propagate return status of set_breakpoint() up call chain
[openocd/genbsdl.git] / src / target / cortex_a8.c
blob8b4ced59c0df17e84a4eb0c5533897b07f8a2213
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2006 by Magnus Lundin *
6 * lundin@mlu.mine.nu *
7 * *
8 * Copyright (C) 2008 by Spencer Oliver *
9 * spen@spen-soft.co.uk *
10 * *
11 * Copyright (C) 2009 by Dirk Behme *
12 * dirk.behme@gmail.com - copy from cortex_m3 *
13 * *
14 * Copyright (C) 2010 Øyvind Harboe *
15 * oyvind.harboe@zylin.com *
16 * *
17 * This program is free software; you can redistribute it and/or modify *
18 * it under the terms of the GNU General Public License as published by *
19 * the Free Software Foundation; either version 2 of the License, or *
20 * (at your option) any later version. *
21 * *
22 * This program is distributed in the hope that it will be useful, *
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
25 * GNU General Public License for more details. *
26 * *
27 * You should have received a copy of the GNU General Public License *
28 * along with this program; if not, write to the *
29 * Free Software Foundation, Inc., *
30 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
31 * *
32 * Cortex-A8(tm) TRM, ARM DDI 0344H *
33 * *
34 ***************************************************************************/
35 #ifdef HAVE_CONFIG_H
36 #include "config.h"
37 #endif
39 #include "breakpoints.h"
40 #include "cortex_a8.h"
41 #include "register.h"
42 #include "target_request.h"
43 #include "target_type.h"
44 #include "arm_opcodes.h"
45 #include <helper/time_support.h>
47 static int cortex_a8_poll(struct target *target);
48 static int cortex_a8_debug_entry(struct target *target);
49 static int cortex_a8_restore_context(struct target *target, bool bpwp);
50 static int cortex_a8_set_breakpoint(struct target *target,
51 struct breakpoint *breakpoint, uint8_t matchmode);
52 static int cortex_a8_unset_breakpoint(struct target *target,
53 struct breakpoint *breakpoint);
54 static int cortex_a8_dap_read_coreregister_u32(struct target *target,
55 uint32_t *value, int regnum);
56 static int cortex_a8_dap_write_coreregister_u32(struct target *target,
57 uint32_t value, int regnum);
58 static int cortex_a8_mmu(struct target *target, int *enabled);
59 static int cortex_a8_virt2phys(struct target *target,
60 uint32_t virt, uint32_t *phys);
61 static int cortex_a8_disable_mmu_caches(struct target *target, int mmu,
62 int d_u_cache, int i_cache);
63 static int cortex_a8_enable_mmu_caches(struct target *target, int mmu,
64 int d_u_cache, int i_cache);
65 static int cortex_a8_get_ttb(struct target *target, uint32_t *result);
69 * FIXME do topology discovery using the ROM; don't
70 * assume this is an OMAP3. Also, allow for multiple ARMv7-A
71 * cores, with different AP numbering ... don't use a #define
72 * for these numbers, use per-core armv7a state.
74 #define swjdp_memoryap 0
75 #define swjdp_debugap 1
76 #define OMAP3530_DEBUG_BASE 0x54011000
79 * Cortex-A8 Basic debug access, very low level assumes state is saved
81 static int cortex_a8_init_debug_access(struct target *target)
83 struct armv7a_common *armv7a = target_to_armv7a(target);
84 struct adiv5_dap *swjdp = &armv7a->dap;
86 int retval;
87 uint32_t dummy;
89 LOG_DEBUG(" ");
91 /* Unlocking the debug registers for modification */
92 /* The debugport might be uninitialised so try twice */
93 retval = mem_ap_write_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_LOCKACCESS, 0xC5ACCE55);
94 if (retval != ERROR_OK)
96 /* try again */
97 retval = mem_ap_write_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_LOCKACCESS, 0xC5ACCE55);
98 if (retval == ERROR_OK)
100 LOG_USER("Locking debug access failed on first, but succeeded on second try.");
103 if (retval != ERROR_OK)
104 return retval;
105 /* Clear Sticky Power Down status Bit in PRSR to enable access to
106 the registers in the Core Power Domain */
107 retval = mem_ap_read_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_PRSR, &dummy);
108 if (retval != ERROR_OK)
109 return retval;
111 /* Enabling of instruction execution in debug mode is done in debug_entry code */
113 /* Resync breakpoint registers */
115 /* Since this is likely called from init or reset, update target state information*/
116 retval = cortex_a8_poll(target);
118 return retval;
121 /* To reduce needless round-trips, pass in a pointer to the current
122 * DSCR value. Initialize it to zero if you just need to know the
123 * value on return from this function; or DSCR_INSTR_COMP if you
124 * happen to know that no instruction is pending.
126 static int cortex_a8_exec_opcode(struct target *target,
127 uint32_t opcode, uint32_t *dscr_p)
129 uint32_t dscr;
130 int retval;
131 struct armv7a_common *armv7a = target_to_armv7a(target);
132 struct adiv5_dap *swjdp = &armv7a->dap;
134 dscr = dscr_p ? *dscr_p : 0;
136 LOG_DEBUG("exec opcode 0x%08" PRIx32, opcode);
138 /* Wait for InstrCompl bit to be set */
139 long long then = timeval_ms();
140 while ((dscr & DSCR_INSTR_COMP) == 0)
142 retval = mem_ap_read_atomic_u32(swjdp,
143 armv7a->debug_base + CPUDBG_DSCR, &dscr);
144 if (retval != ERROR_OK)
146 LOG_ERROR("Could not read DSCR register, opcode = 0x%08" PRIx32, opcode);
147 return retval;
149 if (timeval_ms() > then + 1000)
151 LOG_ERROR("Timeout waiting for cortex_a8_exec_opcode");
152 return ERROR_FAIL;
156 retval = mem_ap_write_u32(swjdp, armv7a->debug_base + CPUDBG_ITR, opcode);
157 if (retval != ERROR_OK)
158 return retval;
160 then = timeval_ms();
163 retval = mem_ap_read_atomic_u32(swjdp,
164 armv7a->debug_base + CPUDBG_DSCR, &dscr);
165 if (retval != ERROR_OK)
167 LOG_ERROR("Could not read DSCR register");
168 return retval;
170 if (timeval_ms() > then + 1000)
172 LOG_ERROR("Timeout waiting for cortex_a8_exec_opcode");
173 return ERROR_FAIL;
176 while ((dscr & DSCR_INSTR_COMP) == 0); /* Wait for InstrCompl bit to be set */
178 if (dscr_p)
179 *dscr_p = dscr;
181 return retval;
184 /**************************************************************************
185 Read core register with very few exec_opcode, fast but needs work_area.
186 This can cause problems with MMU active.
187 **************************************************************************/
188 static int cortex_a8_read_regs_through_mem(struct target *target, uint32_t address,
189 uint32_t * regfile)
191 int retval = ERROR_OK;
192 struct armv7a_common *armv7a = target_to_armv7a(target);
193 struct adiv5_dap *swjdp = &armv7a->dap;
195 retval = cortex_a8_dap_read_coreregister_u32(target, regfile, 0);
196 if (retval != ERROR_OK)
197 return retval;
198 retval = cortex_a8_dap_write_coreregister_u32(target, address, 0);
199 if (retval != ERROR_OK)
200 return retval;
201 retval = cortex_a8_exec_opcode(target, ARMV4_5_STMIA(0, 0xFFFE, 0, 0), NULL);
202 if (retval != ERROR_OK)
203 return retval;
205 dap_ap_select(swjdp, swjdp_memoryap);
206 retval = mem_ap_read_buf_u32(swjdp, (uint8_t *)(&regfile[1]), 4*15, address);
207 if (retval != ERROR_OK)
208 return retval;
209 dap_ap_select(swjdp, swjdp_debugap);
211 return retval;
214 static int cortex_a8_dap_read_coreregister_u32(struct target *target,
215 uint32_t *value, int regnum)
217 int retval = ERROR_OK;
218 uint8_t reg = regnum&0xFF;
219 uint32_t dscr = 0;
220 struct armv7a_common *armv7a = target_to_armv7a(target);
221 struct adiv5_dap *swjdp = &armv7a->dap;
223 if (reg > 17)
224 return retval;
226 if (reg < 15)
228 /* Rn to DCCTX, "MCR p14, 0, Rn, c0, c5, 0" 0xEE00nE15 */
229 retval = cortex_a8_exec_opcode(target,
230 ARMV4_5_MCR(14, 0, reg, 0, 5, 0),
231 &dscr);
232 if (retval != ERROR_OK)
233 return retval;
235 else if (reg == 15)
237 /* "MOV r0, r15"; then move r0 to DCCTX */
238 retval = cortex_a8_exec_opcode(target, 0xE1A0000F, &dscr);
239 if (retval != ERROR_OK)
240 return retval;
241 retval = cortex_a8_exec_opcode(target,
242 ARMV4_5_MCR(14, 0, 0, 0, 5, 0),
243 &dscr);
244 if (retval != ERROR_OK)
245 return retval;
247 else
249 /* "MRS r0, CPSR" or "MRS r0, SPSR"
250 * then move r0 to DCCTX
252 retval = cortex_a8_exec_opcode(target, ARMV4_5_MRS(0, reg & 1), &dscr);
253 if (retval != ERROR_OK)
254 return retval;
255 retval = cortex_a8_exec_opcode(target,
256 ARMV4_5_MCR(14, 0, 0, 0, 5, 0),
257 &dscr);
258 if (retval != ERROR_OK)
259 return retval;
262 /* Wait for DTRRXfull then read DTRRTX */
263 long long then = timeval_ms();
264 while ((dscr & DSCR_DTR_TX_FULL) == 0)
266 retval = mem_ap_read_atomic_u32(swjdp,
267 armv7a->debug_base + CPUDBG_DSCR, &dscr);
268 if (retval != ERROR_OK)
269 return retval;
270 if (timeval_ms() > then + 1000)
272 LOG_ERROR("Timeout waiting for cortex_a8_exec_opcode");
273 return ERROR_FAIL;
277 retval = mem_ap_read_atomic_u32(swjdp,
278 armv7a->debug_base + CPUDBG_DTRTX, value);
279 LOG_DEBUG("read DCC 0x%08" PRIx32, *value);
281 return retval;
284 static int cortex_a8_dap_write_coreregister_u32(struct target *target,
285 uint32_t value, int regnum)
287 int retval = ERROR_OK;
288 uint8_t Rd = regnum&0xFF;
289 uint32_t dscr;
290 struct armv7a_common *armv7a = target_to_armv7a(target);
291 struct adiv5_dap *swjdp = &armv7a->dap;
293 LOG_DEBUG("register %i, value 0x%08" PRIx32, regnum, value);
295 /* Check that DCCRX is not full */
296 retval = mem_ap_read_atomic_u32(swjdp,
297 armv7a->debug_base + CPUDBG_DSCR, &dscr);
298 if (retval != ERROR_OK)
299 return retval;
300 if (dscr & DSCR_DTR_RX_FULL)
302 LOG_ERROR("DSCR_DTR_RX_FULL, dscr 0x%08" PRIx32, dscr);
303 /* Clear DCCRX with MCR(p14, 0, Rd, c0, c5, 0), opcode 0xEE000E15 */
304 retval = cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
305 &dscr);
306 if (retval != ERROR_OK)
307 return retval;
310 if (Rd > 17)
311 return retval;
313 /* Write DTRRX ... sets DSCR.DTRRXfull but exec_opcode() won't care */
314 LOG_DEBUG("write DCC 0x%08" PRIx32, value);
315 retval = mem_ap_write_u32(swjdp,
316 armv7a->debug_base + CPUDBG_DTRRX, value);
317 if (retval != ERROR_OK)
318 return retval;
320 if (Rd < 15)
322 /* DCCRX to Rn, "MCR p14, 0, Rn, c0, c5, 0", 0xEE00nE15 */
323 retval = cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, Rd, 0, 5, 0),
324 &dscr);
325 if (retval != ERROR_OK)
326 return retval;
328 else if (Rd == 15)
330 /* DCCRX to R0, "MCR p14, 0, R0, c0, c5, 0", 0xEE000E15
331 * then "mov r15, r0"
333 retval = cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
334 &dscr);
335 if (retval != ERROR_OK)
336 return retval;
337 retval = cortex_a8_exec_opcode(target, 0xE1A0F000, &dscr);
338 if (retval != ERROR_OK)
339 return retval;
341 else
343 /* DCCRX to R0, "MCR p14, 0, R0, c0, c5, 0", 0xEE000E15
344 * then "MSR CPSR_cxsf, r0" or "MSR SPSR_cxsf, r0" (all fields)
346 retval = cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
347 &dscr);
348 if (retval != ERROR_OK)
349 return retval;
350 retval = cortex_a8_exec_opcode(target, ARMV4_5_MSR_GP(0, 0xF, Rd & 1),
351 &dscr);
352 if (retval != ERROR_OK)
353 return retval;
355 /* "Prefetch flush" after modifying execution status in CPSR */
356 if (Rd == 16)
358 retval = cortex_a8_exec_opcode(target,
359 ARMV4_5_MCR(15, 0, 0, 7, 5, 4),
360 &dscr);
361 if (retval != ERROR_OK)
362 return retval;
366 return retval;
369 /* Write to memory mapped registers directly with no cache or mmu handling */
370 static int cortex_a8_dap_write_memap_register_u32(struct target *target, uint32_t address, uint32_t value)
372 int retval;
373 struct armv7a_common *armv7a = target_to_armv7a(target);
374 struct adiv5_dap *swjdp = &armv7a->dap;
376 retval = mem_ap_write_atomic_u32(swjdp, address, value);
378 return retval;
382 * Cortex-A8 implementation of Debug Programmer's Model
384 * NOTE the invariant: these routines return with DSCR_INSTR_COMP set,
385 * so there's no need to poll for it before executing an instruction.
387 * NOTE that in several of these cases the "stall" mode might be useful.
388 * It'd let us queue a few operations together... prepare/finish might
389 * be the places to enable/disable that mode.
392 static inline struct cortex_a8_common *dpm_to_a8(struct arm_dpm *dpm)
394 return container_of(dpm, struct cortex_a8_common, armv7a_common.dpm);
397 static int cortex_a8_write_dcc(struct cortex_a8_common *a8, uint32_t data)
399 LOG_DEBUG("write DCC 0x%08" PRIx32, data);
400 return mem_ap_write_u32(&a8->armv7a_common.dap,
401 a8->armv7a_common.debug_base + CPUDBG_DTRRX, data);
404 static int cortex_a8_read_dcc(struct cortex_a8_common *a8, uint32_t *data,
405 uint32_t *dscr_p)
407 struct adiv5_dap *swjdp = &a8->armv7a_common.dap;
408 uint32_t dscr = DSCR_INSTR_COMP;
409 int retval;
411 if (dscr_p)
412 dscr = *dscr_p;
414 /* Wait for DTRRXfull */
415 long long then = timeval_ms();
416 while ((dscr & DSCR_DTR_TX_FULL) == 0) {
417 retval = mem_ap_read_atomic_u32(swjdp,
418 a8->armv7a_common.debug_base + CPUDBG_DSCR,
419 &dscr);
420 if (retval != ERROR_OK)
421 return retval;
422 if (timeval_ms() > then + 1000)
424 LOG_ERROR("Timeout waiting for read dcc");
425 return ERROR_FAIL;
429 retval = mem_ap_read_atomic_u32(swjdp,
430 a8->armv7a_common.debug_base + CPUDBG_DTRTX, data);
431 if (retval != ERROR_OK)
432 return retval;
433 //LOG_DEBUG("read DCC 0x%08" PRIx32, *data);
435 if (dscr_p)
436 *dscr_p = dscr;
438 return retval;
441 static int cortex_a8_dpm_prepare(struct arm_dpm *dpm)
443 struct cortex_a8_common *a8 = dpm_to_a8(dpm);
444 struct adiv5_dap *swjdp = &a8->armv7a_common.dap;
445 uint32_t dscr;
446 int retval;
448 /* set up invariant: INSTR_COMP is set after ever DPM operation */
449 long long then = timeval_ms();
450 for (;;)
452 retval = mem_ap_read_atomic_u32(swjdp,
453 a8->armv7a_common.debug_base + CPUDBG_DSCR,
454 &dscr);
455 if (retval != ERROR_OK)
456 return retval;
457 if ((dscr & DSCR_INSTR_COMP) != 0)
458 break;
459 if (timeval_ms() > then + 1000)
461 LOG_ERROR("Timeout waiting for dpm prepare");
462 return ERROR_FAIL;
466 /* this "should never happen" ... */
467 if (dscr & DSCR_DTR_RX_FULL) {
468 LOG_ERROR("DSCR_DTR_RX_FULL, dscr 0x%08" PRIx32, dscr);
469 /* Clear DCCRX */
470 retval = cortex_a8_exec_opcode(
471 a8->armv7a_common.armv4_5_common.target,
472 ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
473 &dscr);
474 if (retval != ERROR_OK)
475 return retval;
478 return retval;
481 static int cortex_a8_dpm_finish(struct arm_dpm *dpm)
483 /* REVISIT what could be done here? */
484 return ERROR_OK;
487 static int cortex_a8_instr_write_data_dcc(struct arm_dpm *dpm,
488 uint32_t opcode, uint32_t data)
490 struct cortex_a8_common *a8 = dpm_to_a8(dpm);
491 int retval;
492 uint32_t dscr = DSCR_INSTR_COMP;
494 retval = cortex_a8_write_dcc(a8, data);
495 if (retval != ERROR_OK)
496 return retval;
498 return cortex_a8_exec_opcode(
499 a8->armv7a_common.armv4_5_common.target,
500 opcode,
501 &dscr);
504 static int cortex_a8_instr_write_data_r0(struct arm_dpm *dpm,
505 uint32_t opcode, uint32_t data)
507 struct cortex_a8_common *a8 = dpm_to_a8(dpm);
508 uint32_t dscr = DSCR_INSTR_COMP;
509 int retval;
511 retval = cortex_a8_write_dcc(a8, data);
512 if (retval != ERROR_OK)
513 return retval;
515 /* DCCRX to R0, "MCR p14, 0, R0, c0, c5, 0", 0xEE000E15 */
516 retval = cortex_a8_exec_opcode(
517 a8->armv7a_common.armv4_5_common.target,
518 ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
519 &dscr);
520 if (retval != ERROR_OK)
521 return retval;
523 /* then the opcode, taking data from R0 */
524 retval = cortex_a8_exec_opcode(
525 a8->armv7a_common.armv4_5_common.target,
526 opcode,
527 &dscr);
529 return retval;
532 static int cortex_a8_instr_cpsr_sync(struct arm_dpm *dpm)
534 struct target *target = dpm->arm->target;
535 uint32_t dscr = DSCR_INSTR_COMP;
537 /* "Prefetch flush" after modifying execution status in CPSR */
538 return cortex_a8_exec_opcode(target,
539 ARMV4_5_MCR(15, 0, 0, 7, 5, 4),
540 &dscr);
543 static int cortex_a8_instr_read_data_dcc(struct arm_dpm *dpm,
544 uint32_t opcode, uint32_t *data)
546 struct cortex_a8_common *a8 = dpm_to_a8(dpm);
547 int retval;
548 uint32_t dscr = DSCR_INSTR_COMP;
550 /* the opcode, writing data to DCC */
551 retval = cortex_a8_exec_opcode(
552 a8->armv7a_common.armv4_5_common.target,
553 opcode,
554 &dscr);
555 if (retval != ERROR_OK)
556 return retval;
558 return cortex_a8_read_dcc(a8, data, &dscr);
562 static int cortex_a8_instr_read_data_r0(struct arm_dpm *dpm,
563 uint32_t opcode, uint32_t *data)
565 struct cortex_a8_common *a8 = dpm_to_a8(dpm);
566 uint32_t dscr = DSCR_INSTR_COMP;
567 int retval;
569 /* the opcode, writing data to R0 */
570 retval = cortex_a8_exec_opcode(
571 a8->armv7a_common.armv4_5_common.target,
572 opcode,
573 &dscr);
574 if (retval != ERROR_OK)
575 return retval;
577 /* write R0 to DCC */
578 retval = cortex_a8_exec_opcode(
579 a8->armv7a_common.armv4_5_common.target,
580 ARMV4_5_MCR(14, 0, 0, 0, 5, 0),
581 &dscr);
582 if (retval != ERROR_OK)
583 return retval;
585 return cortex_a8_read_dcc(a8, data, &dscr);
588 static int cortex_a8_bpwp_enable(struct arm_dpm *dpm, unsigned index_t,
589 uint32_t addr, uint32_t control)
591 struct cortex_a8_common *a8 = dpm_to_a8(dpm);
592 uint32_t vr = a8->armv7a_common.debug_base;
593 uint32_t cr = a8->armv7a_common.debug_base;
594 int retval;
596 switch (index_t) {
597 case 0 ... 15: /* breakpoints */
598 vr += CPUDBG_BVR_BASE;
599 cr += CPUDBG_BCR_BASE;
600 break;
601 case 16 ... 31: /* watchpoints */
602 vr += CPUDBG_WVR_BASE;
603 cr += CPUDBG_WCR_BASE;
604 index_t -= 16;
605 break;
606 default:
607 return ERROR_FAIL;
609 vr += 4 * index_t;
610 cr += 4 * index_t;
612 LOG_DEBUG("A8: bpwp enable, vr %08x cr %08x",
613 (unsigned) vr, (unsigned) cr);
615 retval = cortex_a8_dap_write_memap_register_u32(dpm->arm->target,
616 vr, addr);
617 if (retval != ERROR_OK)
618 return retval;
619 retval = cortex_a8_dap_write_memap_register_u32(dpm->arm->target,
620 cr, control);
621 return retval;
624 static int cortex_a8_bpwp_disable(struct arm_dpm *dpm, unsigned index_t)
626 struct cortex_a8_common *a8 = dpm_to_a8(dpm);
627 uint32_t cr;
629 switch (index_t) {
630 case 0 ... 15:
631 cr = a8->armv7a_common.debug_base + CPUDBG_BCR_BASE;
632 break;
633 case 16 ... 31:
634 cr = a8->armv7a_common.debug_base + CPUDBG_WCR_BASE;
635 index_t -= 16;
636 break;
637 default:
638 return ERROR_FAIL;
640 cr += 4 * index_t;
642 LOG_DEBUG("A8: bpwp disable, cr %08x", (unsigned) cr);
644 /* clear control register */
645 return cortex_a8_dap_write_memap_register_u32(dpm->arm->target, cr, 0);
648 static int cortex_a8_dpm_setup(struct cortex_a8_common *a8, uint32_t didr)
650 struct arm_dpm *dpm = &a8->armv7a_common.dpm;
651 int retval;
653 dpm->arm = &a8->armv7a_common.armv4_5_common;
654 dpm->didr = didr;
656 dpm->prepare = cortex_a8_dpm_prepare;
657 dpm->finish = cortex_a8_dpm_finish;
659 dpm->instr_write_data_dcc = cortex_a8_instr_write_data_dcc;
660 dpm->instr_write_data_r0 = cortex_a8_instr_write_data_r0;
661 dpm->instr_cpsr_sync = cortex_a8_instr_cpsr_sync;
663 dpm->instr_read_data_dcc = cortex_a8_instr_read_data_dcc;
664 dpm->instr_read_data_r0 = cortex_a8_instr_read_data_r0;
666 dpm->bpwp_enable = cortex_a8_bpwp_enable;
667 dpm->bpwp_disable = cortex_a8_bpwp_disable;
669 retval = arm_dpm_setup(dpm);
670 if (retval == ERROR_OK)
671 retval = arm_dpm_initialize(dpm);
673 return retval;
678 * Cortex-A8 Run control
681 static int cortex_a8_poll(struct target *target)
683 int retval = ERROR_OK;
684 uint32_t dscr;
685 struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
686 struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
687 struct adiv5_dap *swjdp = &armv7a->dap;
688 enum target_state prev_target_state = target->state;
689 uint8_t saved_apsel = dap_ap_get_select(swjdp);
691 dap_ap_select(swjdp, swjdp_debugap);
692 retval = mem_ap_read_atomic_u32(swjdp,
693 armv7a->debug_base + CPUDBG_DSCR, &dscr);
694 if (retval != ERROR_OK)
696 dap_ap_select(swjdp, saved_apsel);
697 return retval;
699 cortex_a8->cpudbg_dscr = dscr;
701 if ((dscr & 0x3) == 0x3)
703 if (prev_target_state != TARGET_HALTED)
705 /* We have a halting debug event */
706 LOG_DEBUG("Target halted");
707 target->state = TARGET_HALTED;
708 if ((prev_target_state == TARGET_RUNNING)
709 || (prev_target_state == TARGET_RESET))
711 retval = cortex_a8_debug_entry(target);
712 if (retval != ERROR_OK)
713 return retval;
715 target_call_event_callbacks(target,
716 TARGET_EVENT_HALTED);
718 if (prev_target_state == TARGET_DEBUG_RUNNING)
720 LOG_DEBUG(" ");
722 retval = cortex_a8_debug_entry(target);
723 if (retval != ERROR_OK)
724 return retval;
726 target_call_event_callbacks(target,
727 TARGET_EVENT_DEBUG_HALTED);
731 else if ((dscr & 0x3) == 0x2)
733 target->state = TARGET_RUNNING;
735 else
737 LOG_DEBUG("Unknown target state dscr = 0x%08" PRIx32, dscr);
738 target->state = TARGET_UNKNOWN;
741 dap_ap_select(swjdp, saved_apsel);
743 return retval;
746 static int cortex_a8_halt(struct target *target)
748 int retval = ERROR_OK;
749 uint32_t dscr;
750 struct armv7a_common *armv7a = target_to_armv7a(target);
751 struct adiv5_dap *swjdp = &armv7a->dap;
752 uint8_t saved_apsel = dap_ap_get_select(swjdp);
753 dap_ap_select(swjdp, swjdp_debugap);
756 * Tell the core to be halted by writing DRCR with 0x1
757 * and then wait for the core to be halted.
759 retval = mem_ap_write_atomic_u32(swjdp,
760 armv7a->debug_base + CPUDBG_DRCR, 0x1);
761 if (retval != ERROR_OK)
762 goto out;
765 * enter halting debug mode
767 retval = mem_ap_read_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_DSCR, &dscr);
768 if (retval != ERROR_OK)
769 goto out;
771 retval = mem_ap_write_atomic_u32(swjdp,
772 armv7a->debug_base + CPUDBG_DSCR, dscr | DSCR_HALT_DBG_MODE);
773 if (retval != ERROR_OK)
774 goto out;
776 long long then = timeval_ms();
777 for (;;)
779 retval = mem_ap_read_atomic_u32(swjdp,
780 armv7a->debug_base + CPUDBG_DSCR, &dscr);
781 if (retval != ERROR_OK)
782 goto out;
783 if ((dscr & DSCR_CORE_HALTED) != 0)
785 break;
787 if (timeval_ms() > then + 1000)
789 LOG_ERROR("Timeout waiting for halt");
790 return ERROR_FAIL;
794 target->debug_reason = DBG_REASON_DBGRQ;
796 out:
797 dap_ap_select(swjdp, saved_apsel);
798 return retval;
801 static int cortex_a8_resume(struct target *target, int current,
802 uint32_t address, int handle_breakpoints, int debug_execution)
804 struct armv7a_common *armv7a = target_to_armv7a(target);
805 struct arm *armv4_5 = &armv7a->armv4_5_common;
806 struct adiv5_dap *swjdp = &armv7a->dap;
807 int retval;
809 // struct breakpoint *breakpoint = NULL;
810 uint32_t resume_pc, dscr;
812 uint8_t saved_apsel = dap_ap_get_select(swjdp);
813 dap_ap_select(swjdp, swjdp_debugap);
815 if (!debug_execution)
816 target_free_all_working_areas(target);
818 #if 0
819 if (debug_execution)
821 /* Disable interrupts */
822 /* We disable interrupts in the PRIMASK register instead of
823 * masking with C_MASKINTS,
824 * This is probably the same issue as Cortex-M3 Errata 377493:
825 * C_MASKINTS in parallel with disabled interrupts can cause
826 * local faults to not be taken. */
827 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_PRIMASK].value, 0, 32, 1);
828 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].dirty = 1;
829 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].valid = 1;
831 /* Make sure we are in Thumb mode */
832 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32,
833 buf_get_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32) | (1 << 24));
834 armv7m->core_cache->reg_list[ARMV7M_xPSR].dirty = 1;
835 armv7m->core_cache->reg_list[ARMV7M_xPSR].valid = 1;
837 #endif
839 /* current = 1: continue on current pc, otherwise continue at <address> */
840 resume_pc = buf_get_u32(armv4_5->pc->value, 0, 32);
841 if (!current)
842 resume_pc = address;
844 /* Make sure that the Armv7 gdb thumb fixups does not
845 * kill the return address
847 switch (armv4_5->core_state)
849 case ARM_STATE_ARM:
850 resume_pc &= 0xFFFFFFFC;
851 break;
852 case ARM_STATE_THUMB:
853 case ARM_STATE_THUMB_EE:
854 /* When the return address is loaded into PC
855 * bit 0 must be 1 to stay in Thumb state
857 resume_pc |= 0x1;
858 break;
859 case ARM_STATE_JAZELLE:
860 LOG_ERROR("How do I resume into Jazelle state??");
861 return ERROR_FAIL;
863 LOG_DEBUG("resume pc = 0x%08" PRIx32, resume_pc);
864 buf_set_u32(armv4_5->pc->value, 0, 32, resume_pc);
865 armv4_5->pc->dirty = 1;
866 armv4_5->pc->valid = 1;
868 retval = cortex_a8_restore_context(target, handle_breakpoints);
869 if (retval != ERROR_OK)
870 return retval;
872 #if 0
873 /* the front-end may request us not to handle breakpoints */
874 if (handle_breakpoints)
876 /* Single step past breakpoint at current address */
877 if ((breakpoint = breakpoint_find(target, resume_pc)))
879 LOG_DEBUG("unset breakpoint at 0x%8.8x", breakpoint->address);
880 cortex_m3_unset_breakpoint(target, breakpoint);
881 cortex_m3_single_step_core(target);
882 cortex_m3_set_breakpoint(target, breakpoint);
886 #endif
887 /* Restart core and wait for it to be started
888 * NOTE: this clears DSCR_ITR_EN and other bits.
890 * REVISIT: for single stepping, we probably want to
891 * disable IRQs by default, with optional override...
893 retval = mem_ap_write_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_DRCR, 0x2);
894 if (retval != ERROR_OK)
895 return retval;
897 long long then = timeval_ms();
898 for (;;)
900 retval = mem_ap_read_atomic_u32(swjdp,
901 armv7a->debug_base + CPUDBG_DSCR, &dscr);
902 if (retval != ERROR_OK)
903 return retval;
904 if ((dscr & DSCR_CORE_RESTARTED) != 0)
905 break;
906 if (timeval_ms() > then + 1000)
908 LOG_ERROR("Timeout waiting for resume");
909 return ERROR_FAIL;
913 target->debug_reason = DBG_REASON_NOTHALTED;
914 target->state = TARGET_RUNNING;
916 /* registers are now invalid */
917 register_cache_invalidate(armv4_5->core_cache);
919 if (!debug_execution)
921 target->state = TARGET_RUNNING;
922 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
923 LOG_DEBUG("target resumed at 0x%" PRIx32, resume_pc);
925 else
927 target->state = TARGET_DEBUG_RUNNING;
928 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
929 LOG_DEBUG("target debug resumed at 0x%" PRIx32, resume_pc);
932 dap_ap_select(swjdp, saved_apsel);
934 return ERROR_OK;
937 static int cortex_a8_debug_entry(struct target *target)
939 int i;
940 uint32_t regfile[16], cpsr, dscr;
941 int retval = ERROR_OK;
942 struct working_area *regfile_working_area = NULL;
943 struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
944 struct armv7a_common *armv7a = target_to_armv7a(target);
945 struct arm *armv4_5 = &armv7a->armv4_5_common;
946 struct adiv5_dap *swjdp = &armv7a->dap;
947 struct reg *reg;
949 LOG_DEBUG("dscr = 0x%08" PRIx32, cortex_a8->cpudbg_dscr);
951 /* REVISIT surely we should not re-read DSCR !! */
952 retval = mem_ap_read_atomic_u32(swjdp,
953 armv7a->debug_base + CPUDBG_DSCR, &dscr);
954 if (retval != ERROR_OK)
955 return retval;
957 /* REVISIT see A8 TRM 12.11.4 steps 2..3 -- make sure that any
958 * imprecise data aborts get discarded by issuing a Data
959 * Synchronization Barrier: ARMV4_5_MCR(15, 0, 0, 7, 10, 4).
962 /* Enable the ITR execution once we are in debug mode */
963 dscr |= DSCR_ITR_EN;
964 retval = mem_ap_write_atomic_u32(swjdp,
965 armv7a->debug_base + CPUDBG_DSCR, dscr);
966 if (retval != ERROR_OK)
967 return retval;
969 /* Examine debug reason */
970 arm_dpm_report_dscr(&armv7a->dpm, cortex_a8->cpudbg_dscr);
972 /* save address of instruction that triggered the watchpoint? */
973 if (target->debug_reason == DBG_REASON_WATCHPOINT) {
974 uint32_t wfar;
976 retval = mem_ap_read_atomic_u32(swjdp,
977 armv7a->debug_base + CPUDBG_WFAR,
978 &wfar);
979 if (retval != ERROR_OK)
980 return retval;
981 arm_dpm_report_wfar(&armv7a->dpm, wfar);
984 /* REVISIT fast_reg_read is never set ... */
986 /* Examine target state and mode */
987 if (cortex_a8->fast_reg_read)
988 target_alloc_working_area(target, 64, &regfile_working_area);
990 /* First load register acessible through core debug port*/
991 if (!regfile_working_area)
993 retval = arm_dpm_read_current_registers(&armv7a->dpm);
995 else
997 dap_ap_select(swjdp, swjdp_memoryap);
998 retval = cortex_a8_read_regs_through_mem(target,
999 regfile_working_area->address, regfile);
1000 dap_ap_select(swjdp, swjdp_memoryap);
1001 target_free_working_area(target, regfile_working_area);
1002 if (retval != ERROR_OK)
1004 return retval;
1007 /* read Current PSR */
1008 retval = cortex_a8_dap_read_coreregister_u32(target, &cpsr, 16);
1009 if (retval != ERROR_OK)
1010 return retval;
1011 dap_ap_select(swjdp, swjdp_debugap);
1012 LOG_DEBUG("cpsr: %8.8" PRIx32, cpsr);
1014 arm_set_cpsr(armv4_5, cpsr);
1016 /* update cache */
1017 for (i = 0; i <= ARM_PC; i++)
1019 reg = arm_reg_current(armv4_5, i);
1021 buf_set_u32(reg->value, 0, 32, regfile[i]);
1022 reg->valid = 1;
1023 reg->dirty = 0;
1026 /* Fixup PC Resume Address */
1027 if (cpsr & (1 << 5))
1029 // T bit set for Thumb or ThumbEE state
1030 regfile[ARM_PC] -= 4;
1032 else
1034 // ARM state
1035 regfile[ARM_PC] -= 8;
1038 reg = armv4_5->pc;
1039 buf_set_u32(reg->value, 0, 32, regfile[ARM_PC]);
1040 reg->dirty = reg->valid;
1043 #if 0
1044 /* TODO, Move this */
1045 uint32_t cp15_control_register, cp15_cacr, cp15_nacr;
1046 cortex_a8_read_cp(target, &cp15_control_register, 15, 0, 1, 0, 0);
1047 LOG_DEBUG("cp15_control_register = 0x%08x", cp15_control_register);
1049 cortex_a8_read_cp(target, &cp15_cacr, 15, 0, 1, 0, 2);
1050 LOG_DEBUG("cp15 Coprocessor Access Control Register = 0x%08x", cp15_cacr);
1052 cortex_a8_read_cp(target, &cp15_nacr, 15, 0, 1, 1, 2);
1053 LOG_DEBUG("cp15 Nonsecure Access Control Register = 0x%08x", cp15_nacr);
1054 #endif
1056 /* Are we in an exception handler */
1057 // armv4_5->exception_number = 0;
1058 if (armv7a->post_debug_entry)
1060 retval = armv7a->post_debug_entry(target);
1061 if (retval != ERROR_OK)
1062 return retval;
1065 return retval;
1068 static int cortex_a8_post_debug_entry(struct target *target)
1070 struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1071 struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
1072 int retval;
1074 /* MRC p15,0,<Rt>,c1,c0,0 ; Read CP15 System Control Register */
1075 retval = armv7a->armv4_5_common.mrc(target, 15,
1076 0, 0, /* op1, op2 */
1077 1, 0, /* CRn, CRm */
1078 &cortex_a8->cp15_control_reg);
1079 if (retval != ERROR_OK)
1080 return retval;
1081 LOG_DEBUG("cp15_control_reg: %8.8" PRIx32, cortex_a8->cp15_control_reg);
1083 if (armv7a->armv4_5_mmu.armv4_5_cache.ctype == -1)
1085 uint32_t cache_type_reg;
1087 /* MRC p15,0,<Rt>,c0,c0,1 ; Read CP15 Cache Type Register */
1088 retval = armv7a->armv4_5_common.mrc(target, 15,
1089 0, 1, /* op1, op2 */
1090 0, 0, /* CRn, CRm */
1091 &cache_type_reg);
1092 if (retval != ERROR_OK)
1093 return retval;
1094 LOG_DEBUG("cp15 cache type: %8.8x", (unsigned) cache_type_reg);
1096 /* FIXME the armv4_4 cache info DOES NOT APPLY to Cortex-A8 */
1097 armv4_5_identify_cache(cache_type_reg,
1098 &armv7a->armv4_5_mmu.armv4_5_cache);
1101 armv7a->armv4_5_mmu.mmu_enabled =
1102 (cortex_a8->cp15_control_reg & 0x1U) ? 1 : 0;
1103 armv7a->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled =
1104 (cortex_a8->cp15_control_reg & 0x4U) ? 1 : 0;
1105 armv7a->armv4_5_mmu.armv4_5_cache.i_cache_enabled =
1106 (cortex_a8->cp15_control_reg & 0x1000U) ? 1 : 0;
1108 return ERROR_OK;
1111 static int cortex_a8_step(struct target *target, int current, uint32_t address,
1112 int handle_breakpoints)
1114 struct armv7a_common *armv7a = target_to_armv7a(target);
1115 struct arm *armv4_5 = &armv7a->armv4_5_common;
1116 struct breakpoint *breakpoint = NULL;
1117 struct breakpoint stepbreakpoint;
1118 struct reg *r;
1119 int retval;
1121 if (target->state != TARGET_HALTED)
1123 LOG_WARNING("target not halted");
1124 return ERROR_TARGET_NOT_HALTED;
1127 /* current = 1: continue on current pc, otherwise continue at <address> */
1128 r = armv4_5->pc;
1129 if (!current)
1131 buf_set_u32(r->value, 0, 32, address);
1133 else
1135 address = buf_get_u32(r->value, 0, 32);
1138 /* The front-end may request us not to handle breakpoints.
1139 * But since Cortex-A8 uses breakpoint for single step,
1140 * we MUST handle breakpoints.
1142 handle_breakpoints = 1;
1143 if (handle_breakpoints) {
1144 breakpoint = breakpoint_find(target, address);
1145 if (breakpoint)
1146 cortex_a8_unset_breakpoint(target, breakpoint);
1149 /* Setup single step breakpoint */
1150 stepbreakpoint.address = address;
1151 stepbreakpoint.length = (armv4_5->core_state == ARM_STATE_THUMB)
1152 ? 2 : 4;
1153 stepbreakpoint.type = BKPT_HARD;
1154 stepbreakpoint.set = 0;
1156 /* Break on IVA mismatch */
1157 cortex_a8_set_breakpoint(target, &stepbreakpoint, 0x04);
1159 target->debug_reason = DBG_REASON_SINGLESTEP;
1161 retval = cortex_a8_resume(target, 1, address, 0, 0);
1162 if (retval != ERROR_OK)
1163 return retval;
1165 long long then = timeval_ms();
1166 while (target->state != TARGET_HALTED)
1168 retval = cortex_a8_poll(target);
1169 if (retval != ERROR_OK)
1170 return retval;
1171 if (timeval_ms() > then + 1000)
1173 LOG_ERROR("timeout waiting for target halt");
1174 return ERROR_FAIL;
1178 cortex_a8_unset_breakpoint(target, &stepbreakpoint);
1180 target->debug_reason = DBG_REASON_BREAKPOINT;
1182 if (breakpoint)
1183 cortex_a8_set_breakpoint(target, breakpoint, 0);
1185 if (target->state != TARGET_HALTED)
1186 LOG_DEBUG("target stepped");
1188 return ERROR_OK;
1191 static int cortex_a8_restore_context(struct target *target, bool bpwp)
1193 struct armv7a_common *armv7a = target_to_armv7a(target);
1195 LOG_DEBUG(" ");
1197 if (armv7a->pre_restore_context)
1198 armv7a->pre_restore_context(target);
1200 return arm_dpm_write_dirty_registers(&armv7a->dpm, bpwp);
1205 * Cortex-A8 Breakpoint and watchpoint functions
1208 /* Setup hardware Breakpoint Register Pair */
1209 static int cortex_a8_set_breakpoint(struct target *target,
1210 struct breakpoint *breakpoint, uint8_t matchmode)
1212 int retval;
1213 int brp_i=0;
1214 uint32_t control;
1215 uint8_t byte_addr_select = 0x0F;
1216 struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1217 struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
1218 struct cortex_a8_brp * brp_list = cortex_a8->brp_list;
1220 if (breakpoint->set)
1222 LOG_WARNING("breakpoint already set");
1223 return ERROR_OK;
1226 if (breakpoint->type == BKPT_HARD)
1228 while (brp_list[brp_i].used && (brp_i < cortex_a8->brp_num))
1229 brp_i++ ;
1230 if (brp_i >= cortex_a8->brp_num)
1232 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1233 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1235 breakpoint->set = brp_i + 1;
1236 if (breakpoint->length == 2)
1238 byte_addr_select = (3 << (breakpoint->address & 0x02));
1240 control = ((matchmode & 0x7) << 20)
1241 | (byte_addr_select << 5)
1242 | (3 << 1) | 1;
1243 brp_list[brp_i].used = 1;
1244 brp_list[brp_i].value = (breakpoint->address & 0xFFFFFFFC);
1245 brp_list[brp_i].control = control;
1246 retval = cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1247 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1248 brp_list[brp_i].value);
1249 if (retval != ERROR_OK)
1250 return retval;
1251 retval = cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1252 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1253 brp_list[brp_i].control);
1254 if (retval != ERROR_OK)
1255 return retval;
1256 LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1257 brp_list[brp_i].control,
1258 brp_list[brp_i].value);
1260 else if (breakpoint->type == BKPT_SOFT)
1262 uint8_t code[4];
1263 if (breakpoint->length == 2)
1265 buf_set_u32(code, 0, 32, ARMV5_T_BKPT(0x11));
1267 else
1269 buf_set_u32(code, 0, 32, ARMV5_BKPT(0x11));
1271 retval = target->type->read_memory(target,
1272 breakpoint->address & 0xFFFFFFFE,
1273 breakpoint->length, 1,
1274 breakpoint->orig_instr);
1275 if (retval != ERROR_OK)
1276 return retval;
1277 retval = target->type->write_memory(target,
1278 breakpoint->address & 0xFFFFFFFE,
1279 breakpoint->length, 1, code);
1280 if (retval != ERROR_OK)
1281 return retval;
1282 breakpoint->set = 0x11; /* Any nice value but 0 */
1285 return ERROR_OK;
1288 static int cortex_a8_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
1290 int retval;
1291 struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1292 struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
1293 struct cortex_a8_brp * brp_list = cortex_a8->brp_list;
1295 if (!breakpoint->set)
1297 LOG_WARNING("breakpoint not set");
1298 return ERROR_OK;
1301 if (breakpoint->type == BKPT_HARD)
1303 int brp_i = breakpoint->set - 1;
1304 if ((brp_i < 0) || (brp_i >= cortex_a8->brp_num))
1306 LOG_DEBUG("Invalid BRP number in breakpoint");
1307 return ERROR_OK;
1309 LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1310 brp_list[brp_i].control, brp_list[brp_i].value);
1311 brp_list[brp_i].used = 0;
1312 brp_list[brp_i].value = 0;
1313 brp_list[brp_i].control = 0;
1314 retval = cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1315 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1316 brp_list[brp_i].control);
1317 if (retval != ERROR_OK)
1318 return retval;
1319 retval = cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1320 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1321 brp_list[brp_i].value);
1322 if (retval != ERROR_OK)
1323 return retval;
1325 else
1327 /* restore original instruction (kept in target endianness) */
1328 if (breakpoint->length == 4)
1330 retval = target->type->write_memory(target,
1331 breakpoint->address & 0xFFFFFFFE,
1332 4, 1, breakpoint->orig_instr);
1333 if (retval != ERROR_OK)
1334 return retval;
1336 else
1338 retval = target->type->write_memory(target,
1339 breakpoint->address & 0xFFFFFFFE,
1340 2, 1, breakpoint->orig_instr);
1341 if (retval != ERROR_OK)
1342 return retval;
1345 breakpoint->set = 0;
1347 return ERROR_OK;
1350 static int cortex_a8_add_breakpoint(struct target *target,
1351 struct breakpoint *breakpoint)
1353 struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1355 if ((breakpoint->type == BKPT_HARD) && (cortex_a8->brp_num_available < 1))
1357 LOG_INFO("no hardware breakpoint available");
1358 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1361 if (breakpoint->type == BKPT_HARD)
1362 cortex_a8->brp_num_available--;
1364 return cortex_a8_set_breakpoint(target, breakpoint, 0x00); /* Exact match */
1367 static int cortex_a8_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
1369 struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1371 #if 0
1372 /* It is perfectly possible to remove breakpoints while the target is running */
1373 if (target->state != TARGET_HALTED)
1375 LOG_WARNING("target not halted");
1376 return ERROR_TARGET_NOT_HALTED;
1378 #endif
1380 if (breakpoint->set)
1382 cortex_a8_unset_breakpoint(target, breakpoint);
1383 if (breakpoint->type == BKPT_HARD)
1384 cortex_a8->brp_num_available++ ;
1388 return ERROR_OK;
1394 * Cortex-A8 Reset functions
1397 static int cortex_a8_assert_reset(struct target *target)
1399 struct armv7a_common *armv7a = target_to_armv7a(target);
1401 LOG_DEBUG(" ");
1403 /* FIXME when halt is requested, make it work somehow... */
1405 /* Issue some kind of warm reset. */
1406 if (target_has_event_action(target, TARGET_EVENT_RESET_ASSERT)) {
1407 target_handle_event(target, TARGET_EVENT_RESET_ASSERT);
1408 } else if (jtag_get_reset_config() & RESET_HAS_SRST) {
1409 /* REVISIT handle "pulls" cases, if there's
1410 * hardware that needs them to work.
1412 jtag_add_reset(0, 1);
1413 } else {
1414 LOG_ERROR("%s: how to reset?", target_name(target));
1415 return ERROR_FAIL;
1418 /* registers are now invalid */
1419 register_cache_invalidate(armv7a->armv4_5_common.core_cache);
1421 target->state = TARGET_RESET;
1423 return ERROR_OK;
1426 static int cortex_a8_deassert_reset(struct target *target)
1428 int retval;
1430 LOG_DEBUG(" ");
1432 /* be certain SRST is off */
1433 jtag_add_reset(0, 0);
1435 retval = cortex_a8_poll(target);
1436 if (retval != ERROR_OK)
1437 return retval;
1439 if (target->reset_halt) {
1440 if (target->state != TARGET_HALTED) {
1441 LOG_WARNING("%s: ran after reset and before halt ...",
1442 target_name(target));
1443 if ((retval = target_halt(target)) != ERROR_OK)
1444 return retval;
1448 return ERROR_OK;
1452 * Cortex-A8 Memory access
1454 * This is same Cortex M3 but we must also use the correct
1455 * ap number for every access.
1458 static int cortex_a8_read_phys_memory(struct target *target,
1459 uint32_t address, uint32_t size,
1460 uint32_t count, uint8_t *buffer)
1462 struct armv7a_common *armv7a = target_to_armv7a(target);
1463 struct adiv5_dap *swjdp = &armv7a->dap;
1464 int retval = ERROR_INVALID_ARGUMENTS;
1466 /* cortex_a8 handles unaligned memory access */
1468 // ??? dap_ap_select(swjdp, swjdp_memoryap);
1469 LOG_DEBUG("Reading memory at real address 0x%x; size %d; count %d", address, size, count);
1470 if (count && buffer) {
1471 switch (size) {
1472 case 4:
1473 retval = mem_ap_read_buf_u32(swjdp, buffer, 4 * count, address);
1474 break;
1475 case 2:
1476 retval = mem_ap_read_buf_u16(swjdp, buffer, 2 * count, address);
1477 break;
1478 case 1:
1479 retval = mem_ap_read_buf_u8(swjdp, buffer, count, address);
1480 break;
1484 return retval;
1487 static int cortex_a8_read_memory(struct target *target, uint32_t address,
1488 uint32_t size, uint32_t count, uint8_t *buffer)
1490 int enabled = 0;
1491 uint32_t virt, phys;
1492 int retval;
1494 /* cortex_a8 handles unaligned memory access */
1496 // ??? dap_ap_select(swjdp, swjdp_memoryap);
1497 LOG_DEBUG("Reading memory at address 0x%x; size %d; count %d", address, size, count);
1498 retval = cortex_a8_mmu(target, &enabled);
1499 if (retval != ERROR_OK)
1500 return retval;
1502 if(enabled)
1504 virt = address;
1505 retval = cortex_a8_virt2phys(target, virt, &phys);
1506 if (retval != ERROR_OK)
1507 return retval;
1509 LOG_DEBUG("Reading at virtual address. Translating v:0x%x to r:0x%x", virt, phys);
1510 address = phys;
1513 return cortex_a8_read_phys_memory(target, address, size, count, buffer);
1516 static int cortex_a8_write_phys_memory(struct target *target,
1517 uint32_t address, uint32_t size,
1518 uint32_t count, uint8_t *buffer)
1520 struct armv7a_common *armv7a = target_to_armv7a(target);
1521 struct adiv5_dap *swjdp = &armv7a->dap;
1522 int retval = ERROR_INVALID_ARGUMENTS;
1524 // ??? dap_ap_select(swjdp, swjdp_memoryap);
1526 LOG_DEBUG("Writing memory to real address 0x%x; size %d; count %d", address, size, count);
1527 if (count && buffer) {
1528 switch (size) {
1529 case 4:
1530 retval = mem_ap_write_buf_u32(swjdp, buffer, 4 * count, address);
1531 break;
1532 case 2:
1533 retval = mem_ap_write_buf_u16(swjdp, buffer, 2 * count, address);
1534 break;
1535 case 1:
1536 retval = mem_ap_write_buf_u8(swjdp, buffer, count, address);
1537 break;
1541 /* REVISIT this op is generic ARMv7-A/R stuff */
1542 if (retval == ERROR_OK && target->state == TARGET_HALTED)
1544 struct arm_dpm *dpm = armv7a->armv4_5_common.dpm;
1546 retval = dpm->prepare(dpm);
1547 if (retval != ERROR_OK)
1548 return retval;
1550 /* The Cache handling will NOT work with MMU active, the
1551 * wrong addresses will be invalidated!
1553 * For both ICache and DCache, walk all cache lines in the
1554 * address range. Cortex-A8 has fixed 64 byte line length.
1556 * REVISIT per ARMv7, these may trigger watchpoints ...
1559 /* invalidate I-Cache */
1560 if (armv7a->armv4_5_mmu.armv4_5_cache.i_cache_enabled)
1562 /* ICIMVAU - Invalidate Cache single entry
1563 * with MVA to PoU
1564 * MCR p15, 0, r0, c7, c5, 1
1566 for (uint32_t cacheline = address;
1567 cacheline < address + size * count;
1568 cacheline += 64) {
1569 retval = dpm->instr_write_data_r0(dpm,
1570 ARMV4_5_MCR(15, 0, 0, 7, 5, 1),
1571 cacheline);
1572 if (retval != ERROR_OK)
1573 return retval;
1577 /* invalidate D-Cache */
1578 if (armv7a->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled)
1580 /* DCIMVAC - Invalidate data Cache line
1581 * with MVA to PoC
1582 * MCR p15, 0, r0, c7, c6, 1
1584 for (uint32_t cacheline = address;
1585 cacheline < address + size * count;
1586 cacheline += 64) {
1587 retval = dpm->instr_write_data_r0(dpm,
1588 ARMV4_5_MCR(15, 0, 0, 7, 6, 1),
1589 cacheline);
1590 if (retval != ERROR_OK)
1591 return retval;
1595 /* (void) */ dpm->finish(dpm);
1598 return retval;
1601 static int cortex_a8_write_memory(struct target *target, uint32_t address,
1602 uint32_t size, uint32_t count, uint8_t *buffer)
1604 int enabled = 0;
1605 uint32_t virt, phys;
1606 int retval;
1608 // ??? dap_ap_select(swjdp, swjdp_memoryap);
1610 LOG_DEBUG("Writing memory to address 0x%x; size %d; count %d", address, size, count);
1611 retval = cortex_a8_mmu(target, &enabled);
1612 if (retval != ERROR_OK)
1613 return retval;
1614 if(enabled)
1616 virt = address;
1617 retval = cortex_a8_virt2phys(target, virt, &phys);
1618 if (retval != ERROR_OK)
1619 return retval;
1620 LOG_DEBUG("Writing to virtual address. Translating v:0x%x to r:0x%x", virt, phys);
1621 address = phys;
1624 return cortex_a8_write_phys_memory(target, address, size,
1625 count, buffer);
1628 static int cortex_a8_bulk_write_memory(struct target *target, uint32_t address,
1629 uint32_t count, uint8_t *buffer)
1631 return cortex_a8_write_memory(target, address, 4, count, buffer);
1635 static int cortex_a8_dcc_read(struct adiv5_dap *swjdp, uint8_t *value, uint8_t *ctrl)
1637 #if 0
1638 u16 dcrdr;
1640 mem_ap_read_buf_u16(swjdp, (uint8_t*)&dcrdr, 1, DCB_DCRDR);
1641 *ctrl = (uint8_t)dcrdr;
1642 *value = (uint8_t)(dcrdr >> 8);
1644 LOG_DEBUG("data 0x%x ctrl 0x%x", *value, *ctrl);
1646 /* write ack back to software dcc register
1647 * signify we have read data */
1648 if (dcrdr & (1 << 0))
1650 dcrdr = 0;
1651 mem_ap_write_buf_u16(swjdp, (uint8_t*)&dcrdr, 1, DCB_DCRDR);
1653 #endif
1654 return ERROR_OK;
1658 static int cortex_a8_handle_target_request(void *priv)
1660 struct target *target = priv;
1661 struct armv7a_common *armv7a = target_to_armv7a(target);
1662 struct adiv5_dap *swjdp = &armv7a->dap;
1663 int retval;
1665 if (!target_was_examined(target))
1666 return ERROR_OK;
1667 if (!target->dbg_msg_enabled)
1668 return ERROR_OK;
1670 if (target->state == TARGET_RUNNING)
1672 uint8_t data = 0;
1673 uint8_t ctrl = 0;
1675 retval = cortex_a8_dcc_read(swjdp, &data, &ctrl);
1676 if (retval != ERROR_OK)
1677 return retval;
1679 /* check if we have data */
1680 if (ctrl & (1 << 0))
1682 uint32_t request;
1684 /* we assume target is quick enough */
1685 request = data;
1686 retval = cortex_a8_dcc_read(swjdp, &data, &ctrl);
1687 if (retval != ERROR_OK)
1688 return retval;
1689 request |= (data << 8);
1690 retval = cortex_a8_dcc_read(swjdp, &data, &ctrl);
1691 if (retval != ERROR_OK)
1692 return retval;
1693 request |= (data << 16);
1694 retval = cortex_a8_dcc_read(swjdp, &data, &ctrl);
1695 if (retval != ERROR_OK)
1696 return retval;
1697 request |= (data << 24);
1698 target_request(target, request);
1702 return ERROR_OK;
1706 * Cortex-A8 target information and configuration
1709 static int cortex_a8_examine_first(struct target *target)
1711 struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1712 struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
1713 struct adiv5_dap *swjdp = &armv7a->dap;
1714 int i;
1715 int retval = ERROR_OK;
1716 uint32_t didr, ctypr, ttypr, cpuid;
1718 /* stop assuming this is an OMAP! */
1719 LOG_DEBUG("TODO - autoconfigure");
1721 /* Here we shall insert a proper ROM Table scan */
1722 armv7a->debug_base = OMAP3530_DEBUG_BASE;
1724 /* We do one extra read to ensure DAP is configured,
1725 * we call ahbap_debugport_init(swjdp) instead
1727 retval = ahbap_debugport_init(swjdp);
1728 if (retval != ERROR_OK)
1729 return retval;
1731 retval = mem_ap_read_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_CPUID, &cpuid);
1732 if (retval != ERROR_OK)
1733 return retval;
1735 if ((retval = mem_ap_read_atomic_u32(swjdp,
1736 armv7a->debug_base + CPUDBG_CPUID, &cpuid)) != ERROR_OK)
1738 LOG_DEBUG("Examine %s failed", "CPUID");
1739 return retval;
1742 if ((retval = mem_ap_read_atomic_u32(swjdp,
1743 armv7a->debug_base + CPUDBG_CTYPR, &ctypr)) != ERROR_OK)
1745 LOG_DEBUG("Examine %s failed", "CTYPR");
1746 return retval;
1749 if ((retval = mem_ap_read_atomic_u32(swjdp,
1750 armv7a->debug_base + CPUDBG_TTYPR, &ttypr)) != ERROR_OK)
1752 LOG_DEBUG("Examine %s failed", "TTYPR");
1753 return retval;
1756 if ((retval = mem_ap_read_atomic_u32(swjdp,
1757 armv7a->debug_base + CPUDBG_DIDR, &didr)) != ERROR_OK)
1759 LOG_DEBUG("Examine %s failed", "DIDR");
1760 return retval;
1763 LOG_DEBUG("cpuid = 0x%08" PRIx32, cpuid);
1764 LOG_DEBUG("ctypr = 0x%08" PRIx32, ctypr);
1765 LOG_DEBUG("ttypr = 0x%08" PRIx32, ttypr);
1766 LOG_DEBUG("didr = 0x%08" PRIx32, didr);
1768 armv7a->armv4_5_common.core_type = ARM_MODE_MON;
1769 retval = cortex_a8_dpm_setup(cortex_a8, didr);
1770 if (retval != ERROR_OK)
1771 return retval;
1773 /* Setup Breakpoint Register Pairs */
1774 cortex_a8->brp_num = ((didr >> 24) & 0x0F) + 1;
1775 cortex_a8->brp_num_context = ((didr >> 20) & 0x0F) + 1;
1776 cortex_a8->brp_num_available = cortex_a8->brp_num;
1777 cortex_a8->brp_list = calloc(cortex_a8->brp_num, sizeof(struct cortex_a8_brp));
1778 // cortex_a8->brb_enabled = ????;
1779 for (i = 0; i < cortex_a8->brp_num; i++)
1781 cortex_a8->brp_list[i].used = 0;
1782 if (i < (cortex_a8->brp_num-cortex_a8->brp_num_context))
1783 cortex_a8->brp_list[i].type = BRP_NORMAL;
1784 else
1785 cortex_a8->brp_list[i].type = BRP_CONTEXT;
1786 cortex_a8->brp_list[i].value = 0;
1787 cortex_a8->brp_list[i].control = 0;
1788 cortex_a8->brp_list[i].BRPn = i;
1791 LOG_DEBUG("Configured %i hw breakpoints", cortex_a8->brp_num);
1793 target_set_examined(target);
1794 return ERROR_OK;
1797 static int cortex_a8_examine(struct target *target)
1799 int retval = ERROR_OK;
1801 /* don't re-probe hardware after each reset */
1802 if (!target_was_examined(target))
1803 retval = cortex_a8_examine_first(target);
1805 /* Configure core debug access */
1806 if (retval == ERROR_OK)
1807 retval = cortex_a8_init_debug_access(target);
1809 return retval;
1813 * Cortex-A8 target creation and initialization
1816 static int cortex_a8_init_target(struct command_context *cmd_ctx,
1817 struct target *target)
1819 /* examine_first() does a bunch of this */
1820 return ERROR_OK;
1823 static int cortex_a8_init_arch_info(struct target *target,
1824 struct cortex_a8_common *cortex_a8, struct jtag_tap *tap)
1826 struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
1827 struct arm *armv4_5 = &armv7a->armv4_5_common;
1828 struct adiv5_dap *dap = &armv7a->dap;
1830 armv7a->armv4_5_common.dap = dap;
1832 /* Setup struct cortex_a8_common */
1833 cortex_a8->common_magic = CORTEX_A8_COMMON_MAGIC;
1834 armv4_5->arch_info = armv7a;
1836 /* prepare JTAG information for the new target */
1837 cortex_a8->jtag_info.tap = tap;
1838 cortex_a8->jtag_info.scann_size = 4;
1840 /* Leave (only) generic DAP stuff for debugport_init() */
1841 dap->jtag_info = &cortex_a8->jtag_info;
1842 dap->memaccess_tck = 80;
1844 /* Number of bits for tar autoincrement, impl. dep. at least 10 */
1845 dap->tar_autoincr_block = (1 << 10);
1847 cortex_a8->fast_reg_read = 0;
1849 /* Set default value */
1850 cortex_a8->current_address_mode = ARM_MODE_ANY;
1852 /* register arch-specific functions */
1853 armv7a->examine_debug_reason = NULL;
1855 armv7a->post_debug_entry = cortex_a8_post_debug_entry;
1857 armv7a->pre_restore_context = NULL;
1858 armv7a->armv4_5_mmu.armv4_5_cache.ctype = -1;
1859 armv7a->armv4_5_mmu.get_ttb = cortex_a8_get_ttb;
1860 armv7a->armv4_5_mmu.read_memory = cortex_a8_read_phys_memory;
1861 armv7a->armv4_5_mmu.write_memory = cortex_a8_write_phys_memory;
1862 armv7a->armv4_5_mmu.disable_mmu_caches = cortex_a8_disable_mmu_caches;
1863 armv7a->armv4_5_mmu.enable_mmu_caches = cortex_a8_enable_mmu_caches;
1864 armv7a->armv4_5_mmu.has_tiny_pages = 1;
1865 armv7a->armv4_5_mmu.mmu_enabled = 0;
1868 // arm7_9->handle_target_request = cortex_a8_handle_target_request;
1870 /* REVISIT v7a setup should be in a v7a-specific routine */
1871 arm_init_arch_info(target, armv4_5);
1872 armv7a->common_magic = ARMV7_COMMON_MAGIC;
1874 target_register_timer_callback(cortex_a8_handle_target_request, 1, 1, target);
1876 return ERROR_OK;
1879 static int cortex_a8_target_create(struct target *target, Jim_Interp *interp)
1881 struct cortex_a8_common *cortex_a8 = calloc(1, sizeof(struct cortex_a8_common));
1883 return cortex_a8_init_arch_info(target, cortex_a8, target->tap);
1886 static int cortex_a8_get_ttb(struct target *target, uint32_t *result)
1888 struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1889 struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
1890 uint32_t ttb = 0, retval = ERROR_OK;
1892 /* current_address_mode is set inside cortex_a8_virt2phys()
1893 where we can determine if address belongs to user or kernel */
1894 if(cortex_a8->current_address_mode == ARM_MODE_SVC)
1896 /* MRC p15,0,<Rt>,c1,c0,0 ; Read CP15 System Control Register */
1897 retval = armv7a->armv4_5_common.mrc(target, 15,
1898 0, 1, /* op1, op2 */
1899 2, 0, /* CRn, CRm */
1900 &ttb);
1901 if (retval != ERROR_OK)
1902 return retval;
1904 else if(cortex_a8->current_address_mode == ARM_MODE_USR)
1906 /* MRC p15,0,<Rt>,c1,c0,0 ; Read CP15 System Control Register */
1907 retval = armv7a->armv4_5_common.mrc(target, 15,
1908 0, 0, /* op1, op2 */
1909 2, 0, /* CRn, CRm */
1910 &ttb);
1911 if (retval != ERROR_OK)
1912 return retval;
1914 /* we don't know whose address is: user or kernel
1915 we assume that if we are in kernel mode then
1916 address belongs to kernel else if in user mode
1917 - to user */
1918 else if(armv7a->armv4_5_common.core_mode == ARM_MODE_SVC)
1920 /* MRC p15,0,<Rt>,c1,c0,0 ; Read CP15 System Control Register */
1921 retval = armv7a->armv4_5_common.mrc(target, 15,
1922 0, 1, /* op1, op2 */
1923 2, 0, /* CRn, CRm */
1924 &ttb);
1925 if (retval != ERROR_OK)
1926 return retval;
1928 else if(armv7a->armv4_5_common.core_mode == ARM_MODE_USR)
1930 /* MRC p15,0,<Rt>,c1,c0,0 ; Read CP15 System Control Register */
1931 retval = armv7a->armv4_5_common.mrc(target, 15,
1932 0, 0, /* op1, op2 */
1933 2, 0, /* CRn, CRm */
1934 &ttb);
1935 if (retval != ERROR_OK)
1936 return retval;
1938 /* finally we don't know whose ttb to use: user or kernel */
1939 else
1940 LOG_ERROR("Don't know how to get ttb for current mode!!!");
1942 ttb &= 0xffffc000;
1944 *result = ttb;
1946 return ERROR_OK;
1949 static int cortex_a8_disable_mmu_caches(struct target *target, int mmu,
1950 int d_u_cache, int i_cache)
1952 struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1953 struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
1954 uint32_t cp15_control;
1955 int retval;
1957 /* read cp15 control register */
1958 retval = armv7a->armv4_5_common.mrc(target, 15,
1959 0, 0, /* op1, op2 */
1960 1, 0, /* CRn, CRm */
1961 &cp15_control);
1962 if (retval != ERROR_OK)
1963 return retval;
1966 if (mmu)
1967 cp15_control &= ~0x1U;
1969 if (d_u_cache)
1970 cp15_control &= ~0x4U;
1972 if (i_cache)
1973 cp15_control &= ~0x1000U;
1975 retval = armv7a->armv4_5_common.mcr(target, 15,
1976 0, 0, /* op1, op2 */
1977 1, 0, /* CRn, CRm */
1978 cp15_control);
1979 return retval;
1982 static int cortex_a8_enable_mmu_caches(struct target *target, int mmu,
1983 int d_u_cache, int i_cache)
1985 struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1986 struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
1987 uint32_t cp15_control;
1988 int retval;
1990 /* read cp15 control register */
1991 retval = armv7a->armv4_5_common.mrc(target, 15,
1992 0, 0, /* op1, op2 */
1993 1, 0, /* CRn, CRm */
1994 &cp15_control);
1995 if (retval != ERROR_OK)
1996 return retval;
1998 if (mmu)
1999 cp15_control |= 0x1U;
2001 if (d_u_cache)
2002 cp15_control |= 0x4U;
2004 if (i_cache)
2005 cp15_control |= 0x1000U;
2007 retval = armv7a->armv4_5_common.mcr(target, 15,
2008 0, 0, /* op1, op2 */
2009 1, 0, /* CRn, CRm */
2010 cp15_control);
2011 return retval;
2015 static int cortex_a8_mmu(struct target *target, int *enabled)
2017 if (target->state != TARGET_HALTED) {
2018 LOG_ERROR("%s: target not halted", __func__);
2019 return ERROR_TARGET_INVALID;
2022 *enabled = target_to_cortex_a8(target)->armv7a_common.armv4_5_mmu.mmu_enabled;
2023 return ERROR_OK;
2026 static int cortex_a8_virt2phys(struct target *target,
2027 uint32_t virt, uint32_t *phys)
2029 uint32_t cb;
2030 struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
2031 // struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
2032 struct armv7a_common *armv7a = target_to_armv7a(target);
2034 /* We assume that virtual address is separated
2035 between user and kernel in Linux style:
2036 0x00000000-0xbfffffff - User space
2037 0xc0000000-0xffffffff - Kernel space */
2038 if( virt < 0xc0000000 ) /* Linux user space */
2039 cortex_a8->current_address_mode = ARM_MODE_USR;
2040 else /* Linux kernel */
2041 cortex_a8->current_address_mode = ARM_MODE_SVC;
2042 uint32_t ret;
2043 int retval = armv4_5_mmu_translate_va(target,
2044 &armv7a->armv4_5_mmu, virt, &cb, &ret);
2045 if (retval != ERROR_OK)
2046 return retval;
2047 /* Reset the flag. We don't want someone else to use it by error */
2048 cortex_a8->current_address_mode = ARM_MODE_ANY;
2050 *phys = ret;
2051 return ERROR_OK;
2054 COMMAND_HANDLER(cortex_a8_handle_cache_info_command)
2056 struct target *target = get_current_target(CMD_CTX);
2057 struct armv7a_common *armv7a = target_to_armv7a(target);
2059 return armv4_5_handle_cache_info_command(CMD_CTX,
2060 &armv7a->armv4_5_mmu.armv4_5_cache);
2064 COMMAND_HANDLER(cortex_a8_handle_dbginit_command)
2066 struct target *target = get_current_target(CMD_CTX);
2067 if (!target_was_examined(target))
2069 LOG_ERROR("target not examined yet");
2070 return ERROR_FAIL;
2073 return cortex_a8_init_debug_access(target);
2076 static const struct command_registration cortex_a8_exec_command_handlers[] = {
2078 .name = "cache_info",
2079 .handler = cortex_a8_handle_cache_info_command,
2080 .mode = COMMAND_EXEC,
2081 .help = "display information about target caches",
2084 .name = "dbginit",
2085 .handler = cortex_a8_handle_dbginit_command,
2086 .mode = COMMAND_EXEC,
2087 .help = "Initialize core debug",
2089 COMMAND_REGISTRATION_DONE
2091 static const struct command_registration cortex_a8_command_handlers[] = {
2093 .chain = arm_command_handlers,
2096 .chain = armv7a_command_handlers,
2099 .name = "cortex_a8",
2100 .mode = COMMAND_ANY,
2101 .help = "Cortex-A8 command group",
2102 .chain = cortex_a8_exec_command_handlers,
2104 COMMAND_REGISTRATION_DONE
2107 struct target_type cortexa8_target = {
2108 .name = "cortex_a8",
2110 .poll = cortex_a8_poll,
2111 .arch_state = armv7a_arch_state,
2113 .target_request_data = NULL,
2115 .halt = cortex_a8_halt,
2116 .resume = cortex_a8_resume,
2117 .step = cortex_a8_step,
2119 .assert_reset = cortex_a8_assert_reset,
2120 .deassert_reset = cortex_a8_deassert_reset,
2121 .soft_reset_halt = NULL,
2123 /* REVISIT allow exporting VFP3 registers ... */
2124 .get_gdb_reg_list = arm_get_gdb_reg_list,
2126 .read_memory = cortex_a8_read_memory,
2127 .write_memory = cortex_a8_write_memory,
2128 .bulk_write_memory = cortex_a8_bulk_write_memory,
2130 .checksum_memory = arm_checksum_memory,
2131 .blank_check_memory = arm_blank_check_memory,
2133 .run_algorithm = armv4_5_run_algorithm,
2135 .add_breakpoint = cortex_a8_add_breakpoint,
2136 .remove_breakpoint = cortex_a8_remove_breakpoint,
2137 .add_watchpoint = NULL,
2138 .remove_watchpoint = NULL,
2140 .commands = cortex_a8_command_handlers,
2141 .target_create = cortex_a8_target_create,
2142 .init_target = cortex_a8_init_target,
2143 .examine = cortex_a8_examine,
2145 .read_phys_memory = cortex_a8_read_phys_memory,
2146 .write_phys_memory = cortex_a8_write_phys_memory,
2147 .mmu = cortex_a8_mmu,
2148 .virt2phys = cortex_a8_virt2phys,