target: $_TARGET mdw now has a phys option
[openocd/cortex.git] / src / target / target.c
blob3bf6824be289a496643aa2342bb763573f51a8cf
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2007-2010 Øyvind Harboe *
6 * oyvind.harboe@zylin.com *
7 * *
8 * Copyright (C) 2008, Duane Ellis *
9 * openocd@duaneeellis.com *
10 * *
11 * Copyright (C) 2008 by Spencer Oliver *
12 * spen@spen-soft.co.uk *
13 * *
14 * Copyright (C) 2008 by Rick Altherr *
15 * kc8apf@kc8apf.net> *
16 * *
17 * This program is free software; you can redistribute it and/or modify *
18 * it under the terms of the GNU General Public License as published by *
19 * the Free Software Foundation; either version 2 of the License, or *
20 * (at your option) any later version. *
21 * *
22 * This program is distributed in the hope that it will be useful, *
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
25 * GNU General Public License for more details. *
26 * *
27 * You should have received a copy of the GNU General Public License *
28 * along with this program; if not, write to the *
29 * Free Software Foundation, Inc., *
30 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
31 ***************************************************************************/
32 #ifdef HAVE_CONFIG_H
33 #include "config.h"
34 #endif
36 #include <helper/time_support.h>
37 #include <jtag/jtag.h>
38 #include <flash/nor/core.h>
40 #include "target.h"
41 #include "target_type.h"
42 #include "target_request.h"
43 #include "breakpoints.h"
44 #include "register.h"
45 #include "trace.h"
46 #include "image.h"
49 static int target_array2mem(Jim_Interp *interp, struct target *target,
50 int argc, Jim_Obj *const *argv);
51 static int target_mem2array(Jim_Interp *interp, struct target *target,
52 int argc, Jim_Obj *const *argv);
53 static int target_register_user_commands(struct command_context *cmd_ctx);
55 /* targets */
56 extern struct target_type arm7tdmi_target;
57 extern struct target_type arm720t_target;
58 extern struct target_type arm9tdmi_target;
59 extern struct target_type arm920t_target;
60 extern struct target_type arm966e_target;
61 extern struct target_type arm926ejs_target;
62 extern struct target_type fa526_target;
63 extern struct target_type feroceon_target;
64 extern struct target_type dragonite_target;
65 extern struct target_type xscale_target;
66 extern struct target_type cortexm3_target;
67 extern struct target_type cortexa8_target;
68 extern struct target_type arm11_target;
69 extern struct target_type mips_m4k_target;
70 extern struct target_type avr_target;
71 extern struct target_type dsp563xx_target;
72 extern struct target_type testee_target;
74 static struct target_type *target_types[] =
76 &arm7tdmi_target,
77 &arm9tdmi_target,
78 &arm920t_target,
79 &arm720t_target,
80 &arm966e_target,
81 &arm926ejs_target,
82 &fa526_target,
83 &feroceon_target,
84 &dragonite_target,
85 &xscale_target,
86 &cortexm3_target,
87 &cortexa8_target,
88 &arm11_target,
89 &mips_m4k_target,
90 &avr_target,
91 &dsp563xx_target,
92 &testee_target,
93 NULL,
96 struct target *all_targets = NULL;
97 static struct target_event_callback *target_event_callbacks = NULL;
98 static struct target_timer_callback *target_timer_callbacks = NULL;
100 static const Jim_Nvp nvp_assert[] = {
101 { .name = "assert", NVP_ASSERT },
102 { .name = "deassert", NVP_DEASSERT },
103 { .name = "T", NVP_ASSERT },
104 { .name = "F", NVP_DEASSERT },
105 { .name = "t", NVP_ASSERT },
106 { .name = "f", NVP_DEASSERT },
107 { .name = NULL, .value = -1 }
110 static const Jim_Nvp nvp_error_target[] = {
111 { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
112 { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
113 { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
114 { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
115 { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
116 { .value = ERROR_TARGET_UNALIGNED_ACCESS , .name = "err-unaligned-access" },
117 { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
118 { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
119 { .value = ERROR_TARGET_TRANSLATION_FAULT , .name = "err-translation-fault" },
120 { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
121 { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
122 { .value = -1, .name = NULL }
125 static const char *target_strerror_safe(int err)
127 const Jim_Nvp *n;
129 n = Jim_Nvp_value2name_simple(nvp_error_target, err);
130 if (n->name == NULL) {
131 return "unknown";
132 } else {
133 return n->name;
137 static const Jim_Nvp nvp_target_event[] = {
138 { .value = TARGET_EVENT_OLD_gdb_program_config , .name = "old-gdb_program_config" },
139 { .value = TARGET_EVENT_OLD_pre_resume , .name = "old-pre_resume" },
141 { .value = TARGET_EVENT_GDB_HALT, .name = "gdb-halt" },
142 { .value = TARGET_EVENT_HALTED, .name = "halted" },
143 { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
144 { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
145 { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
147 { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
148 { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
150 /* historical name */
152 { .value = TARGET_EVENT_RESET_START, .name = "reset-start" },
154 { .value = TARGET_EVENT_RESET_ASSERT_PRE, .name = "reset-assert-pre" },
155 { .value = TARGET_EVENT_RESET_ASSERT, .name = "reset-assert" },
156 { .value = TARGET_EVENT_RESET_ASSERT_POST, .name = "reset-assert-post" },
157 { .value = TARGET_EVENT_RESET_DEASSERT_PRE, .name = "reset-deassert-pre" },
158 { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
159 { .value = TARGET_EVENT_RESET_HALT_PRE, .name = "reset-halt-pre" },
160 { .value = TARGET_EVENT_RESET_HALT_POST, .name = "reset-halt-post" },
161 { .value = TARGET_EVENT_RESET_WAIT_PRE, .name = "reset-wait-pre" },
162 { .value = TARGET_EVENT_RESET_WAIT_POST, .name = "reset-wait-post" },
163 { .value = TARGET_EVENT_RESET_INIT, .name = "reset-init" },
164 { .value = TARGET_EVENT_RESET_END, .name = "reset-end" },
166 { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
167 { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
169 { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
170 { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
172 { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
173 { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
175 { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
176 { .value = TARGET_EVENT_GDB_FLASH_WRITE_END , .name = "gdb-flash-write-end" },
178 { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
179 { .value = TARGET_EVENT_GDB_FLASH_ERASE_END , .name = "gdb-flash-erase-end" },
181 { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
182 { .value = TARGET_EVENT_RESUMED , .name = "resume-ok" },
183 { .value = TARGET_EVENT_RESUME_END , .name = "resume-end" },
185 { .name = NULL, .value = -1 }
188 static const Jim_Nvp nvp_target_state[] = {
189 { .name = "unknown", .value = TARGET_UNKNOWN },
190 { .name = "running", .value = TARGET_RUNNING },
191 { .name = "halted", .value = TARGET_HALTED },
192 { .name = "reset", .value = TARGET_RESET },
193 { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
194 { .name = NULL, .value = -1 },
197 static const Jim_Nvp nvp_target_debug_reason [] = {
198 { .name = "debug-request" , .value = DBG_REASON_DBGRQ },
199 { .name = "breakpoint" , .value = DBG_REASON_BREAKPOINT },
200 { .name = "watchpoint" , .value = DBG_REASON_WATCHPOINT },
201 { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
202 { .name = "single-step" , .value = DBG_REASON_SINGLESTEP },
203 { .name = "target-not-halted" , .value = DBG_REASON_NOTHALTED },
204 { .name = "undefined" , .value = DBG_REASON_UNDEFINED },
205 { .name = NULL, .value = -1 },
208 static const Jim_Nvp nvp_target_endian[] = {
209 { .name = "big", .value = TARGET_BIG_ENDIAN },
210 { .name = "little", .value = TARGET_LITTLE_ENDIAN },
211 { .name = "be", .value = TARGET_BIG_ENDIAN },
212 { .name = "le", .value = TARGET_LITTLE_ENDIAN },
213 { .name = NULL, .value = -1 },
216 static const Jim_Nvp nvp_reset_modes[] = {
217 { .name = "unknown", .value = RESET_UNKNOWN },
218 { .name = "run" , .value = RESET_RUN },
219 { .name = "halt" , .value = RESET_HALT },
220 { .name = "init" , .value = RESET_INIT },
221 { .name = NULL , .value = -1 },
224 const char *debug_reason_name(struct target *t)
226 const char *cp;
228 cp = Jim_Nvp_value2name_simple(nvp_target_debug_reason,
229 t->debug_reason)->name;
230 if (!cp) {
231 LOG_ERROR("Invalid debug reason: %d", (int)(t->debug_reason));
232 cp = "(*BUG*unknown*BUG*)";
234 return cp;
237 const char *
238 target_state_name( struct target *t )
240 const char *cp;
241 cp = Jim_Nvp_value2name_simple(nvp_target_state, t->state)->name;
242 if( !cp ){
243 LOG_ERROR("Invalid target state: %d", (int)(t->state));
244 cp = "(*BUG*unknown*BUG*)";
246 return cp;
249 /* determine the number of the new target */
250 static int new_target_number(void)
252 struct target *t;
253 int x;
255 /* number is 0 based */
256 x = -1;
257 t = all_targets;
258 while (t) {
259 if (x < t->target_number) {
260 x = t->target_number;
262 t = t->next;
264 return x + 1;
267 /* read a uint32_t from a buffer in target memory endianness */
268 uint32_t target_buffer_get_u32(struct target *target, const uint8_t *buffer)
270 if (target->endianness == TARGET_LITTLE_ENDIAN)
271 return le_to_h_u32(buffer);
272 else
273 return be_to_h_u32(buffer);
276 /* read a uint16_t from a buffer in target memory endianness */
277 uint16_t target_buffer_get_u16(struct target *target, const uint8_t *buffer)
279 if (target->endianness == TARGET_LITTLE_ENDIAN)
280 return le_to_h_u16(buffer);
281 else
282 return be_to_h_u16(buffer);
285 /* read a uint8_t from a buffer in target memory endianness */
286 static uint8_t target_buffer_get_u8(struct target *target, const uint8_t *buffer)
288 return *buffer & 0x0ff;
291 /* write a uint32_t to a buffer in target memory endianness */
292 void target_buffer_set_u32(struct target *target, uint8_t *buffer, uint32_t value)
294 if (target->endianness == TARGET_LITTLE_ENDIAN)
295 h_u32_to_le(buffer, value);
296 else
297 h_u32_to_be(buffer, value);
300 /* write a uint16_t to a buffer in target memory endianness */
301 void target_buffer_set_u16(struct target *target, uint8_t *buffer, uint16_t value)
303 if (target->endianness == TARGET_LITTLE_ENDIAN)
304 h_u16_to_le(buffer, value);
305 else
306 h_u16_to_be(buffer, value);
309 /* write a uint8_t to a buffer in target memory endianness */
310 static void target_buffer_set_u8(struct target *target, uint8_t *buffer, uint8_t value)
312 *buffer = value;
315 /* return a pointer to a configured target; id is name or number */
316 struct target *get_target(const char *id)
318 struct target *target;
320 /* try as tcltarget name */
321 for (target = all_targets; target; target = target->next) {
322 if (target->cmd_name == NULL)
323 continue;
324 if (strcmp(id, target->cmd_name) == 0)
325 return target;
328 /* It's OK to remove this fallback sometime after August 2010 or so */
330 /* no match, try as number */
331 unsigned num;
332 if (parse_uint(id, &num) != ERROR_OK)
333 return NULL;
335 for (target = all_targets; target; target = target->next) {
336 if (target->target_number == (int)num) {
337 LOG_WARNING("use '%s' as target identifier, not '%u'",
338 target->cmd_name, num);
339 return target;
343 return NULL;
346 /* returns a pointer to the n-th configured target */
347 static struct target *get_target_by_num(int num)
349 struct target *target = all_targets;
351 while (target) {
352 if (target->target_number == num) {
353 return target;
355 target = target->next;
358 return NULL;
361 struct target* get_current_target(struct command_context *cmd_ctx)
363 struct target *target = get_target_by_num(cmd_ctx->current_target);
365 if (target == NULL)
367 LOG_ERROR("BUG: current_target out of bounds");
368 exit(-1);
371 return target;
374 int target_poll(struct target *target)
376 int retval;
378 /* We can't poll until after examine */
379 if (!target_was_examined(target))
381 /* Fail silently lest we pollute the log */
382 return ERROR_FAIL;
385 retval = target->type->poll(target);
386 if (retval != ERROR_OK)
387 return retval;
389 if (target->halt_issued)
391 if (target->state == TARGET_HALTED)
393 target->halt_issued = false;
394 } else
396 long long t = timeval_ms() - target->halt_issued_time;
397 if (t>1000)
399 target->halt_issued = false;
400 LOG_INFO("Halt timed out, wake up GDB.");
401 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
406 return ERROR_OK;
409 int target_halt(struct target *target)
411 int retval;
412 /* We can't poll until after examine */
413 if (!target_was_examined(target))
415 LOG_ERROR("Target not examined yet");
416 return ERROR_FAIL;
419 retval = target->type->halt(target);
420 if (retval != ERROR_OK)
421 return retval;
423 target->halt_issued = true;
424 target->halt_issued_time = timeval_ms();
426 return ERROR_OK;
430 * Make the target (re)start executing using its saved execution
431 * context (possibly with some modifications).
433 * @param target Which target should start executing.
434 * @param current True to use the target's saved program counter instead
435 * of the address parameter
436 * @param address Optionally used as the program counter.
437 * @param handle_breakpoints True iff breakpoints at the resumption PC
438 * should be skipped. (For example, maybe execution was stopped by
439 * such a breakpoint, in which case it would be counterprodutive to
440 * let it re-trigger.
441 * @param debug_execution False if all working areas allocated by OpenOCD
442 * should be released and/or restored to their original contents.
443 * (This would for example be true to run some downloaded "helper"
444 * algorithm code, which resides in one such working buffer and uses
445 * another for data storage.)
447 * @todo Resolve the ambiguity about what the "debug_execution" flag
448 * signifies. For example, Target implementations don't agree on how
449 * it relates to invalidation of the register cache, or to whether
450 * breakpoints and watchpoints should be enabled. (It would seem wrong
451 * to enable breakpoints when running downloaded "helper" algorithms
452 * (debug_execution true), since the breakpoints would be set to match
453 * target firmware being debugged, not the helper algorithm.... and
454 * enabling them could cause such helpers to malfunction (for example,
455 * by overwriting data with a breakpoint instruction. On the other
456 * hand the infrastructure for running such helpers might use this
457 * procedure but rely on hardware breakpoint to detect termination.)
459 int target_resume(struct target *target, int current, uint32_t address, int handle_breakpoints, int debug_execution)
461 int retval;
463 /* We can't poll until after examine */
464 if (!target_was_examined(target))
466 LOG_ERROR("Target not examined yet");
467 return ERROR_FAIL;
470 /* note that resume *must* be asynchronous. The CPU can halt before
471 * we poll. The CPU can even halt at the current PC as a result of
472 * a software breakpoint being inserted by (a bug?) the application.
474 if ((retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution)) != ERROR_OK)
475 return retval;
477 return retval;
480 static int target_process_reset(struct command_context *cmd_ctx, enum target_reset_mode reset_mode)
482 char buf[100];
483 int retval;
484 Jim_Nvp *n;
485 n = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode);
486 if (n->name == NULL) {
487 LOG_ERROR("invalid reset mode");
488 return ERROR_FAIL;
491 /* disable polling during reset to make reset event scripts
492 * more predictable, i.e. dr/irscan & pathmove in events will
493 * not have JTAG operations injected into the middle of a sequence.
495 bool save_poll = jtag_poll_get_enabled();
497 jtag_poll_set_enabled(false);
499 sprintf(buf, "ocd_process_reset %s", n->name);
500 retval = Jim_Eval(cmd_ctx->interp, buf);
502 jtag_poll_set_enabled(save_poll);
504 if (retval != JIM_OK) {
505 Jim_PrintErrorMessage(cmd_ctx->interp);
506 return ERROR_FAIL;
509 /* We want any events to be processed before the prompt */
510 retval = target_call_timer_callbacks_now();
512 struct target *target;
513 for (target = all_targets; target; target = target->next) {
514 target->type->check_reset(target);
517 return retval;
520 static int identity_virt2phys(struct target *target,
521 uint32_t virtual, uint32_t *physical)
523 *physical = virtual;
524 return ERROR_OK;
527 static int no_mmu(struct target *target, int *enabled)
529 *enabled = 0;
530 return ERROR_OK;
533 static int default_examine(struct target *target)
535 target_set_examined(target);
536 return ERROR_OK;
539 /* no check by default */
540 static int default_check_reset(struct target *target)
542 return ERROR_OK;
545 int target_examine_one(struct target *target)
547 return target->type->examine(target);
550 static int jtag_enable_callback(enum jtag_event event, void *priv)
552 struct target *target = priv;
554 if (event != JTAG_TAP_EVENT_ENABLE || !target->tap->enabled)
555 return ERROR_OK;
557 jtag_unregister_event_callback(jtag_enable_callback, target);
558 return target_examine_one(target);
562 /* Targets that correctly implement init + examine, i.e.
563 * no communication with target during init:
565 * XScale
567 int target_examine(void)
569 int retval = ERROR_OK;
570 struct target *target;
572 for (target = all_targets; target; target = target->next)
574 /* defer examination, but don't skip it */
575 if (!target->tap->enabled) {
576 jtag_register_event_callback(jtag_enable_callback,
577 target);
578 continue;
580 if ((retval = target_examine_one(target)) != ERROR_OK)
581 return retval;
583 return retval;
585 const char *target_type_name(struct target *target)
587 return target->type->name;
590 static int target_write_memory_imp(struct target *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
592 if (!target_was_examined(target))
594 LOG_ERROR("Target not examined yet");
595 return ERROR_FAIL;
597 return target->type->write_memory_imp(target, address, size, count, buffer);
600 static int target_read_memory_imp(struct target *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
602 if (!target_was_examined(target))
604 LOG_ERROR("Target not examined yet");
605 return ERROR_FAIL;
607 return target->type->read_memory_imp(target, address, size, count, buffer);
610 static int target_soft_reset_halt_imp(struct target *target)
612 if (!target_was_examined(target))
614 LOG_ERROR("Target not examined yet");
615 return ERROR_FAIL;
617 if (!target->type->soft_reset_halt_imp) {
618 LOG_ERROR("Target %s does not support soft_reset_halt",
619 target_name(target));
620 return ERROR_FAIL;
622 return target->type->soft_reset_halt_imp(target);
626 * Downloads a target-specific native code algorithm to the target,
627 * and executes it. * Note that some targets may need to set up, enable,
628 * and tear down a breakpoint (hard or * soft) to detect algorithm
629 * termination, while others may support lower overhead schemes where
630 * soft breakpoints embedded in the algorithm automatically terminate the
631 * algorithm.
633 * @param target used to run the algorithm
634 * @param arch_info target-specific description of the algorithm.
636 int target_run_algorithm(struct target *target,
637 int num_mem_params, struct mem_param *mem_params,
638 int num_reg_params, struct reg_param *reg_param,
639 uint32_t entry_point, uint32_t exit_point,
640 int timeout_ms, void *arch_info)
642 int retval = ERROR_FAIL;
644 if (!target_was_examined(target))
646 LOG_ERROR("Target not examined yet");
647 goto done;
649 if (!target->type->run_algorithm) {
650 LOG_ERROR("Target type '%s' does not support %s",
651 target_type_name(target), __func__);
652 goto done;
655 target->running_alg = true;
656 retval = target->type->run_algorithm(target,
657 num_mem_params, mem_params,
658 num_reg_params, reg_param,
659 entry_point, exit_point, timeout_ms, arch_info);
660 target->running_alg = false;
662 done:
663 return retval;
667 int target_read_memory(struct target *target,
668 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
670 return target->type->read_memory(target, address, size, count, buffer);
673 static int target_read_phys_memory(struct target *target,
674 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
676 return target->type->read_phys_memory(target, address, size, count, buffer);
679 int target_write_memory(struct target *target,
680 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
682 return target->type->write_memory(target, address, size, count, buffer);
685 static int target_write_phys_memory(struct target *target,
686 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
688 return target->type->write_phys_memory(target, address, size, count, buffer);
691 int target_bulk_write_memory(struct target *target,
692 uint32_t address, uint32_t count, uint8_t *buffer)
694 return target->type->bulk_write_memory(target, address, count, buffer);
697 int target_add_breakpoint(struct target *target,
698 struct breakpoint *breakpoint)
700 if (target->state != TARGET_HALTED) {
701 LOG_WARNING("target %s is not halted", target->cmd_name);
702 return ERROR_TARGET_NOT_HALTED;
704 return target->type->add_breakpoint(target, breakpoint);
706 int target_remove_breakpoint(struct target *target,
707 struct breakpoint *breakpoint)
709 return target->type->remove_breakpoint(target, breakpoint);
712 int target_add_watchpoint(struct target *target,
713 struct watchpoint *watchpoint)
715 if (target->state != TARGET_HALTED) {
716 LOG_WARNING("target %s is not halted", target->cmd_name);
717 return ERROR_TARGET_NOT_HALTED;
719 return target->type->add_watchpoint(target, watchpoint);
721 int target_remove_watchpoint(struct target *target,
722 struct watchpoint *watchpoint)
724 return target->type->remove_watchpoint(target, watchpoint);
727 int target_get_gdb_reg_list(struct target *target,
728 struct reg **reg_list[], int *reg_list_size)
730 return target->type->get_gdb_reg_list(target, reg_list, reg_list_size);
732 int target_step(struct target *target,
733 int current, uint32_t address, int handle_breakpoints)
735 return target->type->step(target, current, address, handle_breakpoints);
740 * Reset the @c examined flag for the given target.
741 * Pure paranoia -- targets are zeroed on allocation.
743 static void target_reset_examined(struct target *target)
745 target->examined = false;
748 static int
749 err_read_phys_memory(struct target *target, uint32_t address,
750 uint32_t size, uint32_t count, uint8_t *buffer)
752 LOG_ERROR("Not implemented: %s", __func__);
753 return ERROR_FAIL;
756 static int
757 err_write_phys_memory(struct target *target, uint32_t address,
758 uint32_t size, uint32_t count, uint8_t *buffer)
760 LOG_ERROR("Not implemented: %s", __func__);
761 return ERROR_FAIL;
764 static int handle_target(void *priv);
766 static int target_init_one(struct command_context *cmd_ctx,
767 struct target *target)
769 target_reset_examined(target);
771 struct target_type *type = target->type;
772 if (type->examine == NULL)
773 type->examine = default_examine;
775 if (type->check_reset== NULL)
776 type->check_reset = default_check_reset;
778 int retval = type->init_target(cmd_ctx, target);
779 if (ERROR_OK != retval)
781 LOG_ERROR("target '%s' init failed", target_name(target));
782 return retval;
786 * @todo get rid of those *memory_imp() methods, now that all
787 * callers are using target_*_memory() accessors ... and make
788 * sure the "physical" paths handle the same issues.
790 /* a non-invasive way(in terms of patches) to add some code that
791 * runs before the type->write/read_memory implementation
793 type->write_memory_imp = target->type->write_memory;
794 type->write_memory = target_write_memory_imp;
796 type->read_memory_imp = target->type->read_memory;
797 type->read_memory = target_read_memory_imp;
799 type->soft_reset_halt_imp = target->type->soft_reset_halt;
800 type->soft_reset_halt = target_soft_reset_halt_imp;
802 /* Sanity-check MMU support ... stub in what we must, to help
803 * implement it in stages, but warn if we need to do so.
805 if (type->mmu)
807 if (type->write_phys_memory == NULL)
809 LOG_ERROR("type '%s' is missing write_phys_memory",
810 type->name);
811 type->write_phys_memory = err_write_phys_memory;
813 if (type->read_phys_memory == NULL)
815 LOG_ERROR("type '%s' is missing read_phys_memory",
816 type->name);
817 type->read_phys_memory = err_read_phys_memory;
819 if (type->virt2phys == NULL)
821 LOG_ERROR("type '%s' is missing virt2phys", type->name);
822 type->virt2phys = identity_virt2phys;
825 else
827 /* Make sure no-MMU targets all behave the same: make no
828 * distinction between physical and virtual addresses, and
829 * ensure that virt2phys() is always an identity mapping.
831 if (type->write_phys_memory || type->read_phys_memory
832 || type->virt2phys)
834 LOG_WARNING("type '%s' has bad MMU hooks", type->name);
837 type->mmu = no_mmu;
838 type->write_phys_memory = type->write_memory;
839 type->read_phys_memory = type->read_memory;
840 type->virt2phys = identity_virt2phys;
842 return ERROR_OK;
845 static int target_init(struct command_context *cmd_ctx)
847 struct target *target;
848 int retval;
850 for (target = all_targets; target; target = target->next)
852 retval = target_init_one(cmd_ctx, target);
853 if (ERROR_OK != retval)
854 return retval;
857 if (!all_targets)
858 return ERROR_OK;
860 retval = target_register_user_commands(cmd_ctx);
861 if (ERROR_OK != retval)
862 return retval;
864 retval = target_register_timer_callback(&handle_target,
865 100, 1, cmd_ctx->interp);
866 if (ERROR_OK != retval)
867 return retval;
869 return ERROR_OK;
872 COMMAND_HANDLER(handle_target_init_command)
874 if (CMD_ARGC != 0)
875 return ERROR_COMMAND_SYNTAX_ERROR;
877 static bool target_initialized = false;
878 if (target_initialized)
880 LOG_INFO("'target init' has already been called");
881 return ERROR_OK;
883 target_initialized = true;
885 LOG_DEBUG("Initializing targets...");
886 return target_init(CMD_CTX);
889 int target_register_event_callback(int (*callback)(struct target *target, enum target_event event, void *priv), void *priv)
891 struct target_event_callback **callbacks_p = &target_event_callbacks;
893 if (callback == NULL)
895 return ERROR_INVALID_ARGUMENTS;
898 if (*callbacks_p)
900 while ((*callbacks_p)->next)
901 callbacks_p = &((*callbacks_p)->next);
902 callbacks_p = &((*callbacks_p)->next);
905 (*callbacks_p) = malloc(sizeof(struct target_event_callback));
906 (*callbacks_p)->callback = callback;
907 (*callbacks_p)->priv = priv;
908 (*callbacks_p)->next = NULL;
910 return ERROR_OK;
913 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
915 struct target_timer_callback **callbacks_p = &target_timer_callbacks;
916 struct timeval now;
918 if (callback == NULL)
920 return ERROR_INVALID_ARGUMENTS;
923 if (*callbacks_p)
925 while ((*callbacks_p)->next)
926 callbacks_p = &((*callbacks_p)->next);
927 callbacks_p = &((*callbacks_p)->next);
930 (*callbacks_p) = malloc(sizeof(struct target_timer_callback));
931 (*callbacks_p)->callback = callback;
932 (*callbacks_p)->periodic = periodic;
933 (*callbacks_p)->time_ms = time_ms;
935 gettimeofday(&now, NULL);
936 (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
937 time_ms -= (time_ms % 1000);
938 (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
939 if ((*callbacks_p)->when.tv_usec > 1000000)
941 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
942 (*callbacks_p)->when.tv_sec += 1;
945 (*callbacks_p)->priv = priv;
946 (*callbacks_p)->next = NULL;
948 return ERROR_OK;
951 int target_unregister_event_callback(int (*callback)(struct target *target, enum target_event event, void *priv), void *priv)
953 struct target_event_callback **p = &target_event_callbacks;
954 struct target_event_callback *c = target_event_callbacks;
956 if (callback == NULL)
958 return ERROR_INVALID_ARGUMENTS;
961 while (c)
963 struct target_event_callback *next = c->next;
964 if ((c->callback == callback) && (c->priv == priv))
966 *p = next;
967 free(c);
968 return ERROR_OK;
970 else
971 p = &(c->next);
972 c = next;
975 return ERROR_OK;
978 static int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
980 struct target_timer_callback **p = &target_timer_callbacks;
981 struct target_timer_callback *c = target_timer_callbacks;
983 if (callback == NULL)
985 return ERROR_INVALID_ARGUMENTS;
988 while (c)
990 struct target_timer_callback *next = c->next;
991 if ((c->callback == callback) && (c->priv == priv))
993 *p = next;
994 free(c);
995 return ERROR_OK;
997 else
998 p = &(c->next);
999 c = next;
1002 return ERROR_OK;
1005 int target_call_event_callbacks(struct target *target, enum target_event event)
1007 struct target_event_callback *callback = target_event_callbacks;
1008 struct target_event_callback *next_callback;
1010 if (event == TARGET_EVENT_HALTED)
1012 /* execute early halted first */
1013 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
1016 LOG_DEBUG("target event %i (%s)",
1017 event,
1018 Jim_Nvp_value2name_simple(nvp_target_event, event)->name);
1020 target_handle_event(target, event);
1022 while (callback)
1024 next_callback = callback->next;
1025 callback->callback(target, event, callback->priv);
1026 callback = next_callback;
1029 return ERROR_OK;
1032 static int target_timer_callback_periodic_restart(
1033 struct target_timer_callback *cb, struct timeval *now)
1035 int time_ms = cb->time_ms;
1036 cb->when.tv_usec = now->tv_usec + (time_ms % 1000) * 1000;
1037 time_ms -= (time_ms % 1000);
1038 cb->when.tv_sec = now->tv_sec + time_ms / 1000;
1039 if (cb->when.tv_usec > 1000000)
1041 cb->when.tv_usec = cb->when.tv_usec - 1000000;
1042 cb->when.tv_sec += 1;
1044 return ERROR_OK;
1047 static int target_call_timer_callback(struct target_timer_callback *cb,
1048 struct timeval *now)
1050 cb->callback(cb->priv);
1052 if (cb->periodic)
1053 return target_timer_callback_periodic_restart(cb, now);
1055 return target_unregister_timer_callback(cb->callback, cb->priv);
1058 static int target_call_timer_callbacks_check_time(int checktime)
1060 keep_alive();
1062 struct timeval now;
1063 gettimeofday(&now, NULL);
1065 struct target_timer_callback *callback = target_timer_callbacks;
1066 while (callback)
1068 // cleaning up may unregister and free this callback
1069 struct target_timer_callback *next_callback = callback->next;
1071 bool call_it = callback->callback &&
1072 ((!checktime && callback->periodic) ||
1073 now.tv_sec > callback->when.tv_sec ||
1074 (now.tv_sec == callback->when.tv_sec &&
1075 now.tv_usec >= callback->when.tv_usec));
1077 if (call_it)
1079 int retval = target_call_timer_callback(callback, &now);
1080 if (retval != ERROR_OK)
1081 return retval;
1084 callback = next_callback;
1087 return ERROR_OK;
1090 int target_call_timer_callbacks(void)
1092 return target_call_timer_callbacks_check_time(1);
1095 /* invoke periodic callbacks immediately */
1096 int target_call_timer_callbacks_now(void)
1098 return target_call_timer_callbacks_check_time(0);
1101 int target_alloc_working_area_try(struct target *target, uint32_t size, struct working_area **area)
1103 struct working_area *c = target->working_areas;
1104 struct working_area *new_wa = NULL;
1106 /* Reevaluate working area address based on MMU state*/
1107 if (target->working_areas == NULL)
1109 int retval;
1110 int enabled;
1112 retval = target->type->mmu(target, &enabled);
1113 if (retval != ERROR_OK)
1115 return retval;
1118 if (!enabled) {
1119 if (target->working_area_phys_spec) {
1120 LOG_DEBUG("MMU disabled, using physical "
1121 "address for working memory 0x%08x",
1122 (unsigned)target->working_area_phys);
1123 target->working_area = target->working_area_phys;
1124 } else {
1125 LOG_ERROR("No working memory available. "
1126 "Specify -work-area-phys to target.");
1127 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1129 } else {
1130 if (target->working_area_virt_spec) {
1131 LOG_DEBUG("MMU enabled, using virtual "
1132 "address for working memory 0x%08x",
1133 (unsigned)target->working_area_virt);
1134 target->working_area = target->working_area_virt;
1135 } else {
1136 LOG_ERROR("No working memory available. "
1137 "Specify -work-area-virt to target.");
1138 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1143 /* only allocate multiples of 4 byte */
1144 if (size % 4)
1146 LOG_ERROR("BUG: code tried to allocate unaligned number of bytes (0x%08x), padding", ((unsigned)(size)));
1147 size = (size + 3) & (~3);
1150 /* see if there's already a matching working area */
1151 while (c)
1153 if ((c->free) && (c->size == size))
1155 new_wa = c;
1156 break;
1158 c = c->next;
1161 /* if not, allocate a new one */
1162 if (!new_wa)
1164 struct working_area **p = &target->working_areas;
1165 uint32_t first_free = target->working_area;
1166 uint32_t free_size = target->working_area_size;
1168 c = target->working_areas;
1169 while (c)
1171 first_free += c->size;
1172 free_size -= c->size;
1173 p = &c->next;
1174 c = c->next;
1177 if (free_size < size)
1179 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1182 LOG_DEBUG("allocated new working area at address 0x%08x", (unsigned)first_free);
1184 new_wa = malloc(sizeof(struct working_area));
1185 new_wa->next = NULL;
1186 new_wa->size = size;
1187 new_wa->address = first_free;
1189 if (target->backup_working_area)
1191 int retval;
1192 new_wa->backup = malloc(new_wa->size);
1193 if ((retval = target_read_memory(target, new_wa->address, 4, new_wa->size / 4, new_wa->backup)) != ERROR_OK)
1195 free(new_wa->backup);
1196 free(new_wa);
1197 return retval;
1200 else
1202 new_wa->backup = NULL;
1205 /* put new entry in list */
1206 *p = new_wa;
1209 /* mark as used, and return the new (reused) area */
1210 new_wa->free = 0;
1211 *area = new_wa;
1213 /* user pointer */
1214 new_wa->user = area;
1216 return ERROR_OK;
1219 int target_alloc_working_area(struct target *target, uint32_t size, struct working_area **area)
1221 int retval;
1223 retval = target_alloc_working_area_try(target, size, area);
1224 if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
1226 LOG_WARNING("not enough working area available(requested %u)", (unsigned)(size));
1228 return retval;
1232 static int target_free_working_area_restore(struct target *target, struct working_area *area, int restore)
1234 if (area->free)
1235 return ERROR_OK;
1237 if (restore && target->backup_working_area)
1239 int retval;
1240 if ((retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup)) != ERROR_OK)
1241 return retval;
1244 area->free = 1;
1246 /* mark user pointer invalid */
1247 *area->user = NULL;
1248 area->user = NULL;
1250 return ERROR_OK;
1253 int target_free_working_area(struct target *target, struct working_area *area)
1255 return target_free_working_area_restore(target, area, 1);
1258 /* free resources and restore memory, if restoring memory fails,
1259 * free up resources anyway
1261 static void target_free_all_working_areas_restore(struct target *target, int restore)
1263 struct working_area *c = target->working_areas;
1265 while (c)
1267 struct working_area *next = c->next;
1268 target_free_working_area_restore(target, c, restore);
1270 if (c->backup)
1271 free(c->backup);
1273 free(c);
1275 c = next;
1278 target->working_areas = NULL;
1281 void target_free_all_working_areas(struct target *target)
1283 target_free_all_working_areas_restore(target, 1);
1286 int target_arch_state(struct target *target)
1288 int retval;
1289 if (target == NULL)
1291 LOG_USER("No target has been configured");
1292 return ERROR_OK;
1295 LOG_USER("target state: %s", target_state_name( target ));
1297 if (target->state != TARGET_HALTED)
1298 return ERROR_OK;
1300 retval = target->type->arch_state(target);
1301 return retval;
1304 /* Single aligned words are guaranteed to use 16 or 32 bit access
1305 * mode respectively, otherwise data is handled as quickly as
1306 * possible
1308 int target_write_buffer(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
1310 int retval;
1311 LOG_DEBUG("writing buffer of %i byte at 0x%8.8x",
1312 (int)size, (unsigned)address);
1314 if (!target_was_examined(target))
1316 LOG_ERROR("Target not examined yet");
1317 return ERROR_FAIL;
1320 if (size == 0) {
1321 return ERROR_OK;
1324 if ((address + size - 1) < address)
1326 /* GDB can request this when e.g. PC is 0xfffffffc*/
1327 LOG_ERROR("address + size wrapped(0x%08x, 0x%08x)",
1328 (unsigned)address,
1329 (unsigned)size);
1330 return ERROR_FAIL;
1333 if (((address % 2) == 0) && (size == 2))
1335 return target_write_memory(target, address, 2, 1, buffer);
1338 /* handle unaligned head bytes */
1339 if (address % 4)
1341 uint32_t unaligned = 4 - (address % 4);
1343 if (unaligned > size)
1344 unaligned = size;
1346 if ((retval = target_write_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1347 return retval;
1349 buffer += unaligned;
1350 address += unaligned;
1351 size -= unaligned;
1354 /* handle aligned words */
1355 if (size >= 4)
1357 int aligned = size - (size % 4);
1359 /* use bulk writes above a certain limit. This may have to be changed */
1360 if (aligned > 128)
1362 if ((retval = target->type->bulk_write_memory(target, address, aligned / 4, buffer)) != ERROR_OK)
1363 return retval;
1365 else
1367 if ((retval = target_write_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1368 return retval;
1371 buffer += aligned;
1372 address += aligned;
1373 size -= aligned;
1376 /* handle tail writes of less than 4 bytes */
1377 if (size > 0)
1379 if ((retval = target_write_memory(target, address, 1, size, buffer)) != ERROR_OK)
1380 return retval;
1383 return ERROR_OK;
1386 /* Single aligned words are guaranteed to use 16 or 32 bit access
1387 * mode respectively, otherwise data is handled as quickly as
1388 * possible
1390 int target_read_buffer(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
1392 int retval;
1393 LOG_DEBUG("reading buffer of %i byte at 0x%8.8x",
1394 (int)size, (unsigned)address);
1396 if (!target_was_examined(target))
1398 LOG_ERROR("Target not examined yet");
1399 return ERROR_FAIL;
1402 if (size == 0) {
1403 return ERROR_OK;
1406 if ((address + size - 1) < address)
1408 /* GDB can request this when e.g. PC is 0xfffffffc*/
1409 LOG_ERROR("address + size wrapped(0x%08" PRIx32 ", 0x%08" PRIx32 ")",
1410 address,
1411 size);
1412 return ERROR_FAIL;
1415 if (((address % 2) == 0) && (size == 2))
1417 return target_read_memory(target, address, 2, 1, buffer);
1420 /* handle unaligned head bytes */
1421 if (address % 4)
1423 uint32_t unaligned = 4 - (address % 4);
1425 if (unaligned > size)
1426 unaligned = size;
1428 if ((retval = target_read_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1429 return retval;
1431 buffer += unaligned;
1432 address += unaligned;
1433 size -= unaligned;
1436 /* handle aligned words */
1437 if (size >= 4)
1439 int aligned = size - (size % 4);
1441 if ((retval = target_read_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1442 return retval;
1444 buffer += aligned;
1445 address += aligned;
1446 size -= aligned;
1449 /*prevent byte access when possible (avoid AHB access limitations in some cases)*/
1450 if(size >=2)
1452 int aligned = size - (size%2);
1453 retval = target_read_memory(target, address, 2, aligned / 2, buffer);
1454 if (retval != ERROR_OK)
1455 return retval;
1457 buffer += aligned;
1458 address += aligned;
1459 size -= aligned;
1461 /* handle tail writes of less than 4 bytes */
1462 if (size > 0)
1464 if ((retval = target_read_memory(target, address, 1, size, buffer)) != ERROR_OK)
1465 return retval;
1468 return ERROR_OK;
1471 int target_checksum_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* crc)
1473 uint8_t *buffer;
1474 int retval;
1475 uint32_t i;
1476 uint32_t checksum = 0;
1477 if (!target_was_examined(target))
1479 LOG_ERROR("Target not examined yet");
1480 return ERROR_FAIL;
1483 if ((retval = target->type->checksum_memory(target, address,
1484 size, &checksum)) != ERROR_OK)
1486 buffer = malloc(size);
1487 if (buffer == NULL)
1489 LOG_ERROR("error allocating buffer for section (%d bytes)", (int)size);
1490 return ERROR_INVALID_ARGUMENTS;
1492 retval = target_read_buffer(target, address, size, buffer);
1493 if (retval != ERROR_OK)
1495 free(buffer);
1496 return retval;
1499 /* convert to target endianess */
1500 for (i = 0; i < (size/sizeof(uint32_t)); i++)
1502 uint32_t target_data;
1503 target_data = target_buffer_get_u32(target, &buffer[i*sizeof(uint32_t)]);
1504 target_buffer_set_u32(target, &buffer[i*sizeof(uint32_t)], target_data);
1507 retval = image_calculate_checksum(buffer, size, &checksum);
1508 free(buffer);
1511 *crc = checksum;
1513 return retval;
1516 int target_blank_check_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* blank)
1518 int retval;
1519 if (!target_was_examined(target))
1521 LOG_ERROR("Target not examined yet");
1522 return ERROR_FAIL;
1525 if (target->type->blank_check_memory == 0)
1526 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1528 retval = target->type->blank_check_memory(target, address, size, blank);
1530 return retval;
1533 int target_read_u32(struct target *target, uint32_t address, uint32_t *value)
1535 uint8_t value_buf[4];
1536 if (!target_was_examined(target))
1538 LOG_ERROR("Target not examined yet");
1539 return ERROR_FAIL;
1542 int retval = target_read_memory(target, address, 4, 1, value_buf);
1544 if (retval == ERROR_OK)
1546 *value = target_buffer_get_u32(target, value_buf);
1547 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
1548 address,
1549 *value);
1551 else
1553 *value = 0x0;
1554 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1555 address);
1558 return retval;
1561 int target_read_u16(struct target *target, uint32_t address, uint16_t *value)
1563 uint8_t value_buf[2];
1564 if (!target_was_examined(target))
1566 LOG_ERROR("Target not examined yet");
1567 return ERROR_FAIL;
1570 int retval = target_read_memory(target, address, 2, 1, value_buf);
1572 if (retval == ERROR_OK)
1574 *value = target_buffer_get_u16(target, value_buf);
1575 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%4.4x",
1576 address,
1577 *value);
1579 else
1581 *value = 0x0;
1582 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1583 address);
1586 return retval;
1589 int target_read_u8(struct target *target, uint32_t address, uint8_t *value)
1591 int retval = target_read_memory(target, address, 1, 1, value);
1592 if (!target_was_examined(target))
1594 LOG_ERROR("Target not examined yet");
1595 return ERROR_FAIL;
1598 if (retval == ERROR_OK)
1600 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
1601 address,
1602 *value);
1604 else
1606 *value = 0x0;
1607 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1608 address);
1611 return retval;
1614 int target_write_u32(struct target *target, uint32_t address, uint32_t value)
1616 int retval;
1617 uint8_t value_buf[4];
1618 if (!target_was_examined(target))
1620 LOG_ERROR("Target not examined yet");
1621 return ERROR_FAIL;
1624 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
1625 address,
1626 value);
1628 target_buffer_set_u32(target, value_buf, value);
1629 if ((retval = target_write_memory(target, address, 4, 1, value_buf)) != ERROR_OK)
1631 LOG_DEBUG("failed: %i", retval);
1634 return retval;
1637 int target_write_u16(struct target *target, uint32_t address, uint16_t value)
1639 int retval;
1640 uint8_t value_buf[2];
1641 if (!target_was_examined(target))
1643 LOG_ERROR("Target not examined yet");
1644 return ERROR_FAIL;
1647 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8x",
1648 address,
1649 value);
1651 target_buffer_set_u16(target, value_buf, value);
1652 if ((retval = target_write_memory(target, address, 2, 1, value_buf)) != ERROR_OK)
1654 LOG_DEBUG("failed: %i", retval);
1657 return retval;
1660 int target_write_u8(struct target *target, uint32_t address, uint8_t value)
1662 int retval;
1663 if (!target_was_examined(target))
1665 LOG_ERROR("Target not examined yet");
1666 return ERROR_FAIL;
1669 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
1670 address, value);
1672 if ((retval = target_write_memory(target, address, 1, 1, &value)) != ERROR_OK)
1674 LOG_DEBUG("failed: %i", retval);
1677 return retval;
1680 COMMAND_HANDLER(handle_targets_command)
1682 struct target *target = all_targets;
1684 if (CMD_ARGC == 1)
1686 target = get_target(CMD_ARGV[0]);
1687 if (target == NULL) {
1688 command_print(CMD_CTX,"Target: %s is unknown, try one of:\n", CMD_ARGV[0]);
1689 goto DumpTargets;
1691 if (!target->tap->enabled) {
1692 command_print(CMD_CTX,"Target: TAP %s is disabled, "
1693 "can't be the current target\n",
1694 target->tap->dotted_name);
1695 return ERROR_FAIL;
1698 CMD_CTX->current_target = target->target_number;
1699 return ERROR_OK;
1701 DumpTargets:
1703 target = all_targets;
1704 command_print(CMD_CTX, " TargetName Type Endian TapName State ");
1705 command_print(CMD_CTX, "-- ------------------ ---------- ------ ------------------ ------------");
1706 while (target)
1708 const char *state;
1709 char marker = ' ';
1711 if (target->tap->enabled)
1712 state = target_state_name( target );
1713 else
1714 state = "tap-disabled";
1716 if (CMD_CTX->current_target == target->target_number)
1717 marker = '*';
1719 /* keep columns lined up to match the headers above */
1720 command_print(CMD_CTX, "%2d%c %-18s %-10s %-6s %-18s %s",
1721 target->target_number,
1722 marker,
1723 target_name(target),
1724 target_type_name(target),
1725 Jim_Nvp_value2name_simple(nvp_target_endian,
1726 target->endianness)->name,
1727 target->tap->dotted_name,
1728 state);
1729 target = target->next;
1732 return ERROR_OK;
1735 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
1737 static int powerDropout;
1738 static int srstAsserted;
1740 static int runPowerRestore;
1741 static int runPowerDropout;
1742 static int runSrstAsserted;
1743 static int runSrstDeasserted;
1745 static int sense_handler(void)
1747 static int prevSrstAsserted = 0;
1748 static int prevPowerdropout = 0;
1750 int retval;
1751 if ((retval = jtag_power_dropout(&powerDropout)) != ERROR_OK)
1752 return retval;
1754 int powerRestored;
1755 powerRestored = prevPowerdropout && !powerDropout;
1756 if (powerRestored)
1758 runPowerRestore = 1;
1761 long long current = timeval_ms();
1762 static long long lastPower = 0;
1763 int waitMore = lastPower + 2000 > current;
1764 if (powerDropout && !waitMore)
1766 runPowerDropout = 1;
1767 lastPower = current;
1770 if ((retval = jtag_srst_asserted(&srstAsserted)) != ERROR_OK)
1771 return retval;
1773 int srstDeasserted;
1774 srstDeasserted = prevSrstAsserted && !srstAsserted;
1776 static long long lastSrst = 0;
1777 waitMore = lastSrst + 2000 > current;
1778 if (srstDeasserted && !waitMore)
1780 runSrstDeasserted = 1;
1781 lastSrst = current;
1784 if (!prevSrstAsserted && srstAsserted)
1786 runSrstAsserted = 1;
1789 prevSrstAsserted = srstAsserted;
1790 prevPowerdropout = powerDropout;
1792 if (srstDeasserted || powerRestored)
1794 /* Other than logging the event we can't do anything here.
1795 * Issuing a reset is a particularly bad idea as we might
1796 * be inside a reset already.
1800 return ERROR_OK;
1803 /* process target state changes */
1804 static int handle_target(void *priv)
1806 Jim_Interp *interp = (Jim_Interp *)priv;
1807 int retval = ERROR_OK;
1809 if (!is_jtag_poll_safe())
1811 /* polling is disabled currently */
1812 return ERROR_OK;
1815 /* we do not want to recurse here... */
1816 static int recursive = 0;
1817 if (! recursive)
1819 recursive = 1;
1820 sense_handler();
1821 /* danger! running these procedures can trigger srst assertions and power dropouts.
1822 * We need to avoid an infinite loop/recursion here and we do that by
1823 * clearing the flags after running these events.
1825 int did_something = 0;
1826 if (runSrstAsserted)
1828 LOG_INFO("srst asserted detected, running srst_asserted proc.");
1829 Jim_Eval(interp, "srst_asserted");
1830 did_something = 1;
1832 if (runSrstDeasserted)
1834 Jim_Eval(interp, "srst_deasserted");
1835 did_something = 1;
1837 if (runPowerDropout)
1839 LOG_INFO("Power dropout detected, running power_dropout proc.");
1840 Jim_Eval(interp, "power_dropout");
1841 did_something = 1;
1843 if (runPowerRestore)
1845 Jim_Eval(interp, "power_restore");
1846 did_something = 1;
1849 if (did_something)
1851 /* clear detect flags */
1852 sense_handler();
1855 /* clear action flags */
1857 runSrstAsserted = 0;
1858 runSrstDeasserted = 0;
1859 runPowerRestore = 0;
1860 runPowerDropout = 0;
1862 recursive = 0;
1865 /* Poll targets for state changes unless that's globally disabled.
1866 * Skip targets that are currently disabled.
1868 for (struct target *target = all_targets;
1869 is_jtag_poll_safe() && target;
1870 target = target->next)
1872 if (!target->tap->enabled)
1873 continue;
1875 /* only poll target if we've got power and srst isn't asserted */
1876 if (!powerDropout && !srstAsserted)
1878 /* polling may fail silently until the target has been examined */
1879 if ((retval = target_poll(target)) != ERROR_OK)
1881 /* FIX!!!!! If we add a LOG_INFO() here to output a line in GDB
1882 * *why* we are aborting GDB, then we'll spam telnet when the
1883 * poll is failing persistently.
1885 * If we could implement an event that detected the
1886 * target going from non-pollable to pollable, we could issue
1887 * an error only upon the transition.
1889 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
1890 return retval;
1895 return retval;
1898 COMMAND_HANDLER(handle_reg_command)
1900 struct target *target;
1901 struct reg *reg = NULL;
1902 unsigned count = 0;
1903 char *value;
1905 LOG_DEBUG("-");
1907 target = get_current_target(CMD_CTX);
1909 /* list all available registers for the current target */
1910 if (CMD_ARGC == 0)
1912 struct reg_cache *cache = target->reg_cache;
1914 count = 0;
1915 while (cache)
1917 unsigned i;
1919 command_print(CMD_CTX, "===== %s", cache->name);
1921 for (i = 0, reg = cache->reg_list;
1922 i < cache->num_regs;
1923 i++, reg++, count++)
1925 /* only print cached values if they are valid */
1926 if (reg->valid) {
1927 value = buf_to_str(reg->value,
1928 reg->size, 16);
1929 command_print(CMD_CTX,
1930 "(%i) %s (/%" PRIu32 "): 0x%s%s",
1931 count, reg->name,
1932 reg->size, value,
1933 reg->dirty
1934 ? " (dirty)"
1935 : "");
1936 free(value);
1937 } else {
1938 command_print(CMD_CTX, "(%i) %s (/%" PRIu32 ")",
1939 count, reg->name,
1940 reg->size) ;
1943 cache = cache->next;
1946 return ERROR_OK;
1949 /* access a single register by its ordinal number */
1950 if ((CMD_ARGV[0][0] >= '0') && (CMD_ARGV[0][0] <= '9'))
1952 unsigned num;
1953 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], num);
1955 struct reg_cache *cache = target->reg_cache;
1956 count = 0;
1957 while (cache)
1959 unsigned i;
1960 for (i = 0; i < cache->num_regs; i++)
1962 if (count++ == num)
1964 reg = &cache->reg_list[i];
1965 break;
1968 if (reg)
1969 break;
1970 cache = cache->next;
1973 if (!reg)
1975 command_print(CMD_CTX, "%i is out of bounds, the current target has only %i registers (0 - %i)", num, count, count - 1);
1976 return ERROR_OK;
1978 } else /* access a single register by its name */
1980 reg = register_get_by_name(target->reg_cache, CMD_ARGV[0], 1);
1982 if (!reg)
1984 command_print(CMD_CTX, "register %s not found in current target", CMD_ARGV[0]);
1985 return ERROR_OK;
1989 /* display a register */
1990 if ((CMD_ARGC == 1) || ((CMD_ARGC == 2) && !((CMD_ARGV[1][0] >= '0') && (CMD_ARGV[1][0] <= '9'))))
1992 if ((CMD_ARGC == 2) && (strcmp(CMD_ARGV[1], "force") == 0))
1993 reg->valid = 0;
1995 if (reg->valid == 0)
1997 reg->type->get(reg);
1999 value = buf_to_str(reg->value, reg->size, 16);
2000 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2001 free(value);
2002 return ERROR_OK;
2005 /* set register value */
2006 if (CMD_ARGC == 2)
2008 uint8_t *buf = malloc(DIV_ROUND_UP(reg->size, 8));
2009 str_to_buf(CMD_ARGV[1], strlen(CMD_ARGV[1]), buf, reg->size, 0);
2011 reg->type->set(reg, buf);
2013 value = buf_to_str(reg->value, reg->size, 16);
2014 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2015 free(value);
2017 free(buf);
2019 return ERROR_OK;
2022 command_print(CMD_CTX, "usage: reg <#|name> [value]");
2024 return ERROR_OK;
2027 COMMAND_HANDLER(handle_poll_command)
2029 int retval = ERROR_OK;
2030 struct target *target = get_current_target(CMD_CTX);
2032 if (CMD_ARGC == 0)
2034 command_print(CMD_CTX, "background polling: %s",
2035 jtag_poll_get_enabled() ? "on" : "off");
2036 command_print(CMD_CTX, "TAP: %s (%s)",
2037 target->tap->dotted_name,
2038 target->tap->enabled ? "enabled" : "disabled");
2039 if (!target->tap->enabled)
2040 return ERROR_OK;
2041 if ((retval = target_poll(target)) != ERROR_OK)
2042 return retval;
2043 if ((retval = target_arch_state(target)) != ERROR_OK)
2044 return retval;
2046 else if (CMD_ARGC == 1)
2048 bool enable;
2049 COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
2050 jtag_poll_set_enabled(enable);
2052 else
2054 return ERROR_COMMAND_SYNTAX_ERROR;
2057 return retval;
2060 COMMAND_HANDLER(handle_wait_halt_command)
2062 if (CMD_ARGC > 1)
2063 return ERROR_COMMAND_SYNTAX_ERROR;
2065 unsigned ms = 5000;
2066 if (1 == CMD_ARGC)
2068 int retval = parse_uint(CMD_ARGV[0], &ms);
2069 if (ERROR_OK != retval)
2071 command_print(CMD_CTX, "usage: %s [seconds]", CMD_NAME);
2072 return ERROR_COMMAND_SYNTAX_ERROR;
2074 // convert seconds (given) to milliseconds (needed)
2075 ms *= 1000;
2078 struct target *target = get_current_target(CMD_CTX);
2079 return target_wait_state(target, TARGET_HALTED, ms);
2082 /* wait for target state to change. The trick here is to have a low
2083 * latency for short waits and not to suck up all the CPU time
2084 * on longer waits.
2086 * After 500ms, keep_alive() is invoked
2088 int target_wait_state(struct target *target, enum target_state state, int ms)
2090 int retval;
2091 long long then = 0, cur;
2092 int once = 1;
2094 for (;;)
2096 if ((retval = target_poll(target)) != ERROR_OK)
2097 return retval;
2098 if (target->state == state)
2100 break;
2102 cur = timeval_ms();
2103 if (once)
2105 once = 0;
2106 then = timeval_ms();
2107 LOG_DEBUG("waiting for target %s...",
2108 Jim_Nvp_value2name_simple(nvp_target_state,state)->name);
2111 if (cur-then > 500)
2113 keep_alive();
2116 if ((cur-then) > ms)
2118 LOG_ERROR("timed out while waiting for target %s",
2119 Jim_Nvp_value2name_simple(nvp_target_state,state)->name);
2120 return ERROR_FAIL;
2124 return ERROR_OK;
2127 COMMAND_HANDLER(handle_halt_command)
2129 LOG_DEBUG("-");
2131 struct target *target = get_current_target(CMD_CTX);
2132 int retval = target_halt(target);
2133 if (ERROR_OK != retval)
2134 return retval;
2136 if (CMD_ARGC == 1)
2138 unsigned wait_local;
2139 retval = parse_uint(CMD_ARGV[0], &wait_local);
2140 if (ERROR_OK != retval)
2141 return ERROR_COMMAND_SYNTAX_ERROR;
2142 if (!wait_local)
2143 return ERROR_OK;
2146 return CALL_COMMAND_HANDLER(handle_wait_halt_command);
2149 COMMAND_HANDLER(handle_soft_reset_halt_command)
2151 struct target *target = get_current_target(CMD_CTX);
2153 LOG_USER("requesting target halt and executing a soft reset");
2155 target->type->soft_reset_halt(target);
2157 return ERROR_OK;
2160 COMMAND_HANDLER(handle_reset_command)
2162 if (CMD_ARGC > 1)
2163 return ERROR_COMMAND_SYNTAX_ERROR;
2165 enum target_reset_mode reset_mode = RESET_RUN;
2166 if (CMD_ARGC == 1)
2168 const Jim_Nvp *n;
2169 n = Jim_Nvp_name2value_simple(nvp_reset_modes, CMD_ARGV[0]);
2170 if ((n->name == NULL) || (n->value == RESET_UNKNOWN)) {
2171 return ERROR_COMMAND_SYNTAX_ERROR;
2173 reset_mode = n->value;
2176 /* reset *all* targets */
2177 return target_process_reset(CMD_CTX, reset_mode);
2181 COMMAND_HANDLER(handle_resume_command)
2183 int current = 1;
2184 if (CMD_ARGC > 1)
2185 return ERROR_COMMAND_SYNTAX_ERROR;
2187 struct target *target = get_current_target(CMD_CTX);
2188 target_handle_event(target, TARGET_EVENT_OLD_pre_resume);
2190 /* with no CMD_ARGV, resume from current pc, addr = 0,
2191 * with one arguments, addr = CMD_ARGV[0],
2192 * handle breakpoints, not debugging */
2193 uint32_t addr = 0;
2194 if (CMD_ARGC == 1)
2196 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2197 current = 0;
2200 return target_resume(target, current, addr, 1, 0);
2203 COMMAND_HANDLER(handle_step_command)
2205 if (CMD_ARGC > 1)
2206 return ERROR_COMMAND_SYNTAX_ERROR;
2208 LOG_DEBUG("-");
2210 /* with no CMD_ARGV, step from current pc, addr = 0,
2211 * with one argument addr = CMD_ARGV[0],
2212 * handle breakpoints, debugging */
2213 uint32_t addr = 0;
2214 int current_pc = 1;
2215 if (CMD_ARGC == 1)
2217 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2218 current_pc = 0;
2221 struct target *target = get_current_target(CMD_CTX);
2223 return target->type->step(target, current_pc, addr, 1);
2226 static void handle_md_output(struct command_context *cmd_ctx,
2227 struct target *target, uint32_t address, unsigned size,
2228 unsigned count, const uint8_t *buffer)
2230 const unsigned line_bytecnt = 32;
2231 unsigned line_modulo = line_bytecnt / size;
2233 char output[line_bytecnt * 4 + 1];
2234 unsigned output_len = 0;
2236 const char *value_fmt;
2237 switch (size) {
2238 case 4: value_fmt = "%8.8x "; break;
2239 case 2: value_fmt = "%4.4x "; break;
2240 case 1: value_fmt = "%2.2x "; break;
2241 default:
2242 /* "can't happen", caller checked */
2243 LOG_ERROR("invalid memory read size: %u", size);
2244 return;
2247 for (unsigned i = 0; i < count; i++)
2249 if (i % line_modulo == 0)
2251 output_len += snprintf(output + output_len,
2252 sizeof(output) - output_len,
2253 "0x%8.8x: ",
2254 (unsigned)(address + (i*size)));
2257 uint32_t value = 0;
2258 const uint8_t *value_ptr = buffer + i * size;
2259 switch (size) {
2260 case 4: value = target_buffer_get_u32(target, value_ptr); break;
2261 case 2: value = target_buffer_get_u16(target, value_ptr); break;
2262 case 1: value = *value_ptr;
2264 output_len += snprintf(output + output_len,
2265 sizeof(output) - output_len,
2266 value_fmt, value);
2268 if ((i % line_modulo == line_modulo - 1) || (i == count - 1))
2270 command_print(cmd_ctx, "%s", output);
2271 output_len = 0;
2276 COMMAND_HANDLER(handle_md_command)
2278 if (CMD_ARGC < 1)
2279 return ERROR_COMMAND_SYNTAX_ERROR;
2281 unsigned size = 0;
2282 switch (CMD_NAME[2]) {
2283 case 'w': size = 4; break;
2284 case 'h': size = 2; break;
2285 case 'b': size = 1; break;
2286 default: return ERROR_COMMAND_SYNTAX_ERROR;
2289 bool physical=strcmp(CMD_ARGV[0], "phys")==0;
2290 int (*fn)(struct target *target,
2291 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
2292 if (physical)
2294 CMD_ARGC--;
2295 CMD_ARGV++;
2296 fn=target_read_phys_memory;
2297 } else
2299 fn=target_read_memory;
2301 if ((CMD_ARGC < 1) || (CMD_ARGC > 2))
2303 return ERROR_COMMAND_SYNTAX_ERROR;
2306 uint32_t address;
2307 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2309 unsigned count = 1;
2310 if (CMD_ARGC == 2)
2311 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[1], count);
2313 uint8_t *buffer = calloc(count, size);
2315 struct target *target = get_current_target(CMD_CTX);
2316 int retval = fn(target, address, size, count, buffer);
2317 if (ERROR_OK == retval)
2318 handle_md_output(CMD_CTX, target, address, size, count, buffer);
2320 free(buffer);
2322 return retval;
2325 typedef int (*target_write_fn)(struct target *target,
2326 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
2328 static int target_write_memory_fast(struct target *target,
2329 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
2331 return target_write_buffer(target, address, size * count, buffer);
2334 static int target_fill_mem(struct target *target,
2335 uint32_t address,
2336 target_write_fn fn,
2337 unsigned data_size,
2338 /* value */
2339 uint32_t b,
2340 /* count */
2341 unsigned c)
2343 /* We have to write in reasonably large chunks to be able
2344 * to fill large memory areas with any sane speed */
2345 const unsigned chunk_size = 16384;
2346 uint8_t *target_buf = malloc(chunk_size * data_size);
2347 if (target_buf == NULL)
2349 LOG_ERROR("Out of memory");
2350 return ERROR_FAIL;
2353 for (unsigned i = 0; i < chunk_size; i ++)
2355 switch (data_size)
2357 case 4:
2358 target_buffer_set_u32(target, target_buf + i*data_size, b);
2359 break;
2360 case 2:
2361 target_buffer_set_u16(target, target_buf + i*data_size, b);
2362 break;
2363 case 1:
2364 target_buffer_set_u8(target, target_buf + i*data_size, b);
2365 break;
2366 default:
2367 exit(-1);
2371 int retval = ERROR_OK;
2373 for (unsigned x = 0; x < c; x += chunk_size)
2375 unsigned current;
2376 current = c - x;
2377 if (current > chunk_size)
2379 current = chunk_size;
2381 retval = fn(target, address + x * data_size, data_size, current, target_buf);
2382 if (retval != ERROR_OK)
2384 break;
2386 /* avoid GDB timeouts */
2387 keep_alive();
2389 free(target_buf);
2391 return retval;
2395 COMMAND_HANDLER(handle_mw_command)
2397 if (CMD_ARGC < 2)
2399 return ERROR_COMMAND_SYNTAX_ERROR;
2401 bool physical=strcmp(CMD_ARGV[0], "phys")==0;
2402 target_write_fn fn;
2403 if (physical)
2405 CMD_ARGC--;
2406 CMD_ARGV++;
2407 fn=target_write_phys_memory;
2408 } else
2410 fn = target_write_memory_fast;
2412 if ((CMD_ARGC < 2) || (CMD_ARGC > 3))
2413 return ERROR_COMMAND_SYNTAX_ERROR;
2415 uint32_t address;
2416 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2418 uint32_t value;
2419 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
2421 unsigned count = 1;
2422 if (CMD_ARGC == 3)
2423 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[2], count);
2425 struct target *target = get_current_target(CMD_CTX);
2426 unsigned wordsize;
2427 switch (CMD_NAME[2])
2429 case 'w':
2430 wordsize = 4;
2431 break;
2432 case 'h':
2433 wordsize = 2;
2434 break;
2435 case 'b':
2436 wordsize = 1;
2437 break;
2438 default:
2439 return ERROR_COMMAND_SYNTAX_ERROR;
2442 return target_fill_mem(target, address, fn, wordsize, value, count);
2445 static COMMAND_HELPER(parse_load_image_command_CMD_ARGV, struct image *image,
2446 uint32_t *min_address, uint32_t *max_address)
2448 if (CMD_ARGC < 1 || CMD_ARGC > 5)
2449 return ERROR_COMMAND_SYNTAX_ERROR;
2451 /* a base address isn't always necessary,
2452 * default to 0x0 (i.e. don't relocate) */
2453 if (CMD_ARGC >= 2)
2455 uint32_t addr;
2456 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
2457 image->base_address = addr;
2458 image->base_address_set = 1;
2460 else
2461 image->base_address_set = 0;
2463 image->start_address_set = 0;
2465 if (CMD_ARGC >= 4)
2467 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], *min_address);
2469 if (CMD_ARGC == 5)
2471 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], *max_address);
2472 // use size (given) to find max (required)
2473 *max_address += *min_address;
2476 if (*min_address > *max_address)
2477 return ERROR_COMMAND_SYNTAX_ERROR;
2479 return ERROR_OK;
2482 COMMAND_HANDLER(handle_load_image_command)
2484 uint8_t *buffer;
2485 size_t buf_cnt;
2486 uint32_t image_size;
2487 uint32_t min_address = 0;
2488 uint32_t max_address = 0xffffffff;
2489 int i;
2490 struct image image;
2492 int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
2493 &image, &min_address, &max_address);
2494 if (ERROR_OK != retval)
2495 return retval;
2497 struct target *target = get_current_target(CMD_CTX);
2499 struct duration bench;
2500 duration_start(&bench);
2502 if (image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK)
2504 return ERROR_OK;
2507 image_size = 0x0;
2508 retval = ERROR_OK;
2509 for (i = 0; i < image.num_sections; i++)
2511 buffer = malloc(image.sections[i].size);
2512 if (buffer == NULL)
2514 command_print(CMD_CTX,
2515 "error allocating buffer for section (%d bytes)",
2516 (int)(image.sections[i].size));
2517 break;
2520 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2522 free(buffer);
2523 break;
2526 uint32_t offset = 0;
2527 uint32_t length = buf_cnt;
2529 /* DANGER!!! beware of unsigned comparision here!!! */
2531 if ((image.sections[i].base_address + buf_cnt >= min_address)&&
2532 (image.sections[i].base_address < max_address))
2534 if (image.sections[i].base_address < min_address)
2536 /* clip addresses below */
2537 offset += min_address-image.sections[i].base_address;
2538 length -= offset;
2541 if (image.sections[i].base_address + buf_cnt > max_address)
2543 length -= (image.sections[i].base_address + buf_cnt)-max_address;
2546 if ((retval = target_write_buffer(target, image.sections[i].base_address + offset, length, buffer + offset)) != ERROR_OK)
2548 free(buffer);
2549 break;
2551 image_size += length;
2552 command_print(CMD_CTX, "%u bytes written at address 0x%8.8" PRIx32 "",
2553 (unsigned int)length,
2554 image.sections[i].base_address + offset);
2557 free(buffer);
2560 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
2562 command_print(CMD_CTX, "downloaded %" PRIu32 " bytes "
2563 "in %fs (%0.3f KiB/s)", image_size,
2564 duration_elapsed(&bench), duration_kbps(&bench, image_size));
2567 image_close(&image);
2569 return retval;
2573 COMMAND_HANDLER(handle_dump_image_command)
2575 struct fileio fileio;
2577 uint8_t buffer[560];
2578 int retvaltemp;
2581 struct target *target = get_current_target(CMD_CTX);
2583 if (CMD_ARGC != 3)
2585 command_print(CMD_CTX, "usage: dump_image <filename> <address> <size>");
2586 return ERROR_OK;
2589 uint32_t address;
2590 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], address);
2591 uint32_t size;
2592 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], size);
2594 if (fileio_open(&fileio, CMD_ARGV[0], FILEIO_WRITE, FILEIO_BINARY) != ERROR_OK)
2596 return ERROR_OK;
2599 struct duration bench;
2600 duration_start(&bench);
2602 int retval = ERROR_OK;
2603 while (size > 0)
2605 size_t size_written;
2606 uint32_t this_run_size = (size > 560) ? 560 : size;
2607 retval = target_read_buffer(target, address, this_run_size, buffer);
2608 if (retval != ERROR_OK)
2610 break;
2613 retval = fileio_write(&fileio, this_run_size, buffer, &size_written);
2614 if (retval != ERROR_OK)
2616 break;
2619 size -= this_run_size;
2620 address += this_run_size;
2623 if ((retvaltemp = fileio_close(&fileio)) != ERROR_OK)
2624 return retvaltemp;
2626 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
2628 command_print(CMD_CTX,
2629 "dumped %ld bytes in %fs (%0.3f KiB/s)", (long)fileio.size,
2630 duration_elapsed(&bench), duration_kbps(&bench, fileio.size));
2633 return retval;
2636 static COMMAND_HELPER(handle_verify_image_command_internal, int verify)
2638 uint8_t *buffer;
2639 size_t buf_cnt;
2640 uint32_t image_size;
2641 int i;
2642 int retval;
2643 uint32_t checksum = 0;
2644 uint32_t mem_checksum = 0;
2646 struct image image;
2648 struct target *target = get_current_target(CMD_CTX);
2650 if (CMD_ARGC < 1)
2652 return ERROR_COMMAND_SYNTAX_ERROR;
2655 if (!target)
2657 LOG_ERROR("no target selected");
2658 return ERROR_FAIL;
2661 struct duration bench;
2662 duration_start(&bench);
2664 if (CMD_ARGC >= 2)
2666 uint32_t addr;
2667 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
2668 image.base_address = addr;
2669 image.base_address_set = 1;
2671 else
2673 image.base_address_set = 0;
2674 image.base_address = 0x0;
2677 image.start_address_set = 0;
2679 if ((retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC == 3) ? CMD_ARGV[2] : NULL)) != ERROR_OK)
2681 return retval;
2684 image_size = 0x0;
2685 int diffs = 0;
2686 retval = ERROR_OK;
2687 for (i = 0; i < image.num_sections; i++)
2689 buffer = malloc(image.sections[i].size);
2690 if (buffer == NULL)
2692 command_print(CMD_CTX,
2693 "error allocating buffer for section (%d bytes)",
2694 (int)(image.sections[i].size));
2695 break;
2697 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2699 free(buffer);
2700 break;
2703 if (verify)
2705 /* calculate checksum of image */
2706 image_calculate_checksum(buffer, buf_cnt, &checksum);
2708 retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
2709 if (retval != ERROR_OK)
2711 free(buffer);
2712 break;
2715 if (checksum != mem_checksum)
2717 /* failed crc checksum, fall back to a binary compare */
2718 uint8_t *data;
2720 if (diffs == 0)
2722 LOG_ERROR("checksum mismatch - attempting binary compare");
2725 data = (uint8_t*)malloc(buf_cnt);
2727 /* Can we use 32bit word accesses? */
2728 int size = 1;
2729 int count = buf_cnt;
2730 if ((count % 4) == 0)
2732 size *= 4;
2733 count /= 4;
2735 retval = target_read_memory(target, image.sections[i].base_address, size, count, data);
2736 if (retval == ERROR_OK)
2738 uint32_t t;
2739 for (t = 0; t < buf_cnt; t++)
2741 if (data[t] != buffer[t])
2743 command_print(CMD_CTX,
2744 "diff %d address 0x%08x. Was 0x%02x instead of 0x%02x",
2745 diffs,
2746 (unsigned)(t + image.sections[i].base_address),
2747 data[t],
2748 buffer[t]);
2749 if (diffs++ >= 127)
2751 command_print(CMD_CTX, "More than 128 errors, the rest are not printed.");
2752 free(data);
2753 free(buffer);
2754 goto done;
2757 keep_alive();
2760 free(data);
2762 } else
2764 command_print(CMD_CTX, "address 0x%08" PRIx32 " length 0x%08zx",
2765 image.sections[i].base_address,
2766 buf_cnt);
2769 free(buffer);
2770 image_size += buf_cnt;
2772 done:
2773 if (diffs > 0)
2775 retval = ERROR_FAIL;
2777 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
2779 command_print(CMD_CTX, "verified %" PRIu32 " bytes "
2780 "in %fs (%0.3f KiB/s)", image_size,
2781 duration_elapsed(&bench), duration_kbps(&bench, image_size));
2784 image_close(&image);
2786 return retval;
2789 COMMAND_HANDLER(handle_verify_image_command)
2791 return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 1);
2794 COMMAND_HANDLER(handle_test_image_command)
2796 return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 0);
2799 static int handle_bp_command_list(struct command_context *cmd_ctx)
2801 struct target *target = get_current_target(cmd_ctx);
2802 struct breakpoint *breakpoint = target->breakpoints;
2803 while (breakpoint)
2805 if (breakpoint->type == BKPT_SOFT)
2807 char* buf = buf_to_str(breakpoint->orig_instr,
2808 breakpoint->length, 16);
2809 command_print(cmd_ctx, "0x%8.8" PRIx32 ", 0x%x, %i, 0x%s",
2810 breakpoint->address,
2811 breakpoint->length,
2812 breakpoint->set, buf);
2813 free(buf);
2815 else
2817 command_print(cmd_ctx, "0x%8.8" PRIx32 ", 0x%x, %i",
2818 breakpoint->address,
2819 breakpoint->length, breakpoint->set);
2822 breakpoint = breakpoint->next;
2824 return ERROR_OK;
2827 static int handle_bp_command_set(struct command_context *cmd_ctx,
2828 uint32_t addr, uint32_t length, int hw)
2830 struct target *target = get_current_target(cmd_ctx);
2831 int retval = breakpoint_add(target, addr, length, hw);
2832 if (ERROR_OK == retval)
2833 command_print(cmd_ctx, "breakpoint set at 0x%8.8" PRIx32 "", addr);
2834 else
2835 LOG_ERROR("Failure setting breakpoint");
2836 return retval;
2839 COMMAND_HANDLER(handle_bp_command)
2841 if (CMD_ARGC == 0)
2842 return handle_bp_command_list(CMD_CTX);
2844 if (CMD_ARGC < 2 || CMD_ARGC > 3)
2846 command_print(CMD_CTX, "usage: bp <address> <length> ['hw']");
2847 return ERROR_COMMAND_SYNTAX_ERROR;
2850 uint32_t addr;
2851 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2852 uint32_t length;
2853 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
2855 int hw = BKPT_SOFT;
2856 if (CMD_ARGC == 3)
2858 if (strcmp(CMD_ARGV[2], "hw") == 0)
2859 hw = BKPT_HARD;
2860 else
2861 return ERROR_COMMAND_SYNTAX_ERROR;
2864 return handle_bp_command_set(CMD_CTX, addr, length, hw);
2867 COMMAND_HANDLER(handle_rbp_command)
2869 if (CMD_ARGC != 1)
2870 return ERROR_COMMAND_SYNTAX_ERROR;
2872 uint32_t addr;
2873 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2875 struct target *target = get_current_target(CMD_CTX);
2876 breakpoint_remove(target, addr);
2878 return ERROR_OK;
2881 COMMAND_HANDLER(handle_wp_command)
2883 struct target *target = get_current_target(CMD_CTX);
2885 if (CMD_ARGC == 0)
2887 struct watchpoint *watchpoint = target->watchpoints;
2889 while (watchpoint)
2891 command_print(CMD_CTX, "address: 0x%8.8" PRIx32
2892 ", len: 0x%8.8" PRIx32
2893 ", r/w/a: %i, value: 0x%8.8" PRIx32
2894 ", mask: 0x%8.8" PRIx32,
2895 watchpoint->address,
2896 watchpoint->length,
2897 (int)watchpoint->rw,
2898 watchpoint->value,
2899 watchpoint->mask);
2900 watchpoint = watchpoint->next;
2902 return ERROR_OK;
2905 enum watchpoint_rw type = WPT_ACCESS;
2906 uint32_t addr = 0;
2907 uint32_t length = 0;
2908 uint32_t data_value = 0x0;
2909 uint32_t data_mask = 0xffffffff;
2911 switch (CMD_ARGC)
2913 case 5:
2914 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], data_mask);
2915 // fall through
2916 case 4:
2917 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], data_value);
2918 // fall through
2919 case 3:
2920 switch (CMD_ARGV[2][0])
2922 case 'r':
2923 type = WPT_READ;
2924 break;
2925 case 'w':
2926 type = WPT_WRITE;
2927 break;
2928 case 'a':
2929 type = WPT_ACCESS;
2930 break;
2931 default:
2932 LOG_ERROR("invalid watchpoint mode ('%c')", CMD_ARGV[2][0]);
2933 return ERROR_COMMAND_SYNTAX_ERROR;
2935 // fall through
2936 case 2:
2937 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
2938 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2939 break;
2941 default:
2942 command_print(CMD_CTX, "usage: wp [address length "
2943 "[(r|w|a) [value [mask]]]]");
2944 return ERROR_COMMAND_SYNTAX_ERROR;
2947 int retval = watchpoint_add(target, addr, length, type,
2948 data_value, data_mask);
2949 if (ERROR_OK != retval)
2950 LOG_ERROR("Failure setting watchpoints");
2952 return retval;
2955 COMMAND_HANDLER(handle_rwp_command)
2957 if (CMD_ARGC != 1)
2958 return ERROR_COMMAND_SYNTAX_ERROR;
2960 uint32_t addr;
2961 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2963 struct target *target = get_current_target(CMD_CTX);
2964 watchpoint_remove(target, addr);
2966 return ERROR_OK;
2971 * Translate a virtual address to a physical address.
2973 * The low-level target implementation must have logged a detailed error
2974 * which is forwarded to telnet/GDB session.
2976 COMMAND_HANDLER(handle_virt2phys_command)
2978 if (CMD_ARGC != 1)
2979 return ERROR_COMMAND_SYNTAX_ERROR;
2981 uint32_t va;
2982 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], va);
2983 uint32_t pa;
2985 struct target *target = get_current_target(CMD_CTX);
2986 int retval = target->type->virt2phys(target, va, &pa);
2987 if (retval == ERROR_OK)
2988 command_print(CMD_CTX, "Physical address 0x%08" PRIx32 "", pa);
2990 return retval;
2993 static void writeData(FILE *f, const void *data, size_t len)
2995 size_t written = fwrite(data, 1, len, f);
2996 if (written != len)
2997 LOG_ERROR("failed to write %zu bytes: %s", len, strerror(errno));
3000 static void writeLong(FILE *f, int l)
3002 int i;
3003 for (i = 0; i < 4; i++)
3005 char c = (l >> (i*8))&0xff;
3006 writeData(f, &c, 1);
3011 static void writeString(FILE *f, char *s)
3013 writeData(f, s, strlen(s));
3016 /* Dump a gmon.out histogram file. */
3017 static void writeGmon(uint32_t *samples, uint32_t sampleNum, const char *filename)
3019 uint32_t i;
3020 FILE *f = fopen(filename, "w");
3021 if (f == NULL)
3022 return;
3023 writeString(f, "gmon");
3024 writeLong(f, 0x00000001); /* Version */
3025 writeLong(f, 0); /* padding */
3026 writeLong(f, 0); /* padding */
3027 writeLong(f, 0); /* padding */
3029 uint8_t zero = 0; /* GMON_TAG_TIME_HIST */
3030 writeData(f, &zero, 1);
3032 /* figure out bucket size */
3033 uint32_t min = samples[0];
3034 uint32_t max = samples[0];
3035 for (i = 0; i < sampleNum; i++)
3037 if (min > samples[i])
3039 min = samples[i];
3041 if (max < samples[i])
3043 max = samples[i];
3047 int addressSpace = (max-min + 1);
3049 static const uint32_t maxBuckets = 256 * 1024; /* maximum buckets. */
3050 uint32_t length = addressSpace;
3051 if (length > maxBuckets)
3053 length = maxBuckets;
3055 int *buckets = malloc(sizeof(int)*length);
3056 if (buckets == NULL)
3058 fclose(f);
3059 return;
3061 memset(buckets, 0, sizeof(int)*length);
3062 for (i = 0; i < sampleNum;i++)
3064 uint32_t address = samples[i];
3065 long long a = address-min;
3066 long long b = length-1;
3067 long long c = addressSpace-1;
3068 int index_t = (a*b)/c; /* danger!!!! int32 overflows */
3069 buckets[index_t]++;
3072 /* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */
3073 writeLong(f, min); /* low_pc */
3074 writeLong(f, max); /* high_pc */
3075 writeLong(f, length); /* # of samples */
3076 writeLong(f, 64000000); /* 64MHz */
3077 writeString(f, "seconds");
3078 for (i = 0; i < (15-strlen("seconds")); i++)
3079 writeData(f, &zero, 1);
3080 writeString(f, "s");
3082 /*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */
3084 char *data = malloc(2*length);
3085 if (data != NULL)
3087 for (i = 0; i < length;i++)
3089 int val;
3090 val = buckets[i];
3091 if (val > 65535)
3093 val = 65535;
3095 data[i*2]=val&0xff;
3096 data[i*2 + 1]=(val >> 8)&0xff;
3098 free(buckets);
3099 writeData(f, data, length * 2);
3100 free(data);
3101 } else
3103 free(buckets);
3106 fclose(f);
3109 /* profiling samples the CPU PC as quickly as OpenOCD is able,
3110 * which will be used as a random sampling of PC */
3111 COMMAND_HANDLER(handle_profile_command)
3113 struct target *target = get_current_target(CMD_CTX);
3114 struct timeval timeout, now;
3116 gettimeofday(&timeout, NULL);
3117 if (CMD_ARGC != 2)
3119 return ERROR_COMMAND_SYNTAX_ERROR;
3121 unsigned offset;
3122 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], offset);
3124 timeval_add_time(&timeout, offset, 0);
3127 * @todo: Some cores let us sample the PC without the
3128 * annoying halt/resume step; for example, ARMv7 PCSR.
3129 * Provide a way to use that more efficient mechanism.
3132 command_print(CMD_CTX, "Starting profiling. Halting and resuming the target as often as we can...");
3134 static const int maxSample = 10000;
3135 uint32_t *samples = malloc(sizeof(uint32_t)*maxSample);
3136 if (samples == NULL)
3137 return ERROR_OK;
3139 int numSamples = 0;
3140 /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
3141 struct reg *reg = register_get_by_name(target->reg_cache, "pc", 1);
3143 for (;;)
3145 int retval;
3146 target_poll(target);
3147 if (target->state == TARGET_HALTED)
3149 uint32_t t=*((uint32_t *)reg->value);
3150 samples[numSamples++]=t;
3151 retval = target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
3152 target_poll(target);
3153 alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
3154 } else if (target->state == TARGET_RUNNING)
3156 /* We want to quickly sample the PC. */
3157 if ((retval = target_halt(target)) != ERROR_OK)
3159 free(samples);
3160 return retval;
3162 } else
3164 command_print(CMD_CTX, "Target not halted or running");
3165 retval = ERROR_OK;
3166 break;
3168 if (retval != ERROR_OK)
3170 break;
3173 gettimeofday(&now, NULL);
3174 if ((numSamples >= maxSample) || ((now.tv_sec >= timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
3176 command_print(CMD_CTX, "Profiling completed. %d samples.", numSamples);
3177 if ((retval = target_poll(target)) != ERROR_OK)
3179 free(samples);
3180 return retval;
3182 if (target->state == TARGET_HALTED)
3184 target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
3186 if ((retval = target_poll(target)) != ERROR_OK)
3188 free(samples);
3189 return retval;
3191 writeGmon(samples, numSamples, CMD_ARGV[1]);
3192 command_print(CMD_CTX, "Wrote %s", CMD_ARGV[1]);
3193 break;
3196 free(samples);
3198 return ERROR_OK;
3201 static int new_int_array_element(Jim_Interp * interp, const char *varname, int idx, uint32_t val)
3203 char *namebuf;
3204 Jim_Obj *nameObjPtr, *valObjPtr;
3205 int result;
3207 namebuf = alloc_printf("%s(%d)", varname, idx);
3208 if (!namebuf)
3209 return JIM_ERR;
3211 nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3212 valObjPtr = Jim_NewIntObj(interp, val);
3213 if (!nameObjPtr || !valObjPtr)
3215 free(namebuf);
3216 return JIM_ERR;
3219 Jim_IncrRefCount(nameObjPtr);
3220 Jim_IncrRefCount(valObjPtr);
3221 result = Jim_SetVariable(interp, nameObjPtr, valObjPtr);
3222 Jim_DecrRefCount(interp, nameObjPtr);
3223 Jim_DecrRefCount(interp, valObjPtr);
3224 free(namebuf);
3225 /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
3226 return result;
3229 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3231 struct command_context *context;
3232 struct target *target;
3234 context = current_command_context(interp);
3235 assert (context != NULL);
3237 target = get_current_target(context);
3238 if (target == NULL)
3240 LOG_ERROR("mem2array: no current target");
3241 return JIM_ERR;
3244 return target_mem2array(interp, target, argc-1, argv + 1);
3247 static int target_mem2array(Jim_Interp *interp, struct target *target, int argc, Jim_Obj *const *argv)
3249 long l;
3250 uint32_t width;
3251 int len;
3252 uint32_t addr;
3253 uint32_t count;
3254 uint32_t v;
3255 const char *varname;
3256 int n, e, retval;
3257 uint32_t i;
3259 /* argv[1] = name of array to receive the data
3260 * argv[2] = desired width
3261 * argv[3] = memory address
3262 * argv[4] = count of times to read
3264 if (argc != 4) {
3265 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
3266 return JIM_ERR;
3268 varname = Jim_GetString(argv[0], &len);
3269 /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3271 e = Jim_GetLong(interp, argv[1], &l);
3272 width = l;
3273 if (e != JIM_OK) {
3274 return e;
3277 e = Jim_GetLong(interp, argv[2], &l);
3278 addr = l;
3279 if (e != JIM_OK) {
3280 return e;
3282 e = Jim_GetLong(interp, argv[3], &l);
3283 len = l;
3284 if (e != JIM_OK) {
3285 return e;
3287 switch (width) {
3288 case 8:
3289 width = 1;
3290 break;
3291 case 16:
3292 width = 2;
3293 break;
3294 case 32:
3295 width = 4;
3296 break;
3297 default:
3298 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3299 Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
3300 return JIM_ERR;
3302 if (len == 0) {
3303 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3304 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL);
3305 return JIM_ERR;
3307 if ((addr + (len * width)) < addr) {
3308 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3309 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL);
3310 return JIM_ERR;
3312 /* absurd transfer size? */
3313 if (len > 65536) {
3314 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3315 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: absurd > 64K item request", NULL);
3316 return JIM_ERR;
3319 if ((width == 1) ||
3320 ((width == 2) && ((addr & 1) == 0)) ||
3321 ((width == 4) && ((addr & 3) == 0))) {
3322 /* all is well */
3323 } else {
3324 char buf[100];
3325 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3326 sprintf(buf, "mem2array address: 0x%08" PRIx32 " is not aligned for %" PRId32 " byte reads",
3327 addr,
3328 width);
3329 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3330 return JIM_ERR;
3333 /* Transfer loop */
3335 /* index counter */
3336 n = 0;
3338 size_t buffersize = 4096;
3339 uint8_t *buffer = malloc(buffersize);
3340 if (buffer == NULL)
3341 return JIM_ERR;
3343 /* assume ok */
3344 e = JIM_OK;
3345 while (len) {
3346 /* Slurp... in buffer size chunks */
3348 count = len; /* in objects.. */
3349 if (count > (buffersize/width)) {
3350 count = (buffersize/width);
3353 retval = target_read_memory(target, addr, width, count, buffer);
3354 if (retval != ERROR_OK) {
3355 /* BOO !*/
3356 LOG_ERROR("mem2array: Read @ 0x%08x, w=%d, cnt=%d, failed",
3357 (unsigned int)addr,
3358 (int)width,
3359 (int)count);
3360 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3361 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
3362 e = JIM_ERR;
3363 len = 0;
3364 } else {
3365 v = 0; /* shut up gcc */
3366 for (i = 0 ;i < count ;i++, n++) {
3367 switch (width) {
3368 case 4:
3369 v = target_buffer_get_u32(target, &buffer[i*width]);
3370 break;
3371 case 2:
3372 v = target_buffer_get_u16(target, &buffer[i*width]);
3373 break;
3374 case 1:
3375 v = buffer[i] & 0x0ff;
3376 break;
3378 new_int_array_element(interp, varname, n, v);
3380 len -= count;
3384 free(buffer);
3386 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3388 return JIM_OK;
3391 static int get_int_array_element(Jim_Interp * interp, const char *varname, int idx, uint32_t *val)
3393 char *namebuf;
3394 Jim_Obj *nameObjPtr, *valObjPtr;
3395 int result;
3396 long l;
3398 namebuf = alloc_printf("%s(%d)", varname, idx);
3399 if (!namebuf)
3400 return JIM_ERR;
3402 nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3403 if (!nameObjPtr)
3405 free(namebuf);
3406 return JIM_ERR;
3409 Jim_IncrRefCount(nameObjPtr);
3410 valObjPtr = Jim_GetVariable(interp, nameObjPtr, JIM_ERRMSG);
3411 Jim_DecrRefCount(interp, nameObjPtr);
3412 free(namebuf);
3413 if (valObjPtr == NULL)
3414 return JIM_ERR;
3416 result = Jim_GetLong(interp, valObjPtr, &l);
3417 /* printf("%s(%d) => 0%08x\n", varname, idx, val); */
3418 *val = l;
3419 return result;
3422 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3424 struct command_context *context;
3425 struct target *target;
3427 context = current_command_context(interp);
3428 assert (context != NULL);
3430 target = get_current_target(context);
3431 if (target == NULL) {
3432 LOG_ERROR("array2mem: no current target");
3433 return JIM_ERR;
3436 return target_array2mem(interp,target, argc-1, argv + 1);
3439 static int target_array2mem(Jim_Interp *interp, struct target *target,
3440 int argc, Jim_Obj *const *argv)
3442 long l;
3443 uint32_t width;
3444 int len;
3445 uint32_t addr;
3446 uint32_t count;
3447 uint32_t v;
3448 const char *varname;
3449 int n, e, retval;
3450 uint32_t i;
3452 /* argv[1] = name of array to get the data
3453 * argv[2] = desired width
3454 * argv[3] = memory address
3455 * argv[4] = count to write
3457 if (argc != 4) {
3458 Jim_WrongNumArgs(interp, 0, argv, "varname width addr nelems");
3459 return JIM_ERR;
3461 varname = Jim_GetString(argv[0], &len);
3462 /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3464 e = Jim_GetLong(interp, argv[1], &l);
3465 width = l;
3466 if (e != JIM_OK) {
3467 return e;
3470 e = Jim_GetLong(interp, argv[2], &l);
3471 addr = l;
3472 if (e != JIM_OK) {
3473 return e;
3475 e = Jim_GetLong(interp, argv[3], &l);
3476 len = l;
3477 if (e != JIM_OK) {
3478 return e;
3480 switch (width) {
3481 case 8:
3482 width = 1;
3483 break;
3484 case 16:
3485 width = 2;
3486 break;
3487 case 32:
3488 width = 4;
3489 break;
3490 default:
3491 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3492 Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
3493 return JIM_ERR;
3495 if (len == 0) {
3496 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3497 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: zero width read?", NULL);
3498 return JIM_ERR;
3500 if ((addr + (len * width)) < addr) {
3501 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3502 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: addr + len - wraps to zero?", NULL);
3503 return JIM_ERR;
3505 /* absurd transfer size? */
3506 if (len > 65536) {
3507 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3508 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: absurd > 64K item request", NULL);
3509 return JIM_ERR;
3512 if ((width == 1) ||
3513 ((width == 2) && ((addr & 1) == 0)) ||
3514 ((width == 4) && ((addr & 3) == 0))) {
3515 /* all is well */
3516 } else {
3517 char buf[100];
3518 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3519 sprintf(buf, "array2mem address: 0x%08x is not aligned for %d byte reads",
3520 (unsigned int)addr,
3521 (int)width);
3522 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3523 return JIM_ERR;
3526 /* Transfer loop */
3528 /* index counter */
3529 n = 0;
3530 /* assume ok */
3531 e = JIM_OK;
3533 size_t buffersize = 4096;
3534 uint8_t *buffer = malloc(buffersize);
3535 if (buffer == NULL)
3536 return JIM_ERR;
3538 while (len) {
3539 /* Slurp... in buffer size chunks */
3541 count = len; /* in objects.. */
3542 if (count > (buffersize/width)) {
3543 count = (buffersize/width);
3546 v = 0; /* shut up gcc */
3547 for (i = 0 ;i < count ;i++, n++) {
3548 get_int_array_element(interp, varname, n, &v);
3549 switch (width) {
3550 case 4:
3551 target_buffer_set_u32(target, &buffer[i*width], v);
3552 break;
3553 case 2:
3554 target_buffer_set_u16(target, &buffer[i*width], v);
3555 break;
3556 case 1:
3557 buffer[i] = v & 0x0ff;
3558 break;
3561 len -= count;
3563 retval = target_write_memory(target, addr, width, count, buffer);
3564 if (retval != ERROR_OK) {
3565 /* BOO !*/
3566 LOG_ERROR("array2mem: Write @ 0x%08x, w=%d, cnt=%d, failed",
3567 (unsigned int)addr,
3568 (int)width,
3569 (int)count);
3570 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3571 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: cannot read memory", NULL);
3572 e = JIM_ERR;
3573 len = 0;
3577 free(buffer);
3579 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3581 return JIM_OK;
3584 /* FIX? should we propagate errors here rather than printing them
3585 * and continuing?
3587 void target_handle_event(struct target *target, enum target_event e)
3589 struct target_event_action *teap;
3591 for (teap = target->event_action; teap != NULL; teap = teap->next) {
3592 if (teap->event == e) {
3593 LOG_DEBUG("target: (%d) %s (%s) event: %d (%s) action: %s",
3594 target->target_number,
3595 target_name(target),
3596 target_type_name(target),
3598 Jim_Nvp_value2name_simple(nvp_target_event, e)->name,
3599 Jim_GetString(teap->body, NULL));
3600 if (Jim_EvalObj(teap->interp, teap->body) != JIM_OK)
3602 Jim_PrintErrorMessage(teap->interp);
3609 * Returns true only if the target has a handler for the specified event.
3611 bool target_has_event_action(struct target *target, enum target_event event)
3613 struct target_event_action *teap;
3615 for (teap = target->event_action; teap != NULL; teap = teap->next) {
3616 if (teap->event == event)
3617 return true;
3619 return false;
3622 enum target_cfg_param {
3623 TCFG_TYPE,
3624 TCFG_EVENT,
3625 TCFG_WORK_AREA_VIRT,
3626 TCFG_WORK_AREA_PHYS,
3627 TCFG_WORK_AREA_SIZE,
3628 TCFG_WORK_AREA_BACKUP,
3629 TCFG_ENDIAN,
3630 TCFG_VARIANT,
3631 TCFG_CHAIN_POSITION,
3634 static Jim_Nvp nvp_config_opts[] = {
3635 { .name = "-type", .value = TCFG_TYPE },
3636 { .name = "-event", .value = TCFG_EVENT },
3637 { .name = "-work-area-virt", .value = TCFG_WORK_AREA_VIRT },
3638 { .name = "-work-area-phys", .value = TCFG_WORK_AREA_PHYS },
3639 { .name = "-work-area-size", .value = TCFG_WORK_AREA_SIZE },
3640 { .name = "-work-area-backup", .value = TCFG_WORK_AREA_BACKUP },
3641 { .name = "-endian" , .value = TCFG_ENDIAN },
3642 { .name = "-variant", .value = TCFG_VARIANT },
3643 { .name = "-chain-position", .value = TCFG_CHAIN_POSITION },
3645 { .name = NULL, .value = -1 }
3648 static int target_configure(Jim_GetOptInfo *goi, struct target *target)
3650 Jim_Nvp *n;
3651 Jim_Obj *o;
3652 jim_wide w;
3653 char *cp;
3654 int e;
3656 /* parse config or cget options ... */
3657 while (goi->argc > 0) {
3658 Jim_SetEmptyResult(goi->interp);
3659 /* Jim_GetOpt_Debug(goi); */
3661 if (target->type->target_jim_configure) {
3662 /* target defines a configure function */
3663 /* target gets first dibs on parameters */
3664 e = (*(target->type->target_jim_configure))(target, goi);
3665 if (e == JIM_OK) {
3666 /* more? */
3667 continue;
3669 if (e == JIM_ERR) {
3670 /* An error */
3671 return e;
3673 /* otherwise we 'continue' below */
3675 e = Jim_GetOpt_Nvp(goi, nvp_config_opts, &n);
3676 if (e != JIM_OK) {
3677 Jim_GetOpt_NvpUnknown(goi, nvp_config_opts, 0);
3678 return e;
3680 switch (n->value) {
3681 case TCFG_TYPE:
3682 /* not setable */
3683 if (goi->isconfigure) {
3684 Jim_SetResult_sprintf(goi->interp,
3685 "not settable: %s", n->name);
3686 return JIM_ERR;
3687 } else {
3688 no_params:
3689 if (goi->argc != 0) {
3690 Jim_WrongNumArgs(goi->interp,
3691 goi->argc, goi->argv,
3692 "NO PARAMS");
3693 return JIM_ERR;
3696 Jim_SetResultString(goi->interp,
3697 target_type_name(target), -1);
3698 /* loop for more */
3699 break;
3700 case TCFG_EVENT:
3701 if (goi->argc == 0) {
3702 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ...");
3703 return JIM_ERR;
3706 e = Jim_GetOpt_Nvp(goi, nvp_target_event, &n);
3707 if (e != JIM_OK) {
3708 Jim_GetOpt_NvpUnknown(goi, nvp_target_event, 1);
3709 return e;
3712 if (goi->isconfigure) {
3713 if (goi->argc != 1) {
3714 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ?EVENT-BODY?");
3715 return JIM_ERR;
3717 } else {
3718 if (goi->argc != 0) {
3719 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name?");
3720 return JIM_ERR;
3725 struct target_event_action *teap;
3727 teap = target->event_action;
3728 /* replace existing? */
3729 while (teap) {
3730 if (teap->event == (enum target_event)n->value) {
3731 break;
3733 teap = teap->next;
3736 if (goi->isconfigure) {
3737 bool replace = true;
3738 if (teap == NULL) {
3739 /* create new */
3740 teap = calloc(1, sizeof(*teap));
3741 replace = false;
3743 teap->event = n->value;
3744 teap->interp = goi->interp;
3745 Jim_GetOpt_Obj(goi, &o);
3746 if (teap->body) {
3747 Jim_DecrRefCount(teap->interp, teap->body);
3749 teap->body = Jim_DuplicateObj(goi->interp, o);
3751 * FIXME:
3752 * Tcl/TK - "tk events" have a nice feature.
3753 * See the "BIND" command.
3754 * We should support that here.
3755 * You can specify %X and %Y in the event code.
3756 * The idea is: %T - target name.
3757 * The idea is: %N - target number
3758 * The idea is: %E - event name.
3760 Jim_IncrRefCount(teap->body);
3762 if (!replace)
3764 /* add to head of event list */
3765 teap->next = target->event_action;
3766 target->event_action = teap;
3768 Jim_SetEmptyResult(goi->interp);
3769 } else {
3770 /* get */
3771 if (teap == NULL) {
3772 Jim_SetEmptyResult(goi->interp);
3773 } else {
3774 Jim_SetResult(goi->interp, Jim_DuplicateObj(goi->interp, teap->body));
3778 /* loop for more */
3779 break;
3781 case TCFG_WORK_AREA_VIRT:
3782 if (goi->isconfigure) {
3783 target_free_all_working_areas(target);
3784 e = Jim_GetOpt_Wide(goi, &w);
3785 if (e != JIM_OK) {
3786 return e;
3788 target->working_area_virt = w;
3789 target->working_area_virt_spec = true;
3790 } else {
3791 if (goi->argc != 0) {
3792 goto no_params;
3795 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_virt));
3796 /* loop for more */
3797 break;
3799 case TCFG_WORK_AREA_PHYS:
3800 if (goi->isconfigure) {
3801 target_free_all_working_areas(target);
3802 e = Jim_GetOpt_Wide(goi, &w);
3803 if (e != JIM_OK) {
3804 return e;
3806 target->working_area_phys = w;
3807 target->working_area_phys_spec = true;
3808 } else {
3809 if (goi->argc != 0) {
3810 goto no_params;
3813 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_phys));
3814 /* loop for more */
3815 break;
3817 case TCFG_WORK_AREA_SIZE:
3818 if (goi->isconfigure) {
3819 target_free_all_working_areas(target);
3820 e = Jim_GetOpt_Wide(goi, &w);
3821 if (e != JIM_OK) {
3822 return e;
3824 target->working_area_size = w;
3825 } else {
3826 if (goi->argc != 0) {
3827 goto no_params;
3830 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
3831 /* loop for more */
3832 break;
3834 case TCFG_WORK_AREA_BACKUP:
3835 if (goi->isconfigure) {
3836 target_free_all_working_areas(target);
3837 e = Jim_GetOpt_Wide(goi, &w);
3838 if (e != JIM_OK) {
3839 return e;
3841 /* make this exactly 1 or 0 */
3842 target->backup_working_area = (!!w);
3843 } else {
3844 if (goi->argc != 0) {
3845 goto no_params;
3848 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->backup_working_area));
3849 /* loop for more e*/
3850 break;
3852 case TCFG_ENDIAN:
3853 if (goi->isconfigure) {
3854 e = Jim_GetOpt_Nvp(goi, nvp_target_endian, &n);
3855 if (e != JIM_OK) {
3856 Jim_GetOpt_NvpUnknown(goi, nvp_target_endian, 1);
3857 return e;
3859 target->endianness = n->value;
3860 } else {
3861 if (goi->argc != 0) {
3862 goto no_params;
3865 n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
3866 if (n->name == NULL) {
3867 target->endianness = TARGET_LITTLE_ENDIAN;
3868 n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
3870 Jim_SetResultString(goi->interp, n->name, -1);
3871 /* loop for more */
3872 break;
3874 case TCFG_VARIANT:
3875 if (goi->isconfigure) {
3876 if (goi->argc < 1) {
3877 Jim_SetResult_sprintf(goi->interp,
3878 "%s ?STRING?",
3879 n->name);
3880 return JIM_ERR;
3882 if (target->variant) {
3883 free((void *)(target->variant));
3885 e = Jim_GetOpt_String(goi, &cp, NULL);
3886 target->variant = strdup(cp);
3887 } else {
3888 if (goi->argc != 0) {
3889 goto no_params;
3892 Jim_SetResultString(goi->interp, target->variant,-1);
3893 /* loop for more */
3894 break;
3895 case TCFG_CHAIN_POSITION:
3896 if (goi->isconfigure) {
3897 Jim_Obj *o_t;
3898 struct jtag_tap *tap;
3899 target_free_all_working_areas(target);
3900 e = Jim_GetOpt_Obj(goi, &o_t);
3901 if (e != JIM_OK) {
3902 return e;
3904 tap = jtag_tap_by_jim_obj(goi->interp, o_t);
3905 if (tap == NULL) {
3906 return JIM_ERR;
3908 /* make this exactly 1 or 0 */
3909 target->tap = tap;
3910 } else {
3911 if (goi->argc != 0) {
3912 goto no_params;
3915 Jim_SetResultString(goi->interp, target->tap->dotted_name, -1);
3916 /* loop for more e*/
3917 break;
3919 } /* while (goi->argc) */
3922 /* done - we return */
3923 return JIM_OK;
3926 static int
3927 jim_target_configure(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3929 Jim_GetOptInfo goi;
3931 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
3932 goi.isconfigure = !strcmp(Jim_GetString(argv[0], NULL), "configure");
3933 int need_args = 1 + goi.isconfigure;
3934 if (goi.argc < need_args)
3936 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
3937 goi.isconfigure
3938 ? "missing: -option VALUE ..."
3939 : "missing: -option ...");
3940 return JIM_ERR;
3942 struct target *target = Jim_CmdPrivData(goi.interp);
3943 return target_configure(&goi, target);
3946 static int jim_target_mw(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3948 const char *cmd_name = Jim_GetString(argv[0], NULL);
3950 Jim_GetOptInfo goi;
3951 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
3953 if (goi.argc < 2 || goi.argc > 4)
3955 Jim_SetResult_sprintf(goi.interp,
3956 "usage: %s [phys] <address> <data> [<count>]", cmd_name);
3957 return JIM_ERR;
3960 target_write_fn fn;
3961 fn = target_write_memory_fast;
3963 int e;
3964 if (strcmp(Jim_GetString(argv[1], NULL), "phys") == 0)
3966 /* consume it */
3967 struct Jim_Obj *obj;
3968 e = Jim_GetOpt_Obj(&goi, &obj);
3969 if (e != JIM_OK)
3970 return e;
3972 fn = target_write_phys_memory;
3975 jim_wide a;
3976 e = Jim_GetOpt_Wide(&goi, &a);
3977 if (e != JIM_OK)
3978 return e;
3980 jim_wide b;
3981 e = Jim_GetOpt_Wide(&goi, &b);
3982 if (e != JIM_OK)
3983 return e;
3985 jim_wide c = 1;
3986 if (goi.argc == 1)
3988 e = Jim_GetOpt_Wide(&goi, &c);
3989 if (e != JIM_OK)
3990 return e;
3993 /* all args must be consumed */
3994 if (goi.argc != 0)
3996 return JIM_ERR;
3999 struct target *target = Jim_CmdPrivData(goi.interp);
4000 unsigned data_size;
4001 if (strcasecmp(cmd_name, "mww") == 0) {
4002 data_size = 4;
4004 else if (strcasecmp(cmd_name, "mwh") == 0) {
4005 data_size = 2;
4007 else if (strcasecmp(cmd_name, "mwb") == 0) {
4008 data_size = 1;
4009 } else {
4010 LOG_ERROR("command '%s' unknown: ", cmd_name);
4011 return JIM_ERR;
4014 return (target_fill_mem(target, a, fn, data_size, b, c) == ERROR_OK) ? JIM_OK : JIM_ERR;
4017 static int jim_target_md(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4019 const char *cmd_name = Jim_GetString(argv[0], NULL);
4021 Jim_GetOptInfo goi;
4022 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4024 if ((goi.argc < 1) || (goi.argc > 3))
4026 Jim_SetResult_sprintf(goi.interp,
4027 "usage: %s [phys] <address> [<count>]", cmd_name);
4028 return JIM_ERR;
4031 int (*fn)(struct target *target,
4032 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
4033 fn=target_read_memory;
4035 int e;
4036 if (strcmp(Jim_GetString(argv[1], NULL), "phys") == 0)
4038 /* consume it */
4039 struct Jim_Obj *obj;
4040 e = Jim_GetOpt_Obj(&goi, &obj);
4041 if (e != JIM_OK)
4042 return e;
4044 fn=target_read_phys_memory;
4047 jim_wide a;
4048 e = Jim_GetOpt_Wide(&goi, &a);
4049 if (e != JIM_OK) {
4050 return JIM_ERR;
4052 jim_wide c;
4053 if (goi.argc == 1) {
4054 e = Jim_GetOpt_Wide(&goi, &c);
4055 if (e != JIM_OK) {
4056 return JIM_ERR;
4058 } else {
4059 c = 1;
4062 /* all args must be consumed */
4063 if (goi.argc != 0)
4065 return JIM_ERR;
4068 jim_wide b = 1; /* shut up gcc */
4069 if (strcasecmp(cmd_name, "mdw") == 0)
4070 b = 4;
4071 else if (strcasecmp(cmd_name, "mdh") == 0)
4072 b = 2;
4073 else if (strcasecmp(cmd_name, "mdb") == 0)
4074 b = 1;
4075 else {
4076 LOG_ERROR("command '%s' unknown: ", cmd_name);
4077 return JIM_ERR;
4080 /* convert count to "bytes" */
4081 c = c * b;
4083 struct target *target = Jim_CmdPrivData(goi.interp);
4084 uint8_t target_buf[32];
4085 jim_wide x, y, z;
4086 while (c > 0) {
4087 y = c;
4088 if (y > 16) {
4089 y = 16;
4091 e = fn(target, a, b, y / b, target_buf);
4092 if (e != ERROR_OK) {
4093 Jim_SetResult_sprintf(interp, "error reading target @ 0x%08lx", (int)(a));
4094 return JIM_ERR;
4097 Jim_fprintf(interp, interp->cookie_stdout, "0x%08x ", (int)(a));
4098 switch (b) {
4099 case 4:
4100 for (x = 0; x < 16 && x < y; x += 4)
4102 z = target_buffer_get_u32(target, &(target_buf[ x ]));
4103 Jim_fprintf(interp, interp->cookie_stdout, "%08x ", (int)(z));
4105 for (; (x < 16) ; x += 4) {
4106 Jim_fprintf(interp, interp->cookie_stdout, " ");
4108 break;
4109 case 2:
4110 for (x = 0; x < 16 && x < y; x += 2)
4112 z = target_buffer_get_u16(target, &(target_buf[ x ]));
4113 Jim_fprintf(interp, interp->cookie_stdout, "%04x ", (int)(z));
4115 for (; (x < 16) ; x += 2) {
4116 Jim_fprintf(interp, interp->cookie_stdout, " ");
4118 break;
4119 case 1:
4120 default:
4121 for (x = 0 ; (x < 16) && (x < y) ; x += 1) {
4122 z = target_buffer_get_u8(target, &(target_buf[ x ]));
4123 Jim_fprintf(interp, interp->cookie_stdout, "%02x ", (int)(z));
4125 for (; (x < 16) ; x += 1) {
4126 Jim_fprintf(interp, interp->cookie_stdout, " ");
4128 break;
4130 /* ascii-ify the bytes */
4131 for (x = 0 ; x < y ; x++) {
4132 if ((target_buf[x] >= 0x20) &&
4133 (target_buf[x] <= 0x7e)) {
4134 /* good */
4135 } else {
4136 /* smack it */
4137 target_buf[x] = '.';
4140 /* space pad */
4141 while (x < 16) {
4142 target_buf[x] = ' ';
4143 x++;
4145 /* terminate */
4146 target_buf[16] = 0;
4147 /* print - with a newline */
4148 Jim_fprintf(interp, interp->cookie_stdout, "%s\n", target_buf);
4149 /* NEXT... */
4150 c -= 16;
4151 a += 16;
4153 return JIM_OK;
4156 static int jim_target_mem2array(Jim_Interp *interp,
4157 int argc, Jim_Obj *const *argv)
4159 struct target *target = Jim_CmdPrivData(interp);
4160 return target_mem2array(interp, target, argc - 1, argv + 1);
4163 static int jim_target_array2mem(Jim_Interp *interp,
4164 int argc, Jim_Obj *const *argv)
4166 struct target *target = Jim_CmdPrivData(interp);
4167 return target_array2mem(interp, target, argc - 1, argv + 1);
4170 static int jim_target_tap_disabled(Jim_Interp *interp)
4172 Jim_SetResult_sprintf(interp, "[TAP is disabled]");
4173 return JIM_ERR;
4176 static int jim_target_examine(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4178 if (argc != 1)
4180 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4181 return JIM_ERR;
4183 struct target *target = Jim_CmdPrivData(interp);
4184 if (!target->tap->enabled)
4185 return jim_target_tap_disabled(interp);
4187 int e = target->type->examine(target);
4188 if (e != ERROR_OK)
4190 Jim_SetResult_sprintf(interp, "examine-fails: %d", e);
4191 return JIM_ERR;
4193 return JIM_OK;
4196 static int jim_target_halt_gdb(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4198 if (argc != 1)
4200 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4201 return JIM_ERR;
4203 struct target *target = Jim_CmdPrivData(interp);
4205 if (target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT) != ERROR_OK)
4206 return JIM_ERR;
4208 return JIM_OK;
4211 static int jim_target_poll(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4213 if (argc != 1)
4215 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4216 return JIM_ERR;
4218 struct target *target = Jim_CmdPrivData(interp);
4219 if (!target->tap->enabled)
4220 return jim_target_tap_disabled(interp);
4222 int e;
4223 if (!(target_was_examined(target))) {
4224 e = ERROR_TARGET_NOT_EXAMINED;
4225 } else {
4226 e = target->type->poll(target);
4228 if (e != ERROR_OK)
4230 Jim_SetResult_sprintf(interp, "poll-fails: %d", e);
4231 return JIM_ERR;
4233 return JIM_OK;
4236 static int jim_target_reset(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4238 Jim_GetOptInfo goi;
4239 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4241 if (goi.argc != 2)
4243 Jim_WrongNumArgs(interp, 0, argv,
4244 "([tT]|[fF]|assert|deassert) BOOL");
4245 return JIM_ERR;
4248 Jim_Nvp *n;
4249 int e = Jim_GetOpt_Nvp(&goi, nvp_assert, &n);
4250 if (e != JIM_OK)
4252 Jim_GetOpt_NvpUnknown(&goi, nvp_assert, 1);
4253 return e;
4255 /* the halt or not param */
4256 jim_wide a;
4257 e = Jim_GetOpt_Wide(&goi, &a);
4258 if (e != JIM_OK)
4259 return e;
4261 struct target *target = Jim_CmdPrivData(goi.interp);
4262 if (!target->tap->enabled)
4263 return jim_target_tap_disabled(interp);
4264 if (!(target_was_examined(target)))
4266 LOG_ERROR("Target not examined yet");
4267 return ERROR_TARGET_NOT_EXAMINED;
4269 if (!target->type->assert_reset || !target->type->deassert_reset)
4271 Jim_SetResult_sprintf(interp,
4272 "No target-specific reset for %s",
4273 target_name(target));
4274 return JIM_ERR;
4276 /* determine if we should halt or not. */
4277 target->reset_halt = !!a;
4278 /* When this happens - all workareas are invalid. */
4279 target_free_all_working_areas_restore(target, 0);
4281 /* do the assert */
4282 if (n->value == NVP_ASSERT) {
4283 e = target->type->assert_reset(target);
4284 } else {
4285 e = target->type->deassert_reset(target);
4287 return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
4290 static int jim_target_halt(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4292 if (argc != 1) {
4293 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4294 return JIM_ERR;
4296 struct target *target = Jim_CmdPrivData(interp);
4297 if (!target->tap->enabled)
4298 return jim_target_tap_disabled(interp);
4299 int e = target->type->halt(target);
4300 return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
4303 static int jim_target_wait_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4305 Jim_GetOptInfo goi;
4306 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4308 /* params: <name> statename timeoutmsecs */
4309 if (goi.argc != 2)
4311 const char *cmd_name = Jim_GetString(argv[0], NULL);
4312 Jim_SetResult_sprintf(goi.interp,
4313 "%s <state_name> <timeout_in_msec>", cmd_name);
4314 return JIM_ERR;
4317 Jim_Nvp *n;
4318 int e = Jim_GetOpt_Nvp(&goi, nvp_target_state, &n);
4319 if (e != JIM_OK) {
4320 Jim_GetOpt_NvpUnknown(&goi, nvp_target_state,1);
4321 return e;
4323 jim_wide a;
4324 e = Jim_GetOpt_Wide(&goi, &a);
4325 if (e != JIM_OK) {
4326 return e;
4328 struct target *target = Jim_CmdPrivData(interp);
4329 if (!target->tap->enabled)
4330 return jim_target_tap_disabled(interp);
4332 e = target_wait_state(target, n->value, a);
4333 if (e != ERROR_OK)
4335 Jim_SetResult_sprintf(goi.interp,
4336 "target: %s wait %s fails (%d) %s",
4337 target_name(target), n->name,
4338 e, target_strerror_safe(e));
4339 return JIM_ERR;
4341 return JIM_OK;
4343 /* List for human, Events defined for this target.
4344 * scripts/programs should use 'name cget -event NAME'
4346 static int jim_target_event_list(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4348 struct command_context *cmd_ctx = current_command_context(interp);
4349 assert (cmd_ctx != NULL);
4351 struct target *target = Jim_CmdPrivData(interp);
4352 struct target_event_action *teap = target->event_action;
4353 command_print(cmd_ctx, "Event actions for target (%d) %s\n",
4354 target->target_number,
4355 target_name(target));
4356 command_print(cmd_ctx, "%-25s | Body", "Event");
4357 command_print(cmd_ctx, "------------------------- | "
4358 "----------------------------------------");
4359 while (teap)
4361 Jim_Nvp *opt = Jim_Nvp_value2name_simple(nvp_target_event, teap->event);
4362 command_print(cmd_ctx, "%-25s | %s",
4363 opt->name, Jim_GetString(teap->body, NULL));
4364 teap = teap->next;
4366 command_print(cmd_ctx, "***END***");
4367 return JIM_OK;
4369 static int jim_target_current_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4371 if (argc != 1)
4373 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4374 return JIM_ERR;
4376 struct target *target = Jim_CmdPrivData(interp);
4377 Jim_SetResultString(interp, target_state_name(target), -1);
4378 return JIM_OK;
4380 static int jim_target_invoke_event(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4382 Jim_GetOptInfo goi;
4383 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4384 if (goi.argc != 1)
4386 const char *cmd_name = Jim_GetString(argv[0], NULL);
4387 Jim_SetResult_sprintf(goi.interp, "%s <eventname>", cmd_name);
4388 return JIM_ERR;
4390 Jim_Nvp *n;
4391 int e = Jim_GetOpt_Nvp(&goi, nvp_target_event, &n);
4392 if (e != JIM_OK)
4394 Jim_GetOpt_NvpUnknown(&goi, nvp_target_event, 1);
4395 return e;
4397 struct target *target = Jim_CmdPrivData(interp);
4398 target_handle_event(target, n->value);
4399 return JIM_OK;
4402 static const struct command_registration target_instance_command_handlers[] = {
4404 .name = "configure",
4405 .mode = COMMAND_CONFIG,
4406 .jim_handler = jim_target_configure,
4407 .help = "configure a new target for use",
4408 .usage = "[target_attribute ...]",
4411 .name = "cget",
4412 .mode = COMMAND_ANY,
4413 .jim_handler = jim_target_configure,
4414 .help = "returns the specified target attribute",
4415 .usage = "target_attribute",
4418 .name = "mww",
4419 .mode = COMMAND_EXEC,
4420 .jim_handler = jim_target_mw,
4421 .help = "Write 32-bit word(s) to target memory",
4422 .usage = "address data [count]",
4425 .name = "mwh",
4426 .mode = COMMAND_EXEC,
4427 .jim_handler = jim_target_mw,
4428 .help = "Write 16-bit half-word(s) to target memory",
4429 .usage = "address data [count]",
4432 .name = "mwb",
4433 .mode = COMMAND_EXEC,
4434 .jim_handler = jim_target_mw,
4435 .help = "Write byte(s) to target memory",
4436 .usage = "address data [count]",
4439 .name = "mdw",
4440 .mode = COMMAND_EXEC,
4441 .jim_handler = jim_target_md,
4442 .help = "Display target memory as 32-bit words",
4443 .usage = "address [count]",
4446 .name = "mdh",
4447 .mode = COMMAND_EXEC,
4448 .jim_handler = jim_target_md,
4449 .help = "Display target memory as 16-bit half-words",
4450 .usage = "address [count]",
4453 .name = "mdb",
4454 .mode = COMMAND_EXEC,
4455 .jim_handler = jim_target_md,
4456 .help = "Display target memory as 8-bit bytes",
4457 .usage = "address [count]",
4460 .name = "array2mem",
4461 .mode = COMMAND_EXEC,
4462 .jim_handler = jim_target_array2mem,
4463 .help = "Writes Tcl array of 8/16/32 bit numbers "
4464 "to target memory",
4465 .usage = "arrayname bitwidth address count",
4468 .name = "mem2array",
4469 .mode = COMMAND_EXEC,
4470 .jim_handler = jim_target_mem2array,
4471 .help = "Loads Tcl array of 8/16/32 bit numbers "
4472 "from target memory",
4473 .usage = "arrayname bitwidth address count",
4476 .name = "eventlist",
4477 .mode = COMMAND_EXEC,
4478 .jim_handler = jim_target_event_list,
4479 .help = "displays a table of events defined for this target",
4482 .name = "curstate",
4483 .mode = COMMAND_EXEC,
4484 .jim_handler = jim_target_current_state,
4485 .help = "displays the current state of this target",
4488 .name = "arp_examine",
4489 .mode = COMMAND_EXEC,
4490 .jim_handler = jim_target_examine,
4491 .help = "used internally for reset processing",
4494 .name = "arp_halt_gdb",
4495 .mode = COMMAND_EXEC,
4496 .jim_handler = jim_target_halt_gdb,
4497 .help = "used internally for reset processing to halt GDB",
4500 .name = "arp_poll",
4501 .mode = COMMAND_EXEC,
4502 .jim_handler = jim_target_poll,
4503 .help = "used internally for reset processing",
4506 .name = "arp_reset",
4507 .mode = COMMAND_EXEC,
4508 .jim_handler = jim_target_reset,
4509 .help = "used internally for reset processing",
4512 .name = "arp_halt",
4513 .mode = COMMAND_EXEC,
4514 .jim_handler = jim_target_halt,
4515 .help = "used internally for reset processing",
4518 .name = "arp_waitstate",
4519 .mode = COMMAND_EXEC,
4520 .jim_handler = jim_target_wait_state,
4521 .help = "used internally for reset processing",
4524 .name = "invoke-event",
4525 .mode = COMMAND_EXEC,
4526 .jim_handler = jim_target_invoke_event,
4527 .help = "invoke handler for specified event",
4528 .usage = "event_name",
4530 COMMAND_REGISTRATION_DONE
4533 static int target_create(Jim_GetOptInfo *goi)
4535 Jim_Obj *new_cmd;
4536 Jim_Cmd *cmd;
4537 const char *cp;
4538 char *cp2;
4539 int e;
4540 int x;
4541 struct target *target;
4542 struct command_context *cmd_ctx;
4544 cmd_ctx = current_command_context(goi->interp);
4545 assert (cmd_ctx != NULL);
4547 if (goi->argc < 3) {
4548 Jim_WrongNumArgs(goi->interp, 1, goi->argv, "?name? ?type? ..options...");
4549 return JIM_ERR;
4552 /* COMMAND */
4553 Jim_GetOpt_Obj(goi, &new_cmd);
4554 /* does this command exist? */
4555 cmd = Jim_GetCommand(goi->interp, new_cmd, JIM_ERRMSG);
4556 if (cmd) {
4557 cp = Jim_GetString(new_cmd, NULL);
4558 Jim_SetResult_sprintf(goi->interp, "Command/target: %s Exists", cp);
4559 return JIM_ERR;
4562 /* TYPE */
4563 e = Jim_GetOpt_String(goi, &cp2, NULL);
4564 cp = cp2;
4565 /* now does target type exist */
4566 for (x = 0 ; target_types[x] ; x++) {
4567 if (0 == strcmp(cp, target_types[x]->name)) {
4568 /* found */
4569 break;
4572 if (target_types[x] == NULL) {
4573 Jim_SetResult_sprintf(goi->interp, "Unknown target type %s, try one of ", cp);
4574 for (x = 0 ; target_types[x] ; x++) {
4575 if (target_types[x + 1]) {
4576 Jim_AppendStrings(goi->interp,
4577 Jim_GetResult(goi->interp),
4578 target_types[x]->name,
4579 ", ", NULL);
4580 } else {
4581 Jim_AppendStrings(goi->interp,
4582 Jim_GetResult(goi->interp),
4583 " or ",
4584 target_types[x]->name,NULL);
4587 return JIM_ERR;
4590 /* Create it */
4591 target = calloc(1,sizeof(struct target));
4592 /* set target number */
4593 target->target_number = new_target_number();
4595 /* allocate memory for each unique target type */
4596 target->type = (struct target_type*)calloc(1,sizeof(struct target_type));
4598 memcpy(target->type, target_types[x], sizeof(struct target_type));
4600 /* will be set by "-endian" */
4601 target->endianness = TARGET_ENDIAN_UNKNOWN;
4603 target->working_area = 0x0;
4604 target->working_area_size = 0x0;
4605 target->working_areas = NULL;
4606 target->backup_working_area = 0;
4608 target->state = TARGET_UNKNOWN;
4609 target->debug_reason = DBG_REASON_UNDEFINED;
4610 target->reg_cache = NULL;
4611 target->breakpoints = NULL;
4612 target->watchpoints = NULL;
4613 target->next = NULL;
4614 target->arch_info = NULL;
4616 target->display = 1;
4618 target->halt_issued = false;
4620 /* initialize trace information */
4621 target->trace_info = malloc(sizeof(struct trace));
4622 target->trace_info->num_trace_points = 0;
4623 target->trace_info->trace_points_size = 0;
4624 target->trace_info->trace_points = NULL;
4625 target->trace_info->trace_history_size = 0;
4626 target->trace_info->trace_history = NULL;
4627 target->trace_info->trace_history_pos = 0;
4628 target->trace_info->trace_history_overflowed = 0;
4630 target->dbgmsg = NULL;
4631 target->dbg_msg_enabled = 0;
4633 target->endianness = TARGET_ENDIAN_UNKNOWN;
4635 /* Do the rest as "configure" options */
4636 goi->isconfigure = 1;
4637 e = target_configure(goi, target);
4639 if (target->tap == NULL)
4641 Jim_SetResultString(goi->interp, "-chain-position required when creating target", -1);
4642 e = JIM_ERR;
4645 if (e != JIM_OK) {
4646 free(target->type);
4647 free(target);
4648 return e;
4651 if (target->endianness == TARGET_ENDIAN_UNKNOWN) {
4652 /* default endian to little if not specified */
4653 target->endianness = TARGET_LITTLE_ENDIAN;
4656 /* incase variant is not set */
4657 if (!target->variant)
4658 target->variant = strdup("");
4660 cp = Jim_GetString(new_cmd, NULL);
4661 target->cmd_name = strdup(cp);
4663 /* create the target specific commands */
4664 if (target->type->commands) {
4665 e = register_commands(cmd_ctx, NULL, target->type->commands);
4666 if (ERROR_OK != e)
4667 LOG_ERROR("unable to register '%s' commands", cp);
4669 if (target->type->target_create) {
4670 (*(target->type->target_create))(target, goi->interp);
4673 /* append to end of list */
4675 struct target **tpp;
4676 tpp = &(all_targets);
4677 while (*tpp) {
4678 tpp = &((*tpp)->next);
4680 *tpp = target;
4683 /* now - create the new target name command */
4684 const const struct command_registration target_subcommands[] = {
4686 .chain = target_instance_command_handlers,
4689 .chain = target->type->commands,
4691 COMMAND_REGISTRATION_DONE
4693 const const struct command_registration target_commands[] = {
4695 .name = cp,
4696 .mode = COMMAND_ANY,
4697 .help = "target command group",
4698 .chain = target_subcommands,
4700 COMMAND_REGISTRATION_DONE
4702 e = register_commands(cmd_ctx, NULL, target_commands);
4703 if (ERROR_OK != e)
4704 return JIM_ERR;
4706 struct command *c = command_find_in_context(cmd_ctx, cp);
4707 assert(c);
4708 command_set_handler_data(c, target);
4710 return (ERROR_OK == e) ? JIM_OK : JIM_ERR;
4713 static int jim_target_current(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4715 if (argc != 1)
4717 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
4718 return JIM_ERR;
4720 struct command_context *cmd_ctx = current_command_context(interp);
4721 assert (cmd_ctx != NULL);
4723 Jim_SetResultString(interp, get_current_target(cmd_ctx)->cmd_name, -1);
4724 return JIM_OK;
4727 static int jim_target_types(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4729 if (argc != 1)
4731 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
4732 return JIM_ERR;
4734 Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
4735 for (unsigned x = 0; NULL != target_types[x]; x++)
4737 Jim_ListAppendElement(interp, Jim_GetResult(interp),
4738 Jim_NewStringObj(interp, target_types[x]->name, -1));
4740 return JIM_OK;
4743 static int jim_target_names(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4745 if (argc != 1)
4747 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
4748 return JIM_ERR;
4750 Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
4751 struct target *target = all_targets;
4752 while (target)
4754 Jim_ListAppendElement(interp, Jim_GetResult(interp),
4755 Jim_NewStringObj(interp, target_name(target), -1));
4756 target = target->next;
4758 return JIM_OK;
4761 static int jim_target_create(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4763 Jim_GetOptInfo goi;
4764 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4765 if (goi.argc < 3)
4767 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
4768 "<name> <target_type> [<target_options> ...]");
4769 return JIM_ERR;
4771 return target_create(&goi);
4774 static int jim_target_number(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4776 Jim_GetOptInfo goi;
4777 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4779 /* It's OK to remove this mechanism sometime after August 2010 or so */
4780 LOG_WARNING("don't use numbers as target identifiers; use names");
4781 if (goi.argc != 1)
4783 Jim_SetResult_sprintf(goi.interp, "usage: target number <number>");
4784 return JIM_ERR;
4786 jim_wide w;
4787 int e = Jim_GetOpt_Wide(&goi, &w);
4788 if (e != JIM_OK)
4789 return JIM_ERR;
4791 struct target *target;
4792 for (target = all_targets; NULL != target; target = target->next)
4794 if (target->target_number != w)
4795 continue;
4797 Jim_SetResultString(goi.interp, target_name(target), -1);
4798 return JIM_OK;
4800 Jim_SetResult_sprintf(goi.interp,
4801 "Target: number %d does not exist", (int)(w));
4802 return JIM_ERR;
4805 static int jim_target_count(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4807 if (argc != 1)
4809 Jim_WrongNumArgs(interp, 1, argv, "<no parameters>");
4810 return JIM_ERR;
4812 unsigned count = 0;
4813 struct target *target = all_targets;
4814 while (NULL != target)
4816 target = target->next;
4817 count++;
4819 Jim_SetResult(interp, Jim_NewIntObj(interp, count));
4820 return JIM_OK;
4823 static const struct command_registration target_subcommand_handlers[] = {
4825 .name = "init",
4826 .mode = COMMAND_CONFIG,
4827 .handler = handle_target_init_command,
4828 .help = "initialize targets",
4831 .name = "create",
4832 /* REVISIT this should be COMMAND_CONFIG ... */
4833 .mode = COMMAND_ANY,
4834 .jim_handler = jim_target_create,
4835 .usage = "name type '-chain-position' name [options ...]",
4836 .help = "Creates and selects a new target",
4839 .name = "current",
4840 .mode = COMMAND_ANY,
4841 .jim_handler = jim_target_current,
4842 .help = "Returns the currently selected target",
4845 .name = "types",
4846 .mode = COMMAND_ANY,
4847 .jim_handler = jim_target_types,
4848 .help = "Returns the available target types as "
4849 "a list of strings",
4852 .name = "names",
4853 .mode = COMMAND_ANY,
4854 .jim_handler = jim_target_names,
4855 .help = "Returns the names of all targets as a list of strings",
4858 .name = "number",
4859 .mode = COMMAND_ANY,
4860 .jim_handler = jim_target_number,
4861 .usage = "number",
4862 .help = "Returns the name of the numbered target "
4863 "(DEPRECATED)",
4866 .name = "count",
4867 .mode = COMMAND_ANY,
4868 .jim_handler = jim_target_count,
4869 .help = "Returns the number of targets as an integer "
4870 "(DEPRECATED)",
4872 COMMAND_REGISTRATION_DONE
4875 struct FastLoad
4877 uint32_t address;
4878 uint8_t *data;
4879 int length;
4883 static int fastload_num;
4884 static struct FastLoad *fastload;
4886 static void free_fastload(void)
4888 if (fastload != NULL)
4890 int i;
4891 for (i = 0; i < fastload_num; i++)
4893 if (fastload[i].data)
4894 free(fastload[i].data);
4896 free(fastload);
4897 fastload = NULL;
4904 COMMAND_HANDLER(handle_fast_load_image_command)
4906 uint8_t *buffer;
4907 size_t buf_cnt;
4908 uint32_t image_size;
4909 uint32_t min_address = 0;
4910 uint32_t max_address = 0xffffffff;
4911 int i;
4913 struct image image;
4915 int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
4916 &image, &min_address, &max_address);
4917 if (ERROR_OK != retval)
4918 return retval;
4920 struct duration bench;
4921 duration_start(&bench);
4923 if (image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK)
4925 return ERROR_OK;
4928 image_size = 0x0;
4929 retval = ERROR_OK;
4930 fastload_num = image.num_sections;
4931 fastload = (struct FastLoad *)malloc(sizeof(struct FastLoad)*image.num_sections);
4932 if (fastload == NULL)
4934 image_close(&image);
4935 return ERROR_FAIL;
4937 memset(fastload, 0, sizeof(struct FastLoad)*image.num_sections);
4938 for (i = 0; i < image.num_sections; i++)
4940 buffer = malloc(image.sections[i].size);
4941 if (buffer == NULL)
4943 command_print(CMD_CTX, "error allocating buffer for section (%d bytes)",
4944 (int)(image.sections[i].size));
4945 break;
4948 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
4950 free(buffer);
4951 break;
4954 uint32_t offset = 0;
4955 uint32_t length = buf_cnt;
4958 /* DANGER!!! beware of unsigned comparision here!!! */
4960 if ((image.sections[i].base_address + buf_cnt >= min_address)&&
4961 (image.sections[i].base_address < max_address))
4963 if (image.sections[i].base_address < min_address)
4965 /* clip addresses below */
4966 offset += min_address-image.sections[i].base_address;
4967 length -= offset;
4970 if (image.sections[i].base_address + buf_cnt > max_address)
4972 length -= (image.sections[i].base_address + buf_cnt)-max_address;
4975 fastload[i].address = image.sections[i].base_address + offset;
4976 fastload[i].data = malloc(length);
4977 if (fastload[i].data == NULL)
4979 free(buffer);
4980 break;
4982 memcpy(fastload[i].data, buffer + offset, length);
4983 fastload[i].length = length;
4985 image_size += length;
4986 command_print(CMD_CTX, "%u bytes written at address 0x%8.8x",
4987 (unsigned int)length,
4988 ((unsigned int)(image.sections[i].base_address + offset)));
4991 free(buffer);
4994 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
4996 command_print(CMD_CTX, "Loaded %" PRIu32 " bytes "
4997 "in %fs (%0.3f KiB/s)", image_size,
4998 duration_elapsed(&bench), duration_kbps(&bench, image_size));
5000 command_print(CMD_CTX,
5001 "WARNING: image has not been loaded to target!"
5002 "You can issue a 'fast_load' to finish loading.");
5005 image_close(&image);
5007 if (retval != ERROR_OK)
5009 free_fastload();
5012 return retval;
5015 COMMAND_HANDLER(handle_fast_load_command)
5017 if (CMD_ARGC > 0)
5018 return ERROR_COMMAND_SYNTAX_ERROR;
5019 if (fastload == NULL)
5021 LOG_ERROR("No image in memory");
5022 return ERROR_FAIL;
5024 int i;
5025 int ms = timeval_ms();
5026 int size = 0;
5027 int retval = ERROR_OK;
5028 for (i = 0; i < fastload_num;i++)
5030 struct target *target = get_current_target(CMD_CTX);
5031 command_print(CMD_CTX, "Write to 0x%08x, length 0x%08x",
5032 (unsigned int)(fastload[i].address),
5033 (unsigned int)(fastload[i].length));
5034 if (retval == ERROR_OK)
5036 retval = target_write_buffer(target, fastload[i].address, fastload[i].length, fastload[i].data);
5038 size += fastload[i].length;
5040 int after = timeval_ms();
5041 command_print(CMD_CTX, "Loaded image %f kBytes/s", (float)(size/1024.0)/((float)(after-ms)/1000.0));
5042 return retval;
5045 static const struct command_registration target_command_handlers[] = {
5047 .name = "targets",
5048 .handler = handle_targets_command,
5049 .mode = COMMAND_ANY,
5050 .help = "change current default target (one parameter) "
5051 "or prints table of all targets (no parameters)",
5052 .usage = "[target]",
5055 .name = "target",
5056 .mode = COMMAND_CONFIG,
5057 .help = "configure target",
5059 .chain = target_subcommand_handlers,
5061 COMMAND_REGISTRATION_DONE
5064 int target_register_commands(struct command_context *cmd_ctx)
5066 return register_commands(cmd_ctx, NULL, target_command_handlers);
5069 static bool target_reset_nag = true;
5071 bool get_target_reset_nag(void)
5073 return target_reset_nag;
5076 COMMAND_HANDLER(handle_target_reset_nag)
5078 return CALL_COMMAND_HANDLER(handle_command_parse_bool,
5079 &target_reset_nag, "Nag after each reset about options to improve "
5080 "performance");
5083 static const struct command_registration target_exec_command_handlers[] = {
5085 .name = "fast_load_image",
5086 .handler = handle_fast_load_image_command,
5087 .mode = COMMAND_ANY,
5088 .help = "Load image into server memory for later use by "
5089 "fast_load; primarily for profiling",
5090 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
5091 "[min_address [max_length]]",
5094 .name = "fast_load",
5095 .handler = handle_fast_load_command,
5096 .mode = COMMAND_EXEC,
5097 .help = "loads active fast load image to current target "
5098 "- mainly for profiling purposes",
5101 .name = "profile",
5102 .handler = handle_profile_command,
5103 .mode = COMMAND_EXEC,
5104 .help = "profiling samples the CPU PC",
5106 /** @todo don't register virt2phys() unless target supports it */
5108 .name = "virt2phys",
5109 .handler = handle_virt2phys_command,
5110 .mode = COMMAND_ANY,
5111 .help = "translate a virtual address into a physical address",
5112 .usage = "virtual_address",
5115 .name = "reg",
5116 .handler = handle_reg_command,
5117 .mode = COMMAND_EXEC,
5118 .help = "display or set a register; with no arguments, "
5119 "displays all registers and their values",
5120 .usage = "[(register_name|register_number) [value]]",
5123 .name = "poll",
5124 .handler = handle_poll_command,
5125 .mode = COMMAND_EXEC,
5126 .help = "poll target state; or reconfigure background polling",
5127 .usage = "['on'|'off']",
5130 .name = "wait_halt",
5131 .handler = handle_wait_halt_command,
5132 .mode = COMMAND_EXEC,
5133 .help = "wait up to the specified number of milliseconds "
5134 "(default 5) for a previously requested halt",
5135 .usage = "[milliseconds]",
5138 .name = "halt",
5139 .handler = handle_halt_command,
5140 .mode = COMMAND_EXEC,
5141 .help = "request target to halt, then wait up to the specified"
5142 "number of milliseconds (default 5) for it to complete",
5143 .usage = "[milliseconds]",
5146 .name = "resume",
5147 .handler = handle_resume_command,
5148 .mode = COMMAND_EXEC,
5149 .help = "resume target execution from current PC or address",
5150 .usage = "[address]",
5153 .name = "reset",
5154 .handler = handle_reset_command,
5155 .mode = COMMAND_EXEC,
5156 .usage = "[run|halt|init]",
5157 .help = "Reset all targets into the specified mode."
5158 "Default reset mode is run, if not given.",
5161 .name = "soft_reset_halt",
5162 .handler = handle_soft_reset_halt_command,
5163 .mode = COMMAND_EXEC,
5164 .help = "halt the target and do a soft reset",
5167 .name = "step",
5168 .handler = handle_step_command,
5169 .mode = COMMAND_EXEC,
5170 .help = "step one instruction from current PC or address",
5171 .usage = "[address]",
5174 .name = "mdw",
5175 .handler = handle_md_command,
5176 .mode = COMMAND_EXEC,
5177 .help = "display memory words",
5178 .usage = "['phys'] address [count]",
5181 .name = "mdh",
5182 .handler = handle_md_command,
5183 .mode = COMMAND_EXEC,
5184 .help = "display memory half-words",
5185 .usage = "['phys'] address [count]",
5188 .name = "mdb",
5189 .handler = handle_md_command,
5190 .mode = COMMAND_EXEC,
5191 .help = "display memory bytes",
5192 .usage = "['phys'] address [count]",
5195 .name = "mww",
5196 .handler = handle_mw_command,
5197 .mode = COMMAND_EXEC,
5198 .help = "write memory word",
5199 .usage = "['phys'] address value [count]",
5202 .name = "mwh",
5203 .handler = handle_mw_command,
5204 .mode = COMMAND_EXEC,
5205 .help = "write memory half-word",
5206 .usage = "['phys'] address value [count]",
5209 .name = "mwb",
5210 .handler = handle_mw_command,
5211 .mode = COMMAND_EXEC,
5212 .help = "write memory byte",
5213 .usage = "['phys'] address value [count]",
5216 .name = "bp",
5217 .handler = handle_bp_command,
5218 .mode = COMMAND_EXEC,
5219 .help = "list or set hardware or software breakpoint",
5220 .usage = "[address length ['hw']]",
5223 .name = "rbp",
5224 .handler = handle_rbp_command,
5225 .mode = COMMAND_EXEC,
5226 .help = "remove breakpoint",
5227 .usage = "address",
5230 .name = "wp",
5231 .handler = handle_wp_command,
5232 .mode = COMMAND_EXEC,
5233 .help = "list (no params) or create watchpoints",
5234 .usage = "[address length [('r'|'w'|'a') value [mask]]]",
5237 .name = "rwp",
5238 .handler = handle_rwp_command,
5239 .mode = COMMAND_EXEC,
5240 .help = "remove watchpoint",
5241 .usage = "address",
5244 .name = "load_image",
5245 .handler = handle_load_image_command,
5246 .mode = COMMAND_EXEC,
5247 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
5248 "[min_address] [max_length]",
5251 .name = "dump_image",
5252 .handler = handle_dump_image_command,
5253 .mode = COMMAND_EXEC,
5254 .usage = "filename address size",
5257 .name = "verify_image",
5258 .handler = handle_verify_image_command,
5259 .mode = COMMAND_EXEC,
5260 .usage = "filename [offset [type]]",
5263 .name = "test_image",
5264 .handler = handle_test_image_command,
5265 .mode = COMMAND_EXEC,
5266 .usage = "filename [offset [type]]",
5269 .name = "ocd_mem2array",
5270 .mode = COMMAND_EXEC,
5271 .jim_handler = jim_mem2array,
5272 .help = "read 8/16/32 bit memory and return as a TCL array "
5273 "for script processing",
5274 .usage = "arrayname bitwidth address count",
5277 .name = "ocd_array2mem",
5278 .mode = COMMAND_EXEC,
5279 .jim_handler = jim_array2mem,
5280 .help = "convert a TCL array to memory locations "
5281 "and write the 8/16/32 bit values",
5282 .usage = "arrayname bitwidth address count",
5285 .name = "reset_nag",
5286 .handler = handle_target_reset_nag,
5287 .mode = COMMAND_ANY,
5288 .help = "Nag after each reset about options that could have been "
5289 "enabled to improve performance. ",
5290 .usage = "['enable'|'disable']",
5292 COMMAND_REGISTRATION_DONE
5294 static int target_register_user_commands(struct command_context *cmd_ctx)
5296 int retval = ERROR_OK;
5297 if ((retval = target_request_register_commands(cmd_ctx)) != ERROR_OK)
5298 return retval;
5300 if ((retval = trace_register_commands(cmd_ctx)) != ERROR_OK)
5301 return retval;
5304 return register_commands(cmd_ctx, NULL, target_exec_command_handlers);