ARM: keep a handle to the PC
[openocd/dave.git] / src / target / arm920t.c
blob152edcfeb30b9638d398c5d1602a43dafe72ad95
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * This program is free software; you can redistribute it and/or modify *
6 * it under the terms of the GNU General Public License as published by *
7 * the Free Software Foundation; either version 2 of the License, or *
8 * (at your option) any later version. *
9 * *
10 * This program is distributed in the hope that it will be useful, *
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
13 * GNU General Public License for more details. *
14 * *
15 * You should have received a copy of the GNU General Public License *
16 * along with this program; if not, write to the *
17 * Free Software Foundation, Inc., *
18 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
19 ***************************************************************************/
20 #ifdef HAVE_CONFIG_H
21 #include "config.h"
22 #endif
24 #include "arm920t.h"
25 #include <helper/time_support.h>
26 #include "target_type.h"
27 #include "register.h"
28 #include "arm_opcodes.h"
32 * For information about the ARM920T, see ARM DDI 0151C especially
33 * Chapter 9 about debug support, which shows how to manipulate each
34 * of the different scan chains:
36 * 0 ... ARM920 signals, e.g. to rest of SOC (unused here)
37 * 1 ... debugging; watchpoint and breakpoint status, etc; also
38 * MMU and cache access in conjunction with scan chain 15
39 * 2 ... EmbeddedICE
40 * 3 ... external boundary scan (SoC-specific, unused here)
41 * 4 ... access to cache tag RAM
42 * 6 ... ETM9
43 * 15 ... access coprocessor 15, "physical" or "interpreted" modes
44 * "interpreted" works with a few actual MRC/MCR instructions
45 * "physical" provides register-like behaviors. Section 9.6.7
46 * covers these details.
48 * The ARM922T is similar, but with smaller caches (8K each, vs 16K).
51 #if 0
52 #define _DEBUG_INSTRUCTION_EXECUTION_
53 #endif
55 /* Table 9-8 shows scan chain 15 format during physical access mode, using a
56 * dedicated 6-bit address space (encoded in bits 33:38). Writes use one
57 * JTAG scan, while reads use two.
59 * Table 9-9 lists the thirteen registers which support physical access.
60 * ARM920T_CP15_PHYS_ADDR() constructs the 6-bit reg_addr parameter passed
61 * to arm920t_read_cp15_physical() and arm920t_write_cp15_physical().
63 * x == bit[38]
64 * y == bits[37:34]
65 * z == bit[33]
67 #define ARM920T_CP15_PHYS_ADDR(x, y, z) ((x << 5) | (y << 1) << (z))
69 /* Registers supporting physical Read access (from table 9-9) */
70 #define CP15PHYS_CACHETYPE ARM920T_CP15_PHYS_ADDR(0, 0x0, 1)
71 #define CP15PHYS_ICACHE_IDX ARM920T_CP15_PHYS_ADDR(1, 0xd, 1)
72 #define CP15PHYS_DCACHE_IDX ARM920T_CP15_PHYS_ADDR(1, 0xe, 1)
73 /* NOTE: several more registers support only physical read access */
75 /* Registers supporting physical Read/Write access (from table 9-9) */
76 #define CP15PHYS_CTRL ARM920T_CP15_PHYS_ADDR(0, 0x1, 0)
77 #define CP15PHYS_PID ARM920T_CP15_PHYS_ADDR(0, 0xd, 0)
78 #define CP15PHYS_TESTSTATE ARM920T_CP15_PHYS_ADDR(0, 0xf, 0)
79 #define CP15PHYS_ICACHE ARM920T_CP15_PHYS_ADDR(1, 0x1, 1)
80 #define CP15PHYS_DCACHE ARM920T_CP15_PHYS_ADDR(1, 0x2, 1)
82 static int arm920t_read_cp15_physical(struct target *target,
83 int reg_addr, uint32_t *value)
85 struct arm920t_common *arm920t = target_to_arm920(target);
86 struct arm_jtag *jtag_info;
87 struct scan_field fields[4];
88 uint8_t access_type_buf = 1;
89 uint8_t reg_addr_buf = reg_addr & 0x3f;
90 uint8_t nr_w_buf = 0;
92 jtag_info = &arm920t->arm7_9_common.jtag_info;
94 jtag_set_end_state(TAP_IDLE);
95 arm_jtag_scann(jtag_info, 0xf);
96 arm_jtag_set_instr(jtag_info, jtag_info->intest_instr, NULL);
98 fields[0].tap = jtag_info->tap;
99 fields[0].num_bits = 1;
100 fields[0].out_value = &access_type_buf;
101 fields[0].in_value = NULL;
103 fields[1].tap = jtag_info->tap;
104 fields[1].num_bits = 32;
105 fields[1].out_value = NULL;
106 fields[1].in_value = NULL;
108 fields[2].tap = jtag_info->tap;
109 fields[2].num_bits = 6;
110 fields[2].out_value = &reg_addr_buf;
111 fields[2].in_value = NULL;
113 fields[3].tap = jtag_info->tap;
114 fields[3].num_bits = 1;
115 fields[3].out_value = &nr_w_buf;
116 fields[3].in_value = NULL;
118 jtag_add_dr_scan(4, fields, jtag_get_end_state());
120 fields[1].in_value = (uint8_t *)value;
122 jtag_add_dr_scan(4, fields, jtag_get_end_state());
124 jtag_add_callback(arm_le_to_h_u32, (jtag_callback_data_t)value);
126 #ifdef _DEBUG_INSTRUCTION_EXECUTION_
127 jtag_execute_queue();
128 LOG_DEBUG("addr: 0x%x value: %8.8x", reg_addr, *value);
129 #endif
131 return ERROR_OK;
134 static int arm920t_write_cp15_physical(struct target *target,
135 int reg_addr, uint32_t value)
137 struct arm920t_common *arm920t = target_to_arm920(target);
138 struct arm_jtag *jtag_info;
139 struct scan_field fields[4];
140 uint8_t access_type_buf = 1;
141 uint8_t reg_addr_buf = reg_addr & 0x3f;
142 uint8_t nr_w_buf = 1;
143 uint8_t value_buf[4];
145 jtag_info = &arm920t->arm7_9_common.jtag_info;
147 buf_set_u32(value_buf, 0, 32, value);
149 jtag_set_end_state(TAP_IDLE);
150 arm_jtag_scann(jtag_info, 0xf);
151 arm_jtag_set_instr(jtag_info, jtag_info->intest_instr, NULL);
153 fields[0].tap = jtag_info->tap;
154 fields[0].num_bits = 1;
155 fields[0].out_value = &access_type_buf;
156 fields[0].in_value = NULL;
158 fields[1].tap = jtag_info->tap;
159 fields[1].num_bits = 32;
160 fields[1].out_value = value_buf;
161 fields[1].in_value = NULL;
163 fields[2].tap = jtag_info->tap;
164 fields[2].num_bits = 6;
165 fields[2].out_value = &reg_addr_buf;
166 fields[2].in_value = NULL;
168 fields[3].tap = jtag_info->tap;
169 fields[3].num_bits = 1;
170 fields[3].out_value = &nr_w_buf;
171 fields[3].in_value = NULL;
173 jtag_add_dr_scan(4, fields, jtag_get_end_state());
175 #ifdef _DEBUG_INSTRUCTION_EXECUTION_
176 LOG_DEBUG("addr: 0x%x value: %8.8x", reg_addr, value);
177 #endif
179 return ERROR_OK;
182 /* See table 9-10 for scan chain 15 format during interpreted access mode.
183 * If the TESTSTATE register is set for interpreted access, certain CP15
184 * MRC and MCR instructions may be executed through scan chain 15.
186 * Tables 9-11, 9-12, and 9-13 show which MRC and MCR instructions can be
187 * executed using scan chain 15 interpreted mode.
189 static int arm920t_execute_cp15(struct target *target, uint32_t cp15_opcode,
190 uint32_t arm_opcode)
192 int retval;
193 struct arm920t_common *arm920t = target_to_arm920(target);
194 struct arm_jtag *jtag_info;
195 struct scan_field fields[4];
196 uint8_t access_type_buf = 0; /* interpreted access */
197 uint8_t reg_addr_buf = 0x0;
198 uint8_t nr_w_buf = 0;
199 uint8_t cp15_opcode_buf[4];
201 jtag_info = &arm920t->arm7_9_common.jtag_info;
203 jtag_set_end_state(TAP_IDLE);
204 arm_jtag_scann(jtag_info, 0xf);
205 arm_jtag_set_instr(jtag_info, jtag_info->intest_instr, NULL);
207 buf_set_u32(cp15_opcode_buf, 0, 32, cp15_opcode);
209 fields[0].tap = jtag_info->tap;
210 fields[0].num_bits = 1;
211 fields[0].out_value = &access_type_buf;
212 fields[0].in_value = NULL;
214 fields[1].tap = jtag_info->tap;
215 fields[1].num_bits = 32;
216 fields[1].out_value = cp15_opcode_buf;
217 fields[1].in_value = NULL;
219 fields[2].tap = jtag_info->tap;
220 fields[2].num_bits = 6;
221 fields[2].out_value = &reg_addr_buf;
222 fields[2].in_value = NULL;
224 fields[3].tap = jtag_info->tap;
225 fields[3].num_bits = 1;
226 fields[3].out_value = &nr_w_buf;
227 fields[3].in_value = NULL;
229 jtag_add_dr_scan(4, fields, jtag_get_end_state());
231 arm9tdmi_clock_out(jtag_info, arm_opcode, 0, NULL, 0);
232 arm9tdmi_clock_out(jtag_info, ARMV4_5_NOP, 0, NULL, 1);
233 retval = arm7_9_execute_sys_speed(target);
234 if (retval != ERROR_OK)
235 return retval;
237 if ((retval = jtag_execute_queue()) != ERROR_OK)
239 LOG_ERROR("failed executing JTAG queue");
240 return retval;
243 return ERROR_OK;
246 static int arm920t_read_cp15_interpreted(struct target *target,
247 uint32_t cp15_opcode, uint32_t address, uint32_t *value)
249 struct arm *armv4_5 = target_to_arm(target);
250 uint32_t* regs_p[1];
251 uint32_t regs[2];
252 uint32_t cp15c15 = 0x0;
253 struct reg *r = armv4_5->core_cache->reg_list;
255 /* load address into R1 */
256 regs[1] = address;
257 arm9tdmi_write_core_regs(target, 0x2, regs);
259 /* read-modify-write CP15 test state register
260 * to enable interpreted access mode */
261 arm920t_read_cp15_physical(target, CP15PHYS_TESTSTATE, &cp15c15);
262 jtag_execute_queue();
263 cp15c15 |= 1; /* set interpret mode */
264 arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15);
266 /* execute CP15 instruction and ARM load (reading from coprocessor) */
267 arm920t_execute_cp15(target, cp15_opcode, ARMV4_5_LDR(0, 1));
269 /* disable interpreted access mode */
270 cp15c15 &= ~1U; /* clear interpret mode */
271 arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15);
273 /* retrieve value from R0 */
274 regs_p[0] = value;
275 arm9tdmi_read_core_regs(target, 0x1, regs_p);
276 jtag_execute_queue();
278 #ifdef _DEBUG_INSTRUCTION_EXECUTION_
279 LOG_DEBUG("cp15_opcode: %8.8x, address: %8.8x, value: %8.8x",
280 cp15_opcode, address, *value);
281 #endif
283 if (!is_arm_mode(armv4_5->core_mode))
284 return ERROR_FAIL;
286 r[0].dirty = 1;
287 r[1].dirty = 1;
289 return ERROR_OK;
292 static
293 int arm920t_write_cp15_interpreted(struct target *target,
294 uint32_t cp15_opcode, uint32_t value, uint32_t address)
296 uint32_t cp15c15 = 0x0;
297 struct arm *armv4_5 = target_to_arm(target);
298 uint32_t regs[2];
299 struct reg *r = armv4_5->core_cache->reg_list;
301 /* load value, address into R0, R1 */
302 regs[0] = value;
303 regs[1] = address;
304 arm9tdmi_write_core_regs(target, 0x3, regs);
306 /* read-modify-write CP15 test state register
307 * to enable interpreted access mode */
308 arm920t_read_cp15_physical(target, CP15PHYS_TESTSTATE, &cp15c15);
309 jtag_execute_queue();
310 cp15c15 |= 1; /* set interpret mode */
311 arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15);
313 /* execute CP15 instruction and ARM store (writing to coprocessor) */
314 arm920t_execute_cp15(target, cp15_opcode, ARMV4_5_STR(0, 1));
316 /* disable interpreted access mode */
317 cp15c15 &= ~1U; /* set interpret mode */
318 arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15);
320 #ifdef _DEBUG_INSTRUCTION_EXECUTION_
321 LOG_DEBUG("cp15_opcode: %8.8x, value: %8.8x, address: %8.8x",
322 cp15_opcode, value, address);
323 #endif
325 if (!is_arm_mode(armv4_5->core_mode))
326 return ERROR_FAIL;
328 r[0].dirty = 1;
329 r[1].dirty = 1;
331 return ERROR_OK;
334 // EXPORTED to FA256
335 uint32_t arm920t_get_ttb(struct target *target)
337 int retval;
338 uint32_t ttb = 0x0;
340 if ((retval = arm920t_read_cp15_interpreted(target,
341 /* FIXME use opcode macro */
342 0xeebf0f51, 0x0, &ttb)) != ERROR_OK)
343 return retval;
345 return ttb;
348 // EXPORTED to FA256
349 void arm920t_disable_mmu_caches(struct target *target, int mmu,
350 int d_u_cache, int i_cache)
352 uint32_t cp15_control;
354 /* read cp15 control register */
355 arm920t_read_cp15_physical(target, CP15PHYS_CTRL, &cp15_control);
356 jtag_execute_queue();
358 if (mmu)
359 cp15_control &= ~0x1U;
361 if (d_u_cache)
362 cp15_control &= ~0x4U;
364 if (i_cache)
365 cp15_control &= ~0x1000U;
367 arm920t_write_cp15_physical(target, CP15PHYS_CTRL, cp15_control);
370 // EXPORTED to FA256
371 void arm920t_enable_mmu_caches(struct target *target, int mmu,
372 int d_u_cache, int i_cache)
374 uint32_t cp15_control;
376 /* read cp15 control register */
377 arm920t_read_cp15_physical(target, CP15PHYS_CTRL, &cp15_control);
378 jtag_execute_queue();
380 if (mmu)
381 cp15_control |= 0x1U;
383 if (d_u_cache)
384 cp15_control |= 0x4U;
386 if (i_cache)
387 cp15_control |= 0x1000U;
389 arm920t_write_cp15_physical(target, CP15PHYS_CTRL, cp15_control);
392 // EXPORTED to FA256
393 void arm920t_post_debug_entry(struct target *target)
395 uint32_t cp15c15;
396 struct arm920t_common *arm920t = target_to_arm920(target);
398 /* examine cp15 control reg */
399 arm920t_read_cp15_physical(target,
400 CP15PHYS_CTRL, &arm920t->cp15_control_reg);
401 jtag_execute_queue();
402 LOG_DEBUG("cp15_control_reg: %8.8" PRIx32, arm920t->cp15_control_reg);
404 if (arm920t->armv4_5_mmu.armv4_5_cache.ctype == -1)
406 uint32_t cache_type_reg;
407 /* identify caches */
408 arm920t_read_cp15_physical(target,
409 CP15PHYS_CACHETYPE, &cache_type_reg);
410 jtag_execute_queue();
411 armv4_5_identify_cache(cache_type_reg,
412 &arm920t->armv4_5_mmu.armv4_5_cache);
415 arm920t->armv4_5_mmu.mmu_enabled =
416 (arm920t->cp15_control_reg & 0x1U) ? 1 : 0;
417 arm920t->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled =
418 (arm920t->cp15_control_reg & 0x4U) ? 1 : 0;
419 arm920t->armv4_5_mmu.armv4_5_cache.i_cache_enabled =
420 (arm920t->cp15_control_reg & 0x1000U) ? 1 : 0;
422 /* save i/d fault status and address register */
423 /* FIXME use opcode macros */
424 arm920t_read_cp15_interpreted(target, 0xee150f10, 0x0, &arm920t->d_fsr);
425 arm920t_read_cp15_interpreted(target, 0xee150f30, 0x0, &arm920t->i_fsr);
426 arm920t_read_cp15_interpreted(target, 0xee160f10, 0x0, &arm920t->d_far);
427 arm920t_read_cp15_interpreted(target, 0xee160f30, 0x0, &arm920t->i_far);
429 LOG_DEBUG("D FSR: 0x%8.8" PRIx32 ", D FAR: 0x%8.8" PRIx32
430 ", I FSR: 0x%8.8" PRIx32 ", I FAR: 0x%8.8" PRIx32,
431 arm920t->d_fsr, arm920t->d_far, arm920t->i_fsr, arm920t->i_far);
433 if (arm920t->preserve_cache)
435 /* read-modify-write CP15 test state register
436 * to disable I/D-cache linefills */
437 arm920t_read_cp15_physical(target,
438 CP15PHYS_TESTSTATE, &cp15c15);
439 jtag_execute_queue();
440 cp15c15 |= 0x600;
441 arm920t_write_cp15_physical(target,
442 CP15PHYS_TESTSTATE, cp15c15);
446 // EXPORTED to FA256
447 void arm920t_pre_restore_context(struct target *target)
449 uint32_t cp15c15;
450 struct arm920t_common *arm920t = target_to_arm920(target);
452 /* restore i/d fault status and address register */
453 arm920t_write_cp15_interpreted(target, 0xee050f10, arm920t->d_fsr, 0x0);
454 arm920t_write_cp15_interpreted(target, 0xee050f30, arm920t->i_fsr, 0x0);
455 arm920t_write_cp15_interpreted(target, 0xee060f10, arm920t->d_far, 0x0);
456 arm920t_write_cp15_interpreted(target, 0xee060f30, arm920t->i_far, 0x0);
458 /* read-modify-write CP15 test state register
459 * to reenable I/D-cache linefills */
460 if (arm920t->preserve_cache)
462 arm920t_read_cp15_physical(target,
463 CP15PHYS_TESTSTATE, &cp15c15);
464 jtag_execute_queue();
465 cp15c15 &= ~0x600U;
466 arm920t_write_cp15_physical(target,
467 CP15PHYS_TESTSTATE, cp15c15);
471 static const char arm920_not[] = "target is not an ARM920";
473 static int arm920t_verify_pointer(struct command_context *cmd_ctx,
474 struct arm920t_common *arm920t)
476 if (arm920t->common_magic != ARM920T_COMMON_MAGIC) {
477 command_print(cmd_ctx, arm920_not);
478 return ERROR_TARGET_INVALID;
481 return ERROR_OK;
484 /** Logs summary of ARM920 state for a halted target. */
485 int arm920t_arch_state(struct target *target)
487 static const char *state[] =
489 "disabled", "enabled"
492 struct arm920t_common *arm920t = target_to_arm920(target);
493 struct arm *armv4_5;
495 if (arm920t->common_magic != ARM920T_COMMON_MAGIC)
497 LOG_ERROR("BUG: %s", arm920_not);
498 return ERROR_TARGET_INVALID;
501 armv4_5 = &arm920t->arm7_9_common.armv4_5_common;
503 arm_arch_state(target);
504 LOG_USER("MMU: %s, D-Cache: %s, I-Cache: %s",
505 state[arm920t->armv4_5_mmu.mmu_enabled],
506 state[arm920t->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled],
507 state[arm920t->armv4_5_mmu.armv4_5_cache.i_cache_enabled]);
509 return ERROR_OK;
512 static int arm920_mmu(struct target *target, int *enabled)
514 if (target->state != TARGET_HALTED) {
515 LOG_ERROR("%s: target not halted", __func__);
516 return ERROR_TARGET_INVALID;
519 *enabled = target_to_arm920(target)->armv4_5_mmu.mmu_enabled;
520 return ERROR_OK;
523 static int arm920_virt2phys(struct target *target,
524 uint32_t virt, uint32_t *phys)
526 int type;
527 uint32_t cb;
528 int domain;
529 uint32_t ap;
530 struct arm920t_common *arm920t = target_to_arm920(target);
532 uint32_t ret = armv4_5_mmu_translate_va(target,
533 &arm920t->armv4_5_mmu, virt, &type, &cb, &domain, &ap);
534 if (type == -1)
536 return ret;
538 *phys = ret;
539 return ERROR_OK;
542 /** Reads a buffer, in the specified word size, with current MMU settings. */
543 int arm920t_read_memory(struct target *target, uint32_t address,
544 uint32_t size, uint32_t count, uint8_t *buffer)
546 int retval;
548 retval = arm7_9_read_memory(target, address, size, count, buffer);
550 return retval;
554 static int arm920t_read_phys_memory(struct target *target,
555 uint32_t address, uint32_t size,
556 uint32_t count, uint8_t *buffer)
558 struct arm920t_common *arm920t = target_to_arm920(target);
560 return armv4_5_mmu_read_physical(target, &arm920t->armv4_5_mmu,
561 address, size, count, buffer);
564 static int arm920t_write_phys_memory(struct target *target,
565 uint32_t address, uint32_t size,
566 uint32_t count, uint8_t *buffer)
568 struct arm920t_common *arm920t = target_to_arm920(target);
570 return armv4_5_mmu_write_physical(target, &arm920t->armv4_5_mmu,
571 address, size, count, buffer);
575 /** Writes a buffer, in the specified word size, with current MMU settings. */
576 int arm920t_write_memory(struct target *target, uint32_t address,
577 uint32_t size, uint32_t count, uint8_t *buffer)
579 int retval;
580 const uint32_t cache_mask = ~0x1f; /* cache line size : 32 byte */
581 struct arm920t_common *arm920t = target_to_arm920(target);
583 /* FIX!!!! this should be cleaned up and made much more general. The
584 * plan is to write up and test on arm920t specifically and
585 * then generalize and clean up afterwards. */
586 if (arm920t->armv4_5_mmu.mmu_enabled && (count == 1) &&
587 ((size==2) || (size==4)))
589 /* special case the handling of single word writes to
590 * bypass MMU, to allow implementation of breakpoints
591 * in memory marked read only
592 * by MMU
594 int type;
595 uint32_t cb;
596 int domain;
597 uint32_t ap;
598 uint32_t pa;
601 * We need physical address and cb
603 pa = armv4_5_mmu_translate_va(target, &arm920t->armv4_5_mmu,
604 address, &type, &cb, &domain, &ap);
605 if (type == -1)
606 return pa;
608 if (arm920t->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled)
610 if (cb & 0x1)
612 LOG_DEBUG("D-Cache buffered, "
613 "drain write buffer");
615 * Buffered ?
616 * Drain write buffer - MCR p15,0,Rd,c7,c10,4
619 retval = arm920t_write_cp15_interpreted(target,
620 ARMV4_5_MCR(15, 0, 0, 7, 10, 4),
621 0x0, 0);
622 if (retval != ERROR_OK)
623 return retval;
626 if (cb == 0x3)
629 * Write back memory ? -> clean cache
631 * There is no way to clean cache lines using
632 * cp15 scan chain, so copy the full cache
633 * line from cache to physical memory.
635 uint8_t data[32];
637 LOG_DEBUG("D-Cache in 'write back' mode, "
638 "flush cache line");
640 retval = target_read_memory(target,
641 address & cache_mask, 1,
642 sizeof(data), &data[0]);
643 if (retval != ERROR_OK)
644 return retval;
646 retval = armv4_5_mmu_write_physical(target,
647 &arm920t->armv4_5_mmu,
648 pa & cache_mask, 1,
649 sizeof(data), &data[0]);
650 if (retval != ERROR_OK)
651 return retval;
654 /* Cached ? */
655 if (cb & 0x2)
658 * Cached ? -> Invalidate data cache using MVA
660 * MCR p15,0,Rd,c7,c6,1
662 LOG_DEBUG("D-Cache enabled, "
663 "invalidate cache line");
665 retval = arm920t_write_cp15_interpreted(target,
666 ARMV4_5_MCR(15, 0, 0, 7, 6, 1), 0x0,
667 address & cache_mask);
668 if (retval != ERROR_OK)
669 return retval;
673 /* write directly to physical memory,
674 * bypassing any read only MMU bits, etc.
676 retval = armv4_5_mmu_write_physical(target,
677 &arm920t->armv4_5_mmu, pa, size,
678 count, buffer);
679 if (retval != ERROR_OK)
680 return retval;
681 } else
683 if ((retval = arm7_9_write_memory(target, address,
684 size, count, buffer)) != ERROR_OK)
685 return retval;
688 /* If ICache is enabled, we have to invalidate affected ICache lines
689 * the DCache is forced to write-through,
690 * so we don't have to clean it here
692 if (arm920t->armv4_5_mmu.armv4_5_cache.i_cache_enabled)
694 if (count <= 1)
696 /* invalidate ICache single entry with MVA
697 * mcr 15, 0, r0, cr7, cr5, {1}
699 LOG_DEBUG("I-Cache enabled, "
700 "invalidating affected I-Cache line");
701 retval = arm920t_write_cp15_interpreted(target,
702 ARMV4_5_MCR(15, 0, 0, 7, 5, 1),
703 0x0, address & cache_mask);
704 if (retval != ERROR_OK)
705 return retval;
707 else
709 /* invalidate ICache
710 * mcr 15, 0, r0, cr7, cr5, {0}
712 retval = arm920t_write_cp15_interpreted(target,
713 ARMV4_5_MCR(15, 0, 0, 7, 5, 0),
714 0x0, 0x0);
715 if (retval != ERROR_OK)
716 return retval;
720 return retval;
723 // EXPORTED to FA256
724 int arm920t_soft_reset_halt(struct target *target)
726 int retval = ERROR_OK;
727 struct arm920t_common *arm920t = target_to_arm920(target);
728 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
729 struct arm *armv4_5 = &arm7_9->armv4_5_common;
730 struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
732 if ((retval = target_halt(target)) != ERROR_OK)
734 return retval;
737 long long then = timeval_ms();
738 int timeout;
739 while (!(timeout = ((timeval_ms()-then) > 1000)))
741 if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_DBGACK, 1)
742 == 0)
744 embeddedice_read_reg(dbg_stat);
745 if ((retval = jtag_execute_queue()) != ERROR_OK)
747 return retval;
749 } else
751 break;
753 if (debug_level >= 3)
755 /* do not eat all CPU, time out after 1 se*/
756 alive_sleep(100);
757 } else
759 keep_alive();
762 if (timeout)
764 LOG_ERROR("Failed to halt CPU after 1 sec");
765 return ERROR_TARGET_TIMEOUT;
768 target->state = TARGET_HALTED;
770 /* SVC, ARM state, IRQ and FIQ disabled */
771 uint32_t cpsr;
773 cpsr = buf_get_u32(armv4_5->cpsr->value, 0, 32);
774 cpsr &= ~0xff;
775 cpsr |= 0xd3;
776 arm_set_cpsr(armv4_5, cpsr);
777 armv4_5->cpsr->dirty = 1;
779 /* start fetching from 0x0 */
780 buf_set_u32(armv4_5->pc->value, 0, 32, 0x0);
781 armv4_5->pc->dirty = 1;
782 armv4_5->pc->valid = 1;
784 arm920t_disable_mmu_caches(target, 1, 1, 1);
785 arm920t->armv4_5_mmu.mmu_enabled = 0;
786 arm920t->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled = 0;
787 arm920t->armv4_5_mmu.armv4_5_cache.i_cache_enabled = 0;
789 return target_call_event_callbacks(target, TARGET_EVENT_HALTED);
792 /* FIXME remove forward decls */
793 static int arm920t_mrc(struct target *target, int cpnum,
794 uint32_t op1, uint32_t op2,
795 uint32_t CRn, uint32_t CRm,
796 uint32_t *value);
797 static int arm920t_mcr(struct target *target, int cpnum,
798 uint32_t op1, uint32_t op2,
799 uint32_t CRn, uint32_t CRm,
800 uint32_t value);
802 int arm920t_init_arch_info(struct target *target,
803 struct arm920t_common *arm920t, struct jtag_tap *tap)
805 struct arm7_9_common *arm7_9 = &arm920t->arm7_9_common;
807 arm7_9->armv4_5_common.mrc = arm920t_mrc;
808 arm7_9->armv4_5_common.mcr = arm920t_mcr;
810 /* initialize arm7/arm9 specific info (including armv4_5) */
811 arm9tdmi_init_arch_info(target, arm7_9, tap);
813 arm920t->common_magic = ARM920T_COMMON_MAGIC;
815 arm7_9->post_debug_entry = arm920t_post_debug_entry;
816 arm7_9->pre_restore_context = arm920t_pre_restore_context;
818 arm920t->armv4_5_mmu.armv4_5_cache.ctype = -1;
819 arm920t->armv4_5_mmu.get_ttb = arm920t_get_ttb;
820 arm920t->armv4_5_mmu.read_memory = arm7_9_read_memory;
821 arm920t->armv4_5_mmu.write_memory = arm7_9_write_memory;
822 arm920t->armv4_5_mmu.disable_mmu_caches = arm920t_disable_mmu_caches;
823 arm920t->armv4_5_mmu.enable_mmu_caches = arm920t_enable_mmu_caches;
824 arm920t->armv4_5_mmu.has_tiny_pages = 1;
825 arm920t->armv4_5_mmu.mmu_enabled = 0;
827 /* disabling linefills leads to lockups, so keep them enabled for now
828 * this doesn't affect correctness, but might affect timing issues, if
829 * important data is evicted from the cache during the debug session
830 * */
831 arm920t->preserve_cache = 0;
833 /* override hw single-step capability from ARM9TDMI */
834 arm7_9->has_single_step = 1;
836 return ERROR_OK;
839 static int arm920t_target_create(struct target *target, Jim_Interp *interp)
841 struct arm920t_common *arm920t;
843 arm920t = calloc(1,sizeof(struct arm920t_common));
844 return arm920t_init_arch_info(target, arm920t, target->tap);
847 COMMAND_HANDLER(arm920t_handle_read_cache_command)
849 int retval = ERROR_OK;
850 struct target *target = get_current_target(CMD_CTX);
851 struct arm920t_common *arm920t = target_to_arm920(target);
852 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
853 struct arm *armv4_5 = &arm7_9->armv4_5_common;
854 uint32_t cp15c15;
855 uint32_t cp15_ctrl, cp15_ctrl_saved;
856 uint32_t regs[16];
857 uint32_t *regs_p[16];
858 uint32_t C15_C_D_Ind, C15_C_I_Ind;
859 int i;
860 FILE *output;
861 struct arm920t_cache_line d_cache[8][64], i_cache[8][64];
862 int segment, index;
863 struct reg *r;
865 retval = arm920t_verify_pointer(CMD_CTX, arm920t);
866 if (retval != ERROR_OK)
867 return retval;
869 if (CMD_ARGC != 1)
871 command_print(CMD_CTX, "usage: arm920t read_cache <filename>");
872 return ERROR_OK;
875 if ((output = fopen(CMD_ARGV[0], "w")) == NULL)
877 LOG_DEBUG("error opening cache content file");
878 return ERROR_OK;
881 for (i = 0; i < 16; i++)
882 regs_p[i] = &regs[i];
884 /* disable MMU and Caches */
885 arm920t_read_cp15_physical(target, CP15PHYS_CTRL, &cp15_ctrl);
886 if ((retval = jtag_execute_queue()) != ERROR_OK)
888 return retval;
890 cp15_ctrl_saved = cp15_ctrl;
891 cp15_ctrl &= ~(ARMV4_5_MMU_ENABLED
892 | ARMV4_5_D_U_CACHE_ENABLED | ARMV4_5_I_CACHE_ENABLED);
893 arm920t_write_cp15_physical(target, CP15PHYS_CTRL, cp15_ctrl);
895 /* read CP15 test state register */
896 arm920t_read_cp15_physical(target, CP15PHYS_TESTSTATE, &cp15c15);
897 jtag_execute_queue();
899 /* read DCache content */
900 fprintf(output, "DCache:\n");
902 /* go through segments 0 to nsets (8 on ARM920T, 4 on ARM922T) */
903 for (segment = 0;
904 segment < arm920t->armv4_5_mmu.armv4_5_cache.d_u_size.nsets;
905 segment++)
907 fprintf(output, "\nsegment: %i\n----------", segment);
909 /* Ra: r0 = SBZ(31:8):segment(7:5):SBZ(4:0) */
910 regs[0] = 0x0 | (segment << 5);
911 arm9tdmi_write_core_regs(target, 0x1, regs);
913 /* set interpret mode */
914 cp15c15 |= 0x1;
915 arm920t_write_cp15_physical(target,
916 CP15PHYS_TESTSTATE, cp15c15);
918 /* D CAM Read, loads current victim into C15.C.D.Ind */
919 arm920t_execute_cp15(target,
920 ARMV4_5_MCR(15,2,0,15,6,2), ARMV4_5_LDR(1, 0));
922 /* read current victim */
923 arm920t_read_cp15_physical(target,
924 CP15PHYS_DCACHE_IDX, &C15_C_D_Ind);
926 /* clear interpret mode */
927 cp15c15 &= ~0x1;
928 arm920t_write_cp15_physical(target,
929 CP15PHYS_TESTSTATE, cp15c15);
931 for (index = 0; index < 64; index++)
933 /* Ra:
934 * r0 = index(31:26):SBZ(25:8):segment(7:5):SBZ(4:0)
936 regs[0] = 0x0 | (segment << 5) | (index << 26);
937 arm9tdmi_write_core_regs(target, 0x1, regs);
939 /* set interpret mode */
940 cp15c15 |= 0x1;
941 arm920t_write_cp15_physical(target,
942 CP15PHYS_TESTSTATE, cp15c15);
944 /* Write DCache victim */
945 arm920t_execute_cp15(target,
946 ARMV4_5_MCR(15,0,0,9,1,0), ARMV4_5_LDR(1, 0));
948 /* Read D RAM */
949 arm920t_execute_cp15(target,
950 ARMV4_5_MCR(15,2,0,15,10,2),
951 ARMV4_5_LDMIA(0, 0x1fe, 0, 0));
953 /* Read D CAM */
954 arm920t_execute_cp15(target,
955 ARMV4_5_MCR(15,2,0,15,6,2),
956 ARMV4_5_LDR(9, 0));
958 /* clear interpret mode */
959 cp15c15 &= ~0x1;
960 arm920t_write_cp15_physical(target,
961 CP15PHYS_TESTSTATE, cp15c15);
963 /* read D RAM and CAM content */
964 arm9tdmi_read_core_regs(target, 0x3fe, regs_p);
965 if ((retval = jtag_execute_queue()) != ERROR_OK)
967 return retval;
970 d_cache[segment][index].cam = regs[9];
972 /* mask LFSR[6] */
973 regs[9] &= 0xfffffffe;
974 fprintf(output, "\nsegment: %i, index: %i, CAM: 0x%8.8"
975 PRIx32 ", content (%s):\n",
976 segment, index, regs[9],
977 (regs[9] & 0x10) ? "valid" : "invalid");
979 for (i = 1; i < 9; i++)
981 d_cache[segment][index].data[i] = regs[i];
982 fprintf(output, "%i: 0x%8.8" PRIx32 "\n",
983 i-1, regs[i]);
988 /* Ra: r0 = index(31:26):SBZ(25:8):segment(7:5):SBZ(4:0) */
989 regs[0] = 0x0 | (segment << 5) | (C15_C_D_Ind << 26);
990 arm9tdmi_write_core_regs(target, 0x1, regs);
992 /* set interpret mode */
993 cp15c15 |= 0x1;
994 arm920t_write_cp15_physical(target,
995 CP15PHYS_TESTSTATE, cp15c15);
997 /* Write DCache victim */
998 arm920t_execute_cp15(target,
999 ARMV4_5_MCR(15,0,0,9,1,0), ARMV4_5_LDR(1, 0));
1001 /* clear interpret mode */
1002 cp15c15 &= ~0x1;
1003 arm920t_write_cp15_physical(target,
1004 CP15PHYS_TESTSTATE, cp15c15);
1007 /* read ICache content */
1008 fprintf(output, "ICache:\n");
1010 /* go through segments 0 to nsets (8 on ARM920T, 4 on ARM922T) */
1011 for (segment = 0;
1012 segment < arm920t->armv4_5_mmu.armv4_5_cache.d_u_size.nsets;
1013 segment++)
1015 fprintf(output, "segment: %i\n----------", segment);
1017 /* Ra: r0 = SBZ(31:8):segment(7:5):SBZ(4:0) */
1018 regs[0] = 0x0 | (segment << 5);
1019 arm9tdmi_write_core_regs(target, 0x1, regs);
1021 /* set interpret mode */
1022 cp15c15 |= 0x1;
1023 arm920t_write_cp15_physical(target,
1024 CP15PHYS_TESTSTATE, cp15c15);
1026 /* I CAM Read, loads current victim into C15.C.I.Ind */
1027 arm920t_execute_cp15(target,
1028 ARMV4_5_MCR(15,2,0,15,5,2), ARMV4_5_LDR(1, 0));
1030 /* read current victim */
1031 arm920t_read_cp15_physical(target, CP15PHYS_ICACHE_IDX,
1032 &C15_C_I_Ind);
1034 /* clear interpret mode */
1035 cp15c15 &= ~0x1;
1036 arm920t_write_cp15_physical(target,
1037 CP15PHYS_TESTSTATE, cp15c15);
1039 for (index = 0; index < 64; index++)
1041 /* Ra:
1042 * r0 = index(31:26):SBZ(25:8):segment(7:5):SBZ(4:0)
1044 regs[0] = 0x0 | (segment << 5) | (index << 26);
1045 arm9tdmi_write_core_regs(target, 0x1, regs);
1047 /* set interpret mode */
1048 cp15c15 |= 0x1;
1049 arm920t_write_cp15_physical(target,
1050 CP15PHYS_TESTSTATE, cp15c15);
1052 /* Write ICache victim */
1053 arm920t_execute_cp15(target,
1054 ARMV4_5_MCR(15,0,0,9,1,1), ARMV4_5_LDR(1, 0));
1056 /* Read I RAM */
1057 arm920t_execute_cp15(target,
1058 ARMV4_5_MCR(15,2,0,15,9,2),
1059 ARMV4_5_LDMIA(0, 0x1fe, 0, 0));
1061 /* Read I CAM */
1062 arm920t_execute_cp15(target,
1063 ARMV4_5_MCR(15,2,0,15,5,2),
1064 ARMV4_5_LDR(9, 0));
1066 /* clear interpret mode */
1067 cp15c15 &= ~0x1;
1068 arm920t_write_cp15_physical(target,
1069 CP15PHYS_TESTSTATE, cp15c15);
1071 /* read I RAM and CAM content */
1072 arm9tdmi_read_core_regs(target, 0x3fe, regs_p);
1073 if ((retval = jtag_execute_queue()) != ERROR_OK)
1075 return retval;
1078 i_cache[segment][index].cam = regs[9];
1080 /* mask LFSR[6] */
1081 regs[9] &= 0xfffffffe;
1082 fprintf(output, "\nsegment: %i, index: %i, "
1083 "CAM: 0x%8.8" PRIx32 ", content (%s):\n",
1084 segment, index, regs[9],
1085 (regs[9] & 0x10) ? "valid" : "invalid");
1087 for (i = 1; i < 9; i++)
1089 i_cache[segment][index].data[i] = regs[i];
1090 fprintf(output, "%i: 0x%8.8" PRIx32 "\n",
1091 i-1, regs[i]);
1095 /* Ra: r0 = index(31:26):SBZ(25:8):segment(7:5):SBZ(4:0) */
1096 regs[0] = 0x0 | (segment << 5) | (C15_C_D_Ind << 26);
1097 arm9tdmi_write_core_regs(target, 0x1, regs);
1099 /* set interpret mode */
1100 cp15c15 |= 0x1;
1101 arm920t_write_cp15_physical(target,
1102 CP15PHYS_TESTSTATE, cp15c15);
1104 /* Write ICache victim */
1105 arm920t_execute_cp15(target,
1106 ARMV4_5_MCR(15,0,0,9,1,1), ARMV4_5_LDR(1, 0));
1108 /* clear interpret mode */
1109 cp15c15 &= ~0x1;
1110 arm920t_write_cp15_physical(target,
1111 CP15PHYS_TESTSTATE, cp15c15);
1114 /* restore CP15 MMU and Cache settings */
1115 arm920t_write_cp15_physical(target, CP15PHYS_CTRL, cp15_ctrl_saved);
1117 command_print(CMD_CTX, "cache content successfully output to %s",
1118 CMD_ARGV[0]);
1120 fclose(output);
1122 if (!is_arm_mode(armv4_5->core_mode))
1123 return ERROR_FAIL;
1125 /* force writeback of the valid data */
1126 r = armv4_5->core_cache->reg_list;
1127 r[0].dirty = r[0].valid;
1128 r[1].dirty = r[1].valid;
1129 r[2].dirty = r[2].valid;
1130 r[3].dirty = r[3].valid;
1131 r[4].dirty = r[4].valid;
1132 r[5].dirty = r[5].valid;
1133 r[6].dirty = r[6].valid;
1134 r[7].dirty = r[7].valid;
1136 r = arm_reg_current(armv4_5, 8);
1137 r->dirty = r->valid;
1139 r = arm_reg_current(armv4_5, 9);
1140 r->dirty = r->valid;
1142 return ERROR_OK;
1145 COMMAND_HANDLER(arm920t_handle_read_mmu_command)
1147 int retval = ERROR_OK;
1148 struct target *target = get_current_target(CMD_CTX);
1149 struct arm920t_common *arm920t = target_to_arm920(target);
1150 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1151 struct arm *armv4_5 = &arm7_9->armv4_5_common;
1152 uint32_t cp15c15;
1153 uint32_t cp15_ctrl, cp15_ctrl_saved;
1154 uint32_t regs[16];
1155 uint32_t *regs_p[16];
1156 int i;
1157 FILE *output;
1158 uint32_t Dlockdown, Ilockdown;
1159 struct arm920t_tlb_entry d_tlb[64], i_tlb[64];
1160 int victim;
1161 struct reg *r;
1163 retval = arm920t_verify_pointer(CMD_CTX, arm920t);
1164 if (retval != ERROR_OK)
1165 return retval;
1167 if (CMD_ARGC != 1)
1169 command_print(CMD_CTX, "usage: arm920t read_mmu <filename>");
1170 return ERROR_OK;
1173 if ((output = fopen(CMD_ARGV[0], "w")) == NULL)
1175 LOG_DEBUG("error opening mmu content file");
1176 return ERROR_OK;
1179 for (i = 0; i < 16; i++)
1180 regs_p[i] = &regs[i];
1182 /* disable MMU and Caches */
1183 arm920t_read_cp15_physical(target, CP15PHYS_CTRL, &cp15_ctrl);
1184 if ((retval = jtag_execute_queue()) != ERROR_OK)
1186 return retval;
1188 cp15_ctrl_saved = cp15_ctrl;
1189 cp15_ctrl &= ~(ARMV4_5_MMU_ENABLED
1190 | ARMV4_5_D_U_CACHE_ENABLED | ARMV4_5_I_CACHE_ENABLED);
1191 arm920t_write_cp15_physical(target, CP15PHYS_CTRL, cp15_ctrl);
1193 /* read CP15 test state register */
1194 arm920t_read_cp15_physical(target, CP15PHYS_TESTSTATE, &cp15c15);
1195 if ((retval = jtag_execute_queue()) != ERROR_OK)
1197 return retval;
1200 /* prepare reading D TLB content
1201 * */
1203 /* set interpret mode */
1204 cp15c15 |= 0x1;
1205 arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15);
1207 /* Read D TLB lockdown */
1208 arm920t_execute_cp15(target,
1209 ARMV4_5_MRC(15,0,0,10,0,0), ARMV4_5_LDR(1, 0));
1211 /* clear interpret mode */
1212 cp15c15 &= ~0x1;
1213 arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15);
1215 /* read D TLB lockdown stored to r1 */
1216 arm9tdmi_read_core_regs(target, 0x2, regs_p);
1217 if ((retval = jtag_execute_queue()) != ERROR_OK)
1219 return retval;
1221 Dlockdown = regs[1];
1223 for (victim = 0; victim < 64; victim += 8)
1225 /* new lockdown value: base[31:26]:victim[25:20]:SBZ[19:1]:p[0]
1226 * base remains unchanged, victim goes through entries 0 to 63
1228 regs[1] = (Dlockdown & 0xfc000000) | (victim << 20);
1229 arm9tdmi_write_core_regs(target, 0x2, regs);
1231 /* set interpret mode */
1232 cp15c15 |= 0x1;
1233 arm920t_write_cp15_physical(target,
1234 CP15PHYS_TESTSTATE, cp15c15);
1236 /* Write D TLB lockdown */
1237 arm920t_execute_cp15(target,
1238 ARMV4_5_MCR(15,0,0,10,0,0),
1239 ARMV4_5_STR(1, 0));
1241 /* Read D TLB CAM */
1242 arm920t_execute_cp15(target,
1243 ARMV4_5_MCR(15,4,0,15,6,4),
1244 ARMV4_5_LDMIA(0, 0x3fc, 0, 0));
1246 /* clear interpret mode */
1247 cp15c15 &= ~0x1;
1248 arm920t_write_cp15_physical(target,
1249 CP15PHYS_TESTSTATE, cp15c15);
1251 /* read D TLB CAM content stored to r2-r9 */
1252 arm9tdmi_read_core_regs(target, 0x3fc, regs_p);
1253 if ((retval = jtag_execute_queue()) != ERROR_OK)
1255 return retval;
1258 for (i = 0; i < 8; i++)
1259 d_tlb[victim + i].cam = regs[i + 2];
1262 for (victim = 0; victim < 64; victim++)
1264 /* new lockdown value: base[31:26]:victim[25:20]:SBZ[19:1]:p[0]
1265 * base remains unchanged, victim goes through entries 0 to 63
1267 regs[1] = (Dlockdown & 0xfc000000) | (victim << 20);
1268 arm9tdmi_write_core_regs(target, 0x2, regs);
1270 /* set interpret mode */
1271 cp15c15 |= 0x1;
1272 arm920t_write_cp15_physical(target,
1273 CP15PHYS_TESTSTATE, cp15c15);
1275 /* Write D TLB lockdown */
1276 arm920t_execute_cp15(target,
1277 ARMV4_5_MCR(15,0,0,10,0,0), ARMV4_5_STR(1, 0));
1279 /* Read D TLB RAM1 */
1280 arm920t_execute_cp15(target,
1281 ARMV4_5_MCR(15,4,0,15,10,4), ARMV4_5_LDR(2,0));
1283 /* Read D TLB RAM2 */
1284 arm920t_execute_cp15(target,
1285 ARMV4_5_MCR(15,4,0,15,2,5), ARMV4_5_LDR(3,0));
1287 /* clear interpret mode */
1288 cp15c15 &= ~0x1;
1289 arm920t_write_cp15_physical(target,
1290 CP15PHYS_TESTSTATE, cp15c15);
1292 /* read D TLB RAM content stored to r2 and r3 */
1293 arm9tdmi_read_core_regs(target, 0xc, regs_p);
1294 if ((retval = jtag_execute_queue()) != ERROR_OK)
1296 return retval;
1299 d_tlb[victim].ram1 = regs[2];
1300 d_tlb[victim].ram2 = regs[3];
1303 /* restore D TLB lockdown */
1304 regs[1] = Dlockdown;
1305 arm9tdmi_write_core_regs(target, 0x2, regs);
1307 /* Write D TLB lockdown */
1308 arm920t_execute_cp15(target,
1309 ARMV4_5_MCR(15,0,0,10,0,0), ARMV4_5_STR(1, 0));
1311 /* prepare reading I TLB content
1312 * */
1314 /* set interpret mode */
1315 cp15c15 |= 0x1;
1316 arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15);
1318 /* Read I TLB lockdown */
1319 arm920t_execute_cp15(target,
1320 ARMV4_5_MRC(15,0,0,10,0,1), ARMV4_5_LDR(1, 0));
1322 /* clear interpret mode */
1323 cp15c15 &= ~0x1;
1324 arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15);
1326 /* read I TLB lockdown stored to r1 */
1327 arm9tdmi_read_core_regs(target, 0x2, regs_p);
1328 if ((retval = jtag_execute_queue()) != ERROR_OK)
1330 return retval;
1332 Ilockdown = regs[1];
1334 for (victim = 0; victim < 64; victim += 8)
1336 /* new lockdown value: base[31:26]:victim[25:20]:SBZ[19:1]:p[0]
1337 * base remains unchanged, victim goes through entries 0 to 63
1339 regs[1] = (Ilockdown & 0xfc000000) | (victim << 20);
1340 arm9tdmi_write_core_regs(target, 0x2, regs);
1342 /* set interpret mode */
1343 cp15c15 |= 0x1;
1344 arm920t_write_cp15_physical(target,
1345 CP15PHYS_TESTSTATE, cp15c15);
1347 /* Write I TLB lockdown */
1348 arm920t_execute_cp15(target,
1349 ARMV4_5_MCR(15,0,0,10,0,1),
1350 ARMV4_5_STR(1, 0));
1352 /* Read I TLB CAM */
1353 arm920t_execute_cp15(target,
1354 ARMV4_5_MCR(15,4,0,15,5,4),
1355 ARMV4_5_LDMIA(0, 0x3fc, 0, 0));
1357 /* clear interpret mode */
1358 cp15c15 &= ~0x1;
1359 arm920t_write_cp15_physical(target,
1360 CP15PHYS_TESTSTATE, cp15c15);
1362 /* read I TLB CAM content stored to r2-r9 */
1363 arm9tdmi_read_core_regs(target, 0x3fc, regs_p);
1364 if ((retval = jtag_execute_queue()) != ERROR_OK)
1366 return retval;
1369 for (i = 0; i < 8; i++)
1370 i_tlb[i + victim].cam = regs[i + 2];
1373 for (victim = 0; victim < 64; victim++)
1375 /* new lockdown value: base[31:26]:victim[25:20]:SBZ[19:1]:p[0]
1376 * base remains unchanged, victim goes through entries 0 to 63
1378 regs[1] = (Dlockdown & 0xfc000000) | (victim << 20);
1379 arm9tdmi_write_core_regs(target, 0x2, regs);
1381 /* set interpret mode */
1382 cp15c15 |= 0x1;
1383 arm920t_write_cp15_physical(target,
1384 CP15PHYS_TESTSTATE, cp15c15);
1386 /* Write I TLB lockdown */
1387 arm920t_execute_cp15(target,
1388 ARMV4_5_MCR(15,0,0,10,0,1), ARMV4_5_STR(1, 0));
1390 /* Read I TLB RAM1 */
1391 arm920t_execute_cp15(target,
1392 ARMV4_5_MCR(15,4,0,15,9,4), ARMV4_5_LDR(2,0));
1394 /* Read I TLB RAM2 */
1395 arm920t_execute_cp15(target,
1396 ARMV4_5_MCR(15,4,0,15,1,5), ARMV4_5_LDR(3,0));
1398 /* clear interpret mode */
1399 cp15c15 &= ~0x1;
1400 arm920t_write_cp15_physical(target,
1401 CP15PHYS_TESTSTATE, cp15c15);
1403 /* read I TLB RAM content stored to r2 and r3 */
1404 arm9tdmi_read_core_regs(target, 0xc, regs_p);
1405 if ((retval = jtag_execute_queue()) != ERROR_OK)
1407 return retval;
1410 i_tlb[victim].ram1 = regs[2];
1411 i_tlb[victim].ram2 = regs[3];
1414 /* restore I TLB lockdown */
1415 regs[1] = Ilockdown;
1416 arm9tdmi_write_core_regs(target, 0x2, regs);
1418 /* Write I TLB lockdown */
1419 arm920t_execute_cp15(target,
1420 ARMV4_5_MCR(15,0,0,10,0,1), ARMV4_5_STR(1, 0));
1422 /* restore CP15 MMU and Cache settings */
1423 arm920t_write_cp15_physical(target, CP15PHYS_CTRL, cp15_ctrl_saved);
1425 /* output data to file */
1426 fprintf(output, "D TLB content:\n");
1427 for (i = 0; i < 64; i++)
1429 fprintf(output, "%i: 0x%8.8" PRIx32 " 0x%8.8" PRIx32
1430 " 0x%8.8" PRIx32 " %s\n",
1431 i, d_tlb[i].cam, d_tlb[i].ram1, d_tlb[i].ram2,
1432 (d_tlb[i].cam & 0x20) ? "(valid)" : "(invalid)");
1435 fprintf(output, "\n\nI TLB content:\n");
1436 for (i = 0; i < 64; i++)
1438 fprintf(output, "%i: 0x%8.8" PRIx32 " 0x%8.8" PRIx32
1439 " 0x%8.8" PRIx32 " %s\n",
1440 i, i_tlb[i].cam, i_tlb[i].ram1, i_tlb[i].ram2,
1441 (i_tlb[i].cam & 0x20) ? "(valid)" : "(invalid)");
1444 command_print(CMD_CTX, "mmu content successfully output to %s",
1445 CMD_ARGV[0]);
1447 fclose(output);
1449 if (!is_arm_mode(armv4_5->core_mode))
1450 return ERROR_FAIL;
1452 /* force writeback of the valid data */
1453 r = armv4_5->core_cache->reg_list;
1454 r[0].dirty = r[0].valid;
1455 r[1].dirty = r[1].valid;
1456 r[2].dirty = r[2].valid;
1457 r[3].dirty = r[3].valid;
1458 r[4].dirty = r[4].valid;
1459 r[5].dirty = r[5].valid;
1460 r[6].dirty = r[6].valid;
1461 r[7].dirty = r[7].valid;
1463 r = arm_reg_current(armv4_5, 8);
1464 r->dirty = r->valid;
1466 r = arm_reg_current(armv4_5, 9);
1467 r->dirty = r->valid;
1469 return ERROR_OK;
1472 COMMAND_HANDLER(arm920t_handle_cp15_command)
1474 int retval;
1475 struct target *target = get_current_target(CMD_CTX);
1476 struct arm920t_common *arm920t = target_to_arm920(target);
1478 retval = arm920t_verify_pointer(CMD_CTX, arm920t);
1479 if (retval != ERROR_OK)
1480 return retval;
1482 if (target->state != TARGET_HALTED)
1484 command_print(CMD_CTX, "target must be stopped for "
1485 "\"%s\" command", CMD_NAME);
1486 return ERROR_OK;
1489 /* one argument, read a register.
1490 * two arguments, write it.
1492 if (CMD_ARGC >= 1)
1494 int address;
1495 COMMAND_PARSE_NUMBER(int, CMD_ARGV[0], address);
1497 if (CMD_ARGC == 1)
1499 uint32_t value;
1500 if ((retval = arm920t_read_cp15_physical(target,
1501 address, &value)) != ERROR_OK)
1503 command_print(CMD_CTX,
1504 "couldn't access reg %i", address);
1505 return ERROR_OK;
1507 if ((retval = jtag_execute_queue()) != ERROR_OK)
1509 return retval;
1512 command_print(CMD_CTX, "%i: %8.8" PRIx32,
1513 address, value);
1515 else if (CMD_ARGC == 2)
1517 uint32_t value;
1518 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
1519 retval = arm920t_write_cp15_physical(target,
1520 address, value);
1521 if (retval != ERROR_OK)
1523 command_print(CMD_CTX,
1524 "couldn't access reg %i", address);
1525 /* REVISIT why lie? "return retval"? */
1526 return ERROR_OK;
1528 command_print(CMD_CTX, "%i: %8.8" PRIx32,
1529 address, value);
1533 return ERROR_OK;
1536 COMMAND_HANDLER(arm920t_handle_cp15i_command)
1538 int retval;
1539 struct target *target = get_current_target(CMD_CTX);
1540 struct arm920t_common *arm920t = target_to_arm920(target);
1542 retval = arm920t_verify_pointer(CMD_CTX, arm920t);
1543 if (retval != ERROR_OK)
1544 return retval;
1547 if (target->state != TARGET_HALTED)
1549 command_print(CMD_CTX, "target must be stopped for "
1550 "\"%s\" command", CMD_NAME);
1551 return ERROR_OK;
1554 /* one argument, read a register.
1555 * two arguments, write it.
1557 if (CMD_ARGC >= 1)
1559 uint32_t opcode;
1560 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], opcode);
1562 if (CMD_ARGC == 1)
1564 uint32_t value;
1565 retval = arm920t_read_cp15_interpreted(target,
1566 opcode, 0x0, &value);
1567 if (retval != ERROR_OK)
1569 command_print(CMD_CTX,
1570 "couldn't execute %8.8" PRIx32,
1571 opcode);
1572 /* REVISIT why lie? "return retval"? */
1573 return ERROR_OK;
1576 command_print(CMD_CTX, "%8.8" PRIx32 ": %8.8" PRIx32,
1577 opcode, value);
1579 else if (CMD_ARGC == 2)
1581 uint32_t value;
1582 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
1583 retval = arm920t_write_cp15_interpreted(target,
1584 opcode, value, 0);
1585 if (retval != ERROR_OK)
1587 command_print(CMD_CTX,
1588 "couldn't execute %8.8" PRIx32,
1589 opcode);
1590 /* REVISIT why lie? "return retval"? */
1591 return ERROR_OK;
1593 command_print(CMD_CTX, "%8.8" PRIx32 ": %8.8" PRIx32,
1594 opcode, value);
1596 else if (CMD_ARGC == 3)
1598 uint32_t value;
1599 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
1600 uint32_t address;
1601 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], address);
1602 retval = arm920t_write_cp15_interpreted(target,
1603 opcode, value, address);
1604 if (retval != ERROR_OK)
1606 command_print(CMD_CTX,
1607 "couldn't execute %8.8" PRIx32, opcode);
1608 /* REVISIT why lie? "return retval"? */
1609 return ERROR_OK;
1611 command_print(CMD_CTX, "%8.8" PRIx32 ": %8.8" PRIx32
1612 " %8.8" PRIx32, opcode, value, address);
1615 else
1617 command_print(CMD_CTX,
1618 "usage: arm920t cp15i <opcode> [value] [address]");
1621 return ERROR_OK;
1624 COMMAND_HANDLER(arm920t_handle_cache_info_command)
1626 int retval;
1627 struct target *target = get_current_target(CMD_CTX);
1628 struct arm920t_common *arm920t = target_to_arm920(target);
1630 retval = arm920t_verify_pointer(CMD_CTX, arm920t);
1631 if (retval != ERROR_OK)
1632 return retval;
1634 return armv4_5_handle_cache_info_command(CMD_CTX,
1635 &arm920t->armv4_5_mmu.armv4_5_cache);
1639 static int arm920t_mrc(struct target *target, int cpnum,
1640 uint32_t op1, uint32_t op2,
1641 uint32_t CRn, uint32_t CRm,
1642 uint32_t *value)
1644 if (cpnum!=15)
1646 LOG_ERROR("Only cp15 is supported");
1647 return ERROR_FAIL;
1650 /* read "to" r0 */
1651 return arm920t_read_cp15_interpreted(target,
1652 ARMV4_5_MRC(cpnum, op1, 0, CRn, CRm, op2),
1653 0, value);
1656 static int arm920t_mcr(struct target *target, int cpnum,
1657 uint32_t op1, uint32_t op2,
1658 uint32_t CRn, uint32_t CRm,
1659 uint32_t value)
1661 if (cpnum!=15)
1663 LOG_ERROR("Only cp15 is supported");
1664 return ERROR_FAIL;
1667 /* write "from" r0 */
1668 return arm920t_write_cp15_interpreted(target,
1669 ARMV4_5_MCR(cpnum, op1, 0, CRn, CRm, op2),
1670 0, value);
1673 static const struct command_registration arm920t_exec_command_handlers[] = {
1675 .name = "cp15",
1676 .handler = arm920t_handle_cp15_command,
1677 .mode = COMMAND_EXEC,
1678 .help = "display/modify cp15 register",
1679 .usage = "regnum [value]",
1682 .name = "cp15i",
1683 .handler = arm920t_handle_cp15i_command,
1684 .mode = COMMAND_EXEC,
1685 /* prefer using less error-prone "arm mcr" or "arm mrc" */
1686 .help = "display/modify cp15 register using ARM opcode"
1687 " (DEPRECATED)",
1688 .usage = "instruction [value [address]]",
1691 .name = "cache_info",
1692 .handler = arm920t_handle_cache_info_command,
1693 .mode = COMMAND_EXEC,
1694 .help = "display information about target caches",
1697 .name = "read_cache",
1698 .handler = arm920t_handle_read_cache_command,
1699 .mode = COMMAND_EXEC,
1700 .help = "dump I/D cache content to file",
1701 .usage = "filename",
1704 .name = "read_mmu",
1705 .handler = arm920t_handle_read_mmu_command,
1706 .mode = COMMAND_EXEC,
1707 .help = "dump I/D mmu content to file",
1708 .usage = "filename",
1710 COMMAND_REGISTRATION_DONE
1712 const struct command_registration arm920t_command_handlers[] = {
1714 .chain = arm9tdmi_command_handlers,
1717 .name = "arm920t",
1718 .mode = COMMAND_ANY,
1719 .help = "arm920t command group",
1720 .chain = arm920t_exec_command_handlers,
1722 COMMAND_REGISTRATION_DONE
1725 /** Holds methods for ARM920 targets. */
1726 struct target_type arm920t_target =
1728 .name = "arm920t",
1730 .poll = arm7_9_poll,
1731 .arch_state = arm920t_arch_state,
1733 .target_request_data = arm7_9_target_request_data,
1735 .halt = arm7_9_halt,
1736 .resume = arm7_9_resume,
1737 .step = arm7_9_step,
1739 .assert_reset = arm7_9_assert_reset,
1740 .deassert_reset = arm7_9_deassert_reset,
1741 .soft_reset_halt = arm920t_soft_reset_halt,
1743 .get_gdb_reg_list = arm_get_gdb_reg_list,
1745 .read_memory = arm920t_read_memory,
1746 .write_memory = arm920t_write_memory,
1747 .read_phys_memory = arm920t_read_phys_memory,
1748 .write_phys_memory = arm920t_write_phys_memory,
1749 .mmu = arm920_mmu,
1750 .virt2phys = arm920_virt2phys,
1752 .bulk_write_memory = arm7_9_bulk_write_memory,
1754 .checksum_memory = arm_checksum_memory,
1755 .blank_check_memory = arm_blank_check_memory,
1757 .run_algorithm = armv4_5_run_algorithm,
1759 .add_breakpoint = arm7_9_add_breakpoint,
1760 .remove_breakpoint = arm7_9_remove_breakpoint,
1761 .add_watchpoint = arm7_9_add_watchpoint,
1762 .remove_watchpoint = arm7_9_remove_watchpoint,
1764 .commands = arm920t_command_handlers,
1765 .target_create = arm920t_target_create,
1766 .init_target = arm9tdmi_init_target,
1767 .examine = arm7_9_examine,
1768 .check_reset = arm7_9_check_reset,