mem_ap_read_u32 error propagation
[openocd/oharboe.git] / src / target / arm_adi_v5.c
blob496360f73c844a6985e0032d1aec2ccddd069a60
1 /***************************************************************************
2 * Copyright (C) 2006 by Magnus Lundin *
3 * lundin@mlu.mine.nu *
4 * *
5 * Copyright (C) 2008 by Spencer Oliver *
6 * spen@spen-soft.co.uk *
7 * *
8 * Copyright (C) 2009-2010 by Oyvind Harboe *
9 * oyvind.harboe@zylin.com *
10 * *
11 * Copyright (C) 2009-2010 by David Brownell *
12 * *
13 * This program is free software; you can redistribute it and/or modify *
14 * it under the terms of the GNU General Public License as published by *
15 * the Free Software Foundation; either version 2 of the License, or *
16 * (at your option) any later version. *
17 * *
18 * This program is distributed in the hope that it will be useful, *
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
21 * GNU General Public License for more details. *
22 * *
23 * You should have received a copy of the GNU General Public License *
24 * along with this program; if not, write to the *
25 * Free Software Foundation, Inc., *
26 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
27 ***************************************************************************/
29 /**
30 * @file
31 * This file implements support for the ARM Debug Interface version 5 (ADIv5)
32 * debugging architecture. Compared with previous versions, this includes
33 * a low pin-count Serial Wire Debug (SWD) alternative to JTAG for message
34 * transport, and focusses on memory mapped resources as defined by the
35 * CoreSight architecture.
37 * A key concept in ADIv5 is the Debug Access Port, or DAP. A DAP has two
38 * basic components: a Debug Port (DP) transporting messages to and from a
39 * debugger, and an Access Port (AP) accessing resources. Three types of DP
40 * are defined. One uses only JTAG for communication, and is called JTAG-DP.
41 * One uses only SWD for communication, and is called SW-DP. The third can
42 * use either SWD or JTAG, and is called SWJ-DP. The most common type of AP
43 * is used to access memory mapped resources and is called a MEM-AP. Also a
44 * JTAG-AP is also defined, bridging to JTAG resources; those are uncommon.
46 * This programming interface allows DAP pipelined operations through a
47 * transaction queue. This primarily affects AP operations (such as using
48 * a MEM-AP to access memory or registers). If the current transaction has
49 * not finished by the time the next one must begin, and the ORUNDETECT bit
50 * is set in the DP_CTRL_STAT register, the SSTICKYORUN status is set and
51 * further AP operations will fail. There are two basic methods to avoid
52 * such overrun errors. One involves polling for status instead of using
53 * transaction piplining. The other involves adding delays to ensure the
54 * AP has enough time to complete one operation before starting the next
55 * one. (For JTAG these delays are controlled by memaccess_tck.)
59 * Relevant specifications from ARM include:
61 * ARM(tm) Debug Interface v5 Architecture Specification ARM IHI 0031A
62 * CoreSight(tm) v1.0 Architecture Specification ARM IHI 0029B
64 * CoreSight(tm) DAP-Lite TRM, ARM DDI 0316D
65 * Cortex-M3(tm) TRM, ARM DDI 0337G
68 #ifdef HAVE_CONFIG_H
69 #include "config.h"
70 #endif
72 #include "arm.h"
73 #include "arm_adi_v5.h"
74 #include <helper/time_support.h>
77 /* ARM ADI Specification requires at least 10 bits used for TAR autoincrement */
80 uint32_t tar_block_size(uint32_t address)
81 Return the largest block starting at address that does not cross a tar block size alignment boundary
83 static uint32_t max_tar_block_size(uint32_t tar_autoincr_block, uint32_t address)
85 return (tar_autoincr_block - ((tar_autoincr_block - 1) & address)) >> 2;
88 /***************************************************************************
89 * *
90 * DP and MEM-AP register access through APACC and DPACC *
91 * *
92 ***************************************************************************/
94 /**
95 * Select one of the APs connected to the specified DAP. The
96 * selection is implicitly used with future AP transactions.
97 * This is a NOP if the specified AP is already selected.
99 * @param dap The DAP
100 * @param apsel Number of the AP to (implicitly) use with further
101 * transactions. This normally identifies a MEM-AP.
103 void dap_ap_select(struct adiv5_dap *dap,uint8_t apsel)
105 uint32_t select_apsel = (apsel << 24) & 0xFF000000;
107 if (select_apsel != dap->apsel)
109 dap->apsel = select_apsel;
110 /* Switching AP invalidates cached values.
111 * Values MUST BE UPDATED BEFORE AP ACCESS.
113 dap->ap_bank_value = -1;
114 dap->ap_csw_value = -1;
115 dap->ap_tar_value = -1;
120 * Queue transactions setting up transfer parameters for the
121 * currently selected MEM-AP.
123 * Subsequent transfers using registers like AP_REG_DRW or AP_REG_BD2
124 * initiate data reads or writes using memory or peripheral addresses.
125 * If the CSW is configured for it, the TAR may be automatically
126 * incremented after each transfer.
128 * @todo Rename to reflect it being specifically a MEM-AP function.
130 * @param dap The DAP connected to the MEM-AP.
131 * @param csw MEM-AP Control/Status Word (CSW) register to assign. If this
132 * matches the cached value, the register is not changed.
133 * @param tar MEM-AP Transfer Address Register (TAR) to assign. If this
134 * matches the cached address, the register is not changed.
136 * @return ERROR_OK if the transaction was properly queued, else a fault code.
138 int dap_setup_accessport(struct adiv5_dap *dap, uint32_t csw, uint32_t tar)
140 int retval;
142 csw = csw | CSW_DBGSWENABLE | CSW_MASTER_DEBUG | CSW_HPROT;
143 if (csw != dap->ap_csw_value)
145 /* LOG_DEBUG("DAP: Set CSW %x",csw); */
146 retval = dap_queue_ap_write(dap, AP_REG_CSW, csw);
147 if (retval != ERROR_OK)
148 return retval;
149 dap->ap_csw_value = csw;
151 if (tar != dap->ap_tar_value)
153 /* LOG_DEBUG("DAP: Set TAR %x",tar); */
154 retval = dap_queue_ap_write(dap, AP_REG_TAR, tar);
155 if (retval != ERROR_OK)
156 return retval;
157 dap->ap_tar_value = tar;
159 /* Disable TAR cache when autoincrementing */
160 if (csw & CSW_ADDRINC_MASK)
161 dap->ap_tar_value = -1;
162 return ERROR_OK;
166 * Asynchronous (queued) read of a word from memory or a system register.
168 * @param dap The DAP connected to the MEM-AP performing the read.
169 * @param address Address of the 32-bit word to read; it must be
170 * readable by the currently selected MEM-AP.
171 * @param value points to where the word will be stored when the
172 * transaction queue is flushed (assuming no errors).
174 * @return ERROR_OK for success. Otherwise a fault code.
176 int mem_ap_read_u32(struct adiv5_dap *dap, uint32_t address,
177 uint32_t *value)
179 int retval;
181 /* Use banked addressing (REG_BDx) to avoid some link traffic
182 * (updating TAR) when reading several consecutive addresses.
184 retval = dap_setup_accessport(dap, CSW_32BIT | CSW_ADDRINC_OFF,
185 address & 0xFFFFFFF0);
186 if (retval != ERROR_OK)
187 return retval;
189 return dap_queue_ap_read(dap, AP_REG_BD0 | (address & 0xC), value);
193 * Synchronous read of a word from memory or a system register.
194 * As a side effect, this flushes any queued transactions.
196 * @param dap The DAP connected to the MEM-AP performing the read.
197 * @param address Address of the 32-bit word to read; it must be
198 * readable by the currently selected MEM-AP.
199 * @param value points to where the result will be stored.
201 * @return ERROR_OK for success; *value holds the result.
202 * Otherwise a fault code.
204 int mem_ap_read_atomic_u32(struct adiv5_dap *dap, uint32_t address,
205 uint32_t *value)
207 int retval;
209 retval = mem_ap_read_u32(dap, address, value);
210 if (retval != ERROR_OK)
211 return retval;
213 return dap_run(dap);
217 * Asynchronous (queued) write of a word to memory or a system register.
219 * @param dap The DAP connected to the MEM-AP.
220 * @param address Address to be written; it must be writable by
221 * the currently selected MEM-AP.
222 * @param value Word that will be written to the address when transaction
223 * queue is flushed (assuming no errors).
225 * @return ERROR_OK for success. Otherwise a fault code.
227 int mem_ap_write_u32(struct adiv5_dap *dap, uint32_t address,
228 uint32_t value)
230 int retval;
232 /* Use banked addressing (REG_BDx) to avoid some link traffic
233 * (updating TAR) when writing several consecutive addresses.
235 retval = dap_setup_accessport(dap, CSW_32BIT | CSW_ADDRINC_OFF,
236 address & 0xFFFFFFF0);
237 if (retval != ERROR_OK)
238 return retval;
240 return dap_queue_ap_write(dap, AP_REG_BD0 | (address & 0xC),
241 value);
245 * Synchronous write of a word to memory or a system register.
246 * As a side effect, this flushes any queued transactions.
248 * @param dap The DAP connected to the MEM-AP.
249 * @param address Address to be written; it must be writable by
250 * the currently selected MEM-AP.
251 * @param value Word that will be written.
253 * @return ERROR_OK for success; the data was written. Otherwise a fault code.
255 int mem_ap_write_atomic_u32(struct adiv5_dap *dap, uint32_t address,
256 uint32_t value)
258 int retval = mem_ap_write_u32(dap, address, value);
260 if (retval != ERROR_OK)
261 return retval;
263 return dap_run(dap);
266 /*****************************************************************************
268 * mem_ap_write_buf(struct adiv5_dap *dap, uint8_t *buffer, int count, uint32_t address) *
270 * Write a buffer in target order (little endian) *
272 *****************************************************************************/
273 int mem_ap_write_buf_u32(struct adiv5_dap *dap, uint8_t *buffer, int count, uint32_t address)
275 int wcount, blocksize, writecount, errorcount = 0, retval = ERROR_OK;
276 uint32_t adr = address;
277 uint8_t* pBuffer = buffer;
279 count >>= 2;
280 wcount = count;
282 /* if we have an unaligned access - reorder data */
283 if (adr & 0x3u)
285 for (writecount = 0; writecount < count; writecount++)
287 int i;
288 uint32_t outvalue;
289 memcpy(&outvalue, pBuffer, sizeof(uint32_t));
291 for (i = 0; i < 4; i++)
293 *((uint8_t*)pBuffer + (adr & 0x3)) = outvalue;
294 outvalue >>= 8;
295 adr++;
297 pBuffer += sizeof(uint32_t);
301 while (wcount > 0)
303 /* Adjust to write blocks within boundaries aligned to the TAR autoincremnent size*/
304 blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
305 if (wcount < blocksize)
306 blocksize = wcount;
308 /* handle unaligned data at 4k boundary */
309 if (blocksize == 0)
310 blocksize = 1;
312 retval = dap_setup_accessport(dap, CSW_32BIT | CSW_ADDRINC_SINGLE, address);
313 if (retval != ERROR_OK)
314 return retval;
316 for (writecount = 0; writecount < blocksize; writecount++)
318 retval = dap_queue_ap_write(dap, AP_REG_DRW,
319 *(uint32_t *) (buffer + 4 * writecount));
320 if (retval != ERROR_OK)
321 break;
324 if (dap_run(dap) == ERROR_OK)
326 wcount = wcount - blocksize;
327 address = address + 4 * blocksize;
328 buffer = buffer + 4 * blocksize;
330 else
332 errorcount++;
335 if (errorcount > 1)
337 LOG_WARNING("Block write error address 0x%" PRIx32 ", wcount 0x%x", address, wcount);
338 /* REVISIT return the *actual* fault code */
339 return ERROR_JTAG_DEVICE_ERROR;
343 return retval;
346 static int mem_ap_write_buf_packed_u16(struct adiv5_dap *dap,
347 uint8_t *buffer, int count, uint32_t address)
349 int retval = ERROR_OK;
350 int wcount, blocksize, writecount, i;
352 wcount = count >> 1;
354 while (wcount > 0)
356 int nbytes;
358 /* Adjust to write blocks within boundaries aligned to the TAR autoincremnent size*/
359 blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
361 if (wcount < blocksize)
362 blocksize = wcount;
364 /* handle unaligned data at 4k boundary */
365 if (blocksize == 0)
366 blocksize = 1;
368 retval = dap_setup_accessport(dap, CSW_16BIT | CSW_ADDRINC_PACKED, address);
369 if (retval != ERROR_OK)
370 return retval;
371 writecount = blocksize;
375 nbytes = MIN((writecount << 1), 4);
377 if (nbytes < 4)
379 if (mem_ap_write_buf_u16(dap, buffer,
380 nbytes, address) != ERROR_OK)
382 LOG_WARNING("Block write error address "
383 "0x%" PRIx32 ", count 0x%x",
384 address, count);
385 return ERROR_JTAG_DEVICE_ERROR;
388 address += nbytes >> 1;
390 else
392 uint32_t outvalue;
393 memcpy(&outvalue, buffer, sizeof(uint32_t));
395 for (i = 0; i < nbytes; i++)
397 *((uint8_t*)buffer + (address & 0x3)) = outvalue;
398 outvalue >>= 8;
399 address++;
402 memcpy(&outvalue, buffer, sizeof(uint32_t));
403 retval = dap_queue_ap_write(dap,
404 AP_REG_DRW, outvalue);
405 if (retval != ERROR_OK)
406 break;
408 if (dap_run(dap) != ERROR_OK)
410 LOG_WARNING("Block write error address "
411 "0x%" PRIx32 ", count 0x%x",
412 address, count);
413 /* REVISIT return *actual* fault code */
414 return ERROR_JTAG_DEVICE_ERROR;
418 buffer += nbytes >> 1;
419 writecount -= nbytes >> 1;
421 } while (writecount);
422 wcount -= blocksize;
425 return retval;
428 int mem_ap_write_buf_u16(struct adiv5_dap *dap, uint8_t *buffer, int count, uint32_t address)
430 int retval = ERROR_OK;
432 if (count >= 4)
433 return mem_ap_write_buf_packed_u16(dap, buffer, count, address);
435 while (count > 0)
437 retval = dap_setup_accessport(dap, CSW_16BIT | CSW_ADDRINC_SINGLE, address);
438 if (retval != ERROR_OK)
439 return retval;
440 uint16_t svalue;
441 memcpy(&svalue, buffer, sizeof(uint16_t));
442 uint32_t outvalue = (uint32_t)svalue << 8 * (address & 0x3);
443 retval = dap_queue_ap_write(dap, AP_REG_DRW, outvalue);
444 if (retval != ERROR_OK)
445 break;
447 retval = dap_run(dap);
448 if (retval != ERROR_OK)
449 break;
451 count -= 2;
452 address += 2;
453 buffer += 2;
456 return retval;
459 static int mem_ap_write_buf_packed_u8(struct adiv5_dap *dap,
460 uint8_t *buffer, int count, uint32_t address)
462 int retval = ERROR_OK;
463 int wcount, blocksize, writecount, i;
465 wcount = count;
467 while (wcount > 0)
469 int nbytes;
471 /* Adjust to write blocks within boundaries aligned to the TAR autoincremnent size*/
472 blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
474 if (wcount < blocksize)
475 blocksize = wcount;
477 retval = dap_setup_accessport(dap, CSW_8BIT | CSW_ADDRINC_PACKED, address);
478 if (retval != ERROR_OK)
479 return retval;
480 writecount = blocksize;
484 nbytes = MIN(writecount, 4);
486 if (nbytes < 4)
488 if (mem_ap_write_buf_u8(dap, buffer, nbytes, address) != ERROR_OK)
490 LOG_WARNING("Block write error address "
491 "0x%" PRIx32 ", count 0x%x",
492 address, count);
493 return ERROR_JTAG_DEVICE_ERROR;
496 address += nbytes;
498 else
500 uint32_t outvalue;
501 memcpy(&outvalue, buffer, sizeof(uint32_t));
503 for (i = 0; i < nbytes; i++)
505 *((uint8_t*)buffer + (address & 0x3)) = outvalue;
506 outvalue >>= 8;
507 address++;
510 memcpy(&outvalue, buffer, sizeof(uint32_t));
511 retval = dap_queue_ap_write(dap,
512 AP_REG_DRW, outvalue);
513 if (retval != ERROR_OK)
514 break;
516 if (dap_run(dap) != ERROR_OK)
518 LOG_WARNING("Block write error address "
519 "0x%" PRIx32 ", count 0x%x",
520 address, count);
521 /* REVISIT return *actual* fault code */
522 return ERROR_JTAG_DEVICE_ERROR;
526 buffer += nbytes;
527 writecount -= nbytes;
529 } while (writecount);
530 wcount -= blocksize;
533 return retval;
536 int mem_ap_write_buf_u8(struct adiv5_dap *dap, uint8_t *buffer, int count, uint32_t address)
538 int retval = ERROR_OK;
540 if (count >= 4)
541 return mem_ap_write_buf_packed_u8(dap, buffer, count, address);
543 while (count > 0)
545 retval = dap_setup_accessport(dap, CSW_8BIT | CSW_ADDRINC_SINGLE, address);
546 if (retval != ERROR_OK)
547 return retval;
548 uint32_t outvalue = (uint32_t)*buffer << 8 * (address & 0x3);
549 retval = dap_queue_ap_write(dap, AP_REG_DRW, outvalue);
550 if (retval != ERROR_OK)
551 break;
553 retval = dap_run(dap);
554 if (retval != ERROR_OK)
555 break;
557 count--;
558 address++;
559 buffer++;
562 return retval;
565 /* FIXME don't import ... this is a temporary workaround for the
566 * mem_ap_read_buf_u32() mess, until it's no longer JTAG-specific.
568 extern int adi_jtag_dp_scan(struct adiv5_dap *dap,
569 uint8_t instr, uint8_t reg_addr, uint8_t RnW,
570 uint8_t *outvalue, uint8_t *invalue, uint8_t *ack);
573 * Synchronously read a block of 32-bit words into a buffer
574 * @param dap The DAP connected to the MEM-AP.
575 * @param buffer where the words will be stored (in host byte order).
576 * @param count How many words to read.
577 * @param address Memory address from which to read words; all the
578 * words must be readable by the currently selected MEM-AP.
580 int mem_ap_read_buf_u32(struct adiv5_dap *dap, uint8_t *buffer,
581 int count, uint32_t address)
583 int wcount, blocksize, readcount, errorcount = 0, retval = ERROR_OK;
584 uint32_t adr = address;
585 uint8_t* pBuffer = buffer;
587 count >>= 2;
588 wcount = count;
590 while (wcount > 0)
592 /* Adjust to read blocks within boundaries aligned to the
593 * TAR autoincrement size (at least 2^10). Autoincrement
594 * mode avoids an extra per-word roundtrip to update TAR.
596 blocksize = max_tar_block_size(dap->tar_autoincr_block,
597 address);
598 if (wcount < blocksize)
599 blocksize = wcount;
601 /* handle unaligned data at 4k boundary */
602 if (blocksize == 0)
603 blocksize = 1;
605 retval = dap_setup_accessport(dap, CSW_32BIT | CSW_ADDRINC_SINGLE,
606 address);
607 if (retval != ERROR_OK)
608 return retval;
610 /* FIXME remove these three calls to adi_jtag_dp_scan(),
611 * so this routine becomes transport-neutral. Be careful
612 * not to cause performance problems with JTAG; would it
613 * suffice to loop over dap_queue_ap_read(), or would that
614 * be slower when JTAG is the chosen transport?
617 /* Scan out first read */
618 retval = adi_jtag_dp_scan(dap, JTAG_DP_APACC, AP_REG_DRW,
619 DPAP_READ, 0, NULL, NULL);
620 if (retval != ERROR_OK)
621 return retval;
622 for (readcount = 0; readcount < blocksize - 1; readcount++)
624 /* Scan out next read; scan in posted value for the
625 * previous one. Assumes read is acked "OK/FAULT",
626 * and CTRL_STAT says that meant "OK".
628 retval = adi_jtag_dp_scan(dap, JTAG_DP_APACC, AP_REG_DRW,
629 DPAP_READ, 0, buffer + 4 * readcount,
630 &dap->ack);
631 if (retval != ERROR_OK)
632 return retval;
635 /* Scan in last posted value; RDBUFF has no other effect,
636 * assuming ack is OK/FAULT and CTRL_STAT says "OK".
638 retval = adi_jtag_dp_scan(dap, JTAG_DP_DPACC, DP_RDBUFF,
639 DPAP_READ, 0, buffer + 4 * readcount,
640 &dap->ack);
641 if (retval != ERROR_OK)
642 return retval;
644 retval = dap_run(dap);
645 if (retval != ERROR_OK)
647 errorcount++;
648 if (errorcount <= 1)
650 /* try again */
651 continue;
653 LOG_WARNING("Block read error address 0x%" PRIx32, address);
654 return retval;
656 wcount = wcount - blocksize;
657 address += 4 * blocksize;
658 buffer += 4 * blocksize;
661 /* if we have an unaligned access - reorder data */
662 if (adr & 0x3u)
664 for (readcount = 0; readcount < count; readcount++)
666 int i;
667 uint32_t data;
668 memcpy(&data, pBuffer, sizeof(uint32_t));
670 for (i = 0; i < 4; i++)
672 *((uint8_t*)pBuffer) =
673 (data >> 8 * (adr & 0x3));
674 pBuffer++;
675 adr++;
680 return retval;
683 static int mem_ap_read_buf_packed_u16(struct adiv5_dap *dap,
684 uint8_t *buffer, int count, uint32_t address)
686 uint32_t invalue;
687 int retval = ERROR_OK;
688 int wcount, blocksize, readcount, i;
690 wcount = count >> 1;
692 while (wcount > 0)
694 int nbytes;
696 /* Adjust to read blocks within boundaries aligned to the TAR autoincremnent size*/
697 blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
698 if (wcount < blocksize)
699 blocksize = wcount;
701 retval = dap_setup_accessport(dap, CSW_16BIT | CSW_ADDRINC_PACKED, address);
702 if (retval != ERROR_OK)
703 return retval;
705 /* handle unaligned data at 4k boundary */
706 if (blocksize == 0)
707 blocksize = 1;
708 readcount = blocksize;
712 retval = dap_queue_ap_read(dap, AP_REG_DRW, &invalue);
713 if (dap_run(dap) != ERROR_OK)
715 LOG_WARNING("Block read error address 0x%" PRIx32 ", count 0x%x", address, count);
716 /* REVISIT return the *actual* fault code */
717 return ERROR_JTAG_DEVICE_ERROR;
720 nbytes = MIN((readcount << 1), 4);
722 for (i = 0; i < nbytes; i++)
724 *((uint8_t*)buffer) = (invalue >> 8 * (address & 0x3));
725 buffer++;
726 address++;
729 readcount -= (nbytes >> 1);
730 } while (readcount);
731 wcount -= blocksize;
734 return retval;
738 * Synchronously read a block of 16-bit halfwords into a buffer
739 * @param dap The DAP connected to the MEM-AP.
740 * @param buffer where the halfwords will be stored (in host byte order).
741 * @param count How many halfwords to read.
742 * @param address Memory address from which to read words; all the
743 * words must be readable by the currently selected MEM-AP.
745 int mem_ap_read_buf_u16(struct adiv5_dap *dap, uint8_t *buffer,
746 int count, uint32_t address)
748 uint32_t invalue, i;
749 int retval = ERROR_OK;
751 if (count >= 4)
752 return mem_ap_read_buf_packed_u16(dap, buffer, count, address);
754 while (count > 0)
756 retval = dap_setup_accessport(dap, CSW_16BIT | CSW_ADDRINC_SINGLE, address);
757 if (retval != ERROR_OK)
758 return retval;
759 retval = dap_queue_ap_read(dap, AP_REG_DRW, &invalue);
760 if (retval != ERROR_OK)
761 break;
763 retval = dap_run(dap);
764 if (retval != ERROR_OK)
765 break;
767 if (address & 0x1)
769 for (i = 0; i < 2; i++)
771 *((uint8_t*)buffer) = (invalue >> 8 * (address & 0x3));
772 buffer++;
773 address++;
776 else
778 uint16_t svalue = (invalue >> 8 * (address & 0x3));
779 memcpy(buffer, &svalue, sizeof(uint16_t));
780 address += 2;
781 buffer += 2;
783 count -= 2;
786 return retval;
789 /* FIX!!! is this a potential performance bottleneck w.r.t. requiring too many
790 * roundtrips when jtag_execute_queue() has a large overhead(e.g. for USB)s?
792 * The solution is to arrange for a large out/in scan in this loop and
793 * and convert data afterwards.
795 static int mem_ap_read_buf_packed_u8(struct adiv5_dap *dap,
796 uint8_t *buffer, int count, uint32_t address)
798 uint32_t invalue;
799 int retval = ERROR_OK;
800 int wcount, blocksize, readcount, i;
802 wcount = count;
804 while (wcount > 0)
806 int nbytes;
808 /* Adjust to read blocks within boundaries aligned to the TAR autoincremnent size*/
809 blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
811 if (wcount < blocksize)
812 blocksize = wcount;
814 retval = dap_setup_accessport(dap, CSW_8BIT | CSW_ADDRINC_PACKED, address);
815 if (retval != ERROR_OK)
816 return retval;
817 readcount = blocksize;
821 retval = dap_queue_ap_read(dap, AP_REG_DRW, &invalue);
822 if (dap_run(dap) != ERROR_OK)
824 LOG_WARNING("Block read error address 0x%" PRIx32 ", count 0x%x", address, count);
825 /* REVISIT return the *actual* fault code */
826 return ERROR_JTAG_DEVICE_ERROR;
829 nbytes = MIN(readcount, 4);
831 for (i = 0; i < nbytes; i++)
833 *((uint8_t*)buffer) = (invalue >> 8 * (address & 0x3));
834 buffer++;
835 address++;
838 readcount -= nbytes;
839 } while (readcount);
840 wcount -= blocksize;
843 return retval;
847 * Synchronously read a block of bytes into a buffer
848 * @param dap The DAP connected to the MEM-AP.
849 * @param buffer where the bytes will be stored.
850 * @param count How many bytes to read.
851 * @param address Memory address from which to read data; all the
852 * data must be readable by the currently selected MEM-AP.
854 int mem_ap_read_buf_u8(struct adiv5_dap *dap, uint8_t *buffer,
855 int count, uint32_t address)
857 uint32_t invalue;
858 int retval = ERROR_OK;
860 if (count >= 4)
861 return mem_ap_read_buf_packed_u8(dap, buffer, count, address);
863 while (count > 0)
865 retval = dap_setup_accessport(dap, CSW_8BIT | CSW_ADDRINC_SINGLE, address);
866 if (retval != ERROR_OK)
867 return retval;
868 retval = dap_queue_ap_read(dap, AP_REG_DRW, &invalue);
869 if (retval != ERROR_OK)
870 return retval;
871 retval = dap_run(dap);
872 if (retval != ERROR_OK)
873 break;
875 *((uint8_t*)buffer) = (invalue >> 8 * (address & 0x3));
876 count--;
877 address++;
878 buffer++;
881 return retval;
884 /*--------------------------------------------------------------------------*/
887 /* FIXME don't import ... just initialize as
888 * part of DAP transport setup
890 extern const struct dap_ops jtag_dp_ops;
892 /*--------------------------------------------------------------------------*/
895 * Initialize a DAP. This sets up the power domains, prepares the DP
896 * for further use, and arranges to use AP #0 for all AP operations
897 * until dap_ap-select() changes that policy.
899 * @param dap The DAP being initialized.
901 * @todo Rename this. We also need an initialization scheme which account
902 * for SWD transports not just JTAG; that will need to address differences
903 * in layering. (JTAG is useful without any debug target; but not SWD.)
904 * And this may not even use an AHB-AP ... e.g. DAP-Lite uses an APB-AP.
906 int ahbap_debugport_init(struct adiv5_dap *dap)
908 uint32_t idreg, romaddr, dummy;
909 uint32_t ctrlstat;
910 int cnt = 0;
911 int retval;
913 LOG_DEBUG(" ");
915 /* JTAG-DP or SWJ-DP, in JTAG mode */
916 dap->ops = &jtag_dp_ops;
918 /* Default MEM-AP setup.
920 * REVISIT AP #0 may be an inappropriate default for this.
921 * Should we probe, or take a hint from the caller?
922 * Presumably we can ignore the possibility of multiple APs.
924 dap->apsel = !0;
925 dap_ap_select(dap, 0);
927 /* DP initialization */
929 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &dummy);
930 if (retval != ERROR_OK)
931 return retval;
933 retval = dap_queue_dp_write(dap, DP_CTRL_STAT, SSTICKYERR);
934 if (retval != ERROR_OK)
935 return retval;
937 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &dummy);
938 if (retval != ERROR_OK)
939 return retval;
941 dap->dp_ctrl_stat = CDBGPWRUPREQ | CSYSPWRUPREQ;
942 retval = dap_queue_dp_write(dap, DP_CTRL_STAT, dap->dp_ctrl_stat);
943 if (retval != ERROR_OK)
944 return retval;
946 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &ctrlstat);
947 if (retval != ERROR_OK)
948 return retval;
949 if ((retval = dap_run(dap)) != ERROR_OK)
950 return retval;
952 /* Check that we have debug power domains activated */
953 while (!(ctrlstat & CDBGPWRUPACK) && (cnt++ < 10))
955 LOG_DEBUG("DAP: wait CDBGPWRUPACK");
956 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &ctrlstat);
957 if (retval != ERROR_OK)
958 return retval;
959 if ((retval = dap_run(dap)) != ERROR_OK)
960 return retval;
961 alive_sleep(10);
964 while (!(ctrlstat & CSYSPWRUPACK) && (cnt++ < 10))
966 LOG_DEBUG("DAP: wait CSYSPWRUPACK");
967 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &ctrlstat);
968 if (retval != ERROR_OK)
969 return retval;
970 if ((retval = dap_run(dap)) != ERROR_OK)
971 return retval;
972 alive_sleep(10);
975 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &dummy);
976 if (retval != ERROR_OK)
977 return retval;
978 /* With debug power on we can activate OVERRUN checking */
979 dap->dp_ctrl_stat = CDBGPWRUPREQ | CSYSPWRUPREQ | CORUNDETECT;
980 retval = dap_queue_dp_write(dap, DP_CTRL_STAT, dap->dp_ctrl_stat);
981 if (retval != ERROR_OK)
982 return retval;
983 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &dummy);
984 if (retval != ERROR_OK)
985 return retval;
988 * REVISIT this isn't actually *initializing* anything in an AP,
989 * and doesn't care if it's a MEM-AP at all (much less AHB-AP).
990 * Should it? If the ROM address is valid, is this the right
991 * place to scan the table and do any topology detection?
993 retval = dap_queue_ap_read(dap, AP_REG_IDR, &idreg);
994 retval = dap_queue_ap_read(dap, AP_REG_BASE, &romaddr);
996 if ((retval = dap_run(dap)) != ERROR_OK)
997 return retval;
999 LOG_DEBUG("MEM-AP #%" PRId32 " ID Register 0x%" PRIx32
1000 ", Debug ROM Address 0x%" PRIx32,
1001 dap->apsel, idreg, romaddr);
1003 return ERROR_OK;
1006 /* CID interpretation -- see ARM IHI 0029B section 3
1007 * and ARM IHI 0031A table 13-3.
1009 static const char *class_description[16] ={
1010 "Reserved", "ROM table", "Reserved", "Reserved",
1011 "Reserved", "Reserved", "Reserved", "Reserved",
1012 "Reserved", "CoreSight component", "Reserved", "Peripheral Test Block",
1013 "Reserved", "OptimoDE DESS",
1014 "Generic IP component", "PrimeCell or System component"
1017 static bool
1018 is_dap_cid_ok(uint32_t cid3, uint32_t cid2, uint32_t cid1, uint32_t cid0)
1020 return cid3 == 0xb1 && cid2 == 0x05
1021 && ((cid1 & 0x0f) == 0) && cid0 == 0x0d;
1024 static int dap_info_command(struct command_context *cmd_ctx,
1025 struct adiv5_dap *dap, int apsel)
1027 int retval;
1028 uint32_t dbgbase, apid;
1029 int romtable_present = 0;
1030 uint8_t mem_ap;
1031 uint32_t apselold;
1033 /* AP address is in bits 31:24 of DP_SELECT */
1034 if (apsel >= 256)
1035 return ERROR_INVALID_ARGUMENTS;
1037 apselold = dap->apsel;
1038 dap_ap_select(dap, apsel);
1039 retval = dap_queue_ap_read(dap, AP_REG_BASE, &dbgbase);
1040 retval = dap_queue_ap_read(dap, AP_REG_IDR, &apid);
1041 retval = dap_run(dap);
1042 if (retval != ERROR_OK)
1043 return retval;
1045 /* Now we read ROM table ID registers, ref. ARM IHI 0029B sec */
1046 mem_ap = ((apid&0x10000) && ((apid&0x0F) != 0));
1047 command_print(cmd_ctx, "AP ID register 0x%8.8" PRIx32, apid);
1048 if (apid)
1050 switch (apid&0x0F)
1052 case 0:
1053 command_print(cmd_ctx, "\tType is JTAG-AP");
1054 break;
1055 case 1:
1056 command_print(cmd_ctx, "\tType is MEM-AP AHB");
1057 break;
1058 case 2:
1059 command_print(cmd_ctx, "\tType is MEM-AP APB");
1060 break;
1061 default:
1062 command_print(cmd_ctx, "\tUnknown AP type");
1063 break;
1066 /* NOTE: a MEM-AP may have a single CoreSight component that's
1067 * not a ROM table ... or have no such components at all.
1069 if (mem_ap)
1070 command_print(cmd_ctx, "AP BASE 0x%8.8" PRIx32,
1071 dbgbase);
1073 else
1075 command_print(cmd_ctx, "No AP found at this apsel 0x%x", apsel);
1078 romtable_present = ((mem_ap) && (dbgbase != 0xFFFFFFFF));
1079 if (romtable_present)
1081 uint32_t cid0,cid1,cid2,cid3,memtype,romentry;
1082 uint16_t entry_offset;
1084 /* bit 16 of apid indicates a memory access port */
1085 if (dbgbase & 0x02)
1086 command_print(cmd_ctx, "\tValid ROM table present");
1087 else
1088 command_print(cmd_ctx, "\tROM table in legacy format");
1090 /* Now we read ROM table ID registers, ref. ARM IHI 0029B sec */
1091 retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFF0, &cid0);
1092 if (retval != ERROR_OK)
1093 return retval;
1094 retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFF4, &cid1);
1095 if (retval != ERROR_OK)
1096 return retval;
1097 retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFF8, &cid2);
1098 if (retval != ERROR_OK)
1099 return retval;
1100 retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFFC, &cid3);
1101 if (retval != ERROR_OK)
1102 return retval;
1103 retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFCC, &memtype);
1104 if (retval != ERROR_OK)
1105 return retval;
1106 retval = dap_run(dap);
1107 if (retval != ERROR_OK)
1108 return retval;
1110 if (!is_dap_cid_ok(cid3, cid2, cid1, cid0))
1111 command_print(cmd_ctx, "\tCID3 0x%2.2x"
1112 ", CID2 0x%2.2x"
1113 ", CID1 0x%2.2x"
1114 ", CID0 0x%2.2x",
1115 (unsigned) cid3, (unsigned)cid2,
1116 (unsigned) cid1, (unsigned) cid0);
1117 if (memtype & 0x01)
1118 command_print(cmd_ctx, "\tMEMTYPE system memory present on bus");
1119 else
1120 command_print(cmd_ctx, "\tMEMTYPE System memory not present. "
1121 "Dedicated debug bus.");
1123 /* Now we read ROM table entries from dbgbase&0xFFFFF000) | 0x000 until we get 0x00000000 */
1124 entry_offset = 0;
1127 mem_ap_read_atomic_u32(dap, (dbgbase&0xFFFFF000) | entry_offset, &romentry);
1128 command_print(cmd_ctx, "\tROMTABLE[0x%x] = 0x%" PRIx32 "",entry_offset,romentry);
1129 if (romentry&0x01)
1131 uint32_t c_cid0, c_cid1, c_cid2, c_cid3;
1132 uint32_t c_pid0, c_pid1, c_pid2, c_pid3, c_pid4;
1133 uint32_t component_base;
1134 unsigned part_num;
1135 char *type, *full;
1137 component_base = (dbgbase & 0xFFFFF000)
1138 + (romentry & 0xFFFFF000);
1140 /* IDs are in last 4K section */
1143 mem_ap_read_atomic_u32(dap,
1144 component_base + 0xFE0, &c_pid0);
1145 c_pid0 &= 0xff;
1146 mem_ap_read_atomic_u32(dap,
1147 component_base + 0xFE4, &c_pid1);
1148 c_pid1 &= 0xff;
1149 mem_ap_read_atomic_u32(dap,
1150 component_base + 0xFE8, &c_pid2);
1151 c_pid2 &= 0xff;
1152 mem_ap_read_atomic_u32(dap,
1153 component_base + 0xFEC, &c_pid3);
1154 c_pid3 &= 0xff;
1155 mem_ap_read_atomic_u32(dap,
1156 component_base + 0xFD0, &c_pid4);
1157 c_pid4 &= 0xff;
1159 mem_ap_read_atomic_u32(dap,
1160 component_base + 0xFF0, &c_cid0);
1161 c_cid0 &= 0xff;
1162 mem_ap_read_atomic_u32(dap,
1163 component_base + 0xFF4, &c_cid1);
1164 c_cid1 &= 0xff;
1165 mem_ap_read_atomic_u32(dap,
1166 component_base + 0xFF8, &c_cid2);
1167 c_cid2 &= 0xff;
1168 mem_ap_read_atomic_u32(dap,
1169 component_base + 0xFFC, &c_cid3);
1170 c_cid3 &= 0xff;
1173 command_print(cmd_ctx,
1174 "\t\tComponent base address 0x%" PRIx32
1175 ", start address 0x%" PRIx32,
1176 component_base,
1177 /* component may take multiple 4K pages */
1178 component_base - 0x1000*(c_pid4 >> 4));
1179 command_print(cmd_ctx, "\t\tComponent class is 0x%x, %s",
1180 (int) (c_cid1 >> 4) & 0xf,
1181 /* See ARM IHI 0029B Table 3-3 */
1182 class_description[(c_cid1 >> 4) & 0xf]);
1184 /* CoreSight component? */
1185 if (((c_cid1 >> 4) & 0x0f) == 9) {
1186 uint32_t devtype;
1187 unsigned minor;
1188 char *major = "Reserved", *subtype = "Reserved";
1190 mem_ap_read_atomic_u32(dap,
1191 (component_base & 0xfffff000) | 0xfcc,
1192 &devtype);
1193 minor = (devtype >> 4) & 0x0f;
1194 switch (devtype & 0x0f) {
1195 case 0:
1196 major = "Miscellaneous";
1197 switch (minor) {
1198 case 0:
1199 subtype = "other";
1200 break;
1201 case 4:
1202 subtype = "Validation component";
1203 break;
1205 break;
1206 case 1:
1207 major = "Trace Sink";
1208 switch (minor) {
1209 case 0:
1210 subtype = "other";
1211 break;
1212 case 1:
1213 subtype = "Port";
1214 break;
1215 case 2:
1216 subtype = "Buffer";
1217 break;
1219 break;
1220 case 2:
1221 major = "Trace Link";
1222 switch (minor) {
1223 case 0:
1224 subtype = "other";
1225 break;
1226 case 1:
1227 subtype = "Funnel, router";
1228 break;
1229 case 2:
1230 subtype = "Filter";
1231 break;
1232 case 3:
1233 subtype = "FIFO, buffer";
1234 break;
1236 break;
1237 case 3:
1238 major = "Trace Source";
1239 switch (minor) {
1240 case 0:
1241 subtype = "other";
1242 break;
1243 case 1:
1244 subtype = "Processor";
1245 break;
1246 case 2:
1247 subtype = "DSP";
1248 break;
1249 case 3:
1250 subtype = "Engine/Coprocessor";
1251 break;
1252 case 4:
1253 subtype = "Bus";
1254 break;
1256 break;
1257 case 4:
1258 major = "Debug Control";
1259 switch (minor) {
1260 case 0:
1261 subtype = "other";
1262 break;
1263 case 1:
1264 subtype = "Trigger Matrix";
1265 break;
1266 case 2:
1267 subtype = "Debug Auth";
1268 break;
1270 break;
1271 case 5:
1272 major = "Debug Logic";
1273 switch (minor) {
1274 case 0:
1275 subtype = "other";
1276 break;
1277 case 1:
1278 subtype = "Processor";
1279 break;
1280 case 2:
1281 subtype = "DSP";
1282 break;
1283 case 3:
1284 subtype = "Engine/Coprocessor";
1285 break;
1287 break;
1289 command_print(cmd_ctx, "\t\tType is 0x%2.2x, %s, %s",
1290 (unsigned) (devtype & 0xff),
1291 major, subtype);
1292 /* REVISIT also show 0xfc8 DevId */
1295 if (!is_dap_cid_ok(cid3, cid2, cid1, cid0))
1296 command_print(cmd_ctx,
1297 "\t\tCID3 0%2.2x"
1298 ", CID2 0%2.2x"
1299 ", CID1 0%2.2x"
1300 ", CID0 0%2.2x",
1301 (int) c_cid3,
1302 (int) c_cid2,
1303 (int)c_cid1,
1304 (int)c_cid0);
1305 command_print(cmd_ctx,
1306 "\t\tPeripheral ID[4..0] = hex "
1307 "%2.2x %2.2x %2.2x %2.2x %2.2x",
1308 (int) c_pid4, (int) c_pid3, (int) c_pid2,
1309 (int) c_pid1, (int) c_pid0);
1311 /* Part number interpretations are from Cortex
1312 * core specs, the CoreSight components TRM
1313 * (ARM DDI 0314H), and ETM specs; also from
1314 * chip observation (e.g. TI SDTI).
1316 part_num = (c_pid0 & 0xff);
1317 part_num |= (c_pid1 & 0x0f) << 8;
1318 switch (part_num) {
1319 case 0x000:
1320 type = "Cortex-M3 NVIC";
1321 full = "(Interrupt Controller)";
1322 break;
1323 case 0x001:
1324 type = "Cortex-M3 ITM";
1325 full = "(Instrumentation Trace Module)";
1326 break;
1327 case 0x002:
1328 type = "Cortex-M3 DWT";
1329 full = "(Data Watchpoint and Trace)";
1330 break;
1331 case 0x003:
1332 type = "Cortex-M3 FBP";
1333 full = "(Flash Patch and Breakpoint)";
1334 break;
1335 case 0x00d:
1336 type = "CoreSight ETM11";
1337 full = "(Embedded Trace)";
1338 break;
1339 // case 0x113: what?
1340 case 0x120: /* from OMAP3 memmap */
1341 type = "TI SDTI";
1342 full = "(System Debug Trace Interface)";
1343 break;
1344 case 0x343: /* from OMAP3 memmap */
1345 type = "TI DAPCTL";
1346 full = "";
1347 break;
1348 case 0x906:
1349 type = "Coresight CTI";
1350 full = "(Cross Trigger)";
1351 break;
1352 case 0x907:
1353 type = "Coresight ETB";
1354 full = "(Trace Buffer)";
1355 break;
1356 case 0x908:
1357 type = "Coresight CSTF";
1358 full = "(Trace Funnel)";
1359 break;
1360 case 0x910:
1361 type = "CoreSight ETM9";
1362 full = "(Embedded Trace)";
1363 break;
1364 case 0x912:
1365 type = "Coresight TPIU";
1366 full = "(Trace Port Interface Unit)";
1367 break;
1368 case 0x921:
1369 type = "Cortex-A8 ETM";
1370 full = "(Embedded Trace)";
1371 break;
1372 case 0x922:
1373 type = "Cortex-A8 CTI";
1374 full = "(Cross Trigger)";
1375 break;
1376 case 0x923:
1377 type = "Cortex-M3 TPIU";
1378 full = "(Trace Port Interface Unit)";
1379 break;
1380 case 0x924:
1381 type = "Cortex-M3 ETM";
1382 full = "(Embedded Trace)";
1383 break;
1384 case 0xc08:
1385 type = "Cortex-A8 Debug";
1386 full = "(Debug Unit)";
1387 break;
1388 default:
1389 type = "-*- unrecognized -*-";
1390 full = "";
1391 break;
1393 command_print(cmd_ctx, "\t\tPart is %s %s",
1394 type, full);
1396 else
1398 if (romentry)
1399 command_print(cmd_ctx, "\t\tComponent not present");
1400 else
1401 command_print(cmd_ctx, "\t\tEnd of ROM table");
1403 entry_offset += 4;
1404 } while (romentry > 0);
1406 else
1408 command_print(cmd_ctx, "\tNo ROM table present");
1410 dap_ap_select(dap, apselold);
1412 return ERROR_OK;
1415 COMMAND_HANDLER(handle_dap_info_command)
1417 struct target *target = get_current_target(CMD_CTX);
1418 struct arm *arm = target_to_arm(target);
1419 struct adiv5_dap *dap = arm->dap;
1420 uint32_t apsel;
1422 switch (CMD_ARGC) {
1423 case 0:
1424 apsel = dap->apsel;
1425 break;
1426 case 1:
1427 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1428 break;
1429 default:
1430 return ERROR_COMMAND_SYNTAX_ERROR;
1433 return dap_info_command(CMD_CTX, dap, apsel);
1436 COMMAND_HANDLER(dap_baseaddr_command)
1438 struct target *target = get_current_target(CMD_CTX);
1439 struct arm *arm = target_to_arm(target);
1440 struct adiv5_dap *dap = arm->dap;
1442 uint32_t apsel, apselsave, baseaddr;
1443 int retval;
1445 apselsave = dap->apsel;
1446 switch (CMD_ARGC) {
1447 case 0:
1448 apsel = dap->apsel;
1449 break;
1450 case 1:
1451 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1452 /* AP address is in bits 31:24 of DP_SELECT */
1453 if (apsel >= 256)
1454 return ERROR_INVALID_ARGUMENTS;
1455 break;
1456 default:
1457 return ERROR_COMMAND_SYNTAX_ERROR;
1460 if (apselsave != apsel)
1461 dap_ap_select(dap, apsel);
1463 /* NOTE: assumes we're talking to a MEM-AP, which
1464 * has a base address. There are other kinds of AP,
1465 * though they're not common for now. This should
1466 * use the ID register to verify it's a MEM-AP.
1468 retval = dap_queue_ap_read(dap, AP_REG_BASE, &baseaddr);
1469 retval = dap_run(dap);
1470 if (retval != ERROR_OK)
1471 return retval;
1473 command_print(CMD_CTX, "0x%8.8" PRIx32, baseaddr);
1475 if (apselsave != apsel)
1476 dap_ap_select(dap, apselsave);
1478 return retval;
1481 COMMAND_HANDLER(dap_memaccess_command)
1483 struct target *target = get_current_target(CMD_CTX);
1484 struct arm *arm = target_to_arm(target);
1485 struct adiv5_dap *dap = arm->dap;
1487 uint32_t memaccess_tck;
1489 switch (CMD_ARGC) {
1490 case 0:
1491 memaccess_tck = dap->memaccess_tck;
1492 break;
1493 case 1:
1494 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], memaccess_tck);
1495 break;
1496 default:
1497 return ERROR_COMMAND_SYNTAX_ERROR;
1499 dap->memaccess_tck = memaccess_tck;
1501 command_print(CMD_CTX, "memory bus access delay set to %" PRIi32 " tck",
1502 dap->memaccess_tck);
1504 return ERROR_OK;
1507 COMMAND_HANDLER(dap_apsel_command)
1509 struct target *target = get_current_target(CMD_CTX);
1510 struct arm *arm = target_to_arm(target);
1511 struct adiv5_dap *dap = arm->dap;
1513 uint32_t apsel, apid;
1514 int retval;
1516 switch (CMD_ARGC) {
1517 case 0:
1518 apsel = 0;
1519 break;
1520 case 1:
1521 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1522 /* AP address is in bits 31:24 of DP_SELECT */
1523 if (apsel >= 256)
1524 return ERROR_INVALID_ARGUMENTS;
1525 break;
1526 default:
1527 return ERROR_COMMAND_SYNTAX_ERROR;
1530 dap_ap_select(dap, apsel);
1531 retval = dap_queue_ap_read(dap, AP_REG_IDR, &apid);
1532 retval = dap_run(dap);
1533 if (retval != ERROR_OK)
1534 return retval;
1536 command_print(CMD_CTX, "ap %" PRIi32 " selected, identification register 0x%8.8" PRIx32,
1537 apsel, apid);
1539 return retval;
1542 COMMAND_HANDLER(dap_apid_command)
1544 struct target *target = get_current_target(CMD_CTX);
1545 struct arm *arm = target_to_arm(target);
1546 struct adiv5_dap *dap = arm->dap;
1548 uint32_t apsel, apselsave, apid;
1549 int retval;
1551 apselsave = dap->apsel;
1552 switch (CMD_ARGC) {
1553 case 0:
1554 apsel = dap->apsel;
1555 break;
1556 case 1:
1557 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1558 /* AP address is in bits 31:24 of DP_SELECT */
1559 if (apsel >= 256)
1560 return ERROR_INVALID_ARGUMENTS;
1561 break;
1562 default:
1563 return ERROR_COMMAND_SYNTAX_ERROR;
1566 if (apselsave != apsel)
1567 dap_ap_select(dap, apsel);
1569 retval = dap_queue_ap_read(dap, AP_REG_IDR, &apid);
1570 retval = dap_run(dap);
1571 if (retval != ERROR_OK)
1572 return retval;
1574 command_print(CMD_CTX, "0x%8.8" PRIx32, apid);
1575 if (apselsave != apsel)
1576 dap_ap_select(dap, apselsave);
1578 return retval;
1581 static const struct command_registration dap_commands[] = {
1583 .name = "info",
1584 .handler = handle_dap_info_command,
1585 .mode = COMMAND_EXEC,
1586 .help = "display ROM table for MEM-AP "
1587 "(default currently selected AP)",
1588 .usage = "[ap_num]",
1591 .name = "apsel",
1592 .handler = dap_apsel_command,
1593 .mode = COMMAND_EXEC,
1594 .help = "Set the currently selected AP (default 0) "
1595 "and display the result",
1596 .usage = "[ap_num]",
1599 .name = "apid",
1600 .handler = dap_apid_command,
1601 .mode = COMMAND_EXEC,
1602 .help = "return ID register from AP "
1603 "(default currently selected AP)",
1604 .usage = "[ap_num]",
1607 .name = "baseaddr",
1608 .handler = dap_baseaddr_command,
1609 .mode = COMMAND_EXEC,
1610 .help = "return debug base address from MEM-AP "
1611 "(default currently selected AP)",
1612 .usage = "[ap_num]",
1615 .name = "memaccess",
1616 .handler = dap_memaccess_command,
1617 .mode = COMMAND_EXEC,
1618 .help = "set/get number of extra tck for MEM-AP memory "
1619 "bus access [0-255]",
1620 .usage = "[cycles]",
1622 COMMAND_REGISTRATION_DONE
1625 const struct command_registration dap_command_handlers[] = {
1627 .name = "dap",
1628 .mode = COMMAND_EXEC,
1629 .help = "DAP command group",
1630 .chain = dap_commands,
1632 COMMAND_REGISTRATION_DONE