cortex a8: add missing error handling from cortex_a8_exec_opcode()
[openocd/cortex.git] / src / target / cortex_a8.c
blobd092223207b9ce71acaf86ce2a80b1e76713365d
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2006 by Magnus Lundin *
6 * lundin@mlu.mine.nu *
7 * *
8 * Copyright (C) 2008 by Spencer Oliver *
9 * spen@spen-soft.co.uk *
10 * *
11 * Copyright (C) 2009 by Dirk Behme *
12 * dirk.behme@gmail.com - copy from cortex_m3 *
13 * *
14 * Copyright (C) 2010 Øyvind Harboe *
15 * oyvind.harboe@zylin.com *
16 * *
17 * This program is free software; you can redistribute it and/or modify *
18 * it under the terms of the GNU General Public License as published by *
19 * the Free Software Foundation; either version 2 of the License, or *
20 * (at your option) any later version. *
21 * *
22 * This program is distributed in the hope that it will be useful, *
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
25 * GNU General Public License for more details. *
26 * *
27 * You should have received a copy of the GNU General Public License *
28 * along with this program; if not, write to the *
29 * Free Software Foundation, Inc., *
30 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
31 * *
32 * Cortex-A8(tm) TRM, ARM DDI 0344H *
33 * *
34 ***************************************************************************/
35 #ifdef HAVE_CONFIG_H
36 #include "config.h"
37 #endif
39 #include "breakpoints.h"
40 #include "cortex_a8.h"
41 #include "register.h"
42 #include "target_request.h"
43 #include "target_type.h"
44 #include "arm_opcodes.h"
45 #include <helper/time_support.h>
47 static int cortex_a8_poll(struct target *target);
48 static int cortex_a8_debug_entry(struct target *target);
49 static int cortex_a8_restore_context(struct target *target, bool bpwp);
50 static int cortex_a8_set_breakpoint(struct target *target,
51 struct breakpoint *breakpoint, uint8_t matchmode);
52 static int cortex_a8_unset_breakpoint(struct target *target,
53 struct breakpoint *breakpoint);
54 static int cortex_a8_dap_read_coreregister_u32(struct target *target,
55 uint32_t *value, int regnum);
56 static int cortex_a8_dap_write_coreregister_u32(struct target *target,
57 uint32_t value, int regnum);
58 static int cortex_a8_mmu(struct target *target, int *enabled);
59 static int cortex_a8_virt2phys(struct target *target,
60 uint32_t virt, uint32_t *phys);
61 static void cortex_a8_disable_mmu_caches(struct target *target, int mmu,
62 int d_u_cache, int i_cache);
63 static void cortex_a8_enable_mmu_caches(struct target *target, int mmu,
64 int d_u_cache, int i_cache);
65 static uint32_t cortex_a8_get_ttb(struct target *target);
69 * FIXME do topology discovery using the ROM; don't
70 * assume this is an OMAP3. Also, allow for multiple ARMv7-A
71 * cores, with different AP numbering ... don't use a #define
72 * for these numbers, use per-core armv7a state.
74 #define swjdp_memoryap 0
75 #define swjdp_debugap 1
76 #define OMAP3530_DEBUG_BASE 0x54011000
79 * Cortex-A8 Basic debug access, very low level assumes state is saved
81 static int cortex_a8_init_debug_access(struct target *target)
83 struct armv7a_common *armv7a = target_to_armv7a(target);
84 struct adiv5_dap *swjdp = &armv7a->dap;
86 int retval;
87 uint32_t dummy;
89 LOG_DEBUG(" ");
91 /* Unlocking the debug registers for modification */
92 /* The debugport might be uninitialised so try twice */
93 retval = mem_ap_write_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_LOCKACCESS, 0xC5ACCE55);
94 if (retval != ERROR_OK)
96 /* try again */
97 retval = mem_ap_write_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_LOCKACCESS, 0xC5ACCE55);
98 if (retval == ERROR_OK)
100 LOG_USER("Locking debug access failed on first, but succeeded on second try.");
103 if (retval != ERROR_OK)
104 return retval;
105 /* Clear Sticky Power Down status Bit in PRSR to enable access to
106 the registers in the Core Power Domain */
107 retval = mem_ap_read_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_PRSR, &dummy);
108 if (retval != ERROR_OK)
109 return retval;
111 /* Enabling of instruction execution in debug mode is done in debug_entry code */
113 /* Resync breakpoint registers */
115 /* Since this is likely called from init or reset, update target state information*/
116 retval = cortex_a8_poll(target);
118 return retval;
121 /* To reduce needless round-trips, pass in a pointer to the current
122 * DSCR value. Initialize it to zero if you just need to know the
123 * value on return from this function; or DSCR_INSTR_COMP if you
124 * happen to know that no instruction is pending.
126 static int cortex_a8_exec_opcode(struct target *target,
127 uint32_t opcode, uint32_t *dscr_p)
129 uint32_t dscr;
130 int retval;
131 struct armv7a_common *armv7a = target_to_armv7a(target);
132 struct adiv5_dap *swjdp = &armv7a->dap;
134 dscr = dscr_p ? *dscr_p : 0;
136 LOG_DEBUG("exec opcode 0x%08" PRIx32, opcode);
138 /* Wait for InstrCompl bit to be set */
139 while ((dscr & DSCR_INSTR_COMP) == 0)
141 retval = mem_ap_read_atomic_u32(swjdp,
142 armv7a->debug_base + CPUDBG_DSCR, &dscr);
143 if (retval != ERROR_OK)
145 LOG_ERROR("Could not read DSCR register, opcode = 0x%08" PRIx32, opcode);
146 return retval;
150 retval = mem_ap_write_u32(swjdp, armv7a->debug_base + CPUDBG_ITR, opcode);
151 if (retval != ERROR_OK)
152 return retval;
156 retval = mem_ap_read_atomic_u32(swjdp,
157 armv7a->debug_base + CPUDBG_DSCR, &dscr);
158 if (retval != ERROR_OK)
160 LOG_ERROR("Could not read DSCR register");
161 return retval;
164 while ((dscr & DSCR_INSTR_COMP) == 0); /* Wait for InstrCompl bit to be set */
166 if (dscr_p)
167 *dscr_p = dscr;
169 return retval;
172 /**************************************************************************
173 Read core register with very few exec_opcode, fast but needs work_area.
174 This can cause problems with MMU active.
175 **************************************************************************/
176 static int cortex_a8_read_regs_through_mem(struct target *target, uint32_t address,
177 uint32_t * regfile)
179 int retval = ERROR_OK;
180 struct armv7a_common *armv7a = target_to_armv7a(target);
181 struct adiv5_dap *swjdp = &armv7a->dap;
183 cortex_a8_dap_read_coreregister_u32(target, regfile, 0);
184 cortex_a8_dap_write_coreregister_u32(target, address, 0);
185 retval = cortex_a8_exec_opcode(target, ARMV4_5_STMIA(0, 0xFFFE, 0, 0), NULL);
186 if (retval != ERROR_OK)
187 return retval;
189 dap_ap_select(swjdp, swjdp_memoryap);
190 mem_ap_read_buf_u32(swjdp, (uint8_t *)(&regfile[1]), 4*15, address);
191 dap_ap_select(swjdp, swjdp_debugap);
193 return retval;
196 static int cortex_a8_dap_read_coreregister_u32(struct target *target,
197 uint32_t *value, int regnum)
199 int retval = ERROR_OK;
200 uint8_t reg = regnum&0xFF;
201 uint32_t dscr = 0;
202 struct armv7a_common *armv7a = target_to_armv7a(target);
203 struct adiv5_dap *swjdp = &armv7a->dap;
205 if (reg > 17)
206 return retval;
208 if (reg < 15)
210 /* Rn to DCCTX, "MCR p14, 0, Rn, c0, c5, 0" 0xEE00nE15 */
211 retval = cortex_a8_exec_opcode(target,
212 ARMV4_5_MCR(14, 0, reg, 0, 5, 0),
213 &dscr);
214 if (retval != ERROR_OK)
215 return retval;
217 else if (reg == 15)
219 /* "MOV r0, r15"; then move r0 to DCCTX */
220 retval = cortex_a8_exec_opcode(target, 0xE1A0000F, &dscr);
221 if (retval != ERROR_OK)
222 return retval;
223 retval = cortex_a8_exec_opcode(target,
224 ARMV4_5_MCR(14, 0, 0, 0, 5, 0),
225 &dscr);
226 if (retval != ERROR_OK)
227 return retval;
229 else
231 /* "MRS r0, CPSR" or "MRS r0, SPSR"
232 * then move r0 to DCCTX
234 retval = cortex_a8_exec_opcode(target, ARMV4_5_MRS(0, reg & 1), &dscr);
235 if (retval != ERROR_OK)
236 return retval;
237 retval = cortex_a8_exec_opcode(target,
238 ARMV4_5_MCR(14, 0, 0, 0, 5, 0),
239 &dscr);
240 if (retval != ERROR_OK)
241 return retval;
244 /* Wait for DTRRXfull then read DTRRTX */
245 while ((dscr & DSCR_DTR_TX_FULL) == 0)
247 retval = mem_ap_read_atomic_u32(swjdp,
248 armv7a->debug_base + CPUDBG_DSCR, &dscr);
249 if (retval != ERROR_OK)
250 return retval;
253 retval = mem_ap_read_atomic_u32(swjdp,
254 armv7a->debug_base + CPUDBG_DTRTX, value);
255 LOG_DEBUG("read DCC 0x%08" PRIx32, *value);
257 return retval;
260 static int cortex_a8_dap_write_coreregister_u32(struct target *target,
261 uint32_t value, int regnum)
263 int retval = ERROR_OK;
264 uint8_t Rd = regnum&0xFF;
265 uint32_t dscr;
266 struct armv7a_common *armv7a = target_to_armv7a(target);
267 struct adiv5_dap *swjdp = &armv7a->dap;
269 LOG_DEBUG("register %i, value 0x%08" PRIx32, regnum, value);
271 /* Check that DCCRX is not full */
272 retval = mem_ap_read_atomic_u32(swjdp,
273 armv7a->debug_base + CPUDBG_DSCR, &dscr);
274 if (retval != ERROR_OK)
275 return retval;
276 if (dscr & DSCR_DTR_RX_FULL)
278 LOG_ERROR("DSCR_DTR_RX_FULL, dscr 0x%08" PRIx32, dscr);
279 /* Clear DCCRX with MCR(p14, 0, Rd, c0, c5, 0), opcode 0xEE000E15 */
280 retval = cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
281 &dscr);
282 if (retval != ERROR_OK)
283 return retval;
286 if (Rd > 17)
287 return retval;
289 /* Write DTRRX ... sets DSCR.DTRRXfull but exec_opcode() won't care */
290 LOG_DEBUG("write DCC 0x%08" PRIx32, value);
291 retval = mem_ap_write_u32(swjdp,
292 armv7a->debug_base + CPUDBG_DTRRX, value);
293 if (retval != ERROR_OK)
294 return retval;
296 if (Rd < 15)
298 /* DCCRX to Rn, "MCR p14, 0, Rn, c0, c5, 0", 0xEE00nE15 */
299 retval = cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, Rd, 0, 5, 0),
300 &dscr);
301 if (retval != ERROR_OK)
302 return retval;
304 else if (Rd == 15)
306 /* DCCRX to R0, "MCR p14, 0, R0, c0, c5, 0", 0xEE000E15
307 * then "mov r15, r0"
309 retval = cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
310 &dscr);
311 if (retval != ERROR_OK)
312 return retval;
313 retval = cortex_a8_exec_opcode(target, 0xE1A0F000, &dscr);
314 if (retval != ERROR_OK)
315 return retval;
317 else
319 /* DCCRX to R0, "MCR p14, 0, R0, c0, c5, 0", 0xEE000E15
320 * then "MSR CPSR_cxsf, r0" or "MSR SPSR_cxsf, r0" (all fields)
322 retval = cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
323 &dscr);
324 if (retval != ERROR_OK)
325 return retval;
326 retval = cortex_a8_exec_opcode(target, ARMV4_5_MSR_GP(0, 0xF, Rd & 1),
327 &dscr);
328 if (retval != ERROR_OK)
329 return retval;
331 /* "Prefetch flush" after modifying execution status in CPSR */
332 if (Rd == 16)
334 retval = cortex_a8_exec_opcode(target,
335 ARMV4_5_MCR(15, 0, 0, 7, 5, 4),
336 &dscr);
337 if (retval != ERROR_OK)
338 return retval;
342 return retval;
345 /* Write to memory mapped registers directly with no cache or mmu handling */
346 static int cortex_a8_dap_write_memap_register_u32(struct target *target, uint32_t address, uint32_t value)
348 int retval;
349 struct armv7a_common *armv7a = target_to_armv7a(target);
350 struct adiv5_dap *swjdp = &armv7a->dap;
352 retval = mem_ap_write_atomic_u32(swjdp, address, value);
354 return retval;
358 * Cortex-A8 implementation of Debug Programmer's Model
360 * NOTE the invariant: these routines return with DSCR_INSTR_COMP set,
361 * so there's no need to poll for it before executing an instruction.
363 * NOTE that in several of these cases the "stall" mode might be useful.
364 * It'd let us queue a few operations together... prepare/finish might
365 * be the places to enable/disable that mode.
368 static inline struct cortex_a8_common *dpm_to_a8(struct arm_dpm *dpm)
370 return container_of(dpm, struct cortex_a8_common, armv7a_common.dpm);
373 static int cortex_a8_write_dcc(struct cortex_a8_common *a8, uint32_t data)
375 LOG_DEBUG("write DCC 0x%08" PRIx32, data);
376 return mem_ap_write_u32(&a8->armv7a_common.dap,
377 a8->armv7a_common.debug_base + CPUDBG_DTRRX, data);
380 static int cortex_a8_read_dcc(struct cortex_a8_common *a8, uint32_t *data,
381 uint32_t *dscr_p)
383 struct adiv5_dap *swjdp = &a8->armv7a_common.dap;
384 uint32_t dscr = DSCR_INSTR_COMP;
385 int retval;
387 if (dscr_p)
388 dscr = *dscr_p;
390 /* Wait for DTRRXfull */
391 while ((dscr & DSCR_DTR_TX_FULL) == 0) {
392 retval = mem_ap_read_atomic_u32(swjdp,
393 a8->armv7a_common.debug_base + CPUDBG_DSCR,
394 &dscr);
395 if (retval != ERROR_OK)
396 return retval;
399 retval = mem_ap_read_atomic_u32(swjdp,
400 a8->armv7a_common.debug_base + CPUDBG_DTRTX, data);
401 if (retval != ERROR_OK)
402 return retval;
403 //LOG_DEBUG("read DCC 0x%08" PRIx32, *data);
405 if (dscr_p)
406 *dscr_p = dscr;
408 return retval;
411 static int cortex_a8_dpm_prepare(struct arm_dpm *dpm)
413 struct cortex_a8_common *a8 = dpm_to_a8(dpm);
414 struct adiv5_dap *swjdp = &a8->armv7a_common.dap;
415 uint32_t dscr;
416 int retval;
418 /* set up invariant: INSTR_COMP is set after ever DPM operation */
419 long long then = timeval_ms();
420 for (;;)
422 retval = mem_ap_read_atomic_u32(swjdp,
423 a8->armv7a_common.debug_base + CPUDBG_DSCR,
424 &dscr);
425 if (retval != ERROR_OK)
426 return retval;
427 if ((dscr & DSCR_INSTR_COMP) != 0)
428 break;
429 if (timeval_ms() > then + 1000)
431 LOG_ERROR("Timeout waiting for dpm prepare");
432 return ERROR_FAIL;
436 /* this "should never happen" ... */
437 if (dscr & DSCR_DTR_RX_FULL) {
438 LOG_ERROR("DSCR_DTR_RX_FULL, dscr 0x%08" PRIx32, dscr);
439 /* Clear DCCRX */
440 retval = cortex_a8_exec_opcode(
441 a8->armv7a_common.armv4_5_common.target,
442 ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
443 &dscr);
444 if (retval != ERROR_OK)
445 return retval;
448 return retval;
451 static int cortex_a8_dpm_finish(struct arm_dpm *dpm)
453 /* REVISIT what could be done here? */
454 return ERROR_OK;
457 static int cortex_a8_instr_write_data_dcc(struct arm_dpm *dpm,
458 uint32_t opcode, uint32_t data)
460 struct cortex_a8_common *a8 = dpm_to_a8(dpm);
461 int retval;
462 uint32_t dscr = DSCR_INSTR_COMP;
464 retval = cortex_a8_write_dcc(a8, data);
466 return cortex_a8_exec_opcode(
467 a8->armv7a_common.armv4_5_common.target,
468 opcode,
469 &dscr);
472 static int cortex_a8_instr_write_data_r0(struct arm_dpm *dpm,
473 uint32_t opcode, uint32_t data)
475 struct cortex_a8_common *a8 = dpm_to_a8(dpm);
476 uint32_t dscr = DSCR_INSTR_COMP;
477 int retval;
479 retval = cortex_a8_write_dcc(a8, data);
481 /* DCCRX to R0, "MCR p14, 0, R0, c0, c5, 0", 0xEE000E15 */
482 retval = cortex_a8_exec_opcode(
483 a8->armv7a_common.armv4_5_common.target,
484 ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
485 &dscr);
486 if (retval != ERROR_OK)
487 return retval;
489 /* then the opcode, taking data from R0 */
490 retval = cortex_a8_exec_opcode(
491 a8->armv7a_common.armv4_5_common.target,
492 opcode,
493 &dscr);
495 return retval;
498 static int cortex_a8_instr_cpsr_sync(struct arm_dpm *dpm)
500 struct target *target = dpm->arm->target;
501 uint32_t dscr = DSCR_INSTR_COMP;
503 /* "Prefetch flush" after modifying execution status in CPSR */
504 return cortex_a8_exec_opcode(target,
505 ARMV4_5_MCR(15, 0, 0, 7, 5, 4),
506 &dscr);
509 static int cortex_a8_instr_read_data_dcc(struct arm_dpm *dpm,
510 uint32_t opcode, uint32_t *data)
512 struct cortex_a8_common *a8 = dpm_to_a8(dpm);
513 int retval;
514 uint32_t dscr = DSCR_INSTR_COMP;
516 /* the opcode, writing data to DCC */
517 retval = cortex_a8_exec_opcode(
518 a8->armv7a_common.armv4_5_common.target,
519 opcode,
520 &dscr);
521 if (retval != ERROR_OK)
522 return retval;
524 return cortex_a8_read_dcc(a8, data, &dscr);
528 static int cortex_a8_instr_read_data_r0(struct arm_dpm *dpm,
529 uint32_t opcode, uint32_t *data)
531 struct cortex_a8_common *a8 = dpm_to_a8(dpm);
532 uint32_t dscr = DSCR_INSTR_COMP;
533 int retval;
535 /* the opcode, writing data to R0 */
536 retval = cortex_a8_exec_opcode(
537 a8->armv7a_common.armv4_5_common.target,
538 opcode,
539 &dscr);
540 if (retval != ERROR_OK)
541 return retval;
543 /* write R0 to DCC */
544 retval = cortex_a8_exec_opcode(
545 a8->armv7a_common.armv4_5_common.target,
546 ARMV4_5_MCR(14, 0, 0, 0, 5, 0),
547 &dscr);
548 if (retval != ERROR_OK)
549 return retval;
551 return cortex_a8_read_dcc(a8, data, &dscr);
554 static int cortex_a8_bpwp_enable(struct arm_dpm *dpm, unsigned index_t,
555 uint32_t addr, uint32_t control)
557 struct cortex_a8_common *a8 = dpm_to_a8(dpm);
558 uint32_t vr = a8->armv7a_common.debug_base;
559 uint32_t cr = a8->armv7a_common.debug_base;
560 int retval;
562 switch (index_t) {
563 case 0 ... 15: /* breakpoints */
564 vr += CPUDBG_BVR_BASE;
565 cr += CPUDBG_BCR_BASE;
566 break;
567 case 16 ... 31: /* watchpoints */
568 vr += CPUDBG_WVR_BASE;
569 cr += CPUDBG_WCR_BASE;
570 index_t -= 16;
571 break;
572 default:
573 return ERROR_FAIL;
575 vr += 4 * index_t;
576 cr += 4 * index_t;
578 LOG_DEBUG("A8: bpwp enable, vr %08x cr %08x",
579 (unsigned) vr, (unsigned) cr);
581 retval = cortex_a8_dap_write_memap_register_u32(dpm->arm->target,
582 vr, addr);
583 if (retval != ERROR_OK)
584 return retval;
585 retval = cortex_a8_dap_write_memap_register_u32(dpm->arm->target,
586 cr, control);
587 return retval;
590 static int cortex_a8_bpwp_disable(struct arm_dpm *dpm, unsigned index_t)
592 struct cortex_a8_common *a8 = dpm_to_a8(dpm);
593 uint32_t cr;
595 switch (index_t) {
596 case 0 ... 15:
597 cr = a8->armv7a_common.debug_base + CPUDBG_BCR_BASE;
598 break;
599 case 16 ... 31:
600 cr = a8->armv7a_common.debug_base + CPUDBG_WCR_BASE;
601 index_t -= 16;
602 break;
603 default:
604 return ERROR_FAIL;
606 cr += 4 * index_t;
608 LOG_DEBUG("A8: bpwp disable, cr %08x", (unsigned) cr);
610 /* clear control register */
611 return cortex_a8_dap_write_memap_register_u32(dpm->arm->target, cr, 0);
614 static int cortex_a8_dpm_setup(struct cortex_a8_common *a8, uint32_t didr)
616 struct arm_dpm *dpm = &a8->armv7a_common.dpm;
617 int retval;
619 dpm->arm = &a8->armv7a_common.armv4_5_common;
620 dpm->didr = didr;
622 dpm->prepare = cortex_a8_dpm_prepare;
623 dpm->finish = cortex_a8_dpm_finish;
625 dpm->instr_write_data_dcc = cortex_a8_instr_write_data_dcc;
626 dpm->instr_write_data_r0 = cortex_a8_instr_write_data_r0;
627 dpm->instr_cpsr_sync = cortex_a8_instr_cpsr_sync;
629 dpm->instr_read_data_dcc = cortex_a8_instr_read_data_dcc;
630 dpm->instr_read_data_r0 = cortex_a8_instr_read_data_r0;
632 dpm->bpwp_enable = cortex_a8_bpwp_enable;
633 dpm->bpwp_disable = cortex_a8_bpwp_disable;
635 retval = arm_dpm_setup(dpm);
636 if (retval == ERROR_OK)
637 retval = arm_dpm_initialize(dpm);
639 return retval;
644 * Cortex-A8 Run control
647 static int cortex_a8_poll(struct target *target)
649 int retval = ERROR_OK;
650 uint32_t dscr;
651 struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
652 struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
653 struct adiv5_dap *swjdp = &armv7a->dap;
654 enum target_state prev_target_state = target->state;
655 uint8_t saved_apsel = dap_ap_get_select(swjdp);
657 dap_ap_select(swjdp, swjdp_debugap);
658 retval = mem_ap_read_atomic_u32(swjdp,
659 armv7a->debug_base + CPUDBG_DSCR, &dscr);
660 if (retval != ERROR_OK)
662 dap_ap_select(swjdp, saved_apsel);
663 return retval;
665 cortex_a8->cpudbg_dscr = dscr;
667 if ((dscr & 0x3) == 0x3)
669 if (prev_target_state != TARGET_HALTED)
671 /* We have a halting debug event */
672 LOG_DEBUG("Target halted");
673 target->state = TARGET_HALTED;
674 if ((prev_target_state == TARGET_RUNNING)
675 || (prev_target_state == TARGET_RESET))
677 retval = cortex_a8_debug_entry(target);
678 if (retval != ERROR_OK)
679 return retval;
681 target_call_event_callbacks(target,
682 TARGET_EVENT_HALTED);
684 if (prev_target_state == TARGET_DEBUG_RUNNING)
686 LOG_DEBUG(" ");
688 retval = cortex_a8_debug_entry(target);
689 if (retval != ERROR_OK)
690 return retval;
692 target_call_event_callbacks(target,
693 TARGET_EVENT_DEBUG_HALTED);
697 else if ((dscr & 0x3) == 0x2)
699 target->state = TARGET_RUNNING;
701 else
703 LOG_DEBUG("Unknown target state dscr = 0x%08" PRIx32, dscr);
704 target->state = TARGET_UNKNOWN;
707 dap_ap_select(swjdp, saved_apsel);
709 return retval;
712 static int cortex_a8_halt(struct target *target)
714 int retval = ERROR_OK;
715 uint32_t dscr;
716 struct armv7a_common *armv7a = target_to_armv7a(target);
717 struct adiv5_dap *swjdp = &armv7a->dap;
718 uint8_t saved_apsel = dap_ap_get_select(swjdp);
719 dap_ap_select(swjdp, swjdp_debugap);
722 * Tell the core to be halted by writing DRCR with 0x1
723 * and then wait for the core to be halted.
725 retval = mem_ap_write_atomic_u32(swjdp,
726 armv7a->debug_base + CPUDBG_DRCR, 0x1);
727 if (retval != ERROR_OK)
728 goto out;
731 * enter halting debug mode
733 retval = mem_ap_read_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_DSCR, &dscr);
734 if (retval != ERROR_OK)
735 goto out;
737 retval = mem_ap_write_atomic_u32(swjdp,
738 armv7a->debug_base + CPUDBG_DSCR, dscr | DSCR_HALT_DBG_MODE);
739 if (retval != ERROR_OK)
740 goto out;
742 long long then = timeval_ms();
743 for (;;)
745 retval = mem_ap_read_atomic_u32(swjdp,
746 armv7a->debug_base + CPUDBG_DSCR, &dscr);
747 if (retval != ERROR_OK)
748 goto out;
749 if ((dscr & DSCR_CORE_HALTED) != 0)
751 break;
753 if (timeval_ms() > then + 1000)
755 LOG_ERROR("Timeout waiting for halt");
756 return ERROR_FAIL;
760 target->debug_reason = DBG_REASON_DBGRQ;
762 out:
763 dap_ap_select(swjdp, saved_apsel);
764 return retval;
767 static int cortex_a8_resume(struct target *target, int current,
768 uint32_t address, int handle_breakpoints, int debug_execution)
770 struct armv7a_common *armv7a = target_to_armv7a(target);
771 struct arm *armv4_5 = &armv7a->armv4_5_common;
772 struct adiv5_dap *swjdp = &armv7a->dap;
773 int retval;
775 // struct breakpoint *breakpoint = NULL;
776 uint32_t resume_pc, dscr;
778 uint8_t saved_apsel = dap_ap_get_select(swjdp);
779 dap_ap_select(swjdp, swjdp_debugap);
781 if (!debug_execution)
782 target_free_all_working_areas(target);
784 #if 0
785 if (debug_execution)
787 /* Disable interrupts */
788 /* We disable interrupts in the PRIMASK register instead of
789 * masking with C_MASKINTS,
790 * This is probably the same issue as Cortex-M3 Errata 377493:
791 * C_MASKINTS in parallel with disabled interrupts can cause
792 * local faults to not be taken. */
793 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_PRIMASK].value, 0, 32, 1);
794 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].dirty = 1;
795 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].valid = 1;
797 /* Make sure we are in Thumb mode */
798 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32,
799 buf_get_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32) | (1 << 24));
800 armv7m->core_cache->reg_list[ARMV7M_xPSR].dirty = 1;
801 armv7m->core_cache->reg_list[ARMV7M_xPSR].valid = 1;
803 #endif
805 /* current = 1: continue on current pc, otherwise continue at <address> */
806 resume_pc = buf_get_u32(armv4_5->pc->value, 0, 32);
807 if (!current)
808 resume_pc = address;
810 /* Make sure that the Armv7 gdb thumb fixups does not
811 * kill the return address
813 switch (armv4_5->core_state)
815 case ARM_STATE_ARM:
816 resume_pc &= 0xFFFFFFFC;
817 break;
818 case ARM_STATE_THUMB:
819 case ARM_STATE_THUMB_EE:
820 /* When the return address is loaded into PC
821 * bit 0 must be 1 to stay in Thumb state
823 resume_pc |= 0x1;
824 break;
825 case ARM_STATE_JAZELLE:
826 LOG_ERROR("How do I resume into Jazelle state??");
827 return ERROR_FAIL;
829 LOG_DEBUG("resume pc = 0x%08" PRIx32, resume_pc);
830 buf_set_u32(armv4_5->pc->value, 0, 32, resume_pc);
831 armv4_5->pc->dirty = 1;
832 armv4_5->pc->valid = 1;
834 cortex_a8_restore_context(target, handle_breakpoints);
836 #if 0
837 /* the front-end may request us not to handle breakpoints */
838 if (handle_breakpoints)
840 /* Single step past breakpoint at current address */
841 if ((breakpoint = breakpoint_find(target, resume_pc)))
843 LOG_DEBUG("unset breakpoint at 0x%8.8x", breakpoint->address);
844 cortex_m3_unset_breakpoint(target, breakpoint);
845 cortex_m3_single_step_core(target);
846 cortex_m3_set_breakpoint(target, breakpoint);
850 #endif
851 /* Restart core and wait for it to be started
852 * NOTE: this clears DSCR_ITR_EN and other bits.
854 * REVISIT: for single stepping, we probably want to
855 * disable IRQs by default, with optional override...
857 retval = mem_ap_write_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_DRCR, 0x2);
858 if (retval != ERROR_OK)
859 return retval;
861 long long then = timeval_ms();
862 for (;;)
864 retval = mem_ap_read_atomic_u32(swjdp,
865 armv7a->debug_base + CPUDBG_DSCR, &dscr);
866 if (retval != ERROR_OK)
867 return retval;
868 if ((dscr & DSCR_CORE_RESTARTED) != 0)
869 break;
870 if (timeval_ms() > then + 1000)
872 LOG_ERROR("Timeout waiting for resume");
873 return ERROR_FAIL;
877 target->debug_reason = DBG_REASON_NOTHALTED;
878 target->state = TARGET_RUNNING;
880 /* registers are now invalid */
881 register_cache_invalidate(armv4_5->core_cache);
883 if (!debug_execution)
885 target->state = TARGET_RUNNING;
886 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
887 LOG_DEBUG("target resumed at 0x%" PRIx32, resume_pc);
889 else
891 target->state = TARGET_DEBUG_RUNNING;
892 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
893 LOG_DEBUG("target debug resumed at 0x%" PRIx32, resume_pc);
896 dap_ap_select(swjdp, saved_apsel);
898 return ERROR_OK;
901 static int cortex_a8_debug_entry(struct target *target)
903 int i;
904 uint32_t regfile[16], cpsr, dscr;
905 int retval = ERROR_OK;
906 struct working_area *regfile_working_area = NULL;
907 struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
908 struct armv7a_common *armv7a = target_to_armv7a(target);
909 struct arm *armv4_5 = &armv7a->armv4_5_common;
910 struct adiv5_dap *swjdp = &armv7a->dap;
911 struct reg *reg;
913 LOG_DEBUG("dscr = 0x%08" PRIx32, cortex_a8->cpudbg_dscr);
915 /* REVISIT surely we should not re-read DSCR !! */
916 retval = mem_ap_read_atomic_u32(swjdp,
917 armv7a->debug_base + CPUDBG_DSCR, &dscr);
918 if (retval != ERROR_OK)
919 return retval;
921 /* REVISIT see A8 TRM 12.11.4 steps 2..3 -- make sure that any
922 * imprecise data aborts get discarded by issuing a Data
923 * Synchronization Barrier: ARMV4_5_MCR(15, 0, 0, 7, 10, 4).
926 /* Enable the ITR execution once we are in debug mode */
927 dscr |= DSCR_ITR_EN;
928 retval = mem_ap_write_atomic_u32(swjdp,
929 armv7a->debug_base + CPUDBG_DSCR, dscr);
930 if (retval != ERROR_OK)
931 return retval;
933 /* Examine debug reason */
934 arm_dpm_report_dscr(&armv7a->dpm, cortex_a8->cpudbg_dscr);
936 /* save address of instruction that triggered the watchpoint? */
937 if (target->debug_reason == DBG_REASON_WATCHPOINT) {
938 uint32_t wfar;
940 retval = mem_ap_read_atomic_u32(swjdp,
941 armv7a->debug_base + CPUDBG_WFAR,
942 &wfar);
943 if (retval != ERROR_OK)
944 return retval;
945 arm_dpm_report_wfar(&armv7a->dpm, wfar);
948 /* REVISIT fast_reg_read is never set ... */
950 /* Examine target state and mode */
951 if (cortex_a8->fast_reg_read)
952 target_alloc_working_area(target, 64, &regfile_working_area);
954 /* First load register acessible through core debug port*/
955 if (!regfile_working_area)
957 retval = arm_dpm_read_current_registers(&armv7a->dpm);
959 else
961 dap_ap_select(swjdp, swjdp_memoryap);
962 cortex_a8_read_regs_through_mem(target,
963 regfile_working_area->address, regfile);
964 dap_ap_select(swjdp, swjdp_memoryap);
965 target_free_working_area(target, regfile_working_area);
967 /* read Current PSR */
968 cortex_a8_dap_read_coreregister_u32(target, &cpsr, 16);
969 dap_ap_select(swjdp, swjdp_debugap);
970 LOG_DEBUG("cpsr: %8.8" PRIx32, cpsr);
972 arm_set_cpsr(armv4_5, cpsr);
974 /* update cache */
975 for (i = 0; i <= ARM_PC; i++)
977 reg = arm_reg_current(armv4_5, i);
979 buf_set_u32(reg->value, 0, 32, regfile[i]);
980 reg->valid = 1;
981 reg->dirty = 0;
984 /* Fixup PC Resume Address */
985 if (cpsr & (1 << 5))
987 // T bit set for Thumb or ThumbEE state
988 regfile[ARM_PC] -= 4;
990 else
992 // ARM state
993 regfile[ARM_PC] -= 8;
996 reg = armv4_5->pc;
997 buf_set_u32(reg->value, 0, 32, regfile[ARM_PC]);
998 reg->dirty = reg->valid;
1001 #if 0
1002 /* TODO, Move this */
1003 uint32_t cp15_control_register, cp15_cacr, cp15_nacr;
1004 cortex_a8_read_cp(target, &cp15_control_register, 15, 0, 1, 0, 0);
1005 LOG_DEBUG("cp15_control_register = 0x%08x", cp15_control_register);
1007 cortex_a8_read_cp(target, &cp15_cacr, 15, 0, 1, 0, 2);
1008 LOG_DEBUG("cp15 Coprocessor Access Control Register = 0x%08x", cp15_cacr);
1010 cortex_a8_read_cp(target, &cp15_nacr, 15, 0, 1, 1, 2);
1011 LOG_DEBUG("cp15 Nonsecure Access Control Register = 0x%08x", cp15_nacr);
1012 #endif
1014 /* Are we in an exception handler */
1015 // armv4_5->exception_number = 0;
1016 if (armv7a->post_debug_entry)
1017 armv7a->post_debug_entry(target);
1019 return retval;
1022 static void cortex_a8_post_debug_entry(struct target *target)
1024 struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1025 struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
1026 int retval;
1028 /* MRC p15,0,<Rt>,c1,c0,0 ; Read CP15 System Control Register */
1029 retval = armv7a->armv4_5_common.mrc(target, 15,
1030 0, 0, /* op1, op2 */
1031 1, 0, /* CRn, CRm */
1032 &cortex_a8->cp15_control_reg);
1033 LOG_DEBUG("cp15_control_reg: %8.8" PRIx32, cortex_a8->cp15_control_reg);
1035 if (armv7a->armv4_5_mmu.armv4_5_cache.ctype == -1)
1037 uint32_t cache_type_reg;
1039 /* MRC p15,0,<Rt>,c0,c0,1 ; Read CP15 Cache Type Register */
1040 retval = armv7a->armv4_5_common.mrc(target, 15,
1041 0, 1, /* op1, op2 */
1042 0, 0, /* CRn, CRm */
1043 &cache_type_reg);
1044 LOG_DEBUG("cp15 cache type: %8.8x", (unsigned) cache_type_reg);
1046 /* FIXME the armv4_4 cache info DOES NOT APPLY to Cortex-A8 */
1047 armv4_5_identify_cache(cache_type_reg,
1048 &armv7a->armv4_5_mmu.armv4_5_cache);
1051 armv7a->armv4_5_mmu.mmu_enabled =
1052 (cortex_a8->cp15_control_reg & 0x1U) ? 1 : 0;
1053 armv7a->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled =
1054 (cortex_a8->cp15_control_reg & 0x4U) ? 1 : 0;
1055 armv7a->armv4_5_mmu.armv4_5_cache.i_cache_enabled =
1056 (cortex_a8->cp15_control_reg & 0x1000U) ? 1 : 0;
1061 static int cortex_a8_step(struct target *target, int current, uint32_t address,
1062 int handle_breakpoints)
1064 struct armv7a_common *armv7a = target_to_armv7a(target);
1065 struct arm *armv4_5 = &armv7a->armv4_5_common;
1066 struct breakpoint *breakpoint = NULL;
1067 struct breakpoint stepbreakpoint;
1068 struct reg *r;
1069 int retval;
1071 int timeout = 100;
1073 if (target->state != TARGET_HALTED)
1075 LOG_WARNING("target not halted");
1076 return ERROR_TARGET_NOT_HALTED;
1079 /* current = 1: continue on current pc, otherwise continue at <address> */
1080 r = armv4_5->pc;
1081 if (!current)
1083 buf_set_u32(r->value, 0, 32, address);
1085 else
1087 address = buf_get_u32(r->value, 0, 32);
1090 /* The front-end may request us not to handle breakpoints.
1091 * But since Cortex-A8 uses breakpoint for single step,
1092 * we MUST handle breakpoints.
1094 handle_breakpoints = 1;
1095 if (handle_breakpoints) {
1096 breakpoint = breakpoint_find(target, address);
1097 if (breakpoint)
1098 cortex_a8_unset_breakpoint(target, breakpoint);
1101 /* Setup single step breakpoint */
1102 stepbreakpoint.address = address;
1103 stepbreakpoint.length = (armv4_5->core_state == ARM_STATE_THUMB)
1104 ? 2 : 4;
1105 stepbreakpoint.type = BKPT_HARD;
1106 stepbreakpoint.set = 0;
1108 /* Break on IVA mismatch */
1109 cortex_a8_set_breakpoint(target, &stepbreakpoint, 0x04);
1111 target->debug_reason = DBG_REASON_SINGLESTEP;
1113 retval = cortex_a8_resume(target, 1, address, 0, 0);
1114 if (retval != ERROR_OK)
1115 return retval;
1117 while (target->state != TARGET_HALTED)
1119 retval = cortex_a8_poll(target);
1120 if (retval != ERROR_OK)
1121 return retval;
1122 if (--timeout == 0)
1124 LOG_ERROR("timeout waiting for target halt");
1125 return ERROR_FAIL;
1129 cortex_a8_unset_breakpoint(target, &stepbreakpoint);
1130 if (timeout > 0)
1131 target->debug_reason = DBG_REASON_BREAKPOINT;
1133 if (breakpoint)
1134 cortex_a8_set_breakpoint(target, breakpoint, 0);
1136 if (target->state != TARGET_HALTED)
1137 LOG_DEBUG("target stepped");
1139 return ERROR_OK;
1142 static int cortex_a8_restore_context(struct target *target, bool bpwp)
1144 struct armv7a_common *armv7a = target_to_armv7a(target);
1146 LOG_DEBUG(" ");
1148 if (armv7a->pre_restore_context)
1149 armv7a->pre_restore_context(target);
1151 arm_dpm_write_dirty_registers(&armv7a->dpm, bpwp);
1153 return ERROR_OK;
1158 * Cortex-A8 Breakpoint and watchpoint functions
1161 /* Setup hardware Breakpoint Register Pair */
1162 static int cortex_a8_set_breakpoint(struct target *target,
1163 struct breakpoint *breakpoint, uint8_t matchmode)
1165 int retval;
1166 int brp_i=0;
1167 uint32_t control;
1168 uint8_t byte_addr_select = 0x0F;
1169 struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1170 struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
1171 struct cortex_a8_brp * brp_list = cortex_a8->brp_list;
1173 if (breakpoint->set)
1175 LOG_WARNING("breakpoint already set");
1176 return ERROR_OK;
1179 if (breakpoint->type == BKPT_HARD)
1181 while (brp_list[brp_i].used && (brp_i < cortex_a8->brp_num))
1182 brp_i++ ;
1183 if (brp_i >= cortex_a8->brp_num)
1185 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1186 return ERROR_FAIL;
1188 breakpoint->set = brp_i + 1;
1189 if (breakpoint->length == 2)
1191 byte_addr_select = (3 << (breakpoint->address & 0x02));
1193 control = ((matchmode & 0x7) << 20)
1194 | (byte_addr_select << 5)
1195 | (3 << 1) | 1;
1196 brp_list[brp_i].used = 1;
1197 brp_list[brp_i].value = (breakpoint->address & 0xFFFFFFFC);
1198 brp_list[brp_i].control = control;
1199 cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1200 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1201 brp_list[brp_i].value);
1202 cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1203 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1204 brp_list[brp_i].control);
1205 LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1206 brp_list[brp_i].control,
1207 brp_list[brp_i].value);
1209 else if (breakpoint->type == BKPT_SOFT)
1211 uint8_t code[4];
1212 if (breakpoint->length == 2)
1214 buf_set_u32(code, 0, 32, ARMV5_T_BKPT(0x11));
1216 else
1218 buf_set_u32(code, 0, 32, ARMV5_BKPT(0x11));
1220 retval = target->type->read_memory(target,
1221 breakpoint->address & 0xFFFFFFFE,
1222 breakpoint->length, 1,
1223 breakpoint->orig_instr);
1224 if (retval != ERROR_OK)
1225 return retval;
1226 retval = target->type->write_memory(target,
1227 breakpoint->address & 0xFFFFFFFE,
1228 breakpoint->length, 1, code);
1229 if (retval != ERROR_OK)
1230 return retval;
1231 breakpoint->set = 0x11; /* Any nice value but 0 */
1234 return ERROR_OK;
1237 static int cortex_a8_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
1239 int retval;
1240 struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1241 struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
1242 struct cortex_a8_brp * brp_list = cortex_a8->brp_list;
1244 if (!breakpoint->set)
1246 LOG_WARNING("breakpoint not set");
1247 return ERROR_OK;
1250 if (breakpoint->type == BKPT_HARD)
1252 int brp_i = breakpoint->set - 1;
1253 if ((brp_i < 0) || (brp_i >= cortex_a8->brp_num))
1255 LOG_DEBUG("Invalid BRP number in breakpoint");
1256 return ERROR_OK;
1258 LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1259 brp_list[brp_i].control, brp_list[brp_i].value);
1260 brp_list[brp_i].used = 0;
1261 brp_list[brp_i].value = 0;
1262 brp_list[brp_i].control = 0;
1263 cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1264 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1265 brp_list[brp_i].control);
1266 cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1267 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1268 brp_list[brp_i].value);
1270 else
1272 /* restore original instruction (kept in target endianness) */
1273 if (breakpoint->length == 4)
1275 retval = target->type->write_memory(target,
1276 breakpoint->address & 0xFFFFFFFE,
1277 4, 1, breakpoint->orig_instr);
1278 if (retval != ERROR_OK)
1279 return retval;
1281 else
1283 retval = target->type->write_memory(target,
1284 breakpoint->address & 0xFFFFFFFE,
1285 2, 1, breakpoint->orig_instr);
1286 if (retval != ERROR_OK)
1287 return retval;
1290 breakpoint->set = 0;
1292 return ERROR_OK;
1295 static int cortex_a8_add_breakpoint(struct target *target,
1296 struct breakpoint *breakpoint)
1298 struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1300 if ((breakpoint->type == BKPT_HARD) && (cortex_a8->brp_num_available < 1))
1302 LOG_INFO("no hardware breakpoint available");
1303 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1306 if (breakpoint->type == BKPT_HARD)
1307 cortex_a8->brp_num_available--;
1308 cortex_a8_set_breakpoint(target, breakpoint, 0x00); /* Exact match */
1310 return ERROR_OK;
1313 static int cortex_a8_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
1315 struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1317 #if 0
1318 /* It is perfectly possible to remove breakpoints while the target is running */
1319 if (target->state != TARGET_HALTED)
1321 LOG_WARNING("target not halted");
1322 return ERROR_TARGET_NOT_HALTED;
1324 #endif
1326 if (breakpoint->set)
1328 cortex_a8_unset_breakpoint(target, breakpoint);
1329 if (breakpoint->type == BKPT_HARD)
1330 cortex_a8->brp_num_available++ ;
1334 return ERROR_OK;
1340 * Cortex-A8 Reset functions
1343 static int cortex_a8_assert_reset(struct target *target)
1345 struct armv7a_common *armv7a = target_to_armv7a(target);
1347 LOG_DEBUG(" ");
1349 /* FIXME when halt is requested, make it work somehow... */
1351 /* Issue some kind of warm reset. */
1352 if (target_has_event_action(target, TARGET_EVENT_RESET_ASSERT)) {
1353 target_handle_event(target, TARGET_EVENT_RESET_ASSERT);
1354 } else if (jtag_get_reset_config() & RESET_HAS_SRST) {
1355 /* REVISIT handle "pulls" cases, if there's
1356 * hardware that needs them to work.
1358 jtag_add_reset(0, 1);
1359 } else {
1360 LOG_ERROR("%s: how to reset?", target_name(target));
1361 return ERROR_FAIL;
1364 /* registers are now invalid */
1365 register_cache_invalidate(armv7a->armv4_5_common.core_cache);
1367 target->state = TARGET_RESET;
1369 return ERROR_OK;
1372 static int cortex_a8_deassert_reset(struct target *target)
1374 int retval;
1376 LOG_DEBUG(" ");
1378 /* be certain SRST is off */
1379 jtag_add_reset(0, 0);
1381 retval = cortex_a8_poll(target);
1382 if (retval != ERROR_OK)
1383 return retval;
1385 if (target->reset_halt) {
1386 if (target->state != TARGET_HALTED) {
1387 LOG_WARNING("%s: ran after reset and before halt ...",
1388 target_name(target));
1389 if ((retval = target_halt(target)) != ERROR_OK)
1390 return retval;
1394 return ERROR_OK;
1398 * Cortex-A8 Memory access
1400 * This is same Cortex M3 but we must also use the correct
1401 * ap number for every access.
1404 static int cortex_a8_read_phys_memory(struct target *target,
1405 uint32_t address, uint32_t size,
1406 uint32_t count, uint8_t *buffer)
1408 struct armv7a_common *armv7a = target_to_armv7a(target);
1409 struct adiv5_dap *swjdp = &armv7a->dap;
1410 int retval = ERROR_INVALID_ARGUMENTS;
1412 /* cortex_a8 handles unaligned memory access */
1414 // ??? dap_ap_select(swjdp, swjdp_memoryap);
1415 LOG_DEBUG("Reading memory at real address 0x%x; size %d; count %d", address, size, count);
1416 if (count && buffer) {
1417 switch (size) {
1418 case 4:
1419 retval = mem_ap_read_buf_u32(swjdp, buffer, 4 * count, address);
1420 break;
1421 case 2:
1422 retval = mem_ap_read_buf_u16(swjdp, buffer, 2 * count, address);
1423 break;
1424 case 1:
1425 retval = mem_ap_read_buf_u8(swjdp, buffer, count, address);
1426 break;
1430 return retval;
1433 static int cortex_a8_read_memory(struct target *target, uint32_t address,
1434 uint32_t size, uint32_t count, uint8_t *buffer)
1436 int enabled = 0;
1437 uint32_t virt, phys;
1438 int retval;
1440 /* cortex_a8 handles unaligned memory access */
1442 // ??? dap_ap_select(swjdp, swjdp_memoryap);
1443 LOG_DEBUG("Reading memory at address 0x%x; size %d; count %d", address, size, count);
1444 retval = cortex_a8_mmu(target, &enabled);
1445 if (retval != ERROR_OK)
1446 return retval;
1448 if(enabled)
1450 virt = address;
1451 cortex_a8_virt2phys(target, virt, &phys);
1452 LOG_DEBUG("Reading at virtual address. Translating v:0x%x to r:0x%x", virt, phys);
1453 address = phys;
1456 return cortex_a8_read_phys_memory(target, address, size, count, buffer);
1459 static int cortex_a8_write_phys_memory(struct target *target,
1460 uint32_t address, uint32_t size,
1461 uint32_t count, uint8_t *buffer)
1463 struct armv7a_common *armv7a = target_to_armv7a(target);
1464 struct adiv5_dap *swjdp = &armv7a->dap;
1465 int retval = ERROR_INVALID_ARGUMENTS;
1467 // ??? dap_ap_select(swjdp, swjdp_memoryap);
1469 LOG_DEBUG("Writing memory to real address 0x%x; size %d; count %d", address, size, count);
1470 if (count && buffer) {
1471 switch (size) {
1472 case 4:
1473 retval = mem_ap_write_buf_u32(swjdp, buffer, 4 * count, address);
1474 break;
1475 case 2:
1476 retval = mem_ap_write_buf_u16(swjdp, buffer, 2 * count, address);
1477 break;
1478 case 1:
1479 retval = mem_ap_write_buf_u8(swjdp, buffer, count, address);
1480 break;
1484 /* REVISIT this op is generic ARMv7-A/R stuff */
1485 if (retval == ERROR_OK && target->state == TARGET_HALTED)
1487 struct arm_dpm *dpm = armv7a->armv4_5_common.dpm;
1489 retval = dpm->prepare(dpm);
1490 if (retval != ERROR_OK)
1491 return retval;
1493 /* The Cache handling will NOT work with MMU active, the
1494 * wrong addresses will be invalidated!
1496 * For both ICache and DCache, walk all cache lines in the
1497 * address range. Cortex-A8 has fixed 64 byte line length.
1499 * REVISIT per ARMv7, these may trigger watchpoints ...
1502 /* invalidate I-Cache */
1503 if (armv7a->armv4_5_mmu.armv4_5_cache.i_cache_enabled)
1505 /* ICIMVAU - Invalidate Cache single entry
1506 * with MVA to PoU
1507 * MCR p15, 0, r0, c7, c5, 1
1509 for (uint32_t cacheline = address;
1510 cacheline < address + size * count;
1511 cacheline += 64) {
1512 retval = dpm->instr_write_data_r0(dpm,
1513 ARMV4_5_MCR(15, 0, 0, 7, 5, 1),
1514 cacheline);
1518 /* invalidate D-Cache */
1519 if (armv7a->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled)
1521 /* DCIMVAC - Invalidate data Cache line
1522 * with MVA to PoC
1523 * MCR p15, 0, r0, c7, c6, 1
1525 for (uint32_t cacheline = address;
1526 cacheline < address + size * count;
1527 cacheline += 64) {
1528 retval = dpm->instr_write_data_r0(dpm,
1529 ARMV4_5_MCR(15, 0, 0, 7, 6, 1),
1530 cacheline);
1534 /* (void) */ dpm->finish(dpm);
1537 return retval;
1540 static int cortex_a8_write_memory(struct target *target, uint32_t address,
1541 uint32_t size, uint32_t count, uint8_t *buffer)
1543 int enabled = 0;
1544 uint32_t virt, phys;
1545 int retval;
1547 // ??? dap_ap_select(swjdp, swjdp_memoryap);
1549 LOG_DEBUG("Writing memory to address 0x%x; size %d; count %d", address, size, count);
1550 retval = cortex_a8_mmu(target, &enabled);
1551 if (retval != ERROR_OK)
1552 return retval;
1553 if(enabled)
1555 virt = address;
1556 cortex_a8_virt2phys(target, virt, &phys);
1557 LOG_DEBUG("Writing to virtual address. Translating v:0x%x to r:0x%x", virt, phys);
1558 address = phys;
1561 return cortex_a8_write_phys_memory(target, address, size,
1562 count, buffer);
1565 static int cortex_a8_bulk_write_memory(struct target *target, uint32_t address,
1566 uint32_t count, uint8_t *buffer)
1568 return cortex_a8_write_memory(target, address, 4, count, buffer);
1572 static int cortex_a8_dcc_read(struct adiv5_dap *swjdp, uint8_t *value, uint8_t *ctrl)
1574 #if 0
1575 u16 dcrdr;
1577 mem_ap_read_buf_u16(swjdp, (uint8_t*)&dcrdr, 1, DCB_DCRDR);
1578 *ctrl = (uint8_t)dcrdr;
1579 *value = (uint8_t)(dcrdr >> 8);
1581 LOG_DEBUG("data 0x%x ctrl 0x%x", *value, *ctrl);
1583 /* write ack back to software dcc register
1584 * signify we have read data */
1585 if (dcrdr & (1 << 0))
1587 dcrdr = 0;
1588 mem_ap_write_buf_u16(swjdp, (uint8_t*)&dcrdr, 1, DCB_DCRDR);
1590 #endif
1591 return ERROR_OK;
1595 static int cortex_a8_handle_target_request(void *priv)
1597 struct target *target = priv;
1598 struct armv7a_common *armv7a = target_to_armv7a(target);
1599 struct adiv5_dap *swjdp = &armv7a->dap;
1601 if (!target_was_examined(target))
1602 return ERROR_OK;
1603 if (!target->dbg_msg_enabled)
1604 return ERROR_OK;
1606 if (target->state == TARGET_RUNNING)
1608 uint8_t data = 0;
1609 uint8_t ctrl = 0;
1611 cortex_a8_dcc_read(swjdp, &data, &ctrl);
1613 /* check if we have data */
1614 if (ctrl & (1 << 0))
1616 uint32_t request;
1618 /* we assume target is quick enough */
1619 request = data;
1620 cortex_a8_dcc_read(swjdp, &data, &ctrl);
1621 request |= (data << 8);
1622 cortex_a8_dcc_read(swjdp, &data, &ctrl);
1623 request |= (data << 16);
1624 cortex_a8_dcc_read(swjdp, &data, &ctrl);
1625 request |= (data << 24);
1626 target_request(target, request);
1630 return ERROR_OK;
1634 * Cortex-A8 target information and configuration
1637 static int cortex_a8_examine_first(struct target *target)
1639 struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1640 struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
1641 struct adiv5_dap *swjdp = &armv7a->dap;
1642 int i;
1643 int retval = ERROR_OK;
1644 uint32_t didr, ctypr, ttypr, cpuid;
1646 /* stop assuming this is an OMAP! */
1647 LOG_DEBUG("TODO - autoconfigure");
1649 /* Here we shall insert a proper ROM Table scan */
1650 armv7a->debug_base = OMAP3530_DEBUG_BASE;
1652 /* We do one extra read to ensure DAP is configured,
1653 * we call ahbap_debugport_init(swjdp) instead
1655 retval = ahbap_debugport_init(swjdp);
1656 if (retval != ERROR_OK)
1657 return retval;
1659 retval = mem_ap_read_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_CPUID, &cpuid);
1660 if (retval != ERROR_OK)
1661 return retval;
1663 if ((retval = mem_ap_read_atomic_u32(swjdp,
1664 armv7a->debug_base + CPUDBG_CPUID, &cpuid)) != ERROR_OK)
1666 LOG_DEBUG("Examine %s failed", "CPUID");
1667 return retval;
1670 if ((retval = mem_ap_read_atomic_u32(swjdp,
1671 armv7a->debug_base + CPUDBG_CTYPR, &ctypr)) != ERROR_OK)
1673 LOG_DEBUG("Examine %s failed", "CTYPR");
1674 return retval;
1677 if ((retval = mem_ap_read_atomic_u32(swjdp,
1678 armv7a->debug_base + CPUDBG_TTYPR, &ttypr)) != ERROR_OK)
1680 LOG_DEBUG("Examine %s failed", "TTYPR");
1681 return retval;
1684 if ((retval = mem_ap_read_atomic_u32(swjdp,
1685 armv7a->debug_base + CPUDBG_DIDR, &didr)) != ERROR_OK)
1687 LOG_DEBUG("Examine %s failed", "DIDR");
1688 return retval;
1691 LOG_DEBUG("cpuid = 0x%08" PRIx32, cpuid);
1692 LOG_DEBUG("ctypr = 0x%08" PRIx32, ctypr);
1693 LOG_DEBUG("ttypr = 0x%08" PRIx32, ttypr);
1694 LOG_DEBUG("didr = 0x%08" PRIx32, didr);
1696 armv7a->armv4_5_common.core_type = ARM_MODE_MON;
1697 retval = cortex_a8_dpm_setup(cortex_a8, didr);
1698 if (retval != ERROR_OK)
1699 return retval;
1701 /* Setup Breakpoint Register Pairs */
1702 cortex_a8->brp_num = ((didr >> 24) & 0x0F) + 1;
1703 cortex_a8->brp_num_context = ((didr >> 20) & 0x0F) + 1;
1704 cortex_a8->brp_num_available = cortex_a8->brp_num;
1705 cortex_a8->brp_list = calloc(cortex_a8->brp_num, sizeof(struct cortex_a8_brp));
1706 // cortex_a8->brb_enabled = ????;
1707 for (i = 0; i < cortex_a8->brp_num; i++)
1709 cortex_a8->brp_list[i].used = 0;
1710 if (i < (cortex_a8->brp_num-cortex_a8->brp_num_context))
1711 cortex_a8->brp_list[i].type = BRP_NORMAL;
1712 else
1713 cortex_a8->brp_list[i].type = BRP_CONTEXT;
1714 cortex_a8->brp_list[i].value = 0;
1715 cortex_a8->brp_list[i].control = 0;
1716 cortex_a8->brp_list[i].BRPn = i;
1719 LOG_DEBUG("Configured %i hw breakpoints", cortex_a8->brp_num);
1721 target_set_examined(target);
1722 return ERROR_OK;
1725 static int cortex_a8_examine(struct target *target)
1727 int retval = ERROR_OK;
1729 /* don't re-probe hardware after each reset */
1730 if (!target_was_examined(target))
1731 retval = cortex_a8_examine_first(target);
1733 /* Configure core debug access */
1734 if (retval == ERROR_OK)
1735 retval = cortex_a8_init_debug_access(target);
1737 return retval;
1741 * Cortex-A8 target creation and initialization
1744 static int cortex_a8_init_target(struct command_context *cmd_ctx,
1745 struct target *target)
1747 /* examine_first() does a bunch of this */
1748 return ERROR_OK;
1751 static int cortex_a8_init_arch_info(struct target *target,
1752 struct cortex_a8_common *cortex_a8, struct jtag_tap *tap)
1754 struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
1755 struct arm *armv4_5 = &armv7a->armv4_5_common;
1756 struct adiv5_dap *dap = &armv7a->dap;
1758 armv7a->armv4_5_common.dap = dap;
1760 /* Setup struct cortex_a8_common */
1761 cortex_a8->common_magic = CORTEX_A8_COMMON_MAGIC;
1762 armv4_5->arch_info = armv7a;
1764 /* prepare JTAG information for the new target */
1765 cortex_a8->jtag_info.tap = tap;
1766 cortex_a8->jtag_info.scann_size = 4;
1768 /* Leave (only) generic DAP stuff for debugport_init() */
1769 dap->jtag_info = &cortex_a8->jtag_info;
1770 dap->memaccess_tck = 80;
1772 /* Number of bits for tar autoincrement, impl. dep. at least 10 */
1773 dap->tar_autoincr_block = (1 << 10);
1775 cortex_a8->fast_reg_read = 0;
1777 /* Set default value */
1778 cortex_a8->current_address_mode = ARM_MODE_ANY;
1780 /* register arch-specific functions */
1781 armv7a->examine_debug_reason = NULL;
1783 armv7a->post_debug_entry = cortex_a8_post_debug_entry;
1785 armv7a->pre_restore_context = NULL;
1786 armv7a->armv4_5_mmu.armv4_5_cache.ctype = -1;
1787 armv7a->armv4_5_mmu.get_ttb = cortex_a8_get_ttb;
1788 armv7a->armv4_5_mmu.read_memory = cortex_a8_read_phys_memory;
1789 armv7a->armv4_5_mmu.write_memory = cortex_a8_write_phys_memory;
1790 armv7a->armv4_5_mmu.disable_mmu_caches = cortex_a8_disable_mmu_caches;
1791 armv7a->armv4_5_mmu.enable_mmu_caches = cortex_a8_enable_mmu_caches;
1792 armv7a->armv4_5_mmu.has_tiny_pages = 1;
1793 armv7a->armv4_5_mmu.mmu_enabled = 0;
1796 // arm7_9->handle_target_request = cortex_a8_handle_target_request;
1798 /* REVISIT v7a setup should be in a v7a-specific routine */
1799 arm_init_arch_info(target, armv4_5);
1800 armv7a->common_magic = ARMV7_COMMON_MAGIC;
1802 target_register_timer_callback(cortex_a8_handle_target_request, 1, 1, target);
1804 return ERROR_OK;
1807 static int cortex_a8_target_create(struct target *target, Jim_Interp *interp)
1809 struct cortex_a8_common *cortex_a8 = calloc(1, sizeof(struct cortex_a8_common));
1811 cortex_a8_init_arch_info(target, cortex_a8, target->tap);
1813 return ERROR_OK;
1816 static uint32_t cortex_a8_get_ttb(struct target *target)
1818 struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1819 struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
1820 uint32_t ttb = 0, retval = ERROR_OK;
1822 /* current_address_mode is set inside cortex_a8_virt2phys()
1823 where we can determine if address belongs to user or kernel */
1824 if(cortex_a8->current_address_mode == ARM_MODE_SVC)
1826 /* MRC p15,0,<Rt>,c1,c0,0 ; Read CP15 System Control Register */
1827 retval = armv7a->armv4_5_common.mrc(target, 15,
1828 0, 1, /* op1, op2 */
1829 2, 0, /* CRn, CRm */
1830 &ttb);
1832 else if(cortex_a8->current_address_mode == ARM_MODE_USR)
1834 /* MRC p15,0,<Rt>,c1,c0,0 ; Read CP15 System Control Register */
1835 retval = armv7a->armv4_5_common.mrc(target, 15,
1836 0, 0, /* op1, op2 */
1837 2, 0, /* CRn, CRm */
1838 &ttb);
1840 /* we don't know whose address is: user or kernel
1841 we assume that if we are in kernel mode then
1842 address belongs to kernel else if in user mode
1843 - to user */
1844 else if(armv7a->armv4_5_common.core_mode == ARM_MODE_SVC)
1846 /* MRC p15,0,<Rt>,c1,c0,0 ; Read CP15 System Control Register */
1847 retval = armv7a->armv4_5_common.mrc(target, 15,
1848 0, 1, /* op1, op2 */
1849 2, 0, /* CRn, CRm */
1850 &ttb);
1852 else if(armv7a->armv4_5_common.core_mode == ARM_MODE_USR)
1854 /* MRC p15,0,<Rt>,c1,c0,0 ; Read CP15 System Control Register */
1855 retval = armv7a->armv4_5_common.mrc(target, 15,
1856 0, 0, /* op1, op2 */
1857 2, 0, /* CRn, CRm */
1858 &ttb);
1860 /* finally we don't know whose ttb to use: user or kernel */
1861 else
1862 LOG_ERROR("Don't know how to get ttb for current mode!!!");
1864 ttb &= 0xffffc000;
1866 return ttb;
1869 static void cortex_a8_disable_mmu_caches(struct target *target, int mmu,
1870 int d_u_cache, int i_cache)
1872 struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1873 struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
1874 uint32_t cp15_control;
1876 /* read cp15 control register */
1877 armv7a->armv4_5_common.mrc(target, 15,
1878 0, 0, /* op1, op2 */
1879 1, 0, /* CRn, CRm */
1880 &cp15_control);
1883 if (mmu)
1884 cp15_control &= ~0x1U;
1886 if (d_u_cache)
1887 cp15_control &= ~0x4U;
1889 if (i_cache)
1890 cp15_control &= ~0x1000U;
1892 armv7a->armv4_5_common.mcr(target, 15,
1893 0, 0, /* op1, op2 */
1894 1, 0, /* CRn, CRm */
1895 cp15_control);
1898 static void cortex_a8_enable_mmu_caches(struct target *target, int mmu,
1899 int d_u_cache, int i_cache)
1901 struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1902 struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
1903 uint32_t cp15_control;
1905 /* read cp15 control register */
1906 armv7a->armv4_5_common.mrc(target, 15,
1907 0, 0, /* op1, op2 */
1908 1, 0, /* CRn, CRm */
1909 &cp15_control);
1911 if (mmu)
1912 cp15_control |= 0x1U;
1914 if (d_u_cache)
1915 cp15_control |= 0x4U;
1917 if (i_cache)
1918 cp15_control |= 0x1000U;
1920 armv7a->armv4_5_common.mcr(target, 15,
1921 0, 0, /* op1, op2 */
1922 1, 0, /* CRn, CRm */
1923 cp15_control);
1927 static int cortex_a8_mmu(struct target *target, int *enabled)
1929 if (target->state != TARGET_HALTED) {
1930 LOG_ERROR("%s: target not halted", __func__);
1931 return ERROR_TARGET_INVALID;
1934 *enabled = target_to_cortex_a8(target)->armv7a_common.armv4_5_mmu.mmu_enabled;
1935 return ERROR_OK;
1938 static int cortex_a8_virt2phys(struct target *target,
1939 uint32_t virt, uint32_t *phys)
1941 uint32_t cb;
1942 struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1943 // struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
1944 struct armv7a_common *armv7a = target_to_armv7a(target);
1946 /* We assume that virtual address is separated
1947 between user and kernel in Linux style:
1948 0x00000000-0xbfffffff - User space
1949 0xc0000000-0xffffffff - Kernel space */
1950 if( virt < 0xc0000000 ) /* Linux user space */
1951 cortex_a8->current_address_mode = ARM_MODE_USR;
1952 else /* Linux kernel */
1953 cortex_a8->current_address_mode = ARM_MODE_SVC;
1954 uint32_t ret;
1955 int retval = armv4_5_mmu_translate_va(target,
1956 &armv7a->armv4_5_mmu, virt, &cb, &ret);
1957 if (retval != ERROR_OK)
1958 return retval;
1959 /* Reset the flag. We don't want someone else to use it by error */
1960 cortex_a8->current_address_mode = ARM_MODE_ANY;
1962 *phys = ret;
1963 return ERROR_OK;
1966 COMMAND_HANDLER(cortex_a8_handle_cache_info_command)
1968 struct target *target = get_current_target(CMD_CTX);
1969 struct armv7a_common *armv7a = target_to_armv7a(target);
1971 return armv4_5_handle_cache_info_command(CMD_CTX,
1972 &armv7a->armv4_5_mmu.armv4_5_cache);
1976 COMMAND_HANDLER(cortex_a8_handle_dbginit_command)
1978 struct target *target = get_current_target(CMD_CTX);
1979 if (!target_was_examined(target))
1981 LOG_ERROR("target not examined yet");
1982 return ERROR_FAIL;
1985 return cortex_a8_init_debug_access(target);
1988 static const struct command_registration cortex_a8_exec_command_handlers[] = {
1990 .name = "cache_info",
1991 .handler = cortex_a8_handle_cache_info_command,
1992 .mode = COMMAND_EXEC,
1993 .help = "display information about target caches",
1996 .name = "dbginit",
1997 .handler = cortex_a8_handle_dbginit_command,
1998 .mode = COMMAND_EXEC,
1999 .help = "Initialize core debug",
2001 COMMAND_REGISTRATION_DONE
2003 static const struct command_registration cortex_a8_command_handlers[] = {
2005 .chain = arm_command_handlers,
2008 .chain = armv7a_command_handlers,
2011 .name = "cortex_a8",
2012 .mode = COMMAND_ANY,
2013 .help = "Cortex-A8 command group",
2014 .chain = cortex_a8_exec_command_handlers,
2016 COMMAND_REGISTRATION_DONE
2019 struct target_type cortexa8_target = {
2020 .name = "cortex_a8",
2022 .poll = cortex_a8_poll,
2023 .arch_state = armv7a_arch_state,
2025 .target_request_data = NULL,
2027 .halt = cortex_a8_halt,
2028 .resume = cortex_a8_resume,
2029 .step = cortex_a8_step,
2031 .assert_reset = cortex_a8_assert_reset,
2032 .deassert_reset = cortex_a8_deassert_reset,
2033 .soft_reset_halt = NULL,
2035 /* REVISIT allow exporting VFP3 registers ... */
2036 .get_gdb_reg_list = arm_get_gdb_reg_list,
2038 .read_memory = cortex_a8_read_memory,
2039 .write_memory = cortex_a8_write_memory,
2040 .bulk_write_memory = cortex_a8_bulk_write_memory,
2042 .checksum_memory = arm_checksum_memory,
2043 .blank_check_memory = arm_blank_check_memory,
2045 .run_algorithm = armv4_5_run_algorithm,
2047 .add_breakpoint = cortex_a8_add_breakpoint,
2048 .remove_breakpoint = cortex_a8_remove_breakpoint,
2049 .add_watchpoint = NULL,
2050 .remove_watchpoint = NULL,
2052 .commands = cortex_a8_command_handlers,
2053 .target_create = cortex_a8_target_create,
2054 .init_target = cortex_a8_init_target,
2055 .examine = cortex_a8_examine,
2057 .read_phys_memory = cortex_a8_read_phys_memory,
2058 .write_phys_memory = cortex_a8_write_phys_memory,
2059 .mmu = cortex_a8_mmu,
2060 .virt2phys = cortex_a8_virt2phys,