arm: error propagation of arm_jtag_set_instr
[openocd/oharboe.git] / src / target / arm920t.c
blobc5064c1126d4058540c0259818fdd71d85e81936
2 /***************************************************************************
3 * Copyright (C) 2005 by Dominic Rath *
4 * Dominic.Rath@gmx.de *
5 * *
6 * This program is free software; you can redistribute it and/or modify *
7 * it under the terms of the GNU General Public License as published by *
8 * the Free Software Foundation; either version 2 of the License, or *
9 * (at your option) any later version. *
10 * *
11 * This program is distributed in the hope that it will be useful, *
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
14 * GNU General Public License for more details. *
15 * *
16 * You should have received a copy of the GNU General Public License *
17 * along with this program; if not, write to the *
18 * Free Software Foundation, Inc., *
19 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
20 ***************************************************************************/
21 #ifdef HAVE_CONFIG_H
22 #include "config.h"
23 #endif
25 #include "arm920t.h"
26 #include <helper/time_support.h>
27 #include "target_type.h"
28 #include "register.h"
29 #include "arm_opcodes.h"
33 * For information about the ARM920T, see ARM DDI 0151C especially
34 * Chapter 9 about debug support, which shows how to manipulate each
35 * of the different scan chains:
37 * 0 ... ARM920 signals, e.g. to rest of SOC (unused here)
38 * 1 ... debugging; watchpoint and breakpoint status, etc; also
39 * MMU and cache access in conjunction with scan chain 15
40 * 2 ... EmbeddedICE
41 * 3 ... external boundary scan (SoC-specific, unused here)
42 * 4 ... access to cache tag RAM
43 * 6 ... ETM9
44 * 15 ... access coprocessor 15, "physical" or "interpreted" modes
45 * "interpreted" works with a few actual MRC/MCR instructions
46 * "physical" provides register-like behaviors. Section 9.6.7
47 * covers these details.
49 * The ARM922T is similar, but with smaller caches (8K each, vs 16K).
52 #if 0
53 #define _DEBUG_INSTRUCTION_EXECUTION_
54 #endif
56 /* Table 9-8 shows scan chain 15 format during physical access mode, using a
57 * dedicated 6-bit address space (encoded in bits 33:38). Writes use one
58 * JTAG scan, while reads use two.
60 * Table 9-9 lists the thirteen registers which support physical access.
61 * ARM920T_CP15_PHYS_ADDR() constructs the 6-bit reg_addr parameter passed
62 * to arm920t_read_cp15_physical() and arm920t_write_cp15_physical().
64 * x == bit[38]
65 * y == bits[37:34]
66 * z == bit[33]
68 #define ARM920T_CP15_PHYS_ADDR(x, y, z) ((x << 5) | (y << 1) << (z))
70 /* Registers supporting physical Read access (from table 9-9) */
71 #define CP15PHYS_CACHETYPE ARM920T_CP15_PHYS_ADDR(0, 0x0, 1)
72 #define CP15PHYS_ICACHE_IDX ARM920T_CP15_PHYS_ADDR(1, 0xd, 1)
73 #define CP15PHYS_DCACHE_IDX ARM920T_CP15_PHYS_ADDR(1, 0xe, 1)
74 /* NOTE: several more registers support only physical read access */
76 /* Registers supporting physical Read/Write access (from table 9-9) */
77 #define CP15PHYS_CTRL ARM920T_CP15_PHYS_ADDR(0, 0x1, 0)
78 #define CP15PHYS_PID ARM920T_CP15_PHYS_ADDR(0, 0xd, 0)
79 #define CP15PHYS_TESTSTATE ARM920T_CP15_PHYS_ADDR(0, 0xf, 0)
80 #define CP15PHYS_ICACHE ARM920T_CP15_PHYS_ADDR(1, 0x1, 1)
81 #define CP15PHYS_DCACHE ARM920T_CP15_PHYS_ADDR(1, 0x2, 1)
83 static int arm920t_read_cp15_physical(struct target *target,
84 int reg_addr, uint32_t *value)
86 struct arm920t_common *arm920t = target_to_arm920(target);
87 struct arm_jtag *jtag_info;
88 struct scan_field fields[4];
89 uint8_t access_type_buf = 1;
90 uint8_t reg_addr_buf = reg_addr & 0x3f;
91 uint8_t nr_w_buf = 0;
92 int retval;
94 jtag_info = &arm920t->arm7_9_common.jtag_info;
96 arm_jtag_scann(jtag_info, 0xf, TAP_IDLE);
97 retval = arm_jtag_set_instr(jtag_info, jtag_info->intest_instr, NULL, TAP_IDLE);
98 if (retval != ERROR_OK)
99 return retval;
101 fields[0].num_bits = 1;
102 fields[0].out_value = &access_type_buf;
103 fields[0].in_value = NULL;
105 fields[1].num_bits = 32;
106 fields[1].out_value = NULL;
107 fields[1].in_value = NULL;
109 fields[2].num_bits = 6;
110 fields[2].out_value = &reg_addr_buf;
111 fields[2].in_value = NULL;
113 fields[3].num_bits = 1;
114 fields[3].out_value = &nr_w_buf;
115 fields[3].in_value = NULL;
117 jtag_add_dr_scan(jtag_info->tap, 4, fields, TAP_IDLE);
119 fields[1].in_value = (uint8_t *)value;
121 jtag_add_dr_scan(jtag_info->tap, 4, fields, TAP_IDLE);
123 jtag_add_callback(arm_le_to_h_u32, (jtag_callback_data_t)value);
125 #ifdef _DEBUG_INSTRUCTION_EXECUTION_
126 jtag_execute_queue();
127 LOG_DEBUG("addr: 0x%x value: %8.8x", reg_addr, *value);
128 #endif
130 return ERROR_OK;
133 static int arm920t_write_cp15_physical(struct target *target,
134 int reg_addr, uint32_t value)
136 struct arm920t_common *arm920t = target_to_arm920(target);
137 struct arm_jtag *jtag_info;
138 struct scan_field fields[4];
139 uint8_t access_type_buf = 1;
140 uint8_t reg_addr_buf = reg_addr & 0x3f;
141 uint8_t nr_w_buf = 1;
142 uint8_t value_buf[4];
143 int retval;
145 jtag_info = &arm920t->arm7_9_common.jtag_info;
147 buf_set_u32(value_buf, 0, 32, value);
149 arm_jtag_scann(jtag_info, 0xf, TAP_IDLE);
150 retval = arm_jtag_set_instr(jtag_info, jtag_info->intest_instr, NULL, TAP_IDLE);
151 if (retval != ERROR_OK)
152 return retval;
154 fields[0].num_bits = 1;
155 fields[0].out_value = &access_type_buf;
156 fields[0].in_value = NULL;
158 fields[1].num_bits = 32;
159 fields[1].out_value = value_buf;
160 fields[1].in_value = NULL;
162 fields[2].num_bits = 6;
163 fields[2].out_value = &reg_addr_buf;
164 fields[2].in_value = NULL;
166 fields[3].num_bits = 1;
167 fields[3].out_value = &nr_w_buf;
168 fields[3].in_value = NULL;
170 jtag_add_dr_scan(jtag_info->tap, 4, fields, TAP_IDLE);
172 #ifdef _DEBUG_INSTRUCTION_EXECUTION_
173 LOG_DEBUG("addr: 0x%x value: %8.8x", reg_addr, value);
174 #endif
176 return ERROR_OK;
179 /* See table 9-10 for scan chain 15 format during interpreted access mode.
180 * If the TESTSTATE register is set for interpreted access, certain CP15
181 * MRC and MCR instructions may be executed through scan chain 15.
183 * Tables 9-11, 9-12, and 9-13 show which MRC and MCR instructions can be
184 * executed using scan chain 15 interpreted mode.
186 static int arm920t_execute_cp15(struct target *target, uint32_t cp15_opcode,
187 uint32_t arm_opcode)
189 int retval;
190 struct arm920t_common *arm920t = target_to_arm920(target);
191 struct arm_jtag *jtag_info;
192 struct scan_field fields[4];
193 uint8_t access_type_buf = 0; /* interpreted access */
194 uint8_t reg_addr_buf = 0x0;
195 uint8_t nr_w_buf = 0;
196 uint8_t cp15_opcode_buf[4];
198 jtag_info = &arm920t->arm7_9_common.jtag_info;
200 arm_jtag_scann(jtag_info, 0xf, TAP_IDLE);
201 retval = arm_jtag_set_instr(jtag_info, jtag_info->intest_instr, NULL, TAP_IDLE);
202 if (retval != ERROR_OK)
203 return retval;
205 buf_set_u32(cp15_opcode_buf, 0, 32, cp15_opcode);
207 fields[0].num_bits = 1;
208 fields[0].out_value = &access_type_buf;
209 fields[0].in_value = NULL;
211 fields[1].num_bits = 32;
212 fields[1].out_value = cp15_opcode_buf;
213 fields[1].in_value = NULL;
215 fields[2].num_bits = 6;
216 fields[2].out_value = &reg_addr_buf;
217 fields[2].in_value = NULL;
219 fields[3].num_bits = 1;
220 fields[3].out_value = &nr_w_buf;
221 fields[3].in_value = NULL;
223 jtag_add_dr_scan(jtag_info->tap, 4, fields, TAP_IDLE);
225 arm9tdmi_clock_out(jtag_info, arm_opcode, 0, NULL, 0);
226 arm9tdmi_clock_out(jtag_info, ARMV4_5_NOP, 0, NULL, 1);
227 retval = arm7_9_execute_sys_speed(target);
228 if (retval != ERROR_OK)
229 return retval;
231 if ((retval = jtag_execute_queue()) != ERROR_OK)
233 LOG_ERROR("failed executing JTAG queue");
234 return retval;
237 return ERROR_OK;
240 static int arm920t_read_cp15_interpreted(struct target *target,
241 uint32_t cp15_opcode, uint32_t address, uint32_t *value)
243 struct arm *armv4_5 = target_to_arm(target);
244 uint32_t* regs_p[1];
245 uint32_t regs[2];
246 uint32_t cp15c15 = 0x0;
247 struct reg *r = armv4_5->core_cache->reg_list;
249 /* load address into R1 */
250 regs[1] = address;
251 arm9tdmi_write_core_regs(target, 0x2, regs);
253 /* read-modify-write CP15 test state register
254 * to enable interpreted access mode */
255 arm920t_read_cp15_physical(target, CP15PHYS_TESTSTATE, &cp15c15);
256 jtag_execute_queue();
257 cp15c15 |= 1; /* set interpret mode */
258 arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15);
260 /* execute CP15 instruction and ARM load (reading from coprocessor) */
261 arm920t_execute_cp15(target, cp15_opcode, ARMV4_5_LDR(0, 1));
263 /* disable interpreted access mode */
264 cp15c15 &= ~1U; /* clear interpret mode */
265 arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15);
267 /* retrieve value from R0 */
268 regs_p[0] = value;
269 arm9tdmi_read_core_regs(target, 0x1, regs_p);
270 jtag_execute_queue();
272 #ifdef _DEBUG_INSTRUCTION_EXECUTION_
273 LOG_DEBUG("cp15_opcode: %8.8x, address: %8.8x, value: %8.8x",
274 cp15_opcode, address, *value);
275 #endif
277 if (!is_arm_mode(armv4_5->core_mode))
278 return ERROR_FAIL;
280 r[0].dirty = 1;
281 r[1].dirty = 1;
283 return ERROR_OK;
286 static
287 int arm920t_write_cp15_interpreted(struct target *target,
288 uint32_t cp15_opcode, uint32_t value, uint32_t address)
290 uint32_t cp15c15 = 0x0;
291 struct arm *armv4_5 = target_to_arm(target);
292 uint32_t regs[2];
293 struct reg *r = armv4_5->core_cache->reg_list;
295 /* load value, address into R0, R1 */
296 regs[0] = value;
297 regs[1] = address;
298 arm9tdmi_write_core_regs(target, 0x3, regs);
300 /* read-modify-write CP15 test state register
301 * to enable interpreted access mode */
302 arm920t_read_cp15_physical(target, CP15PHYS_TESTSTATE, &cp15c15);
303 jtag_execute_queue();
304 cp15c15 |= 1; /* set interpret mode */
305 arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15);
307 /* execute CP15 instruction and ARM store (writing to coprocessor) */
308 arm920t_execute_cp15(target, cp15_opcode, ARMV4_5_STR(0, 1));
310 /* disable interpreted access mode */
311 cp15c15 &= ~1U; /* set interpret mode */
312 arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15);
314 #ifdef _DEBUG_INSTRUCTION_EXECUTION_
315 LOG_DEBUG("cp15_opcode: %8.8x, value: %8.8x, address: %8.8x",
316 cp15_opcode, value, address);
317 #endif
319 if (!is_arm_mode(armv4_5->core_mode))
320 return ERROR_FAIL;
322 r[0].dirty = 1;
323 r[1].dirty = 1;
325 return ERROR_OK;
328 // EXPORTED to FA256
329 int arm920t_get_ttb(struct target *target, uint32_t *result)
331 int retval;
332 uint32_t ttb = 0x0;
334 if ((retval = arm920t_read_cp15_interpreted(target,
335 /* FIXME use opcode macro */
336 0xeebf0f51, 0x0, &ttb)) != ERROR_OK)
337 return retval;
339 *result = ttb;
340 return ERROR_OK;
343 // EXPORTED to FA256
344 int arm920t_disable_mmu_caches(struct target *target, int mmu,
345 int d_u_cache, int i_cache)
347 uint32_t cp15_control;
348 int retval;
350 /* read cp15 control register */
351 retval = arm920t_read_cp15_physical(target, CP15PHYS_CTRL, &cp15_control);
352 if (retval != ERROR_OK)
353 return retval;
354 retval = jtag_execute_queue();
355 if (retval != ERROR_OK)
356 return retval;
358 if (mmu)
359 cp15_control &= ~0x1U;
361 if (d_u_cache)
362 cp15_control &= ~0x4U;
364 if (i_cache)
365 cp15_control &= ~0x1000U;
367 retval = arm920t_write_cp15_physical(target, CP15PHYS_CTRL, cp15_control);
368 return retval;
371 // EXPORTED to FA256
372 int arm920t_enable_mmu_caches(struct target *target, int mmu,
373 int d_u_cache, int i_cache)
375 uint32_t cp15_control;
376 int retval;
378 /* read cp15 control register */
379 retval = arm920t_read_cp15_physical(target, CP15PHYS_CTRL, &cp15_control);
380 if (retval != ERROR_OK)
381 return retval;
382 retval = jtag_execute_queue();
383 if (retval != ERROR_OK)
384 return retval;
386 if (mmu)
387 cp15_control |= 0x1U;
389 if (d_u_cache)
390 cp15_control |= 0x4U;
392 if (i_cache)
393 cp15_control |= 0x1000U;
395 retval = arm920t_write_cp15_physical(target, CP15PHYS_CTRL, cp15_control);
396 return retval;
399 // EXPORTED to FA256
400 int arm920t_post_debug_entry(struct target *target)
402 uint32_t cp15c15;
403 struct arm920t_common *arm920t = target_to_arm920(target);
404 int retval;
406 /* examine cp15 control reg */
407 retval = arm920t_read_cp15_physical(target,
408 CP15PHYS_CTRL, &arm920t->cp15_control_reg);
409 if (retval != ERROR_OK)
410 return retval;
411 retval = jtag_execute_queue();
412 if (retval != ERROR_OK)
413 return retval;
414 LOG_DEBUG("cp15_control_reg: %8.8" PRIx32, arm920t->cp15_control_reg);
416 if (arm920t->armv4_5_mmu.armv4_5_cache.ctype == -1)
418 uint32_t cache_type_reg;
419 /* identify caches */
420 retval = arm920t_read_cp15_physical(target,
421 CP15PHYS_CACHETYPE, &cache_type_reg);
422 if (retval != ERROR_OK)
423 return retval;
424 retval = jtag_execute_queue();
425 if (retval != ERROR_OK)
426 return retval;
427 armv4_5_identify_cache(cache_type_reg,
428 &arm920t->armv4_5_mmu.armv4_5_cache);
431 arm920t->armv4_5_mmu.mmu_enabled =
432 (arm920t->cp15_control_reg & 0x1U) ? 1 : 0;
433 arm920t->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled =
434 (arm920t->cp15_control_reg & 0x4U) ? 1 : 0;
435 arm920t->armv4_5_mmu.armv4_5_cache.i_cache_enabled =
436 (arm920t->cp15_control_reg & 0x1000U) ? 1 : 0;
438 /* save i/d fault status and address register */
439 /* FIXME use opcode macros */
440 retval = arm920t_read_cp15_interpreted(target, 0xee150f10, 0x0, &arm920t->d_fsr);
441 if (retval != ERROR_OK)
442 return retval;
443 retval = arm920t_read_cp15_interpreted(target, 0xee150f30, 0x0, &arm920t->i_fsr);
444 if (retval != ERROR_OK)
445 return retval;
446 retval = arm920t_read_cp15_interpreted(target, 0xee160f10, 0x0, &arm920t->d_far);
447 if (retval != ERROR_OK)
448 return retval;
449 retval = arm920t_read_cp15_interpreted(target, 0xee160f30, 0x0, &arm920t->i_far);
450 if (retval != ERROR_OK)
451 return retval;
453 LOG_DEBUG("D FSR: 0x%8.8" PRIx32 ", D FAR: 0x%8.8" PRIx32
454 ", I FSR: 0x%8.8" PRIx32 ", I FAR: 0x%8.8" PRIx32,
455 arm920t->d_fsr, arm920t->d_far, arm920t->i_fsr, arm920t->i_far);
457 if (arm920t->preserve_cache)
459 /* read-modify-write CP15 test state register
460 * to disable I/D-cache linefills */
461 retval = arm920t_read_cp15_physical(target,
462 CP15PHYS_TESTSTATE, &cp15c15);
463 if (retval != ERROR_OK)
464 return retval;
465 retval = jtag_execute_queue();
466 if (retval != ERROR_OK)
467 return retval;
468 cp15c15 |= 0x600;
469 retval = arm920t_write_cp15_physical(target,
470 CP15PHYS_TESTSTATE, cp15c15);
471 if (retval != ERROR_OK)
472 return retval;
474 return ERROR_OK;
477 // EXPORTED to FA256
478 void arm920t_pre_restore_context(struct target *target)
480 uint32_t cp15c15;
481 struct arm920t_common *arm920t = target_to_arm920(target);
483 /* restore i/d fault status and address register */
484 arm920t_write_cp15_interpreted(target, 0xee050f10, arm920t->d_fsr, 0x0);
485 arm920t_write_cp15_interpreted(target, 0xee050f30, arm920t->i_fsr, 0x0);
486 arm920t_write_cp15_interpreted(target, 0xee060f10, arm920t->d_far, 0x0);
487 arm920t_write_cp15_interpreted(target, 0xee060f30, arm920t->i_far, 0x0);
489 /* read-modify-write CP15 test state register
490 * to reenable I/D-cache linefills */
491 if (arm920t->preserve_cache)
493 arm920t_read_cp15_physical(target,
494 CP15PHYS_TESTSTATE, &cp15c15);
495 jtag_execute_queue();
496 cp15c15 &= ~0x600U;
497 arm920t_write_cp15_physical(target,
498 CP15PHYS_TESTSTATE, cp15c15);
502 static const char arm920_not[] = "target is not an ARM920";
504 static int arm920t_verify_pointer(struct command_context *cmd_ctx,
505 struct arm920t_common *arm920t)
507 if (arm920t->common_magic != ARM920T_COMMON_MAGIC) {
508 command_print(cmd_ctx, arm920_not);
509 return ERROR_TARGET_INVALID;
512 return ERROR_OK;
515 /** Logs summary of ARM920 state for a halted target. */
516 int arm920t_arch_state(struct target *target)
518 static const char *state[] =
520 "disabled", "enabled"
523 struct arm920t_common *arm920t = target_to_arm920(target);
524 struct arm *armv4_5;
526 if (arm920t->common_magic != ARM920T_COMMON_MAGIC)
528 LOG_ERROR("BUG: %s", arm920_not);
529 return ERROR_TARGET_INVALID;
532 armv4_5 = &arm920t->arm7_9_common.armv4_5_common;
534 arm_arch_state(target);
535 LOG_USER("MMU: %s, D-Cache: %s, I-Cache: %s",
536 state[arm920t->armv4_5_mmu.mmu_enabled],
537 state[arm920t->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled],
538 state[arm920t->armv4_5_mmu.armv4_5_cache.i_cache_enabled]);
540 return ERROR_OK;
543 static int arm920_mmu(struct target *target, int *enabled)
545 if (target->state != TARGET_HALTED) {
546 LOG_ERROR("%s: target not halted", __func__);
547 return ERROR_TARGET_INVALID;
550 *enabled = target_to_arm920(target)->armv4_5_mmu.mmu_enabled;
551 return ERROR_OK;
554 static int arm920_virt2phys(struct target *target,
555 uint32_t virt, uint32_t *phys)
557 uint32_t cb;
558 struct arm920t_common *arm920t = target_to_arm920(target);
560 uint32_t ret;
561 int retval = armv4_5_mmu_translate_va(target,
562 &arm920t->armv4_5_mmu, virt, &cb, &ret);
563 if (retval != ERROR_OK)
564 return retval;
565 *phys = ret;
566 return ERROR_OK;
569 /** Reads a buffer, in the specified word size, with current MMU settings. */
570 int arm920t_read_memory(struct target *target, uint32_t address,
571 uint32_t size, uint32_t count, uint8_t *buffer)
573 int retval;
575 retval = arm7_9_read_memory(target, address, size, count, buffer);
577 return retval;
581 static int arm920t_read_phys_memory(struct target *target,
582 uint32_t address, uint32_t size,
583 uint32_t count, uint8_t *buffer)
585 struct arm920t_common *arm920t = target_to_arm920(target);
587 return armv4_5_mmu_read_physical(target, &arm920t->armv4_5_mmu,
588 address, size, count, buffer);
591 static int arm920t_write_phys_memory(struct target *target,
592 uint32_t address, uint32_t size,
593 uint32_t count, uint8_t *buffer)
595 struct arm920t_common *arm920t = target_to_arm920(target);
597 return armv4_5_mmu_write_physical(target, &arm920t->armv4_5_mmu,
598 address, size, count, buffer);
602 /** Writes a buffer, in the specified word size, with current MMU settings. */
603 int arm920t_write_memory(struct target *target, uint32_t address,
604 uint32_t size, uint32_t count, uint8_t *buffer)
606 int retval;
607 const uint32_t cache_mask = ~0x1f; /* cache line size : 32 byte */
608 struct arm920t_common *arm920t = target_to_arm920(target);
610 /* FIX!!!! this should be cleaned up and made much more general. The
611 * plan is to write up and test on arm920t specifically and
612 * then generalize and clean up afterwards.
614 * Also it should be moved to the callbacks that handle breakpoints
615 * specifically and not the generic memory write fn's. See XScale code.
617 if (arm920t->armv4_5_mmu.mmu_enabled && (count == 1) &&
618 ((size==2) || (size==4)))
620 /* special case the handling of single word writes to
621 * bypass MMU, to allow implementation of breakpoints
622 * in memory marked read only
623 * by MMU
625 uint32_t cb;
626 uint32_t pa;
629 * We need physical address and cb
631 retval = armv4_5_mmu_translate_va(target, &arm920t->armv4_5_mmu,
632 address, &cb, &pa);
633 if (retval != ERROR_OK)
634 return retval;
636 if (arm920t->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled)
638 if (cb & 0x1)
640 LOG_DEBUG("D-Cache buffered, "
641 "drain write buffer");
643 * Buffered ?
644 * Drain write buffer - MCR p15,0,Rd,c7,c10,4
647 retval = arm920t_write_cp15_interpreted(target,
648 ARMV4_5_MCR(15, 0, 0, 7, 10, 4),
649 0x0, 0);
650 if (retval != ERROR_OK)
651 return retval;
654 if (cb == 0x3)
657 * Write back memory ? -> clean cache
659 * There is no way to clean cache lines using
660 * cp15 scan chain, so copy the full cache
661 * line from cache to physical memory.
663 uint8_t data[32];
665 LOG_DEBUG("D-Cache in 'write back' mode, "
666 "flush cache line");
668 retval = target_read_memory(target,
669 address & cache_mask, 1,
670 sizeof(data), &data[0]);
671 if (retval != ERROR_OK)
672 return retval;
674 retval = armv4_5_mmu_write_physical(target,
675 &arm920t->armv4_5_mmu,
676 pa & cache_mask, 1,
677 sizeof(data), &data[0]);
678 if (retval != ERROR_OK)
679 return retval;
682 /* Cached ? */
683 if (cb & 0x2)
686 * Cached ? -> Invalidate data cache using MVA
688 * MCR p15,0,Rd,c7,c6,1
690 LOG_DEBUG("D-Cache enabled, "
691 "invalidate cache line");
693 retval = arm920t_write_cp15_interpreted(target,
694 ARMV4_5_MCR(15, 0, 0, 7, 6, 1), 0x0,
695 address & cache_mask);
696 if (retval != ERROR_OK)
697 return retval;
701 /* write directly to physical memory,
702 * bypassing any read only MMU bits, etc.
704 retval = armv4_5_mmu_write_physical(target,
705 &arm920t->armv4_5_mmu, pa, size,
706 count, buffer);
707 if (retval != ERROR_OK)
708 return retval;
709 } else
711 if ((retval = arm7_9_write_memory(target, address,
712 size, count, buffer)) != ERROR_OK)
713 return retval;
716 /* If ICache is enabled, we have to invalidate affected ICache lines
717 * the DCache is forced to write-through,
718 * so we don't have to clean it here
720 if (arm920t->armv4_5_mmu.armv4_5_cache.i_cache_enabled)
722 if (count <= 1)
724 /* invalidate ICache single entry with MVA
725 * mcr 15, 0, r0, cr7, cr5, {1}
727 LOG_DEBUG("I-Cache enabled, "
728 "invalidating affected I-Cache line");
729 retval = arm920t_write_cp15_interpreted(target,
730 ARMV4_5_MCR(15, 0, 0, 7, 5, 1),
731 0x0, address & cache_mask);
732 if (retval != ERROR_OK)
733 return retval;
735 else
737 /* invalidate ICache
738 * mcr 15, 0, r0, cr7, cr5, {0}
740 retval = arm920t_write_cp15_interpreted(target,
741 ARMV4_5_MCR(15, 0, 0, 7, 5, 0),
742 0x0, 0x0);
743 if (retval != ERROR_OK)
744 return retval;
748 return ERROR_OK;
751 // EXPORTED to FA256
752 int arm920t_soft_reset_halt(struct target *target)
754 int retval = ERROR_OK;
755 struct arm920t_common *arm920t = target_to_arm920(target);
756 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
757 struct arm *armv4_5 = &arm7_9->armv4_5_common;
758 struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
760 if ((retval = target_halt(target)) != ERROR_OK)
762 return retval;
765 long long then = timeval_ms();
766 int timeout;
767 while (!(timeout = ((timeval_ms()-then) > 1000)))
769 if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_DBGACK, 1)
770 == 0)
772 embeddedice_read_reg(dbg_stat);
773 if ((retval = jtag_execute_queue()) != ERROR_OK)
775 return retval;
777 } else
779 break;
781 if (debug_level >= 3)
783 /* do not eat all CPU, time out after 1 se*/
784 alive_sleep(100);
785 } else
787 keep_alive();
790 if (timeout)
792 LOG_ERROR("Failed to halt CPU after 1 sec");
793 return ERROR_TARGET_TIMEOUT;
796 target->state = TARGET_HALTED;
798 /* SVC, ARM state, IRQ and FIQ disabled */
799 uint32_t cpsr;
801 cpsr = buf_get_u32(armv4_5->cpsr->value, 0, 32);
802 cpsr &= ~0xff;
803 cpsr |= 0xd3;
804 arm_set_cpsr(armv4_5, cpsr);
805 armv4_5->cpsr->dirty = 1;
807 /* start fetching from 0x0 */
808 buf_set_u32(armv4_5->pc->value, 0, 32, 0x0);
809 armv4_5->pc->dirty = 1;
810 armv4_5->pc->valid = 1;
812 arm920t_disable_mmu_caches(target, 1, 1, 1);
813 arm920t->armv4_5_mmu.mmu_enabled = 0;
814 arm920t->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled = 0;
815 arm920t->armv4_5_mmu.armv4_5_cache.i_cache_enabled = 0;
817 return target_call_event_callbacks(target, TARGET_EVENT_HALTED);
820 /* FIXME remove forward decls */
821 static int arm920t_mrc(struct target *target, int cpnum,
822 uint32_t op1, uint32_t op2,
823 uint32_t CRn, uint32_t CRm,
824 uint32_t *value);
825 static int arm920t_mcr(struct target *target, int cpnum,
826 uint32_t op1, uint32_t op2,
827 uint32_t CRn, uint32_t CRm,
828 uint32_t value);
830 static int arm920t_init_arch_info(struct target *target,
831 struct arm920t_common *arm920t, struct jtag_tap *tap)
833 struct arm7_9_common *arm7_9 = &arm920t->arm7_9_common;
835 arm7_9->armv4_5_common.mrc = arm920t_mrc;
836 arm7_9->armv4_5_common.mcr = arm920t_mcr;
838 /* initialize arm7/arm9 specific info (including armv4_5) */
839 arm9tdmi_init_arch_info(target, arm7_9, tap);
841 arm920t->common_magic = ARM920T_COMMON_MAGIC;
843 arm7_9->post_debug_entry = arm920t_post_debug_entry;
844 arm7_9->pre_restore_context = arm920t_pre_restore_context;
846 arm920t->armv4_5_mmu.armv4_5_cache.ctype = -1;
847 arm920t->armv4_5_mmu.get_ttb = arm920t_get_ttb;
848 arm920t->armv4_5_mmu.read_memory = arm7_9_read_memory;
849 arm920t->armv4_5_mmu.write_memory = arm7_9_write_memory;
850 arm920t->armv4_5_mmu.disable_mmu_caches = arm920t_disable_mmu_caches;
851 arm920t->armv4_5_mmu.enable_mmu_caches = arm920t_enable_mmu_caches;
852 arm920t->armv4_5_mmu.has_tiny_pages = 1;
853 arm920t->armv4_5_mmu.mmu_enabled = 0;
855 /* disabling linefills leads to lockups, so keep them enabled for now
856 * this doesn't affect correctness, but might affect timing issues, if
857 * important data is evicted from the cache during the debug session
858 * */
859 arm920t->preserve_cache = 0;
861 /* override hw single-step capability from ARM9TDMI */
862 arm7_9->has_single_step = 1;
864 return ERROR_OK;
867 static int arm920t_target_create(struct target *target, Jim_Interp *interp)
869 struct arm920t_common *arm920t;
871 arm920t = calloc(1,sizeof(struct arm920t_common));
872 return arm920t_init_arch_info(target, arm920t, target->tap);
875 COMMAND_HANDLER(arm920t_handle_read_cache_command)
877 int retval = ERROR_OK;
878 struct target *target = get_current_target(CMD_CTX);
879 struct arm920t_common *arm920t = target_to_arm920(target);
880 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
881 struct arm *armv4_5 = &arm7_9->armv4_5_common;
882 uint32_t cp15c15;
883 uint32_t cp15_ctrl, cp15_ctrl_saved;
884 uint32_t regs[16];
885 uint32_t *regs_p[16];
886 uint32_t C15_C_D_Ind, C15_C_I_Ind;
887 int i;
888 FILE *output;
889 struct arm920t_cache_line d_cache[8][64], i_cache[8][64];
890 int segment, index_t;
891 struct reg *r;
893 retval = arm920t_verify_pointer(CMD_CTX, arm920t);
894 if (retval != ERROR_OK)
895 return retval;
897 if (CMD_ARGC != 1)
899 command_print(CMD_CTX, "usage: arm920t read_cache <filename>");
900 return ERROR_OK;
903 if ((output = fopen(CMD_ARGV[0], "w")) == NULL)
905 LOG_DEBUG("error opening cache content file");
906 return ERROR_OK;
909 for (i = 0; i < 16; i++)
910 regs_p[i] = &regs[i];
912 /* disable MMU and Caches */
913 arm920t_read_cp15_physical(target, CP15PHYS_CTRL, &cp15_ctrl);
914 if ((retval = jtag_execute_queue()) != ERROR_OK)
916 return retval;
918 cp15_ctrl_saved = cp15_ctrl;
919 cp15_ctrl &= ~(ARMV4_5_MMU_ENABLED
920 | ARMV4_5_D_U_CACHE_ENABLED | ARMV4_5_I_CACHE_ENABLED);
921 arm920t_write_cp15_physical(target, CP15PHYS_CTRL, cp15_ctrl);
923 /* read CP15 test state register */
924 arm920t_read_cp15_physical(target, CP15PHYS_TESTSTATE, &cp15c15);
925 jtag_execute_queue();
927 /* read DCache content */
928 fprintf(output, "DCache:\n");
930 /* go through segments 0 to nsets (8 on ARM920T, 4 on ARM922T) */
931 for (segment = 0;
932 segment < arm920t->armv4_5_mmu.armv4_5_cache.d_u_size.nsets;
933 segment++)
935 fprintf(output, "\nsegment: %i\n----------", segment);
937 /* Ra: r0 = SBZ(31:8):segment(7:5):SBZ(4:0) */
938 regs[0] = 0x0 | (segment << 5);
939 arm9tdmi_write_core_regs(target, 0x1, regs);
941 /* set interpret mode */
942 cp15c15 |= 0x1;
943 arm920t_write_cp15_physical(target,
944 CP15PHYS_TESTSTATE, cp15c15);
946 /* D CAM Read, loads current victim into C15.C.D.Ind */
947 arm920t_execute_cp15(target,
948 ARMV4_5_MCR(15,2,0,15,6,2), ARMV4_5_LDR(1, 0));
950 /* read current victim */
951 arm920t_read_cp15_physical(target,
952 CP15PHYS_DCACHE_IDX, &C15_C_D_Ind);
954 /* clear interpret mode */
955 cp15c15 &= ~0x1;
956 arm920t_write_cp15_physical(target,
957 CP15PHYS_TESTSTATE, cp15c15);
959 for (index_t = 0; index_t < 64; index_t++)
961 /* Ra:
962 * r0 = index(31:26):SBZ(25:8):segment(7:5):SBZ(4:0)
964 regs[0] = 0x0 | (segment << 5) | (index_t << 26);
965 arm9tdmi_write_core_regs(target, 0x1, regs);
967 /* set interpret mode */
968 cp15c15 |= 0x1;
969 arm920t_write_cp15_physical(target,
970 CP15PHYS_TESTSTATE, cp15c15);
972 /* Write DCache victim */
973 arm920t_execute_cp15(target,
974 ARMV4_5_MCR(15,0,0,9,1,0), ARMV4_5_LDR(1, 0));
976 /* Read D RAM */
977 arm920t_execute_cp15(target,
978 ARMV4_5_MCR(15,2,0,15,10,2),
979 ARMV4_5_LDMIA(0, 0x1fe, 0, 0));
981 /* Read D CAM */
982 arm920t_execute_cp15(target,
983 ARMV4_5_MCR(15,2,0,15,6,2),
984 ARMV4_5_LDR(9, 0));
986 /* clear interpret mode */
987 cp15c15 &= ~0x1;
988 arm920t_write_cp15_physical(target,
989 CP15PHYS_TESTSTATE, cp15c15);
991 /* read D RAM and CAM content */
992 arm9tdmi_read_core_regs(target, 0x3fe, regs_p);
993 if ((retval = jtag_execute_queue()) != ERROR_OK)
995 return retval;
998 d_cache[segment][index_t].cam = regs[9];
1000 /* mask LFSR[6] */
1001 regs[9] &= 0xfffffffe;
1002 fprintf(output, "\nsegment: %i, index: %i, CAM: 0x%8.8"
1003 PRIx32 ", content (%s):\n",
1004 segment, index_t, regs[9],
1005 (regs[9] & 0x10) ? "valid" : "invalid");
1007 for (i = 1; i < 9; i++)
1009 d_cache[segment][index_t].data[i] = regs[i];
1010 fprintf(output, "%i: 0x%8.8" PRIx32 "\n",
1011 i-1, regs[i]);
1016 /* Ra: r0 = index(31:26):SBZ(25:8):segment(7:5):SBZ(4:0) */
1017 regs[0] = 0x0 | (segment << 5) | (C15_C_D_Ind << 26);
1018 arm9tdmi_write_core_regs(target, 0x1, regs);
1020 /* set interpret mode */
1021 cp15c15 |= 0x1;
1022 arm920t_write_cp15_physical(target,
1023 CP15PHYS_TESTSTATE, cp15c15);
1025 /* Write DCache victim */
1026 arm920t_execute_cp15(target,
1027 ARMV4_5_MCR(15,0,0,9,1,0), ARMV4_5_LDR(1, 0));
1029 /* clear interpret mode */
1030 cp15c15 &= ~0x1;
1031 arm920t_write_cp15_physical(target,
1032 CP15PHYS_TESTSTATE, cp15c15);
1035 /* read ICache content */
1036 fprintf(output, "ICache:\n");
1038 /* go through segments 0 to nsets (8 on ARM920T, 4 on ARM922T) */
1039 for (segment = 0;
1040 segment < arm920t->armv4_5_mmu.armv4_5_cache.d_u_size.nsets;
1041 segment++)
1043 fprintf(output, "segment: %i\n----------", segment);
1045 /* Ra: r0 = SBZ(31:8):segment(7:5):SBZ(4:0) */
1046 regs[0] = 0x0 | (segment << 5);
1047 arm9tdmi_write_core_regs(target, 0x1, regs);
1049 /* set interpret mode */
1050 cp15c15 |= 0x1;
1051 arm920t_write_cp15_physical(target,
1052 CP15PHYS_TESTSTATE, cp15c15);
1054 /* I CAM Read, loads current victim into C15.C.I.Ind */
1055 arm920t_execute_cp15(target,
1056 ARMV4_5_MCR(15,2,0,15,5,2), ARMV4_5_LDR(1, 0));
1058 /* read current victim */
1059 arm920t_read_cp15_physical(target, CP15PHYS_ICACHE_IDX,
1060 &C15_C_I_Ind);
1062 /* clear interpret mode */
1063 cp15c15 &= ~0x1;
1064 arm920t_write_cp15_physical(target,
1065 CP15PHYS_TESTSTATE, cp15c15);
1067 for (index_t = 0; index_t < 64; index_t++)
1069 /* Ra:
1070 * r0 = index(31:26):SBZ(25:8):segment(7:5):SBZ(4:0)
1072 regs[0] = 0x0 | (segment << 5) | (index_t << 26);
1073 arm9tdmi_write_core_regs(target, 0x1, regs);
1075 /* set interpret mode */
1076 cp15c15 |= 0x1;
1077 arm920t_write_cp15_physical(target,
1078 CP15PHYS_TESTSTATE, cp15c15);
1080 /* Write ICache victim */
1081 arm920t_execute_cp15(target,
1082 ARMV4_5_MCR(15,0,0,9,1,1), ARMV4_5_LDR(1, 0));
1084 /* Read I RAM */
1085 arm920t_execute_cp15(target,
1086 ARMV4_5_MCR(15,2,0,15,9,2),
1087 ARMV4_5_LDMIA(0, 0x1fe, 0, 0));
1089 /* Read I CAM */
1090 arm920t_execute_cp15(target,
1091 ARMV4_5_MCR(15,2,0,15,5,2),
1092 ARMV4_5_LDR(9, 0));
1094 /* clear interpret mode */
1095 cp15c15 &= ~0x1;
1096 arm920t_write_cp15_physical(target,
1097 CP15PHYS_TESTSTATE, cp15c15);
1099 /* read I RAM and CAM content */
1100 arm9tdmi_read_core_regs(target, 0x3fe, regs_p);
1101 if ((retval = jtag_execute_queue()) != ERROR_OK)
1103 return retval;
1106 i_cache[segment][index_t].cam = regs[9];
1108 /* mask LFSR[6] */
1109 regs[9] &= 0xfffffffe;
1110 fprintf(output, "\nsegment: %i, index: %i, "
1111 "CAM: 0x%8.8" PRIx32 ", content (%s):\n",
1112 segment, index_t, regs[9],
1113 (regs[9] & 0x10) ? "valid" : "invalid");
1115 for (i = 1; i < 9; i++)
1117 i_cache[segment][index_t].data[i] = regs[i];
1118 fprintf(output, "%i: 0x%8.8" PRIx32 "\n",
1119 i-1, regs[i]);
1123 /* Ra: r0 = index(31:26):SBZ(25:8):segment(7:5):SBZ(4:0) */
1124 regs[0] = 0x0 | (segment << 5) | (C15_C_D_Ind << 26);
1125 arm9tdmi_write_core_regs(target, 0x1, regs);
1127 /* set interpret mode */
1128 cp15c15 |= 0x1;
1129 arm920t_write_cp15_physical(target,
1130 CP15PHYS_TESTSTATE, cp15c15);
1132 /* Write ICache victim */
1133 arm920t_execute_cp15(target,
1134 ARMV4_5_MCR(15,0,0,9,1,1), ARMV4_5_LDR(1, 0));
1136 /* clear interpret mode */
1137 cp15c15 &= ~0x1;
1138 arm920t_write_cp15_physical(target,
1139 CP15PHYS_TESTSTATE, cp15c15);
1142 /* restore CP15 MMU and Cache settings */
1143 arm920t_write_cp15_physical(target, CP15PHYS_CTRL, cp15_ctrl_saved);
1145 command_print(CMD_CTX, "cache content successfully output to %s",
1146 CMD_ARGV[0]);
1148 fclose(output);
1150 if (!is_arm_mode(armv4_5->core_mode))
1151 return ERROR_FAIL;
1153 /* force writeback of the valid data */
1154 r = armv4_5->core_cache->reg_list;
1155 r[0].dirty = r[0].valid;
1156 r[1].dirty = r[1].valid;
1157 r[2].dirty = r[2].valid;
1158 r[3].dirty = r[3].valid;
1159 r[4].dirty = r[4].valid;
1160 r[5].dirty = r[5].valid;
1161 r[6].dirty = r[6].valid;
1162 r[7].dirty = r[7].valid;
1164 r = arm_reg_current(armv4_5, 8);
1165 r->dirty = r->valid;
1167 r = arm_reg_current(armv4_5, 9);
1168 r->dirty = r->valid;
1170 return ERROR_OK;
1173 COMMAND_HANDLER(arm920t_handle_read_mmu_command)
1175 int retval = ERROR_OK;
1176 struct target *target = get_current_target(CMD_CTX);
1177 struct arm920t_common *arm920t = target_to_arm920(target);
1178 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1179 struct arm *armv4_5 = &arm7_9->armv4_5_common;
1180 uint32_t cp15c15;
1181 uint32_t cp15_ctrl, cp15_ctrl_saved;
1182 uint32_t regs[16];
1183 uint32_t *regs_p[16];
1184 int i;
1185 FILE *output;
1186 uint32_t Dlockdown, Ilockdown;
1187 struct arm920t_tlb_entry d_tlb[64], i_tlb[64];
1188 int victim;
1189 struct reg *r;
1191 retval = arm920t_verify_pointer(CMD_CTX, arm920t);
1192 if (retval != ERROR_OK)
1193 return retval;
1195 if (CMD_ARGC != 1)
1197 command_print(CMD_CTX, "usage: arm920t read_mmu <filename>");
1198 return ERROR_OK;
1201 if ((output = fopen(CMD_ARGV[0], "w")) == NULL)
1203 LOG_DEBUG("error opening mmu content file");
1204 return ERROR_OK;
1207 for (i = 0; i < 16; i++)
1208 regs_p[i] = &regs[i];
1210 /* disable MMU and Caches */
1211 arm920t_read_cp15_physical(target, CP15PHYS_CTRL, &cp15_ctrl);
1212 if ((retval = jtag_execute_queue()) != ERROR_OK)
1214 return retval;
1216 cp15_ctrl_saved = cp15_ctrl;
1217 cp15_ctrl &= ~(ARMV4_5_MMU_ENABLED
1218 | ARMV4_5_D_U_CACHE_ENABLED | ARMV4_5_I_CACHE_ENABLED);
1219 arm920t_write_cp15_physical(target, CP15PHYS_CTRL, cp15_ctrl);
1221 /* read CP15 test state register */
1222 arm920t_read_cp15_physical(target, CP15PHYS_TESTSTATE, &cp15c15);
1223 if ((retval = jtag_execute_queue()) != ERROR_OK)
1225 return retval;
1228 /* prepare reading D TLB content
1229 * */
1231 /* set interpret mode */
1232 cp15c15 |= 0x1;
1233 arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15);
1235 /* Read D TLB lockdown */
1236 arm920t_execute_cp15(target,
1237 ARMV4_5_MRC(15,0,0,10,0,0), ARMV4_5_LDR(1, 0));
1239 /* clear interpret mode */
1240 cp15c15 &= ~0x1;
1241 arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15);
1243 /* read D TLB lockdown stored to r1 */
1244 arm9tdmi_read_core_regs(target, 0x2, regs_p);
1245 if ((retval = jtag_execute_queue()) != ERROR_OK)
1247 return retval;
1249 Dlockdown = regs[1];
1251 for (victim = 0; victim < 64; victim += 8)
1253 /* new lockdown value: base[31:26]:victim[25:20]:SBZ[19:1]:p[0]
1254 * base remains unchanged, victim goes through entries 0 to 63
1256 regs[1] = (Dlockdown & 0xfc000000) | (victim << 20);
1257 arm9tdmi_write_core_regs(target, 0x2, regs);
1259 /* set interpret mode */
1260 cp15c15 |= 0x1;
1261 arm920t_write_cp15_physical(target,
1262 CP15PHYS_TESTSTATE, cp15c15);
1264 /* Write D TLB lockdown */
1265 arm920t_execute_cp15(target,
1266 ARMV4_5_MCR(15,0,0,10,0,0),
1267 ARMV4_5_STR(1, 0));
1269 /* Read D TLB CAM */
1270 arm920t_execute_cp15(target,
1271 ARMV4_5_MCR(15,4,0,15,6,4),
1272 ARMV4_5_LDMIA(0, 0x3fc, 0, 0));
1274 /* clear interpret mode */
1275 cp15c15 &= ~0x1;
1276 arm920t_write_cp15_physical(target,
1277 CP15PHYS_TESTSTATE, cp15c15);
1279 /* read D TLB CAM content stored to r2-r9 */
1280 arm9tdmi_read_core_regs(target, 0x3fc, regs_p);
1281 if ((retval = jtag_execute_queue()) != ERROR_OK)
1283 return retval;
1286 for (i = 0; i < 8; i++)
1287 d_tlb[victim + i].cam = regs[i + 2];
1290 for (victim = 0; victim < 64; victim++)
1292 /* new lockdown value: base[31:26]:victim[25:20]:SBZ[19:1]:p[0]
1293 * base remains unchanged, victim goes through entries 0 to 63
1295 regs[1] = (Dlockdown & 0xfc000000) | (victim << 20);
1296 arm9tdmi_write_core_regs(target, 0x2, regs);
1298 /* set interpret mode */
1299 cp15c15 |= 0x1;
1300 arm920t_write_cp15_physical(target,
1301 CP15PHYS_TESTSTATE, cp15c15);
1303 /* Write D TLB lockdown */
1304 arm920t_execute_cp15(target,
1305 ARMV4_5_MCR(15,0,0,10,0,0), ARMV4_5_STR(1, 0));
1307 /* Read D TLB RAM1 */
1308 arm920t_execute_cp15(target,
1309 ARMV4_5_MCR(15,4,0,15,10,4), ARMV4_5_LDR(2,0));
1311 /* Read D TLB RAM2 */
1312 arm920t_execute_cp15(target,
1313 ARMV4_5_MCR(15,4,0,15,2,5), ARMV4_5_LDR(3,0));
1315 /* clear interpret mode */
1316 cp15c15 &= ~0x1;
1317 arm920t_write_cp15_physical(target,
1318 CP15PHYS_TESTSTATE, cp15c15);
1320 /* read D TLB RAM content stored to r2 and r3 */
1321 arm9tdmi_read_core_regs(target, 0xc, regs_p);
1322 if ((retval = jtag_execute_queue()) != ERROR_OK)
1324 return retval;
1327 d_tlb[victim].ram1 = regs[2];
1328 d_tlb[victim].ram2 = regs[3];
1331 /* restore D TLB lockdown */
1332 regs[1] = Dlockdown;
1333 arm9tdmi_write_core_regs(target, 0x2, regs);
1335 /* Write D TLB lockdown */
1336 arm920t_execute_cp15(target,
1337 ARMV4_5_MCR(15,0,0,10,0,0), ARMV4_5_STR(1, 0));
1339 /* prepare reading I TLB content
1340 * */
1342 /* set interpret mode */
1343 cp15c15 |= 0x1;
1344 arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15);
1346 /* Read I TLB lockdown */
1347 arm920t_execute_cp15(target,
1348 ARMV4_5_MRC(15,0,0,10,0,1), ARMV4_5_LDR(1, 0));
1350 /* clear interpret mode */
1351 cp15c15 &= ~0x1;
1352 arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15);
1354 /* read I TLB lockdown stored to r1 */
1355 arm9tdmi_read_core_regs(target, 0x2, regs_p);
1356 if ((retval = jtag_execute_queue()) != ERROR_OK)
1358 return retval;
1360 Ilockdown = regs[1];
1362 for (victim = 0; victim < 64; victim += 8)
1364 /* new lockdown value: base[31:26]:victim[25:20]:SBZ[19:1]:p[0]
1365 * base remains unchanged, victim goes through entries 0 to 63
1367 regs[1] = (Ilockdown & 0xfc000000) | (victim << 20);
1368 arm9tdmi_write_core_regs(target, 0x2, regs);
1370 /* set interpret mode */
1371 cp15c15 |= 0x1;
1372 arm920t_write_cp15_physical(target,
1373 CP15PHYS_TESTSTATE, cp15c15);
1375 /* Write I TLB lockdown */
1376 arm920t_execute_cp15(target,
1377 ARMV4_5_MCR(15,0,0,10,0,1),
1378 ARMV4_5_STR(1, 0));
1380 /* Read I TLB CAM */
1381 arm920t_execute_cp15(target,
1382 ARMV4_5_MCR(15,4,0,15,5,4),
1383 ARMV4_5_LDMIA(0, 0x3fc, 0, 0));
1385 /* clear interpret mode */
1386 cp15c15 &= ~0x1;
1387 arm920t_write_cp15_physical(target,
1388 CP15PHYS_TESTSTATE, cp15c15);
1390 /* read I TLB CAM content stored to r2-r9 */
1391 arm9tdmi_read_core_regs(target, 0x3fc, regs_p);
1392 if ((retval = jtag_execute_queue()) != ERROR_OK)
1394 return retval;
1397 for (i = 0; i < 8; i++)
1398 i_tlb[i + victim].cam = regs[i + 2];
1401 for (victim = 0; victim < 64; victim++)
1403 /* new lockdown value: base[31:26]:victim[25:20]:SBZ[19:1]:p[0]
1404 * base remains unchanged, victim goes through entries 0 to 63
1406 regs[1] = (Dlockdown & 0xfc000000) | (victim << 20);
1407 arm9tdmi_write_core_regs(target, 0x2, regs);
1409 /* set interpret mode */
1410 cp15c15 |= 0x1;
1411 arm920t_write_cp15_physical(target,
1412 CP15PHYS_TESTSTATE, cp15c15);
1414 /* Write I TLB lockdown */
1415 arm920t_execute_cp15(target,
1416 ARMV4_5_MCR(15,0,0,10,0,1), ARMV4_5_STR(1, 0));
1418 /* Read I TLB RAM1 */
1419 arm920t_execute_cp15(target,
1420 ARMV4_5_MCR(15,4,0,15,9,4), ARMV4_5_LDR(2,0));
1422 /* Read I TLB RAM2 */
1423 arm920t_execute_cp15(target,
1424 ARMV4_5_MCR(15,4,0,15,1,5), ARMV4_5_LDR(3,0));
1426 /* clear interpret mode */
1427 cp15c15 &= ~0x1;
1428 arm920t_write_cp15_physical(target,
1429 CP15PHYS_TESTSTATE, cp15c15);
1431 /* read I TLB RAM content stored to r2 and r3 */
1432 arm9tdmi_read_core_regs(target, 0xc, regs_p);
1433 if ((retval = jtag_execute_queue()) != ERROR_OK)
1435 return retval;
1438 i_tlb[victim].ram1 = regs[2];
1439 i_tlb[victim].ram2 = regs[3];
1442 /* restore I TLB lockdown */
1443 regs[1] = Ilockdown;
1444 arm9tdmi_write_core_regs(target, 0x2, regs);
1446 /* Write I TLB lockdown */
1447 arm920t_execute_cp15(target,
1448 ARMV4_5_MCR(15,0,0,10,0,1), ARMV4_5_STR(1, 0));
1450 /* restore CP15 MMU and Cache settings */
1451 arm920t_write_cp15_physical(target, CP15PHYS_CTRL, cp15_ctrl_saved);
1453 /* output data to file */
1454 fprintf(output, "D TLB content:\n");
1455 for (i = 0; i < 64; i++)
1457 fprintf(output, "%i: 0x%8.8" PRIx32 " 0x%8.8" PRIx32
1458 " 0x%8.8" PRIx32 " %s\n",
1459 i, d_tlb[i].cam, d_tlb[i].ram1, d_tlb[i].ram2,
1460 (d_tlb[i].cam & 0x20) ? "(valid)" : "(invalid)");
1463 fprintf(output, "\n\nI TLB content:\n");
1464 for (i = 0; i < 64; i++)
1466 fprintf(output, "%i: 0x%8.8" PRIx32 " 0x%8.8" PRIx32
1467 " 0x%8.8" PRIx32 " %s\n",
1468 i, i_tlb[i].cam, i_tlb[i].ram1, i_tlb[i].ram2,
1469 (i_tlb[i].cam & 0x20) ? "(valid)" : "(invalid)");
1472 command_print(CMD_CTX, "mmu content successfully output to %s",
1473 CMD_ARGV[0]);
1475 fclose(output);
1477 if (!is_arm_mode(armv4_5->core_mode))
1478 return ERROR_FAIL;
1480 /* force writeback of the valid data */
1481 r = armv4_5->core_cache->reg_list;
1482 r[0].dirty = r[0].valid;
1483 r[1].dirty = r[1].valid;
1484 r[2].dirty = r[2].valid;
1485 r[3].dirty = r[3].valid;
1486 r[4].dirty = r[4].valid;
1487 r[5].dirty = r[5].valid;
1488 r[6].dirty = r[6].valid;
1489 r[7].dirty = r[7].valid;
1491 r = arm_reg_current(armv4_5, 8);
1492 r->dirty = r->valid;
1494 r = arm_reg_current(armv4_5, 9);
1495 r->dirty = r->valid;
1497 return ERROR_OK;
1500 COMMAND_HANDLER(arm920t_handle_cp15_command)
1502 int retval;
1503 struct target *target = get_current_target(CMD_CTX);
1504 struct arm920t_common *arm920t = target_to_arm920(target);
1506 retval = arm920t_verify_pointer(CMD_CTX, arm920t);
1507 if (retval != ERROR_OK)
1508 return retval;
1510 if (target->state != TARGET_HALTED)
1512 command_print(CMD_CTX, "target must be stopped for "
1513 "\"%s\" command", CMD_NAME);
1514 return ERROR_OK;
1517 /* one argument, read a register.
1518 * two arguments, write it.
1520 if (CMD_ARGC >= 1)
1522 int address;
1523 COMMAND_PARSE_NUMBER(int, CMD_ARGV[0], address);
1525 if (CMD_ARGC == 1)
1527 uint32_t value;
1528 if ((retval = arm920t_read_cp15_physical(target,
1529 address, &value)) != ERROR_OK)
1531 command_print(CMD_CTX,
1532 "couldn't access reg %i", address);
1533 return ERROR_OK;
1535 if ((retval = jtag_execute_queue()) != ERROR_OK)
1537 return retval;
1540 command_print(CMD_CTX, "%i: %8.8" PRIx32,
1541 address, value);
1543 else if (CMD_ARGC == 2)
1545 uint32_t value;
1546 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
1547 retval = arm920t_write_cp15_physical(target,
1548 address, value);
1549 if (retval != ERROR_OK)
1551 command_print(CMD_CTX,
1552 "couldn't access reg %i", address);
1553 /* REVISIT why lie? "return retval"? */
1554 return ERROR_OK;
1556 command_print(CMD_CTX, "%i: %8.8" PRIx32,
1557 address, value);
1561 return ERROR_OK;
1564 COMMAND_HANDLER(arm920t_handle_cp15i_command)
1566 int retval;
1567 struct target *target = get_current_target(CMD_CTX);
1568 struct arm920t_common *arm920t = target_to_arm920(target);
1570 retval = arm920t_verify_pointer(CMD_CTX, arm920t);
1571 if (retval != ERROR_OK)
1572 return retval;
1575 if (target->state != TARGET_HALTED)
1577 command_print(CMD_CTX, "target must be stopped for "
1578 "\"%s\" command", CMD_NAME);
1579 return ERROR_OK;
1582 /* one argument, read a register.
1583 * two arguments, write it.
1585 if (CMD_ARGC >= 1)
1587 uint32_t opcode;
1588 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], opcode);
1590 if (CMD_ARGC == 1)
1592 uint32_t value;
1593 retval = arm920t_read_cp15_interpreted(target,
1594 opcode, 0x0, &value);
1595 if (retval != ERROR_OK)
1597 command_print(CMD_CTX,
1598 "couldn't execute %8.8" PRIx32,
1599 opcode);
1600 /* REVISIT why lie? "return retval"? */
1601 return ERROR_OK;
1604 command_print(CMD_CTX, "%8.8" PRIx32 ": %8.8" PRIx32,
1605 opcode, value);
1607 else if (CMD_ARGC == 2)
1609 uint32_t value;
1610 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
1611 retval = arm920t_write_cp15_interpreted(target,
1612 opcode, value, 0);
1613 if (retval != ERROR_OK)
1615 command_print(CMD_CTX,
1616 "couldn't execute %8.8" PRIx32,
1617 opcode);
1618 /* REVISIT why lie? "return retval"? */
1619 return ERROR_OK;
1621 command_print(CMD_CTX, "%8.8" PRIx32 ": %8.8" PRIx32,
1622 opcode, value);
1624 else if (CMD_ARGC == 3)
1626 uint32_t value;
1627 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
1628 uint32_t address;
1629 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], address);
1630 retval = arm920t_write_cp15_interpreted(target,
1631 opcode, value, address);
1632 if (retval != ERROR_OK)
1634 command_print(CMD_CTX,
1635 "couldn't execute %8.8" PRIx32, opcode);
1636 /* REVISIT why lie? "return retval"? */
1637 return ERROR_OK;
1639 command_print(CMD_CTX, "%8.8" PRIx32 ": %8.8" PRIx32
1640 " %8.8" PRIx32, opcode, value, address);
1643 else
1645 command_print(CMD_CTX,
1646 "usage: arm920t cp15i <opcode> [value] [address]");
1649 return ERROR_OK;
1652 COMMAND_HANDLER(arm920t_handle_cache_info_command)
1654 int retval;
1655 struct target *target = get_current_target(CMD_CTX);
1656 struct arm920t_common *arm920t = target_to_arm920(target);
1658 retval = arm920t_verify_pointer(CMD_CTX, arm920t);
1659 if (retval != ERROR_OK)
1660 return retval;
1662 return armv4_5_handle_cache_info_command(CMD_CTX,
1663 &arm920t->armv4_5_mmu.armv4_5_cache);
1667 static int arm920t_mrc(struct target *target, int cpnum,
1668 uint32_t op1, uint32_t op2,
1669 uint32_t CRn, uint32_t CRm,
1670 uint32_t *value)
1672 if (cpnum!=15)
1674 LOG_ERROR("Only cp15 is supported");
1675 return ERROR_FAIL;
1678 /* read "to" r0 */
1679 return arm920t_read_cp15_interpreted(target,
1680 ARMV4_5_MRC(cpnum, op1, 0, CRn, CRm, op2),
1681 0, value);
1684 static int arm920t_mcr(struct target *target, int cpnum,
1685 uint32_t op1, uint32_t op2,
1686 uint32_t CRn, uint32_t CRm,
1687 uint32_t value)
1689 if (cpnum!=15)
1691 LOG_ERROR("Only cp15 is supported");
1692 return ERROR_FAIL;
1695 /* write "from" r0 */
1696 return arm920t_write_cp15_interpreted(target,
1697 ARMV4_5_MCR(cpnum, op1, 0, CRn, CRm, op2),
1698 0, value);
1701 static const struct command_registration arm920t_exec_command_handlers[] = {
1703 .name = "cp15",
1704 .handler = arm920t_handle_cp15_command,
1705 .mode = COMMAND_EXEC,
1706 .help = "display/modify cp15 register",
1707 .usage = "regnum [value]",
1710 .name = "cp15i",
1711 .handler = arm920t_handle_cp15i_command,
1712 .mode = COMMAND_EXEC,
1713 /* prefer using less error-prone "arm mcr" or "arm mrc" */
1714 .help = "display/modify cp15 register using ARM opcode"
1715 " (DEPRECATED)",
1716 .usage = "instruction [value [address]]",
1719 .name = "cache_info",
1720 .handler = arm920t_handle_cache_info_command,
1721 .mode = COMMAND_EXEC,
1722 .help = "display information about target caches",
1725 .name = "read_cache",
1726 .handler = arm920t_handle_read_cache_command,
1727 .mode = COMMAND_EXEC,
1728 .help = "dump I/D cache content to file",
1729 .usage = "filename",
1732 .name = "read_mmu",
1733 .handler = arm920t_handle_read_mmu_command,
1734 .mode = COMMAND_EXEC,
1735 .help = "dump I/D mmu content to file",
1736 .usage = "filename",
1738 COMMAND_REGISTRATION_DONE
1740 const struct command_registration arm920t_command_handlers[] = {
1742 .chain = arm9tdmi_command_handlers,
1745 .name = "arm920t",
1746 .mode = COMMAND_ANY,
1747 .help = "arm920t command group",
1748 .chain = arm920t_exec_command_handlers,
1750 COMMAND_REGISTRATION_DONE
1753 /** Holds methods for ARM920 targets. */
1754 struct target_type arm920t_target =
1756 .name = "arm920t",
1758 .poll = arm7_9_poll,
1759 .arch_state = arm920t_arch_state,
1761 .target_request_data = arm7_9_target_request_data,
1763 .halt = arm7_9_halt,
1764 .resume = arm7_9_resume,
1765 .step = arm7_9_step,
1767 .assert_reset = arm7_9_assert_reset,
1768 .deassert_reset = arm7_9_deassert_reset,
1769 .soft_reset_halt = arm920t_soft_reset_halt,
1771 .get_gdb_reg_list = arm_get_gdb_reg_list,
1773 .read_memory = arm920t_read_memory,
1774 .write_memory = arm920t_write_memory,
1775 .read_phys_memory = arm920t_read_phys_memory,
1776 .write_phys_memory = arm920t_write_phys_memory,
1777 .mmu = arm920_mmu,
1778 .virt2phys = arm920_virt2phys,
1780 .bulk_write_memory = arm7_9_bulk_write_memory,
1782 .checksum_memory = arm_checksum_memory,
1783 .blank_check_memory = arm_blank_check_memory,
1785 .run_algorithm = armv4_5_run_algorithm,
1787 .add_breakpoint = arm7_9_add_breakpoint,
1788 .remove_breakpoint = arm7_9_remove_breakpoint,
1789 .add_watchpoint = arm7_9_add_watchpoint,
1790 .remove_watchpoint = arm7_9_remove_watchpoint,
1792 .commands = arm920t_command_handlers,
1793 .target_create = arm920t_target_create,
1794 .init_target = arm9tdmi_init_target,
1795 .examine = arm7_9_examine,
1796 .check_reset = arm7_9_check_reset,