arm: add error propagation to generic get_ttb fn
[openocd/oharboe.git] / src / target / cortex_a8.c
blobe1acbf74c705aa6eae17b4004c8ec3416bc7096b
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2006 by Magnus Lundin *
6 * lundin@mlu.mine.nu *
7 * *
8 * Copyright (C) 2008 by Spencer Oliver *
9 * spen@spen-soft.co.uk *
10 * *
11 * Copyright (C) 2009 by Dirk Behme *
12 * dirk.behme@gmail.com - copy from cortex_m3 *
13 * *
14 * Copyright (C) 2010 Øyvind Harboe *
15 * oyvind.harboe@zylin.com *
16 * *
17 * This program is free software; you can redistribute it and/or modify *
18 * it under the terms of the GNU General Public License as published by *
19 * the Free Software Foundation; either version 2 of the License, or *
20 * (at your option) any later version. *
21 * *
22 * This program is distributed in the hope that it will be useful, *
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
25 * GNU General Public License for more details. *
26 * *
27 * You should have received a copy of the GNU General Public License *
28 * along with this program; if not, write to the *
29 * Free Software Foundation, Inc., *
30 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
31 * *
32 * Cortex-A8(tm) TRM, ARM DDI 0344H *
33 * *
34 ***************************************************************************/
35 #ifdef HAVE_CONFIG_H
36 #include "config.h"
37 #endif
39 #include "breakpoints.h"
40 #include "cortex_a8.h"
41 #include "register.h"
42 #include "target_request.h"
43 #include "target_type.h"
44 #include "arm_opcodes.h"
45 #include <helper/time_support.h>
47 static int cortex_a8_poll(struct target *target);
48 static int cortex_a8_debug_entry(struct target *target);
49 static int cortex_a8_restore_context(struct target *target, bool bpwp);
50 static int cortex_a8_set_breakpoint(struct target *target,
51 struct breakpoint *breakpoint, uint8_t matchmode);
52 static int cortex_a8_unset_breakpoint(struct target *target,
53 struct breakpoint *breakpoint);
54 static int cortex_a8_dap_read_coreregister_u32(struct target *target,
55 uint32_t *value, int regnum);
56 static int cortex_a8_dap_write_coreregister_u32(struct target *target,
57 uint32_t value, int regnum);
58 static int cortex_a8_mmu(struct target *target, int *enabled);
59 static int cortex_a8_virt2phys(struct target *target,
60 uint32_t virt, uint32_t *phys);
61 static void cortex_a8_disable_mmu_caches(struct target *target, int mmu,
62 int d_u_cache, int i_cache);
63 static void cortex_a8_enable_mmu_caches(struct target *target, int mmu,
64 int d_u_cache, int i_cache);
65 static int cortex_a8_get_ttb(struct target *target, uint32_t *result);
69 * FIXME do topology discovery using the ROM; don't
70 * assume this is an OMAP3. Also, allow for multiple ARMv7-A
71 * cores, with different AP numbering ... don't use a #define
72 * for these numbers, use per-core armv7a state.
74 #define swjdp_memoryap 0
75 #define swjdp_debugap 1
76 #define OMAP3530_DEBUG_BASE 0x54011000
79 * Cortex-A8 Basic debug access, very low level assumes state is saved
81 static int cortex_a8_init_debug_access(struct target *target)
83 struct armv7a_common *armv7a = target_to_armv7a(target);
84 struct adiv5_dap *swjdp = &armv7a->dap;
86 int retval;
87 uint32_t dummy;
89 LOG_DEBUG(" ");
91 /* Unlocking the debug registers for modification */
92 /* The debugport might be uninitialised so try twice */
93 retval = mem_ap_write_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_LOCKACCESS, 0xC5ACCE55);
94 if (retval != ERROR_OK)
96 /* try again */
97 retval = mem_ap_write_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_LOCKACCESS, 0xC5ACCE55);
98 if (retval == ERROR_OK)
100 LOG_USER("Locking debug access failed on first, but succeeded on second try.");
103 if (retval != ERROR_OK)
104 return retval;
105 /* Clear Sticky Power Down status Bit in PRSR to enable access to
106 the registers in the Core Power Domain */
107 retval = mem_ap_read_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_PRSR, &dummy);
108 if (retval != ERROR_OK)
109 return retval;
111 /* Enabling of instruction execution in debug mode is done in debug_entry code */
113 /* Resync breakpoint registers */
115 /* Since this is likely called from init or reset, update target state information*/
116 retval = cortex_a8_poll(target);
118 return retval;
121 /* To reduce needless round-trips, pass in a pointer to the current
122 * DSCR value. Initialize it to zero if you just need to know the
123 * value on return from this function; or DSCR_INSTR_COMP if you
124 * happen to know that no instruction is pending.
126 static int cortex_a8_exec_opcode(struct target *target,
127 uint32_t opcode, uint32_t *dscr_p)
129 uint32_t dscr;
130 int retval;
131 struct armv7a_common *armv7a = target_to_armv7a(target);
132 struct adiv5_dap *swjdp = &armv7a->dap;
134 dscr = dscr_p ? *dscr_p : 0;
136 LOG_DEBUG("exec opcode 0x%08" PRIx32, opcode);
138 /* Wait for InstrCompl bit to be set */
139 while ((dscr & DSCR_INSTR_COMP) == 0)
141 retval = mem_ap_read_atomic_u32(swjdp,
142 armv7a->debug_base + CPUDBG_DSCR, &dscr);
143 if (retval != ERROR_OK)
145 LOG_ERROR("Could not read DSCR register, opcode = 0x%08" PRIx32, opcode);
146 return retval;
150 retval = mem_ap_write_u32(swjdp, armv7a->debug_base + CPUDBG_ITR, opcode);
151 if (retval != ERROR_OK)
152 return retval;
156 retval = mem_ap_read_atomic_u32(swjdp,
157 armv7a->debug_base + CPUDBG_DSCR, &dscr);
158 if (retval != ERROR_OK)
160 LOG_ERROR("Could not read DSCR register");
161 return retval;
164 while ((dscr & DSCR_INSTR_COMP) == 0); /* Wait for InstrCompl bit to be set */
166 if (dscr_p)
167 *dscr_p = dscr;
169 return retval;
172 /**************************************************************************
173 Read core register with very few exec_opcode, fast but needs work_area.
174 This can cause problems with MMU active.
175 **************************************************************************/
176 static int cortex_a8_read_regs_through_mem(struct target *target, uint32_t address,
177 uint32_t * regfile)
179 int retval = ERROR_OK;
180 struct armv7a_common *armv7a = target_to_armv7a(target);
181 struct adiv5_dap *swjdp = &armv7a->dap;
183 retval = cortex_a8_dap_read_coreregister_u32(target, regfile, 0);
184 if (retval != ERROR_OK)
185 return retval;
186 retval = cortex_a8_dap_write_coreregister_u32(target, address, 0);
187 if (retval != ERROR_OK)
188 return retval;
189 retval = cortex_a8_exec_opcode(target, ARMV4_5_STMIA(0, 0xFFFE, 0, 0), NULL);
190 if (retval != ERROR_OK)
191 return retval;
193 dap_ap_select(swjdp, swjdp_memoryap);
194 retval = mem_ap_read_buf_u32(swjdp, (uint8_t *)(&regfile[1]), 4*15, address);
195 if (retval != ERROR_OK)
196 return retval;
197 dap_ap_select(swjdp, swjdp_debugap);
199 return retval;
202 static int cortex_a8_dap_read_coreregister_u32(struct target *target,
203 uint32_t *value, int regnum)
205 int retval = ERROR_OK;
206 uint8_t reg = regnum&0xFF;
207 uint32_t dscr = 0;
208 struct armv7a_common *armv7a = target_to_armv7a(target);
209 struct adiv5_dap *swjdp = &armv7a->dap;
211 if (reg > 17)
212 return retval;
214 if (reg < 15)
216 /* Rn to DCCTX, "MCR p14, 0, Rn, c0, c5, 0" 0xEE00nE15 */
217 retval = cortex_a8_exec_opcode(target,
218 ARMV4_5_MCR(14, 0, reg, 0, 5, 0),
219 &dscr);
220 if (retval != ERROR_OK)
221 return retval;
223 else if (reg == 15)
225 /* "MOV r0, r15"; then move r0 to DCCTX */
226 retval = cortex_a8_exec_opcode(target, 0xE1A0000F, &dscr);
227 if (retval != ERROR_OK)
228 return retval;
229 retval = cortex_a8_exec_opcode(target,
230 ARMV4_5_MCR(14, 0, 0, 0, 5, 0),
231 &dscr);
232 if (retval != ERROR_OK)
233 return retval;
235 else
237 /* "MRS r0, CPSR" or "MRS r0, SPSR"
238 * then move r0 to DCCTX
240 retval = cortex_a8_exec_opcode(target, ARMV4_5_MRS(0, reg & 1), &dscr);
241 if (retval != ERROR_OK)
242 return retval;
243 retval = cortex_a8_exec_opcode(target,
244 ARMV4_5_MCR(14, 0, 0, 0, 5, 0),
245 &dscr);
246 if (retval != ERROR_OK)
247 return retval;
250 /* Wait for DTRRXfull then read DTRRTX */
251 while ((dscr & DSCR_DTR_TX_FULL) == 0)
253 retval = mem_ap_read_atomic_u32(swjdp,
254 armv7a->debug_base + CPUDBG_DSCR, &dscr);
255 if (retval != ERROR_OK)
256 return retval;
259 retval = mem_ap_read_atomic_u32(swjdp,
260 armv7a->debug_base + CPUDBG_DTRTX, value);
261 LOG_DEBUG("read DCC 0x%08" PRIx32, *value);
263 return retval;
266 static int cortex_a8_dap_write_coreregister_u32(struct target *target,
267 uint32_t value, int regnum)
269 int retval = ERROR_OK;
270 uint8_t Rd = regnum&0xFF;
271 uint32_t dscr;
272 struct armv7a_common *armv7a = target_to_armv7a(target);
273 struct adiv5_dap *swjdp = &armv7a->dap;
275 LOG_DEBUG("register %i, value 0x%08" PRIx32, regnum, value);
277 /* Check that DCCRX is not full */
278 retval = mem_ap_read_atomic_u32(swjdp,
279 armv7a->debug_base + CPUDBG_DSCR, &dscr);
280 if (retval != ERROR_OK)
281 return retval;
282 if (dscr & DSCR_DTR_RX_FULL)
284 LOG_ERROR("DSCR_DTR_RX_FULL, dscr 0x%08" PRIx32, dscr);
285 /* Clear DCCRX with MCR(p14, 0, Rd, c0, c5, 0), opcode 0xEE000E15 */
286 retval = cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
287 &dscr);
288 if (retval != ERROR_OK)
289 return retval;
292 if (Rd > 17)
293 return retval;
295 /* Write DTRRX ... sets DSCR.DTRRXfull but exec_opcode() won't care */
296 LOG_DEBUG("write DCC 0x%08" PRIx32, value);
297 retval = mem_ap_write_u32(swjdp,
298 armv7a->debug_base + CPUDBG_DTRRX, value);
299 if (retval != ERROR_OK)
300 return retval;
302 if (Rd < 15)
304 /* DCCRX to Rn, "MCR p14, 0, Rn, c0, c5, 0", 0xEE00nE15 */
305 retval = cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, Rd, 0, 5, 0),
306 &dscr);
307 if (retval != ERROR_OK)
308 return retval;
310 else if (Rd == 15)
312 /* DCCRX to R0, "MCR p14, 0, R0, c0, c5, 0", 0xEE000E15
313 * then "mov r15, r0"
315 retval = cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
316 &dscr);
317 if (retval != ERROR_OK)
318 return retval;
319 retval = cortex_a8_exec_opcode(target, 0xE1A0F000, &dscr);
320 if (retval != ERROR_OK)
321 return retval;
323 else
325 /* DCCRX to R0, "MCR p14, 0, R0, c0, c5, 0", 0xEE000E15
326 * then "MSR CPSR_cxsf, r0" or "MSR SPSR_cxsf, r0" (all fields)
328 retval = cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
329 &dscr);
330 if (retval != ERROR_OK)
331 return retval;
332 retval = cortex_a8_exec_opcode(target, ARMV4_5_MSR_GP(0, 0xF, Rd & 1),
333 &dscr);
334 if (retval != ERROR_OK)
335 return retval;
337 /* "Prefetch flush" after modifying execution status in CPSR */
338 if (Rd == 16)
340 retval = cortex_a8_exec_opcode(target,
341 ARMV4_5_MCR(15, 0, 0, 7, 5, 4),
342 &dscr);
343 if (retval != ERROR_OK)
344 return retval;
348 return retval;
351 /* Write to memory mapped registers directly with no cache or mmu handling */
352 static int cortex_a8_dap_write_memap_register_u32(struct target *target, uint32_t address, uint32_t value)
354 int retval;
355 struct armv7a_common *armv7a = target_to_armv7a(target);
356 struct adiv5_dap *swjdp = &armv7a->dap;
358 retval = mem_ap_write_atomic_u32(swjdp, address, value);
360 return retval;
364 * Cortex-A8 implementation of Debug Programmer's Model
366 * NOTE the invariant: these routines return with DSCR_INSTR_COMP set,
367 * so there's no need to poll for it before executing an instruction.
369 * NOTE that in several of these cases the "stall" mode might be useful.
370 * It'd let us queue a few operations together... prepare/finish might
371 * be the places to enable/disable that mode.
374 static inline struct cortex_a8_common *dpm_to_a8(struct arm_dpm *dpm)
376 return container_of(dpm, struct cortex_a8_common, armv7a_common.dpm);
379 static int cortex_a8_write_dcc(struct cortex_a8_common *a8, uint32_t data)
381 LOG_DEBUG("write DCC 0x%08" PRIx32, data);
382 return mem_ap_write_u32(&a8->armv7a_common.dap,
383 a8->armv7a_common.debug_base + CPUDBG_DTRRX, data);
386 static int cortex_a8_read_dcc(struct cortex_a8_common *a8, uint32_t *data,
387 uint32_t *dscr_p)
389 struct adiv5_dap *swjdp = &a8->armv7a_common.dap;
390 uint32_t dscr = DSCR_INSTR_COMP;
391 int retval;
393 if (dscr_p)
394 dscr = *dscr_p;
396 /* Wait for DTRRXfull */
397 while ((dscr & DSCR_DTR_TX_FULL) == 0) {
398 retval = mem_ap_read_atomic_u32(swjdp,
399 a8->armv7a_common.debug_base + CPUDBG_DSCR,
400 &dscr);
401 if (retval != ERROR_OK)
402 return retval;
405 retval = mem_ap_read_atomic_u32(swjdp,
406 a8->armv7a_common.debug_base + CPUDBG_DTRTX, data);
407 if (retval != ERROR_OK)
408 return retval;
409 //LOG_DEBUG("read DCC 0x%08" PRIx32, *data);
411 if (dscr_p)
412 *dscr_p = dscr;
414 return retval;
417 static int cortex_a8_dpm_prepare(struct arm_dpm *dpm)
419 struct cortex_a8_common *a8 = dpm_to_a8(dpm);
420 struct adiv5_dap *swjdp = &a8->armv7a_common.dap;
421 uint32_t dscr;
422 int retval;
424 /* set up invariant: INSTR_COMP is set after ever DPM operation */
425 long long then = timeval_ms();
426 for (;;)
428 retval = mem_ap_read_atomic_u32(swjdp,
429 a8->armv7a_common.debug_base + CPUDBG_DSCR,
430 &dscr);
431 if (retval != ERROR_OK)
432 return retval;
433 if ((dscr & DSCR_INSTR_COMP) != 0)
434 break;
435 if (timeval_ms() > then + 1000)
437 LOG_ERROR("Timeout waiting for dpm prepare");
438 return ERROR_FAIL;
442 /* this "should never happen" ... */
443 if (dscr & DSCR_DTR_RX_FULL) {
444 LOG_ERROR("DSCR_DTR_RX_FULL, dscr 0x%08" PRIx32, dscr);
445 /* Clear DCCRX */
446 retval = cortex_a8_exec_opcode(
447 a8->armv7a_common.armv4_5_common.target,
448 ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
449 &dscr);
450 if (retval != ERROR_OK)
451 return retval;
454 return retval;
457 static int cortex_a8_dpm_finish(struct arm_dpm *dpm)
459 /* REVISIT what could be done here? */
460 return ERROR_OK;
463 static int cortex_a8_instr_write_data_dcc(struct arm_dpm *dpm,
464 uint32_t opcode, uint32_t data)
466 struct cortex_a8_common *a8 = dpm_to_a8(dpm);
467 int retval;
468 uint32_t dscr = DSCR_INSTR_COMP;
470 retval = cortex_a8_write_dcc(a8, data);
471 if (retval != ERROR_OK)
472 return retval;
474 return cortex_a8_exec_opcode(
475 a8->armv7a_common.armv4_5_common.target,
476 opcode,
477 &dscr);
480 static int cortex_a8_instr_write_data_r0(struct arm_dpm *dpm,
481 uint32_t opcode, uint32_t data)
483 struct cortex_a8_common *a8 = dpm_to_a8(dpm);
484 uint32_t dscr = DSCR_INSTR_COMP;
485 int retval;
487 retval = cortex_a8_write_dcc(a8, data);
488 if (retval != ERROR_OK)
489 return retval;
491 /* DCCRX to R0, "MCR p14, 0, R0, c0, c5, 0", 0xEE000E15 */
492 retval = cortex_a8_exec_opcode(
493 a8->armv7a_common.armv4_5_common.target,
494 ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
495 &dscr);
496 if (retval != ERROR_OK)
497 return retval;
499 /* then the opcode, taking data from R0 */
500 retval = cortex_a8_exec_opcode(
501 a8->armv7a_common.armv4_5_common.target,
502 opcode,
503 &dscr);
505 return retval;
508 static int cortex_a8_instr_cpsr_sync(struct arm_dpm *dpm)
510 struct target *target = dpm->arm->target;
511 uint32_t dscr = DSCR_INSTR_COMP;
513 /* "Prefetch flush" after modifying execution status in CPSR */
514 return cortex_a8_exec_opcode(target,
515 ARMV4_5_MCR(15, 0, 0, 7, 5, 4),
516 &dscr);
519 static int cortex_a8_instr_read_data_dcc(struct arm_dpm *dpm,
520 uint32_t opcode, uint32_t *data)
522 struct cortex_a8_common *a8 = dpm_to_a8(dpm);
523 int retval;
524 uint32_t dscr = DSCR_INSTR_COMP;
526 /* the opcode, writing data to DCC */
527 retval = cortex_a8_exec_opcode(
528 a8->armv7a_common.armv4_5_common.target,
529 opcode,
530 &dscr);
531 if (retval != ERROR_OK)
532 return retval;
534 return cortex_a8_read_dcc(a8, data, &dscr);
538 static int cortex_a8_instr_read_data_r0(struct arm_dpm *dpm,
539 uint32_t opcode, uint32_t *data)
541 struct cortex_a8_common *a8 = dpm_to_a8(dpm);
542 uint32_t dscr = DSCR_INSTR_COMP;
543 int retval;
545 /* the opcode, writing data to R0 */
546 retval = cortex_a8_exec_opcode(
547 a8->armv7a_common.armv4_5_common.target,
548 opcode,
549 &dscr);
550 if (retval != ERROR_OK)
551 return retval;
553 /* write R0 to DCC */
554 retval = cortex_a8_exec_opcode(
555 a8->armv7a_common.armv4_5_common.target,
556 ARMV4_5_MCR(14, 0, 0, 0, 5, 0),
557 &dscr);
558 if (retval != ERROR_OK)
559 return retval;
561 return cortex_a8_read_dcc(a8, data, &dscr);
564 static int cortex_a8_bpwp_enable(struct arm_dpm *dpm, unsigned index_t,
565 uint32_t addr, uint32_t control)
567 struct cortex_a8_common *a8 = dpm_to_a8(dpm);
568 uint32_t vr = a8->armv7a_common.debug_base;
569 uint32_t cr = a8->armv7a_common.debug_base;
570 int retval;
572 switch (index_t) {
573 case 0 ... 15: /* breakpoints */
574 vr += CPUDBG_BVR_BASE;
575 cr += CPUDBG_BCR_BASE;
576 break;
577 case 16 ... 31: /* watchpoints */
578 vr += CPUDBG_WVR_BASE;
579 cr += CPUDBG_WCR_BASE;
580 index_t -= 16;
581 break;
582 default:
583 return ERROR_FAIL;
585 vr += 4 * index_t;
586 cr += 4 * index_t;
588 LOG_DEBUG("A8: bpwp enable, vr %08x cr %08x",
589 (unsigned) vr, (unsigned) cr);
591 retval = cortex_a8_dap_write_memap_register_u32(dpm->arm->target,
592 vr, addr);
593 if (retval != ERROR_OK)
594 return retval;
595 retval = cortex_a8_dap_write_memap_register_u32(dpm->arm->target,
596 cr, control);
597 return retval;
600 static int cortex_a8_bpwp_disable(struct arm_dpm *dpm, unsigned index_t)
602 struct cortex_a8_common *a8 = dpm_to_a8(dpm);
603 uint32_t cr;
605 switch (index_t) {
606 case 0 ... 15:
607 cr = a8->armv7a_common.debug_base + CPUDBG_BCR_BASE;
608 break;
609 case 16 ... 31:
610 cr = a8->armv7a_common.debug_base + CPUDBG_WCR_BASE;
611 index_t -= 16;
612 break;
613 default:
614 return ERROR_FAIL;
616 cr += 4 * index_t;
618 LOG_DEBUG("A8: bpwp disable, cr %08x", (unsigned) cr);
620 /* clear control register */
621 return cortex_a8_dap_write_memap_register_u32(dpm->arm->target, cr, 0);
624 static int cortex_a8_dpm_setup(struct cortex_a8_common *a8, uint32_t didr)
626 struct arm_dpm *dpm = &a8->armv7a_common.dpm;
627 int retval;
629 dpm->arm = &a8->armv7a_common.armv4_5_common;
630 dpm->didr = didr;
632 dpm->prepare = cortex_a8_dpm_prepare;
633 dpm->finish = cortex_a8_dpm_finish;
635 dpm->instr_write_data_dcc = cortex_a8_instr_write_data_dcc;
636 dpm->instr_write_data_r0 = cortex_a8_instr_write_data_r0;
637 dpm->instr_cpsr_sync = cortex_a8_instr_cpsr_sync;
639 dpm->instr_read_data_dcc = cortex_a8_instr_read_data_dcc;
640 dpm->instr_read_data_r0 = cortex_a8_instr_read_data_r0;
642 dpm->bpwp_enable = cortex_a8_bpwp_enable;
643 dpm->bpwp_disable = cortex_a8_bpwp_disable;
645 retval = arm_dpm_setup(dpm);
646 if (retval == ERROR_OK)
647 retval = arm_dpm_initialize(dpm);
649 return retval;
654 * Cortex-A8 Run control
657 static int cortex_a8_poll(struct target *target)
659 int retval = ERROR_OK;
660 uint32_t dscr;
661 struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
662 struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
663 struct adiv5_dap *swjdp = &armv7a->dap;
664 enum target_state prev_target_state = target->state;
665 uint8_t saved_apsel = dap_ap_get_select(swjdp);
667 dap_ap_select(swjdp, swjdp_debugap);
668 retval = mem_ap_read_atomic_u32(swjdp,
669 armv7a->debug_base + CPUDBG_DSCR, &dscr);
670 if (retval != ERROR_OK)
672 dap_ap_select(swjdp, saved_apsel);
673 return retval;
675 cortex_a8->cpudbg_dscr = dscr;
677 if ((dscr & 0x3) == 0x3)
679 if (prev_target_state != TARGET_HALTED)
681 /* We have a halting debug event */
682 LOG_DEBUG("Target halted");
683 target->state = TARGET_HALTED;
684 if ((prev_target_state == TARGET_RUNNING)
685 || (prev_target_state == TARGET_RESET))
687 retval = cortex_a8_debug_entry(target);
688 if (retval != ERROR_OK)
689 return retval;
691 target_call_event_callbacks(target,
692 TARGET_EVENT_HALTED);
694 if (prev_target_state == TARGET_DEBUG_RUNNING)
696 LOG_DEBUG(" ");
698 retval = cortex_a8_debug_entry(target);
699 if (retval != ERROR_OK)
700 return retval;
702 target_call_event_callbacks(target,
703 TARGET_EVENT_DEBUG_HALTED);
707 else if ((dscr & 0x3) == 0x2)
709 target->state = TARGET_RUNNING;
711 else
713 LOG_DEBUG("Unknown target state dscr = 0x%08" PRIx32, dscr);
714 target->state = TARGET_UNKNOWN;
717 dap_ap_select(swjdp, saved_apsel);
719 return retval;
722 static int cortex_a8_halt(struct target *target)
724 int retval = ERROR_OK;
725 uint32_t dscr;
726 struct armv7a_common *armv7a = target_to_armv7a(target);
727 struct adiv5_dap *swjdp = &armv7a->dap;
728 uint8_t saved_apsel = dap_ap_get_select(swjdp);
729 dap_ap_select(swjdp, swjdp_debugap);
732 * Tell the core to be halted by writing DRCR with 0x1
733 * and then wait for the core to be halted.
735 retval = mem_ap_write_atomic_u32(swjdp,
736 armv7a->debug_base + CPUDBG_DRCR, 0x1);
737 if (retval != ERROR_OK)
738 goto out;
741 * enter halting debug mode
743 retval = mem_ap_read_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_DSCR, &dscr);
744 if (retval != ERROR_OK)
745 goto out;
747 retval = mem_ap_write_atomic_u32(swjdp,
748 armv7a->debug_base + CPUDBG_DSCR, dscr | DSCR_HALT_DBG_MODE);
749 if (retval != ERROR_OK)
750 goto out;
752 long long then = timeval_ms();
753 for (;;)
755 retval = mem_ap_read_atomic_u32(swjdp,
756 armv7a->debug_base + CPUDBG_DSCR, &dscr);
757 if (retval != ERROR_OK)
758 goto out;
759 if ((dscr & DSCR_CORE_HALTED) != 0)
761 break;
763 if (timeval_ms() > then + 1000)
765 LOG_ERROR("Timeout waiting for halt");
766 return ERROR_FAIL;
770 target->debug_reason = DBG_REASON_DBGRQ;
772 out:
773 dap_ap_select(swjdp, saved_apsel);
774 return retval;
777 static int cortex_a8_resume(struct target *target, int current,
778 uint32_t address, int handle_breakpoints, int debug_execution)
780 struct armv7a_common *armv7a = target_to_armv7a(target);
781 struct arm *armv4_5 = &armv7a->armv4_5_common;
782 struct adiv5_dap *swjdp = &armv7a->dap;
783 int retval;
785 // struct breakpoint *breakpoint = NULL;
786 uint32_t resume_pc, dscr;
788 uint8_t saved_apsel = dap_ap_get_select(swjdp);
789 dap_ap_select(swjdp, swjdp_debugap);
791 if (!debug_execution)
792 target_free_all_working_areas(target);
794 #if 0
795 if (debug_execution)
797 /* Disable interrupts */
798 /* We disable interrupts in the PRIMASK register instead of
799 * masking with C_MASKINTS,
800 * This is probably the same issue as Cortex-M3 Errata 377493:
801 * C_MASKINTS in parallel with disabled interrupts can cause
802 * local faults to not be taken. */
803 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_PRIMASK].value, 0, 32, 1);
804 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].dirty = 1;
805 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].valid = 1;
807 /* Make sure we are in Thumb mode */
808 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32,
809 buf_get_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32) | (1 << 24));
810 armv7m->core_cache->reg_list[ARMV7M_xPSR].dirty = 1;
811 armv7m->core_cache->reg_list[ARMV7M_xPSR].valid = 1;
813 #endif
815 /* current = 1: continue on current pc, otherwise continue at <address> */
816 resume_pc = buf_get_u32(armv4_5->pc->value, 0, 32);
817 if (!current)
818 resume_pc = address;
820 /* Make sure that the Armv7 gdb thumb fixups does not
821 * kill the return address
823 switch (armv4_5->core_state)
825 case ARM_STATE_ARM:
826 resume_pc &= 0xFFFFFFFC;
827 break;
828 case ARM_STATE_THUMB:
829 case ARM_STATE_THUMB_EE:
830 /* When the return address is loaded into PC
831 * bit 0 must be 1 to stay in Thumb state
833 resume_pc |= 0x1;
834 break;
835 case ARM_STATE_JAZELLE:
836 LOG_ERROR("How do I resume into Jazelle state??");
837 return ERROR_FAIL;
839 LOG_DEBUG("resume pc = 0x%08" PRIx32, resume_pc);
840 buf_set_u32(armv4_5->pc->value, 0, 32, resume_pc);
841 armv4_5->pc->dirty = 1;
842 armv4_5->pc->valid = 1;
844 retval = cortex_a8_restore_context(target, handle_breakpoints);
845 if (retval != ERROR_OK)
846 return retval;
848 #if 0
849 /* the front-end may request us not to handle breakpoints */
850 if (handle_breakpoints)
852 /* Single step past breakpoint at current address */
853 if ((breakpoint = breakpoint_find(target, resume_pc)))
855 LOG_DEBUG("unset breakpoint at 0x%8.8x", breakpoint->address);
856 cortex_m3_unset_breakpoint(target, breakpoint);
857 cortex_m3_single_step_core(target);
858 cortex_m3_set_breakpoint(target, breakpoint);
862 #endif
863 /* Restart core and wait for it to be started
864 * NOTE: this clears DSCR_ITR_EN and other bits.
866 * REVISIT: for single stepping, we probably want to
867 * disable IRQs by default, with optional override...
869 retval = mem_ap_write_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_DRCR, 0x2);
870 if (retval != ERROR_OK)
871 return retval;
873 long long then = timeval_ms();
874 for (;;)
876 retval = mem_ap_read_atomic_u32(swjdp,
877 armv7a->debug_base + CPUDBG_DSCR, &dscr);
878 if (retval != ERROR_OK)
879 return retval;
880 if ((dscr & DSCR_CORE_RESTARTED) != 0)
881 break;
882 if (timeval_ms() > then + 1000)
884 LOG_ERROR("Timeout waiting for resume");
885 return ERROR_FAIL;
889 target->debug_reason = DBG_REASON_NOTHALTED;
890 target->state = TARGET_RUNNING;
892 /* registers are now invalid */
893 register_cache_invalidate(armv4_5->core_cache);
895 if (!debug_execution)
897 target->state = TARGET_RUNNING;
898 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
899 LOG_DEBUG("target resumed at 0x%" PRIx32, resume_pc);
901 else
903 target->state = TARGET_DEBUG_RUNNING;
904 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
905 LOG_DEBUG("target debug resumed at 0x%" PRIx32, resume_pc);
908 dap_ap_select(swjdp, saved_apsel);
910 return ERROR_OK;
913 static int cortex_a8_debug_entry(struct target *target)
915 int i;
916 uint32_t regfile[16], cpsr, dscr;
917 int retval = ERROR_OK;
918 struct working_area *regfile_working_area = NULL;
919 struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
920 struct armv7a_common *armv7a = target_to_armv7a(target);
921 struct arm *armv4_5 = &armv7a->armv4_5_common;
922 struct adiv5_dap *swjdp = &armv7a->dap;
923 struct reg *reg;
925 LOG_DEBUG("dscr = 0x%08" PRIx32, cortex_a8->cpudbg_dscr);
927 /* REVISIT surely we should not re-read DSCR !! */
928 retval = mem_ap_read_atomic_u32(swjdp,
929 armv7a->debug_base + CPUDBG_DSCR, &dscr);
930 if (retval != ERROR_OK)
931 return retval;
933 /* REVISIT see A8 TRM 12.11.4 steps 2..3 -- make sure that any
934 * imprecise data aborts get discarded by issuing a Data
935 * Synchronization Barrier: ARMV4_5_MCR(15, 0, 0, 7, 10, 4).
938 /* Enable the ITR execution once we are in debug mode */
939 dscr |= DSCR_ITR_EN;
940 retval = mem_ap_write_atomic_u32(swjdp,
941 armv7a->debug_base + CPUDBG_DSCR, dscr);
942 if (retval != ERROR_OK)
943 return retval;
945 /* Examine debug reason */
946 arm_dpm_report_dscr(&armv7a->dpm, cortex_a8->cpudbg_dscr);
948 /* save address of instruction that triggered the watchpoint? */
949 if (target->debug_reason == DBG_REASON_WATCHPOINT) {
950 uint32_t wfar;
952 retval = mem_ap_read_atomic_u32(swjdp,
953 armv7a->debug_base + CPUDBG_WFAR,
954 &wfar);
955 if (retval != ERROR_OK)
956 return retval;
957 arm_dpm_report_wfar(&armv7a->dpm, wfar);
960 /* REVISIT fast_reg_read is never set ... */
962 /* Examine target state and mode */
963 if (cortex_a8->fast_reg_read)
964 target_alloc_working_area(target, 64, &regfile_working_area);
966 /* First load register acessible through core debug port*/
967 if (!regfile_working_area)
969 retval = arm_dpm_read_current_registers(&armv7a->dpm);
971 else
973 dap_ap_select(swjdp, swjdp_memoryap);
974 retval = cortex_a8_read_regs_through_mem(target,
975 regfile_working_area->address, regfile);
976 dap_ap_select(swjdp, swjdp_memoryap);
977 target_free_working_area(target, regfile_working_area);
978 if (retval != ERROR_OK)
980 return retval;
983 /* read Current PSR */
984 retval = cortex_a8_dap_read_coreregister_u32(target, &cpsr, 16);
985 if (retval != ERROR_OK)
986 return retval;
987 dap_ap_select(swjdp, swjdp_debugap);
988 LOG_DEBUG("cpsr: %8.8" PRIx32, cpsr);
990 arm_set_cpsr(armv4_5, cpsr);
992 /* update cache */
993 for (i = 0; i <= ARM_PC; i++)
995 reg = arm_reg_current(armv4_5, i);
997 buf_set_u32(reg->value, 0, 32, regfile[i]);
998 reg->valid = 1;
999 reg->dirty = 0;
1002 /* Fixup PC Resume Address */
1003 if (cpsr & (1 << 5))
1005 // T bit set for Thumb or ThumbEE state
1006 regfile[ARM_PC] -= 4;
1008 else
1010 // ARM state
1011 regfile[ARM_PC] -= 8;
1014 reg = armv4_5->pc;
1015 buf_set_u32(reg->value, 0, 32, regfile[ARM_PC]);
1016 reg->dirty = reg->valid;
1019 #if 0
1020 /* TODO, Move this */
1021 uint32_t cp15_control_register, cp15_cacr, cp15_nacr;
1022 cortex_a8_read_cp(target, &cp15_control_register, 15, 0, 1, 0, 0);
1023 LOG_DEBUG("cp15_control_register = 0x%08x", cp15_control_register);
1025 cortex_a8_read_cp(target, &cp15_cacr, 15, 0, 1, 0, 2);
1026 LOG_DEBUG("cp15 Coprocessor Access Control Register = 0x%08x", cp15_cacr);
1028 cortex_a8_read_cp(target, &cp15_nacr, 15, 0, 1, 1, 2);
1029 LOG_DEBUG("cp15 Nonsecure Access Control Register = 0x%08x", cp15_nacr);
1030 #endif
1032 /* Are we in an exception handler */
1033 // armv4_5->exception_number = 0;
1034 if (armv7a->post_debug_entry)
1035 armv7a->post_debug_entry(target);
1037 return retval;
1040 static void cortex_a8_post_debug_entry(struct target *target)
1042 struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1043 struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
1044 int retval;
1046 /* MRC p15,0,<Rt>,c1,c0,0 ; Read CP15 System Control Register */
1047 retval = armv7a->armv4_5_common.mrc(target, 15,
1048 0, 0, /* op1, op2 */
1049 1, 0, /* CRn, CRm */
1050 &cortex_a8->cp15_control_reg);
1051 LOG_DEBUG("cp15_control_reg: %8.8" PRIx32, cortex_a8->cp15_control_reg);
1053 if (armv7a->armv4_5_mmu.armv4_5_cache.ctype == -1)
1055 uint32_t cache_type_reg;
1057 /* MRC p15,0,<Rt>,c0,c0,1 ; Read CP15 Cache Type Register */
1058 retval = armv7a->armv4_5_common.mrc(target, 15,
1059 0, 1, /* op1, op2 */
1060 0, 0, /* CRn, CRm */
1061 &cache_type_reg);
1062 LOG_DEBUG("cp15 cache type: %8.8x", (unsigned) cache_type_reg);
1064 /* FIXME the armv4_4 cache info DOES NOT APPLY to Cortex-A8 */
1065 armv4_5_identify_cache(cache_type_reg,
1066 &armv7a->armv4_5_mmu.armv4_5_cache);
1069 armv7a->armv4_5_mmu.mmu_enabled =
1070 (cortex_a8->cp15_control_reg & 0x1U) ? 1 : 0;
1071 armv7a->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled =
1072 (cortex_a8->cp15_control_reg & 0x4U) ? 1 : 0;
1073 armv7a->armv4_5_mmu.armv4_5_cache.i_cache_enabled =
1074 (cortex_a8->cp15_control_reg & 0x1000U) ? 1 : 0;
1079 static int cortex_a8_step(struct target *target, int current, uint32_t address,
1080 int handle_breakpoints)
1082 struct armv7a_common *armv7a = target_to_armv7a(target);
1083 struct arm *armv4_5 = &armv7a->armv4_5_common;
1084 struct breakpoint *breakpoint = NULL;
1085 struct breakpoint stepbreakpoint;
1086 struct reg *r;
1087 int retval;
1089 int timeout = 100;
1091 if (target->state != TARGET_HALTED)
1093 LOG_WARNING("target not halted");
1094 return ERROR_TARGET_NOT_HALTED;
1097 /* current = 1: continue on current pc, otherwise continue at <address> */
1098 r = armv4_5->pc;
1099 if (!current)
1101 buf_set_u32(r->value, 0, 32, address);
1103 else
1105 address = buf_get_u32(r->value, 0, 32);
1108 /* The front-end may request us not to handle breakpoints.
1109 * But since Cortex-A8 uses breakpoint for single step,
1110 * we MUST handle breakpoints.
1112 handle_breakpoints = 1;
1113 if (handle_breakpoints) {
1114 breakpoint = breakpoint_find(target, address);
1115 if (breakpoint)
1116 cortex_a8_unset_breakpoint(target, breakpoint);
1119 /* Setup single step breakpoint */
1120 stepbreakpoint.address = address;
1121 stepbreakpoint.length = (armv4_5->core_state == ARM_STATE_THUMB)
1122 ? 2 : 4;
1123 stepbreakpoint.type = BKPT_HARD;
1124 stepbreakpoint.set = 0;
1126 /* Break on IVA mismatch */
1127 cortex_a8_set_breakpoint(target, &stepbreakpoint, 0x04);
1129 target->debug_reason = DBG_REASON_SINGLESTEP;
1131 retval = cortex_a8_resume(target, 1, address, 0, 0);
1132 if (retval != ERROR_OK)
1133 return retval;
1135 while (target->state != TARGET_HALTED)
1137 retval = cortex_a8_poll(target);
1138 if (retval != ERROR_OK)
1139 return retval;
1140 if (--timeout == 0)
1142 LOG_ERROR("timeout waiting for target halt");
1143 return ERROR_FAIL;
1147 cortex_a8_unset_breakpoint(target, &stepbreakpoint);
1148 if (timeout > 0)
1149 target->debug_reason = DBG_REASON_BREAKPOINT;
1151 if (breakpoint)
1152 cortex_a8_set_breakpoint(target, breakpoint, 0);
1154 if (target->state != TARGET_HALTED)
1155 LOG_DEBUG("target stepped");
1157 return ERROR_OK;
1160 static int cortex_a8_restore_context(struct target *target, bool bpwp)
1162 struct armv7a_common *armv7a = target_to_armv7a(target);
1164 LOG_DEBUG(" ");
1166 if (armv7a->pre_restore_context)
1167 armv7a->pre_restore_context(target);
1169 return arm_dpm_write_dirty_registers(&armv7a->dpm, bpwp);
1174 * Cortex-A8 Breakpoint and watchpoint functions
1177 /* Setup hardware Breakpoint Register Pair */
1178 static int cortex_a8_set_breakpoint(struct target *target,
1179 struct breakpoint *breakpoint, uint8_t matchmode)
1181 int retval;
1182 int brp_i=0;
1183 uint32_t control;
1184 uint8_t byte_addr_select = 0x0F;
1185 struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1186 struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
1187 struct cortex_a8_brp * brp_list = cortex_a8->brp_list;
1189 if (breakpoint->set)
1191 LOG_WARNING("breakpoint already set");
1192 return ERROR_OK;
1195 if (breakpoint->type == BKPT_HARD)
1197 while (brp_list[brp_i].used && (brp_i < cortex_a8->brp_num))
1198 brp_i++ ;
1199 if (brp_i >= cortex_a8->brp_num)
1201 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1202 return ERROR_FAIL;
1204 breakpoint->set = brp_i + 1;
1205 if (breakpoint->length == 2)
1207 byte_addr_select = (3 << (breakpoint->address & 0x02));
1209 control = ((matchmode & 0x7) << 20)
1210 | (byte_addr_select << 5)
1211 | (3 << 1) | 1;
1212 brp_list[brp_i].used = 1;
1213 brp_list[brp_i].value = (breakpoint->address & 0xFFFFFFFC);
1214 brp_list[brp_i].control = control;
1215 retval = cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1216 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1217 brp_list[brp_i].value);
1218 if (retval != ERROR_OK)
1219 return retval;
1220 retval = cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1221 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1222 brp_list[brp_i].control);
1223 if (retval != ERROR_OK)
1224 return retval;
1225 LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1226 brp_list[brp_i].control,
1227 brp_list[brp_i].value);
1229 else if (breakpoint->type == BKPT_SOFT)
1231 uint8_t code[4];
1232 if (breakpoint->length == 2)
1234 buf_set_u32(code, 0, 32, ARMV5_T_BKPT(0x11));
1236 else
1238 buf_set_u32(code, 0, 32, ARMV5_BKPT(0x11));
1240 retval = target->type->read_memory(target,
1241 breakpoint->address & 0xFFFFFFFE,
1242 breakpoint->length, 1,
1243 breakpoint->orig_instr);
1244 if (retval != ERROR_OK)
1245 return retval;
1246 retval = target->type->write_memory(target,
1247 breakpoint->address & 0xFFFFFFFE,
1248 breakpoint->length, 1, code);
1249 if (retval != ERROR_OK)
1250 return retval;
1251 breakpoint->set = 0x11; /* Any nice value but 0 */
1254 return ERROR_OK;
1257 static int cortex_a8_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
1259 int retval;
1260 struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1261 struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
1262 struct cortex_a8_brp * brp_list = cortex_a8->brp_list;
1264 if (!breakpoint->set)
1266 LOG_WARNING("breakpoint not set");
1267 return ERROR_OK;
1270 if (breakpoint->type == BKPT_HARD)
1272 int brp_i = breakpoint->set - 1;
1273 if ((brp_i < 0) || (brp_i >= cortex_a8->brp_num))
1275 LOG_DEBUG("Invalid BRP number in breakpoint");
1276 return ERROR_OK;
1278 LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1279 brp_list[brp_i].control, brp_list[brp_i].value);
1280 brp_list[brp_i].used = 0;
1281 brp_list[brp_i].value = 0;
1282 brp_list[brp_i].control = 0;
1283 retval = cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1284 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1285 brp_list[brp_i].control);
1286 if (retval != ERROR_OK)
1287 return retval;
1288 retval = cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1289 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1290 brp_list[brp_i].value);
1291 if (retval != ERROR_OK)
1292 return retval;
1294 else
1296 /* restore original instruction (kept in target endianness) */
1297 if (breakpoint->length == 4)
1299 retval = target->type->write_memory(target,
1300 breakpoint->address & 0xFFFFFFFE,
1301 4, 1, breakpoint->orig_instr);
1302 if (retval != ERROR_OK)
1303 return retval;
1305 else
1307 retval = target->type->write_memory(target,
1308 breakpoint->address & 0xFFFFFFFE,
1309 2, 1, breakpoint->orig_instr);
1310 if (retval != ERROR_OK)
1311 return retval;
1314 breakpoint->set = 0;
1316 return ERROR_OK;
1319 static int cortex_a8_add_breakpoint(struct target *target,
1320 struct breakpoint *breakpoint)
1322 struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1324 if ((breakpoint->type == BKPT_HARD) && (cortex_a8->brp_num_available < 1))
1326 LOG_INFO("no hardware breakpoint available");
1327 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1330 if (breakpoint->type == BKPT_HARD)
1331 cortex_a8->brp_num_available--;
1332 cortex_a8_set_breakpoint(target, breakpoint, 0x00); /* Exact match */
1334 return ERROR_OK;
1337 static int cortex_a8_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
1339 struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1341 #if 0
1342 /* It is perfectly possible to remove breakpoints while the target is running */
1343 if (target->state != TARGET_HALTED)
1345 LOG_WARNING("target not halted");
1346 return ERROR_TARGET_NOT_HALTED;
1348 #endif
1350 if (breakpoint->set)
1352 cortex_a8_unset_breakpoint(target, breakpoint);
1353 if (breakpoint->type == BKPT_HARD)
1354 cortex_a8->brp_num_available++ ;
1358 return ERROR_OK;
1364 * Cortex-A8 Reset functions
1367 static int cortex_a8_assert_reset(struct target *target)
1369 struct armv7a_common *armv7a = target_to_armv7a(target);
1371 LOG_DEBUG(" ");
1373 /* FIXME when halt is requested, make it work somehow... */
1375 /* Issue some kind of warm reset. */
1376 if (target_has_event_action(target, TARGET_EVENT_RESET_ASSERT)) {
1377 target_handle_event(target, TARGET_EVENT_RESET_ASSERT);
1378 } else if (jtag_get_reset_config() & RESET_HAS_SRST) {
1379 /* REVISIT handle "pulls" cases, if there's
1380 * hardware that needs them to work.
1382 jtag_add_reset(0, 1);
1383 } else {
1384 LOG_ERROR("%s: how to reset?", target_name(target));
1385 return ERROR_FAIL;
1388 /* registers are now invalid */
1389 register_cache_invalidate(armv7a->armv4_5_common.core_cache);
1391 target->state = TARGET_RESET;
1393 return ERROR_OK;
1396 static int cortex_a8_deassert_reset(struct target *target)
1398 int retval;
1400 LOG_DEBUG(" ");
1402 /* be certain SRST is off */
1403 jtag_add_reset(0, 0);
1405 retval = cortex_a8_poll(target);
1406 if (retval != ERROR_OK)
1407 return retval;
1409 if (target->reset_halt) {
1410 if (target->state != TARGET_HALTED) {
1411 LOG_WARNING("%s: ran after reset and before halt ...",
1412 target_name(target));
1413 if ((retval = target_halt(target)) != ERROR_OK)
1414 return retval;
1418 return ERROR_OK;
1422 * Cortex-A8 Memory access
1424 * This is same Cortex M3 but we must also use the correct
1425 * ap number for every access.
1428 static int cortex_a8_read_phys_memory(struct target *target,
1429 uint32_t address, uint32_t size,
1430 uint32_t count, uint8_t *buffer)
1432 struct armv7a_common *armv7a = target_to_armv7a(target);
1433 struct adiv5_dap *swjdp = &armv7a->dap;
1434 int retval = ERROR_INVALID_ARGUMENTS;
1436 /* cortex_a8 handles unaligned memory access */
1438 // ??? dap_ap_select(swjdp, swjdp_memoryap);
1439 LOG_DEBUG("Reading memory at real address 0x%x; size %d; count %d", address, size, count);
1440 if (count && buffer) {
1441 switch (size) {
1442 case 4:
1443 retval = mem_ap_read_buf_u32(swjdp, buffer, 4 * count, address);
1444 break;
1445 case 2:
1446 retval = mem_ap_read_buf_u16(swjdp, buffer, 2 * count, address);
1447 break;
1448 case 1:
1449 retval = mem_ap_read_buf_u8(swjdp, buffer, count, address);
1450 break;
1454 return retval;
1457 static int cortex_a8_read_memory(struct target *target, uint32_t address,
1458 uint32_t size, uint32_t count, uint8_t *buffer)
1460 int enabled = 0;
1461 uint32_t virt, phys;
1462 int retval;
1464 /* cortex_a8 handles unaligned memory access */
1466 // ??? dap_ap_select(swjdp, swjdp_memoryap);
1467 LOG_DEBUG("Reading memory at address 0x%x; size %d; count %d", address, size, count);
1468 retval = cortex_a8_mmu(target, &enabled);
1469 if (retval != ERROR_OK)
1470 return retval;
1472 if(enabled)
1474 virt = address;
1475 retval = cortex_a8_virt2phys(target, virt, &phys);
1476 if (retval != ERROR_OK)
1477 return retval;
1479 LOG_DEBUG("Reading at virtual address. Translating v:0x%x to r:0x%x", virt, phys);
1480 address = phys;
1483 return cortex_a8_read_phys_memory(target, address, size, count, buffer);
1486 static int cortex_a8_write_phys_memory(struct target *target,
1487 uint32_t address, uint32_t size,
1488 uint32_t count, uint8_t *buffer)
1490 struct armv7a_common *armv7a = target_to_armv7a(target);
1491 struct adiv5_dap *swjdp = &armv7a->dap;
1492 int retval = ERROR_INVALID_ARGUMENTS;
1494 // ??? dap_ap_select(swjdp, swjdp_memoryap);
1496 LOG_DEBUG("Writing memory to real address 0x%x; size %d; count %d", address, size, count);
1497 if (count && buffer) {
1498 switch (size) {
1499 case 4:
1500 retval = mem_ap_write_buf_u32(swjdp, buffer, 4 * count, address);
1501 break;
1502 case 2:
1503 retval = mem_ap_write_buf_u16(swjdp, buffer, 2 * count, address);
1504 break;
1505 case 1:
1506 retval = mem_ap_write_buf_u8(swjdp, buffer, count, address);
1507 break;
1511 /* REVISIT this op is generic ARMv7-A/R stuff */
1512 if (retval == ERROR_OK && target->state == TARGET_HALTED)
1514 struct arm_dpm *dpm = armv7a->armv4_5_common.dpm;
1516 retval = dpm->prepare(dpm);
1517 if (retval != ERROR_OK)
1518 return retval;
1520 /* The Cache handling will NOT work with MMU active, the
1521 * wrong addresses will be invalidated!
1523 * For both ICache and DCache, walk all cache lines in the
1524 * address range. Cortex-A8 has fixed 64 byte line length.
1526 * REVISIT per ARMv7, these may trigger watchpoints ...
1529 /* invalidate I-Cache */
1530 if (armv7a->armv4_5_mmu.armv4_5_cache.i_cache_enabled)
1532 /* ICIMVAU - Invalidate Cache single entry
1533 * with MVA to PoU
1534 * MCR p15, 0, r0, c7, c5, 1
1536 for (uint32_t cacheline = address;
1537 cacheline < address + size * count;
1538 cacheline += 64) {
1539 retval = dpm->instr_write_data_r0(dpm,
1540 ARMV4_5_MCR(15, 0, 0, 7, 5, 1),
1541 cacheline);
1542 if (retval != ERROR_OK)
1543 return retval;
1547 /* invalidate D-Cache */
1548 if (armv7a->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled)
1550 /* DCIMVAC - Invalidate data Cache line
1551 * with MVA to PoC
1552 * MCR p15, 0, r0, c7, c6, 1
1554 for (uint32_t cacheline = address;
1555 cacheline < address + size * count;
1556 cacheline += 64) {
1557 retval = dpm->instr_write_data_r0(dpm,
1558 ARMV4_5_MCR(15, 0, 0, 7, 6, 1),
1559 cacheline);
1560 if (retval != ERROR_OK)
1561 return retval;
1565 /* (void) */ dpm->finish(dpm);
1568 return retval;
1571 static int cortex_a8_write_memory(struct target *target, uint32_t address,
1572 uint32_t size, uint32_t count, uint8_t *buffer)
1574 int enabled = 0;
1575 uint32_t virt, phys;
1576 int retval;
1578 // ??? dap_ap_select(swjdp, swjdp_memoryap);
1580 LOG_DEBUG("Writing memory to address 0x%x; size %d; count %d", address, size, count);
1581 retval = cortex_a8_mmu(target, &enabled);
1582 if (retval != ERROR_OK)
1583 return retval;
1584 if(enabled)
1586 virt = address;
1587 retval = cortex_a8_virt2phys(target, virt, &phys);
1588 if (retval != ERROR_OK)
1589 return retval;
1590 LOG_DEBUG("Writing to virtual address. Translating v:0x%x to r:0x%x", virt, phys);
1591 address = phys;
1594 return cortex_a8_write_phys_memory(target, address, size,
1595 count, buffer);
1598 static int cortex_a8_bulk_write_memory(struct target *target, uint32_t address,
1599 uint32_t count, uint8_t *buffer)
1601 return cortex_a8_write_memory(target, address, 4, count, buffer);
1605 static int cortex_a8_dcc_read(struct adiv5_dap *swjdp, uint8_t *value, uint8_t *ctrl)
1607 #if 0
1608 u16 dcrdr;
1610 mem_ap_read_buf_u16(swjdp, (uint8_t*)&dcrdr, 1, DCB_DCRDR);
1611 *ctrl = (uint8_t)dcrdr;
1612 *value = (uint8_t)(dcrdr >> 8);
1614 LOG_DEBUG("data 0x%x ctrl 0x%x", *value, *ctrl);
1616 /* write ack back to software dcc register
1617 * signify we have read data */
1618 if (dcrdr & (1 << 0))
1620 dcrdr = 0;
1621 mem_ap_write_buf_u16(swjdp, (uint8_t*)&dcrdr, 1, DCB_DCRDR);
1623 #endif
1624 return ERROR_OK;
1628 static int cortex_a8_handle_target_request(void *priv)
1630 struct target *target = priv;
1631 struct armv7a_common *armv7a = target_to_armv7a(target);
1632 struct adiv5_dap *swjdp = &armv7a->dap;
1633 int retval;
1635 if (!target_was_examined(target))
1636 return ERROR_OK;
1637 if (!target->dbg_msg_enabled)
1638 return ERROR_OK;
1640 if (target->state == TARGET_RUNNING)
1642 uint8_t data = 0;
1643 uint8_t ctrl = 0;
1645 retval = cortex_a8_dcc_read(swjdp, &data, &ctrl);
1646 if (retval != ERROR_OK)
1647 return retval;
1649 /* check if we have data */
1650 if (ctrl & (1 << 0))
1652 uint32_t request;
1654 /* we assume target is quick enough */
1655 request = data;
1656 retval = cortex_a8_dcc_read(swjdp, &data, &ctrl);
1657 if (retval != ERROR_OK)
1658 return retval;
1659 request |= (data << 8);
1660 retval = cortex_a8_dcc_read(swjdp, &data, &ctrl);
1661 if (retval != ERROR_OK)
1662 return retval;
1663 request |= (data << 16);
1664 retval = cortex_a8_dcc_read(swjdp, &data, &ctrl);
1665 if (retval != ERROR_OK)
1666 return retval;
1667 request |= (data << 24);
1668 target_request(target, request);
1672 return ERROR_OK;
1676 * Cortex-A8 target information and configuration
1679 static int cortex_a8_examine_first(struct target *target)
1681 struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1682 struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
1683 struct adiv5_dap *swjdp = &armv7a->dap;
1684 int i;
1685 int retval = ERROR_OK;
1686 uint32_t didr, ctypr, ttypr, cpuid;
1688 /* stop assuming this is an OMAP! */
1689 LOG_DEBUG("TODO - autoconfigure");
1691 /* Here we shall insert a proper ROM Table scan */
1692 armv7a->debug_base = OMAP3530_DEBUG_BASE;
1694 /* We do one extra read to ensure DAP is configured,
1695 * we call ahbap_debugport_init(swjdp) instead
1697 retval = ahbap_debugport_init(swjdp);
1698 if (retval != ERROR_OK)
1699 return retval;
1701 retval = mem_ap_read_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_CPUID, &cpuid);
1702 if (retval != ERROR_OK)
1703 return retval;
1705 if ((retval = mem_ap_read_atomic_u32(swjdp,
1706 armv7a->debug_base + CPUDBG_CPUID, &cpuid)) != ERROR_OK)
1708 LOG_DEBUG("Examine %s failed", "CPUID");
1709 return retval;
1712 if ((retval = mem_ap_read_atomic_u32(swjdp,
1713 armv7a->debug_base + CPUDBG_CTYPR, &ctypr)) != ERROR_OK)
1715 LOG_DEBUG("Examine %s failed", "CTYPR");
1716 return retval;
1719 if ((retval = mem_ap_read_atomic_u32(swjdp,
1720 armv7a->debug_base + CPUDBG_TTYPR, &ttypr)) != ERROR_OK)
1722 LOG_DEBUG("Examine %s failed", "TTYPR");
1723 return retval;
1726 if ((retval = mem_ap_read_atomic_u32(swjdp,
1727 armv7a->debug_base + CPUDBG_DIDR, &didr)) != ERROR_OK)
1729 LOG_DEBUG("Examine %s failed", "DIDR");
1730 return retval;
1733 LOG_DEBUG("cpuid = 0x%08" PRIx32, cpuid);
1734 LOG_DEBUG("ctypr = 0x%08" PRIx32, ctypr);
1735 LOG_DEBUG("ttypr = 0x%08" PRIx32, ttypr);
1736 LOG_DEBUG("didr = 0x%08" PRIx32, didr);
1738 armv7a->armv4_5_common.core_type = ARM_MODE_MON;
1739 retval = cortex_a8_dpm_setup(cortex_a8, didr);
1740 if (retval != ERROR_OK)
1741 return retval;
1743 /* Setup Breakpoint Register Pairs */
1744 cortex_a8->brp_num = ((didr >> 24) & 0x0F) + 1;
1745 cortex_a8->brp_num_context = ((didr >> 20) & 0x0F) + 1;
1746 cortex_a8->brp_num_available = cortex_a8->brp_num;
1747 cortex_a8->brp_list = calloc(cortex_a8->brp_num, sizeof(struct cortex_a8_brp));
1748 // cortex_a8->brb_enabled = ????;
1749 for (i = 0; i < cortex_a8->brp_num; i++)
1751 cortex_a8->brp_list[i].used = 0;
1752 if (i < (cortex_a8->brp_num-cortex_a8->brp_num_context))
1753 cortex_a8->brp_list[i].type = BRP_NORMAL;
1754 else
1755 cortex_a8->brp_list[i].type = BRP_CONTEXT;
1756 cortex_a8->brp_list[i].value = 0;
1757 cortex_a8->brp_list[i].control = 0;
1758 cortex_a8->brp_list[i].BRPn = i;
1761 LOG_DEBUG("Configured %i hw breakpoints", cortex_a8->brp_num);
1763 target_set_examined(target);
1764 return ERROR_OK;
1767 static int cortex_a8_examine(struct target *target)
1769 int retval = ERROR_OK;
1771 /* don't re-probe hardware after each reset */
1772 if (!target_was_examined(target))
1773 retval = cortex_a8_examine_first(target);
1775 /* Configure core debug access */
1776 if (retval == ERROR_OK)
1777 retval = cortex_a8_init_debug_access(target);
1779 return retval;
1783 * Cortex-A8 target creation and initialization
1786 static int cortex_a8_init_target(struct command_context *cmd_ctx,
1787 struct target *target)
1789 /* examine_first() does a bunch of this */
1790 return ERROR_OK;
1793 static int cortex_a8_init_arch_info(struct target *target,
1794 struct cortex_a8_common *cortex_a8, struct jtag_tap *tap)
1796 struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
1797 struct arm *armv4_5 = &armv7a->armv4_5_common;
1798 struct adiv5_dap *dap = &armv7a->dap;
1800 armv7a->armv4_5_common.dap = dap;
1802 /* Setup struct cortex_a8_common */
1803 cortex_a8->common_magic = CORTEX_A8_COMMON_MAGIC;
1804 armv4_5->arch_info = armv7a;
1806 /* prepare JTAG information for the new target */
1807 cortex_a8->jtag_info.tap = tap;
1808 cortex_a8->jtag_info.scann_size = 4;
1810 /* Leave (only) generic DAP stuff for debugport_init() */
1811 dap->jtag_info = &cortex_a8->jtag_info;
1812 dap->memaccess_tck = 80;
1814 /* Number of bits for tar autoincrement, impl. dep. at least 10 */
1815 dap->tar_autoincr_block = (1 << 10);
1817 cortex_a8->fast_reg_read = 0;
1819 /* Set default value */
1820 cortex_a8->current_address_mode = ARM_MODE_ANY;
1822 /* register arch-specific functions */
1823 armv7a->examine_debug_reason = NULL;
1825 armv7a->post_debug_entry = cortex_a8_post_debug_entry;
1827 armv7a->pre_restore_context = NULL;
1828 armv7a->armv4_5_mmu.armv4_5_cache.ctype = -1;
1829 armv7a->armv4_5_mmu.get_ttb = cortex_a8_get_ttb;
1830 armv7a->armv4_5_mmu.read_memory = cortex_a8_read_phys_memory;
1831 armv7a->armv4_5_mmu.write_memory = cortex_a8_write_phys_memory;
1832 armv7a->armv4_5_mmu.disable_mmu_caches = cortex_a8_disable_mmu_caches;
1833 armv7a->armv4_5_mmu.enable_mmu_caches = cortex_a8_enable_mmu_caches;
1834 armv7a->armv4_5_mmu.has_tiny_pages = 1;
1835 armv7a->armv4_5_mmu.mmu_enabled = 0;
1838 // arm7_9->handle_target_request = cortex_a8_handle_target_request;
1840 /* REVISIT v7a setup should be in a v7a-specific routine */
1841 arm_init_arch_info(target, armv4_5);
1842 armv7a->common_magic = ARMV7_COMMON_MAGIC;
1844 target_register_timer_callback(cortex_a8_handle_target_request, 1, 1, target);
1846 return ERROR_OK;
1849 static int cortex_a8_target_create(struct target *target, Jim_Interp *interp)
1851 struct cortex_a8_common *cortex_a8 = calloc(1, sizeof(struct cortex_a8_common));
1853 return cortex_a8_init_arch_info(target, cortex_a8, target->tap);
1856 static int cortex_a8_get_ttb(struct target *target, uint32_t *result)
1858 struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1859 struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
1860 uint32_t ttb = 0, retval = ERROR_OK;
1862 /* current_address_mode is set inside cortex_a8_virt2phys()
1863 where we can determine if address belongs to user or kernel */
1864 if(cortex_a8->current_address_mode == ARM_MODE_SVC)
1866 /* MRC p15,0,<Rt>,c1,c0,0 ; Read CP15 System Control Register */
1867 retval = armv7a->armv4_5_common.mrc(target, 15,
1868 0, 1, /* op1, op2 */
1869 2, 0, /* CRn, CRm */
1870 &ttb);
1871 if (retval != ERROR_OK)
1872 return retval;
1874 else if(cortex_a8->current_address_mode == ARM_MODE_USR)
1876 /* MRC p15,0,<Rt>,c1,c0,0 ; Read CP15 System Control Register */
1877 retval = armv7a->armv4_5_common.mrc(target, 15,
1878 0, 0, /* op1, op2 */
1879 2, 0, /* CRn, CRm */
1880 &ttb);
1881 if (retval != ERROR_OK)
1882 return retval;
1884 /* we don't know whose address is: user or kernel
1885 we assume that if we are in kernel mode then
1886 address belongs to kernel else if in user mode
1887 - to user */
1888 else if(armv7a->armv4_5_common.core_mode == ARM_MODE_SVC)
1890 /* MRC p15,0,<Rt>,c1,c0,0 ; Read CP15 System Control Register */
1891 retval = armv7a->armv4_5_common.mrc(target, 15,
1892 0, 1, /* op1, op2 */
1893 2, 0, /* CRn, CRm */
1894 &ttb);
1895 if (retval != ERROR_OK)
1896 return retval;
1898 else if(armv7a->armv4_5_common.core_mode == ARM_MODE_USR)
1900 /* MRC p15,0,<Rt>,c1,c0,0 ; Read CP15 System Control Register */
1901 retval = armv7a->armv4_5_common.mrc(target, 15,
1902 0, 0, /* op1, op2 */
1903 2, 0, /* CRn, CRm */
1904 &ttb);
1905 if (retval != ERROR_OK)
1906 return retval;
1908 /* finally we don't know whose ttb to use: user or kernel */
1909 else
1910 LOG_ERROR("Don't know how to get ttb for current mode!!!");
1912 ttb &= 0xffffc000;
1914 *result = ttb;
1916 return ERROR_OK;
1919 /* FIX! error propagation missing from this fn */
1920 static void cortex_a8_disable_mmu_caches(struct target *target, int mmu,
1921 int d_u_cache, int i_cache)
1923 struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1924 struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
1925 uint32_t cp15_control;
1927 /* read cp15 control register */
1928 armv7a->armv4_5_common.mrc(target, 15,
1929 0, 0, /* op1, op2 */
1930 1, 0, /* CRn, CRm */
1931 &cp15_control);
1934 if (mmu)
1935 cp15_control &= ~0x1U;
1937 if (d_u_cache)
1938 cp15_control &= ~0x4U;
1940 if (i_cache)
1941 cp15_control &= ~0x1000U;
1943 armv7a->armv4_5_common.mcr(target, 15,
1944 0, 0, /* op1, op2 */
1945 1, 0, /* CRn, CRm */
1946 cp15_control);
1949 /* FIX! error propagation missing from this fn */
1950 static void cortex_a8_enable_mmu_caches(struct target *target, int mmu,
1951 int d_u_cache, int i_cache)
1953 struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1954 struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
1955 uint32_t cp15_control;
1957 /* read cp15 control register */
1958 armv7a->armv4_5_common.mrc(target, 15,
1959 0, 0, /* op1, op2 */
1960 1, 0, /* CRn, CRm */
1961 &cp15_control);
1963 if (mmu)
1964 cp15_control |= 0x1U;
1966 if (d_u_cache)
1967 cp15_control |= 0x4U;
1969 if (i_cache)
1970 cp15_control |= 0x1000U;
1972 armv7a->armv4_5_common.mcr(target, 15,
1973 0, 0, /* op1, op2 */
1974 1, 0, /* CRn, CRm */
1975 cp15_control);
1979 static int cortex_a8_mmu(struct target *target, int *enabled)
1981 if (target->state != TARGET_HALTED) {
1982 LOG_ERROR("%s: target not halted", __func__);
1983 return ERROR_TARGET_INVALID;
1986 *enabled = target_to_cortex_a8(target)->armv7a_common.armv4_5_mmu.mmu_enabled;
1987 return ERROR_OK;
1990 static int cortex_a8_virt2phys(struct target *target,
1991 uint32_t virt, uint32_t *phys)
1993 uint32_t cb;
1994 struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1995 // struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
1996 struct armv7a_common *armv7a = target_to_armv7a(target);
1998 /* We assume that virtual address is separated
1999 between user and kernel in Linux style:
2000 0x00000000-0xbfffffff - User space
2001 0xc0000000-0xffffffff - Kernel space */
2002 if( virt < 0xc0000000 ) /* Linux user space */
2003 cortex_a8->current_address_mode = ARM_MODE_USR;
2004 else /* Linux kernel */
2005 cortex_a8->current_address_mode = ARM_MODE_SVC;
2006 uint32_t ret;
2007 int retval = armv4_5_mmu_translate_va(target,
2008 &armv7a->armv4_5_mmu, virt, &cb, &ret);
2009 if (retval != ERROR_OK)
2010 return retval;
2011 /* Reset the flag. We don't want someone else to use it by error */
2012 cortex_a8->current_address_mode = ARM_MODE_ANY;
2014 *phys = ret;
2015 return ERROR_OK;
2018 COMMAND_HANDLER(cortex_a8_handle_cache_info_command)
2020 struct target *target = get_current_target(CMD_CTX);
2021 struct armv7a_common *armv7a = target_to_armv7a(target);
2023 return armv4_5_handle_cache_info_command(CMD_CTX,
2024 &armv7a->armv4_5_mmu.armv4_5_cache);
2028 COMMAND_HANDLER(cortex_a8_handle_dbginit_command)
2030 struct target *target = get_current_target(CMD_CTX);
2031 if (!target_was_examined(target))
2033 LOG_ERROR("target not examined yet");
2034 return ERROR_FAIL;
2037 return cortex_a8_init_debug_access(target);
2040 static const struct command_registration cortex_a8_exec_command_handlers[] = {
2042 .name = "cache_info",
2043 .handler = cortex_a8_handle_cache_info_command,
2044 .mode = COMMAND_EXEC,
2045 .help = "display information about target caches",
2048 .name = "dbginit",
2049 .handler = cortex_a8_handle_dbginit_command,
2050 .mode = COMMAND_EXEC,
2051 .help = "Initialize core debug",
2053 COMMAND_REGISTRATION_DONE
2055 static const struct command_registration cortex_a8_command_handlers[] = {
2057 .chain = arm_command_handlers,
2060 .chain = armv7a_command_handlers,
2063 .name = "cortex_a8",
2064 .mode = COMMAND_ANY,
2065 .help = "Cortex-A8 command group",
2066 .chain = cortex_a8_exec_command_handlers,
2068 COMMAND_REGISTRATION_DONE
2071 struct target_type cortexa8_target = {
2072 .name = "cortex_a8",
2074 .poll = cortex_a8_poll,
2075 .arch_state = armv7a_arch_state,
2077 .target_request_data = NULL,
2079 .halt = cortex_a8_halt,
2080 .resume = cortex_a8_resume,
2081 .step = cortex_a8_step,
2083 .assert_reset = cortex_a8_assert_reset,
2084 .deassert_reset = cortex_a8_deassert_reset,
2085 .soft_reset_halt = NULL,
2087 /* REVISIT allow exporting VFP3 registers ... */
2088 .get_gdb_reg_list = arm_get_gdb_reg_list,
2090 .read_memory = cortex_a8_read_memory,
2091 .write_memory = cortex_a8_write_memory,
2092 .bulk_write_memory = cortex_a8_bulk_write_memory,
2094 .checksum_memory = arm_checksum_memory,
2095 .blank_check_memory = arm_blank_check_memory,
2097 .run_algorithm = armv4_5_run_algorithm,
2099 .add_breakpoint = cortex_a8_add_breakpoint,
2100 .remove_breakpoint = cortex_a8_remove_breakpoint,
2101 .add_watchpoint = NULL,
2102 .remove_watchpoint = NULL,
2104 .commands = cortex_a8_command_handlers,
2105 .target_create = cortex_a8_target_create,
2106 .init_target = cortex_a8_init_target,
2107 .examine = cortex_a8_examine,
2109 .read_phys_memory = cortex_a8_read_phys_memory,
2110 .write_phys_memory = cortex_a8_write_phys_memory,
2111 .mmu = cortex_a8_mmu,
2112 .virt2phys = cortex_a8_virt2phys,