arm_jtag_scann error propagation fixes
[openocd/cortex.git] / src / target / arm920t.c
blob90f548f38f0fbf6ee9d14a929ed037c1824478cb
2 /***************************************************************************
3 * Copyright (C) 2005 by Dominic Rath *
4 * Dominic.Rath@gmx.de *
5 * *
6 * This program is free software; you can redistribute it and/or modify *
7 * it under the terms of the GNU General Public License as published by *
8 * the Free Software Foundation; either version 2 of the License, or *
9 * (at your option) any later version. *
10 * *
11 * This program is distributed in the hope that it will be useful, *
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
14 * GNU General Public License for more details. *
15 * *
16 * You should have received a copy of the GNU General Public License *
17 * along with this program; if not, write to the *
18 * Free Software Foundation, Inc., *
19 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
20 ***************************************************************************/
21 #ifdef HAVE_CONFIG_H
22 #include "config.h"
23 #endif
25 #include "arm920t.h"
26 #include <helper/time_support.h>
27 #include "target_type.h"
28 #include "register.h"
29 #include "arm_opcodes.h"
33 * For information about the ARM920T, see ARM DDI 0151C especially
34 * Chapter 9 about debug support, which shows how to manipulate each
35 * of the different scan chains:
37 * 0 ... ARM920 signals, e.g. to rest of SOC (unused here)
38 * 1 ... debugging; watchpoint and breakpoint status, etc; also
39 * MMU and cache access in conjunction with scan chain 15
40 * 2 ... EmbeddedICE
41 * 3 ... external boundary scan (SoC-specific, unused here)
42 * 4 ... access to cache tag RAM
43 * 6 ... ETM9
44 * 15 ... access coprocessor 15, "physical" or "interpreted" modes
45 * "interpreted" works with a few actual MRC/MCR instructions
46 * "physical" provides register-like behaviors. Section 9.6.7
47 * covers these details.
49 * The ARM922T is similar, but with smaller caches (8K each, vs 16K).
52 #if 0
53 #define _DEBUG_INSTRUCTION_EXECUTION_
54 #endif
56 /* Table 9-8 shows scan chain 15 format during physical access mode, using a
57 * dedicated 6-bit address space (encoded in bits 33:38). Writes use one
58 * JTAG scan, while reads use two.
60 * Table 9-9 lists the thirteen registers which support physical access.
61 * ARM920T_CP15_PHYS_ADDR() constructs the 6-bit reg_addr parameter passed
62 * to arm920t_read_cp15_physical() and arm920t_write_cp15_physical().
64 * x == bit[38]
65 * y == bits[37:34]
66 * z == bit[33]
68 #define ARM920T_CP15_PHYS_ADDR(x, y, z) ((x << 5) | (y << 1) << (z))
70 /* Registers supporting physical Read access (from table 9-9) */
71 #define CP15PHYS_CACHETYPE ARM920T_CP15_PHYS_ADDR(0, 0x0, 1)
72 #define CP15PHYS_ICACHE_IDX ARM920T_CP15_PHYS_ADDR(1, 0xd, 1)
73 #define CP15PHYS_DCACHE_IDX ARM920T_CP15_PHYS_ADDR(1, 0xe, 1)
74 /* NOTE: several more registers support only physical read access */
76 /* Registers supporting physical Read/Write access (from table 9-9) */
77 #define CP15PHYS_CTRL ARM920T_CP15_PHYS_ADDR(0, 0x1, 0)
78 #define CP15PHYS_PID ARM920T_CP15_PHYS_ADDR(0, 0xd, 0)
79 #define CP15PHYS_TESTSTATE ARM920T_CP15_PHYS_ADDR(0, 0xf, 0)
80 #define CP15PHYS_ICACHE ARM920T_CP15_PHYS_ADDR(1, 0x1, 1)
81 #define CP15PHYS_DCACHE ARM920T_CP15_PHYS_ADDR(1, 0x2, 1)
83 static int arm920t_read_cp15_physical(struct target *target,
84 int reg_addr, uint32_t *value)
86 struct arm920t_common *arm920t = target_to_arm920(target);
87 struct arm_jtag *jtag_info;
88 struct scan_field fields[4];
89 uint8_t access_type_buf = 1;
90 uint8_t reg_addr_buf = reg_addr & 0x3f;
91 uint8_t nr_w_buf = 0;
92 int retval;
94 jtag_info = &arm920t->arm7_9_common.jtag_info;
96 retval = arm_jtag_scann(jtag_info, 0xf, TAP_IDLE);
97 if (retval != ERROR_OK)
98 return retval;
99 retval = arm_jtag_set_instr(jtag_info, jtag_info->intest_instr, NULL, TAP_IDLE);
100 if (retval != ERROR_OK)
101 return retval;
103 fields[0].num_bits = 1;
104 fields[0].out_value = &access_type_buf;
105 fields[0].in_value = NULL;
107 fields[1].num_bits = 32;
108 fields[1].out_value = NULL;
109 fields[1].in_value = NULL;
111 fields[2].num_bits = 6;
112 fields[2].out_value = &reg_addr_buf;
113 fields[2].in_value = NULL;
115 fields[3].num_bits = 1;
116 fields[3].out_value = &nr_w_buf;
117 fields[3].in_value = NULL;
119 jtag_add_dr_scan(jtag_info->tap, 4, fields, TAP_IDLE);
121 fields[1].in_value = (uint8_t *)value;
123 jtag_add_dr_scan(jtag_info->tap, 4, fields, TAP_IDLE);
125 jtag_add_callback(arm_le_to_h_u32, (jtag_callback_data_t)value);
127 #ifdef _DEBUG_INSTRUCTION_EXECUTION_
128 jtag_execute_queue();
129 LOG_DEBUG("addr: 0x%x value: %8.8x", reg_addr, *value);
130 #endif
132 return ERROR_OK;
135 static int arm920t_write_cp15_physical(struct target *target,
136 int reg_addr, uint32_t value)
138 struct arm920t_common *arm920t = target_to_arm920(target);
139 struct arm_jtag *jtag_info;
140 struct scan_field fields[4];
141 uint8_t access_type_buf = 1;
142 uint8_t reg_addr_buf = reg_addr & 0x3f;
143 uint8_t nr_w_buf = 1;
144 uint8_t value_buf[4];
145 int retval;
147 jtag_info = &arm920t->arm7_9_common.jtag_info;
149 buf_set_u32(value_buf, 0, 32, value);
151 retval = arm_jtag_scann(jtag_info, 0xf, TAP_IDLE);
152 if (retval != ERROR_OK)
153 return retval;
154 retval = arm_jtag_set_instr(jtag_info, jtag_info->intest_instr, NULL, TAP_IDLE);
155 if (retval != ERROR_OK)
156 return retval;
158 fields[0].num_bits = 1;
159 fields[0].out_value = &access_type_buf;
160 fields[0].in_value = NULL;
162 fields[1].num_bits = 32;
163 fields[1].out_value = value_buf;
164 fields[1].in_value = NULL;
166 fields[2].num_bits = 6;
167 fields[2].out_value = &reg_addr_buf;
168 fields[2].in_value = NULL;
170 fields[3].num_bits = 1;
171 fields[3].out_value = &nr_w_buf;
172 fields[3].in_value = NULL;
174 jtag_add_dr_scan(jtag_info->tap, 4, fields, TAP_IDLE);
176 #ifdef _DEBUG_INSTRUCTION_EXECUTION_
177 LOG_DEBUG("addr: 0x%x value: %8.8x", reg_addr, value);
178 #endif
180 return ERROR_OK;
183 /* See table 9-10 for scan chain 15 format during interpreted access mode.
184 * If the TESTSTATE register is set for interpreted access, certain CP15
185 * MRC and MCR instructions may be executed through scan chain 15.
187 * Tables 9-11, 9-12, and 9-13 show which MRC and MCR instructions can be
188 * executed using scan chain 15 interpreted mode.
190 static int arm920t_execute_cp15(struct target *target, uint32_t cp15_opcode,
191 uint32_t arm_opcode)
193 int retval;
194 struct arm920t_common *arm920t = target_to_arm920(target);
195 struct arm_jtag *jtag_info;
196 struct scan_field fields[4];
197 uint8_t access_type_buf = 0; /* interpreted access */
198 uint8_t reg_addr_buf = 0x0;
199 uint8_t nr_w_buf = 0;
200 uint8_t cp15_opcode_buf[4];
202 jtag_info = &arm920t->arm7_9_common.jtag_info;
204 retval = arm_jtag_scann(jtag_info, 0xf, TAP_IDLE);
205 if (retval != ERROR_OK)
206 return retval;
207 retval = arm_jtag_set_instr(jtag_info, jtag_info->intest_instr, NULL, TAP_IDLE);
208 if (retval != ERROR_OK)
209 return retval;
211 buf_set_u32(cp15_opcode_buf, 0, 32, cp15_opcode);
213 fields[0].num_bits = 1;
214 fields[0].out_value = &access_type_buf;
215 fields[0].in_value = NULL;
217 fields[1].num_bits = 32;
218 fields[1].out_value = cp15_opcode_buf;
219 fields[1].in_value = NULL;
221 fields[2].num_bits = 6;
222 fields[2].out_value = &reg_addr_buf;
223 fields[2].in_value = NULL;
225 fields[3].num_bits = 1;
226 fields[3].out_value = &nr_w_buf;
227 fields[3].in_value = NULL;
229 jtag_add_dr_scan(jtag_info->tap, 4, fields, TAP_IDLE);
231 arm9tdmi_clock_out(jtag_info, arm_opcode, 0, NULL, 0);
232 arm9tdmi_clock_out(jtag_info, ARMV4_5_NOP, 0, NULL, 1);
233 retval = arm7_9_execute_sys_speed(target);
234 if (retval != ERROR_OK)
235 return retval;
237 if ((retval = jtag_execute_queue()) != ERROR_OK)
239 LOG_ERROR("failed executing JTAG queue");
240 return retval;
243 return ERROR_OK;
246 static int arm920t_read_cp15_interpreted(struct target *target,
247 uint32_t cp15_opcode, uint32_t address, uint32_t *value)
249 struct arm *armv4_5 = target_to_arm(target);
250 uint32_t* regs_p[1];
251 uint32_t regs[2];
252 uint32_t cp15c15 = 0x0;
253 struct reg *r = armv4_5->core_cache->reg_list;
255 /* load address into R1 */
256 regs[1] = address;
257 arm9tdmi_write_core_regs(target, 0x2, regs);
259 /* read-modify-write CP15 test state register
260 * to enable interpreted access mode */
261 arm920t_read_cp15_physical(target, CP15PHYS_TESTSTATE, &cp15c15);
262 jtag_execute_queue();
263 cp15c15 |= 1; /* set interpret mode */
264 arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15);
266 /* execute CP15 instruction and ARM load (reading from coprocessor) */
267 arm920t_execute_cp15(target, cp15_opcode, ARMV4_5_LDR(0, 1));
269 /* disable interpreted access mode */
270 cp15c15 &= ~1U; /* clear interpret mode */
271 arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15);
273 /* retrieve value from R0 */
274 regs_p[0] = value;
275 arm9tdmi_read_core_regs(target, 0x1, regs_p);
276 jtag_execute_queue();
278 #ifdef _DEBUG_INSTRUCTION_EXECUTION_
279 LOG_DEBUG("cp15_opcode: %8.8x, address: %8.8x, value: %8.8x",
280 cp15_opcode, address, *value);
281 #endif
283 if (!is_arm_mode(armv4_5->core_mode))
284 return ERROR_FAIL;
286 r[0].dirty = 1;
287 r[1].dirty = 1;
289 return ERROR_OK;
292 static
293 int arm920t_write_cp15_interpreted(struct target *target,
294 uint32_t cp15_opcode, uint32_t value, uint32_t address)
296 uint32_t cp15c15 = 0x0;
297 struct arm *armv4_5 = target_to_arm(target);
298 uint32_t regs[2];
299 struct reg *r = armv4_5->core_cache->reg_list;
301 /* load value, address into R0, R1 */
302 regs[0] = value;
303 regs[1] = address;
304 arm9tdmi_write_core_regs(target, 0x3, regs);
306 /* read-modify-write CP15 test state register
307 * to enable interpreted access mode */
308 arm920t_read_cp15_physical(target, CP15PHYS_TESTSTATE, &cp15c15);
309 jtag_execute_queue();
310 cp15c15 |= 1; /* set interpret mode */
311 arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15);
313 /* execute CP15 instruction and ARM store (writing to coprocessor) */
314 arm920t_execute_cp15(target, cp15_opcode, ARMV4_5_STR(0, 1));
316 /* disable interpreted access mode */
317 cp15c15 &= ~1U; /* set interpret mode */
318 arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15);
320 #ifdef _DEBUG_INSTRUCTION_EXECUTION_
321 LOG_DEBUG("cp15_opcode: %8.8x, value: %8.8x, address: %8.8x",
322 cp15_opcode, value, address);
323 #endif
325 if (!is_arm_mode(armv4_5->core_mode))
326 return ERROR_FAIL;
328 r[0].dirty = 1;
329 r[1].dirty = 1;
331 return ERROR_OK;
334 // EXPORTED to FA256
335 int arm920t_get_ttb(struct target *target, uint32_t *result)
337 int retval;
338 uint32_t ttb = 0x0;
340 if ((retval = arm920t_read_cp15_interpreted(target,
341 /* FIXME use opcode macro */
342 0xeebf0f51, 0x0, &ttb)) != ERROR_OK)
343 return retval;
345 *result = ttb;
346 return ERROR_OK;
349 // EXPORTED to FA256
350 int arm920t_disable_mmu_caches(struct target *target, int mmu,
351 int d_u_cache, int i_cache)
353 uint32_t cp15_control;
354 int retval;
356 /* read cp15 control register */
357 retval = arm920t_read_cp15_physical(target, CP15PHYS_CTRL, &cp15_control);
358 if (retval != ERROR_OK)
359 return retval;
360 retval = jtag_execute_queue();
361 if (retval != ERROR_OK)
362 return retval;
364 if (mmu)
365 cp15_control &= ~0x1U;
367 if (d_u_cache)
368 cp15_control &= ~0x4U;
370 if (i_cache)
371 cp15_control &= ~0x1000U;
373 retval = arm920t_write_cp15_physical(target, CP15PHYS_CTRL, cp15_control);
374 return retval;
377 // EXPORTED to FA256
378 int arm920t_enable_mmu_caches(struct target *target, int mmu,
379 int d_u_cache, int i_cache)
381 uint32_t cp15_control;
382 int retval;
384 /* read cp15 control register */
385 retval = arm920t_read_cp15_physical(target, CP15PHYS_CTRL, &cp15_control);
386 if (retval != ERROR_OK)
387 return retval;
388 retval = jtag_execute_queue();
389 if (retval != ERROR_OK)
390 return retval;
392 if (mmu)
393 cp15_control |= 0x1U;
395 if (d_u_cache)
396 cp15_control |= 0x4U;
398 if (i_cache)
399 cp15_control |= 0x1000U;
401 retval = arm920t_write_cp15_physical(target, CP15PHYS_CTRL, cp15_control);
402 return retval;
405 // EXPORTED to FA256
406 int arm920t_post_debug_entry(struct target *target)
408 uint32_t cp15c15;
409 struct arm920t_common *arm920t = target_to_arm920(target);
410 int retval;
412 /* examine cp15 control reg */
413 retval = arm920t_read_cp15_physical(target,
414 CP15PHYS_CTRL, &arm920t->cp15_control_reg);
415 if (retval != ERROR_OK)
416 return retval;
417 retval = jtag_execute_queue();
418 if (retval != ERROR_OK)
419 return retval;
420 LOG_DEBUG("cp15_control_reg: %8.8" PRIx32, arm920t->cp15_control_reg);
422 if (arm920t->armv4_5_mmu.armv4_5_cache.ctype == -1)
424 uint32_t cache_type_reg;
425 /* identify caches */
426 retval = arm920t_read_cp15_physical(target,
427 CP15PHYS_CACHETYPE, &cache_type_reg);
428 if (retval != ERROR_OK)
429 return retval;
430 retval = jtag_execute_queue();
431 if (retval != ERROR_OK)
432 return retval;
433 armv4_5_identify_cache(cache_type_reg,
434 &arm920t->armv4_5_mmu.armv4_5_cache);
437 arm920t->armv4_5_mmu.mmu_enabled =
438 (arm920t->cp15_control_reg & 0x1U) ? 1 : 0;
439 arm920t->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled =
440 (arm920t->cp15_control_reg & 0x4U) ? 1 : 0;
441 arm920t->armv4_5_mmu.armv4_5_cache.i_cache_enabled =
442 (arm920t->cp15_control_reg & 0x1000U) ? 1 : 0;
444 /* save i/d fault status and address register */
445 /* FIXME use opcode macros */
446 retval = arm920t_read_cp15_interpreted(target, 0xee150f10, 0x0, &arm920t->d_fsr);
447 if (retval != ERROR_OK)
448 return retval;
449 retval = arm920t_read_cp15_interpreted(target, 0xee150f30, 0x0, &arm920t->i_fsr);
450 if (retval != ERROR_OK)
451 return retval;
452 retval = arm920t_read_cp15_interpreted(target, 0xee160f10, 0x0, &arm920t->d_far);
453 if (retval != ERROR_OK)
454 return retval;
455 retval = arm920t_read_cp15_interpreted(target, 0xee160f30, 0x0, &arm920t->i_far);
456 if (retval != ERROR_OK)
457 return retval;
459 LOG_DEBUG("D FSR: 0x%8.8" PRIx32 ", D FAR: 0x%8.8" PRIx32
460 ", I FSR: 0x%8.8" PRIx32 ", I FAR: 0x%8.8" PRIx32,
461 arm920t->d_fsr, arm920t->d_far, arm920t->i_fsr, arm920t->i_far);
463 if (arm920t->preserve_cache)
465 /* read-modify-write CP15 test state register
466 * to disable I/D-cache linefills */
467 retval = arm920t_read_cp15_physical(target,
468 CP15PHYS_TESTSTATE, &cp15c15);
469 if (retval != ERROR_OK)
470 return retval;
471 retval = jtag_execute_queue();
472 if (retval != ERROR_OK)
473 return retval;
474 cp15c15 |= 0x600;
475 retval = arm920t_write_cp15_physical(target,
476 CP15PHYS_TESTSTATE, cp15c15);
477 if (retval != ERROR_OK)
478 return retval;
480 return ERROR_OK;
483 // EXPORTED to FA256
484 void arm920t_pre_restore_context(struct target *target)
486 uint32_t cp15c15;
487 struct arm920t_common *arm920t = target_to_arm920(target);
489 /* restore i/d fault status and address register */
490 arm920t_write_cp15_interpreted(target, 0xee050f10, arm920t->d_fsr, 0x0);
491 arm920t_write_cp15_interpreted(target, 0xee050f30, arm920t->i_fsr, 0x0);
492 arm920t_write_cp15_interpreted(target, 0xee060f10, arm920t->d_far, 0x0);
493 arm920t_write_cp15_interpreted(target, 0xee060f30, arm920t->i_far, 0x0);
495 /* read-modify-write CP15 test state register
496 * to reenable I/D-cache linefills */
497 if (arm920t->preserve_cache)
499 arm920t_read_cp15_physical(target,
500 CP15PHYS_TESTSTATE, &cp15c15);
501 jtag_execute_queue();
502 cp15c15 &= ~0x600U;
503 arm920t_write_cp15_physical(target,
504 CP15PHYS_TESTSTATE, cp15c15);
508 static const char arm920_not[] = "target is not an ARM920";
510 static int arm920t_verify_pointer(struct command_context *cmd_ctx,
511 struct arm920t_common *arm920t)
513 if (arm920t->common_magic != ARM920T_COMMON_MAGIC) {
514 command_print(cmd_ctx, arm920_not);
515 return ERROR_TARGET_INVALID;
518 return ERROR_OK;
521 /** Logs summary of ARM920 state for a halted target. */
522 int arm920t_arch_state(struct target *target)
524 static const char *state[] =
526 "disabled", "enabled"
529 struct arm920t_common *arm920t = target_to_arm920(target);
530 struct arm *armv4_5;
532 if (arm920t->common_magic != ARM920T_COMMON_MAGIC)
534 LOG_ERROR("BUG: %s", arm920_not);
535 return ERROR_TARGET_INVALID;
538 armv4_5 = &arm920t->arm7_9_common.armv4_5_common;
540 arm_arch_state(target);
541 LOG_USER("MMU: %s, D-Cache: %s, I-Cache: %s",
542 state[arm920t->armv4_5_mmu.mmu_enabled],
543 state[arm920t->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled],
544 state[arm920t->armv4_5_mmu.armv4_5_cache.i_cache_enabled]);
546 return ERROR_OK;
549 static int arm920_mmu(struct target *target, int *enabled)
551 if (target->state != TARGET_HALTED) {
552 LOG_ERROR("%s: target not halted", __func__);
553 return ERROR_TARGET_INVALID;
556 *enabled = target_to_arm920(target)->armv4_5_mmu.mmu_enabled;
557 return ERROR_OK;
560 static int arm920_virt2phys(struct target *target,
561 uint32_t virt, uint32_t *phys)
563 uint32_t cb;
564 struct arm920t_common *arm920t = target_to_arm920(target);
566 uint32_t ret;
567 int retval = armv4_5_mmu_translate_va(target,
568 &arm920t->armv4_5_mmu, virt, &cb, &ret);
569 if (retval != ERROR_OK)
570 return retval;
571 *phys = ret;
572 return ERROR_OK;
575 /** Reads a buffer, in the specified word size, with current MMU settings. */
576 int arm920t_read_memory(struct target *target, uint32_t address,
577 uint32_t size, uint32_t count, uint8_t *buffer)
579 int retval;
581 retval = arm7_9_read_memory(target, address, size, count, buffer);
583 return retval;
587 static int arm920t_read_phys_memory(struct target *target,
588 uint32_t address, uint32_t size,
589 uint32_t count, uint8_t *buffer)
591 struct arm920t_common *arm920t = target_to_arm920(target);
593 return armv4_5_mmu_read_physical(target, &arm920t->armv4_5_mmu,
594 address, size, count, buffer);
597 static int arm920t_write_phys_memory(struct target *target,
598 uint32_t address, uint32_t size,
599 uint32_t count, uint8_t *buffer)
601 struct arm920t_common *arm920t = target_to_arm920(target);
603 return armv4_5_mmu_write_physical(target, &arm920t->armv4_5_mmu,
604 address, size, count, buffer);
608 /** Writes a buffer, in the specified word size, with current MMU settings. */
609 int arm920t_write_memory(struct target *target, uint32_t address,
610 uint32_t size, uint32_t count, uint8_t *buffer)
612 int retval;
613 const uint32_t cache_mask = ~0x1f; /* cache line size : 32 byte */
614 struct arm920t_common *arm920t = target_to_arm920(target);
616 /* FIX!!!! this should be cleaned up and made much more general. The
617 * plan is to write up and test on arm920t specifically and
618 * then generalize and clean up afterwards.
620 * Also it should be moved to the callbacks that handle breakpoints
621 * specifically and not the generic memory write fn's. See XScale code.
623 if (arm920t->armv4_5_mmu.mmu_enabled && (count == 1) &&
624 ((size==2) || (size==4)))
626 /* special case the handling of single word writes to
627 * bypass MMU, to allow implementation of breakpoints
628 * in memory marked read only
629 * by MMU
631 uint32_t cb;
632 uint32_t pa;
635 * We need physical address and cb
637 retval = armv4_5_mmu_translate_va(target, &arm920t->armv4_5_mmu,
638 address, &cb, &pa);
639 if (retval != ERROR_OK)
640 return retval;
642 if (arm920t->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled)
644 if (cb & 0x1)
646 LOG_DEBUG("D-Cache buffered, "
647 "drain write buffer");
649 * Buffered ?
650 * Drain write buffer - MCR p15,0,Rd,c7,c10,4
653 retval = arm920t_write_cp15_interpreted(target,
654 ARMV4_5_MCR(15, 0, 0, 7, 10, 4),
655 0x0, 0);
656 if (retval != ERROR_OK)
657 return retval;
660 if (cb == 0x3)
663 * Write back memory ? -> clean cache
665 * There is no way to clean cache lines using
666 * cp15 scan chain, so copy the full cache
667 * line from cache to physical memory.
669 uint8_t data[32];
671 LOG_DEBUG("D-Cache in 'write back' mode, "
672 "flush cache line");
674 retval = target_read_memory(target,
675 address & cache_mask, 1,
676 sizeof(data), &data[0]);
677 if (retval != ERROR_OK)
678 return retval;
680 retval = armv4_5_mmu_write_physical(target,
681 &arm920t->armv4_5_mmu,
682 pa & cache_mask, 1,
683 sizeof(data), &data[0]);
684 if (retval != ERROR_OK)
685 return retval;
688 /* Cached ? */
689 if (cb & 0x2)
692 * Cached ? -> Invalidate data cache using MVA
694 * MCR p15,0,Rd,c7,c6,1
696 LOG_DEBUG("D-Cache enabled, "
697 "invalidate cache line");
699 retval = arm920t_write_cp15_interpreted(target,
700 ARMV4_5_MCR(15, 0, 0, 7, 6, 1), 0x0,
701 address & cache_mask);
702 if (retval != ERROR_OK)
703 return retval;
707 /* write directly to physical memory,
708 * bypassing any read only MMU bits, etc.
710 retval = armv4_5_mmu_write_physical(target,
711 &arm920t->armv4_5_mmu, pa, size,
712 count, buffer);
713 if (retval != ERROR_OK)
714 return retval;
715 } else
717 if ((retval = arm7_9_write_memory(target, address,
718 size, count, buffer)) != ERROR_OK)
719 return retval;
722 /* If ICache is enabled, we have to invalidate affected ICache lines
723 * the DCache is forced to write-through,
724 * so we don't have to clean it here
726 if (arm920t->armv4_5_mmu.armv4_5_cache.i_cache_enabled)
728 if (count <= 1)
730 /* invalidate ICache single entry with MVA
731 * mcr 15, 0, r0, cr7, cr5, {1}
733 LOG_DEBUG("I-Cache enabled, "
734 "invalidating affected I-Cache line");
735 retval = arm920t_write_cp15_interpreted(target,
736 ARMV4_5_MCR(15, 0, 0, 7, 5, 1),
737 0x0, address & cache_mask);
738 if (retval != ERROR_OK)
739 return retval;
741 else
743 /* invalidate ICache
744 * mcr 15, 0, r0, cr7, cr5, {0}
746 retval = arm920t_write_cp15_interpreted(target,
747 ARMV4_5_MCR(15, 0, 0, 7, 5, 0),
748 0x0, 0x0);
749 if (retval != ERROR_OK)
750 return retval;
754 return ERROR_OK;
757 // EXPORTED to FA256
758 int arm920t_soft_reset_halt(struct target *target)
760 int retval = ERROR_OK;
761 struct arm920t_common *arm920t = target_to_arm920(target);
762 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
763 struct arm *armv4_5 = &arm7_9->armv4_5_common;
764 struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
766 if ((retval = target_halt(target)) != ERROR_OK)
768 return retval;
771 long long then = timeval_ms();
772 int timeout;
773 while (!(timeout = ((timeval_ms()-then) > 1000)))
775 if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_DBGACK, 1)
776 == 0)
778 embeddedice_read_reg(dbg_stat);
779 if ((retval = jtag_execute_queue()) != ERROR_OK)
781 return retval;
783 } else
785 break;
787 if (debug_level >= 3)
789 /* do not eat all CPU, time out after 1 se*/
790 alive_sleep(100);
791 } else
793 keep_alive();
796 if (timeout)
798 LOG_ERROR("Failed to halt CPU after 1 sec");
799 return ERROR_TARGET_TIMEOUT;
802 target->state = TARGET_HALTED;
804 /* SVC, ARM state, IRQ and FIQ disabled */
805 uint32_t cpsr;
807 cpsr = buf_get_u32(armv4_5->cpsr->value, 0, 32);
808 cpsr &= ~0xff;
809 cpsr |= 0xd3;
810 arm_set_cpsr(armv4_5, cpsr);
811 armv4_5->cpsr->dirty = 1;
813 /* start fetching from 0x0 */
814 buf_set_u32(armv4_5->pc->value, 0, 32, 0x0);
815 armv4_5->pc->dirty = 1;
816 armv4_5->pc->valid = 1;
818 arm920t_disable_mmu_caches(target, 1, 1, 1);
819 arm920t->armv4_5_mmu.mmu_enabled = 0;
820 arm920t->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled = 0;
821 arm920t->armv4_5_mmu.armv4_5_cache.i_cache_enabled = 0;
823 return target_call_event_callbacks(target, TARGET_EVENT_HALTED);
826 /* FIXME remove forward decls */
827 static int arm920t_mrc(struct target *target, int cpnum,
828 uint32_t op1, uint32_t op2,
829 uint32_t CRn, uint32_t CRm,
830 uint32_t *value);
831 static int arm920t_mcr(struct target *target, int cpnum,
832 uint32_t op1, uint32_t op2,
833 uint32_t CRn, uint32_t CRm,
834 uint32_t value);
836 static int arm920t_init_arch_info(struct target *target,
837 struct arm920t_common *arm920t, struct jtag_tap *tap)
839 struct arm7_9_common *arm7_9 = &arm920t->arm7_9_common;
841 arm7_9->armv4_5_common.mrc = arm920t_mrc;
842 arm7_9->armv4_5_common.mcr = arm920t_mcr;
844 /* initialize arm7/arm9 specific info (including armv4_5) */
845 arm9tdmi_init_arch_info(target, arm7_9, tap);
847 arm920t->common_magic = ARM920T_COMMON_MAGIC;
849 arm7_9->post_debug_entry = arm920t_post_debug_entry;
850 arm7_9->pre_restore_context = arm920t_pre_restore_context;
852 arm920t->armv4_5_mmu.armv4_5_cache.ctype = -1;
853 arm920t->armv4_5_mmu.get_ttb = arm920t_get_ttb;
854 arm920t->armv4_5_mmu.read_memory = arm7_9_read_memory;
855 arm920t->armv4_5_mmu.write_memory = arm7_9_write_memory;
856 arm920t->armv4_5_mmu.disable_mmu_caches = arm920t_disable_mmu_caches;
857 arm920t->armv4_5_mmu.enable_mmu_caches = arm920t_enable_mmu_caches;
858 arm920t->armv4_5_mmu.has_tiny_pages = 1;
859 arm920t->armv4_5_mmu.mmu_enabled = 0;
861 /* disabling linefills leads to lockups, so keep them enabled for now
862 * this doesn't affect correctness, but might affect timing issues, if
863 * important data is evicted from the cache during the debug session
864 * */
865 arm920t->preserve_cache = 0;
867 /* override hw single-step capability from ARM9TDMI */
868 arm7_9->has_single_step = 1;
870 return ERROR_OK;
873 static int arm920t_target_create(struct target *target, Jim_Interp *interp)
875 struct arm920t_common *arm920t;
877 arm920t = calloc(1,sizeof(struct arm920t_common));
878 return arm920t_init_arch_info(target, arm920t, target->tap);
881 COMMAND_HANDLER(arm920t_handle_read_cache_command)
883 int retval = ERROR_OK;
884 struct target *target = get_current_target(CMD_CTX);
885 struct arm920t_common *arm920t = target_to_arm920(target);
886 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
887 struct arm *armv4_5 = &arm7_9->armv4_5_common;
888 uint32_t cp15c15;
889 uint32_t cp15_ctrl, cp15_ctrl_saved;
890 uint32_t regs[16];
891 uint32_t *regs_p[16];
892 uint32_t C15_C_D_Ind, C15_C_I_Ind;
893 int i;
894 FILE *output;
895 struct arm920t_cache_line d_cache[8][64], i_cache[8][64];
896 int segment, index_t;
897 struct reg *r;
899 retval = arm920t_verify_pointer(CMD_CTX, arm920t);
900 if (retval != ERROR_OK)
901 return retval;
903 if (CMD_ARGC != 1)
905 command_print(CMD_CTX, "usage: arm920t read_cache <filename>");
906 return ERROR_OK;
909 if ((output = fopen(CMD_ARGV[0], "w")) == NULL)
911 LOG_DEBUG("error opening cache content file");
912 return ERROR_OK;
915 for (i = 0; i < 16; i++)
916 regs_p[i] = &regs[i];
918 /* disable MMU and Caches */
919 arm920t_read_cp15_physical(target, CP15PHYS_CTRL, &cp15_ctrl);
920 if ((retval = jtag_execute_queue()) != ERROR_OK)
922 return retval;
924 cp15_ctrl_saved = cp15_ctrl;
925 cp15_ctrl &= ~(ARMV4_5_MMU_ENABLED
926 | ARMV4_5_D_U_CACHE_ENABLED | ARMV4_5_I_CACHE_ENABLED);
927 arm920t_write_cp15_physical(target, CP15PHYS_CTRL, cp15_ctrl);
929 /* read CP15 test state register */
930 arm920t_read_cp15_physical(target, CP15PHYS_TESTSTATE, &cp15c15);
931 jtag_execute_queue();
933 /* read DCache content */
934 fprintf(output, "DCache:\n");
936 /* go through segments 0 to nsets (8 on ARM920T, 4 on ARM922T) */
937 for (segment = 0;
938 segment < arm920t->armv4_5_mmu.armv4_5_cache.d_u_size.nsets;
939 segment++)
941 fprintf(output, "\nsegment: %i\n----------", segment);
943 /* Ra: r0 = SBZ(31:8):segment(7:5):SBZ(4:0) */
944 regs[0] = 0x0 | (segment << 5);
945 arm9tdmi_write_core_regs(target, 0x1, regs);
947 /* set interpret mode */
948 cp15c15 |= 0x1;
949 arm920t_write_cp15_physical(target,
950 CP15PHYS_TESTSTATE, cp15c15);
952 /* D CAM Read, loads current victim into C15.C.D.Ind */
953 arm920t_execute_cp15(target,
954 ARMV4_5_MCR(15,2,0,15,6,2), ARMV4_5_LDR(1, 0));
956 /* read current victim */
957 arm920t_read_cp15_physical(target,
958 CP15PHYS_DCACHE_IDX, &C15_C_D_Ind);
960 /* clear interpret mode */
961 cp15c15 &= ~0x1;
962 arm920t_write_cp15_physical(target,
963 CP15PHYS_TESTSTATE, cp15c15);
965 for (index_t = 0; index_t < 64; index_t++)
967 /* Ra:
968 * r0 = index(31:26):SBZ(25:8):segment(7:5):SBZ(4:0)
970 regs[0] = 0x0 | (segment << 5) | (index_t << 26);
971 arm9tdmi_write_core_regs(target, 0x1, regs);
973 /* set interpret mode */
974 cp15c15 |= 0x1;
975 arm920t_write_cp15_physical(target,
976 CP15PHYS_TESTSTATE, cp15c15);
978 /* Write DCache victim */
979 arm920t_execute_cp15(target,
980 ARMV4_5_MCR(15,0,0,9,1,0), ARMV4_5_LDR(1, 0));
982 /* Read D RAM */
983 arm920t_execute_cp15(target,
984 ARMV4_5_MCR(15,2,0,15,10,2),
985 ARMV4_5_LDMIA(0, 0x1fe, 0, 0));
987 /* Read D CAM */
988 arm920t_execute_cp15(target,
989 ARMV4_5_MCR(15,2,0,15,6,2),
990 ARMV4_5_LDR(9, 0));
992 /* clear interpret mode */
993 cp15c15 &= ~0x1;
994 arm920t_write_cp15_physical(target,
995 CP15PHYS_TESTSTATE, cp15c15);
997 /* read D RAM and CAM content */
998 arm9tdmi_read_core_regs(target, 0x3fe, regs_p);
999 if ((retval = jtag_execute_queue()) != ERROR_OK)
1001 return retval;
1004 d_cache[segment][index_t].cam = regs[9];
1006 /* mask LFSR[6] */
1007 regs[9] &= 0xfffffffe;
1008 fprintf(output, "\nsegment: %i, index: %i, CAM: 0x%8.8"
1009 PRIx32 ", content (%s):\n",
1010 segment, index_t, regs[9],
1011 (regs[9] & 0x10) ? "valid" : "invalid");
1013 for (i = 1; i < 9; i++)
1015 d_cache[segment][index_t].data[i] = regs[i];
1016 fprintf(output, "%i: 0x%8.8" PRIx32 "\n",
1017 i-1, regs[i]);
1022 /* Ra: r0 = index(31:26):SBZ(25:8):segment(7:5):SBZ(4:0) */
1023 regs[0] = 0x0 | (segment << 5) | (C15_C_D_Ind << 26);
1024 arm9tdmi_write_core_regs(target, 0x1, regs);
1026 /* set interpret mode */
1027 cp15c15 |= 0x1;
1028 arm920t_write_cp15_physical(target,
1029 CP15PHYS_TESTSTATE, cp15c15);
1031 /* Write DCache victim */
1032 arm920t_execute_cp15(target,
1033 ARMV4_5_MCR(15,0,0,9,1,0), ARMV4_5_LDR(1, 0));
1035 /* clear interpret mode */
1036 cp15c15 &= ~0x1;
1037 arm920t_write_cp15_physical(target,
1038 CP15PHYS_TESTSTATE, cp15c15);
1041 /* read ICache content */
1042 fprintf(output, "ICache:\n");
1044 /* go through segments 0 to nsets (8 on ARM920T, 4 on ARM922T) */
1045 for (segment = 0;
1046 segment < arm920t->armv4_5_mmu.armv4_5_cache.d_u_size.nsets;
1047 segment++)
1049 fprintf(output, "segment: %i\n----------", segment);
1051 /* Ra: r0 = SBZ(31:8):segment(7:5):SBZ(4:0) */
1052 regs[0] = 0x0 | (segment << 5);
1053 arm9tdmi_write_core_regs(target, 0x1, regs);
1055 /* set interpret mode */
1056 cp15c15 |= 0x1;
1057 arm920t_write_cp15_physical(target,
1058 CP15PHYS_TESTSTATE, cp15c15);
1060 /* I CAM Read, loads current victim into C15.C.I.Ind */
1061 arm920t_execute_cp15(target,
1062 ARMV4_5_MCR(15,2,0,15,5,2), ARMV4_5_LDR(1, 0));
1064 /* read current victim */
1065 arm920t_read_cp15_physical(target, CP15PHYS_ICACHE_IDX,
1066 &C15_C_I_Ind);
1068 /* clear interpret mode */
1069 cp15c15 &= ~0x1;
1070 arm920t_write_cp15_physical(target,
1071 CP15PHYS_TESTSTATE, cp15c15);
1073 for (index_t = 0; index_t < 64; index_t++)
1075 /* Ra:
1076 * r0 = index(31:26):SBZ(25:8):segment(7:5):SBZ(4:0)
1078 regs[0] = 0x0 | (segment << 5) | (index_t << 26);
1079 arm9tdmi_write_core_regs(target, 0x1, regs);
1081 /* set interpret mode */
1082 cp15c15 |= 0x1;
1083 arm920t_write_cp15_physical(target,
1084 CP15PHYS_TESTSTATE, cp15c15);
1086 /* Write ICache victim */
1087 arm920t_execute_cp15(target,
1088 ARMV4_5_MCR(15,0,0,9,1,1), ARMV4_5_LDR(1, 0));
1090 /* Read I RAM */
1091 arm920t_execute_cp15(target,
1092 ARMV4_5_MCR(15,2,0,15,9,2),
1093 ARMV4_5_LDMIA(0, 0x1fe, 0, 0));
1095 /* Read I CAM */
1096 arm920t_execute_cp15(target,
1097 ARMV4_5_MCR(15,2,0,15,5,2),
1098 ARMV4_5_LDR(9, 0));
1100 /* clear interpret mode */
1101 cp15c15 &= ~0x1;
1102 arm920t_write_cp15_physical(target,
1103 CP15PHYS_TESTSTATE, cp15c15);
1105 /* read I RAM and CAM content */
1106 arm9tdmi_read_core_regs(target, 0x3fe, regs_p);
1107 if ((retval = jtag_execute_queue()) != ERROR_OK)
1109 return retval;
1112 i_cache[segment][index_t].cam = regs[9];
1114 /* mask LFSR[6] */
1115 regs[9] &= 0xfffffffe;
1116 fprintf(output, "\nsegment: %i, index: %i, "
1117 "CAM: 0x%8.8" PRIx32 ", content (%s):\n",
1118 segment, index_t, regs[9],
1119 (regs[9] & 0x10) ? "valid" : "invalid");
1121 for (i = 1; i < 9; i++)
1123 i_cache[segment][index_t].data[i] = regs[i];
1124 fprintf(output, "%i: 0x%8.8" PRIx32 "\n",
1125 i-1, regs[i]);
1129 /* Ra: r0 = index(31:26):SBZ(25:8):segment(7:5):SBZ(4:0) */
1130 regs[0] = 0x0 | (segment << 5) | (C15_C_D_Ind << 26);
1131 arm9tdmi_write_core_regs(target, 0x1, regs);
1133 /* set interpret mode */
1134 cp15c15 |= 0x1;
1135 arm920t_write_cp15_physical(target,
1136 CP15PHYS_TESTSTATE, cp15c15);
1138 /* Write ICache victim */
1139 arm920t_execute_cp15(target,
1140 ARMV4_5_MCR(15,0,0,9,1,1), ARMV4_5_LDR(1, 0));
1142 /* clear interpret mode */
1143 cp15c15 &= ~0x1;
1144 arm920t_write_cp15_physical(target,
1145 CP15PHYS_TESTSTATE, cp15c15);
1148 /* restore CP15 MMU and Cache settings */
1149 arm920t_write_cp15_physical(target, CP15PHYS_CTRL, cp15_ctrl_saved);
1151 command_print(CMD_CTX, "cache content successfully output to %s",
1152 CMD_ARGV[0]);
1154 fclose(output);
1156 if (!is_arm_mode(armv4_5->core_mode))
1157 return ERROR_FAIL;
1159 /* force writeback of the valid data */
1160 r = armv4_5->core_cache->reg_list;
1161 r[0].dirty = r[0].valid;
1162 r[1].dirty = r[1].valid;
1163 r[2].dirty = r[2].valid;
1164 r[3].dirty = r[3].valid;
1165 r[4].dirty = r[4].valid;
1166 r[5].dirty = r[5].valid;
1167 r[6].dirty = r[6].valid;
1168 r[7].dirty = r[7].valid;
1170 r = arm_reg_current(armv4_5, 8);
1171 r->dirty = r->valid;
1173 r = arm_reg_current(armv4_5, 9);
1174 r->dirty = r->valid;
1176 return ERROR_OK;
1179 COMMAND_HANDLER(arm920t_handle_read_mmu_command)
1181 int retval = ERROR_OK;
1182 struct target *target = get_current_target(CMD_CTX);
1183 struct arm920t_common *arm920t = target_to_arm920(target);
1184 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1185 struct arm *armv4_5 = &arm7_9->armv4_5_common;
1186 uint32_t cp15c15;
1187 uint32_t cp15_ctrl, cp15_ctrl_saved;
1188 uint32_t regs[16];
1189 uint32_t *regs_p[16];
1190 int i;
1191 FILE *output;
1192 uint32_t Dlockdown, Ilockdown;
1193 struct arm920t_tlb_entry d_tlb[64], i_tlb[64];
1194 int victim;
1195 struct reg *r;
1197 retval = arm920t_verify_pointer(CMD_CTX, arm920t);
1198 if (retval != ERROR_OK)
1199 return retval;
1201 if (CMD_ARGC != 1)
1203 command_print(CMD_CTX, "usage: arm920t read_mmu <filename>");
1204 return ERROR_OK;
1207 if ((output = fopen(CMD_ARGV[0], "w")) == NULL)
1209 LOG_DEBUG("error opening mmu content file");
1210 return ERROR_OK;
1213 for (i = 0; i < 16; i++)
1214 regs_p[i] = &regs[i];
1216 /* disable MMU and Caches */
1217 arm920t_read_cp15_physical(target, CP15PHYS_CTRL, &cp15_ctrl);
1218 if ((retval = jtag_execute_queue()) != ERROR_OK)
1220 return retval;
1222 cp15_ctrl_saved = cp15_ctrl;
1223 cp15_ctrl &= ~(ARMV4_5_MMU_ENABLED
1224 | ARMV4_5_D_U_CACHE_ENABLED | ARMV4_5_I_CACHE_ENABLED);
1225 arm920t_write_cp15_physical(target, CP15PHYS_CTRL, cp15_ctrl);
1227 /* read CP15 test state register */
1228 arm920t_read_cp15_physical(target, CP15PHYS_TESTSTATE, &cp15c15);
1229 if ((retval = jtag_execute_queue()) != ERROR_OK)
1231 return retval;
1234 /* prepare reading D TLB content
1235 * */
1237 /* set interpret mode */
1238 cp15c15 |= 0x1;
1239 arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15);
1241 /* Read D TLB lockdown */
1242 arm920t_execute_cp15(target,
1243 ARMV4_5_MRC(15,0,0,10,0,0), ARMV4_5_LDR(1, 0));
1245 /* clear interpret mode */
1246 cp15c15 &= ~0x1;
1247 arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15);
1249 /* read D TLB lockdown stored to r1 */
1250 arm9tdmi_read_core_regs(target, 0x2, regs_p);
1251 if ((retval = jtag_execute_queue()) != ERROR_OK)
1253 return retval;
1255 Dlockdown = regs[1];
1257 for (victim = 0; victim < 64; victim += 8)
1259 /* new lockdown value: base[31:26]:victim[25:20]:SBZ[19:1]:p[0]
1260 * base remains unchanged, victim goes through entries 0 to 63
1262 regs[1] = (Dlockdown & 0xfc000000) | (victim << 20);
1263 arm9tdmi_write_core_regs(target, 0x2, regs);
1265 /* set interpret mode */
1266 cp15c15 |= 0x1;
1267 arm920t_write_cp15_physical(target,
1268 CP15PHYS_TESTSTATE, cp15c15);
1270 /* Write D TLB lockdown */
1271 arm920t_execute_cp15(target,
1272 ARMV4_5_MCR(15,0,0,10,0,0),
1273 ARMV4_5_STR(1, 0));
1275 /* Read D TLB CAM */
1276 arm920t_execute_cp15(target,
1277 ARMV4_5_MCR(15,4,0,15,6,4),
1278 ARMV4_5_LDMIA(0, 0x3fc, 0, 0));
1280 /* clear interpret mode */
1281 cp15c15 &= ~0x1;
1282 arm920t_write_cp15_physical(target,
1283 CP15PHYS_TESTSTATE, cp15c15);
1285 /* read D TLB CAM content stored to r2-r9 */
1286 arm9tdmi_read_core_regs(target, 0x3fc, regs_p);
1287 if ((retval = jtag_execute_queue()) != ERROR_OK)
1289 return retval;
1292 for (i = 0; i < 8; i++)
1293 d_tlb[victim + i].cam = regs[i + 2];
1296 for (victim = 0; victim < 64; victim++)
1298 /* new lockdown value: base[31:26]:victim[25:20]:SBZ[19:1]:p[0]
1299 * base remains unchanged, victim goes through entries 0 to 63
1301 regs[1] = (Dlockdown & 0xfc000000) | (victim << 20);
1302 arm9tdmi_write_core_regs(target, 0x2, regs);
1304 /* set interpret mode */
1305 cp15c15 |= 0x1;
1306 arm920t_write_cp15_physical(target,
1307 CP15PHYS_TESTSTATE, cp15c15);
1309 /* Write D TLB lockdown */
1310 arm920t_execute_cp15(target,
1311 ARMV4_5_MCR(15,0,0,10,0,0), ARMV4_5_STR(1, 0));
1313 /* Read D TLB RAM1 */
1314 arm920t_execute_cp15(target,
1315 ARMV4_5_MCR(15,4,0,15,10,4), ARMV4_5_LDR(2,0));
1317 /* Read D TLB RAM2 */
1318 arm920t_execute_cp15(target,
1319 ARMV4_5_MCR(15,4,0,15,2,5), ARMV4_5_LDR(3,0));
1321 /* clear interpret mode */
1322 cp15c15 &= ~0x1;
1323 arm920t_write_cp15_physical(target,
1324 CP15PHYS_TESTSTATE, cp15c15);
1326 /* read D TLB RAM content stored to r2 and r3 */
1327 arm9tdmi_read_core_regs(target, 0xc, regs_p);
1328 if ((retval = jtag_execute_queue()) != ERROR_OK)
1330 return retval;
1333 d_tlb[victim].ram1 = regs[2];
1334 d_tlb[victim].ram2 = regs[3];
1337 /* restore D TLB lockdown */
1338 regs[1] = Dlockdown;
1339 arm9tdmi_write_core_regs(target, 0x2, regs);
1341 /* Write D TLB lockdown */
1342 arm920t_execute_cp15(target,
1343 ARMV4_5_MCR(15,0,0,10,0,0), ARMV4_5_STR(1, 0));
1345 /* prepare reading I TLB content
1346 * */
1348 /* set interpret mode */
1349 cp15c15 |= 0x1;
1350 arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15);
1352 /* Read I TLB lockdown */
1353 arm920t_execute_cp15(target,
1354 ARMV4_5_MRC(15,0,0,10,0,1), ARMV4_5_LDR(1, 0));
1356 /* clear interpret mode */
1357 cp15c15 &= ~0x1;
1358 arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15);
1360 /* read I TLB lockdown stored to r1 */
1361 arm9tdmi_read_core_regs(target, 0x2, regs_p);
1362 if ((retval = jtag_execute_queue()) != ERROR_OK)
1364 return retval;
1366 Ilockdown = regs[1];
1368 for (victim = 0; victim < 64; victim += 8)
1370 /* new lockdown value: base[31:26]:victim[25:20]:SBZ[19:1]:p[0]
1371 * base remains unchanged, victim goes through entries 0 to 63
1373 regs[1] = (Ilockdown & 0xfc000000) | (victim << 20);
1374 arm9tdmi_write_core_regs(target, 0x2, regs);
1376 /* set interpret mode */
1377 cp15c15 |= 0x1;
1378 arm920t_write_cp15_physical(target,
1379 CP15PHYS_TESTSTATE, cp15c15);
1381 /* Write I TLB lockdown */
1382 arm920t_execute_cp15(target,
1383 ARMV4_5_MCR(15,0,0,10,0,1),
1384 ARMV4_5_STR(1, 0));
1386 /* Read I TLB CAM */
1387 arm920t_execute_cp15(target,
1388 ARMV4_5_MCR(15,4,0,15,5,4),
1389 ARMV4_5_LDMIA(0, 0x3fc, 0, 0));
1391 /* clear interpret mode */
1392 cp15c15 &= ~0x1;
1393 arm920t_write_cp15_physical(target,
1394 CP15PHYS_TESTSTATE, cp15c15);
1396 /* read I TLB CAM content stored to r2-r9 */
1397 arm9tdmi_read_core_regs(target, 0x3fc, regs_p);
1398 if ((retval = jtag_execute_queue()) != ERROR_OK)
1400 return retval;
1403 for (i = 0; i < 8; i++)
1404 i_tlb[i + victim].cam = regs[i + 2];
1407 for (victim = 0; victim < 64; victim++)
1409 /* new lockdown value: base[31:26]:victim[25:20]:SBZ[19:1]:p[0]
1410 * base remains unchanged, victim goes through entries 0 to 63
1412 regs[1] = (Dlockdown & 0xfc000000) | (victim << 20);
1413 arm9tdmi_write_core_regs(target, 0x2, regs);
1415 /* set interpret mode */
1416 cp15c15 |= 0x1;
1417 arm920t_write_cp15_physical(target,
1418 CP15PHYS_TESTSTATE, cp15c15);
1420 /* Write I TLB lockdown */
1421 arm920t_execute_cp15(target,
1422 ARMV4_5_MCR(15,0,0,10,0,1), ARMV4_5_STR(1, 0));
1424 /* Read I TLB RAM1 */
1425 arm920t_execute_cp15(target,
1426 ARMV4_5_MCR(15,4,0,15,9,4), ARMV4_5_LDR(2,0));
1428 /* Read I TLB RAM2 */
1429 arm920t_execute_cp15(target,
1430 ARMV4_5_MCR(15,4,0,15,1,5), ARMV4_5_LDR(3,0));
1432 /* clear interpret mode */
1433 cp15c15 &= ~0x1;
1434 arm920t_write_cp15_physical(target,
1435 CP15PHYS_TESTSTATE, cp15c15);
1437 /* read I TLB RAM content stored to r2 and r3 */
1438 arm9tdmi_read_core_regs(target, 0xc, regs_p);
1439 if ((retval = jtag_execute_queue()) != ERROR_OK)
1441 return retval;
1444 i_tlb[victim].ram1 = regs[2];
1445 i_tlb[victim].ram2 = regs[3];
1448 /* restore I TLB lockdown */
1449 regs[1] = Ilockdown;
1450 arm9tdmi_write_core_regs(target, 0x2, regs);
1452 /* Write I TLB lockdown */
1453 arm920t_execute_cp15(target,
1454 ARMV4_5_MCR(15,0,0,10,0,1), ARMV4_5_STR(1, 0));
1456 /* restore CP15 MMU and Cache settings */
1457 arm920t_write_cp15_physical(target, CP15PHYS_CTRL, cp15_ctrl_saved);
1459 /* output data to file */
1460 fprintf(output, "D TLB content:\n");
1461 for (i = 0; i < 64; i++)
1463 fprintf(output, "%i: 0x%8.8" PRIx32 " 0x%8.8" PRIx32
1464 " 0x%8.8" PRIx32 " %s\n",
1465 i, d_tlb[i].cam, d_tlb[i].ram1, d_tlb[i].ram2,
1466 (d_tlb[i].cam & 0x20) ? "(valid)" : "(invalid)");
1469 fprintf(output, "\n\nI TLB content:\n");
1470 for (i = 0; i < 64; i++)
1472 fprintf(output, "%i: 0x%8.8" PRIx32 " 0x%8.8" PRIx32
1473 " 0x%8.8" PRIx32 " %s\n",
1474 i, i_tlb[i].cam, i_tlb[i].ram1, i_tlb[i].ram2,
1475 (i_tlb[i].cam & 0x20) ? "(valid)" : "(invalid)");
1478 command_print(CMD_CTX, "mmu content successfully output to %s",
1479 CMD_ARGV[0]);
1481 fclose(output);
1483 if (!is_arm_mode(armv4_5->core_mode))
1484 return ERROR_FAIL;
1486 /* force writeback of the valid data */
1487 r = armv4_5->core_cache->reg_list;
1488 r[0].dirty = r[0].valid;
1489 r[1].dirty = r[1].valid;
1490 r[2].dirty = r[2].valid;
1491 r[3].dirty = r[3].valid;
1492 r[4].dirty = r[4].valid;
1493 r[5].dirty = r[5].valid;
1494 r[6].dirty = r[6].valid;
1495 r[7].dirty = r[7].valid;
1497 r = arm_reg_current(armv4_5, 8);
1498 r->dirty = r->valid;
1500 r = arm_reg_current(armv4_5, 9);
1501 r->dirty = r->valid;
1503 return ERROR_OK;
1506 COMMAND_HANDLER(arm920t_handle_cp15_command)
1508 int retval;
1509 struct target *target = get_current_target(CMD_CTX);
1510 struct arm920t_common *arm920t = target_to_arm920(target);
1512 retval = arm920t_verify_pointer(CMD_CTX, arm920t);
1513 if (retval != ERROR_OK)
1514 return retval;
1516 if (target->state != TARGET_HALTED)
1518 command_print(CMD_CTX, "target must be stopped for "
1519 "\"%s\" command", CMD_NAME);
1520 return ERROR_OK;
1523 /* one argument, read a register.
1524 * two arguments, write it.
1526 if (CMD_ARGC >= 1)
1528 int address;
1529 COMMAND_PARSE_NUMBER(int, CMD_ARGV[0], address);
1531 if (CMD_ARGC == 1)
1533 uint32_t value;
1534 if ((retval = arm920t_read_cp15_physical(target,
1535 address, &value)) != ERROR_OK)
1537 command_print(CMD_CTX,
1538 "couldn't access reg %i", address);
1539 return ERROR_OK;
1541 if ((retval = jtag_execute_queue()) != ERROR_OK)
1543 return retval;
1546 command_print(CMD_CTX, "%i: %8.8" PRIx32,
1547 address, value);
1549 else if (CMD_ARGC == 2)
1551 uint32_t value;
1552 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
1553 retval = arm920t_write_cp15_physical(target,
1554 address, value);
1555 if (retval != ERROR_OK)
1557 command_print(CMD_CTX,
1558 "couldn't access reg %i", address);
1559 /* REVISIT why lie? "return retval"? */
1560 return ERROR_OK;
1562 command_print(CMD_CTX, "%i: %8.8" PRIx32,
1563 address, value);
1567 return ERROR_OK;
1570 COMMAND_HANDLER(arm920t_handle_cp15i_command)
1572 int retval;
1573 struct target *target = get_current_target(CMD_CTX);
1574 struct arm920t_common *arm920t = target_to_arm920(target);
1576 retval = arm920t_verify_pointer(CMD_CTX, arm920t);
1577 if (retval != ERROR_OK)
1578 return retval;
1581 if (target->state != TARGET_HALTED)
1583 command_print(CMD_CTX, "target must be stopped for "
1584 "\"%s\" command", CMD_NAME);
1585 return ERROR_OK;
1588 /* one argument, read a register.
1589 * two arguments, write it.
1591 if (CMD_ARGC >= 1)
1593 uint32_t opcode;
1594 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], opcode);
1596 if (CMD_ARGC == 1)
1598 uint32_t value;
1599 retval = arm920t_read_cp15_interpreted(target,
1600 opcode, 0x0, &value);
1601 if (retval != ERROR_OK)
1603 command_print(CMD_CTX,
1604 "couldn't execute %8.8" PRIx32,
1605 opcode);
1606 /* REVISIT why lie? "return retval"? */
1607 return ERROR_OK;
1610 command_print(CMD_CTX, "%8.8" PRIx32 ": %8.8" PRIx32,
1611 opcode, value);
1613 else if (CMD_ARGC == 2)
1615 uint32_t value;
1616 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
1617 retval = arm920t_write_cp15_interpreted(target,
1618 opcode, value, 0);
1619 if (retval != ERROR_OK)
1621 command_print(CMD_CTX,
1622 "couldn't execute %8.8" PRIx32,
1623 opcode);
1624 /* REVISIT why lie? "return retval"? */
1625 return ERROR_OK;
1627 command_print(CMD_CTX, "%8.8" PRIx32 ": %8.8" PRIx32,
1628 opcode, value);
1630 else if (CMD_ARGC == 3)
1632 uint32_t value;
1633 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
1634 uint32_t address;
1635 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], address);
1636 retval = arm920t_write_cp15_interpreted(target,
1637 opcode, value, address);
1638 if (retval != ERROR_OK)
1640 command_print(CMD_CTX,
1641 "couldn't execute %8.8" PRIx32, opcode);
1642 /* REVISIT why lie? "return retval"? */
1643 return ERROR_OK;
1645 command_print(CMD_CTX, "%8.8" PRIx32 ": %8.8" PRIx32
1646 " %8.8" PRIx32, opcode, value, address);
1649 else
1651 command_print(CMD_CTX,
1652 "usage: arm920t cp15i <opcode> [value] [address]");
1655 return ERROR_OK;
1658 COMMAND_HANDLER(arm920t_handle_cache_info_command)
1660 int retval;
1661 struct target *target = get_current_target(CMD_CTX);
1662 struct arm920t_common *arm920t = target_to_arm920(target);
1664 retval = arm920t_verify_pointer(CMD_CTX, arm920t);
1665 if (retval != ERROR_OK)
1666 return retval;
1668 return armv4_5_handle_cache_info_command(CMD_CTX,
1669 &arm920t->armv4_5_mmu.armv4_5_cache);
1673 static int arm920t_mrc(struct target *target, int cpnum,
1674 uint32_t op1, uint32_t op2,
1675 uint32_t CRn, uint32_t CRm,
1676 uint32_t *value)
1678 if (cpnum!=15)
1680 LOG_ERROR("Only cp15 is supported");
1681 return ERROR_FAIL;
1684 /* read "to" r0 */
1685 return arm920t_read_cp15_interpreted(target,
1686 ARMV4_5_MRC(cpnum, op1, 0, CRn, CRm, op2),
1687 0, value);
1690 static int arm920t_mcr(struct target *target, int cpnum,
1691 uint32_t op1, uint32_t op2,
1692 uint32_t CRn, uint32_t CRm,
1693 uint32_t value)
1695 if (cpnum!=15)
1697 LOG_ERROR("Only cp15 is supported");
1698 return ERROR_FAIL;
1701 /* write "from" r0 */
1702 return arm920t_write_cp15_interpreted(target,
1703 ARMV4_5_MCR(cpnum, op1, 0, CRn, CRm, op2),
1704 0, value);
1707 static const struct command_registration arm920t_exec_command_handlers[] = {
1709 .name = "cp15",
1710 .handler = arm920t_handle_cp15_command,
1711 .mode = COMMAND_EXEC,
1712 .help = "display/modify cp15 register",
1713 .usage = "regnum [value]",
1716 .name = "cp15i",
1717 .handler = arm920t_handle_cp15i_command,
1718 .mode = COMMAND_EXEC,
1719 /* prefer using less error-prone "arm mcr" or "arm mrc" */
1720 .help = "display/modify cp15 register using ARM opcode"
1721 " (DEPRECATED)",
1722 .usage = "instruction [value [address]]",
1725 .name = "cache_info",
1726 .handler = arm920t_handle_cache_info_command,
1727 .mode = COMMAND_EXEC,
1728 .help = "display information about target caches",
1731 .name = "read_cache",
1732 .handler = arm920t_handle_read_cache_command,
1733 .mode = COMMAND_EXEC,
1734 .help = "dump I/D cache content to file",
1735 .usage = "filename",
1738 .name = "read_mmu",
1739 .handler = arm920t_handle_read_mmu_command,
1740 .mode = COMMAND_EXEC,
1741 .help = "dump I/D mmu content to file",
1742 .usage = "filename",
1744 COMMAND_REGISTRATION_DONE
1746 const struct command_registration arm920t_command_handlers[] = {
1748 .chain = arm9tdmi_command_handlers,
1751 .name = "arm920t",
1752 .mode = COMMAND_ANY,
1753 .help = "arm920t command group",
1754 .chain = arm920t_exec_command_handlers,
1756 COMMAND_REGISTRATION_DONE
1759 /** Holds methods for ARM920 targets. */
1760 struct target_type arm920t_target =
1762 .name = "arm920t",
1764 .poll = arm7_9_poll,
1765 .arch_state = arm920t_arch_state,
1767 .target_request_data = arm7_9_target_request_data,
1769 .halt = arm7_9_halt,
1770 .resume = arm7_9_resume,
1771 .step = arm7_9_step,
1773 .assert_reset = arm7_9_assert_reset,
1774 .deassert_reset = arm7_9_deassert_reset,
1775 .soft_reset_halt = arm920t_soft_reset_halt,
1777 .get_gdb_reg_list = arm_get_gdb_reg_list,
1779 .read_memory = arm920t_read_memory,
1780 .write_memory = arm920t_write_memory,
1781 .read_phys_memory = arm920t_read_phys_memory,
1782 .write_phys_memory = arm920t_write_phys_memory,
1783 .mmu = arm920_mmu,
1784 .virt2phys = arm920_virt2phys,
1786 .bulk_write_memory = arm7_9_bulk_write_memory,
1788 .checksum_memory = arm_checksum_memory,
1789 .blank_check_memory = arm_blank_check_memory,
1791 .run_algorithm = armv4_5_run_algorithm,
1793 .add_breakpoint = arm7_9_add_breakpoint,
1794 .remove_breakpoint = arm7_9_remove_breakpoint,
1795 .add_watchpoint = arm7_9_add_watchpoint,
1796 .remove_watchpoint = arm7_9_remove_watchpoint,
1798 .commands = arm920t_command_handlers,
1799 .target_create = arm920t_target_create,
1800 .init_target = arm9tdmi_init_target,
1801 .examine = arm7_9_examine,
1802 .check_reset = arm7_9_check_reset,