helper/jim-eventloop: review scope of symbols
[openocd/dnglaze.git] / src / target / arm7_9_common.c
blobabe0c2f13790b2bf4cd51867641c509e8c8ab541
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2007-2009 Øyvind Harboe *
6 * oyvind.harboe@zylin.com *
7 * *
8 * Copyright (C) 2008 by Spencer Oliver *
9 * spen@spen-soft.co.uk *
10 * *
11 * Copyright (C) 2008 by Hongtao Zheng *
12 * hontor@126.com *
13 * *
14 * Copyright (C) 2009 by David Brownell *
15 * *
16 * This program is free software; you can redistribute it and/or modify *
17 * it under the terms of the GNU General Public License as published by *
18 * the Free Software Foundation; either version 2 of the License, or *
19 * (at your option) any later version. *
20 * *
21 * This program is distributed in the hope that it will be useful, *
22 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
23 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
24 * GNU General Public License for more details. *
25 * *
26 * You should have received a copy of the GNU General Public License *
27 * along with this program; if not, write to the *
28 * Free Software Foundation, Inc., *
29 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
30 ***************************************************************************/
31 #ifdef HAVE_CONFIG_H
32 #include "config.h"
33 #endif
35 #include "breakpoints.h"
36 #include "embeddedice.h"
37 #include "target_request.h"
38 #include "etm.h"
39 #include <helper/time_support.h>
40 #include "arm_simulator.h"
41 #include "arm_semihosting.h"
42 #include "algorithm.h"
43 #include "register.h"
44 #include "armv4_5.h"
47 /**
48 * @file
49 * Hold common code supporting the ARM7 and ARM9 core generations.
51 * While the ARM core implementations evolved substantially during these
52 * two generations, they look quite similar from the JTAG perspective.
53 * Both have similar debug facilities, based on the same two scan chains
54 * providing access to the core and to an EmbeddedICE module. Both can
55 * support similar ETM and ETB modules, for tracing. And both expose
56 * what could be viewed as "ARM Classic", with multiple processor modes,
57 * shadowed registers, and support for the Thumb instruction set.
59 * Processor differences include things like presence or absence of MMU
60 * and cache, pipeline sizes, use of a modified Harvard Architecure
61 * (with separate instruction and data busses from the CPU), support
62 * for cpu clock gating during idle, and more.
65 static int arm7_9_debug_entry(struct target *target);
67 /**
68 * Clear watchpoints for an ARM7/9 target.
70 * @param arm7_9 Pointer to the common struct for an ARM7/9 target
71 * @return JTAG error status after executing queue
73 static int arm7_9_clear_watchpoints(struct arm7_9_common *arm7_9)
75 LOG_DEBUG("-");
76 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
77 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
78 arm7_9->sw_breakpoint_count = 0;
79 arm7_9->sw_breakpoints_added = 0;
80 arm7_9->wp0_used = 0;
81 arm7_9->wp1_used = arm7_9->wp1_used_default;
82 arm7_9->wp_available = arm7_9->wp_available_max;
84 return jtag_execute_queue();
87 /**
88 * Assign a watchpoint to one of the two available hardware comparators in an
89 * ARM7 or ARM9 target.
91 * @param arm7_9 Pointer to the common struct for an ARM7/9 target
92 * @param breakpoint Pointer to the breakpoint to be used as a watchpoint
94 static void arm7_9_assign_wp(struct arm7_9_common *arm7_9, struct breakpoint *breakpoint)
96 if (!arm7_9->wp0_used)
98 arm7_9->wp0_used = 1;
99 breakpoint->set = 1;
100 arm7_9->wp_available--;
102 else if (!arm7_9->wp1_used)
104 arm7_9->wp1_used = 1;
105 breakpoint->set = 2;
106 arm7_9->wp_available--;
108 else
110 LOG_ERROR("BUG: no hardware comparator available");
112 LOG_DEBUG("BPID: %d (0x%08" PRIx32 ") using hw wp: %d",
113 breakpoint->unique_id,
114 breakpoint->address,
115 breakpoint->set );
119 * Setup an ARM7/9 target's embedded ICE registers for software breakpoints.
121 * @param arm7_9 Pointer to common struct for ARM7/9 targets
122 * @return Error codes if there is a problem finding a watchpoint or the result
123 * of executing the JTAG queue
125 static int arm7_9_set_software_breakpoints(struct arm7_9_common *arm7_9)
127 if (arm7_9->sw_breakpoints_added)
129 return ERROR_OK;
131 if (arm7_9->wp_available < 1)
133 LOG_WARNING("can't enable sw breakpoints with no watchpoint unit available");
134 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
136 arm7_9->wp_available--;
138 /* pick a breakpoint unit */
139 if (!arm7_9->wp0_used)
141 arm7_9->sw_breakpoints_added = 1;
142 arm7_9->wp0_used = 3;
143 } else if (!arm7_9->wp1_used)
145 arm7_9->sw_breakpoints_added = 2;
146 arm7_9->wp1_used = 3;
148 else
150 LOG_ERROR("BUG: both watchpoints used, but wp_available >= 1");
151 return ERROR_FAIL;
154 if (arm7_9->sw_breakpoints_added == 1)
156 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_VALUE], arm7_9->arm_bkpt);
157 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0x0);
158 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffffu);
159 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
160 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
162 else if (arm7_9->sw_breakpoints_added == 2)
164 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_VALUE], arm7_9->arm_bkpt);
165 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0x0);
166 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], 0xffffffffu);
167 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
168 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
170 else
172 LOG_ERROR("BUG: both watchpoints used, but wp_available >= 1");
173 return ERROR_FAIL;
175 LOG_DEBUG("SW BP using hw wp: %d",
176 arm7_9->sw_breakpoints_added );
178 return jtag_execute_queue();
182 * Setup the common pieces for an ARM7/9 target after reset or on startup.
184 * @param target Pointer to an ARM7/9 target to setup
185 * @return Result of clearing the watchpoints on the target
187 static int arm7_9_setup(struct target *target)
189 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
191 return arm7_9_clear_watchpoints(arm7_9);
195 * Set either a hardware or software breakpoint on an ARM7/9 target. The
196 * breakpoint is set up even if it is already set. Some actions, e.g. reset,
197 * might have erased the values in Embedded ICE.
199 * @param target Pointer to the target device to set the breakpoints on
200 * @param breakpoint Pointer to the breakpoint to be set
201 * @return For hardware breakpoints, this is the result of executing the JTAG
202 * queue. For software breakpoints, this will be the status of the
203 * required memory reads and writes
205 static int arm7_9_set_breakpoint(struct target *target, struct breakpoint *breakpoint)
207 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
208 int retval = ERROR_OK;
210 LOG_DEBUG("BPID: %d, Address: 0x%08" PRIx32 ", Type: %d" ,
211 breakpoint->unique_id,
212 breakpoint->address,
213 breakpoint->type);
215 if (target->state != TARGET_HALTED)
217 LOG_WARNING("target not halted");
218 return ERROR_TARGET_NOT_HALTED;
221 if (breakpoint->type == BKPT_HARD)
223 /* either an ARM (4 byte) or Thumb (2 byte) breakpoint */
224 uint32_t mask = (breakpoint->length == 4) ? 0x3u : 0x1u;
226 /* reassign a hw breakpoint */
227 if (breakpoint->set == 0)
229 arm7_9_assign_wp(arm7_9, breakpoint);
232 if (breakpoint->set == 1)
234 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_VALUE], breakpoint->address);
235 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], mask);
236 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffffu);
237 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
238 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
240 else if (breakpoint->set == 2)
242 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE], breakpoint->address);
243 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], mask);
244 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0xffffffffu);
245 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
246 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
248 else
250 LOG_ERROR("BUG: no hardware comparator available");
251 return ERROR_OK;
254 retval = jtag_execute_queue();
256 else if (breakpoint->type == BKPT_SOFT)
258 /* did we already set this breakpoint? */
259 if (breakpoint->set)
260 return ERROR_OK;
262 if (breakpoint->length == 4)
264 uint32_t verify = 0xffffffff;
265 /* keep the original instruction in target endianness */
266 if ((retval = target_read_memory(target, breakpoint->address, 4, 1, breakpoint->orig_instr)) != ERROR_OK)
268 return retval;
270 /* write the breakpoint instruction in target endianness (arm7_9->arm_bkpt is host endian) */
271 if ((retval = target_write_u32(target, breakpoint->address, arm7_9->arm_bkpt)) != ERROR_OK)
273 return retval;
276 if ((retval = target_read_u32(target, breakpoint->address, &verify)) != ERROR_OK)
278 return retval;
280 if (verify != arm7_9->arm_bkpt)
282 LOG_ERROR("Unable to set 32 bit software breakpoint at address %08" PRIx32 " - check that memory is read/writable", breakpoint->address);
283 return ERROR_OK;
286 else
288 uint16_t verify = 0xffff;
289 /* keep the original instruction in target endianness */
290 if ((retval = target_read_memory(target, breakpoint->address, 2, 1, breakpoint->orig_instr)) != ERROR_OK)
292 return retval;
294 /* write the breakpoint instruction in target endianness (arm7_9->thumb_bkpt is host endian) */
295 if ((retval = target_write_u16(target, breakpoint->address, arm7_9->thumb_bkpt)) != ERROR_OK)
297 return retval;
300 if ((retval = target_read_u16(target, breakpoint->address, &verify)) != ERROR_OK)
302 return retval;
304 if (verify != arm7_9->thumb_bkpt)
306 LOG_ERROR("Unable to set thumb software breakpoint at address %08" PRIx32 " - check that memory is read/writable", breakpoint->address);
307 return ERROR_OK;
311 if ((retval = arm7_9_set_software_breakpoints(arm7_9)) != ERROR_OK)
312 return retval;
314 arm7_9->sw_breakpoint_count++;
316 breakpoint->set = 1;
319 return retval;
323 * Unsets an existing breakpoint on an ARM7/9 target. If it is a hardware
324 * breakpoint, the watchpoint used will be freed and the Embedded ICE registers
325 * will be updated. Otherwise, the software breakpoint will be restored to its
326 * original instruction if it hasn't already been modified.
328 * @param target Pointer to ARM7/9 target to unset the breakpoint from
329 * @param breakpoint Pointer to breakpoint to be unset
330 * @return For hardware breakpoints, this is the result of executing the JTAG
331 * queue. For software breakpoints, this will be the status of the
332 * required memory reads and writes
334 static int arm7_9_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
336 int retval = ERROR_OK;
337 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
339 LOG_DEBUG("BPID: %d, Address: 0x%08" PRIx32,
340 breakpoint->unique_id,
341 breakpoint->address );
343 if (!breakpoint->set)
345 LOG_WARNING("breakpoint not set");
346 return ERROR_OK;
349 if (breakpoint->type == BKPT_HARD)
351 LOG_DEBUG("BPID: %d Releasing hw wp: %d",
352 breakpoint->unique_id,
353 breakpoint->set );
354 if (breakpoint->set == 1)
356 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
357 arm7_9->wp0_used = 0;
358 arm7_9->wp_available++;
360 else if (breakpoint->set == 2)
362 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
363 arm7_9->wp1_used = 0;
364 arm7_9->wp_available++;
366 retval = jtag_execute_queue();
367 breakpoint->set = 0;
369 else
371 /* restore original instruction (kept in target endianness) */
372 if (breakpoint->length == 4)
374 uint32_t current_instr;
375 /* check that user program as not modified breakpoint instruction */
376 if ((retval = target_read_memory(target, breakpoint->address, 4, 1, (uint8_t*)&current_instr)) != ERROR_OK)
378 return retval;
380 current_instr = target_buffer_get_u32(target, (uint8_t *)&current_instr);
381 if (current_instr == arm7_9->arm_bkpt)
382 if ((retval = target_write_memory(target, breakpoint->address, 4, 1, breakpoint->orig_instr)) != ERROR_OK)
384 return retval;
387 else
389 uint16_t current_instr;
390 /* check that user program as not modified breakpoint instruction */
391 if ((retval = target_read_memory(target, breakpoint->address, 2, 1, (uint8_t*)&current_instr)) != ERROR_OK)
393 return retval;
395 if (current_instr == arm7_9->thumb_bkpt)
396 if ((retval = target_write_memory(target, breakpoint->address, 2, 1, breakpoint->orig_instr)) != ERROR_OK)
398 return retval;
402 if (--arm7_9->sw_breakpoint_count==0)
404 /* We have removed the last sw breakpoint, clear the hw breakpoint we used to implement it */
405 if (arm7_9->sw_breakpoints_added == 1)
407 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0);
409 else if (arm7_9->sw_breakpoints_added == 2)
411 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0);
415 breakpoint->set = 0;
418 return retval;
422 * Add a breakpoint to an ARM7/9 target. This makes sure that there are no
423 * dangling breakpoints and that the desired breakpoint can be added.
425 * @param target Pointer to the target ARM7/9 device to add a breakpoint to
426 * @param breakpoint Pointer to the breakpoint to be added
427 * @return An error status if there is a problem adding the breakpoint or the
428 * result of setting the breakpoint
430 int arm7_9_add_breakpoint(struct target *target, struct breakpoint *breakpoint)
432 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
434 if (arm7_9->breakpoint_count == 0)
436 /* make sure we don't have any dangling breakpoints. This is vital upon
437 * GDB connect/disconnect
439 arm7_9_clear_watchpoints(arm7_9);
442 if ((breakpoint->type == BKPT_HARD) && (arm7_9->wp_available < 1))
444 LOG_INFO("no watchpoint unit available for hardware breakpoint");
445 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
448 if ((breakpoint->length != 2) && (breakpoint->length != 4))
450 LOG_INFO("only breakpoints of two (Thumb) or four (ARM) bytes length supported");
451 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
454 if (breakpoint->type == BKPT_HARD)
456 arm7_9_assign_wp(arm7_9, breakpoint);
459 arm7_9->breakpoint_count++;
461 return arm7_9_set_breakpoint(target, breakpoint);
465 * Removes a breakpoint from an ARM7/9 target. This will make sure there are no
466 * dangling breakpoints and updates available watchpoints if it is a hardware
467 * breakpoint.
469 * @param target Pointer to the target to have a breakpoint removed
470 * @param breakpoint Pointer to the breakpoint to be removed
471 * @return Error status if there was a problem unsetting the breakpoint or the
472 * watchpoints could not be cleared
474 int arm7_9_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
476 int retval = ERROR_OK;
477 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
479 if ((retval = arm7_9_unset_breakpoint(target, breakpoint)) != ERROR_OK)
481 return retval;
484 if (breakpoint->type == BKPT_HARD)
485 arm7_9->wp_available++;
487 arm7_9->breakpoint_count--;
488 if (arm7_9->breakpoint_count == 0)
490 /* make sure we don't have any dangling breakpoints */
491 if ((retval = arm7_9_clear_watchpoints(arm7_9)) != ERROR_OK)
493 return retval;
497 return ERROR_OK;
501 * Sets a watchpoint for an ARM7/9 target in one of the watchpoint units. It is
502 * considered a bug to call this function when there are no available watchpoint
503 * units.
505 * @param target Pointer to an ARM7/9 target to set a watchpoint on
506 * @param watchpoint Pointer to the watchpoint to be set
507 * @return Error status if watchpoint set fails or the result of executing the
508 * JTAG queue
510 static int arm7_9_set_watchpoint(struct target *target, struct watchpoint *watchpoint)
512 int retval = ERROR_OK;
513 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
514 int rw_mask = 1;
515 uint32_t mask;
517 mask = watchpoint->length - 1;
519 if (target->state != TARGET_HALTED)
521 LOG_WARNING("target not halted");
522 return ERROR_TARGET_NOT_HALTED;
525 if (watchpoint->rw == WPT_ACCESS)
526 rw_mask = 0;
527 else
528 rw_mask = 1;
530 if (!arm7_9->wp0_used)
532 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_VALUE], watchpoint->address);
533 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], mask);
534 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], watchpoint->mask);
535 if (watchpoint->mask != 0xffffffffu)
536 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_VALUE], watchpoint->value);
537 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], 0xff & ~EICE_W_CTRL_nOPC & ~rw_mask);
538 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE | EICE_W_CTRL_nOPC | (watchpoint->rw & 1));
540 if ((retval = jtag_execute_queue()) != ERROR_OK)
542 return retval;
544 watchpoint->set = 1;
545 arm7_9->wp0_used = 2;
547 else if (!arm7_9->wp1_used)
549 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE], watchpoint->address);
550 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], mask);
551 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], watchpoint->mask);
552 if (watchpoint->mask != 0xffffffffu)
553 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_VALUE], watchpoint->value);
554 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], 0xff & ~EICE_W_CTRL_nOPC & ~rw_mask);
555 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], EICE_W_CTRL_ENABLE | EICE_W_CTRL_nOPC | (watchpoint->rw & 1));
557 if ((retval = jtag_execute_queue()) != ERROR_OK)
559 return retval;
561 watchpoint->set = 2;
562 arm7_9->wp1_used = 2;
564 else
566 LOG_ERROR("BUG: no hardware comparator available");
567 return ERROR_OK;
570 return ERROR_OK;
574 * Unset an existing watchpoint and clear the used watchpoint unit.
576 * @param target Pointer to the target to have the watchpoint removed
577 * @param watchpoint Pointer to the watchpoint to be removed
578 * @return Error status while trying to unset the watchpoint or the result of
579 * executing the JTAG queue
581 static int arm7_9_unset_watchpoint(struct target *target, struct watchpoint *watchpoint)
583 int retval = ERROR_OK;
584 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
586 if (target->state != TARGET_HALTED)
588 LOG_WARNING("target not halted");
589 return ERROR_TARGET_NOT_HALTED;
592 if (!watchpoint->set)
594 LOG_WARNING("breakpoint not set");
595 return ERROR_OK;
598 if (watchpoint->set == 1)
600 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
601 if ((retval = jtag_execute_queue()) != ERROR_OK)
603 return retval;
605 arm7_9->wp0_used = 0;
607 else if (watchpoint->set == 2)
609 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
610 if ((retval = jtag_execute_queue()) != ERROR_OK)
612 return retval;
614 arm7_9->wp1_used = 0;
616 watchpoint->set = 0;
618 return ERROR_OK;
622 * Add a watchpoint to an ARM7/9 target. If there are no watchpoint units
623 * available, an error response is returned.
625 * @param target Pointer to the ARM7/9 target to add a watchpoint to
626 * @param watchpoint Pointer to the watchpoint to be added
627 * @return Error status while trying to add the watchpoint
629 int arm7_9_add_watchpoint(struct target *target, struct watchpoint *watchpoint)
631 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
633 if (arm7_9->wp_available < 1)
635 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
638 if ((watchpoint->length != 1) && (watchpoint->length != 2) && (watchpoint->length != 4))
640 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
643 arm7_9->wp_available--;
645 return ERROR_OK;
649 * Remove a watchpoint from an ARM7/9 target. The watchpoint will be unset and
650 * the used watchpoint unit will be reopened.
652 * @param target Pointer to the target to remove a watchpoint from
653 * @param watchpoint Pointer to the watchpoint to be removed
654 * @return Result of trying to unset the watchpoint
656 int arm7_9_remove_watchpoint(struct target *target, struct watchpoint *watchpoint)
658 int retval = ERROR_OK;
659 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
661 if (watchpoint->set)
663 if ((retval = arm7_9_unset_watchpoint(target, watchpoint)) != ERROR_OK)
665 return retval;
669 arm7_9->wp_available++;
671 return ERROR_OK;
675 * Restarts the target by sending a RESTART instruction and moving the JTAG
676 * state to IDLE. This includes a timeout waiting for DBGACK and SYSCOMP to be
677 * asserted by the processor.
679 * @param target Pointer to target to issue commands to
680 * @return Error status if there is a timeout or a problem while executing the
681 * JTAG queue
683 int arm7_9_execute_sys_speed(struct target *target)
685 int retval;
686 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
687 struct arm_jtag *jtag_info = &arm7_9->jtag_info;
688 struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
690 /* set RESTART instruction */
691 if (arm7_9->need_bypass_before_restart) {
692 arm7_9->need_bypass_before_restart = 0;
693 arm_jtag_set_instr(jtag_info, 0xf, NULL, TAP_IDLE);
695 arm_jtag_set_instr(jtag_info, 0x4, NULL, TAP_IDLE);
697 long long then = timeval_ms();
698 int timeout;
699 while (!(timeout = ((timeval_ms()-then) > 1000)))
701 /* read debug status register */
702 embeddedice_read_reg(dbg_stat);
703 if ((retval = jtag_execute_queue()) != ERROR_OK)
704 return retval;
705 if ((buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_DBGACK, 1))
706 && (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_SYSCOMP, 1)))
707 break;
708 if (debug_level >= 3)
710 alive_sleep(100);
711 } else
713 keep_alive();
716 if (timeout)
718 LOG_ERROR("timeout waiting for SYSCOMP & DBGACK, last DBG_STATUS: %" PRIx32 "", buf_get_u32(dbg_stat->value, 0, dbg_stat->size));
719 return ERROR_TARGET_TIMEOUT;
722 return ERROR_OK;
726 * Restarts the target by sending a RESTART instruction and moving the JTAG
727 * state to IDLE. This validates that DBGACK and SYSCOMP are set without
728 * waiting until they are.
730 * @param target Pointer to the target to issue commands to
731 * @return Always ERROR_OK
733 static int arm7_9_execute_fast_sys_speed(struct target *target)
735 static int set = 0;
736 static uint8_t check_value[4], check_mask[4];
738 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
739 struct arm_jtag *jtag_info = &arm7_9->jtag_info;
740 struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
742 /* set RESTART instruction */
743 if (arm7_9->need_bypass_before_restart) {
744 arm7_9->need_bypass_before_restart = 0;
745 arm_jtag_set_instr(jtag_info, 0xf, NULL, TAP_IDLE);
747 arm_jtag_set_instr(jtag_info, 0x4, NULL, TAP_IDLE);
749 if (!set)
751 /* check for DBGACK and SYSCOMP set (others don't care) */
753 /* NB! These are constants that must be available until after next jtag_execute() and
754 * we evaluate the values upon first execution in lieu of setting up these constants
755 * during early setup.
756 * */
757 buf_set_u32(check_value, 0, 32, 0x9);
758 buf_set_u32(check_mask, 0, 32, 0x9);
759 set = 1;
762 /* read debug status register */
763 embeddedice_read_reg_w_check(dbg_stat, check_value, check_mask);
765 return ERROR_OK;
769 * Get some data from the ARM7/9 target.
771 * @param target Pointer to the ARM7/9 target to read data from
772 * @param size The number of 32bit words to be read
773 * @param buffer Pointer to the buffer that will hold the data
774 * @return The result of receiving data from the Embedded ICE unit
776 int arm7_9_target_request_data(struct target *target, uint32_t size, uint8_t *buffer)
778 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
779 struct arm_jtag *jtag_info = &arm7_9->jtag_info;
780 uint32_t *data;
781 int retval = ERROR_OK;
782 uint32_t i;
784 data = malloc(size * (sizeof(uint32_t)));
786 retval = embeddedice_receive(jtag_info, data, size);
788 /* return the 32-bit ints in the 8-bit array */
789 for (i = 0; i < size; i++)
791 h_u32_to_le(buffer + (i * 4), data[i]);
794 free(data);
796 return retval;
800 * Handles requests to an ARM7/9 target. If debug messaging is enabled, the
801 * target is running and the DCC control register has the W bit high, this will
802 * execute the request on the target.
804 * @param priv Void pointer expected to be a struct target pointer
805 * @return ERROR_OK unless there are issues with the JTAG queue or when reading
806 * from the Embedded ICE unit
808 static int arm7_9_handle_target_request(void *priv)
810 int retval = ERROR_OK;
811 struct target *target = priv;
812 if (!target_was_examined(target))
813 return ERROR_OK;
814 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
815 struct arm_jtag *jtag_info = &arm7_9->jtag_info;
816 struct reg *dcc_control = &arm7_9->eice_cache->reg_list[EICE_COMMS_CTRL];
818 if (!target->dbg_msg_enabled)
819 return ERROR_OK;
821 if (target->state == TARGET_RUNNING)
823 /* read DCC control register */
824 embeddedice_read_reg(dcc_control);
825 if ((retval = jtag_execute_queue()) != ERROR_OK)
827 return retval;
830 /* check W bit */
831 if (buf_get_u32(dcc_control->value, 1, 1) == 1)
833 uint32_t request;
835 if ((retval = embeddedice_receive(jtag_info, &request, 1)) != ERROR_OK)
837 return retval;
839 if ((retval = target_request(target, request)) != ERROR_OK)
841 return retval;
846 return ERROR_OK;
850 * Polls an ARM7/9 target for its current status. If DBGACK is set, the target
851 * is manipulated to the right halted state based on its current state. This is
852 * what happens:
854 * <table>
855 * <tr><th > State</th><th > Action</th></tr>
856 * <tr><td > TARGET_RUNNING | TARGET_RESET</td><td > Enters debug mode. If TARGET_RESET, pc may be checked</td></tr>
857 * <tr><td > TARGET_UNKNOWN</td><td > Warning is logged</td></tr>
858 * <tr><td > TARGET_DEBUG_RUNNING</td><td > Enters debug mode</td></tr>
859 * <tr><td > TARGET_HALTED</td><td > Nothing</td></tr>
860 * </table>
862 * If the target does not end up in the halted state, a warning is produced. If
863 * DBGACK is cleared, then the target is expected to either be running or
864 * running in debug.
866 * @param target Pointer to the ARM7/9 target to poll
867 * @return ERROR_OK or an error status if a command fails
869 int arm7_9_poll(struct target *target)
871 int retval;
872 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
873 struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
875 /* read debug status register */
876 embeddedice_read_reg(dbg_stat);
877 if ((retval = jtag_execute_queue()) != ERROR_OK)
879 return retval;
882 if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_DBGACK, 1))
884 /* LOG_DEBUG("DBGACK set, dbg_state->value: 0x%x", buf_get_u32(dbg_stat->value, 0, 32));*/
885 if (target->state == TARGET_UNKNOWN)
887 /* Starting OpenOCD with target in debug-halt */
888 target->state = TARGET_RUNNING;
889 LOG_DEBUG("DBGACK already set during server startup.");
891 if ((target->state == TARGET_RUNNING) || (target->state == TARGET_RESET))
893 target->state = TARGET_HALTED;
895 if ((retval = arm7_9_debug_entry(target)) != ERROR_OK)
896 return retval;
898 if (arm_semihosting(target, &retval) != 0)
899 return retval;
901 if ((retval = target_call_event_callbacks(target, TARGET_EVENT_HALTED)) != ERROR_OK)
903 return retval;
906 if (target->state == TARGET_DEBUG_RUNNING)
908 target->state = TARGET_HALTED;
909 if ((retval = arm7_9_debug_entry(target)) != ERROR_OK)
910 return retval;
912 if ((retval = target_call_event_callbacks(target, TARGET_EVENT_DEBUG_HALTED)) != ERROR_OK)
914 return retval;
917 if (target->state != TARGET_HALTED)
919 LOG_WARNING("DBGACK set, but the target did not end up in the halted state %d", target->state);
922 else
924 if (target->state != TARGET_DEBUG_RUNNING)
925 target->state = TARGET_RUNNING;
928 return ERROR_OK;
932 * Asserts the reset (SRST) on an ARM7/9 target. Some -S targets (ARM966E-S in
933 * the STR912 isn't affected, ARM926EJ-S in the LPC3180 and AT91SAM9260 is
934 * affected) completely stop the JTAG clock while the core is held in reset
935 * (SRST). It isn't possible to program the halt condition once reset is
936 * asserted, hence a hook that allows the target to set up its reset-halt
937 * condition is setup prior to asserting reset.
939 * @param target Pointer to an ARM7/9 target to assert reset on
940 * @return ERROR_FAIL if the JTAG device does not have SRST, otherwise ERROR_OK
942 int arm7_9_assert_reset(struct target *target)
944 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
945 enum reset_types jtag_reset_config = jtag_get_reset_config();
946 bool use_event = false;
948 LOG_DEBUG("target->state: %s",
949 target_state_name(target));
951 if (target_has_event_action(target, TARGET_EVENT_RESET_ASSERT))
952 use_event = true;
953 else if (!(jtag_reset_config & RESET_HAS_SRST)) {
954 LOG_ERROR("%s: how to reset?", target_name(target));
955 return ERROR_FAIL;
958 /* At this point trst has been asserted/deasserted once. We would
959 * like to program EmbeddedICE while SRST is asserted, instead of
960 * depending on SRST to leave that module alone. However, many CPUs
961 * gate the JTAG clock while SRST is asserted; or JTAG may need
962 * clock stability guarantees (adaptive clocking might help).
964 * So we assume JTAG access during SRST is off the menu unless it's
965 * been specifically enabled.
967 bool srst_asserted = false;
969 if (!use_event
970 && !(jtag_reset_config & RESET_SRST_PULLS_TRST)
971 && (jtag_reset_config & RESET_SRST_NO_GATING))
973 jtag_add_reset(0, 1);
974 srst_asserted = true;
977 if (target->reset_halt)
980 * For targets that don't support communication while SRST is
981 * asserted, we need to set up the reset vector catch first.
983 * When we use TRST+SRST and that's equivalent to a power-up
984 * reset, these settings may well be reset anyway; so setting
985 * them here won't matter.
987 if (arm7_9->has_vector_catch)
989 /* program vector catch register to catch reset */
990 embeddedice_write_reg(&arm7_9->eice_cache
991 ->reg_list[EICE_VEC_CATCH], 0x1);
993 /* extra runtest added as issues were found with
994 * certain ARM9 cores (maybe more) - AT91SAM9260
995 * and STR9
997 jtag_add_runtest(1, TAP_IDLE);
999 else
1001 /* program watchpoint unit to match on reset vector
1002 * address
1004 embeddedice_write_reg(&arm7_9->eice_cache
1005 ->reg_list[EICE_W0_ADDR_VALUE], 0x0);
1006 embeddedice_write_reg(&arm7_9->eice_cache
1007 ->reg_list[EICE_W0_ADDR_MASK], 0x3);
1008 embeddedice_write_reg(&arm7_9->eice_cache
1009 ->reg_list[EICE_W0_DATA_MASK],
1010 0xffffffff);
1011 embeddedice_write_reg(&arm7_9->eice_cache
1012 ->reg_list[EICE_W0_CONTROL_VALUE],
1013 EICE_W_CTRL_ENABLE);
1014 embeddedice_write_reg(&arm7_9->eice_cache
1015 ->reg_list[EICE_W0_CONTROL_MASK],
1016 ~EICE_W_CTRL_nOPC & 0xff);
1020 if (use_event) {
1021 target_handle_event(target, TARGET_EVENT_RESET_ASSERT);
1022 } else {
1023 /* If we use SRST ... we'd like to issue just SRST, but the
1024 * board or chip may be set up so we have to assert TRST as
1025 * well. On some chips that combination is equivalent to a
1026 * power-up reset, and generally clobbers EICE state.
1028 if (jtag_reset_config & RESET_SRST_PULLS_TRST)
1029 jtag_add_reset(1, 1);
1030 else if (!srst_asserted)
1031 jtag_add_reset(0, 1);
1032 jtag_add_sleep(50000);
1035 target->state = TARGET_RESET;
1036 register_cache_invalidate(arm7_9->armv4_5_common.core_cache);
1038 /* REVISIT why isn't standard debug entry logic sufficient?? */
1039 if (target->reset_halt
1040 && (!(jtag_reset_config & RESET_SRST_PULLS_TRST)
1041 || use_event))
1043 /* debug entry was prepared above */
1044 target->debug_reason = DBG_REASON_DBGRQ;
1047 return ERROR_OK;
1051 * Deassert the reset (SRST) signal on an ARM7/9 target. If SRST pulls TRST
1052 * and the target is being reset into a halt, a warning will be triggered
1053 * because it is not possible to reset into a halted mode in this case. The
1054 * target is halted using the target's functions.
1056 * @param target Pointer to the target to have the reset deasserted
1057 * @return ERROR_OK or an error from polling or halting the target
1059 int arm7_9_deassert_reset(struct target *target)
1061 int retval = ERROR_OK;
1062 LOG_DEBUG("target->state: %s",
1063 target_state_name(target));
1065 /* deassert reset lines */
1066 jtag_add_reset(0, 0);
1068 enum reset_types jtag_reset_config = jtag_get_reset_config();
1069 if (target->reset_halt && (jtag_reset_config & RESET_SRST_PULLS_TRST) != 0)
1071 LOG_WARNING("srst pulls trst - can not reset into halted mode. Issuing halt after reset.");
1072 /* set up embedded ice registers again */
1073 if ((retval = target_examine_one(target)) != ERROR_OK)
1074 return retval;
1076 if ((retval = target_poll(target)) != ERROR_OK)
1078 return retval;
1081 if ((retval = target_halt(target)) != ERROR_OK)
1083 return retval;
1087 return retval;
1091 * Clears the halt condition for an ARM7/9 target. If it isn't coming out of
1092 * reset and if DBGRQ is used, it is progammed to be deasserted. If the reset
1093 * vector catch was used, it is restored. Otherwise, the control value is
1094 * restored and the watchpoint unit is restored if it was in use.
1096 * @param target Pointer to the ARM7/9 target to have halt cleared
1097 * @return Always ERROR_OK
1099 static int arm7_9_clear_halt(struct target *target)
1101 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1102 struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1104 /* we used DBGRQ only if we didn't come out of reset */
1105 if (!arm7_9->debug_entry_from_reset && arm7_9->use_dbgrq)
1107 /* program EmbeddedICE Debug Control Register to deassert DBGRQ
1109 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 0);
1110 embeddedice_store_reg(dbg_ctrl);
1112 else
1114 if (arm7_9->debug_entry_from_reset && arm7_9->has_vector_catch)
1116 /* if we came out of reset, and vector catch is supported, we used
1117 * vector catch to enter debug state
1118 * restore the register in that case
1120 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_VEC_CATCH]);
1122 else
1124 /* restore registers if watchpoint unit 0 was in use
1126 if (arm7_9->wp0_used)
1128 if (arm7_9->debug_entry_from_reset)
1130 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_VALUE]);
1132 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK]);
1133 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK]);
1134 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK]);
1136 /* control value always has to be restored, as it was either disabled,
1137 * or enabled with possibly different bits
1139 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE]);
1143 return ERROR_OK;
1147 * Issue a software reset and halt to an ARM7/9 target. The target is halted
1148 * and then there is a wait until the processor shows the halt. This wait can
1149 * timeout and results in an error being returned. The software reset involves
1150 * clearing the halt, updating the debug control register, changing to ARM mode,
1151 * reset of the program counter, and reset of all of the registers.
1153 * @param target Pointer to the ARM7/9 target to be reset and halted by software
1154 * @return Error status if any of the commands fail, otherwise ERROR_OK
1156 int arm7_9_soft_reset_halt(struct target *target)
1158 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1159 struct arm *armv4_5 = &arm7_9->armv4_5_common;
1160 struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
1161 struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1162 int i;
1163 int retval;
1165 /* FIX!!! replace some of this code with tcl commands
1167 * halt # the halt command is synchronous
1168 * armv4_5 core_state arm
1172 if ((retval = target_halt(target)) != ERROR_OK)
1173 return retval;
1175 long long then = timeval_ms();
1176 int timeout;
1177 while (!(timeout = ((timeval_ms()-then) > 1000)))
1179 if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_DBGACK, 1) != 0)
1180 break;
1181 embeddedice_read_reg(dbg_stat);
1182 if ((retval = jtag_execute_queue()) != ERROR_OK)
1183 return retval;
1184 if (debug_level >= 3)
1186 alive_sleep(100);
1187 } else
1189 keep_alive();
1192 if (timeout)
1194 LOG_ERROR("Failed to halt CPU after 1 sec");
1195 return ERROR_TARGET_TIMEOUT;
1197 target->state = TARGET_HALTED;
1199 /* program EmbeddedICE Debug Control Register to assert DBGACK and INTDIS
1200 * ensure that DBGRQ is cleared
1202 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 1);
1203 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 0);
1204 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_INTDIS, 1, 1);
1205 embeddedice_store_reg(dbg_ctrl);
1207 if ((retval = arm7_9_clear_halt(target)) != ERROR_OK)
1209 return retval;
1212 /* if the target is in Thumb state, change to ARM state */
1213 if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_ITBIT, 1))
1215 uint32_t r0_thumb, pc_thumb;
1216 LOG_DEBUG("target entered debug from Thumb state, changing to ARM");
1217 /* Entered debug from Thumb mode */
1218 armv4_5->core_state = ARM_STATE_THUMB;
1219 arm7_9->change_to_arm(target, &r0_thumb, &pc_thumb);
1222 /* REVISIT likewise for bit 5 -- switch Jazelle-to-ARM */
1224 /* all register content is now invalid */
1225 register_cache_invalidate(armv4_5->core_cache);
1227 /* SVC, ARM state, IRQ and FIQ disabled */
1228 uint32_t cpsr;
1230 cpsr = buf_get_u32(armv4_5->cpsr->value, 0, 32);
1231 cpsr &= ~0xff;
1232 cpsr |= 0xd3;
1233 arm_set_cpsr(armv4_5, cpsr);
1234 armv4_5->cpsr->dirty = 1;
1236 /* start fetching from 0x0 */
1237 buf_set_u32(armv4_5->pc->value, 0, 32, 0x0);
1238 armv4_5->pc->dirty = 1;
1239 armv4_5->pc->valid = 1;
1241 /* reset registers */
1242 for (i = 0; i <= 14; i++)
1244 struct reg *r = arm_reg_current(armv4_5, i);
1246 buf_set_u32(r->value, 0, 32, 0xffffffff);
1247 r->dirty = 1;
1248 r->valid = 1;
1251 if ((retval = target_call_event_callbacks(target, TARGET_EVENT_HALTED)) != ERROR_OK)
1253 return retval;
1256 return ERROR_OK;
1260 * Halt an ARM7/9 target. This is accomplished by either asserting the DBGRQ
1261 * line or by programming a watchpoint to trigger on any address. It is
1262 * considered a bug to call this function while the target is in the
1263 * TARGET_RESET state.
1265 * @param target Pointer to the ARM7/9 target to be halted
1266 * @return Always ERROR_OK
1268 int arm7_9_halt(struct target *target)
1270 if (target->state == TARGET_RESET)
1272 LOG_ERROR("BUG: arm7/9 does not support halt during reset. This is handled in arm7_9_assert_reset()");
1273 return ERROR_OK;
1276 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1277 struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1279 LOG_DEBUG("target->state: %s",
1280 target_state_name(target));
1282 if (target->state == TARGET_HALTED)
1284 LOG_DEBUG("target was already halted");
1285 return ERROR_OK;
1288 if (target->state == TARGET_UNKNOWN)
1290 LOG_WARNING("target was in unknown state when halt was requested");
1293 if (arm7_9->use_dbgrq)
1295 /* program EmbeddedICE Debug Control Register to assert DBGRQ
1297 if (arm7_9->set_special_dbgrq) {
1298 arm7_9->set_special_dbgrq(target);
1299 } else {
1300 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 1);
1301 embeddedice_store_reg(dbg_ctrl);
1304 else
1306 /* program watchpoint unit to match on any address
1308 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffff);
1309 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffff);
1310 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
1311 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
1314 target->debug_reason = DBG_REASON_DBGRQ;
1316 return ERROR_OK;
1320 * Handle an ARM7/9 target's entry into debug mode. The halt is cleared on the
1321 * ARM. The JTAG queue is then executed and the reason for debug entry is
1322 * examined. Once done, the target is verified to be halted and the processor
1323 * is forced into ARM mode. The core registers are saved for the current core
1324 * mode and the program counter (register 15) is updated as needed. The core
1325 * registers and CPSR and SPSR are saved for restoration later.
1327 * @param target Pointer to target that is entering debug mode
1328 * @return Error code if anything fails, otherwise ERROR_OK
1330 static int arm7_9_debug_entry(struct target *target)
1332 int i;
1333 uint32_t context[16];
1334 uint32_t* context_p[16];
1335 uint32_t r0_thumb, pc_thumb;
1336 uint32_t cpsr, cpsr_mask = 0;
1337 int retval;
1338 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1339 struct arm *armv4_5 = &arm7_9->armv4_5_common;
1340 struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
1341 struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1343 #ifdef _DEBUG_ARM7_9_
1344 LOG_DEBUG("-");
1345 #endif
1347 /* program EmbeddedICE Debug Control Register to assert DBGACK and INTDIS
1348 * ensure that DBGRQ is cleared
1350 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 1);
1351 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 0);
1352 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_INTDIS, 1, 1);
1353 embeddedice_store_reg(dbg_ctrl);
1355 if ((retval = arm7_9_clear_halt(target)) != ERROR_OK)
1357 return retval;
1360 if ((retval = jtag_execute_queue()) != ERROR_OK)
1362 return retval;
1365 if ((retval = arm7_9->examine_debug_reason(target)) != ERROR_OK)
1366 return retval;
1369 if (target->state != TARGET_HALTED)
1371 LOG_WARNING("target not halted");
1372 return ERROR_TARGET_NOT_HALTED;
1375 /* if the target is in Thumb state, change to ARM state */
1376 if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_ITBIT, 1))
1378 LOG_DEBUG("target entered debug from Thumb state");
1379 /* Entered debug from Thumb mode */
1380 armv4_5->core_state = ARM_STATE_THUMB;
1381 cpsr_mask = 1 << 5;
1382 arm7_9->change_to_arm(target, &r0_thumb, &pc_thumb);
1383 LOG_DEBUG("r0_thumb: 0x%8.8" PRIx32
1384 ", pc_thumb: 0x%8.8" PRIx32, r0_thumb, pc_thumb);
1385 } else if (buf_get_u32(dbg_stat->value, 5, 1)) {
1386 /* \todo Get some vaguely correct handling of Jazelle, if
1387 * anyone ever uses it and full info becomes available.
1388 * See ARM9EJS TRM B.7.1 for how to switch J->ARM; and
1389 * B.7.3 for the reverse. That'd be the bare minimum...
1391 LOG_DEBUG("target entered debug from Jazelle state");
1392 armv4_5->core_state = ARM_STATE_JAZELLE;
1393 cpsr_mask = 1 << 24;
1394 LOG_ERROR("Jazelle debug entry -- BROKEN!");
1395 } else {
1396 LOG_DEBUG("target entered debug from ARM state");
1397 /* Entered debug from ARM mode */
1398 armv4_5->core_state = ARM_STATE_ARM;
1401 for (i = 0; i < 16; i++)
1402 context_p[i] = &context[i];
1403 /* save core registers (r0 - r15 of current core mode) */
1404 arm7_9->read_core_regs(target, 0xffff, context_p);
1406 arm7_9->read_xpsr(target, &cpsr, 0);
1408 if ((retval = jtag_execute_queue()) != ERROR_OK)
1409 return retval;
1411 /* Sync our CPSR copy with J or T bits EICE reported, but
1412 * which we then erased by putting the core into ARM mode.
1414 arm_set_cpsr(armv4_5, cpsr | cpsr_mask);
1416 if (!is_arm_mode(armv4_5->core_mode))
1418 target->state = TARGET_UNKNOWN;
1419 LOG_ERROR("cpsr contains invalid mode value - communication failure");
1420 return ERROR_TARGET_FAILURE;
1423 LOG_DEBUG("target entered debug state in %s mode",
1424 arm_mode_name(armv4_5->core_mode));
1426 if (armv4_5->core_state == ARM_STATE_THUMB)
1428 LOG_DEBUG("thumb state, applying fixups");
1429 context[0] = r0_thumb;
1430 context[15] = pc_thumb;
1431 } else if (armv4_5->core_state == ARM_STATE_ARM)
1433 /* adjust value stored by STM */
1434 context[15] -= 3 * 4;
1437 if ((target->debug_reason != DBG_REASON_DBGRQ) || (!arm7_9->use_dbgrq))
1438 context[15] -= 3 * ((armv4_5->core_state == ARM_STATE_ARM) ? 4 : 2);
1439 else
1440 context[15] -= arm7_9->dbgreq_adjust_pc * ((armv4_5->core_state == ARM_STATE_ARM) ? 4 : 2);
1442 for (i = 0; i <= 15; i++)
1444 struct reg *r = arm_reg_current(armv4_5, i);
1446 LOG_DEBUG("r%i: 0x%8.8" PRIx32 "", i, context[i]);
1448 buf_set_u32(r->value, 0, 32, context[i]);
1449 /* r0 and r15 (pc) have to be restored later */
1450 r->dirty = (i == 0) || (i == 15);
1451 r->valid = 1;
1454 LOG_DEBUG("entered debug state at PC 0x%" PRIx32 "", context[15]);
1456 /* exceptions other than USR & SYS have a saved program status register */
1457 if (armv4_5->spsr) {
1458 uint32_t spsr;
1459 arm7_9->read_xpsr(target, &spsr, 1);
1460 if ((retval = jtag_execute_queue()) != ERROR_OK)
1462 return retval;
1464 buf_set_u32(armv4_5->spsr->value, 0, 32, spsr);
1465 armv4_5->spsr->dirty = 0;
1466 armv4_5->spsr->valid = 1;
1469 if ((retval = jtag_execute_queue()) != ERROR_OK)
1470 return retval;
1472 if (arm7_9->post_debug_entry)
1473 arm7_9->post_debug_entry(target);
1475 return ERROR_OK;
1479 * Validate the full context for an ARM7/9 target in all processor modes. If
1480 * there are any invalid registers for the target, they will all be read. This
1481 * includes the PSR.
1483 * @param target Pointer to the ARM7/9 target to capture the full context from
1484 * @return Error if the target is not halted, has an invalid core mode, or if
1485 * the JTAG queue fails to execute
1487 static int arm7_9_full_context(struct target *target)
1489 int i;
1490 int retval;
1491 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1492 struct arm *armv4_5 = &arm7_9->armv4_5_common;
1494 LOG_DEBUG("-");
1496 if (target->state != TARGET_HALTED)
1498 LOG_WARNING("target not halted");
1499 return ERROR_TARGET_NOT_HALTED;
1502 if (!is_arm_mode(armv4_5->core_mode))
1503 return ERROR_FAIL;
1505 /* iterate through processor modes (User, FIQ, IRQ, SVC, ABT, UND)
1506 * SYS shares registers with User, so we don't touch SYS
1508 for (i = 0; i < 6; i++)
1510 uint32_t mask = 0;
1511 uint32_t* reg_p[16];
1512 int j;
1513 int valid = 1;
1515 /* check if there are invalid registers in the current mode
1517 for (j = 0; j <= 16; j++)
1519 if (ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).valid == 0)
1520 valid = 0;
1523 if (!valid)
1525 uint32_t tmp_cpsr;
1527 /* change processor mode (and mask T bit) */
1528 tmp_cpsr = buf_get_u32(armv4_5->cpsr->value, 0, 8)
1529 & 0xe0;
1530 tmp_cpsr |= armv4_5_number_to_mode(i);
1531 tmp_cpsr &= ~0x20;
1532 arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
1534 for (j = 0; j < 15; j++)
1536 if (ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).valid == 0)
1538 reg_p[j] = (uint32_t*)ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).value;
1539 mask |= 1 << j;
1540 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).valid = 1;
1541 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).dirty = 0;
1545 /* if only the PSR is invalid, mask is all zeroes */
1546 if (mask)
1547 arm7_9->read_core_regs(target, mask, reg_p);
1549 /* check if the PSR has to be read */
1550 if (ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16).valid == 0)
1552 arm7_9->read_xpsr(target, (uint32_t*)ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16).value, 1);
1553 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16).valid = 1;
1554 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16).dirty = 0;
1559 /* restore processor mode (mask T bit) */
1560 arm7_9->write_xpsr_im8(target,
1561 buf_get_u32(armv4_5->cpsr->value, 0, 8) & ~0x20,
1562 0, 0);
1564 if ((retval = jtag_execute_queue()) != ERROR_OK)
1566 return retval;
1568 return ERROR_OK;
1572 * Restore the processor context on an ARM7/9 target. The full processor
1573 * context is analyzed to see if any of the registers are dirty on this end, but
1574 * have a valid new value. If this is the case, the processor is changed to the
1575 * appropriate mode and the new register values are written out to the
1576 * processor. If there happens to be a dirty register with an invalid value, an
1577 * error will be logged.
1579 * @param target Pointer to the ARM7/9 target to have its context restored
1580 * @return Error status if the target is not halted or the core mode in the
1581 * armv4_5 struct is invalid.
1583 static int arm7_9_restore_context(struct target *target)
1585 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1586 struct arm *armv4_5 = &arm7_9->armv4_5_common;
1587 struct reg *reg;
1588 struct arm_reg *reg_arch_info;
1589 enum arm_mode current_mode = armv4_5->core_mode;
1590 int i, j;
1591 int dirty;
1592 int mode_change;
1594 LOG_DEBUG("-");
1596 if (target->state != TARGET_HALTED)
1598 LOG_WARNING("target not halted");
1599 return ERROR_TARGET_NOT_HALTED;
1602 if (arm7_9->pre_restore_context)
1603 arm7_9->pre_restore_context(target);
1605 if (!is_arm_mode(armv4_5->core_mode))
1606 return ERROR_FAIL;
1608 /* iterate through processor modes (User, FIQ, IRQ, SVC, ABT, UND)
1609 * SYS shares registers with User, so we don't touch SYS
1611 for (i = 0; i < 6; i++)
1613 LOG_DEBUG("examining %s mode",
1614 arm_mode_name(armv4_5->core_mode));
1615 dirty = 0;
1616 mode_change = 0;
1617 /* check if there are dirty registers in the current mode
1619 for (j = 0; j <= 16; j++)
1621 reg = &ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j);
1622 reg_arch_info = reg->arch_info;
1623 if (reg->dirty == 1)
1625 if (reg->valid == 1)
1627 dirty = 1;
1628 LOG_DEBUG("examining dirty reg: %s", reg->name);
1629 if ((reg_arch_info->mode != ARM_MODE_ANY)
1630 && (reg_arch_info->mode != current_mode)
1631 && !((reg_arch_info->mode == ARM_MODE_USR) && (armv4_5->core_mode == ARM_MODE_SYS))
1632 && !((reg_arch_info->mode == ARM_MODE_SYS) && (armv4_5->core_mode == ARM_MODE_USR)))
1634 mode_change = 1;
1635 LOG_DEBUG("require mode change");
1638 else
1640 LOG_ERROR("BUG: dirty register '%s', but no valid data", reg->name);
1645 if (dirty)
1647 uint32_t mask = 0x0;
1648 int num_regs = 0;
1649 uint32_t regs[16];
1651 if (mode_change)
1653 uint32_t tmp_cpsr;
1655 /* change processor mode (mask T bit) */
1656 tmp_cpsr = buf_get_u32(armv4_5->cpsr->value,
1657 0, 8) & 0xe0;
1658 tmp_cpsr |= armv4_5_number_to_mode(i);
1659 tmp_cpsr &= ~0x20;
1660 arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
1661 current_mode = armv4_5_number_to_mode(i);
1664 for (j = 0; j <= 14; j++)
1666 reg = &ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j);
1667 reg_arch_info = reg->arch_info;
1670 if (reg->dirty == 1)
1672 regs[j] = buf_get_u32(reg->value, 0, 32);
1673 mask |= 1 << j;
1674 num_regs++;
1675 reg->dirty = 0;
1676 reg->valid = 1;
1677 LOG_DEBUG("writing register %i mode %s "
1678 "with value 0x%8.8" PRIx32, j,
1679 arm_mode_name(armv4_5->core_mode),
1680 regs[j]);
1684 if (mask)
1686 arm7_9->write_core_regs(target, mask, regs);
1689 reg = &ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16);
1690 reg_arch_info = reg->arch_info;
1691 if ((reg->dirty) && (reg_arch_info->mode != ARM_MODE_ANY))
1693 LOG_DEBUG("writing SPSR of mode %i with value 0x%8.8" PRIx32 "", i, buf_get_u32(reg->value, 0, 32));
1694 arm7_9->write_xpsr(target, buf_get_u32(reg->value, 0, 32), 1);
1699 if (!armv4_5->cpsr->dirty && (armv4_5->core_mode != current_mode))
1701 /* restore processor mode (mask T bit) */
1702 uint32_t tmp_cpsr;
1704 tmp_cpsr = buf_get_u32(armv4_5->cpsr->value, 0, 8) & 0xE0;
1705 tmp_cpsr |= armv4_5_number_to_mode(i);
1706 tmp_cpsr &= ~0x20;
1707 LOG_DEBUG("writing lower 8 bit of cpsr with value 0x%2.2x", (unsigned)(tmp_cpsr));
1708 arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
1710 else if (armv4_5->cpsr->dirty)
1712 /* CPSR has been changed, full restore necessary (mask T bit) */
1713 LOG_DEBUG("writing cpsr with value 0x%8.8" PRIx32,
1714 buf_get_u32(armv4_5->cpsr->value, 0, 32));
1715 arm7_9->write_xpsr(target,
1716 buf_get_u32(armv4_5->cpsr->value, 0, 32)
1717 & ~0x20, 0);
1718 armv4_5->cpsr->dirty = 0;
1719 armv4_5->cpsr->valid = 1;
1722 /* restore PC */
1723 LOG_DEBUG("writing PC with value 0x%8.8" PRIx32,
1724 buf_get_u32(armv4_5->pc->value, 0, 32));
1725 arm7_9->write_pc(target, buf_get_u32(armv4_5->pc->value, 0, 32));
1726 armv4_5->pc->dirty = 0;
1728 return ERROR_OK;
1732 * Restart the core of an ARM7/9 target. A RESTART command is sent to the
1733 * instruction register and the JTAG state is set to TAP_IDLE causing a core
1734 * restart.
1736 * @param target Pointer to the ARM7/9 target to be restarted
1737 * @return Result of executing the JTAG queue
1739 static int arm7_9_restart_core(struct target *target)
1741 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1742 struct arm_jtag *jtag_info = &arm7_9->jtag_info;
1744 /* set RESTART instruction */
1745 if (arm7_9->need_bypass_before_restart) {
1746 arm7_9->need_bypass_before_restart = 0;
1747 arm_jtag_set_instr(jtag_info, 0xf, NULL, TAP_IDLE);
1749 arm_jtag_set_instr(jtag_info, 0x4, NULL, TAP_IDLE);
1751 jtag_add_runtest(1, TAP_IDLE);
1752 return jtag_execute_queue();
1756 * Enable the watchpoints on an ARM7/9 target. The target's watchpoints are
1757 * iterated through and are set on the target if they aren't already set.
1759 * @param target Pointer to the ARM7/9 target to enable watchpoints on
1761 static void arm7_9_enable_watchpoints(struct target *target)
1763 struct watchpoint *watchpoint = target->watchpoints;
1765 while (watchpoint)
1767 if (watchpoint->set == 0)
1768 arm7_9_set_watchpoint(target, watchpoint);
1769 watchpoint = watchpoint->next;
1774 * Enable the breakpoints on an ARM7/9 target. The target's breakpoints are
1775 * iterated through and are set on the target.
1777 * @param target Pointer to the ARM7/9 target to enable breakpoints on
1779 static void arm7_9_enable_breakpoints(struct target *target)
1781 struct breakpoint *breakpoint = target->breakpoints;
1783 /* set any pending breakpoints */
1784 while (breakpoint)
1786 arm7_9_set_breakpoint(target, breakpoint);
1787 breakpoint = breakpoint->next;
1791 int arm7_9_resume(struct target *target, int current, uint32_t address, int handle_breakpoints, int debug_execution)
1793 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1794 struct arm *armv4_5 = &arm7_9->armv4_5_common;
1795 struct breakpoint *breakpoint = target->breakpoints;
1796 struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1797 int err, retval = ERROR_OK;
1799 LOG_DEBUG("-");
1801 if (target->state != TARGET_HALTED)
1803 LOG_WARNING("target not halted");
1804 return ERROR_TARGET_NOT_HALTED;
1807 if (!debug_execution)
1809 target_free_all_working_areas(target);
1812 /* current = 1: continue on current pc, otherwise continue at <address> */
1813 if (!current)
1814 buf_set_u32(armv4_5->pc->value, 0, 32, address);
1816 uint32_t current_pc;
1817 current_pc = buf_get_u32(armv4_5->pc->value, 0, 32);
1819 /* the front-end may request us not to handle breakpoints */
1820 if (handle_breakpoints)
1822 breakpoint = breakpoint_find(target,
1823 buf_get_u32(armv4_5->pc->value, 0, 32));
1824 if (breakpoint != NULL)
1826 LOG_DEBUG("unset breakpoint at 0x%8.8" PRIx32 " (id: %d)", breakpoint->address, breakpoint->unique_id );
1827 if ((retval = arm7_9_unset_breakpoint(target, breakpoint)) != ERROR_OK)
1829 return retval;
1832 /* calculate PC of next instruction */
1833 uint32_t next_pc;
1834 if ((retval = arm_simulate_step(target, &next_pc)) != ERROR_OK)
1836 uint32_t current_opcode;
1837 target_read_u32(target, current_pc, &current_opcode);
1838 LOG_ERROR("Couldn't calculate PC of next instruction, current opcode was 0x%8.8" PRIx32 "", current_opcode);
1839 return retval;
1842 LOG_DEBUG("enable single-step");
1843 arm7_9->enable_single_step(target, next_pc);
1845 target->debug_reason = DBG_REASON_SINGLESTEP;
1847 if ((retval = arm7_9_restore_context(target)) != ERROR_OK)
1849 return retval;
1852 if (armv4_5->core_state == ARM_STATE_ARM)
1853 arm7_9->branch_resume(target);
1854 else if (armv4_5->core_state == ARM_STATE_THUMB)
1856 arm7_9->branch_resume_thumb(target);
1858 else
1860 LOG_ERROR("unhandled core state");
1861 return ERROR_FAIL;
1864 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 0);
1865 embeddedice_write_reg(dbg_ctrl, buf_get_u32(dbg_ctrl->value, 0, dbg_ctrl->size));
1866 err = arm7_9_execute_sys_speed(target);
1868 LOG_DEBUG("disable single-step");
1869 arm7_9->disable_single_step(target);
1871 if (err != ERROR_OK)
1873 if ((retval = arm7_9_set_breakpoint(target, breakpoint)) != ERROR_OK)
1875 return retval;
1877 target->state = TARGET_UNKNOWN;
1878 return err;
1881 arm7_9_debug_entry(target);
1882 LOG_DEBUG("new PC after step: 0x%8.8" PRIx32,
1883 buf_get_u32(armv4_5->pc->value, 0, 32));
1885 LOG_DEBUG("set breakpoint at 0x%8.8" PRIx32 "", breakpoint->address);
1886 if ((retval = arm7_9_set_breakpoint(target, breakpoint)) != ERROR_OK)
1888 return retval;
1893 /* enable any pending breakpoints and watchpoints */
1894 arm7_9_enable_breakpoints(target);
1895 arm7_9_enable_watchpoints(target);
1897 if ((retval = arm7_9_restore_context(target)) != ERROR_OK)
1899 return retval;
1902 if (armv4_5->core_state == ARM_STATE_ARM)
1904 arm7_9->branch_resume(target);
1906 else if (armv4_5->core_state == ARM_STATE_THUMB)
1908 arm7_9->branch_resume_thumb(target);
1910 else
1912 LOG_ERROR("unhandled core state");
1913 return ERROR_FAIL;
1916 /* deassert DBGACK and INTDIS */
1917 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 0);
1918 /* INTDIS only when we really resume, not during debug execution */
1919 if (!debug_execution)
1920 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_INTDIS, 1, 0);
1921 embeddedice_write_reg(dbg_ctrl, buf_get_u32(dbg_ctrl->value, 0, dbg_ctrl->size));
1923 if ((retval = arm7_9_restart_core(target)) != ERROR_OK)
1925 return retval;
1928 target->debug_reason = DBG_REASON_NOTHALTED;
1930 if (!debug_execution)
1932 /* registers are now invalid */
1933 register_cache_invalidate(armv4_5->core_cache);
1934 target->state = TARGET_RUNNING;
1935 if ((retval = target_call_event_callbacks(target, TARGET_EVENT_RESUMED)) != ERROR_OK)
1937 return retval;
1940 else
1942 target->state = TARGET_DEBUG_RUNNING;
1943 if ((retval = target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED)) != ERROR_OK)
1945 return retval;
1949 LOG_DEBUG("target resumed");
1951 return ERROR_OK;
1954 void arm7_9_enable_eice_step(struct target *target, uint32_t next_pc)
1956 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1957 struct arm *armv4_5 = &arm7_9->armv4_5_common;
1958 uint32_t current_pc;
1959 current_pc = buf_get_u32(armv4_5->pc->value, 0, 32);
1961 if (next_pc != current_pc)
1963 /* setup an inverse breakpoint on the current PC
1964 * - comparator 1 matches the current address
1965 * - rangeout from comparator 1 is connected to comparator 0 rangein
1966 * - comparator 0 matches any address, as long as rangein is low */
1967 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffff);
1968 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffff);
1969 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
1970 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~(EICE_W_CTRL_RANGE | EICE_W_CTRL_nOPC) & 0xff);
1971 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE], current_pc);
1972 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], 0);
1973 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0xffffffff);
1974 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
1975 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
1977 else
1979 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffff);
1980 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffff);
1981 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
1982 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], 0xff);
1983 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE], next_pc);
1984 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], 0);
1985 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0xffffffff);
1986 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
1987 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
1991 void arm7_9_disable_eice_step(struct target *target)
1993 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1995 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK]);
1996 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK]);
1997 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE]);
1998 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK]);
1999 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE]);
2000 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK]);
2001 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK]);
2002 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK]);
2003 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE]);
2006 int arm7_9_step(struct target *target, int current, uint32_t address, int handle_breakpoints)
2008 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2009 struct arm *armv4_5 = &arm7_9->armv4_5_common;
2010 struct breakpoint *breakpoint = NULL;
2011 int err, retval;
2013 if (target->state != TARGET_HALTED)
2015 LOG_WARNING("target not halted");
2016 return ERROR_TARGET_NOT_HALTED;
2019 /* current = 1: continue on current pc, otherwise continue at <address> */
2020 if (!current)
2021 buf_set_u32(armv4_5->pc->value, 0, 32, address);
2023 uint32_t current_pc = buf_get_u32(armv4_5->pc->value, 0, 32);
2025 /* the front-end may request us not to handle breakpoints */
2026 if (handle_breakpoints)
2027 breakpoint = breakpoint_find(target, current_pc);
2028 if (breakpoint != NULL) {
2029 retval = arm7_9_unset_breakpoint(target, breakpoint);
2030 if (retval != ERROR_OK)
2031 return retval;
2034 target->debug_reason = DBG_REASON_SINGLESTEP;
2036 /* calculate PC of next instruction */
2037 uint32_t next_pc;
2038 if ((retval = arm_simulate_step(target, &next_pc)) != ERROR_OK)
2040 uint32_t current_opcode;
2041 target_read_u32(target, current_pc, &current_opcode);
2042 LOG_ERROR("Couldn't calculate PC of next instruction, current opcode was 0x%8.8" PRIx32 "", current_opcode);
2043 return retval;
2046 if ((retval = arm7_9_restore_context(target)) != ERROR_OK)
2048 return retval;
2051 arm7_9->enable_single_step(target, next_pc);
2053 if (armv4_5->core_state == ARM_STATE_ARM)
2055 arm7_9->branch_resume(target);
2057 else if (armv4_5->core_state == ARM_STATE_THUMB)
2059 arm7_9->branch_resume_thumb(target);
2061 else
2063 LOG_ERROR("unhandled core state");
2064 return ERROR_FAIL;
2067 if ((retval = target_call_event_callbacks(target, TARGET_EVENT_RESUMED)) != ERROR_OK)
2069 return retval;
2072 err = arm7_9_execute_sys_speed(target);
2073 arm7_9->disable_single_step(target);
2075 /* registers are now invalid */
2076 register_cache_invalidate(armv4_5->core_cache);
2078 if (err != ERROR_OK)
2080 target->state = TARGET_UNKNOWN;
2081 } else {
2082 arm7_9_debug_entry(target);
2083 if ((retval = target_call_event_callbacks(target, TARGET_EVENT_HALTED)) != ERROR_OK)
2085 return retval;
2087 LOG_DEBUG("target stepped");
2090 if (breakpoint)
2091 if ((retval = arm7_9_set_breakpoint(target, breakpoint)) != ERROR_OK)
2093 return retval;
2096 return err;
2099 static int arm7_9_read_core_reg(struct target *target, struct reg *r,
2100 int num, enum arm_mode mode)
2102 uint32_t* reg_p[16];
2103 uint32_t value;
2104 int retval;
2105 struct arm_reg *areg = r->arch_info;
2106 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2107 struct arm *armv4_5 = &arm7_9->armv4_5_common;
2109 if (!is_arm_mode(armv4_5->core_mode))
2110 return ERROR_FAIL;
2111 if ((num < 0) || (num > 16))
2112 return ERROR_INVALID_ARGUMENTS;
2114 if ((mode != ARM_MODE_ANY)
2115 && (mode != armv4_5->core_mode)
2116 && (areg->mode != ARM_MODE_ANY))
2118 uint32_t tmp_cpsr;
2120 /* change processor mode (mask T bit) */
2121 tmp_cpsr = buf_get_u32(armv4_5->cpsr->value, 0, 8) & 0xE0;
2122 tmp_cpsr |= mode;
2123 tmp_cpsr &= ~0x20;
2124 arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
2127 if ((num >= 0) && (num <= 15))
2129 /* read a normal core register */
2130 reg_p[num] = &value;
2132 arm7_9->read_core_regs(target, 1 << num, reg_p);
2134 else
2136 /* read a program status register
2137 * if the register mode is MODE_ANY, we read the cpsr, otherwise a spsr
2139 arm7_9->read_xpsr(target, &value, areg->mode != ARM_MODE_ANY);
2142 if ((retval = jtag_execute_queue()) != ERROR_OK)
2144 return retval;
2147 r->valid = 1;
2148 r->dirty = 0;
2149 buf_set_u32(r->value, 0, 32, value);
2151 if ((mode != ARM_MODE_ANY)
2152 && (mode != armv4_5->core_mode)
2153 && (areg->mode != ARM_MODE_ANY)) {
2154 /* restore processor mode (mask T bit) */
2155 arm7_9->write_xpsr_im8(target,
2156 buf_get_u32(armv4_5->cpsr->value, 0, 8)
2157 & ~0x20, 0, 0);
2160 return ERROR_OK;
2163 static int arm7_9_write_core_reg(struct target *target, struct reg *r,
2164 int num, enum arm_mode mode, uint32_t value)
2166 uint32_t reg[16];
2167 struct arm_reg *areg = r->arch_info;
2168 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2169 struct arm *armv4_5 = &arm7_9->armv4_5_common;
2171 if (!is_arm_mode(armv4_5->core_mode))
2172 return ERROR_FAIL;
2173 if ((num < 0) || (num > 16))
2174 return ERROR_INVALID_ARGUMENTS;
2176 if ((mode != ARM_MODE_ANY)
2177 && (mode != armv4_5->core_mode)
2178 && (areg->mode != ARM_MODE_ANY)) {
2179 uint32_t tmp_cpsr;
2181 /* change processor mode (mask T bit) */
2182 tmp_cpsr = buf_get_u32(armv4_5->cpsr->value, 0, 8) & 0xE0;
2183 tmp_cpsr |= mode;
2184 tmp_cpsr &= ~0x20;
2185 arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
2188 if ((num >= 0) && (num <= 15))
2190 /* write a normal core register */
2191 reg[num] = value;
2193 arm7_9->write_core_regs(target, 1 << num, reg);
2195 else
2197 /* write a program status register
2198 * if the register mode is MODE_ANY, we write the cpsr, otherwise a spsr
2200 int spsr = (areg->mode != ARM_MODE_ANY);
2202 /* if we're writing the CPSR, mask the T bit */
2203 if (!spsr)
2204 value &= ~0x20;
2206 arm7_9->write_xpsr(target, value, spsr);
2209 r->valid = 1;
2210 r->dirty = 0;
2212 if ((mode != ARM_MODE_ANY)
2213 && (mode != armv4_5->core_mode)
2214 && (areg->mode != ARM_MODE_ANY)) {
2215 /* restore processor mode (mask T bit) */
2216 arm7_9->write_xpsr_im8(target,
2217 buf_get_u32(armv4_5->cpsr->value, 0, 8)
2218 & ~0x20, 0, 0);
2221 return jtag_execute_queue();
2224 int arm7_9_read_memory(struct target *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
2226 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2227 struct arm *armv4_5 = &arm7_9->armv4_5_common;
2228 uint32_t reg[16];
2229 uint32_t num_accesses = 0;
2230 int thisrun_accesses;
2231 int i;
2232 uint32_t cpsr;
2233 int retval;
2234 int last_reg = 0;
2236 LOG_DEBUG("address: 0x%8.8" PRIx32 ", size: 0x%8.8" PRIx32 ", count: 0x%8.8" PRIx32 "", address, size, count);
2238 if (target->state != TARGET_HALTED)
2240 LOG_WARNING("target not halted");
2241 return ERROR_TARGET_NOT_HALTED;
2244 /* sanitize arguments */
2245 if (((size != 4) && (size != 2) && (size != 1)) || (count == 0) || !(buffer))
2246 return ERROR_INVALID_ARGUMENTS;
2248 if (((size == 4) && (address & 0x3u)) || ((size == 2) && (address & 0x1u)))
2249 return ERROR_TARGET_UNALIGNED_ACCESS;
2251 /* load the base register with the address of the first word */
2252 reg[0] = address;
2253 arm7_9->write_core_regs(target, 0x1, reg);
2255 int j = 0;
2257 switch (size)
2259 case 4:
2260 while (num_accesses < count)
2262 uint32_t reg_list;
2263 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2264 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2266 if (last_reg <= thisrun_accesses)
2267 last_reg = thisrun_accesses;
2269 arm7_9->load_word_regs(target, reg_list);
2271 /* fast memory reads are only safe when the target is running
2272 * from a sufficiently high clock (32 kHz is usually too slow)
2274 if (arm7_9->fast_memory_access)
2275 retval = arm7_9_execute_fast_sys_speed(target);
2276 else
2277 retval = arm7_9_execute_sys_speed(target);
2278 if (retval != ERROR_OK)
2279 return retval;
2281 arm7_9->read_core_regs_target_buffer(target, reg_list, buffer, 4);
2283 /* advance buffer, count number of accesses */
2284 buffer += thisrun_accesses * 4;
2285 num_accesses += thisrun_accesses;
2287 if ((j++%1024) == 0)
2289 keep_alive();
2292 break;
2293 case 2:
2294 while (num_accesses < count)
2296 uint32_t reg_list;
2297 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2298 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2300 for (i = 1; i <= thisrun_accesses; i++)
2302 if (i > last_reg)
2303 last_reg = i;
2304 arm7_9->load_hword_reg(target, i);
2305 /* fast memory reads are only safe when the target is running
2306 * from a sufficiently high clock (32 kHz is usually too slow)
2308 if (arm7_9->fast_memory_access)
2309 retval = arm7_9_execute_fast_sys_speed(target);
2310 else
2311 retval = arm7_9_execute_sys_speed(target);
2312 if (retval != ERROR_OK)
2314 return retval;
2319 arm7_9->read_core_regs_target_buffer(target, reg_list, buffer, 2);
2321 /* advance buffer, count number of accesses */
2322 buffer += thisrun_accesses * 2;
2323 num_accesses += thisrun_accesses;
2325 if ((j++%1024) == 0)
2327 keep_alive();
2330 break;
2331 case 1:
2332 while (num_accesses < count)
2334 uint32_t reg_list;
2335 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2336 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2338 for (i = 1; i <= thisrun_accesses; i++)
2340 if (i > last_reg)
2341 last_reg = i;
2342 arm7_9->load_byte_reg(target, i);
2343 /* fast memory reads are only safe when the target is running
2344 * from a sufficiently high clock (32 kHz is usually too slow)
2346 if (arm7_9->fast_memory_access)
2347 retval = arm7_9_execute_fast_sys_speed(target);
2348 else
2349 retval = arm7_9_execute_sys_speed(target);
2350 if (retval != ERROR_OK)
2352 return retval;
2356 arm7_9->read_core_regs_target_buffer(target, reg_list, buffer, 1);
2358 /* advance buffer, count number of accesses */
2359 buffer += thisrun_accesses * 1;
2360 num_accesses += thisrun_accesses;
2362 if ((j++%1024) == 0)
2364 keep_alive();
2367 break;
2370 if (!is_arm_mode(armv4_5->core_mode))
2371 return ERROR_FAIL;
2373 for (i = 0; i <= last_reg; i++) {
2374 struct reg *r = arm_reg_current(armv4_5, i);
2376 r->dirty = r->valid;
2379 arm7_9->read_xpsr(target, &cpsr, 0);
2380 if ((retval = jtag_execute_queue()) != ERROR_OK)
2382 LOG_ERROR("JTAG error while reading cpsr");
2383 return ERROR_TARGET_DATA_ABORT;
2386 if (((cpsr & 0x1f) == ARM_MODE_ABT) && (armv4_5->core_mode != ARM_MODE_ABT))
2388 LOG_WARNING("memory read caused data abort (address: 0x%8.8" PRIx32 ", size: 0x%" PRIx32 ", count: 0x%" PRIx32 ")", address, size, count);
2390 arm7_9->write_xpsr_im8(target,
2391 buf_get_u32(armv4_5->cpsr->value, 0, 8)
2392 & ~0x20, 0, 0);
2394 return ERROR_TARGET_DATA_ABORT;
2397 return ERROR_OK;
2400 int arm7_9_write_memory(struct target *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
2402 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2403 struct arm *armv4_5 = &arm7_9->armv4_5_common;
2404 struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
2406 uint32_t reg[16];
2407 uint32_t num_accesses = 0;
2408 int thisrun_accesses;
2409 int i;
2410 uint32_t cpsr;
2411 int retval;
2412 int last_reg = 0;
2414 #ifdef _DEBUG_ARM7_9_
2415 LOG_DEBUG("address: 0x%8.8x, size: 0x%8.8x, count: 0x%8.8x", address, size, count);
2416 #endif
2418 if (target->state != TARGET_HALTED)
2420 LOG_WARNING("target not halted");
2421 return ERROR_TARGET_NOT_HALTED;
2424 /* sanitize arguments */
2425 if (((size != 4) && (size != 2) && (size != 1)) || (count == 0) || !(buffer))
2426 return ERROR_INVALID_ARGUMENTS;
2428 if (((size == 4) && (address & 0x3u)) || ((size == 2) && (address & 0x1u)))
2429 return ERROR_TARGET_UNALIGNED_ACCESS;
2431 /* load the base register with the address of the first word */
2432 reg[0] = address;
2433 arm7_9->write_core_regs(target, 0x1, reg);
2435 /* Clear DBGACK, to make sure memory fetches work as expected */
2436 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 0);
2437 embeddedice_store_reg(dbg_ctrl);
2439 switch (size)
2441 case 4:
2442 while (num_accesses < count)
2444 uint32_t reg_list;
2445 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2446 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2448 for (i = 1; i <= thisrun_accesses; i++)
2450 if (i > last_reg)
2451 last_reg = i;
2452 reg[i] = target_buffer_get_u32(target, buffer);
2453 buffer += 4;
2456 arm7_9->write_core_regs(target, reg_list, reg);
2458 arm7_9->store_word_regs(target, reg_list);
2460 /* fast memory writes are only safe when the target is running
2461 * from a sufficiently high clock (32 kHz is usually too slow)
2463 if (arm7_9->fast_memory_access)
2464 retval = arm7_9_execute_fast_sys_speed(target);
2465 else
2467 retval = arm7_9_execute_sys_speed(target);
2470 * if memory writes are made when the clock is running slow
2471 * (i.e. 32 kHz) which is necessary in some scripts to reconfigure
2472 * processor operations after a "reset halt" or "reset init",
2473 * need to immediately stroke the keep alive or will end up with
2474 * gdb "keep alive not sent error message" problem.
2477 keep_alive();
2480 if (retval != ERROR_OK)
2482 return retval;
2485 num_accesses += thisrun_accesses;
2487 break;
2488 case 2:
2489 while (num_accesses < count)
2491 uint32_t reg_list;
2492 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2493 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2495 for (i = 1; i <= thisrun_accesses; i++)
2497 if (i > last_reg)
2498 last_reg = i;
2499 reg[i] = target_buffer_get_u16(target, buffer) & 0xffff;
2500 buffer += 2;
2503 arm7_9->write_core_regs(target, reg_list, reg);
2505 for (i = 1; i <= thisrun_accesses; i++)
2507 arm7_9->store_hword_reg(target, i);
2509 /* fast memory writes are only safe when the target is running
2510 * from a sufficiently high clock (32 kHz is usually too slow)
2512 if (arm7_9->fast_memory_access)
2513 retval = arm7_9_execute_fast_sys_speed(target);
2514 else
2516 retval = arm7_9_execute_sys_speed(target);
2519 * if memory writes are made when the clock is running slow
2520 * (i.e. 32 kHz) which is necessary in some scripts to reconfigure
2521 * processor operations after a "reset halt" or "reset init",
2522 * need to immediately stroke the keep alive or will end up with
2523 * gdb "keep alive not sent error message" problem.
2526 keep_alive();
2529 if (retval != ERROR_OK)
2531 return retval;
2535 num_accesses += thisrun_accesses;
2537 break;
2538 case 1:
2539 while (num_accesses < count)
2541 uint32_t reg_list;
2542 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2543 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2545 for (i = 1; i <= thisrun_accesses; i++)
2547 if (i > last_reg)
2548 last_reg = i;
2549 reg[i] = *buffer++ & 0xff;
2552 arm7_9->write_core_regs(target, reg_list, reg);
2554 for (i = 1; i <= thisrun_accesses; i++)
2556 arm7_9->store_byte_reg(target, i);
2557 /* fast memory writes are only safe when the target is running
2558 * from a sufficiently high clock (32 kHz is usually too slow)
2560 if (arm7_9->fast_memory_access)
2561 retval = arm7_9_execute_fast_sys_speed(target);
2562 else
2564 retval = arm7_9_execute_sys_speed(target);
2567 * if memory writes are made when the clock is running slow
2568 * (i.e. 32 kHz) which is necessary in some scripts to reconfigure
2569 * processor operations after a "reset halt" or "reset init",
2570 * need to immediately stroke the keep alive or will end up with
2571 * gdb "keep alive not sent error message" problem.
2574 keep_alive();
2577 if (retval != ERROR_OK)
2579 return retval;
2584 num_accesses += thisrun_accesses;
2586 break;
2589 /* Re-Set DBGACK */
2590 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 1);
2591 embeddedice_store_reg(dbg_ctrl);
2593 if (!is_arm_mode(armv4_5->core_mode))
2594 return ERROR_FAIL;
2596 for (i = 0; i <= last_reg; i++) {
2597 struct reg *r = arm_reg_current(armv4_5, i);
2599 r->dirty = r->valid;
2602 arm7_9->read_xpsr(target, &cpsr, 0);
2603 if ((retval = jtag_execute_queue()) != ERROR_OK)
2605 LOG_ERROR("JTAG error while reading cpsr");
2606 return ERROR_TARGET_DATA_ABORT;
2609 if (((cpsr & 0x1f) == ARM_MODE_ABT) && (armv4_5->core_mode != ARM_MODE_ABT))
2611 LOG_WARNING("memory write caused data abort (address: 0x%8.8" PRIx32 ", size: 0x%" PRIx32 ", count: 0x%" PRIx32 ")", address, size, count);
2613 arm7_9->write_xpsr_im8(target,
2614 buf_get_u32(armv4_5->cpsr->value, 0, 8)
2615 & ~0x20, 0, 0);
2617 return ERROR_TARGET_DATA_ABORT;
2620 return ERROR_OK;
2623 static int dcc_count;
2624 static uint8_t *dcc_buffer;
2626 static int arm7_9_dcc_completion(struct target *target, uint32_t exit_point, int timeout_ms, void *arch_info)
2628 int retval = ERROR_OK;
2629 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2631 if ((retval = target_wait_state(target, TARGET_DEBUG_RUNNING, 500)) != ERROR_OK)
2632 return retval;
2634 int little = target->endianness == TARGET_LITTLE_ENDIAN;
2635 int count = dcc_count;
2636 uint8_t *buffer = dcc_buffer;
2637 if (count > 2)
2639 /* Handle first & last using standard embeddedice_write_reg and the middle ones w/the
2640 * core function repeated. */
2641 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_COMMS_DATA], fast_target_buffer_get_u32(buffer, little));
2642 buffer += 4;
2644 struct embeddedice_reg *ice_reg = arm7_9->eice_cache->reg_list[EICE_COMMS_DATA].arch_info;
2645 uint8_t reg_addr = ice_reg->addr & 0x1f;
2646 struct jtag_tap *tap;
2647 tap = ice_reg->jtag_info->tap;
2649 embeddedice_write_dcc(tap, reg_addr, buffer, little, count-2);
2650 buffer += (count-2)*4;
2652 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_COMMS_DATA], fast_target_buffer_get_u32(buffer, little));
2653 } else
2655 int i;
2656 for (i = 0; i < count; i++)
2658 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_COMMS_DATA], fast_target_buffer_get_u32(buffer, little));
2659 buffer += 4;
2663 if ((retval = target_halt(target))!= ERROR_OK)
2665 return retval;
2667 return target_wait_state(target, TARGET_HALTED, 500);
2670 static const uint32_t dcc_code[] =
2672 /* r0 == input, points to memory buffer
2673 * r1 == scratch
2676 /* spin until DCC control (c0) reports data arrived */
2677 0xee101e10, /* w: mrc p14, #0, r1, c0, c0 */
2678 0xe3110001, /* tst r1, #1 */
2679 0x0afffffc, /* bne w */
2681 /* read word from DCC (c1), write to memory */
2682 0xee111e10, /* mrc p14, #0, r1, c1, c0 */
2683 0xe4801004, /* str r1, [r0], #4 */
2685 /* repeat */
2686 0xeafffff9 /* b w */
2689 int arm7_9_bulk_write_memory(struct target *target, uint32_t address, uint32_t count, uint8_t *buffer)
2691 int retval;
2692 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2693 int i;
2695 if (!arm7_9->dcc_downloads)
2696 return target_write_memory(target, address, 4, count, buffer);
2698 /* regrab previously allocated working_area, or allocate a new one */
2699 if (!arm7_9->dcc_working_area)
2701 uint8_t dcc_code_buf[6 * 4];
2703 /* make sure we have a working area */
2704 if (target_alloc_working_area(target, 24, &arm7_9->dcc_working_area) != ERROR_OK)
2706 LOG_INFO("no working area available, falling back to memory writes");
2707 return target_write_memory(target, address, 4, count, buffer);
2710 /* copy target instructions to target endianness */
2711 for (i = 0; i < 6; i++)
2713 target_buffer_set_u32(target, dcc_code_buf + i*4, dcc_code[i]);
2716 /* write DCC code to working area */
2717 if ((retval = target_write_memory(target, arm7_9->dcc_working_area->address, 4, 6, dcc_code_buf)) != ERROR_OK)
2719 return retval;
2723 struct arm_algorithm armv4_5_info;
2724 struct reg_param reg_params[1];
2726 armv4_5_info.common_magic = ARM_COMMON_MAGIC;
2727 armv4_5_info.core_mode = ARM_MODE_SVC;
2728 armv4_5_info.core_state = ARM_STATE_ARM;
2730 init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT);
2732 buf_set_u32(reg_params[0].value, 0, 32, address);
2734 dcc_count = count;
2735 dcc_buffer = buffer;
2736 retval = armv4_5_run_algorithm_inner(target, 0, NULL, 1, reg_params,
2737 arm7_9->dcc_working_area->address,
2738 arm7_9->dcc_working_area->address + 6*4,
2739 20*1000, &armv4_5_info, arm7_9_dcc_completion);
2741 if (retval == ERROR_OK)
2743 uint32_t endaddress = buf_get_u32(reg_params[0].value, 0, 32);
2744 if (endaddress != (address + count*4))
2746 LOG_ERROR("DCC write failed, expected end address 0x%08" PRIx32 " got 0x%0" PRIx32 "", (address + count*4), endaddress);
2747 retval = ERROR_FAIL;
2751 destroy_reg_param(&reg_params[0]);
2753 return retval;
2757 * Perform per-target setup that requires JTAG access.
2759 int arm7_9_examine(struct target *target)
2761 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2762 int retval;
2764 if (!target_was_examined(target)) {
2765 struct reg_cache *t, **cache_p;
2767 t = embeddedice_build_reg_cache(target, arm7_9);
2768 if (t == NULL)
2769 return ERROR_FAIL;
2771 cache_p = register_get_last_cache_p(&target->reg_cache);
2772 (*cache_p) = t;
2773 arm7_9->eice_cache = (*cache_p);
2775 if (arm7_9->armv4_5_common.etm)
2776 (*cache_p)->next = etm_build_reg_cache(target,
2777 &arm7_9->jtag_info,
2778 arm7_9->armv4_5_common.etm);
2780 target_set_examined(target);
2783 retval = embeddedice_setup(target);
2784 if (retval == ERROR_OK)
2785 retval = arm7_9_setup(target);
2786 if (retval == ERROR_OK && arm7_9->armv4_5_common.etm)
2787 retval = etm_setup(target);
2788 return retval;
2792 int arm7_9_check_reset(struct target *target)
2794 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2796 if (get_target_reset_nag() && !arm7_9->dcc_downloads)
2798 LOG_WARNING("NOTE! DCC downloads have not been enabled, defaulting to slow memory writes. Type 'help dcc'.");
2801 if (get_target_reset_nag() && (target->working_area_size == 0))
2803 LOG_WARNING("NOTE! Severe performance degradation without working memory enabled.");
2806 if (get_target_reset_nag() && !arm7_9->fast_memory_access)
2808 LOG_WARNING("NOTE! Severe performance degradation without fast memory access enabled. Type 'help fast'.");
2811 return ERROR_OK;
2814 COMMAND_HANDLER(handle_arm7_9_dbgrq_command)
2816 struct target *target = get_current_target(CMD_CTX);
2817 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2819 if (!is_arm7_9(arm7_9))
2821 command_print(CMD_CTX, "current target isn't an ARM7/ARM9 target");
2822 return ERROR_TARGET_INVALID;
2825 if (CMD_ARGC > 0)
2826 COMMAND_PARSE_ENABLE(CMD_ARGV[0],arm7_9->use_dbgrq);
2828 command_print(CMD_CTX, "use of EmbeddedICE dbgrq instead of breakpoint for target halt %s", (arm7_9->use_dbgrq) ? "enabled" : "disabled");
2830 return ERROR_OK;
2833 COMMAND_HANDLER(handle_arm7_9_fast_memory_access_command)
2835 struct target *target = get_current_target(CMD_CTX);
2836 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2838 if (!is_arm7_9(arm7_9))
2840 command_print(CMD_CTX, "current target isn't an ARM7/ARM9 target");
2841 return ERROR_TARGET_INVALID;
2844 if (CMD_ARGC > 0)
2845 COMMAND_PARSE_ENABLE(CMD_ARGV[0], arm7_9->fast_memory_access);
2847 command_print(CMD_CTX, "fast memory access is %s", (arm7_9->fast_memory_access) ? "enabled" : "disabled");
2849 return ERROR_OK;
2852 COMMAND_HANDLER(handle_arm7_9_dcc_downloads_command)
2854 struct target *target = get_current_target(CMD_CTX);
2855 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2857 if (!is_arm7_9(arm7_9))
2859 command_print(CMD_CTX, "current target isn't an ARM7/ARM9 target");
2860 return ERROR_TARGET_INVALID;
2863 if (CMD_ARGC > 0)
2864 COMMAND_PARSE_ENABLE(CMD_ARGV[0], arm7_9->dcc_downloads);
2866 command_print(CMD_CTX, "dcc downloads are %s", (arm7_9->dcc_downloads) ? "enabled" : "disabled");
2868 return ERROR_OK;
2871 static int arm7_9_setup_semihosting(struct target *target, int enable)
2873 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2875 if (!is_arm7_9(arm7_9))
2877 LOG_USER("current target isn't an ARM7/ARM9 target");
2878 return ERROR_TARGET_INVALID;
2881 if (arm7_9->has_vector_catch) {
2882 struct reg *vector_catch = &arm7_9->eice_cache
2883 ->reg_list[EICE_VEC_CATCH];
2885 if (!vector_catch->valid)
2886 embeddedice_read_reg(vector_catch);
2887 buf_set_u32(vector_catch->value, 2, 1, enable);
2888 embeddedice_store_reg(vector_catch);
2889 } else {
2890 /* TODO: allow optional high vectors and/or BKPT_HARD */
2891 if (enable)
2892 breakpoint_add(target, 8, 4, BKPT_SOFT);
2893 else
2894 breakpoint_remove(target, 8);
2897 return ERROR_OK;
2900 int arm7_9_init_arch_info(struct target *target, struct arm7_9_common *arm7_9)
2902 int retval = ERROR_OK;
2903 struct arm *armv4_5 = &arm7_9->armv4_5_common;
2905 arm7_9->common_magic = ARM7_9_COMMON_MAGIC;
2907 if ((retval = arm_jtag_setup_connection(&arm7_9->jtag_info)) != ERROR_OK)
2908 return retval;
2910 /* caller must have allocated via calloc(), so everything's zeroed */
2912 arm7_9->wp_available_max = 2;
2914 arm7_9->fast_memory_access = false;
2915 arm7_9->dcc_downloads = false;
2917 armv4_5->arch_info = arm7_9;
2918 armv4_5->read_core_reg = arm7_9_read_core_reg;
2919 armv4_5->write_core_reg = arm7_9_write_core_reg;
2920 armv4_5->full_context = arm7_9_full_context;
2921 armv4_5->setup_semihosting = arm7_9_setup_semihosting;
2923 retval = arm_init_arch_info(target, armv4_5);
2924 if (retval != ERROR_OK)
2925 return retval;
2927 return target_register_timer_callback(arm7_9_handle_target_request,
2928 1, 1, target);
2931 static const struct command_registration arm7_9_any_command_handlers[] = {
2933 "dbgrq",
2934 .handler = handle_arm7_9_dbgrq_command,
2935 .mode = COMMAND_ANY,
2936 .usage = "['enable'|'disable']",
2937 .help = "use EmbeddedICE dbgrq instead of breakpoint "
2938 "for target halt requests",
2941 "fast_memory_access",
2942 .handler = handle_arm7_9_fast_memory_access_command,
2943 .mode = COMMAND_ANY,
2944 .usage = "['enable'|'disable']",
2945 .help = "use fast memory accesses instead of slower "
2946 "but potentially safer accesses",
2949 "dcc_downloads",
2950 .handler = handle_arm7_9_dcc_downloads_command,
2951 .mode = COMMAND_ANY,
2952 .usage = "['enable'|'disable']",
2953 .help = "use DCC downloads for larger memory writes",
2955 COMMAND_REGISTRATION_DONE
2957 const struct command_registration arm7_9_command_handlers[] = {
2959 .chain = arm_command_handlers,
2962 .chain = etm_command_handlers,
2965 .name = "arm7_9",
2966 .mode = COMMAND_ANY,
2967 .help = "arm7/9 specific commands",
2968 .chain = arm7_9_any_command_handlers,
2970 COMMAND_REGISTRATION_DONE