMD_CTX, reset_mode);
2161 COMMAND_HANDLER(handle_resume_command)
2163 int current = 1;
2164 if (CMD_ARGC > 1)
2165 return ERROR_COMMAND_SYNTAX_ERROR;
2167 struct target *target = get_current_target(CMD_CTX);
2168 target_handle_event(target, TARGET_EVENT_OLD_pre_resume);
2170 /* with no CMD_ARGV, resume from current pc, addr = 0,
2171 * with one arguments, addr = CMD_ARGV[0],
2172 * handle breakpoints, not debugging */
2173 uint32_t addr = 0;
2174 if (CMD_ARGC == 1)
2176 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2177 current = 0;
2180 return target_resume(target, current, addr, 1, 0);
2183 COMMAND_HANDLER(handle_step_command)
2185 if (CMD_ARGC > 1)
2186 return ERROR_COMMAND_SYNTAX_ERROR;
2188 LOG_DEBUG("-");
2190 /* with no CMD_ARGV, step from current pc, addr = 0,
2191 * with one argument addr = CMD_ARGV[0],
2192 * handle breakpoints, debugging */
2193 uint32_t addr = 0;
2194 int current_pc = 1;
2195 if (CMD_ARGC == 1)
2197 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2198 current_pc = 0;
2201 struct target *target = get_current_target(CMD_CTX);
2203 return target->type->step(target, current_pc, addr, 1);
2206 static void handle_md_output(struct command_context *cmd_ctx,
2207 struct target *target, uint32_t address, unsigned size,
2208 unsigned count, const uint8_t *buffer)
2210 const unsigned line_bytecnt = 32;
2211 unsigned line_modulo = line_bytecnt / size;
2213 char output[line_bytecnt * 4 + 1];
2214 unsigned output_len = 0;
2216 const char *value_fmt;
2217 switch (size) {
2218 case 4: value_fmt = "%8.8x "; break;
2219 case 2: value_fmt = "%4.2x "; break;
2220 case 1: value_fmt = "%2.2x "; break;
2221 default:
2222 LOG_ERROR("invalid memory read size: %u", size);
2223 exit(-1);
2226 for (unsigned i = 0; i < count; i++)
2228 if (i % line_modulo == 0)
2230 output_len += snprintf(output + output_len,
2231 sizeof(output) - output_len,
2232 "0x%8.8x: ",
2233 (unsigned)(address + (i*size)));
2236 uint32_t value = 0;
2237 const uint8_t *value_ptr = buffer + i * size;
2238 switch (size) {
2239 case 4: value = target_buffer_get_u32(target, value_ptr); break;
2240 case 2: value = target_buffer_get_u16(target, value_ptr); break;
2241 case 1: value = *value_ptr;
2243 output_len += snprintf(output + output_len,
2244 sizeof(output) - output_len,
2245 value_fmt, value);
2247 if ((i % line_modulo == line_modulo - 1) || (i == count - 1))
2249 command_print(cmd_ctx, "%s", output);
2250 output_len = 0;
2255 COMMAND_HANDLER(handle_md_command)
2257 if (CMD_ARGC < 1)
2258 return ERROR_COMMAND_SYNTAX_ERROR;
2260 unsigned size = 0;
2261 switch (CMD_NAME[2]) {
2262 case 'w': size = 4; break;
2263 case 'h': size = 2; break;
2264 case 'b': size = 1; break;
2265 default: return ERROR_COMMAND_SYNTAX_ERROR;
2268 bool physical=strcmp(CMD_ARGV[0], "phys")==0;
2269 int (*fn)(struct target *target,
2270 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
2271 if (physical)
2273 CMD_ARGC--;
2274 CMD_ARGV++;
2275 fn=target_read_phys_memory;
2276 } else
2278 fn=target_read_memory;
2280 if ((CMD_ARGC < 1) || (CMD_ARGC > 2))
2282 return ERROR_COMMAND_SYNTAX_ERROR;
2285 uint32_t address;
2286 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2288 unsigned count = 1;
2289 if (CMD_ARGC == 2)
2290 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[1], count);
2292 uint8_t *buffer = calloc(count, size);
2294 struct target *target = get_current_target(CMD_CTX);
2295 int retval = fn(target, address, size, count, buffer);
2296 if (ERROR_OK == retval)
2297 handle_md_output(CMD_CTX, target, address, size, count, buffer);
2299 free(buffer);
2301 return retval;
2304 COMMAND_HANDLER(handle_mw_command)
2306 if (CMD_ARGC < 2)
2308 return ERROR_COMMAND_SYNTAX_ERROR;
2310 bool physical=strcmp(CMD_ARGV[0], "phys")==0;
2311 int (*fn)(struct target *target,
2312 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
2313 if (physical)
2315 CMD_ARGC--;
2316 CMD_ARGV++;
2317 fn=target_write_phys_memory;
2318 } else
2320 fn=target_write_memory;
2322 if ((CMD_ARGC < 2) || (CMD_ARGC > 3))
2323 return ERROR_COMMAND_SYNTAX_ERROR;
2325 uint32_t address;
2326 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2328 uint32_t value;
2329 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
2331 unsigned count = 1;
2332 if (CMD_ARGC == 3)
2333 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[2], count);
2335 struct target *target = get_current_target(CMD_CTX);
2336 unsigned wordsize;
2337 uint8_t value_buf[4];
2338 switch (CMD_NAME[2])
2340 case 'w':
2341 wordsize = 4;
2342 target_buffer_set_u32(target, value_buf, value);
2343 break;
2344 case 'h':
2345 wordsize = 2;
2346 target_buffer_set_u16(target, value_buf, value);
2347 break;
2348 case 'b':
2349 wordsize = 1;
2350 value_buf[0] = value;
2351 break;
2352 default:
2353 return ERROR_COMMAND_SYNTAX_ERROR;
2355 for (unsigned i = 0; i < count; i++)
2357 int retval = fn(target,
2358 address + i * wordsize, wordsize, 1, value_buf);
2359 if (ERROR_OK != retval)
2360 return retval;
2361 keep_alive();
2364 return ERROR_OK;
2368 static COMMAND_HELPER(parse_load_image_command_CMD_ARGV, struct image *image,
2369 uint32_t *min_address, uint32_t *max_address)
2371 if (CMD_ARGC < 1 || CMD_ARGC > 5)
2372 return ERROR_COMMAND_SYNTAX_ERROR;
2374 /* a base address isn't always necessary,
2375 * default to 0x0 (i.e. don't relocate) */
2376 if (CMD_ARGC >= 2)
2378 uint32_t addr;
2379 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
2380 image->base_address = addr;
2381 image->base_address_set = 1;
2383 else
2384 image->base_address_set = 0;
2386 image->start_address_set = 0;
2388 if (CMD_ARGC >= 4)
2390 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], *min_address);
2392 if (CMD_ARGC == 5)
2394 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], *max_address);
2395 // use size (given) to find max (required)
2396 *max_address += *min_address;
2399 if (*min_address > *max_address)
2400 return ERROR_COMMAND_SYNTAX_ERROR;
2402 return ERROR_OK;
2405 COMMAND_HANDLER(handle_load_image_command)
2407 uint8_t *buffer;
2408 size_t buf_cnt;
2409 uint32_t image_size;
2410 uint32_t min_address = 0;
2411 uint32_t max_address = 0xffffffff;
2412 int i;
2413 struct image image;
2415 int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
2416 &image, &min_address, &max_address);
2417 if (ERROR_OK != retval)
2418 return retval;
2420 struct target *target = get_current_target(CMD_CTX);
2422 struct duration bench;
2423 duration_start(&bench);
2425 if (image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK)
2427 return ERROR_OK;
2430 image_size = 0x0;
2431 retval = ERROR_OK;
2432 for (i = 0; i < image.num_sections; i++)
2434 buffer = malloc(image.sections[i].size);
2435 if (buffer == NULL)
2437 command_print(CMD_CTX,
2438 "error allocating buffer for section (%d bytes)",
2439 (int)(image.sections[i].size));
2440 break;
2443 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2445 free(buffer);
2446 break;
2449 uint32_t offset = 0;
2450 uint32_t length = buf_cnt;
2452 /* DANGER!!! beware of unsigned comparision here!!! */
2454 if ((image.sections[i].base_address + buf_cnt >= min_address)&&
2455 (image.sections[i].base_address < max_address))
2457 if (image.sections[i].base_address < min_address)
2459 /* clip addresses below */
2460 offset += min_address-image.sections[i].base_address;
2461 length -= offset;
2464 if (image.sections[i].base_address + buf_cnt > max_address)
2466 length -= (image.sections[i].base_address + buf_cnt)-max_address;
2469 if ((retval = target_write_buffer(target, image.sections[i].base_address + offset, length, buffer + offset)) != ERROR_OK)
2471 free(buffer);
2472 break;
2474 image_size += length;
2475 command_print(CMD_CTX, "%u bytes written at address 0x%8.8" PRIx32 "",
2476 (unsigned int)length,
2477 image.sections[i].base_address + offset);
2480 free(buffer);
2483 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
2485 command_print(CMD_CTX, "downloaded %" PRIu32 " bytes "
2486 "in %fs (%0.3f kb/s)", image_size,
2487 duration_elapsed(&bench), duration_kbps(&bench, image_size));
2490 image_close(&image);
2492 return retval;
2496 COMMAND_HANDLER(handle_dump_image_command)
2498 struct fileio fileio;
2500 uint8_t buffer[560];
2501 int retvaltemp;
2504 struct target *target = get_current_target(CMD_CTX);
2506 if (CMD_ARGC != 3)
2508 command_print(CMD_CTX, "usage: dump_image <filename> <address> <size>");
2509 return ERROR_OK;
2512 uint32_t address;
2513 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], address);
2514 uint32_t size;
2515 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], size);
2517 if (fileio_open(&fileio, CMD_ARGV[0], FILEIO_WRITE, FILEIO_BINARY) != ERROR_OK)
2519 return ERROR_OK;
2522 struct duration bench;
2523 duration_start(&bench);
2525 int retval = ERROR_OK;
2526 while (size > 0)
2528 size_t size_written;
2529 uint32_t this_run_size = (size > 560) ? 560 : size;
2530 retval = target_read_buffer(target, address, this_run_size, buffer);
2531 if (retval != ERROR_OK)
2533 break;
2536 retval = fileio_write(&fileio, this_run_size, buffer, &size_written);
2537 if (retval != ERROR_OK)
2539 break;
2542 size -= this_run_size;
2543 address += this_run_size;
2546 if ((retvaltemp = fileio_close(&fileio)) != ERROR_OK)
2547 return retvaltemp;
2549 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
2551 command_print(CMD_CTX,
2552 "dumped %zu bytes in %fs (%0.3f kb/s)", fileio.size,
2553 duration_elapsed(&bench), duration_kbps(&bench, fileio.size));
2556 return retval;
2559 static COMMAND_HELPER(handle_verify_image_command_internal, int verify)
2561 uint8_t *buffer;
2562 size_t buf_cnt;
2563 uint32_t image_size;
2564 int i;
2565 int retval;
2566 uint32_t checksum = 0;
2567 uint32_t mem_checksum = 0;
2569 struct image image;
2571 struct target *target = get_current_target(CMD_CTX);
2573 if (CMD_ARGC < 1)
2575 return ERROR_COMMAND_SYNTAX_ERROR;
2578 if (!target)
2580 LOG_ERROR("no target selected");
2581 return ERROR_FAIL;
2584 struct duration bench;
2585 duration_start(&bench);
2587 if (CMD_ARGC >= 2)
2589 uint32_t addr;
2590 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
2591 image.base_address = addr;
2592 image.base_address_set = 1;
2594 else
2596 image.base_address_set = 0;
2597 image.base_address = 0x0;
2600 image.start_address_set = 0;
2602 if ((retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC == 3) ? CMD_ARGV[2] : NULL)) != ERROR_OK)
2604 return retval;
2607 image_size = 0x0;
2608 retval = ERROR_OK;
2609 for (i = 0; i < image.num_sections; i++)
2611 buffer = malloc(image.sections[i].size);
2612 if (buffer == NULL)
2614 command_print(CMD_CTX,
2615 "error allocating buffer for section (%d bytes)",
2616 (int)(image.sections[i].size));
2617 break;
2619 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2621 free(buffer);
2622 break;
2625 if (verify)
2627 /* calculate checksum of image */
2628 image_calculate_checksum(buffer, buf_cnt, &checksum);
2630 retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
2631 if (retval != ERROR_OK)
2633 free(buffer);
2634 break;
2637 if (checksum != mem_checksum)
2639 /* failed crc checksum, fall back to a binary compare */
2640 uint8_t *data;
2642 command_print(CMD_CTX, "checksum mismatch - attempting binary compare");
2644 data = (uint8_t*)malloc(buf_cnt);
2646 /* Can we use 32bit word accesses? */
2647 int size = 1;
2648 int count = buf_cnt;
2649 if ((count % 4) == 0)
2651 size *= 4;
2652 count /= 4;
2654 retval = target_read_memory(target, image.sections[i].base_address, size, count, data);
2655 if (retval == ERROR_OK)
2657 uint32_t t;
2658 for (t = 0; t < buf_cnt; t++)
2660 if (data[t] != buffer[t])
2662 command_print(CMD_CTX,
2663 "Verify operation failed address 0x%08x. Was 0x%02x instead of 0x%02x\n",
2664 (unsigned)(t + image.sections[i].base_address),
2665 data[t],
2666 buffer[t]);
2667 free(data);
2668 free(buffer);
2669 retval = ERROR_FAIL;
2670 goto done;
2672 if ((t%16384) == 0)
2674 keep_alive();
2679 free(data);
2681 } else
2683 command_print(CMD_CTX, "address 0x%08" PRIx32 " length 0x%08zx",
2684 image.sections[i].base_address,
2685 buf_cnt);
2688 free(buffer);
2689 image_size += buf_cnt;
2691 done:
2692 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
2694 command_print(CMD_CTX, "verified %" PRIu32 " bytes "
2695 "in %fs (%0.3f kb/s)", image_size,
2696 duration_elapsed(&bench), duration_kbps(&bench, image_size));
2699 image_close(&image);
2701 return retval;
2704 COMMAND_HANDLER(handle_verify_image_command)
2706 return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 1);
2709 COMMAND_HANDLER(handle_test_image_command)
2711 return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 0);
2714 static int handle_bp_command_list(struct command_context *cmd_ctx)
2716 struct target *target = get_current_target(cmd_ctx);
2717 struct breakpoint *breakpoint = target->breakpoints;
2718 while (breakpoint)
2720 if (breakpoint->type == BKPT_SOFT)
2722 char* buf = buf_to_str(breakpoint->orig_instr,
2723 breakpoint->length, 16);
2724 command_print(cmd_ctx, "0x%8.8" PRIx32 ", 0x%x, %i, 0x%s",
2725 breakpoint->address,
2726 breakpoint->length,
2727 breakpoint->set, buf);
2728 free(buf);
2730 else
2732 command_print(cmd_ctx, "0x%8.8" PRIx32 ", 0x%x, %i",
2733 breakpoint->address,
2734 breakpoint->length, breakpoint->set);
2737 breakpoint = breakpoint->next;
2739 return ERROR_OK;
2742 static int handle_bp_command_set(struct command_context *cmd_ctx,
2743 uint32_t addr, uint32_t length, int hw)
2745 struct target *target = get_current_target(cmd_ctx);
2746 int retval = breakpoint_add(target, addr, length, hw);
2747 if (ERROR_OK == retval)
2748 command_print(cmd_ctx, "breakpoint set at 0x%8.8" PRIx32 "", addr);
2749 else
2750 LOG_ERROR("Failure setting breakpoint");
2751 return retval;
2754 COMMAND_HANDLER(handle_bp_command)
2756 if (CMD_ARGC == 0)
2757 return handle_bp_command_list(CMD_CTX);
2759 if (CMD_ARGC < 2 || CMD_ARGC > 3)
2761 command_print(CMD_CTX, "usage: bp <address> <length> ['hw']");
2762 return ERROR_COMMAND_SYNTAX_ERROR;
2765 uint32_t addr;
2766 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2767 uint32_t length;
2768 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
2770 int hw = BKPT_SOFT;
2771 if (CMD_ARGC == 3)
2773 if (strcmp(CMD_ARGV[2], "hw") == 0)
2774 hw = BKPT_HARD;
2775 else
2776 return ERROR_COMMAND_SYNTAX_ERROR;
2779 return handle_bp_command_set(CMD_CTX, addr, length, hw);
2782 COMMAND_HANDLER(handle_rbp_command)
2784 if (CMD_ARGC != 1)
2785 return ERROR_COMMAND_SYNTAX_ERROR;
2787 uint32_t addr;
2788 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2790 struct target *target = get_current_target(CMD_CTX);
2791 breakpoint_remove(target, addr);
2793 return ERROR_OK;
2796 COMMAND_HANDLER(handle_wp_command)
2798 struct target *target = get_current_target(CMD_CTX);
2800 if (CMD_ARGC == 0)
2802 struct watchpoint *watchpoint = target->watchpoints;
2804 while (watchpoint)
2806 command_print(CMD_CTX, "address: 0x%8.8" PRIx32
2807 ", len: 0x%8.8" PRIx32
2808 ", r/w/a: %i, value: 0x%8.8" PRIx32
2809 ", mask: 0x%8.8" PRIx32,
2810 watchpoint->address,
2811 watchpoint->length,
2812 (int)watchpoint->rw,
2813 watchpoint->value,
2814 watchpoint->mask);
2815 watchpoint = watchpoint->next;
2817 return ERROR_OK;
2820 enum watchpoint_rw type = WPT_ACCESS;
2821 uint32_t addr = 0;
2822 uint32_t length = 0;
2823 uint32_t data_value = 0x0;
2824 uint32_t data_mask = 0xffffffff;
2826 switch (CMD_ARGC)
2828 case 5:
2829 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], data_mask);
2830 // fall through
2831 case 4:
2832 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], data_value);
2833 // fall through
2834 case 3:
2835 switch (CMD_ARGV[2][0])
2837 case 'r':
2838 type = WPT_READ;
2839 break;
2840 case 'w':
2841 type = WPT_WRITE;
2842 break;
2843 case 'a':
2844 type = WPT_ACCESS;
2845 break;
2846 default:
2847 LOG_ERROR("invalid watchpoint mode ('%c')", CMD_ARGV[2][0]);
2848 return ERROR_COMMAND_SYNTAX_ERROR;
2850 // fall through
2851 case 2:
2852 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
2853 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2854 break;
2856 default:
2857 command_print(CMD_CTX, "usage: wp [address length "
2858 "[(r|w|a) [value [mask]]]]");
2859 return ERROR_COMMAND_SYNTAX_ERROR;
2862 int retval = watchpoint_add(target, addr, length, type,
2863 data_value, data_mask);
2864 if (ERROR_OK != retval)
2865 LOG_ERROR("Failure setting watchpoints");
2867 return retval;
2870 COMMAND_HANDLER(handle_rwp_command)
2872 if (CMD_ARGC != 1)
2873 return ERROR_COMMAND_SYNTAX_ERROR;
2875 uint32_t addr;
2876 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2878 struct target *target = get_current_target(CMD_CTX);
2879 watchpoint_remove(target, addr);
2881 return ERROR_OK;
2886 * Translate a virtual address to a physical address.
2888 * The low-level target implementation must have logged a detailed error
2889 * which is forwarded to telnet/GDB session.
2891 COMMAND_HANDLER(handle_virt2phys_command)
2893 if (CMD_ARGC != 1)
2894 return ERROR_COMMAND_SYNTAX_ERROR;
2896 uint32_t va;
2897 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], va);
2898 uint32_t pa;
2900 struct target *target = get_current_target(CMD_CTX);
2901 int retval = target->type->virt2phys(target, va, &pa);
2902 if (retval == ERROR_OK)
2903 command_print(CMD_CTX, "Physical address 0x%08" PRIx32 "", pa);
2905 return retval;
2908 static void writeData(FILE *f, const void *data, size_t len)
2910 size_t written = fwrite(data, 1, len, f);
2911 if (written != len)
2912 LOG_ERROR("failed to write %zu bytes: %s", len, strerror(errno));
2915 static void writeLong(FILE *f, int l)
2917 int i;
2918 for (i = 0; i < 4; i++)
2920 char c = (l >> (i*8))&0xff;
2921 writeData(f, &c, 1);
2926 static void writeString(FILE *f, char *s)
2928 writeData(f, s, strlen(s));
2931 /* Dump a gmon.out histogram file. */
2932 static void writeGmon(uint32_t *samples, uint32_t sampleNum, const char *filename)
2934 uint32_t i;
2935 FILE *f = fopen(filename, "w");
2936 if (f == NULL)
2937 return;
2938 writeString(f, "gmon");
2939 writeLong(f, 0x00000001); /* Version */
2940 writeLong(f, 0); /* padding */
2941 writeLong(f, 0); /* padding */
2942 writeLong(f, 0); /* padding */
2944 uint8_t zero = 0; /* GMON_TAG_TIME_HIST */
2945 writeData(f, &zero, 1);
2947 /* figure out bucket size */
2948 uint32_t min = samples[0];
2949 uint32_t max = samples[0];
2950 for (i = 0; i < sampleNum; i++)
2952 if (min > samples[i])
2954 min = samples[i];
2956 if (max < samples[i])
2958 max = samples[i];
2962 int addressSpace = (max-min + 1);
2964 static const uint32_t maxBuckets = 256 * 1024; /* maximum buckets. */
2965 uint32_t length = addressSpace;
2966 if (length > maxBuckets)
2968 length = maxBuckets;
2970 int *buckets = malloc(sizeof(int)*length);
2971 if (buckets == NULL)
2973 fclose(f);
2974 return;
2976 memset(buckets, 0, sizeof(int)*length);
2977 for (i = 0; i < sampleNum;i++)
2979 uint32_t address = samples[i];
2980 long long a = address-min;
2981 long long b = length-1;
2982 long long c = addressSpace-1;
2983 int index = (a*b)/c; /* danger!!!! int32 overflows */
2984 buckets[index]++;
2987 /* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */
2988 writeLong(f, min); /* low_pc */
2989 writeLong(f, max); /* high_pc */
2990 writeLong(f, length); /* # of samples */
2991 writeLong(f, 64000000); /* 64MHz */
2992 writeString(f, "seconds");
2993 for (i = 0; i < (15-strlen("seconds")); i++)
2994 writeData(f, &zero, 1);
2995 writeString(f, "s");
2997 /*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */
2999 char *data = malloc(2*length);
3000 if (data != NULL)
3002 for (i = 0; i < length;i++)
3004 int val;
3005 val = buckets[i];
3006 if (val > 65535)
3008 val = 65535;
3010 data[i*2]=val&0xff;
3011 data[i*2 + 1]=(val >> 8)&0xff;
3013 free(buckets);
3014 writeData(f, data, length * 2);
3015 free(data);
3016 } else
3018 free(buckets);
3021 fclose(f);
3024 /* profiling samples the CPU PC as quickly as OpenOCD is able, which will be used as a random sampling of PC */
3025 COMMAND_HANDLER(handle_profile_command)
3027 struct target *target = get_current_target(CMD_CTX);
3028 struct timeval timeout, now;
3030 gettimeofday(&timeout, NULL);
3031 if (CMD_ARGC != 2)
3033 return ERROR_COMMAND_SYNTAX_ERROR;
3035 unsigned offset;
3036 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], offset);
3038 timeval_add_time(&timeout, offset, 0);
3040 command_print(CMD_CTX, "Starting profiling. Halting and resuming the target as often as we can...");
3042 static const int maxSample = 10000;
3043 uint32_t *samples = malloc(sizeof(uint32_t)*maxSample);
3044 if (samples == NULL)
3045 return ERROR_OK;
3047 int numSamples = 0;
3048 /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
3049 struct reg *reg = register_get_by_name(target->reg_cache, "pc", 1);
3051 for (;;)
3053 int retval;
3054 target_poll(target);
3055 if (target->state == TARGET_HALTED)
3057 uint32_t t=*((uint32_t *)reg->value);
3058 samples[numSamples++]=t;
3059 retval = target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
3060 target_poll(target);
3061 alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
3062 } else if (target->state == TARGET_RUNNING)
3064 /* We want to quickly sample the PC. */
3065 if ((retval = target_halt(target)) != ERROR_OK)
3067 free(samples);
3068 return retval;
3070 } else
3072 command_print(CMD_CTX, "Target not halted or running");
3073 retval = ERROR_OK;
3074 break;
3076 if (retval != ERROR_OK)
3078 break;
3081 gettimeofday(&now, NULL);
3082 if ((numSamples >= maxSample) || ((now.tv_sec >= timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
3084 command_print(CMD_CTX, "Profiling completed. %d samples.", numSamples);
3085 if ((retval = target_poll(target)) != ERROR_OK)
3087 free(samples);
3088 return retval;
3090 if (target->state == TARGET_HALTED)
3092 target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
3094 if ((retval = target_poll(target)) != ERROR_OK)
3096 free(samples);
3097 return retval;
3099 writeGmon(samples, numSamples, CMD_ARGV[1]);
3100 command_print(CMD_CTX, "Wrote %s", CMD_ARGV[1]);
3101 break;
3104 free(samples);
3106 return ERROR_OK;
3109 static int new_int_array_element(Jim_Interp * interp, const char *varname, int idx, uint32_t val)
3111 char *namebuf;
3112 Jim_Obj *nameObjPtr, *valObjPtr;
3113 int result;
3115 namebuf = alloc_printf("%s(%d)", varname, idx);
3116 if (!namebuf)
3117 return JIM_ERR;
3119 nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3120 valObjPtr = Jim_NewIntObj(interp, val);
3121 if (!nameObjPtr || !valObjPtr)
3123 free(namebuf);
3124 return JIM_ERR;
3127 Jim_IncrRefCount(nameObjPtr);
3128 Jim_IncrRefCount(valObjPtr);
3129 result = Jim_SetVariable(interp, nameObjPtr, valObjPtr);
3130 Jim_DecrRefCount(interp, nameObjPtr);
3131 Jim_DecrRefCount(interp, valObjPtr);
3132 free(namebuf);
3133 /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
3134 return result;
3137 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3139 struct command_context *context;
3140 struct target *target;
3142 context = Jim_GetAssocData(interp, "context");
3143 if (context == NULL)
3145 LOG_ERROR("mem2array: no command context");
3146 return JIM_ERR;
3148 target = get_current_target(context);
3149 if (target == NULL)
3151 LOG_ERROR("mem2array: no current target");
3152 return JIM_ERR;
3155 return target_mem2array(interp, target, argc-1, argv + 1);
3158 static int target_mem2array(Jim_Interp *interp, struct target *target, int argc, Jim_Obj *const *argv)
3160 long l;
3161 uint32_t width;
3162 int len;
3163 uint32_t addr;
3164 uint32_t count;
3165 uint32_t v;
3166 const char *varname;
3167 int n, e, retval;
3168 uint32_t i;
3170 /* argv[1] = name of array to receive the data
3171 * argv[2] = desired width
3172 * argv[3] = memory address
3173 * argv[4] = count of times to read
3175 if (argc != 4) {
3176 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
3177 return JIM_ERR;
3179 varname = Jim_GetString(argv[0], &len);
3180 /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3182 e = Jim_GetLong(interp, argv[1], &l);
3183 width = l;
3184 if (e != JIM_OK) {
3185 return e;
3188 e = Jim_GetLong(interp, argv[2], &l);
3189 addr = l;
3190 if (e != JIM_OK) {
3191 return e;
3193 e = Jim_GetLong(interp, argv[3], &l);
3194 len = l;
3195 if (e != JIM_OK) {
3196 return e;
3198 switch (width) {
3199 case 8:
3200 width = 1;
3201 break;
3202 case 16:
3203 width = 2;
3204 break;
3205 case 32:
3206 width = 4;
3207 break;
3208 default:
3209 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3210 Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
3211 return JIM_ERR;
3213 if (len == 0) {
3214 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3215 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL);
3216 return JIM_ERR;
3218 if ((addr + (len * width)) < addr) {
3219 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3220 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL);
3221 return JIM_ERR;
3223 /* absurd transfer size? */
3224 if (len > 65536) {
3225 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3226 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: absurd > 64K item request", NULL);
3227 return JIM_ERR;
3230 if ((width == 1) ||
3231 ((width == 2) && ((addr & 1) == 0)) ||
3232 ((width == 4) && ((addr & 3) == 0))) {
3233 /* all is well */
3234 } else {
3235 char buf[100];
3236 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3237 sprintf(buf, "mem2array address: 0x%08" PRIx32 " is not aligned for %" PRId32 " byte reads",
3238 addr,
3239 width);
3240 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3241 return JIM_ERR;
3244 /* Transfer loop */
3246 /* index counter */
3247 n = 0;
3249 size_t buffersize = 4096;
3250 uint8_t *buffer = malloc(buffersize);
3251 if (buffer == NULL)
3252 return JIM_ERR;
3254 /* assume ok */
3255 e = JIM_OK;
3256 while (len) {
3257 /* Slurp... in buffer size chunks */
3259 count = len; /* in objects.. */
3260 if (count > (buffersize/width)) {
3261 count = (buffersize/width);
3264 retval = target_read_memory(target, addr, width, count, buffer);
3265 if (retval != ERROR_OK) {
3266 /* BOO !*/
3267 LOG_ERROR("mem2array: Read @ 0x%08x, w=%d, cnt=%d, failed",
3268 (unsigned int)addr,
3269 (int)width,
3270 (int)count);
3271 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3272 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
3273 e = JIM_ERR;
3274 len = 0;
3275 } else {
3276 v = 0; /* shut up gcc */
3277 for (i = 0 ;i < count ;i++, n++) {
3278 switch (width) {
3279 case 4:
3280 v = target_buffer_get_u32(target, &buffer[i*width]);
3281 break;
3282 case 2:
3283 v = target_buffer_get_u16(target, &buffer[i*width]);
3284 break;
3285 case 1:
3286 v = buffer[i] & 0x0ff;
3287 break;
3289 new_int_array_element(interp, varname, n, v);
3291 len -= count;
3295 free(buffer);
3297 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3299 return JIM_OK;
3302 static int get_int_array_element(Jim_Interp * interp, const char *varname, int idx, uint32_t *val)
3304 char *namebuf;
3305 Jim_Obj *nameObjPtr, *valObjPtr;
3306 int result;
3307 long l;
3309 namebuf = alloc_printf("%s(%d)", varname, idx);
3310 if (!namebuf)
3311 return JIM_ERR;
3313 nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3314 if (!nameObjPtr)
3316 free(namebuf);
3317 return JIM_ERR;
3320 Jim_IncrRefCount(nameObjPtr);
3321 valObjPtr = Jim_GetVariable(interp, nameObjPtr, JIM_ERRMSG);
3322 Jim_DecrRefCount(interp, nameObjPtr);
3323 free(namebuf);
3324 if (valObjPtr == NULL)
3325 return JIM_ERR;
3327 result = Jim_GetLong(interp, valObjPtr, &l);
3328 /* printf("%s(%d) => 0%08x\n", varname, idx, val); */
3329 *val = l;
3330 return result;
3333 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3335 struct command_context *context;
3336 struct target *target;
3338 context = Jim_GetAssocData(interp, "context");
3339 if (context == NULL) {
3340 LOG_ERROR("array2mem: no command context");
3341 return JIM_ERR;
3343 target = get_current_target(context);
3344 if (target == NULL) {
3345 LOG_ERROR("array2mem: no current target");
3346 return JIM_ERR;
3349 return target_array2mem(interp,target, argc-1, argv + 1);
3351 static int target_array2mem(Jim_Interp *interp, struct target *target, int argc, Jim_Obj *const *argv)
3353 long l;
3354 uint32_t width;
3355 int len;
3356 uint32_t addr;
3357 uint32_t count;
3358 uint32_t v;
3359 const char *varname;
3360 int n, e, retval;
3361 uint32_t i;
3363 /* argv[1] = name of array to get the data
3364 * argv[2] = desired width
3365 * argv[3] = memory address
3366 * argv[4] = count to write
3368 if (argc != 4) {
3369 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
3370 return JIM_ERR;
3372 varname = Jim_GetString(argv[0], &len);
3373 /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3375 e = Jim_GetLong(interp, argv[1], &l);
3376 width = l;
3377 if (e != JIM_OK) {
3378 return e;
3381 e = Jim_GetLong(interp, argv[2], &l);
3382 addr = l;
3383 if (e != JIM_OK) {
3384 return e;
3386 e = Jim_GetLong(interp, argv[3], &l);
3387 len = l;
3388 if (e != JIM_OK) {
3389 return e;
3391 switch (width) {
3392 case 8:
3393 width = 1;
3394 break;
3395 case 16:
3396 width = 2;
3397 break;
3398 case 32:
3399 width = 4;
3400 break;
3401 default:
3402 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3403 Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
3404 return JIM_ERR;
3406 if (len == 0) {
3407 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3408 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: zero width read?", NULL);
3409 return JIM_ERR;
3411 if ((addr + (len * width)) < addr) {
3412 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3413 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: addr + len - wraps to zero?", NULL);
3414 return JIM_ERR;
3416 /* absurd transfer size? */
3417 if (len > 65536) {
3418 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3419 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: absurd > 64K item request", NULL);
3420 return JIM_ERR;
3423 if ((width == 1) ||
3424 ((width == 2) && ((addr & 1) == 0)) ||
3425 ((width == 4) && ((addr & 3) == 0))) {
3426 /* all is well */
3427 } else {
3428 char buf[100];
3429 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3430 sprintf(buf, "array2mem address: 0x%08x is not aligned for %d byte reads",
3431 (unsigned int)addr,
3432 (int)width);
3433 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3434 return JIM_ERR;
3437 /* Transfer loop */
3439 /* index counter */
3440 n = 0;
3441 /* assume ok */
3442 e = JIM_OK;
3444 size_t buffersize = 4096;
3445 uint8_t *buffer = malloc(buffersize);
3446 if (buffer == NULL)
3447 return JIM_ERR;
3449 while (len) {
3450 /* Slurp... in buffer size chunks */
3452 count = len; /* in objects.. */
3453 if (count > (buffersize/width)) {
3454 count = (buffersize/width);
3457 v = 0; /* shut up gcc */
3458 for (i = 0 ;i < count ;i++, n++) {
3459 get_int_array_element(interp, varname, n, &v);
3460 switch (width) {
3461 case 4:
3462 target_buffer_set_u32(target, &buffer[i*width], v);
3463 break;
3464 case 2:
3465 target_buffer_set_u16(target, &buffer[i*width], v);
3466 break;
3467 case 1:
3468 buffer[i] = v & 0x0ff;
3469 break;
3472 len -= count;
3474 retval = target_write_memory(target, addr, width, count, buffer);
3475 if (retval != ERROR_OK) {
3476 /* BOO !*/
3477 LOG_ERROR("array2mem: Write @ 0x%08x, w=%d, cnt=%d, failed",
3478 (unsigned int)addr,
3479 (int)width,
3480 (int)count);
3481 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3482 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: cannot read memory", NULL);
3483 e = JIM_ERR;
3484 len = 0;
3488 free(buffer);
3490 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3492 return JIM_OK;
3495 void target_all_handle_event(enum target_event e)
3497 struct target *target;
3499 LOG_DEBUG("**all*targets: event: %d, %s",
3500 (int)e,
3501 Jim_Nvp_value2name_simple(nvp_target_event, e)->name);
3503 target = all_targets;
3504 while (target) {
3505 target_handle_event(target, e);
3506 target = target->next;
3511 /* FIX? should we propagate errors here rather than printing them
3512 * and continuing?
3514 void target_handle_event(struct target *target, enum target_event e)
3516 struct target_event_action *teap;
3518 for (teap = target->event_action; teap != NULL; teap = teap->next) {
3519 if (teap->event == e) {
3520 LOG_DEBUG("target: (%d) %s (%s) event: %d (%s) action: %s",
3521 target->target_number,
3522 target_name(target),
3523 target_type_name(target),
3525 Jim_Nvp_value2name_simple(nvp_target_event, e)->name,
3526 Jim_GetString(teap->body, NULL));
3527 if (Jim_EvalObj(interp, teap->body) != JIM_OK)
3529 Jim_PrintErrorMessage(interp);
3536 * Returns true only if the target has a handler for the specified event.
3538 bool target_has_event_action(struct target *target, enum target_event event)
3540 struct target_event_action *teap;
3542 for (teap = target->event_action; teap != NULL; teap = teap->next) {
3543 if (teap->event == event)
3544 return true;
3546 return false;
3549 enum target_cfg_param {
3550 TCFG_TYPE,
3551 TCFG_EVENT,
3552 TCFG_WORK_AREA_VIRT,
3553 TCFG_WORK_AREA_PHYS,
3554 TCFG_WORK_AREA_SIZE,
3555 TCFG_WORK_AREA_BACKUP,
3556 TCFG_ENDIAN,
3557 TCFG_VARIANT,
3558 TCFG_CHAIN_POSITION,
3561 static Jim_Nvp nvp_config_opts[] = {
3562 { .name = "-type", .value = TCFG_TYPE },
3563 { .name = "-event", .value = TCFG_EVENT },
3564 { .name = "-work-area-virt", .value = TCFG_WORK_AREA_VIRT },
3565 { .name = "-work-area-phys", .value = TCFG_WORK_AREA_PHYS },
3566 { .name = "-work-area-size", .value = TCFG_WORK_AREA_SIZE },
3567 { .name = "-work-area-backup", .value = TCFG_WORK_AREA_BACKUP },
3568 { .name = "-endian" , .value = TCFG_ENDIAN },
3569 { .name = "-variant", .value = TCFG_VARIANT },
3570 { .name = "-chain-position", .value = TCFG_CHAIN_POSITION },
3572 { .name = NULL, .value = -1 }
3575 static int target_configure(Jim_GetOptInfo *goi, struct target *target)
3577 Jim_Nvp *n;
3578 Jim_Obj *o;
3579 jim_wide w;
3580 char *cp;
3581 int e;
3583 /* parse config or cget options ... */
3584 while (goi->argc > 0) {
3585 Jim_SetEmptyResult(goi->interp);
3586 /* Jim_GetOpt_Debug(goi); */
3588 if (target->type->target_jim_configure) {
3589 /* target defines a configure function */
3590 /* target gets first dibs on parameters */
3591 e = (*(target->type->target_jim_configure))(target, goi);
3592 if (e == JIM_OK) {
3593 /* more? */
3594 continue;
3596 if (e == JIM_ERR) {
3597 /* An error */
3598 return e;
3600 /* otherwise we 'continue' below */
3602 e = Jim_GetOpt_Nvp(goi, nvp_config_opts, &n);
3603 if (e != JIM_OK) {
3604 Jim_GetOpt_NvpUnknown(goi, nvp_config_opts, 0);
3605 return e;
3607 switch (n->value) {
3608 case TCFG_TYPE:
3609 /* not setable */
3610 if (goi->isconfigure) {
3611 Jim_SetResult_sprintf(goi->interp,
3612 "not settable: %s", n->name);
3613 return JIM_ERR;
3614 } else {
3615 no_params:
3616 if (goi->argc != 0) {
3617 Jim_WrongNumArgs(goi->interp,
3618 goi->argc, goi->argv,
3619 "NO PARAMS");
3620 return JIM_ERR;
3623 Jim_SetResultString(goi->interp,
3624 target_type_name(target), -1);
3625 /* loop for more */
3626 break;
3627 case TCFG_EVENT:
3628 if (goi->argc == 0) {
3629 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ...");
3630 return JIM_ERR;
3633 e = Jim_GetOpt_Nvp(goi, nvp_target_event, &n);
3634 if (e != JIM_OK) {
3635 Jim_GetOpt_NvpUnknown(goi, nvp_target_event, 1);
3636 return e;
3639 if (goi->isconfigure) {
3640 if (goi->argc != 1) {
3641 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ?EVENT-BODY?");
3642 return JIM_ERR;
3644 } else {
3645 if (goi->argc != 0) {
3646 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name?");
3647 return JIM_ERR;
3652 struct target_event_action *teap;
3654 teap = target->event_action;
3655 /* replace existing? */
3656 while (teap) {
3657 if (teap->event == (enum target_event)n->value) {
3658 break;
3660 teap = teap->next;
3663 if (goi->isconfigure) {
3664 bool replace = true;
3665 if (teap == NULL) {
3666 /* create new */
3667 teap = calloc(1, sizeof(*teap));
3668 replace = false;
3670 teap->event = n->value;
3671 Jim_GetOpt_Obj(goi, &o);
3672 if (teap->body) {
3673 Jim_DecrRefCount(interp, teap->body);
3675 teap->body = Jim_DuplicateObj(goi->interp, o);
3677 * FIXME:
3678 * Tcl/TK - "tk events" have a nice feature.
3679 * See the "BIND" command.
3680 * We should support that here.
3681 * You can specify %X and %Y in the event code.
3682 * The idea is: %T - target name.
3683 * The idea is: %N - target number
3684 * The idea is: %E - event name.
3686 Jim_IncrRefCount(teap->body);
3688 if (!replace)
3690 /* add to head of event list */
3691 teap->next = target->event_action;
3692 target->event_action = teap;
3694 Jim_SetEmptyResult(goi->interp);
3695 } else {
3696 /* get */
3697 if (teap == NULL) {
3698 Jim_SetEmptyResult(goi->interp);
3699 } else {
3700 Jim_SetResult(goi->interp, Jim_DuplicateObj(goi->interp, teap->body));
3704 /* loop for more */
3705 break;
3707 case TCFG_WORK_AREA_VIRT:
3708 if (goi->isconfigure) {
3709 target_free_all_working_areas(target);
3710 e = Jim_GetOpt_Wide(goi, &w);
3711 if (e != JIM_OK) {
3712 return e;
3714 target->working_area_virt = w;
3715 target->working_area_virt_spec = true;
3716 } else {
3717 if (goi->argc != 0) {
3718 goto no_params;
3721 Jim_SetResult(interp, Jim_NewIntObj(goi->interp, target->working_area_virt));
3722 /* loop for more */
3723 break;
3725 case TCFG_WORK_AREA_PHYS:
3726 if (goi->isconfigure) {
3727 target_free_all_working_areas(target);
3728 e = Jim_GetOpt_Wide(goi, &w);
3729 if (e != JIM_OK) {
3730 return e;
3732 target->working_area_phys = w;
3733 target->working_area_phys_spec = true;
3734 } else {
3735 if (goi->argc != 0) {
3736 goto no_params;
3739 Jim_SetResult(interp, Jim_NewIntObj(goi->interp, target->working_area_phys));
3740 /* loop for more */
3741 break;
3743 case TCFG_WORK_AREA_SIZE:
3744 if (goi->isconfigure) {
3745 target_free_all_working_areas(target);
3746 e = Jim_GetOpt_Wide(goi, &w);
3747 if (e != JIM_OK) {
3748 return e;
3750 target->working_area_size = w;
3751 } else {
3752 if (goi->argc != 0) {
3753 goto no_params;
3756 Jim_SetResult(interp, Jim_NewIntObj(goi->interp, target->working_area_size));
3757 /* loop for more */
3758 break;
3760 case TCFG_WORK_AREA_BACKUP:
3761 if (goi->isconfigure) {
3762 target_free_all_working_areas(target);
3763 e = Jim_GetOpt_Wide(goi, &w);
3764 if (e != JIM_OK) {
3765 return e;
3767 /* make this exactly 1 or 0 */
3768 target->backup_working_area = (!!w);
3769 } else {
3770 if (goi->argc != 0) {
3771 goto no_params;
3774 Jim_SetResult(interp, Jim_NewIntObj(goi->interp, target->backup_working_area));
3775 /* loop for more e*/
3776 break;
3778 case TCFG_ENDIAN:
3779 if (goi->isconfigure) {
3780 e = Jim_GetOpt_Nvp(goi, nvp_target_endian, &n);
3781 if (e != JIM_OK) {
3782 Jim_GetOpt_NvpUnknown(goi, nvp_target_endian, 1);
3783 return e;
3785 target->endianness = n->value;
3786 } else {
3787 if (goi->argc != 0) {
3788 goto no_params;
3791 n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
3792 if (n->name == NULL) {
3793 target->endianness = TARGET_LITTLE_ENDIAN;
3794 n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
3796 Jim_SetResultString(goi->interp, n->name, -1);
3797 /* loop for more */
3798 break;
3800 case TCFG_VARIANT:
3801 if (goi->isconfigure) {
3802 if (goi->argc < 1) {
3803 Jim_SetResult_sprintf(goi->interp,
3804 "%s ?STRING?",
3805 n->name);
3806 return JIM_ERR;
3808 if (target->variant) {
3809 free((void *)(target->variant));
3811 e = Jim_GetOpt_String(goi, &cp, NULL);
3812 target->variant = strdup(cp);
3813 } else {
3814 if (goi->argc != 0) {
3815 goto no_params;
3818 Jim_SetResultString(goi->interp, target->variant,-1);
3819 /* loop for more */
3820 break;
3821 case TCFG_CHAIN_POSITION:
3822 if (goi->isconfigure) {
3823 Jim_Obj *o;
3824 struct jtag_tap *tap;
3825 target_free_all_working_areas(target);
3826 e = Jim_GetOpt_Obj(goi, &o);
3827 if (e != JIM_OK) {
3828 return e;
3830 tap = jtag_tap_by_jim_obj(goi->interp, o);
3831 if (tap == NULL) {
3832 return JIM_ERR;
3834 /* make this exactly 1 or 0 */
3835 target->tap = tap;
3836 } else {
3837 if (goi->argc != 0) {
3838 goto no_params;
3841 Jim_SetResultString(interp, target->tap->dotted_name, -1);
3842 /* loop for more e*/
3843 break;
3845 } /* while (goi->argc) */
3848 /* done - we return */
3849 return JIM_OK;
3852 /** this is the 'tcl' handler for the target specific command */
3853 static int tcl_target_func(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3855 Jim_GetOptInfo goi;
3856 jim_wide a,b,c;
3857 int x,y,z;
3858 uint8_t target_buf[32];
3859 Jim_Nvp *n;
3860 struct target *target;
3861 struct command_context *cmd_ctx;
3862 int e;
3864 enum {
3865 TS_CMD_CONFIGURE,
3866 TS_CMD_CGET,
3868 TS_CMD_MWW, TS_CMD_MWH, TS_CMD_MWB,
3869 TS_CMD_MDW, TS_CMD_MDH, TS_CMD_MDB,
3870 TS_CMD_MRW, TS_CMD_MRH, TS_CMD_MRB,
3871 TS_CMD_MEM2ARRAY, TS_CMD_ARRAY2MEM,
3872 TS_CMD_EXAMINE,
3873 TS_CMD_POLL,
3874 TS_CMD_RESET,
3875 TS_CMD_HALT,
3876 TS_CMD_WAITSTATE,
3877 TS_CMD_EVENTLIST,
3878 TS_CMD_CURSTATE,
3879 TS_CMD_INVOKE_EVENT,
3882 static const Jim_Nvp target_options[] = {
3883 { .name = "configure", .value = TS_CMD_CONFIGURE },
3884 { .name = "cget", .value = TS_CMD_CGET },
3885 { .name = "mww", .value = TS_CMD_MWW },
3886 { .name = "mwh", .value = TS_CMD_MWH },
3887 { .name = "mwb", .value = TS_CMD_MWB },
3888 { .name = "mdw", .value = TS_CMD_MDW },
3889 { .name = "mdh", .value = TS_CMD_MDH },
3890 { .name = "mdb", .value = TS_CMD_MDB },
3891 { .name = "mem2array", .value = TS_CMD_MEM2ARRAY },
3892 { .name = "array2mem", .value = TS_CMD_ARRAY2MEM },
3893 { .name = "eventlist", .value = TS_CMD_EVENTLIST },
3894 { .name = "curstate", .value = TS_CMD_CURSTATE },
3896 { .name = "arp_examine", .value = TS_CMD_EXAMINE },
3897 { .name = "arp_poll", .value = TS_CMD_POLL },
3898 { .name = "arp_reset", .value = TS_CMD_RESET },
3899 { .name = "arp_halt", .value = TS_CMD_HALT },
3900 { .name = "arp_waitstate", .value = TS_CMD_WAITSTATE },
3901 { .name = "invoke-event", .value = TS_CMD_INVOKE_EVENT },
3903 { .name = NULL, .value = -1 },
3906 /* go past the "command" */
3907 Jim_GetOpt_Setup(&goi, interp, argc-1, argv + 1);
3909 target = Jim_CmdPrivData(goi.interp);
3910 cmd_ctx = Jim_GetAssocData(goi.interp, "context");
3912 /* commands here are in an NVP table */
3913 e = Jim_GetOpt_Nvp(&goi, target_options, &n);
3914 if (e != JIM_OK) {
3915 Jim_GetOpt_NvpUnknown(&goi, target_options, 0);
3916 return e;
3918 /* Assume blank result */
3919 Jim_SetEmptyResult(goi.interp);
3921 switch (n->value) {
3922 case TS_CMD_CONFIGURE:
3923 if (goi.argc < 2) {
3924 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv, "missing: -option VALUE ...");
3925 return JIM_ERR;
3927 goi.isconfigure = 1;
3928 return target_configure(&goi, target);
3929 case TS_CMD_CGET:
3930 // some things take params
3931 if (goi.argc < 1) {
3932 Jim_WrongNumArgs(goi.interp, 0, goi.argv, "missing: ?-option?");
3933 return JIM_ERR;
3935 goi.isconfigure = 0;
3936 return target_configure(&goi, target);
3937 break;
3938 case TS_CMD_MWW:
3939 case TS_CMD_MWH:
3940 case TS_CMD_MWB:
3941 /* argv[0] = cmd
3942 * argv[1] = address
3943 * argv[2] = data
3944 * argv[3] = optional count.
3947 if ((goi.argc == 2) || (goi.argc == 3)) {
3948 /* all is well */
3949 } else {
3950 mwx_error:
3951 Jim_SetResult_sprintf(goi.interp, "expected: %s ADDR DATA [COUNT]", n->name);
3952 return JIM_ERR;
3955 e = Jim_GetOpt_Wide(&goi, &a);
3956 if (e != JIM_OK) {
3957 goto mwx_error;
3960 e = Jim_GetOpt_Wide(&goi, &b);
3961 if (e != JIM_OK) {
3962 goto mwx_error;
3964 if (goi.argc == 3) {
3965 e = Jim_GetOpt_Wide(&goi, &c);
3966 if (e != JIM_OK) {
3967 goto mwx_error;
3969 } else {
3970 c = 1;
3973 switch (n->value) {
3974 case TS_CMD_MWW:
3975 target_buffer_set_u32(target, target_buf, b);
3976 b = 4;
3977 break;
3978 case TS_CMD_MWH:
3979 target_buffer_set_u16(target, target_buf, b);
3980 b = 2;
3981 break;
3982 case TS_CMD_MWB:
3983 target_buffer_set_u8(target, target_buf, b);
3984 b = 1;
3985 break;
3987 for (x = 0 ; x < c ; x++) {
3988 e = target_write_memory(target, a, b, 1, target_buf);
3989 if (e != ERROR_OK) {
3990 Jim_SetResult_sprintf(interp, "Error writing @ 0x%08x: %d\n", (int)(a), e);
3991 return JIM_ERR;
3993 /* b = width */
3994 a = a + b;
3996 return JIM_OK;
3997 break;
3999 /* display */
4000 case TS_CMD_MDW:
4001 case TS_CMD_MDH:
4002 case TS_CMD_MDB:
4003 /* argv[0] = command
4004 * argv[1] = address
4005 * argv[2] = optional count
4007 if ((goi.argc == 2) || (goi.argc == 3)) {
4008 Jim_SetResult_sprintf(goi.interp, "expected: %s ADDR [COUNT]", n->name);
4009 return JIM_ERR;
4011 e = Jim_GetOpt_Wide(&goi, &a);
4012 if (e != JIM_OK) {
4013 return JIM_ERR;
4015 if (goi.argc) {
4016 e = Jim_GetOpt_Wide(&goi, &c);
4017 if (e != JIM_OK) {
4018 return JIM_ERR;
4020 } else {
4021 c = 1;
4023 b = 1; /* shut up gcc */
4024 switch (n->value) {
4025 case TS_CMD_MDW:
4026 b = 4;
4027 break;
4028 case TS_CMD_MDH:
4029 b = 2;
4030 break;
4031 case TS_CMD_MDB:
4032 b = 1;
4033 break;
4036 /* convert to "bytes" */
4037 c = c * b;
4038 /* count is now in 'BYTES' */
4039 while (c > 0) {
4040 y = c;
4041 if (y > 16) {
4042 y = 16;
4044 e = target_read_memory(target, a, b, y / b, target_buf);
4045 if (e != ERROR_OK) {
4046 Jim_SetResult_sprintf(interp, "error reading target @ 0x%08lx", (int)(a));
4047 return JIM_ERR;
4050 Jim_fprintf(interp, interp->cookie_stdout, "0x%08x ", (int)(a));
4051 switch (b) {
4052 case 4:
4053 for (x = 0 ; (x < 16) && (x < y) ; x += 4) {
4054 z = target_buffer_get_u32(target, &(target_buf[ x * 4 ]));
4055 Jim_fprintf(interp, interp->cookie_stdout, "%08x ", (int)(z));
4057 for (; (x < 16) ; x += 4) {
4058 Jim_fprintf(interp, interp->cookie_stdout, " ");
4060 break;
4061 case 2:
4062 for (x = 0 ; (x < 16) && (x < y) ; x += 2) {
4063 z = target_buffer_get_u16(target, &(target_buf[ x * 2 ]));
4064 Jim_fprintf(interp, interp->cookie_stdout, "%04x ", (int)(z));
4066 for (; (x < 16) ; x += 2) {
4067 Jim_fprintf(interp, interp->cookie_stdout, " ");
4069 break;
4070 case 1:
4071 default:
4072 for (x = 0 ; (x < 16) && (x < y) ; x += 1) {
4073 z = target_buffer_get_u8(target, &(target_buf[ x * 4 ]));
4074 Jim_fprintf(interp, interp->cookie_stdout, "%02x ", (int)(z));
4076 for (; (x < 16) ; x += 1) {
4077 Jim_fprintf(interp, interp->cookie_stdout, " ");
4079 break;
4081 /* ascii-ify the bytes */
4082 for (x = 0 ; x < y ; x++) {
4083 if ((target_buf[x] >= 0x20) &&
4084 (target_buf[x] <= 0x7e)) {
4085 /* good */
4086 } else {
4087 /* smack it */
4088 target_buf[x] = '.';
4091 /* space pad */
4092 while (x < 16) {
4093 target_buf[x] = ' ';
4094 x++;
4096 /* terminate */
4097 target_buf[16] = 0;
4098 /* print - with a newline */
4099 Jim_fprintf(interp, interp->cookie_stdout, "%s\n", target_buf);
4100 /* NEXT... */
4101 c -= 16;
4102 a += 16;
4104 return JIM_OK;
4105 case TS_CMD_MEM2ARRAY:
4106 return target_mem2array(goi.interp, target, goi.argc, goi.argv);
4107 break;
4108 case TS_CMD_ARRAY2MEM:
4109 return target_array2mem(goi.interp, target, goi.argc, goi.argv);
4110 break;
4111 case TS_CMD_EXAMINE:
4112 if (goi.argc) {
4113 Jim_WrongNumArgs(goi.interp, 2, argv, "[no parameters]");
4114 return JIM_ERR;
4116 if (!target->tap->enabled)
4117 goto err_tap_disabled;
4118 e = target->type->examine(target);
4119 if (e != ERROR_OK) {
4120 Jim_SetResult_sprintf(interp, "examine-fails: %d", e);
4121 return JIM_ERR;
4123 return JIM_OK;
4124 case TS_CMD_POLL:
4125 if (goi.argc) {
4126 Jim_WrongNumArgs(goi.interp, 2, argv, "[no parameters]");
4127 return JIM_ERR;
4129 if (!target->tap->enabled)
4130 goto err_tap_disabled;
4131 if (!(target_was_examined(target))) {
4132 e = ERROR_TARGET_NOT_EXAMINED;
4133 } else {
4134 e = target->type->poll(target);
4136 if (e != ERROR_OK) {
4137 Jim_SetResult_sprintf(interp, "poll-fails: %d", e);
4138 return JIM_ERR;
4139 } else {
4140 return JIM_OK;
4142 break;
4143 case TS_CMD_RESET:
4144 if (goi.argc != 2) {
4145 Jim_WrongNumArgs(interp, 2, argv,
4146 "([tT]|[fF]|assert|deassert) BOOL");
4147 return JIM_ERR;
4149 e = Jim_GetOpt_Nvp(&goi, nvp_assert, &n);
4150 if (e != JIM_OK) {
4151 Jim_GetOpt_NvpUnknown(&goi, nvp_assert, 1);
4152 return e;
4154 /* the halt or not param */
4155 e = Jim_GetOpt_Wide(&goi, &a);
4156 if (e != JIM_OK) {
4157 return e;
4159 if (!target->tap->enabled)
4160 goto err_tap_disabled;
4161 if (!target->type->assert_reset
4162 || !target->type->deassert_reset) {
4163 Jim_SetResult_sprintf(interp,
4164 "No target-specific reset for %s",
4165 target_name(target));
4166 return JIM_ERR;
4168 /* determine if we should halt or not. */
4169 target->reset_halt = !!a;
4170 /* When this happens - all workareas are invalid. */
4171 target_free_all_working_areas_restore(target, 0);
4173 /* do the assert */
4174 if (n->value == NVP_ASSERT) {
4175 e = target->type->assert_reset(target);
4176 } else {
4177 e = target->type->deassert_reset(target);
4179 return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
4180 case TS_CMD_HALT:
4181 if (goi.argc) {
4182 Jim_WrongNumArgs(goi.interp, 0, argv, "halt [no parameters]");
4183 return JIM_ERR;
4185 if (!target->tap->enabled)
4186 goto err_tap_disabled;
4187 e = target->type->halt(target);
4188 return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
4189 case TS_CMD_WAITSTATE:
4190 /* params: <name> statename timeoutmsecs */
4191 if (goi.argc != 2) {
4192 Jim_SetResult_sprintf(goi.interp, "%s STATENAME TIMEOUTMSECS", n->name);
4193 return JIM_ERR;
4195 e = Jim_GetOpt_Nvp(&goi, nvp_target_state, &n);
4196 if (e != JIM_OK) {
4197 Jim_GetOpt_NvpUnknown(&goi, nvp_target_state,1);
4198 return e;
4200 e = Jim_GetOpt_Wide(&goi, &a);
4201 if (e != JIM_OK) {
4202 return e;
4204 if (!target->tap->enabled)
4205 goto err_tap_disabled;
4206 e = target_wait_state(target, n->value, a);
4207 if (e != ERROR_OK) {
4208 Jim_SetResult_sprintf(goi.interp,
4209 "target: %s wait %s fails (%d) %s",
4210 target_name(target), n->name,
4211 e, target_strerror_safe(e));
4212 return JIM_ERR;
4213 } else {
4214 return JIM_OK;
4216 case TS_CMD_EVENTLIST:
4217 /* List for human, Events defined for this target.
4218 * scripts/programs should use 'name cget -event NAME'
4221 struct target_event_action *teap;
4222 teap = target->event_action;
4223 command_print(cmd_ctx,
4224 "Event actions for target (%d) %s\n",
4225 target->target_number,
4226 target_name(target));
4227 command_print(cmd_ctx, "%-25s | Body", "Event");
4228 command_print(cmd_ctx, "------------------------- | ----------------------------------------");
4229 while (teap) {
4230 command_print(cmd_ctx,
4231 "%-25s | %s",
4232 Jim_Nvp_value2name_simple(nvp_target_event, teap->event)->name,
4233 Jim_GetString(teap->body, NULL));
4234 teap = teap->next;
4236 command_print(cmd_ctx, "***END***");
4237 return JIM_OK;
4239 case TS_CMD_CURSTATE:
4240 if (goi.argc != 0) {
4241 Jim_WrongNumArgs(goi.interp, 0, argv, "[no parameters]");
4242 return JIM_ERR;
4244 Jim_SetResultString(goi.interp,
4245 target_state_name( target ),
4246 -1);
4247 return JIM_OK;
4248 case TS_CMD_INVOKE_EVENT:
4249 if (goi.argc != 1) {
4250 Jim_SetResult_sprintf(goi.interp, "%s ?EVENTNAME?",n->name);
4251 return JIM_ERR;
4253 e = Jim_GetOpt_Nvp(&goi, nvp_target_event, &n);
4254 if (e != JIM_OK) {
4255 Jim_GetOpt_NvpUnknown(&goi, nvp_target_event, 1);
4256 return e;
4258 target_handle_event(target, n->value);
4259 return JIM_OK;
4261 return JIM_ERR;
4263 err_tap_disabled:
4264 Jim_SetResult_sprintf(interp, "[TAP is disabled]");
4265 return JIM_ERR;
4268 static int target_create(Jim_GetOptInfo *goi)
4270 Jim_Obj *new_cmd;
4271 Jim_Cmd *cmd;
4272 const char *cp;
4273 char *cp2;
4274 int e;
4275 int x;
4276 struct target *target;
4277 struct command_context *cmd_ctx;
4279 cmd_ctx = Jim_GetAssocData(goi->interp, "context");
4280 if (goi->argc < 3) {
4281 Jim_WrongNumArgs(goi->interp, 1, goi->argv, "?name? ?type? ..options...");
4282 return JIM_ERR;
4285 /* COMMAND */
4286 Jim_GetOpt_Obj(goi, &new_cmd);
4287 /* does this command exist? */
4288 cmd = Jim_GetCommand(goi->interp, new_cmd, JIM_ERRMSG);
4289 if (cmd) {
4290 cp = Jim_GetString(new_cmd, NULL);
4291 Jim_SetResult_sprintf(goi->interp, "Command/target: %s Exists", cp);
4292 return JIM_ERR;
4295 /* TYPE */
4296 e = Jim_GetOpt_String(goi, &cp2, NULL);
4297 cp = cp2;
4298 /* now does target type exist */
4299 for (x = 0 ; target_types[x] ; x++) {
4300 if (0 == strcmp(cp, target_types[x]->name)) {
4301 /* found */
4302 break;
4305 if (target_types[x] == NULL) {
4306 Jim_SetResult_sprintf(goi->interp, "Unknown target type %s, try one of ", cp);
4307 for (x = 0 ; target_types[x] ; x++) {
4308 if (target_types[x + 1]) {
4309 Jim_AppendStrings(goi->interp,
4310 Jim_GetResult(goi->interp),
4311 target_types[x]->name,
4312 ", ", NULL);
4313 } else {
4314 Jim_AppendStrings(goi->interp,
4315 Jim_GetResult(goi->interp),
4316 " or ",
4317 target_types[x]->name,NULL);
4320 return JIM_ERR;
4323 /* Create it */
4324 target = calloc(1,sizeof(struct target));
4325 /* set target number */
4326 target->target_number = new_target_number();
4328 /* allocate memory for each unique target type */
4329 target->type = (struct target_type*)calloc(1,sizeof(struct target_type));
4331 memcpy(target->type, target_types[x], sizeof(struct target_type));
4333 /* will be set by "-endian" */
4334 target->endianness = TARGET_ENDIAN_UNKNOWN;
4336 target->working_area = 0x0;
4337 target->working_area_size = 0x0;
4338 target->working_areas = NULL;
4339 target->backup_working_area = 0;
4341 target->state = TARGET_UNKNOWN;
4342 target->debug_reason = DBG_REASON_UNDEFINED;
4343 target->reg_cache = NULL;
4344 target->breakpoints = NULL;
4345 target->watchpoints = NULL;
4346 target->next = NULL;
4347 target->arch_info = NULL;
4349 target->display = 1;
4351 target->halt_issued = false;
4353 /* initialize trace information */
4354 target->trace_info = malloc(sizeof(struct trace));
4355 target->trace_info->num_trace_points = 0;
4356 target->trace_info->trace_points_size = 0;
4357 target->trace_info->trace_points = NULL;
4358 target->trace_info->trace_history_size = 0;
4359 target->trace_info->trace_history = NULL;
4360 target->trace_info->trace_history_pos = 0;
4361 target->trace_info->trace_history_overflowed = 0;
4363 target->dbgmsg = NULL;
4364 target->dbg_msg_enabled = 0;
4366 target->endianness = TARGET_ENDIAN_UNKNOWN;
4368 /* Do the rest as "configure" options */
4369 goi->isconfigure = 1;
4370 e = target_configure(goi, target);
4372 if (target->tap == NULL)
4374 Jim_SetResultString(interp, "-chain-position required when creating target", -1);
4375 e = JIM_ERR;
4378 if (e != JIM_OK) {
4379 free(target->type);
4380 free(target);
4381 return e;
4384 if (target->endianness == TARGET_ENDIAN_UNKNOWN) {
4385 /* default endian to little if not specified */
4386 target->endianness = TARGET_LITTLE_ENDIAN;
4389 /* incase variant is not set */
4390 if (!target->variant)
4391 target->variant = strdup("");
4393 cp = Jim_GetString(new_cmd, NULL);
4394 target->cmd_name = strdup(cp);
4396 /* create the target specific commands */
4397 if (target->type->commands) {
4398 e = register_commands(cmd_ctx, NULL, target->type->commands);
4399 if (ERROR_OK != e)
4400 LOG_ERROR("unable to register '%s' commands", cp);
4402 if (target->type->target_create) {
4403 (*(target->type->target_create))(target, goi->interp);
4406 /* append to end of list */
4408 struct target **tpp;
4409 tpp = &(all_targets);
4410 while (*tpp) {
4411 tpp = &((*tpp)->next);
4413 *tpp = target;
4416 /* now - create the new target name command */
4417 const struct command_registration target_command = {
4418 .name = cp,
4419 .jim_handler = &tcl_target_func,
4420 .jim_handler_data = target,
4421 .help = "target command group",
4423 struct command *c = register_command(cmd_ctx, NULL, &target_command);
4424 return (NULL != c) ? ERROR_OK : ERROR_FAIL;
4427 static int jim_target_current(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4429 if (argc != 1)
4431 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
4432 return JIM_ERR;
4434 struct command_context *cmd_ctx = Jim_GetAssocData(interp, "context");
4435 Jim_SetResultString(interp, get_current_target(cmd_ctx)->cmd_name, -1);
4436 return JIM_OK;
4439 static int jim_target_types(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4441 if (argc != 1)
4443 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
4444 return JIM_ERR;
4446 Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
4447 for (unsigned x = 0; NULL != target_types[x]; x++)
4449 Jim_ListAppendElement(interp, Jim_GetResult(interp),
4450 Jim_NewStringObj(interp, target_types[x]->name, -1));
4452 return JIM_OK;
4455 static int jim_target_names(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4457 if (argc != 1)
4459 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
4460 return JIM_ERR;
4462 Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
4463 struct target *target = all_targets;
4464 while (target)
4466 Jim_ListAppendElement(interp, Jim_GetResult(interp),
4467 Jim_NewStringObj(interp, target_name(target), -1));
4468 target = target->next;
4470 return JIM_OK;
4473 static int jim_target_create(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4475 Jim_GetOptInfo goi;
4476 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4477 if (goi.argc < 3)
4479 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
4480 "<name> <target_type> [<target_options> ...]");
4481 return JIM_ERR;
4483 return target_create(&goi);
4486 static int jim_target_number(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4488 Jim_GetOptInfo goi;
4489 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4491 /* It's OK to remove this mechanism sometime after August 2010 or so */
4492 LOG_WARNING("don't use numbers as target identifiers; use names");
4493 if (goi.argc != 1)
4495 Jim_SetResult_sprintf(goi.interp, "usage: target number <number>");
4496 return JIM_ERR;
4498 jim_wide w;
4499 int e = Jim_GetOpt_Wide(&goi, &w);
4500 if (e != JIM_OK)
4501 return JIM_ERR;
4503 struct target *target;
4504 for (target = all_targets; NULL != target; target = target->next)
4506 if (target->target_number != w)
4507 continue;
4509 Jim_SetResultString(goi.interp, target_name(target), -1);
4510 return JIM_OK;
4512 Jim_SetResult_sprintf(goi.interp,
4513 "Target: number %d does not exist", (int)(w));
4514 return JIM_ERR;
4517 static int jim_target_count(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4519 if (argc != 1)
4521 Jim_WrongNumArgs(interp, 1, argv, "<no parameters>");
4522 return JIM_ERR;
4524 unsigned count = 0;
4525 struct target *target = all_targets;
4526 while (NULL != target)
4528 target = target->next;
4529 count++;
4531 Jim_SetResult(interp, Jim_NewIntObj(interp, count));
4532 return JIM_OK;
4535 static const struct command_registration target_subcommand_handlers[] = {
4537 .name = "create",
4538 .mode = COMMAND_ANY,
4539 .jim_handler = &jim_target_create,
4540 .usage = "<name> <type> ...",
4541 .help = "Returns the currently selected target",
4544 .name = "current",
4545 .mode = COMMAND_ANY,
4546 .jim_handler = &jim_target_current,
4547 .help = "Returns the currently selected target",
4550 .name = "types",
4551 .mode = COMMAND_ANY,
4552 .jim_handler = &jim_target_types,
4553 .help = "Returns the available target types as a list of strings",
4556 .name = "names",
4557 .mode = COMMAND_ANY,
4558 .jim_handler = &jim_target_names,
4559 .help = "Returns the names of all targets as a list of strings",
4562 .name = "number",
4563 .mode = COMMAND_ANY,
4564 .jim_handler = &jim_target_number,
4565 .usage = "<number>",
4566 .help = "Returns the name of target <n>",
4569 .name = "count",
4570 .mode = COMMAND_ANY,
4571 .jim_handler = &jim_target_count,
4572 .help = "Returns the number of targets as an integer",
4574 COMMAND_REGISTRATION_DONE
4578 struct FastLoad
4580 uint32_t address;
4581 uint8_t *data;
4582 int length;
4586 static int fastload_num;
4587 static struct FastLoad *fastload;
4589 static void free_fastload(void)
4591 if (fastload != NULL)
4593 int i;
4594 for (i = 0; i < fastload_num; i++)
4596 if (fastload[i].data)
4597 free(fastload[i].data);
4599 free(fastload);
4600 fastload = NULL;
4607 COMMAND_HANDLER(handle_fast_load_image_command)
4609 uint8_t *buffer;
4610 size_t buf_cnt;
4611 uint32_t image_size;
4612 uint32_t min_address = 0;
4613 uint32_t max_address = 0xffffffff;
4614 int i;
4616 struct image image;
4618 int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
4619 &image, &min_address, &max_address);
4620 if (ERROR_OK != retval)
4621 return retval;
4623 struct duration bench;
4624 duration_start(&bench);
4626 if (image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK)
4628 return ERROR_OK;
4631 image_size = 0x0;
4632 retval = ERROR_OK;
4633 fastload_num = image.num_sections;
4634 fastload = (struct FastLoad *)malloc(sizeof(struct FastLoad)*image.num_sections);
4635 if (fastload == NULL)
4637 image_close(&image);
4638 return ERROR_FAIL;
4640 memset(fastload, 0, sizeof(struct FastLoad)*image.num_sections);
4641 for (i = 0; i < image.num_sections; i++)
4643 buffer = malloc(image.sections[i].size);
4644 if (buffer == NULL)
4646 command_print(CMD_CTX, "error allocating buffer for section (%d bytes)",
4647 (int)(image.sections[i].size));
4648 break;
4651 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
4653 free(buffer);
4654 break;
4657 uint32_t offset = 0;
4658 uint32_t length = buf_cnt;
4661 /* DANGER!!! beware of unsigned comparision here!!! */
4663 if ((image.sections[i].base_address + buf_cnt >= min_address)&&
4664 (image.sections[i].base_address < max_address))
4666 if (image.sections[i].base_address < min_address)
4668 /* clip addresses below */
4669 offset += min_address-image.sections[i].base_address;
4670 length -= offset;
4673 if (image.sections[i].base_address + buf_cnt > max_address)
4675 length -= (image.sections[i].base_address + buf_cnt)-max_address;
4678 fastload[i].address = image.sections[i].base_address + offset;
4679 fastload[i].data = malloc(length);
4680 if (fastload[i].data == NULL)
4682 free(buffer);
4683 break;
4685 memcpy(fastload[i].data, buffer + offset, length);
4686 fastload[i].length = length;
4688 image_size += length;
4689 command_print(CMD_CTX, "%u bytes written at address 0x%8.8x",
4690 (unsigned int)length,
4691 ((unsigned int)(image.sections[i].base_address + offset)));
4694 free(buffer);
4697 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
4699 command_print(CMD_CTX, "Loaded %" PRIu32 " bytes "
4700 "in %fs (%0.3f kb/s)", image_size,
4701 duration_elapsed(&bench), duration_kbps(&bench, image_size));
4703 command_print(CMD_CTX,
4704 "WARNING: image has not been loaded to target!"
4705 "You can issue a 'fast_load' to finish loading.");
4708 image_close(&image);
4710 if (retval != ERROR_OK)
4712 free_fastload();
4715 return retval;
4718 COMMAND_HANDLER(handle_fast_load_command)
4720 if (CMD_ARGC > 0)
4721 return ERROR_COMMAND_SYNTAX_ERROR;
4722 if (fastload == NULL)
4724 LOG_ERROR("No image in memory");
4725 return ERROR_FAIL;
4727 int i;
4728 int ms = timeval_ms();
4729 int size = 0;
4730 int retval = ERROR_OK;
4731 for (i = 0; i < fastload_num;i++)
4733 struct target *target = get_current_target(CMD_CTX);
4734 command_print(CMD_CTX, "Write to 0x%08x, length 0x%08x",
4735 (unsigned int)(fastload[i].address),
4736 (unsigned int)(fastload[i].length));
4737 if (retval == ERROR_OK)
4739 retval = target_write_buffer(target, fastload[i].address, fastload[i].length, fastload[i].data);
4741 size += fastload[i].length;
4743 int after = timeval_ms();
4744 command_print(CMD_CTX, "Loaded image %f kBytes/s", (float)(size/1024.0)/((float)(after-ms)/1000.0));
4745 return retval;
4748 static int jim_mcrmrc(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4750 struct command_context *context;
4751 struct target *target;
4752 int retval;
4754 context = Jim_GetAssocData(interp, "context");
4755 if (context == NULL) {
4756 LOG_ERROR("array2mem: no command context");
4757 return JIM_ERR;
4759 target = get_current_target(context);
4760 if (target == NULL) {
4761 LOG_ERROR("array2mem: no current target");
4762 return JIM_ERR;
4765 if ((argc < 6) || (argc > 7))
4767 return JIM_ERR;
4770 int cpnum;
4771 uint32_t op1;
4772 uint32_t op2;
4773 uint32_t CRn;
4774 uint32_t CRm;
4775 uint32_t value;
4777 int e;
4778 long l;
4779 e = Jim_GetLong(interp, argv[1], &l);
4780 if (e != JIM_OK) {
4781 return e;
4783 cpnum = l;
4785 e = Jim_GetLong(interp, argv[2], &l);
4786 if (e != JIM_OK) {
4787 return e;
4789 op1 = l;
4791 e = Jim_GetLong(interp, argv[3], &l);
4792 if (e != JIM_OK) {
4793 return e;
4795 CRn = l;
4797 e = Jim_GetLong(interp, argv[4], &l);
4798 if (e != JIM_OK) {
4799 return e;
4801 CRm = l;
4803 e = Jim_GetLong(interp, argv[5], &l);
4804 if (e != JIM_OK) {
4805 return e;
4807 op2 = l;
4809 value = 0;
4811 if (argc == 7)
4813 e = Jim_GetLong(interp, argv[6], &l);
4814 if (e != JIM_OK) {
4815 return e;
4817 value = l;
4819 retval = target_mcr(target, cpnum, op1, op2, CRn, CRm, value);
4820 if (retval != ERROR_OK)
4821 return JIM_ERR;
4822 } else
4824 retval = target_mrc(target, cpnum, op1, op2, CRn, CRm, &value);
4825 if (retval != ERROR_OK)
4826 return JIM_ERR;
4828 Jim_SetResult(interp, Jim_NewIntObj(interp, value));
4831 return JIM_OK;
4834 static const struct command_registration target_command_handlers[] = {
4836 .name = "targets",
4837 .handler = &handle_targets_command,
4838 .mode = COMMAND_ANY,
4839 .help = "change current command line target (one parameter) "
4840 "or list targets (no parameters)",
4841 .usage = "[<new_current_target>]",
4844 .name = "target",
4845 .mode = COMMAND_CONFIG,
4846 .help = "configure target",
4848 .chain = target_subcommand_handlers,
4850 COMMAND_REGISTRATION_DONE
4853 int target_register_commands(struct command_context *cmd_ctx)
4855 return register_commands(cmd_ctx, NULL, target_command_handlers);
4858 static const struct command_registration target_exec_command_handlers[] = {
4860 .name = "fast_load_image",
4861 .handler = &handle_fast_load_image_command,
4862 .mode = COMMAND_ANY,
4863 .help = "Load image into memory, mainly for profiling purposes",
4864 .usage = "<file> <address> ['bin'|'ihex'|'elf'|'s19'] "
4865 "[min_address] [max_length]",
4868 .name = "fast_load",
4869 .handler = &handle_fast_load_command,
4870 .mode = COMMAND_ANY,
4871 .help = "loads active fast load image to current target "
4872 "- mainly for profiling purposes",
4875 .name = "profile",
4876 .handler = &handle_profile_command,
4877 .mode = COMMAND_EXEC,
4878 .help = "profiling samples the CPU PC",
4880 /** @todo don't register virt2phys() unless target supports it */
4882 .name = "virt2phys",
4883 .handler = &handle_virt2phys_command,
4884 .mode = COMMAND_ANY,
4885 .help = "translate a virtual address into a physical address",
4889 .name = "reg",
4890 .handler = &handle_reg_command,
4891 .mode = COMMAND_EXEC,
4892 .help = "display or set a register",
4896 .name = "poll",
4897 .handler = &handle_poll_command,
4898 .mode = COMMAND_EXEC,
4899 .help = "poll target state",
4902 .name = "wait_halt",
4903 .handler = &handle_wait_halt_command,
4904 .mode = COMMAND_EXEC,
4905 .help = "wait for target halt",
4906 .usage = "[time (s)]",
4909 .name = "halt",
4910 .handler = &handle_halt_command,
4911 .mode = COMMAND_EXEC,
4912 .help = "halt target",
4915 .name = "resume",
4916 .handler = &handle_resume_command,
4917 .mode = COMMAND_EXEC,
4918 .help = "resume target",
4919 .usage = "[<address>]",
4922 .name = "reset",
4923 .handler = &handle_reset_command,
4924 .mode = COMMAND_EXEC,
4925 .usage = "[run|halt|init]",
4926 .help = "Reset all targets into the specified mode."
4927 "Default reset mode is run, if not given.",
4930 .name = "soft_reset_halt",
4931 .handler = &handle_soft_reset_halt_command,
4932 .mode = COMMAND_EXEC,
4933 .help = "halt the target and do a soft reset",
4937 .name = "step",
4938 .handler = &handle_step_command,
4939 .mode = COMMAND_EXEC,
4940 .help = "step one instruction from current PC or [addr]",
4941 .usage = "[<address>]",
4945 .name = "mdw",
4946 .handler = &handle_md_command,
4947 .mode = COMMAND_EXEC,
4948 .help = "display memory words",
4949 .usage = "[phys] <addr> [count]",
4952 .name = "mdh",
4953 .handler = &handle_md_command,
4954 .mode = COMMAND_EXEC,
4955 .help = "display memory half-words",
4956 .usage = "[phys] <addr> [count]",
4959 .name = "mdb",
4960 .handler = &handle_md_command,
4961 .mode = COMMAND_EXEC,
4962 .help = "display memory bytes",
4963 .usage = "[phys] <addr> [count]",
4967 .name = "mww",
4968 .handler = &handle_mw_command,
4969 .mode = COMMAND_EXEC,
4970 .help = "write memory word",
4971 .usage = "[phys] <addr> <value> [count]",
4974 .name = "mwh",
4975 .handler = &handle_mw_command,
4976 .mode = COMMAND_EXEC,
4977 .help = "write memory half-word",
4978 .usage = "[phys] <addr> <value> [count]",
4981 .name = "mwb",
4982 .handler = &handle_mw_command,
4983 .mode = COMMAND_EXEC,
4984 .help = "write memory byte",
4985 .usage = "[phys] <addr> <value> [count]",
4989 .name = "bp",
4990 .handler = &handle_bp_command,
4991 .mode = COMMAND_EXEC,
4992 .help = "list or set breakpoint",
4993 .usage = "[<address> <length> [hw]]",
4996 .name = "rbp",
4997 .handler = &handle_rbp_command,
4998 .mode = COMMAND_EXEC,
4999 .help = "remove breakpoint",
5000 .usage = "<address>",
5004 .name = "wp",
5005 .handler = &handle_wp_command,
5006 .mode = COMMAND_EXEC,
5007 .help = "list or set watchpoint",
5008 .usage = "[<address> <length> <r/w/a> [value] [mask]]",
5011 .name = "rwp",
5012 .handler = &handle_rwp_command,
5013 .mode = COMMAND_EXEC,
5014 .help = "remove watchpoint",
5015 .usage = "<address>",
5019 .name = "load_image",
5020 .handler = &handle_load_image_command,
5021 .mode = COMMAND_EXEC,
5022 .usage = "<file> <address> ['bin'|'ihex'|'elf'|'s19'] "
5023 "[min_address] [max_length]",
5026 .name = "dump_image",
5027 .handler = &handle_dump_image_command,
5028 .mode = COMMAND_EXEC,
5029 .usage = "<file> <address> <size>",
5032 .name = "verify_image",
5033 .handler = &handle_verify_image_command,
5034 .mode = COMMAND_EXEC,
5035 .usage = "<file> [offset] [type]",
5038 .name = "test_image",
5039 .handler = &handle_test_image_command,
5040 .mode = COMMAND_EXEC,
5041 .usage = "<file> [offset] [type]",
5044 .name = "ocd_mem2array",
5045 .mode = COMMAND_EXEC,
5046 .jim_handler = &jim_mem2array,
5047 .help = "read memory and return as a TCL array "
5048 "for script processing",
5049 .usage = "<arrayname> <width=32|16|8> <address> <count>",
5052 .name = "ocd_array2mem",
5053 .mode = COMMAND_EXEC,
5054 .jim_handler = &jim_array2mem,
5055 .help = "convert a TCL array to memory locations "
5056 "and write the values",
5057 .usage = "<arrayname> <width=32|16|8> <address> <count>",
5059 COMMAND_REGISTRATION_DONE
5061 int target_register_user_commands(struct command_context *cmd_ctx)
5063 int retval = ERROR_OK;
5064 if ((retval = target_request_register_commands(cmd_ctx)) != ERROR_OK)
5065 return retval;
5067 if ((retval = trace_register_commands(cmd_ctx)) != ERROR_OK)
5068 return retval;
5071 return register_commands(cmd_ctx, NULL, target_exec_command_handlers);