ARM ADI-V5: PIDs and CIDs are 8 bits
[openocd/dnglaze.git] / src / target / arm_adi_v5.c
blobd6cc9381f0bdec70c11a74eca777039baf372645
1 /***************************************************************************
2 * Copyright (C) 2006 by Magnus Lundin *
3 * lundin@mlu.mine.nu *
4 * *
5 * Copyright (C) 2008 by Spencer Oliver *
6 * spen@spen-soft.co.uk *
7 * *
8 * Copyright (C) 2009 by Oyvind Harboe *
9 * oyvind.harboe@zylin.com *
10 * *
11 * Copyright (C) 2009-2010 by David Brownell *
12 * *
13 * This program is free software; you can redistribute it and/or modify *
14 * it under the terms of the GNU General Public License as published by *
15 * the Free Software Foundation; either version 2 of the License, or *
16 * (at your option) any later version. *
17 * *
18 * This program is distributed in the hope that it will be useful, *
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
21 * GNU General Public License for more details. *
22 * *
23 * You should have received a copy of the GNU General Public License *
24 * along with this program; if not, write to the *
25 * Free Software Foundation, Inc., *
26 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
27 ***************************************************************************/
29 /**
30 * @file
31 * This file implements support for the ARM Debug Interface version 5 (ADIv5)
32 * debugging architecture. Compared with previous versions, this includes
33 * a low pin-count Serial Wire Debug (SWD) alternative to JTAG for message
34 * transport, and focusses on memory mapped resources as defined by the
35 * CoreSight architecture.
37 * A key concept in ADIv5 is the Debug Access Port, or DAP. A DAP has two
38 * basic components: a Debug Port (DP) transporting messages to and from a
39 * debugger, and an Access Port (AP) accessing resources. Three types of DP
40 * are defined. One uses only JTAG for communication, and is called JTAG-DP.
41 * One uses only SWD for communication, and is called SW-DP. The third can
42 * use either SWD or JTAG, and is called SWJ-DP. The most common type of AP
43 * is used to access memory mapped resources and is called a MEM-AP. Also a
44 * JTAG-AP is also defined, bridging to JTAG resources; those are uncommon.
46 * This programming interface allows DAP pipelined operations through a
47 * transaction queue. This primarily affects AP operations (such as using
48 * a MEM-AP to access memory or registers). If the current transaction has
49 * not finished by the time the next one must begin, and the ORUNDETECT bit
50 * is set in the DP_CTRL_STAT register, the SSTICKYORUN status is set and
51 * further AP operations will fail. There are two basic methods to avoid
52 * such overrun errors. One involves polling for status instead of using
53 * transaction piplining. The other involves adding delays to ensure the
54 * AP has enough time to complete one operation before starting the next
55 * one. (For JTAG these delays are controlled by memaccess_tck.)
59 * Relevant specifications from ARM include:
61 * ARM(tm) Debug Interface v5 Architecture Specification ARM IHI 0031A
62 * CoreSight(tm) v1.0 Architecture Specification ARM IHI 0029B
64 * CoreSight(tm) DAP-Lite TRM, ARM DDI 0316D
65 * Cortex-M3(tm) TRM, ARM DDI 0337G
68 #ifdef HAVE_CONFIG_H
69 #include "config.h"
70 #endif
72 #include "arm.h"
73 #include "arm_adi_v5.h"
74 #include <helper/time_support.h>
77 /* ARM ADI Specification requires at least 10 bits used for TAR autoincrement */
80 uint32_t tar_block_size(uint32_t address)
81 Return the largest block starting at address that does not cross a tar block size alignment boundary
83 static uint32_t max_tar_block_size(uint32_t tar_autoincr_block, uint32_t address)
85 return (tar_autoincr_block - ((tar_autoincr_block - 1) & address)) >> 2;
88 /***************************************************************************
89 * *
90 * DP and MEM-AP register access through APACC and DPACC *
91 * *
92 ***************************************************************************/
94 /**
95 * Select one of the APs connected to the specified DAP. The
96 * selection is implicitly used with future AP transactions.
97 * This is a NOP if the specified AP is already selected.
99 * @param dap The DAP
100 * @param apsel Number of the AP to (implicitly) use with further
101 * transactions. This normally identifies a MEM-AP.
103 void dap_ap_select(struct adiv5_dap *dap,uint8_t apsel)
105 uint32_t select_apsel = (apsel << 24) & 0xFF000000;
107 if (select_apsel != dap->apsel)
109 dap->apsel = select_apsel;
110 /* Switching AP invalidates cached values.
111 * Values MUST BE UPDATED BEFORE AP ACCESS.
113 dap->ap_bank_value = -1;
114 dap->ap_csw_value = -1;
115 dap->ap_tar_value = -1;
120 * Queue transactions setting up transfer parameters for the
121 * currently selected MEM-AP.
123 * Subsequent transfers using registers like AP_REG_DRW or AP_REG_BD2
124 * initiate data reads or writes using memory or peripheral addresses.
125 * If the CSW is configured for it, the TAR may be automatically
126 * incremented after each transfer.
128 * @todo Rename to reflect it being specifically a MEM-AP function.
130 * @param dap The DAP connected to the MEM-AP.
131 * @param csw MEM-AP Control/Status Word (CSW) register to assign. If this
132 * matches the cached value, the register is not changed.
133 * @param tar MEM-AP Transfer Address Register (TAR) to assign. If this
134 * matches the cached address, the register is not changed.
136 * @return ERROR_OK if the transaction was properly queued, else a fault code.
138 int dap_setup_accessport(struct adiv5_dap *dap, uint32_t csw, uint32_t tar)
140 int retval;
142 csw = csw | CSW_DBGSWENABLE | CSW_MASTER_DEBUG | CSW_HPROT;
143 if (csw != dap->ap_csw_value)
145 /* LOG_DEBUG("DAP: Set CSW %x",csw); */
146 retval = dap_queue_ap_write(dap, AP_REG_CSW, csw);
147 if (retval != ERROR_OK)
148 return retval;
149 dap->ap_csw_value = csw;
151 if (tar != dap->ap_tar_value)
153 /* LOG_DEBUG("DAP: Set TAR %x",tar); */
154 retval = dap_queue_ap_write(dap, AP_REG_TAR, tar);
155 if (retval != ERROR_OK)
156 return retval;
157 dap->ap_tar_value = tar;
159 /* Disable TAR cache when autoincrementing */
160 if (csw & CSW_ADDRINC_MASK)
161 dap->ap_tar_value = -1;
162 return ERROR_OK;
166 * Asynchronous (queued) read of a word from memory or a system register.
168 * @param dap The DAP connected to the MEM-AP performing the read.
169 * @param address Address of the 32-bit word to read; it must be
170 * readable by the currently selected MEM-AP.
171 * @param value points to where the word will be stored when the
172 * transaction queue is flushed (assuming no errors).
174 * @return ERROR_OK for success. Otherwise a fault code.
176 int mem_ap_read_u32(struct adiv5_dap *dap, uint32_t address,
177 uint32_t *value)
179 int retval;
181 /* Use banked addressing (REG_BDx) to avoid some link traffic
182 * (updating TAR) when reading several consecutive addresses.
184 retval = dap_setup_accessport(dap, CSW_32BIT | CSW_ADDRINC_OFF,
185 address & 0xFFFFFFF0);
186 if (retval != ERROR_OK)
187 return retval;
189 return dap_queue_ap_read(dap, AP_REG_BD0 | (address & 0xC), value);
193 * Synchronous read of a word from memory or a system register.
194 * As a side effect, this flushes any queued transactions.
196 * @param dap The DAP connected to the MEM-AP performing the read.
197 * @param address Address of the 32-bit word to read; it must be
198 * readable by the currently selected MEM-AP.
199 * @param value points to where the result will be stored.
201 * @return ERROR_OK for success; *value holds the result.
202 * Otherwise a fault code.
204 int mem_ap_read_atomic_u32(struct adiv5_dap *dap, uint32_t address,
205 uint32_t *value)
207 int retval;
209 retval = mem_ap_read_u32(dap, address, value);
210 if (retval != ERROR_OK)
211 return retval;
213 return dap_run(dap);
217 * Asynchronous (queued) write of a word to memory or a system register.
219 * @param dap The DAP connected to the MEM-AP.
220 * @param address Address to be written; it must be writable by
221 * the currently selected MEM-AP.
222 * @param value Word that will be written to the address when transaction
223 * queue is flushed (assuming no errors).
225 * @return ERROR_OK for success. Otherwise a fault code.
227 int mem_ap_write_u32(struct adiv5_dap *dap, uint32_t address,
228 uint32_t value)
230 int retval;
232 /* Use banked addressing (REG_BDx) to avoid some link traffic
233 * (updating TAR) when writing several consecutive addresses.
235 retval = dap_setup_accessport(dap, CSW_32BIT | CSW_ADDRINC_OFF,
236 address & 0xFFFFFFF0);
237 if (retval != ERROR_OK)
238 return retval;
240 return dap_queue_ap_write(dap, AP_REG_BD0 | (address & 0xC),
241 value);
245 * Synchronous write of a word to memory or a system register.
246 * As a side effect, this flushes any queued transactions.
248 * @param dap The DAP connected to the MEM-AP.
249 * @param address Address to be written; it must be writable by
250 * the currently selected MEM-AP.
251 * @param value Word that will be written.
253 * @return ERROR_OK for success; the data was written. Otherwise a fault code.
255 int mem_ap_write_atomic_u32(struct adiv5_dap *dap, uint32_t address,
256 uint32_t value)
258 int retval = mem_ap_write_u32(dap, address, value);
260 if (retval != ERROR_OK)
261 return retval;
263 return dap_run(dap);
266 /*****************************************************************************
268 * mem_ap_write_buf(struct adiv5_dap *dap, uint8_t *buffer, int count, uint32_t address) *
270 * Write a buffer in target order (little endian) *
272 *****************************************************************************/
273 int mem_ap_write_buf_u32(struct adiv5_dap *dap, uint8_t *buffer, int count, uint32_t address)
275 int wcount, blocksize, writecount, errorcount = 0, retval = ERROR_OK;
276 uint32_t adr = address;
277 uint8_t* pBuffer = buffer;
279 count >>= 2;
280 wcount = count;
282 /* if we have an unaligned access - reorder data */
283 if (adr & 0x3u)
285 for (writecount = 0; writecount < count; writecount++)
287 int i;
288 uint32_t outvalue;
289 memcpy(&outvalue, pBuffer, sizeof(uint32_t));
291 for (i = 0; i < 4; i++)
293 *((uint8_t*)pBuffer + (adr & 0x3)) = outvalue;
294 outvalue >>= 8;
295 adr++;
297 pBuffer += sizeof(uint32_t);
301 while (wcount > 0)
303 /* Adjust to write blocks within boundaries aligned to the TAR autoincremnent size*/
304 blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
305 if (wcount < blocksize)
306 blocksize = wcount;
308 /* handle unaligned data at 4k boundary */
309 if (blocksize == 0)
310 blocksize = 1;
312 dap_setup_accessport(dap, CSW_32BIT | CSW_ADDRINC_SINGLE, address);
314 for (writecount = 0; writecount < blocksize; writecount++)
316 retval = dap_queue_ap_write(dap, AP_REG_DRW,
317 *(uint32_t *) (buffer + 4 * writecount));
318 if (retval != ERROR_OK)
319 break;
322 if (dap_run(dap) == ERROR_OK)
324 wcount = wcount - blocksize;
325 address = address + 4 * blocksize;
326 buffer = buffer + 4 * blocksize;
328 else
330 errorcount++;
333 if (errorcount > 1)
335 LOG_WARNING("Block write error address 0x%" PRIx32 ", wcount 0x%x", address, wcount);
336 /* REVISIT return the *actual* fault code */
337 return ERROR_JTAG_DEVICE_ERROR;
341 return retval;
344 static int mem_ap_write_buf_packed_u16(struct adiv5_dap *dap,
345 uint8_t *buffer, int count, uint32_t address)
347 int retval = ERROR_OK;
348 int wcount, blocksize, writecount, i;
350 wcount = count >> 1;
352 while (wcount > 0)
354 int nbytes;
356 /* Adjust to write blocks within boundaries aligned to the TAR autoincremnent size*/
357 blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
359 if (wcount < blocksize)
360 blocksize = wcount;
362 /* handle unaligned data at 4k boundary */
363 if (blocksize == 0)
364 blocksize = 1;
366 dap_setup_accessport(dap, CSW_16BIT | CSW_ADDRINC_PACKED, address);
367 writecount = blocksize;
371 nbytes = MIN((writecount << 1), 4);
373 if (nbytes < 4)
375 if (mem_ap_write_buf_u16(dap, buffer,
376 nbytes, address) != ERROR_OK)
378 LOG_WARNING("Block write error address "
379 "0x%" PRIx32 ", count 0x%x",
380 address, count);
381 return ERROR_JTAG_DEVICE_ERROR;
384 address += nbytes >> 1;
386 else
388 uint32_t outvalue;
389 memcpy(&outvalue, buffer, sizeof(uint32_t));
391 for (i = 0; i < nbytes; i++)
393 *((uint8_t*)buffer + (address & 0x3)) = outvalue;
394 outvalue >>= 8;
395 address++;
398 memcpy(&outvalue, buffer, sizeof(uint32_t));
399 retval = dap_queue_ap_write(dap,
400 AP_REG_DRW, outvalue);
401 if (retval != ERROR_OK)
402 break;
404 if (dap_run(dap) != ERROR_OK)
406 LOG_WARNING("Block write error address "
407 "0x%" PRIx32 ", count 0x%x",
408 address, count);
409 /* REVISIT return *actual* fault code */
410 return ERROR_JTAG_DEVICE_ERROR;
414 buffer += nbytes >> 1;
415 writecount -= nbytes >> 1;
417 } while (writecount);
418 wcount -= blocksize;
421 return retval;
424 int mem_ap_write_buf_u16(struct adiv5_dap *dap, uint8_t *buffer, int count, uint32_t address)
426 int retval = ERROR_OK;
428 if (count >= 4)
429 return mem_ap_write_buf_packed_u16(dap, buffer, count, address);
431 while (count > 0)
433 dap_setup_accessport(dap, CSW_16BIT | CSW_ADDRINC_SINGLE, address);
434 uint16_t svalue;
435 memcpy(&svalue, buffer, sizeof(uint16_t));
436 uint32_t outvalue = (uint32_t)svalue << 8 * (address & 0x3);
437 retval = dap_queue_ap_write(dap, AP_REG_DRW, outvalue);
438 if (retval != ERROR_OK)
439 break;
441 retval = dap_run(dap);
442 if (retval != ERROR_OK)
443 break;
445 count -= 2;
446 address += 2;
447 buffer += 2;
450 return retval;
453 static int mem_ap_write_buf_packed_u8(struct adiv5_dap *dap,
454 uint8_t *buffer, int count, uint32_t address)
456 int retval = ERROR_OK;
457 int wcount, blocksize, writecount, i;
459 wcount = count;
461 while (wcount > 0)
463 int nbytes;
465 /* Adjust to write blocks within boundaries aligned to the TAR autoincremnent size*/
466 blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
468 if (wcount < blocksize)
469 blocksize = wcount;
471 dap_setup_accessport(dap, CSW_8BIT | CSW_ADDRINC_PACKED, address);
472 writecount = blocksize;
476 nbytes = MIN(writecount, 4);
478 if (nbytes < 4)
480 if (mem_ap_write_buf_u8(dap, buffer, nbytes, address) != ERROR_OK)
482 LOG_WARNING("Block write error address "
483 "0x%" PRIx32 ", count 0x%x",
484 address, count);
485 return ERROR_JTAG_DEVICE_ERROR;
488 address += nbytes;
490 else
492 uint32_t outvalue;
493 memcpy(&outvalue, buffer, sizeof(uint32_t));
495 for (i = 0; i < nbytes; i++)
497 *((uint8_t*)buffer + (address & 0x3)) = outvalue;
498 outvalue >>= 8;
499 address++;
502 memcpy(&outvalue, buffer, sizeof(uint32_t));
503 retval = dap_queue_ap_write(dap,
504 AP_REG_DRW, outvalue);
505 if (retval != ERROR_OK)
506 break;
508 if (dap_run(dap) != ERROR_OK)
510 LOG_WARNING("Block write error address "
511 "0x%" PRIx32 ", count 0x%x",
512 address, count);
513 /* REVISIT return *actual* fault code */
514 return ERROR_JTAG_DEVICE_ERROR;
518 buffer += nbytes;
519 writecount -= nbytes;
521 } while (writecount);
522 wcount -= blocksize;
525 return retval;
528 int mem_ap_write_buf_u8(struct adiv5_dap *dap, uint8_t *buffer, int count, uint32_t address)
530 int retval = ERROR_OK;
532 if (count >= 4)
533 return mem_ap_write_buf_packed_u8(dap, buffer, count, address);
535 while (count > 0)
537 dap_setup_accessport(dap, CSW_8BIT | CSW_ADDRINC_SINGLE, address);
538 uint32_t outvalue = (uint32_t)*buffer << 8 * (address & 0x3);
539 retval = dap_queue_ap_write(dap, AP_REG_DRW, outvalue);
540 if (retval != ERROR_OK)
541 break;
543 retval = dap_run(dap);
544 if (retval != ERROR_OK)
545 break;
547 count--;
548 address++;
549 buffer++;
552 return retval;
555 /* FIXME don't import ... this is a temporary workaround for the
556 * mem_ap_read_buf_u32() mess, until it's no longer JTAG-specific.
558 extern int adi_jtag_dp_scan(struct adiv5_dap *dap,
559 uint8_t instr, uint8_t reg_addr, uint8_t RnW,
560 uint8_t *outvalue, uint8_t *invalue, uint8_t *ack);
563 * Synchronously read a block of 32-bit words into a buffer
564 * @param dap The DAP connected to the MEM-AP.
565 * @param buffer where the words will be stored (in host byte order).
566 * @param count How many words to read.
567 * @param address Memory address from which to read words; all the
568 * words must be readable by the currently selected MEM-AP.
570 int mem_ap_read_buf_u32(struct adiv5_dap *dap, uint8_t *buffer,
571 int count, uint32_t address)
573 int wcount, blocksize, readcount, errorcount = 0, retval = ERROR_OK;
574 uint32_t adr = address;
575 uint8_t* pBuffer = buffer;
577 count >>= 2;
578 wcount = count;
580 while (wcount > 0)
582 /* Adjust to read blocks within boundaries aligned to the
583 * TAR autoincrement size (at least 2^10). Autoincrement
584 * mode avoids an extra per-word roundtrip to update TAR.
586 blocksize = max_tar_block_size(dap->tar_autoincr_block,
587 address);
588 if (wcount < blocksize)
589 blocksize = wcount;
591 /* handle unaligned data at 4k boundary */
592 if (blocksize == 0)
593 blocksize = 1;
595 dap_setup_accessport(dap, CSW_32BIT | CSW_ADDRINC_SINGLE,
596 address);
598 /* FIXME remove these three calls to adi_jtag_dp_scan(),
599 * so this routine becomes transport-neutral. Be careful
600 * not to cause performance problems with JTAG; would it
601 * suffice to loop over dap_queue_ap_read(), or would that
602 * be slower when JTAG is the chosen transport?
605 /* Scan out first read */
606 retval = adi_jtag_dp_scan(dap, JTAG_DP_APACC, AP_REG_DRW,
607 DPAP_READ, 0, NULL, NULL);
608 if (retval != ERROR_OK)
609 return retval;
610 for (readcount = 0; readcount < blocksize - 1; readcount++)
612 /* Scan out next read; scan in posted value for the
613 * previous one. Assumes read is acked "OK/FAULT",
614 * and CTRL_STAT says that meant "OK".
616 retval = adi_jtag_dp_scan(dap, JTAG_DP_APACC, AP_REG_DRW,
617 DPAP_READ, 0, buffer + 4 * readcount,
618 &dap->ack);
619 if (retval != ERROR_OK)
620 return retval;
623 /* Scan in last posted value; RDBUFF has no other effect,
624 * assuming ack is OK/FAULT and CTRL_STAT says "OK".
626 retval = adi_jtag_dp_scan(dap, JTAG_DP_DPACC, DP_RDBUFF,
627 DPAP_READ, 0, buffer + 4 * readcount,
628 &dap->ack);
629 if (retval != ERROR_OK)
630 return retval;
632 retval = dap_run(dap);
633 if (retval != ERROR_OK)
635 errorcount++;
636 if (errorcount <= 1)
638 /* try again */
639 continue;
641 LOG_WARNING("Block read error address 0x%" PRIx32, address);
642 return retval;
644 wcount = wcount - blocksize;
645 address += 4 * blocksize;
646 buffer += 4 * blocksize;
649 /* if we have an unaligned access - reorder data */
650 if (adr & 0x3u)
652 for (readcount = 0; readcount < count; readcount++)
654 int i;
655 uint32_t data;
656 memcpy(&data, pBuffer, sizeof(uint32_t));
658 for (i = 0; i < 4; i++)
660 *((uint8_t*)pBuffer) =
661 (data >> 8 * (adr & 0x3));
662 pBuffer++;
663 adr++;
668 return retval;
671 static int mem_ap_read_buf_packed_u16(struct adiv5_dap *dap,
672 uint8_t *buffer, int count, uint32_t address)
674 uint32_t invalue;
675 int retval = ERROR_OK;
676 int wcount, blocksize, readcount, i;
678 wcount = count >> 1;
680 while (wcount > 0)
682 int nbytes;
684 /* Adjust to read blocks within boundaries aligned to the TAR autoincremnent size*/
685 blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
686 if (wcount < blocksize)
687 blocksize = wcount;
689 dap_setup_accessport(dap, CSW_16BIT | CSW_ADDRINC_PACKED, address);
691 /* handle unaligned data at 4k boundary */
692 if (blocksize == 0)
693 blocksize = 1;
694 readcount = blocksize;
698 retval = dap_queue_ap_read(dap, AP_REG_DRW, &invalue);
699 if (dap_run(dap) != ERROR_OK)
701 LOG_WARNING("Block read error address 0x%" PRIx32 ", count 0x%x", address, count);
702 /* REVISIT return the *actual* fault code */
703 return ERROR_JTAG_DEVICE_ERROR;
706 nbytes = MIN((readcount << 1), 4);
708 for (i = 0; i < nbytes; i++)
710 *((uint8_t*)buffer) = (invalue >> 8 * (address & 0x3));
711 buffer++;
712 address++;
715 readcount -= (nbytes >> 1);
716 } while (readcount);
717 wcount -= blocksize;
720 return retval;
724 * Synchronously read a block of 16-bit halfwords into a buffer
725 * @param dap The DAP connected to the MEM-AP.
726 * @param buffer where the halfwords will be stored (in host byte order).
727 * @param count How many halfwords to read.
728 * @param address Memory address from which to read words; all the
729 * words must be readable by the currently selected MEM-AP.
731 int mem_ap_read_buf_u16(struct adiv5_dap *dap, uint8_t *buffer,
732 int count, uint32_t address)
734 uint32_t invalue, i;
735 int retval = ERROR_OK;
737 if (count >= 4)
738 return mem_ap_read_buf_packed_u16(dap, buffer, count, address);
740 while (count > 0)
742 dap_setup_accessport(dap, CSW_16BIT | CSW_ADDRINC_SINGLE, address);
743 retval = dap_queue_ap_read(dap, AP_REG_DRW, &invalue);
744 if (retval != ERROR_OK)
745 break;
747 retval = dap_run(dap);
748 if (retval != ERROR_OK)
749 break;
751 if (address & 0x1)
753 for (i = 0; i < 2; i++)
755 *((uint8_t*)buffer) = (invalue >> 8 * (address & 0x3));
756 buffer++;
757 address++;
760 else
762 uint16_t svalue = (invalue >> 8 * (address & 0x3));
763 memcpy(buffer, &svalue, sizeof(uint16_t));
764 address += 2;
765 buffer += 2;
767 count -= 2;
770 return retval;
773 /* FIX!!! is this a potential performance bottleneck w.r.t. requiring too many
774 * roundtrips when jtag_execute_queue() has a large overhead(e.g. for USB)s?
776 * The solution is to arrange for a large out/in scan in this loop and
777 * and convert data afterwards.
779 static int mem_ap_read_buf_packed_u8(struct adiv5_dap *dap,
780 uint8_t *buffer, int count, uint32_t address)
782 uint32_t invalue;
783 int retval = ERROR_OK;
784 int wcount, blocksize, readcount, i;
786 wcount = count;
788 while (wcount > 0)
790 int nbytes;
792 /* Adjust to read blocks within boundaries aligned to the TAR autoincremnent size*/
793 blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
795 if (wcount < blocksize)
796 blocksize = wcount;
798 dap_setup_accessport(dap, CSW_8BIT | CSW_ADDRINC_PACKED, address);
799 readcount = blocksize;
803 retval = dap_queue_ap_read(dap, AP_REG_DRW, &invalue);
804 if (dap_run(dap) != ERROR_OK)
806 LOG_WARNING("Block read error address 0x%" PRIx32 ", count 0x%x", address, count);
807 /* REVISIT return the *actual* fault code */
808 return ERROR_JTAG_DEVICE_ERROR;
811 nbytes = MIN(readcount, 4);
813 for (i = 0; i < nbytes; i++)
815 *((uint8_t*)buffer) = (invalue >> 8 * (address & 0x3));
816 buffer++;
817 address++;
820 readcount -= nbytes;
821 } while (readcount);
822 wcount -= blocksize;
825 return retval;
829 * Synchronously read a block of bytes into a buffer
830 * @param dap The DAP connected to the MEM-AP.
831 * @param buffer where the bytes will be stored.
832 * @param count How many bytes to read.
833 * @param address Memory address from which to read data; all the
834 * data must be readable by the currently selected MEM-AP.
836 int mem_ap_read_buf_u8(struct adiv5_dap *dap, uint8_t *buffer,
837 int count, uint32_t address)
839 uint32_t invalue;
840 int retval = ERROR_OK;
842 if (count >= 4)
843 return mem_ap_read_buf_packed_u8(dap, buffer, count, address);
845 while (count > 0)
847 dap_setup_accessport(dap, CSW_8BIT | CSW_ADDRINC_SINGLE, address);
848 retval = dap_queue_ap_read(dap, AP_REG_DRW, &invalue);
849 retval = dap_run(dap);
850 if (retval != ERROR_OK)
851 break;
853 *((uint8_t*)buffer) = (invalue >> 8 * (address & 0x3));
854 count--;
855 address++;
856 buffer++;
859 return retval;
862 /*--------------------------------------------------------------------------*/
865 /* FIXME don't import ... just initialize as
866 * part of DAP transport setup
868 extern const struct dap_ops jtag_dp_ops;
870 /*--------------------------------------------------------------------------*/
873 * Initialize a DAP. This sets up the power domains, prepares the DP
874 * for further use, and arranges to use AP #0 for all AP operations
875 * until dap_ap-select() changes that policy.
877 * @param dap The DAP being initialized.
879 * @todo Rename this. We also need an initialization scheme which account
880 * for SWD transports not just JTAG; that will need to address differences
881 * in layering. (JTAG is useful without any debug target; but not SWD.)
882 * And this may not even use an AHB-AP ... e.g. DAP-Lite uses an APB-AP.
884 int ahbap_debugport_init(struct adiv5_dap *dap)
886 uint32_t idreg, romaddr, dummy;
887 uint32_t ctrlstat;
888 int cnt = 0;
889 int retval;
891 LOG_DEBUG(" ");
893 /* JTAG-DP or SWJ-DP, in JTAG mode */
894 dap->ops = &jtag_dp_ops;
896 /* Default MEM-AP setup.
898 * REVISIT AP #0 may be an inappropriate default for this.
899 * Should we probe, or take a hint from the caller?
900 * Presumably we can ignore the possibility of multiple APs.
902 dap->apsel = !0;
903 dap_ap_select(dap, 0);
905 /* DP initialization */
907 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &dummy);
908 if (retval != ERROR_OK)
909 return retval;
911 retval = dap_queue_dp_write(dap, DP_CTRL_STAT, SSTICKYERR);
912 if (retval != ERROR_OK)
913 return retval;
915 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &dummy);
916 if (retval != ERROR_OK)
917 return retval;
919 dap->dp_ctrl_stat = CDBGPWRUPREQ | CSYSPWRUPREQ;
920 retval = dap_queue_dp_write(dap, DP_CTRL_STAT, dap->dp_ctrl_stat);
921 if (retval != ERROR_OK)
922 return retval;
924 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &ctrlstat);
925 if (retval != ERROR_OK)
926 return retval;
927 if ((retval = dap_run(dap)) != ERROR_OK)
928 return retval;
930 /* Check that we have debug power domains activated */
931 while (!(ctrlstat & CDBGPWRUPACK) && (cnt++ < 10))
933 LOG_DEBUG("DAP: wait CDBGPWRUPACK");
934 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &ctrlstat);
935 if (retval != ERROR_OK)
936 return retval;
937 if ((retval = dap_run(dap)) != ERROR_OK)
938 return retval;
939 alive_sleep(10);
942 while (!(ctrlstat & CSYSPWRUPACK) && (cnt++ < 10))
944 LOG_DEBUG("DAP: wait CSYSPWRUPACK");
945 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &ctrlstat);
946 if (retval != ERROR_OK)
947 return retval;
948 if ((retval = dap_run(dap)) != ERROR_OK)
949 return retval;
950 alive_sleep(10);
953 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &dummy);
954 if (retval != ERROR_OK)
955 return retval;
956 /* With debug power on we can activate OVERRUN checking */
957 dap->dp_ctrl_stat = CDBGPWRUPREQ | CSYSPWRUPREQ | CORUNDETECT;
958 retval = dap_queue_dp_write(dap, DP_CTRL_STAT, dap->dp_ctrl_stat);
959 if (retval != ERROR_OK)
960 return retval;
961 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &dummy);
962 if (retval != ERROR_OK)
963 return retval;
966 * REVISIT this isn't actually *initializing* anything in an AP,
967 * and doesn't care if it's a MEM-AP at all (much less AHB-AP).
968 * Should it? If the ROM address is valid, is this the right
969 * place to scan the table and do any topology detection?
971 retval = dap_queue_ap_read(dap, AP_REG_IDR, &idreg);
972 retval = dap_queue_ap_read(dap, AP_REG_BASE, &romaddr);
974 if ((retval = dap_run(dap)) != ERROR_OK)
975 return retval;
977 LOG_DEBUG("MEM-AP #%" PRId32 " ID Register 0x%" PRIx32
978 ", Debug ROM Address 0x%" PRIx32,
979 dap->apsel, idreg, romaddr);
981 return ERROR_OK;
984 /* CID interpretation -- see ARM IHI 0029B section 3
985 * and ARM IHI 0031A table 13-3.
987 static const char *class_description[16] ={
988 "Reserved", "ROM table", "Reserved", "Reserved",
989 "Reserved", "Reserved", "Reserved", "Reserved",
990 "Reserved", "CoreSight component", "Reserved", "Peripheral Test Block",
991 "Reserved", "OptimoDE DESS",
992 "Generic IP component", "PrimeCell or System component"
995 static bool
996 is_dap_cid_ok(uint32_t cid3, uint32_t cid2, uint32_t cid1, uint32_t cid0)
998 return cid3 == 0xb1 && cid2 == 0x05
999 && ((cid1 & 0x0f) == 0) && cid0 == 0x0d;
1002 static int dap_info_command(struct command_context *cmd_ctx,
1003 struct adiv5_dap *dap, int apsel)
1005 int retval;
1006 uint32_t dbgbase, apid;
1007 int romtable_present = 0;
1008 uint8_t mem_ap;
1009 uint32_t apselold;
1011 /* AP address is in bits 31:24 of DP_SELECT */
1012 if (apsel >= 256)
1013 return ERROR_INVALID_ARGUMENTS;
1015 apselold = dap->apsel;
1016 dap_ap_select(dap, apsel);
1017 retval = dap_queue_ap_read(dap, AP_REG_BASE, &dbgbase);
1018 retval = dap_queue_ap_read(dap, AP_REG_IDR, &apid);
1019 retval = dap_run(dap);
1020 if (retval != ERROR_OK)
1021 return retval;
1023 /* Now we read ROM table ID registers, ref. ARM IHI 0029B sec */
1024 mem_ap = ((apid&0x10000) && ((apid&0x0F) != 0));
1025 command_print(cmd_ctx, "AP ID register 0x%8.8" PRIx32, apid);
1026 if (apid)
1028 switch (apid&0x0F)
1030 case 0:
1031 command_print(cmd_ctx, "\tType is JTAG-AP");
1032 break;
1033 case 1:
1034 command_print(cmd_ctx, "\tType is MEM-AP AHB");
1035 break;
1036 case 2:
1037 command_print(cmd_ctx, "\tType is MEM-AP APB");
1038 break;
1039 default:
1040 command_print(cmd_ctx, "\tUnknown AP type");
1041 break;
1044 /* NOTE: a MEM-AP may have a single CoreSight component that's
1045 * not a ROM table ... or have no such components at all.
1047 if (mem_ap)
1048 command_print(cmd_ctx, "AP BASE 0x%8.8" PRIx32,
1049 dbgbase);
1051 else
1053 command_print(cmd_ctx, "No AP found at this apsel 0x%x", apsel);
1056 romtable_present = ((mem_ap) && (dbgbase != 0xFFFFFFFF));
1057 if (romtable_present)
1059 uint32_t cid0,cid1,cid2,cid3,memtype,romentry;
1060 uint16_t entry_offset;
1062 /* bit 16 of apid indicates a memory access port */
1063 if (dbgbase & 0x02)
1064 command_print(cmd_ctx, "\tValid ROM table present");
1065 else
1066 command_print(cmd_ctx, "\tROM table in legacy format");
1068 /* Now we read ROM table ID registers, ref. ARM IHI 0029B sec */
1069 mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFF0, &cid0);
1070 mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFF4, &cid1);
1071 mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFF8, &cid2);
1072 mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFFC, &cid3);
1073 mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFCC, &memtype);
1074 retval = dap_run(dap);
1075 if (retval != ERROR_OK)
1076 return retval;
1078 if (!is_dap_cid_ok(cid3, cid2, cid1, cid0))
1079 command_print(cmd_ctx, "\tCID3 0x%2.2x"
1080 ", CID2 0x%2.2x"
1081 ", CID1 0x%2.2x"
1082 ", CID0 0x%2.2x",
1083 (unsigned) cid3, (unsigned)cid2,
1084 (unsigned) cid1, (unsigned) cid0);
1085 if (memtype & 0x01)
1086 command_print(cmd_ctx, "\tMEMTYPE system memory present on bus");
1087 else
1088 command_print(cmd_ctx, "\tMEMTYPE System memory not present. "
1089 "Dedicated debug bus.");
1091 /* Now we read ROM table entries from dbgbase&0xFFFFF000) | 0x000 until we get 0x00000000 */
1092 entry_offset = 0;
1095 mem_ap_read_atomic_u32(dap, (dbgbase&0xFFFFF000) | entry_offset, &romentry);
1096 command_print(cmd_ctx, "\tROMTABLE[0x%x] = 0x%" PRIx32 "",entry_offset,romentry);
1097 if (romentry&0x01)
1099 uint32_t c_cid0, c_cid1, c_cid2, c_cid3;
1100 uint32_t c_pid0, c_pid1, c_pid2, c_pid3, c_pid4;
1101 uint32_t component_start, component_base;
1102 unsigned part_num;
1103 char *type, *full;
1105 component_base = (uint32_t)((dbgbase & 0xFFFFF000)
1106 + (int)(romentry & 0xFFFFF000));
1107 mem_ap_read_atomic_u32(dap,
1108 (component_base & 0xFFFFF000)
1109 | 0xFE0, &c_pid0);
1110 c_pid0 &= 0xff;
1111 mem_ap_read_atomic_u32(dap,
1112 (component_base & 0xFFFFF000)
1113 | 0xFE4, &c_pid1);
1114 c_pid1 &= 0xff;
1115 mem_ap_read_atomic_u32(dap,
1116 (component_base & 0xFFFFF000)
1117 | 0xFE8, &c_pid2);
1118 c_pid2 &= 0xff;
1119 mem_ap_read_atomic_u32(dap,
1120 (component_base & 0xFFFFF000)
1121 | 0xFEC, &c_pid3);
1122 c_pid3 &= 0xff;
1123 mem_ap_read_atomic_u32(dap,
1124 (component_base & 0xFFFFF000)
1125 | 0xFD0, &c_pid4);
1126 c_pid4 &= 0xff;
1128 mem_ap_read_atomic_u32(dap,
1129 (component_base & 0xFFFFF000) | 0xFF0, &c_cid0);
1130 c_cid0 &= 0xff;
1131 mem_ap_read_atomic_u32(dap,
1132 (component_base & 0xFFFFF000) | 0xFF4, &c_cid1);
1133 c_cid1 &= 0xff;
1134 mem_ap_read_atomic_u32(dap,
1135 (component_base & 0xFFFFF000) | 0xFF8, &c_cid2);
1136 c_cid2 &= 0xff;
1137 mem_ap_read_atomic_u32(dap,
1138 (component_base & 0xFFFFF000) | 0xFFC, &c_cid3);
1139 c_cid3 &= 0xff;
1140 component_start = component_base - 0x1000*(c_pid4 >> 4);
1142 command_print(cmd_ctx, "\t\tComponent base address 0x%" PRIx32
1143 ", start address 0x%" PRIx32,
1144 component_base, component_start);
1145 command_print(cmd_ctx, "\t\tComponent class is 0x%x, %s",
1146 (int) (c_cid1 >> 4) & 0xf,
1147 /* See ARM IHI 0029B Table 3-3 */
1148 class_description[(c_cid1 >> 4) & 0xf]);
1150 /* CoreSight component? */
1151 if (((c_cid1 >> 4) & 0x0f) == 9) {
1152 uint32_t devtype;
1153 unsigned minor;
1154 char *major = "Reserved", *subtype = "Reserved";
1156 mem_ap_read_atomic_u32(dap,
1157 (component_base & 0xfffff000) | 0xfcc,
1158 &devtype);
1159 minor = (devtype >> 4) & 0x0f;
1160 switch (devtype & 0x0f) {
1161 case 0:
1162 major = "Miscellaneous";
1163 switch (minor) {
1164 case 0:
1165 subtype = "other";
1166 break;
1167 case 4:
1168 subtype = "Validation component";
1169 break;
1171 break;
1172 case 1:
1173 major = "Trace Sink";
1174 switch (minor) {
1175 case 0:
1176 subtype = "other";
1177 break;
1178 case 1:
1179 subtype = "Port";
1180 break;
1181 case 2:
1182 subtype = "Buffer";
1183 break;
1185 break;
1186 case 2:
1187 major = "Trace Link";
1188 switch (minor) {
1189 case 0:
1190 subtype = "other";
1191 break;
1192 case 1:
1193 subtype = "Funnel, router";
1194 break;
1195 case 2:
1196 subtype = "Filter";
1197 break;
1198 case 3:
1199 subtype = "FIFO, buffer";
1200 break;
1202 break;
1203 case 3:
1204 major = "Trace Source";
1205 switch (minor) {
1206 case 0:
1207 subtype = "other";
1208 break;
1209 case 1:
1210 subtype = "Processor";
1211 break;
1212 case 2:
1213 subtype = "DSP";
1214 break;
1215 case 3:
1216 subtype = "Engine/Coprocessor";
1217 break;
1218 case 4:
1219 subtype = "Bus";
1220 break;
1222 break;
1223 case 4:
1224 major = "Debug Control";
1225 switch (minor) {
1226 case 0:
1227 subtype = "other";
1228 break;
1229 case 1:
1230 subtype = "Trigger Matrix";
1231 break;
1232 case 2:
1233 subtype = "Debug Auth";
1234 break;
1236 break;
1237 case 5:
1238 major = "Debug Logic";
1239 switch (minor) {
1240 case 0:
1241 subtype = "other";
1242 break;
1243 case 1:
1244 subtype = "Processor";
1245 break;
1246 case 2:
1247 subtype = "DSP";
1248 break;
1249 case 3:
1250 subtype = "Engine/Coprocessor";
1251 break;
1253 break;
1255 command_print(cmd_ctx, "\t\tType is 0x%2.2x, %s, %s",
1256 (unsigned) (devtype & 0xff),
1257 major, subtype);
1258 /* REVISIT also show 0xfc8 DevId */
1261 if (!is_dap_cid_ok(cid3, cid2, cid1, cid0))
1262 command_print(cmd_ctx,
1263 "\t\tCID3 0%2.2x"
1264 ", CID2 0%2.2x"
1265 ", CID1 0%2.2x"
1266 ", CID0 0%2.2x",
1267 (int) c_cid3,
1268 (int) c_cid2,
1269 (int)c_cid1,
1270 (int)c_cid0);
1271 command_print(cmd_ctx,
1272 "\t\tPeripheral ID[4..0] = hex "
1273 "%2.2x %2.2x %2.2x %2.2x %2.2x",
1274 (int) c_pid4, (int) c_pid3, (int) c_pid2,
1275 (int) c_pid1, (int) c_pid0);
1277 /* Part number interpretations are from Cortex
1278 * core specs, the CoreSight components TRM
1279 * (ARM DDI 0314H), and ETM specs; also from
1280 * chip observation (e.g. TI SDTI).
1282 part_num = (c_pid0 & 0xff);
1283 part_num |= (c_pid1 & 0x0f) << 8;
1284 switch (part_num) {
1285 case 0x000:
1286 type = "Cortex-M3 NVIC";
1287 full = "(Interrupt Controller)";
1288 break;
1289 case 0x001:
1290 type = "Cortex-M3 ITM";
1291 full = "(Instrumentation Trace Module)";
1292 break;
1293 case 0x002:
1294 type = "Cortex-M3 DWT";
1295 full = "(Data Watchpoint and Trace)";
1296 break;
1297 case 0x003:
1298 type = "Cortex-M3 FBP";
1299 full = "(Flash Patch and Breakpoint)";
1300 break;
1301 case 0x00d:
1302 type = "CoreSight ETM11";
1303 full = "(Embedded Trace)";
1304 break;
1305 // case 0x113: what?
1306 case 0x120: /* from OMAP3 memmap */
1307 type = "TI SDTI";
1308 full = "(System Debug Trace Interface)";
1309 break;
1310 case 0x343: /* from OMAP3 memmap */
1311 type = "TI DAPCTL";
1312 full = "";
1313 break;
1314 case 0x906:
1315 type = "Coresight CTI";
1316 full = "(Cross Trigger)";
1317 break;
1318 case 0x907:
1319 type = "Coresight ETB";
1320 full = "(Trace Buffer)";
1321 break;
1322 case 0x908:
1323 type = "Coresight CSTF";
1324 full = "(Trace Funnel)";
1325 break;
1326 case 0x910:
1327 type = "CoreSight ETM9";
1328 full = "(Embedded Trace)";
1329 break;
1330 case 0x912:
1331 type = "Coresight TPIU";
1332 full = "(Trace Port Interface Unit)";
1333 break;
1334 case 0x921:
1335 type = "Cortex-A8 ETM";
1336 full = "(Embedded Trace)";
1337 break;
1338 case 0x922:
1339 type = "Cortex-A8 CTI";
1340 full = "(Cross Trigger)";
1341 break;
1342 case 0x923:
1343 type = "Cortex-M3 TPIU";
1344 full = "(Trace Port Interface Unit)";
1345 break;
1346 case 0x924:
1347 type = "Cortex-M3 ETM";
1348 full = "(Embedded Trace)";
1349 break;
1350 case 0xc08:
1351 type = "Cortex-A8 Debug";
1352 full = "(Debug Unit)";
1353 break;
1354 default:
1355 type = "-*- unrecognized -*-";
1356 full = "";
1357 break;
1359 command_print(cmd_ctx, "\t\tPart is %s %s",
1360 type, full);
1362 else
1364 if (romentry)
1365 command_print(cmd_ctx, "\t\tComponent not present");
1366 else
1367 command_print(cmd_ctx, "\t\tEnd of ROM table");
1369 entry_offset += 4;
1370 } while (romentry > 0);
1372 else
1374 command_print(cmd_ctx, "\tNo ROM table present");
1376 dap_ap_select(dap, apselold);
1378 return ERROR_OK;
1381 COMMAND_HANDLER(handle_dap_info_command)
1383 struct target *target = get_current_target(CMD_CTX);
1384 struct arm *arm = target_to_arm(target);
1385 struct adiv5_dap *dap = arm->dap;
1386 uint32_t apsel;
1388 switch (CMD_ARGC) {
1389 case 0:
1390 apsel = dap->apsel;
1391 break;
1392 case 1:
1393 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1394 break;
1395 default:
1396 return ERROR_COMMAND_SYNTAX_ERROR;
1399 return dap_info_command(CMD_CTX, dap, apsel);
1402 COMMAND_HANDLER(dap_baseaddr_command)
1404 struct target *target = get_current_target(CMD_CTX);
1405 struct arm *arm = target_to_arm(target);
1406 struct adiv5_dap *dap = arm->dap;
1408 uint32_t apsel, apselsave, baseaddr;
1409 int retval;
1411 apselsave = dap->apsel;
1412 switch (CMD_ARGC) {
1413 case 0:
1414 apsel = dap->apsel;
1415 break;
1416 case 1:
1417 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1418 /* AP address is in bits 31:24 of DP_SELECT */
1419 if (apsel >= 256)
1420 return ERROR_INVALID_ARGUMENTS;
1421 break;
1422 default:
1423 return ERROR_COMMAND_SYNTAX_ERROR;
1426 if (apselsave != apsel)
1427 dap_ap_select(dap, apsel);
1429 /* NOTE: assumes we're talking to a MEM-AP, which
1430 * has a base address. There are other kinds of AP,
1431 * though they're not common for now. This should
1432 * use the ID register to verify it's a MEM-AP.
1434 retval = dap_queue_ap_read(dap, AP_REG_BASE, &baseaddr);
1435 retval = dap_run(dap);
1436 if (retval != ERROR_OK)
1437 return retval;
1439 command_print(CMD_CTX, "0x%8.8" PRIx32, baseaddr);
1441 if (apselsave != apsel)
1442 dap_ap_select(dap, apselsave);
1444 return retval;
1447 COMMAND_HANDLER(dap_memaccess_command)
1449 struct target *target = get_current_target(CMD_CTX);
1450 struct arm *arm = target_to_arm(target);
1451 struct adiv5_dap *dap = arm->dap;
1453 uint32_t memaccess_tck;
1455 switch (CMD_ARGC) {
1456 case 0:
1457 memaccess_tck = dap->memaccess_tck;
1458 break;
1459 case 1:
1460 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], memaccess_tck);
1461 break;
1462 default:
1463 return ERROR_COMMAND_SYNTAX_ERROR;
1465 dap->memaccess_tck = memaccess_tck;
1467 command_print(CMD_CTX, "memory bus access delay set to %" PRIi32 " tck",
1468 dap->memaccess_tck);
1470 return ERROR_OK;
1473 COMMAND_HANDLER(dap_apsel_command)
1475 struct target *target = get_current_target(CMD_CTX);
1476 struct arm *arm = target_to_arm(target);
1477 struct adiv5_dap *dap = arm->dap;
1479 uint32_t apsel, apid;
1480 int retval;
1482 switch (CMD_ARGC) {
1483 case 0:
1484 apsel = 0;
1485 break;
1486 case 1:
1487 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1488 /* AP address is in bits 31:24 of DP_SELECT */
1489 if (apsel >= 256)
1490 return ERROR_INVALID_ARGUMENTS;
1491 break;
1492 default:
1493 return ERROR_COMMAND_SYNTAX_ERROR;
1496 dap_ap_select(dap, apsel);
1497 retval = dap_queue_ap_read(dap, AP_REG_IDR, &apid);
1498 retval = dap_run(dap);
1499 if (retval != ERROR_OK)
1500 return retval;
1502 command_print(CMD_CTX, "ap %" PRIi32 " selected, identification register 0x%8.8" PRIx32,
1503 apsel, apid);
1505 return retval;
1508 COMMAND_HANDLER(dap_apid_command)
1510 struct target *target = get_current_target(CMD_CTX);
1511 struct arm *arm = target_to_arm(target);
1512 struct adiv5_dap *dap = arm->dap;
1514 uint32_t apsel, apselsave, apid;
1515 int retval;
1517 apselsave = dap->apsel;
1518 switch (CMD_ARGC) {
1519 case 0:
1520 apsel = dap->apsel;
1521 break;
1522 case 1:
1523 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1524 /* AP address is in bits 31:24 of DP_SELECT */
1525 if (apsel >= 256)
1526 return ERROR_INVALID_ARGUMENTS;
1527 break;
1528 default:
1529 return ERROR_COMMAND_SYNTAX_ERROR;
1532 if (apselsave != apsel)
1533 dap_ap_select(dap, apsel);
1535 retval = dap_queue_ap_read(dap, AP_REG_IDR, &apid);
1536 retval = dap_run(dap);
1537 if (retval != ERROR_OK)
1538 return retval;
1540 command_print(CMD_CTX, "0x%8.8" PRIx32, apid);
1541 if (apselsave != apsel)
1542 dap_ap_select(dap, apselsave);
1544 return retval;
1547 static const struct command_registration dap_commands[] = {
1549 .name = "info",
1550 .handler = handle_dap_info_command,
1551 .mode = COMMAND_EXEC,
1552 .help = "display ROM table for MEM-AP "
1553 "(default currently selected AP)",
1554 .usage = "[ap_num]",
1557 .name = "apsel",
1558 .handler = dap_apsel_command,
1559 .mode = COMMAND_EXEC,
1560 .help = "Set the currently selected AP (default 0) "
1561 "and display the result",
1562 .usage = "[ap_num]",
1565 .name = "apid",
1566 .handler = dap_apid_command,
1567 .mode = COMMAND_EXEC,
1568 .help = "return ID register from AP "
1569 "(default currently selected AP)",
1570 .usage = "[ap_num]",
1573 .name = "baseaddr",
1574 .handler = dap_baseaddr_command,
1575 .mode = COMMAND_EXEC,
1576 .help = "return debug base address from MEM-AP "
1577 "(default currently selected AP)",
1578 .usage = "[ap_num]",
1581 .name = "memaccess",
1582 .handler = dap_memaccess_command,
1583 .mode = COMMAND_EXEC,
1584 .help = "set/get number of extra tck for MEM-AP memory "
1585 "bus access [0-255]",
1586 .usage = "[cycles]",
1588 COMMAND_REGISTRATION_DONE
1591 const struct command_registration dap_command_handlers[] = {
1593 .name = "dap",
1594 .mode = COMMAND_EXEC,
1595 .help = "DAP command group",
1596 .chain = dap_commands,
1598 COMMAND_REGISTRATION_DONE