arm: add error propagation for enable/disable mmu caches
[openocd/cortex.git] / src / target / arm920t.c
bloba80a37810dba79e08b89f9f1e677887a1ba1a070
2 /***************************************************************************
3 * Copyright (C) 2005 by Dominic Rath *
4 * Dominic.Rath@gmx.de *
5 * *
6 * This program is free software; you can redistribute it and/or modify *
7 * it under the terms of the GNU General Public License as published by *
8 * the Free Software Foundation; either version 2 of the License, or *
9 * (at your option) any later version. *
10 * *
11 * This program is distributed in the hope that it will be useful, *
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
14 * GNU General Public License for more details. *
15 * *
16 * You should have received a copy of the GNU General Public License *
17 * along with this program; if not, write to the *
18 * Free Software Foundation, Inc., *
19 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
20 ***************************************************************************/
21 #ifdef HAVE_CONFIG_H
22 #include "config.h"
23 #endif
25 #include "arm920t.h"
26 #include <helper/time_support.h>
27 #include "target_type.h"
28 #include "register.h"
29 #include "arm_opcodes.h"
33 * For information about the ARM920T, see ARM DDI 0151C especially
34 * Chapter 9 about debug support, which shows how to manipulate each
35 * of the different scan chains:
37 * 0 ... ARM920 signals, e.g. to rest of SOC (unused here)
38 * 1 ... debugging; watchpoint and breakpoint status, etc; also
39 * MMU and cache access in conjunction with scan chain 15
40 * 2 ... EmbeddedICE
41 * 3 ... external boundary scan (SoC-specific, unused here)
42 * 4 ... access to cache tag RAM
43 * 6 ... ETM9
44 * 15 ... access coprocessor 15, "physical" or "interpreted" modes
45 * "interpreted" works with a few actual MRC/MCR instructions
46 * "physical" provides register-like behaviors. Section 9.6.7
47 * covers these details.
49 * The ARM922T is similar, but with smaller caches (8K each, vs 16K).
52 #if 0
53 #define _DEBUG_INSTRUCTION_EXECUTION_
54 #endif
56 /* Table 9-8 shows scan chain 15 format during physical access mode, using a
57 * dedicated 6-bit address space (encoded in bits 33:38). Writes use one
58 * JTAG scan, while reads use two.
60 * Table 9-9 lists the thirteen registers which support physical access.
61 * ARM920T_CP15_PHYS_ADDR() constructs the 6-bit reg_addr parameter passed
62 * to arm920t_read_cp15_physical() and arm920t_write_cp15_physical().
64 * x == bit[38]
65 * y == bits[37:34]
66 * z == bit[33]
68 #define ARM920T_CP15_PHYS_ADDR(x, y, z) ((x << 5) | (y << 1) << (z))
70 /* Registers supporting physical Read access (from table 9-9) */
71 #define CP15PHYS_CACHETYPE ARM920T_CP15_PHYS_ADDR(0, 0x0, 1)
72 #define CP15PHYS_ICACHE_IDX ARM920T_CP15_PHYS_ADDR(1, 0xd, 1)
73 #define CP15PHYS_DCACHE_IDX ARM920T_CP15_PHYS_ADDR(1, 0xe, 1)
74 /* NOTE: several more registers support only physical read access */
76 /* Registers supporting physical Read/Write access (from table 9-9) */
77 #define CP15PHYS_CTRL ARM920T_CP15_PHYS_ADDR(0, 0x1, 0)
78 #define CP15PHYS_PID ARM920T_CP15_PHYS_ADDR(0, 0xd, 0)
79 #define CP15PHYS_TESTSTATE ARM920T_CP15_PHYS_ADDR(0, 0xf, 0)
80 #define CP15PHYS_ICACHE ARM920T_CP15_PHYS_ADDR(1, 0x1, 1)
81 #define CP15PHYS_DCACHE ARM920T_CP15_PHYS_ADDR(1, 0x2, 1)
83 static int arm920t_read_cp15_physical(struct target *target,
84 int reg_addr, uint32_t *value)
86 struct arm920t_common *arm920t = target_to_arm920(target);
87 struct arm_jtag *jtag_info;
88 struct scan_field fields[4];
89 uint8_t access_type_buf = 1;
90 uint8_t reg_addr_buf = reg_addr & 0x3f;
91 uint8_t nr_w_buf = 0;
93 jtag_info = &arm920t->arm7_9_common.jtag_info;
95 arm_jtag_scann(jtag_info, 0xf, TAP_IDLE);
96 arm_jtag_set_instr(jtag_info, jtag_info->intest_instr, NULL, TAP_IDLE);
98 fields[0].num_bits = 1;
99 fields[0].out_value = &access_type_buf;
100 fields[0].in_value = NULL;
102 fields[1].num_bits = 32;
103 fields[1].out_value = NULL;
104 fields[1].in_value = NULL;
106 fields[2].num_bits = 6;
107 fields[2].out_value = &reg_addr_buf;
108 fields[2].in_value = NULL;
110 fields[3].num_bits = 1;
111 fields[3].out_value = &nr_w_buf;
112 fields[3].in_value = NULL;
114 jtag_add_dr_scan(jtag_info->tap, 4, fields, TAP_IDLE);
116 fields[1].in_value = (uint8_t *)value;
118 jtag_add_dr_scan(jtag_info->tap, 4, fields, TAP_IDLE);
120 jtag_add_callback(arm_le_to_h_u32, (jtag_callback_data_t)value);
122 #ifdef _DEBUG_INSTRUCTION_EXECUTION_
123 jtag_execute_queue();
124 LOG_DEBUG("addr: 0x%x value: %8.8x", reg_addr, *value);
125 #endif
127 return ERROR_OK;
130 static int arm920t_write_cp15_physical(struct target *target,
131 int reg_addr, uint32_t value)
133 struct arm920t_common *arm920t = target_to_arm920(target);
134 struct arm_jtag *jtag_info;
135 struct scan_field fields[4];
136 uint8_t access_type_buf = 1;
137 uint8_t reg_addr_buf = reg_addr & 0x3f;
138 uint8_t nr_w_buf = 1;
139 uint8_t value_buf[4];
141 jtag_info = &arm920t->arm7_9_common.jtag_info;
143 buf_set_u32(value_buf, 0, 32, value);
145 arm_jtag_scann(jtag_info, 0xf, TAP_IDLE);
146 arm_jtag_set_instr(jtag_info, jtag_info->intest_instr, NULL, TAP_IDLE);
148 fields[0].num_bits = 1;
149 fields[0].out_value = &access_type_buf;
150 fields[0].in_value = NULL;
152 fields[1].num_bits = 32;
153 fields[1].out_value = value_buf;
154 fields[1].in_value = NULL;
156 fields[2].num_bits = 6;
157 fields[2].out_value = &reg_addr_buf;
158 fields[2].in_value = NULL;
160 fields[3].num_bits = 1;
161 fields[3].out_value = &nr_w_buf;
162 fields[3].in_value = NULL;
164 jtag_add_dr_scan(jtag_info->tap, 4, fields, TAP_IDLE);
166 #ifdef _DEBUG_INSTRUCTION_EXECUTION_
167 LOG_DEBUG("addr: 0x%x value: %8.8x", reg_addr, value);
168 #endif
170 return ERROR_OK;
173 /* See table 9-10 for scan chain 15 format during interpreted access mode.
174 * If the TESTSTATE register is set for interpreted access, certain CP15
175 * MRC and MCR instructions may be executed through scan chain 15.
177 * Tables 9-11, 9-12, and 9-13 show which MRC and MCR instructions can be
178 * executed using scan chain 15 interpreted mode.
180 static int arm920t_execute_cp15(struct target *target, uint32_t cp15_opcode,
181 uint32_t arm_opcode)
183 int retval;
184 struct arm920t_common *arm920t = target_to_arm920(target);
185 struct arm_jtag *jtag_info;
186 struct scan_field fields[4];
187 uint8_t access_type_buf = 0; /* interpreted access */
188 uint8_t reg_addr_buf = 0x0;
189 uint8_t nr_w_buf = 0;
190 uint8_t cp15_opcode_buf[4];
192 jtag_info = &arm920t->arm7_9_common.jtag_info;
194 arm_jtag_scann(jtag_info, 0xf, TAP_IDLE);
195 arm_jtag_set_instr(jtag_info, jtag_info->intest_instr, NULL, TAP_IDLE);
197 buf_set_u32(cp15_opcode_buf, 0, 32, cp15_opcode);
199 fields[0].num_bits = 1;
200 fields[0].out_value = &access_type_buf;
201 fields[0].in_value = NULL;
203 fields[1].num_bits = 32;
204 fields[1].out_value = cp15_opcode_buf;
205 fields[1].in_value = NULL;
207 fields[2].num_bits = 6;
208 fields[2].out_value = &reg_addr_buf;
209 fields[2].in_value = NULL;
211 fields[3].num_bits = 1;
212 fields[3].out_value = &nr_w_buf;
213 fields[3].in_value = NULL;
215 jtag_add_dr_scan(jtag_info->tap, 4, fields, TAP_IDLE);
217 arm9tdmi_clock_out(jtag_info, arm_opcode, 0, NULL, 0);
218 arm9tdmi_clock_out(jtag_info, ARMV4_5_NOP, 0, NULL, 1);
219 retval = arm7_9_execute_sys_speed(target);
220 if (retval != ERROR_OK)
221 return retval;
223 if ((retval = jtag_execute_queue()) != ERROR_OK)
225 LOG_ERROR("failed executing JTAG queue");
226 return retval;
229 return ERROR_OK;
232 static int arm920t_read_cp15_interpreted(struct target *target,
233 uint32_t cp15_opcode, uint32_t address, uint32_t *value)
235 struct arm *armv4_5 = target_to_arm(target);
236 uint32_t* regs_p[1];
237 uint32_t regs[2];
238 uint32_t cp15c15 = 0x0;
239 struct reg *r = armv4_5->core_cache->reg_list;
241 /* load address into R1 */
242 regs[1] = address;
243 arm9tdmi_write_core_regs(target, 0x2, regs);
245 /* read-modify-write CP15 test state register
246 * to enable interpreted access mode */
247 arm920t_read_cp15_physical(target, CP15PHYS_TESTSTATE, &cp15c15);
248 jtag_execute_queue();
249 cp15c15 |= 1; /* set interpret mode */
250 arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15);
252 /* execute CP15 instruction and ARM load (reading from coprocessor) */
253 arm920t_execute_cp15(target, cp15_opcode, ARMV4_5_LDR(0, 1));
255 /* disable interpreted access mode */
256 cp15c15 &= ~1U; /* clear interpret mode */
257 arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15);
259 /* retrieve value from R0 */
260 regs_p[0] = value;
261 arm9tdmi_read_core_regs(target, 0x1, regs_p);
262 jtag_execute_queue();
264 #ifdef _DEBUG_INSTRUCTION_EXECUTION_
265 LOG_DEBUG("cp15_opcode: %8.8x, address: %8.8x, value: %8.8x",
266 cp15_opcode, address, *value);
267 #endif
269 if (!is_arm_mode(armv4_5->core_mode))
270 return ERROR_FAIL;
272 r[0].dirty = 1;
273 r[1].dirty = 1;
275 return ERROR_OK;
278 static
279 int arm920t_write_cp15_interpreted(struct target *target,
280 uint32_t cp15_opcode, uint32_t value, uint32_t address)
282 uint32_t cp15c15 = 0x0;
283 struct arm *armv4_5 = target_to_arm(target);
284 uint32_t regs[2];
285 struct reg *r = armv4_5->core_cache->reg_list;
287 /* load value, address into R0, R1 */
288 regs[0] = value;
289 regs[1] = address;
290 arm9tdmi_write_core_regs(target, 0x3, regs);
292 /* read-modify-write CP15 test state register
293 * to enable interpreted access mode */
294 arm920t_read_cp15_physical(target, CP15PHYS_TESTSTATE, &cp15c15);
295 jtag_execute_queue();
296 cp15c15 |= 1; /* set interpret mode */
297 arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15);
299 /* execute CP15 instruction and ARM store (writing to coprocessor) */
300 arm920t_execute_cp15(target, cp15_opcode, ARMV4_5_STR(0, 1));
302 /* disable interpreted access mode */
303 cp15c15 &= ~1U; /* set interpret mode */
304 arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15);
306 #ifdef _DEBUG_INSTRUCTION_EXECUTION_
307 LOG_DEBUG("cp15_opcode: %8.8x, value: %8.8x, address: %8.8x",
308 cp15_opcode, value, address);
309 #endif
311 if (!is_arm_mode(armv4_5->core_mode))
312 return ERROR_FAIL;
314 r[0].dirty = 1;
315 r[1].dirty = 1;
317 return ERROR_OK;
320 // EXPORTED to FA256
321 int arm920t_get_ttb(struct target *target, uint32_t *result)
323 int retval;
324 uint32_t ttb = 0x0;
326 if ((retval = arm920t_read_cp15_interpreted(target,
327 /* FIXME use opcode macro */
328 0xeebf0f51, 0x0, &ttb)) != ERROR_OK)
329 return retval;
331 *result = ttb;
332 return ERROR_OK;
335 // EXPORTED to FA256
336 int arm920t_disable_mmu_caches(struct target *target, int mmu,
337 int d_u_cache, int i_cache)
339 uint32_t cp15_control;
340 int retval;
342 /* read cp15 control register */
343 retval = arm920t_read_cp15_physical(target, CP15PHYS_CTRL, &cp15_control);
344 if (retval != ERROR_OK)
345 return retval;
346 retval = jtag_execute_queue();
347 if (retval != ERROR_OK)
348 return retval;
350 if (mmu)
351 cp15_control &= ~0x1U;
353 if (d_u_cache)
354 cp15_control &= ~0x4U;
356 if (i_cache)
357 cp15_control &= ~0x1000U;
359 retval = arm920t_write_cp15_physical(target, CP15PHYS_CTRL, cp15_control);
360 return retval;
363 // EXPORTED to FA256
364 int arm920t_enable_mmu_caches(struct target *target, int mmu,
365 int d_u_cache, int i_cache)
367 uint32_t cp15_control;
368 int retval;
370 /* read cp15 control register */
371 retval = arm920t_read_cp15_physical(target, CP15PHYS_CTRL, &cp15_control);
372 if (retval != ERROR_OK)
373 return retval;
374 retval = jtag_execute_queue();
375 if (retval != ERROR_OK)
376 return retval;
378 if (mmu)
379 cp15_control |= 0x1U;
381 if (d_u_cache)
382 cp15_control |= 0x4U;
384 if (i_cache)
385 cp15_control |= 0x1000U;
387 retval = arm920t_write_cp15_physical(target, CP15PHYS_CTRL, cp15_control);
388 return retval;
391 // EXPORTED to FA256
392 void arm920t_post_debug_entry(struct target *target)
394 uint32_t cp15c15;
395 struct arm920t_common *arm920t = target_to_arm920(target);
397 /* examine cp15 control reg */
398 arm920t_read_cp15_physical(target,
399 CP15PHYS_CTRL, &arm920t->cp15_control_reg);
400 jtag_execute_queue();
401 LOG_DEBUG("cp15_control_reg: %8.8" PRIx32, arm920t->cp15_control_reg);
403 if (arm920t->armv4_5_mmu.armv4_5_cache.ctype == -1)
405 uint32_t cache_type_reg;
406 /* identify caches */
407 arm920t_read_cp15_physical(target,
408 CP15PHYS_CACHETYPE, &cache_type_reg);
409 jtag_execute_queue();
410 armv4_5_identify_cache(cache_type_reg,
411 &arm920t->armv4_5_mmu.armv4_5_cache);
414 arm920t->armv4_5_mmu.mmu_enabled =
415 (arm920t->cp15_control_reg & 0x1U) ? 1 : 0;
416 arm920t->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled =
417 (arm920t->cp15_control_reg & 0x4U) ? 1 : 0;
418 arm920t->armv4_5_mmu.armv4_5_cache.i_cache_enabled =
419 (arm920t->cp15_control_reg & 0x1000U) ? 1 : 0;
421 /* save i/d fault status and address register */
422 /* FIXME use opcode macros */
423 arm920t_read_cp15_interpreted(target, 0xee150f10, 0x0, &arm920t->d_fsr);
424 arm920t_read_cp15_interpreted(target, 0xee150f30, 0x0, &arm920t->i_fsr);
425 arm920t_read_cp15_interpreted(target, 0xee160f10, 0x0, &arm920t->d_far);
426 arm920t_read_cp15_interpreted(target, 0xee160f30, 0x0, &arm920t->i_far);
428 LOG_DEBUG("D FSR: 0x%8.8" PRIx32 ", D FAR: 0x%8.8" PRIx32
429 ", I FSR: 0x%8.8" PRIx32 ", I FAR: 0x%8.8" PRIx32,
430 arm920t->d_fsr, arm920t->d_far, arm920t->i_fsr, arm920t->i_far);
432 if (arm920t->preserve_cache)
434 /* read-modify-write CP15 test state register
435 * to disable I/D-cache linefills */
436 arm920t_read_cp15_physical(target,
437 CP15PHYS_TESTSTATE, &cp15c15);
438 jtag_execute_queue();
439 cp15c15 |= 0x600;
440 arm920t_write_cp15_physical(target,
441 CP15PHYS_TESTSTATE, cp15c15);
445 // EXPORTED to FA256
446 void arm920t_pre_restore_context(struct target *target)
448 uint32_t cp15c15;
449 struct arm920t_common *arm920t = target_to_arm920(target);
451 /* restore i/d fault status and address register */
452 arm920t_write_cp15_interpreted(target, 0xee050f10, arm920t->d_fsr, 0x0);
453 arm920t_write_cp15_interpreted(target, 0xee050f30, arm920t->i_fsr, 0x0);
454 arm920t_write_cp15_interpreted(target, 0xee060f10, arm920t->d_far, 0x0);
455 arm920t_write_cp15_interpreted(target, 0xee060f30, arm920t->i_far, 0x0);
457 /* read-modify-write CP15 test state register
458 * to reenable I/D-cache linefills */
459 if (arm920t->preserve_cache)
461 arm920t_read_cp15_physical(target,
462 CP15PHYS_TESTSTATE, &cp15c15);
463 jtag_execute_queue();
464 cp15c15 &= ~0x600U;
465 arm920t_write_cp15_physical(target,
466 CP15PHYS_TESTSTATE, cp15c15);
470 static const char arm920_not[] = "target is not an ARM920";
472 static int arm920t_verify_pointer(struct command_context *cmd_ctx,
473 struct arm920t_common *arm920t)
475 if (arm920t->common_magic != ARM920T_COMMON_MAGIC) {
476 command_print(cmd_ctx, arm920_not);
477 return ERROR_TARGET_INVALID;
480 return ERROR_OK;
483 /** Logs summary of ARM920 state for a halted target. */
484 int arm920t_arch_state(struct target *target)
486 static const char *state[] =
488 "disabled", "enabled"
491 struct arm920t_common *arm920t = target_to_arm920(target);
492 struct arm *armv4_5;
494 if (arm920t->common_magic != ARM920T_COMMON_MAGIC)
496 LOG_ERROR("BUG: %s", arm920_not);
497 return ERROR_TARGET_INVALID;
500 armv4_5 = &arm920t->arm7_9_common.armv4_5_common;
502 arm_arch_state(target);
503 LOG_USER("MMU: %s, D-Cache: %s, I-Cache: %s",
504 state[arm920t->armv4_5_mmu.mmu_enabled],
505 state[arm920t->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled],
506 state[arm920t->armv4_5_mmu.armv4_5_cache.i_cache_enabled]);
508 return ERROR_OK;
511 static int arm920_mmu(struct target *target, int *enabled)
513 if (target->state != TARGET_HALTED) {
514 LOG_ERROR("%s: target not halted", __func__);
515 return ERROR_TARGET_INVALID;
518 *enabled = target_to_arm920(target)->armv4_5_mmu.mmu_enabled;
519 return ERROR_OK;
522 static int arm920_virt2phys(struct target *target,
523 uint32_t virt, uint32_t *phys)
525 uint32_t cb;
526 struct arm920t_common *arm920t = target_to_arm920(target);
528 uint32_t ret;
529 int retval = armv4_5_mmu_translate_va(target,
530 &arm920t->armv4_5_mmu, virt, &cb, &ret);
531 if (retval != ERROR_OK)
532 return retval;
533 *phys = ret;
534 return ERROR_OK;
537 /** Reads a buffer, in the specified word size, with current MMU settings. */
538 int arm920t_read_memory(struct target *target, uint32_t address,
539 uint32_t size, uint32_t count, uint8_t *buffer)
541 int retval;
543 retval = arm7_9_read_memory(target, address, size, count, buffer);
545 return retval;
549 static int arm920t_read_phys_memory(struct target *target,
550 uint32_t address, uint32_t size,
551 uint32_t count, uint8_t *buffer)
553 struct arm920t_common *arm920t = target_to_arm920(target);
555 return armv4_5_mmu_read_physical(target, &arm920t->armv4_5_mmu,
556 address, size, count, buffer);
559 static int arm920t_write_phys_memory(struct target *target,
560 uint32_t address, uint32_t size,
561 uint32_t count, uint8_t *buffer)
563 struct arm920t_common *arm920t = target_to_arm920(target);
565 return armv4_5_mmu_write_physical(target, &arm920t->armv4_5_mmu,
566 address, size, count, buffer);
570 /** Writes a buffer, in the specified word size, with current MMU settings. */
571 int arm920t_write_memory(struct target *target, uint32_t address,
572 uint32_t size, uint32_t count, uint8_t *buffer)
574 int retval;
575 const uint32_t cache_mask = ~0x1f; /* cache line size : 32 byte */
576 struct arm920t_common *arm920t = target_to_arm920(target);
578 /* FIX!!!! this should be cleaned up and made much more general. The
579 * plan is to write up and test on arm920t specifically and
580 * then generalize and clean up afterwards.
582 * Also it should be moved to the callbacks that handle breakpoints
583 * specifically and not the generic memory write fn's. See XScale code.
585 if (arm920t->armv4_5_mmu.mmu_enabled && (count == 1) &&
586 ((size==2) || (size==4)))
588 /* special case the handling of single word writes to
589 * bypass MMU, to allow implementation of breakpoints
590 * in memory marked read only
591 * by MMU
593 uint32_t cb;
594 uint32_t pa;
597 * We need physical address and cb
599 retval = armv4_5_mmu_translate_va(target, &arm920t->armv4_5_mmu,
600 address, &cb, &pa);
601 if (retval != ERROR_OK)
602 return retval;
604 if (arm920t->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled)
606 if (cb & 0x1)
608 LOG_DEBUG("D-Cache buffered, "
609 "drain write buffer");
611 * Buffered ?
612 * Drain write buffer - MCR p15,0,Rd,c7,c10,4
615 retval = arm920t_write_cp15_interpreted(target,
616 ARMV4_5_MCR(15, 0, 0, 7, 10, 4),
617 0x0, 0);
618 if (retval != ERROR_OK)
619 return retval;
622 if (cb == 0x3)
625 * Write back memory ? -> clean cache
627 * There is no way to clean cache lines using
628 * cp15 scan chain, so copy the full cache
629 * line from cache to physical memory.
631 uint8_t data[32];
633 LOG_DEBUG("D-Cache in 'write back' mode, "
634 "flush cache line");
636 retval = target_read_memory(target,
637 address & cache_mask, 1,
638 sizeof(data), &data[0]);
639 if (retval != ERROR_OK)
640 return retval;
642 retval = armv4_5_mmu_write_physical(target,
643 &arm920t->armv4_5_mmu,
644 pa & cache_mask, 1,
645 sizeof(data), &data[0]);
646 if (retval != ERROR_OK)
647 return retval;
650 /* Cached ? */
651 if (cb & 0x2)
654 * Cached ? -> Invalidate data cache using MVA
656 * MCR p15,0,Rd,c7,c6,1
658 LOG_DEBUG("D-Cache enabled, "
659 "invalidate cache line");
661 retval = arm920t_write_cp15_interpreted(target,
662 ARMV4_5_MCR(15, 0, 0, 7, 6, 1), 0x0,
663 address & cache_mask);
664 if (retval != ERROR_OK)
665 return retval;
669 /* write directly to physical memory,
670 * bypassing any read only MMU bits, etc.
672 retval = armv4_5_mmu_write_physical(target,
673 &arm920t->armv4_5_mmu, pa, size,
674 count, buffer);
675 if (retval != ERROR_OK)
676 return retval;
677 } else
679 if ((retval = arm7_9_write_memory(target, address,
680 size, count, buffer)) != ERROR_OK)
681 return retval;
684 /* If ICache is enabled, we have to invalidate affected ICache lines
685 * the DCache is forced to write-through,
686 * so we don't have to clean it here
688 if (arm920t->armv4_5_mmu.armv4_5_cache.i_cache_enabled)
690 if (count <= 1)
692 /* invalidate ICache single entry with MVA
693 * mcr 15, 0, r0, cr7, cr5, {1}
695 LOG_DEBUG("I-Cache enabled, "
696 "invalidating affected I-Cache line");
697 retval = arm920t_write_cp15_interpreted(target,
698 ARMV4_5_MCR(15, 0, 0, 7, 5, 1),
699 0x0, address & cache_mask);
700 if (retval != ERROR_OK)
701 return retval;
703 else
705 /* invalidate ICache
706 * mcr 15, 0, r0, cr7, cr5, {0}
708 retval = arm920t_write_cp15_interpreted(target,
709 ARMV4_5_MCR(15, 0, 0, 7, 5, 0),
710 0x0, 0x0);
711 if (retval != ERROR_OK)
712 return retval;
716 return ERROR_OK;
719 // EXPORTED to FA256
720 int arm920t_soft_reset_halt(struct target *target)
722 int retval = ERROR_OK;
723 struct arm920t_common *arm920t = target_to_arm920(target);
724 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
725 struct arm *armv4_5 = &arm7_9->armv4_5_common;
726 struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
728 if ((retval = target_halt(target)) != ERROR_OK)
730 return retval;
733 long long then = timeval_ms();
734 int timeout;
735 while (!(timeout = ((timeval_ms()-then) > 1000)))
737 if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_DBGACK, 1)
738 == 0)
740 embeddedice_read_reg(dbg_stat);
741 if ((retval = jtag_execute_queue()) != ERROR_OK)
743 return retval;
745 } else
747 break;
749 if (debug_level >= 3)
751 /* do not eat all CPU, time out after 1 se*/
752 alive_sleep(100);
753 } else
755 keep_alive();
758 if (timeout)
760 LOG_ERROR("Failed to halt CPU after 1 sec");
761 return ERROR_TARGET_TIMEOUT;
764 target->state = TARGET_HALTED;
766 /* SVC, ARM state, IRQ and FIQ disabled */
767 uint32_t cpsr;
769 cpsr = buf_get_u32(armv4_5->cpsr->value, 0, 32);
770 cpsr &= ~0xff;
771 cpsr |= 0xd3;
772 arm_set_cpsr(armv4_5, cpsr);
773 armv4_5->cpsr->dirty = 1;
775 /* start fetching from 0x0 */
776 buf_set_u32(armv4_5->pc->value, 0, 32, 0x0);
777 armv4_5->pc->dirty = 1;
778 armv4_5->pc->valid = 1;
780 arm920t_disable_mmu_caches(target, 1, 1, 1);
781 arm920t->armv4_5_mmu.mmu_enabled = 0;
782 arm920t->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled = 0;
783 arm920t->armv4_5_mmu.armv4_5_cache.i_cache_enabled = 0;
785 return target_call_event_callbacks(target, TARGET_EVENT_HALTED);
788 /* FIXME remove forward decls */
789 static int arm920t_mrc(struct target *target, int cpnum,
790 uint32_t op1, uint32_t op2,
791 uint32_t CRn, uint32_t CRm,
792 uint32_t *value);
793 static int arm920t_mcr(struct target *target, int cpnum,
794 uint32_t op1, uint32_t op2,
795 uint32_t CRn, uint32_t CRm,
796 uint32_t value);
798 static int arm920t_init_arch_info(struct target *target,
799 struct arm920t_common *arm920t, struct jtag_tap *tap)
801 struct arm7_9_common *arm7_9 = &arm920t->arm7_9_common;
803 arm7_9->armv4_5_common.mrc = arm920t_mrc;
804 arm7_9->armv4_5_common.mcr = arm920t_mcr;
806 /* initialize arm7/arm9 specific info (including armv4_5) */
807 arm9tdmi_init_arch_info(target, arm7_9, tap);
809 arm920t->common_magic = ARM920T_COMMON_MAGIC;
811 arm7_9->post_debug_entry = arm920t_post_debug_entry;
812 arm7_9->pre_restore_context = arm920t_pre_restore_context;
814 arm920t->armv4_5_mmu.armv4_5_cache.ctype = -1;
815 arm920t->armv4_5_mmu.get_ttb = arm920t_get_ttb;
816 arm920t->armv4_5_mmu.read_memory = arm7_9_read_memory;
817 arm920t->armv4_5_mmu.write_memory = arm7_9_write_memory;
818 arm920t->armv4_5_mmu.disable_mmu_caches = arm920t_disable_mmu_caches;
819 arm920t->armv4_5_mmu.enable_mmu_caches = arm920t_enable_mmu_caches;
820 arm920t->armv4_5_mmu.has_tiny_pages = 1;
821 arm920t->armv4_5_mmu.mmu_enabled = 0;
823 /* disabling linefills leads to lockups, so keep them enabled for now
824 * this doesn't affect correctness, but might affect timing issues, if
825 * important data is evicted from the cache during the debug session
826 * */
827 arm920t->preserve_cache = 0;
829 /* override hw single-step capability from ARM9TDMI */
830 arm7_9->has_single_step = 1;
832 return ERROR_OK;
835 static int arm920t_target_create(struct target *target, Jim_Interp *interp)
837 struct arm920t_common *arm920t;
839 arm920t = calloc(1,sizeof(struct arm920t_common));
840 return arm920t_init_arch_info(target, arm920t, target->tap);
843 COMMAND_HANDLER(arm920t_handle_read_cache_command)
845 int retval = ERROR_OK;
846 struct target *target = get_current_target(CMD_CTX);
847 struct arm920t_common *arm920t = target_to_arm920(target);
848 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
849 struct arm *armv4_5 = &arm7_9->armv4_5_common;
850 uint32_t cp15c15;
851 uint32_t cp15_ctrl, cp15_ctrl_saved;
852 uint32_t regs[16];
853 uint32_t *regs_p[16];
854 uint32_t C15_C_D_Ind, C15_C_I_Ind;
855 int i;
856 FILE *output;
857 struct arm920t_cache_line d_cache[8][64], i_cache[8][64];
858 int segment, index_t;
859 struct reg *r;
861 retval = arm920t_verify_pointer(CMD_CTX, arm920t);
862 if (retval != ERROR_OK)
863 return retval;
865 if (CMD_ARGC != 1)
867 command_print(CMD_CTX, "usage: arm920t read_cache <filename>");
868 return ERROR_OK;
871 if ((output = fopen(CMD_ARGV[0], "w")) == NULL)
873 LOG_DEBUG("error opening cache content file");
874 return ERROR_OK;
877 for (i = 0; i < 16; i++)
878 regs_p[i] = &regs[i];
880 /* disable MMU and Caches */
881 arm920t_read_cp15_physical(target, CP15PHYS_CTRL, &cp15_ctrl);
882 if ((retval = jtag_execute_queue()) != ERROR_OK)
884 return retval;
886 cp15_ctrl_saved = cp15_ctrl;
887 cp15_ctrl &= ~(ARMV4_5_MMU_ENABLED
888 | ARMV4_5_D_U_CACHE_ENABLED | ARMV4_5_I_CACHE_ENABLED);
889 arm920t_write_cp15_physical(target, CP15PHYS_CTRL, cp15_ctrl);
891 /* read CP15 test state register */
892 arm920t_read_cp15_physical(target, CP15PHYS_TESTSTATE, &cp15c15);
893 jtag_execute_queue();
895 /* read DCache content */
896 fprintf(output, "DCache:\n");
898 /* go through segments 0 to nsets (8 on ARM920T, 4 on ARM922T) */
899 for (segment = 0;
900 segment < arm920t->armv4_5_mmu.armv4_5_cache.d_u_size.nsets;
901 segment++)
903 fprintf(output, "\nsegment: %i\n----------", segment);
905 /* Ra: r0 = SBZ(31:8):segment(7:5):SBZ(4:0) */
906 regs[0] = 0x0 | (segment << 5);
907 arm9tdmi_write_core_regs(target, 0x1, regs);
909 /* set interpret mode */
910 cp15c15 |= 0x1;
911 arm920t_write_cp15_physical(target,
912 CP15PHYS_TESTSTATE, cp15c15);
914 /* D CAM Read, loads current victim into C15.C.D.Ind */
915 arm920t_execute_cp15(target,
916 ARMV4_5_MCR(15,2,0,15,6,2), ARMV4_5_LDR(1, 0));
918 /* read current victim */
919 arm920t_read_cp15_physical(target,
920 CP15PHYS_DCACHE_IDX, &C15_C_D_Ind);
922 /* clear interpret mode */
923 cp15c15 &= ~0x1;
924 arm920t_write_cp15_physical(target,
925 CP15PHYS_TESTSTATE, cp15c15);
927 for (index_t = 0; index_t < 64; index_t++)
929 /* Ra:
930 * r0 = index(31:26):SBZ(25:8):segment(7:5):SBZ(4:0)
932 regs[0] = 0x0 | (segment << 5) | (index_t << 26);
933 arm9tdmi_write_core_regs(target, 0x1, regs);
935 /* set interpret mode */
936 cp15c15 |= 0x1;
937 arm920t_write_cp15_physical(target,
938 CP15PHYS_TESTSTATE, cp15c15);
940 /* Write DCache victim */
941 arm920t_execute_cp15(target,
942 ARMV4_5_MCR(15,0,0,9,1,0), ARMV4_5_LDR(1, 0));
944 /* Read D RAM */
945 arm920t_execute_cp15(target,
946 ARMV4_5_MCR(15,2,0,15,10,2),
947 ARMV4_5_LDMIA(0, 0x1fe, 0, 0));
949 /* Read D CAM */
950 arm920t_execute_cp15(target,
951 ARMV4_5_MCR(15,2,0,15,6,2),
952 ARMV4_5_LDR(9, 0));
954 /* clear interpret mode */
955 cp15c15 &= ~0x1;
956 arm920t_write_cp15_physical(target,
957 CP15PHYS_TESTSTATE, cp15c15);
959 /* read D RAM and CAM content */
960 arm9tdmi_read_core_regs(target, 0x3fe, regs_p);
961 if ((retval = jtag_execute_queue()) != ERROR_OK)
963 return retval;
966 d_cache[segment][index_t].cam = regs[9];
968 /* mask LFSR[6] */
969 regs[9] &= 0xfffffffe;
970 fprintf(output, "\nsegment: %i, index: %i, CAM: 0x%8.8"
971 PRIx32 ", content (%s):\n",
972 segment, index_t, regs[9],
973 (regs[9] & 0x10) ? "valid" : "invalid");
975 for (i = 1; i < 9; i++)
977 d_cache[segment][index_t].data[i] = regs[i];
978 fprintf(output, "%i: 0x%8.8" PRIx32 "\n",
979 i-1, regs[i]);
984 /* Ra: r0 = index(31:26):SBZ(25:8):segment(7:5):SBZ(4:0) */
985 regs[0] = 0x0 | (segment << 5) | (C15_C_D_Ind << 26);
986 arm9tdmi_write_core_regs(target, 0x1, regs);
988 /* set interpret mode */
989 cp15c15 |= 0x1;
990 arm920t_write_cp15_physical(target,
991 CP15PHYS_TESTSTATE, cp15c15);
993 /* Write DCache victim */
994 arm920t_execute_cp15(target,
995 ARMV4_5_MCR(15,0,0,9,1,0), ARMV4_5_LDR(1, 0));
997 /* clear interpret mode */
998 cp15c15 &= ~0x1;
999 arm920t_write_cp15_physical(target,
1000 CP15PHYS_TESTSTATE, cp15c15);
1003 /* read ICache content */
1004 fprintf(output, "ICache:\n");
1006 /* go through segments 0 to nsets (8 on ARM920T, 4 on ARM922T) */
1007 for (segment = 0;
1008 segment < arm920t->armv4_5_mmu.armv4_5_cache.d_u_size.nsets;
1009 segment++)
1011 fprintf(output, "segment: %i\n----------", segment);
1013 /* Ra: r0 = SBZ(31:8):segment(7:5):SBZ(4:0) */
1014 regs[0] = 0x0 | (segment << 5);
1015 arm9tdmi_write_core_regs(target, 0x1, regs);
1017 /* set interpret mode */
1018 cp15c15 |= 0x1;
1019 arm920t_write_cp15_physical(target,
1020 CP15PHYS_TESTSTATE, cp15c15);
1022 /* I CAM Read, loads current victim into C15.C.I.Ind */
1023 arm920t_execute_cp15(target,
1024 ARMV4_5_MCR(15,2,0,15,5,2), ARMV4_5_LDR(1, 0));
1026 /* read current victim */
1027 arm920t_read_cp15_physical(target, CP15PHYS_ICACHE_IDX,
1028 &C15_C_I_Ind);
1030 /* clear interpret mode */
1031 cp15c15 &= ~0x1;
1032 arm920t_write_cp15_physical(target,
1033 CP15PHYS_TESTSTATE, cp15c15);
1035 for (index_t = 0; index_t < 64; index_t++)
1037 /* Ra:
1038 * r0 = index(31:26):SBZ(25:8):segment(7:5):SBZ(4:0)
1040 regs[0] = 0x0 | (segment << 5) | (index_t << 26);
1041 arm9tdmi_write_core_regs(target, 0x1, regs);
1043 /* set interpret mode */
1044 cp15c15 |= 0x1;
1045 arm920t_write_cp15_physical(target,
1046 CP15PHYS_TESTSTATE, cp15c15);
1048 /* Write ICache victim */
1049 arm920t_execute_cp15(target,
1050 ARMV4_5_MCR(15,0,0,9,1,1), ARMV4_5_LDR(1, 0));
1052 /* Read I RAM */
1053 arm920t_execute_cp15(target,
1054 ARMV4_5_MCR(15,2,0,15,9,2),
1055 ARMV4_5_LDMIA(0, 0x1fe, 0, 0));
1057 /* Read I CAM */
1058 arm920t_execute_cp15(target,
1059 ARMV4_5_MCR(15,2,0,15,5,2),
1060 ARMV4_5_LDR(9, 0));
1062 /* clear interpret mode */
1063 cp15c15 &= ~0x1;
1064 arm920t_write_cp15_physical(target,
1065 CP15PHYS_TESTSTATE, cp15c15);
1067 /* read I RAM and CAM content */
1068 arm9tdmi_read_core_regs(target, 0x3fe, regs_p);
1069 if ((retval = jtag_execute_queue()) != ERROR_OK)
1071 return retval;
1074 i_cache[segment][index_t].cam = regs[9];
1076 /* mask LFSR[6] */
1077 regs[9] &= 0xfffffffe;
1078 fprintf(output, "\nsegment: %i, index: %i, "
1079 "CAM: 0x%8.8" PRIx32 ", content (%s):\n",
1080 segment, index_t, regs[9],
1081 (regs[9] & 0x10) ? "valid" : "invalid");
1083 for (i = 1; i < 9; i++)
1085 i_cache[segment][index_t].data[i] = regs[i];
1086 fprintf(output, "%i: 0x%8.8" PRIx32 "\n",
1087 i-1, regs[i]);
1091 /* Ra: r0 = index(31:26):SBZ(25:8):segment(7:5):SBZ(4:0) */
1092 regs[0] = 0x0 | (segment << 5) | (C15_C_D_Ind << 26);
1093 arm9tdmi_write_core_regs(target, 0x1, regs);
1095 /* set interpret mode */
1096 cp15c15 |= 0x1;
1097 arm920t_write_cp15_physical(target,
1098 CP15PHYS_TESTSTATE, cp15c15);
1100 /* Write ICache victim */
1101 arm920t_execute_cp15(target,
1102 ARMV4_5_MCR(15,0,0,9,1,1), ARMV4_5_LDR(1, 0));
1104 /* clear interpret mode */
1105 cp15c15 &= ~0x1;
1106 arm920t_write_cp15_physical(target,
1107 CP15PHYS_TESTSTATE, cp15c15);
1110 /* restore CP15 MMU and Cache settings */
1111 arm920t_write_cp15_physical(target, CP15PHYS_CTRL, cp15_ctrl_saved);
1113 command_print(CMD_CTX, "cache content successfully output to %s",
1114 CMD_ARGV[0]);
1116 fclose(output);
1118 if (!is_arm_mode(armv4_5->core_mode))
1119 return ERROR_FAIL;
1121 /* force writeback of the valid data */
1122 r = armv4_5->core_cache->reg_list;
1123 r[0].dirty = r[0].valid;
1124 r[1].dirty = r[1].valid;
1125 r[2].dirty = r[2].valid;
1126 r[3].dirty = r[3].valid;
1127 r[4].dirty = r[4].valid;
1128 r[5].dirty = r[5].valid;
1129 r[6].dirty = r[6].valid;
1130 r[7].dirty = r[7].valid;
1132 r = arm_reg_current(armv4_5, 8);
1133 r->dirty = r->valid;
1135 r = arm_reg_current(armv4_5, 9);
1136 r->dirty = r->valid;
1138 return ERROR_OK;
1141 COMMAND_HANDLER(arm920t_handle_read_mmu_command)
1143 int retval = ERROR_OK;
1144 struct target *target = get_current_target(CMD_CTX);
1145 struct arm920t_common *arm920t = target_to_arm920(target);
1146 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1147 struct arm *armv4_5 = &arm7_9->armv4_5_common;
1148 uint32_t cp15c15;
1149 uint32_t cp15_ctrl, cp15_ctrl_saved;
1150 uint32_t regs[16];
1151 uint32_t *regs_p[16];
1152 int i;
1153 FILE *output;
1154 uint32_t Dlockdown, Ilockdown;
1155 struct arm920t_tlb_entry d_tlb[64], i_tlb[64];
1156 int victim;
1157 struct reg *r;
1159 retval = arm920t_verify_pointer(CMD_CTX, arm920t);
1160 if (retval != ERROR_OK)
1161 return retval;
1163 if (CMD_ARGC != 1)
1165 command_print(CMD_CTX, "usage: arm920t read_mmu <filename>");
1166 return ERROR_OK;
1169 if ((output = fopen(CMD_ARGV[0], "w")) == NULL)
1171 LOG_DEBUG("error opening mmu content file");
1172 return ERROR_OK;
1175 for (i = 0; i < 16; i++)
1176 regs_p[i] = &regs[i];
1178 /* disable MMU and Caches */
1179 arm920t_read_cp15_physical(target, CP15PHYS_CTRL, &cp15_ctrl);
1180 if ((retval = jtag_execute_queue()) != ERROR_OK)
1182 return retval;
1184 cp15_ctrl_saved = cp15_ctrl;
1185 cp15_ctrl &= ~(ARMV4_5_MMU_ENABLED
1186 | ARMV4_5_D_U_CACHE_ENABLED | ARMV4_5_I_CACHE_ENABLED);
1187 arm920t_write_cp15_physical(target, CP15PHYS_CTRL, cp15_ctrl);
1189 /* read CP15 test state register */
1190 arm920t_read_cp15_physical(target, CP15PHYS_TESTSTATE, &cp15c15);
1191 if ((retval = jtag_execute_queue()) != ERROR_OK)
1193 return retval;
1196 /* prepare reading D TLB content
1197 * */
1199 /* set interpret mode */
1200 cp15c15 |= 0x1;
1201 arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15);
1203 /* Read D TLB lockdown */
1204 arm920t_execute_cp15(target,
1205 ARMV4_5_MRC(15,0,0,10,0,0), ARMV4_5_LDR(1, 0));
1207 /* clear interpret mode */
1208 cp15c15 &= ~0x1;
1209 arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15);
1211 /* read D TLB lockdown stored to r1 */
1212 arm9tdmi_read_core_regs(target, 0x2, regs_p);
1213 if ((retval = jtag_execute_queue()) != ERROR_OK)
1215 return retval;
1217 Dlockdown = regs[1];
1219 for (victim = 0; victim < 64; victim += 8)
1221 /* new lockdown value: base[31:26]:victim[25:20]:SBZ[19:1]:p[0]
1222 * base remains unchanged, victim goes through entries 0 to 63
1224 regs[1] = (Dlockdown & 0xfc000000) | (victim << 20);
1225 arm9tdmi_write_core_regs(target, 0x2, regs);
1227 /* set interpret mode */
1228 cp15c15 |= 0x1;
1229 arm920t_write_cp15_physical(target,
1230 CP15PHYS_TESTSTATE, cp15c15);
1232 /* Write D TLB lockdown */
1233 arm920t_execute_cp15(target,
1234 ARMV4_5_MCR(15,0,0,10,0,0),
1235 ARMV4_5_STR(1, 0));
1237 /* Read D TLB CAM */
1238 arm920t_execute_cp15(target,
1239 ARMV4_5_MCR(15,4,0,15,6,4),
1240 ARMV4_5_LDMIA(0, 0x3fc, 0, 0));
1242 /* clear interpret mode */
1243 cp15c15 &= ~0x1;
1244 arm920t_write_cp15_physical(target,
1245 CP15PHYS_TESTSTATE, cp15c15);
1247 /* read D TLB CAM content stored to r2-r9 */
1248 arm9tdmi_read_core_regs(target, 0x3fc, regs_p);
1249 if ((retval = jtag_execute_queue()) != ERROR_OK)
1251 return retval;
1254 for (i = 0; i < 8; i++)
1255 d_tlb[victim + i].cam = regs[i + 2];
1258 for (victim = 0; victim < 64; victim++)
1260 /* new lockdown value: base[31:26]:victim[25:20]:SBZ[19:1]:p[0]
1261 * base remains unchanged, victim goes through entries 0 to 63
1263 regs[1] = (Dlockdown & 0xfc000000) | (victim << 20);
1264 arm9tdmi_write_core_regs(target, 0x2, regs);
1266 /* set interpret mode */
1267 cp15c15 |= 0x1;
1268 arm920t_write_cp15_physical(target,
1269 CP15PHYS_TESTSTATE, cp15c15);
1271 /* Write D TLB lockdown */
1272 arm920t_execute_cp15(target,
1273 ARMV4_5_MCR(15,0,0,10,0,0), ARMV4_5_STR(1, 0));
1275 /* Read D TLB RAM1 */
1276 arm920t_execute_cp15(target,
1277 ARMV4_5_MCR(15,4,0,15,10,4), ARMV4_5_LDR(2,0));
1279 /* Read D TLB RAM2 */
1280 arm920t_execute_cp15(target,
1281 ARMV4_5_MCR(15,4,0,15,2,5), ARMV4_5_LDR(3,0));
1283 /* clear interpret mode */
1284 cp15c15 &= ~0x1;
1285 arm920t_write_cp15_physical(target,
1286 CP15PHYS_TESTSTATE, cp15c15);
1288 /* read D TLB RAM content stored to r2 and r3 */
1289 arm9tdmi_read_core_regs(target, 0xc, regs_p);
1290 if ((retval = jtag_execute_queue()) != ERROR_OK)
1292 return retval;
1295 d_tlb[victim].ram1 = regs[2];
1296 d_tlb[victim].ram2 = regs[3];
1299 /* restore D TLB lockdown */
1300 regs[1] = Dlockdown;
1301 arm9tdmi_write_core_regs(target, 0x2, regs);
1303 /* Write D TLB lockdown */
1304 arm920t_execute_cp15(target,
1305 ARMV4_5_MCR(15,0,0,10,0,0), ARMV4_5_STR(1, 0));
1307 /* prepare reading I TLB content
1308 * */
1310 /* set interpret mode */
1311 cp15c15 |= 0x1;
1312 arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15);
1314 /* Read I TLB lockdown */
1315 arm920t_execute_cp15(target,
1316 ARMV4_5_MRC(15,0,0,10,0,1), ARMV4_5_LDR(1, 0));
1318 /* clear interpret mode */
1319 cp15c15 &= ~0x1;
1320 arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15);
1322 /* read I TLB lockdown stored to r1 */
1323 arm9tdmi_read_core_regs(target, 0x2, regs_p);
1324 if ((retval = jtag_execute_queue()) != ERROR_OK)
1326 return retval;
1328 Ilockdown = regs[1];
1330 for (victim = 0; victim < 64; victim += 8)
1332 /* new lockdown value: base[31:26]:victim[25:20]:SBZ[19:1]:p[0]
1333 * base remains unchanged, victim goes through entries 0 to 63
1335 regs[1] = (Ilockdown & 0xfc000000) | (victim << 20);
1336 arm9tdmi_write_core_regs(target, 0x2, regs);
1338 /* set interpret mode */
1339 cp15c15 |= 0x1;
1340 arm920t_write_cp15_physical(target,
1341 CP15PHYS_TESTSTATE, cp15c15);
1343 /* Write I TLB lockdown */
1344 arm920t_execute_cp15(target,
1345 ARMV4_5_MCR(15,0,0,10,0,1),
1346 ARMV4_5_STR(1, 0));
1348 /* Read I TLB CAM */
1349 arm920t_execute_cp15(target,
1350 ARMV4_5_MCR(15,4,0,15,5,4),
1351 ARMV4_5_LDMIA(0, 0x3fc, 0, 0));
1353 /* clear interpret mode */
1354 cp15c15 &= ~0x1;
1355 arm920t_write_cp15_physical(target,
1356 CP15PHYS_TESTSTATE, cp15c15);
1358 /* read I TLB CAM content stored to r2-r9 */
1359 arm9tdmi_read_core_regs(target, 0x3fc, regs_p);
1360 if ((retval = jtag_execute_queue()) != ERROR_OK)
1362 return retval;
1365 for (i = 0; i < 8; i++)
1366 i_tlb[i + victim].cam = regs[i + 2];
1369 for (victim = 0; victim < 64; victim++)
1371 /* new lockdown value: base[31:26]:victim[25:20]:SBZ[19:1]:p[0]
1372 * base remains unchanged, victim goes through entries 0 to 63
1374 regs[1] = (Dlockdown & 0xfc000000) | (victim << 20);
1375 arm9tdmi_write_core_regs(target, 0x2, regs);
1377 /* set interpret mode */
1378 cp15c15 |= 0x1;
1379 arm920t_write_cp15_physical(target,
1380 CP15PHYS_TESTSTATE, cp15c15);
1382 /* Write I TLB lockdown */
1383 arm920t_execute_cp15(target,
1384 ARMV4_5_MCR(15,0,0,10,0,1), ARMV4_5_STR(1, 0));
1386 /* Read I TLB RAM1 */
1387 arm920t_execute_cp15(target,
1388 ARMV4_5_MCR(15,4,0,15,9,4), ARMV4_5_LDR(2,0));
1390 /* Read I TLB RAM2 */
1391 arm920t_execute_cp15(target,
1392 ARMV4_5_MCR(15,4,0,15,1,5), ARMV4_5_LDR(3,0));
1394 /* clear interpret mode */
1395 cp15c15 &= ~0x1;
1396 arm920t_write_cp15_physical(target,
1397 CP15PHYS_TESTSTATE, cp15c15);
1399 /* read I TLB RAM content stored to r2 and r3 */
1400 arm9tdmi_read_core_regs(target, 0xc, regs_p);
1401 if ((retval = jtag_execute_queue()) != ERROR_OK)
1403 return retval;
1406 i_tlb[victim].ram1 = regs[2];
1407 i_tlb[victim].ram2 = regs[3];
1410 /* restore I TLB lockdown */
1411 regs[1] = Ilockdown;
1412 arm9tdmi_write_core_regs(target, 0x2, regs);
1414 /* Write I TLB lockdown */
1415 arm920t_execute_cp15(target,
1416 ARMV4_5_MCR(15,0,0,10,0,1), ARMV4_5_STR(1, 0));
1418 /* restore CP15 MMU and Cache settings */
1419 arm920t_write_cp15_physical(target, CP15PHYS_CTRL, cp15_ctrl_saved);
1421 /* output data to file */
1422 fprintf(output, "D TLB content:\n");
1423 for (i = 0; i < 64; i++)
1425 fprintf(output, "%i: 0x%8.8" PRIx32 " 0x%8.8" PRIx32
1426 " 0x%8.8" PRIx32 " %s\n",
1427 i, d_tlb[i].cam, d_tlb[i].ram1, d_tlb[i].ram2,
1428 (d_tlb[i].cam & 0x20) ? "(valid)" : "(invalid)");
1431 fprintf(output, "\n\nI TLB content:\n");
1432 for (i = 0; i < 64; i++)
1434 fprintf(output, "%i: 0x%8.8" PRIx32 " 0x%8.8" PRIx32
1435 " 0x%8.8" PRIx32 " %s\n",
1436 i, i_tlb[i].cam, i_tlb[i].ram1, i_tlb[i].ram2,
1437 (i_tlb[i].cam & 0x20) ? "(valid)" : "(invalid)");
1440 command_print(CMD_CTX, "mmu content successfully output to %s",
1441 CMD_ARGV[0]);
1443 fclose(output);
1445 if (!is_arm_mode(armv4_5->core_mode))
1446 return ERROR_FAIL;
1448 /* force writeback of the valid data */
1449 r = armv4_5->core_cache->reg_list;
1450 r[0].dirty = r[0].valid;
1451 r[1].dirty = r[1].valid;
1452 r[2].dirty = r[2].valid;
1453 r[3].dirty = r[3].valid;
1454 r[4].dirty = r[4].valid;
1455 r[5].dirty = r[5].valid;
1456 r[6].dirty = r[6].valid;
1457 r[7].dirty = r[7].valid;
1459 r = arm_reg_current(armv4_5, 8);
1460 r->dirty = r->valid;
1462 r = arm_reg_current(armv4_5, 9);
1463 r->dirty = r->valid;
1465 return ERROR_OK;
1468 COMMAND_HANDLER(arm920t_handle_cp15_command)
1470 int retval;
1471 struct target *target = get_current_target(CMD_CTX);
1472 struct arm920t_common *arm920t = target_to_arm920(target);
1474 retval = arm920t_verify_pointer(CMD_CTX, arm920t);
1475 if (retval != ERROR_OK)
1476 return retval;
1478 if (target->state != TARGET_HALTED)
1480 command_print(CMD_CTX, "target must be stopped for "
1481 "\"%s\" command", CMD_NAME);
1482 return ERROR_OK;
1485 /* one argument, read a register.
1486 * two arguments, write it.
1488 if (CMD_ARGC >= 1)
1490 int address;
1491 COMMAND_PARSE_NUMBER(int, CMD_ARGV[0], address);
1493 if (CMD_ARGC == 1)
1495 uint32_t value;
1496 if ((retval = arm920t_read_cp15_physical(target,
1497 address, &value)) != ERROR_OK)
1499 command_print(CMD_CTX,
1500 "couldn't access reg %i", address);
1501 return ERROR_OK;
1503 if ((retval = jtag_execute_queue()) != ERROR_OK)
1505 return retval;
1508 command_print(CMD_CTX, "%i: %8.8" PRIx32,
1509 address, value);
1511 else if (CMD_ARGC == 2)
1513 uint32_t value;
1514 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
1515 retval = arm920t_write_cp15_physical(target,
1516 address, value);
1517 if (retval != ERROR_OK)
1519 command_print(CMD_CTX,
1520 "couldn't access reg %i", address);
1521 /* REVISIT why lie? "return retval"? */
1522 return ERROR_OK;
1524 command_print(CMD_CTX, "%i: %8.8" PRIx32,
1525 address, value);
1529 return ERROR_OK;
1532 COMMAND_HANDLER(arm920t_handle_cp15i_command)
1534 int retval;
1535 struct target *target = get_current_target(CMD_CTX);
1536 struct arm920t_common *arm920t = target_to_arm920(target);
1538 retval = arm920t_verify_pointer(CMD_CTX, arm920t);
1539 if (retval != ERROR_OK)
1540 return retval;
1543 if (target->state != TARGET_HALTED)
1545 command_print(CMD_CTX, "target must be stopped for "
1546 "\"%s\" command", CMD_NAME);
1547 return ERROR_OK;
1550 /* one argument, read a register.
1551 * two arguments, write it.
1553 if (CMD_ARGC >= 1)
1555 uint32_t opcode;
1556 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], opcode);
1558 if (CMD_ARGC == 1)
1560 uint32_t value;
1561 retval = arm920t_read_cp15_interpreted(target,
1562 opcode, 0x0, &value);
1563 if (retval != ERROR_OK)
1565 command_print(CMD_CTX,
1566 "couldn't execute %8.8" PRIx32,
1567 opcode);
1568 /* REVISIT why lie? "return retval"? */
1569 return ERROR_OK;
1572 command_print(CMD_CTX, "%8.8" PRIx32 ": %8.8" PRIx32,
1573 opcode, value);
1575 else if (CMD_ARGC == 2)
1577 uint32_t value;
1578 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
1579 retval = arm920t_write_cp15_interpreted(target,
1580 opcode, value, 0);
1581 if (retval != ERROR_OK)
1583 command_print(CMD_CTX,
1584 "couldn't execute %8.8" PRIx32,
1585 opcode);
1586 /* REVISIT why lie? "return retval"? */
1587 return ERROR_OK;
1589 command_print(CMD_CTX, "%8.8" PRIx32 ": %8.8" PRIx32,
1590 opcode, value);
1592 else if (CMD_ARGC == 3)
1594 uint32_t value;
1595 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
1596 uint32_t address;
1597 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], address);
1598 retval = arm920t_write_cp15_interpreted(target,
1599 opcode, value, address);
1600 if (retval != ERROR_OK)
1602 command_print(CMD_CTX,
1603 "couldn't execute %8.8" PRIx32, opcode);
1604 /* REVISIT why lie? "return retval"? */
1605 return ERROR_OK;
1607 command_print(CMD_CTX, "%8.8" PRIx32 ": %8.8" PRIx32
1608 " %8.8" PRIx32, opcode, value, address);
1611 else
1613 command_print(CMD_CTX,
1614 "usage: arm920t cp15i <opcode> [value] [address]");
1617 return ERROR_OK;
1620 COMMAND_HANDLER(arm920t_handle_cache_info_command)
1622 int retval;
1623 struct target *target = get_current_target(CMD_CTX);
1624 struct arm920t_common *arm920t = target_to_arm920(target);
1626 retval = arm920t_verify_pointer(CMD_CTX, arm920t);
1627 if (retval != ERROR_OK)
1628 return retval;
1630 return armv4_5_handle_cache_info_command(CMD_CTX,
1631 &arm920t->armv4_5_mmu.armv4_5_cache);
1635 static int arm920t_mrc(struct target *target, int cpnum,
1636 uint32_t op1, uint32_t op2,
1637 uint32_t CRn, uint32_t CRm,
1638 uint32_t *value)
1640 if (cpnum!=15)
1642 LOG_ERROR("Only cp15 is supported");
1643 return ERROR_FAIL;
1646 /* read "to" r0 */
1647 return arm920t_read_cp15_interpreted(target,
1648 ARMV4_5_MRC(cpnum, op1, 0, CRn, CRm, op2),
1649 0, value);
1652 static int arm920t_mcr(struct target *target, int cpnum,
1653 uint32_t op1, uint32_t op2,
1654 uint32_t CRn, uint32_t CRm,
1655 uint32_t value)
1657 if (cpnum!=15)
1659 LOG_ERROR("Only cp15 is supported");
1660 return ERROR_FAIL;
1663 /* write "from" r0 */
1664 return arm920t_write_cp15_interpreted(target,
1665 ARMV4_5_MCR(cpnum, op1, 0, CRn, CRm, op2),
1666 0, value);
1669 static const struct command_registration arm920t_exec_command_handlers[] = {
1671 .name = "cp15",
1672 .handler = arm920t_handle_cp15_command,
1673 .mode = COMMAND_EXEC,
1674 .help = "display/modify cp15 register",
1675 .usage = "regnum [value]",
1678 .name = "cp15i",
1679 .handler = arm920t_handle_cp15i_command,
1680 .mode = COMMAND_EXEC,
1681 /* prefer using less error-prone "arm mcr" or "arm mrc" */
1682 .help = "display/modify cp15 register using ARM opcode"
1683 " (DEPRECATED)",
1684 .usage = "instruction [value [address]]",
1687 .name = "cache_info",
1688 .handler = arm920t_handle_cache_info_command,
1689 .mode = COMMAND_EXEC,
1690 .help = "display information about target caches",
1693 .name = "read_cache",
1694 .handler = arm920t_handle_read_cache_command,
1695 .mode = COMMAND_EXEC,
1696 .help = "dump I/D cache content to file",
1697 .usage = "filename",
1700 .name = "read_mmu",
1701 .handler = arm920t_handle_read_mmu_command,
1702 .mode = COMMAND_EXEC,
1703 .help = "dump I/D mmu content to file",
1704 .usage = "filename",
1706 COMMAND_REGISTRATION_DONE
1708 const struct command_registration arm920t_command_handlers[] = {
1710 .chain = arm9tdmi_command_handlers,
1713 .name = "arm920t",
1714 .mode = COMMAND_ANY,
1715 .help = "arm920t command group",
1716 .chain = arm920t_exec_command_handlers,
1718 COMMAND_REGISTRATION_DONE
1721 /** Holds methods for ARM920 targets. */
1722 struct target_type arm920t_target =
1724 .name = "arm920t",
1726 .poll = arm7_9_poll,
1727 .arch_state = arm920t_arch_state,
1729 .target_request_data = arm7_9_target_request_data,
1731 .halt = arm7_9_halt,
1732 .resume = arm7_9_resume,
1733 .step = arm7_9_step,
1735 .assert_reset = arm7_9_assert_reset,
1736 .deassert_reset = arm7_9_deassert_reset,
1737 .soft_reset_halt = arm920t_soft_reset_halt,
1739 .get_gdb_reg_list = arm_get_gdb_reg_list,
1741 .read_memory = arm920t_read_memory,
1742 .write_memory = arm920t_write_memory,
1743 .read_phys_memory = arm920t_read_phys_memory,
1744 .write_phys_memory = arm920t_write_phys_memory,
1745 .mmu = arm920_mmu,
1746 .virt2phys = arm920_virt2phys,
1748 .bulk_write_memory = arm7_9_bulk_write_memory,
1750 .checksum_memory = arm_checksum_memory,
1751 .blank_check_memory = arm_blank_check_memory,
1753 .run_algorithm = armv4_5_run_algorithm,
1755 .add_breakpoint = arm7_9_add_breakpoint,
1756 .remove_breakpoint = arm7_9_remove_breakpoint,
1757 .add_watchpoint = arm7_9_add_watchpoint,
1758 .remove_watchpoint = arm7_9_remove_watchpoint,
1760 .commands = arm920t_command_handlers,
1761 .target_create = arm920t_target_create,
1762 .init_target = arm9tdmi_init_target,
1763 .examine = arm7_9_examine,
1764 .check_reset = arm7_9_check_reset,